Interrupted flow reference energy mean emission levels for the FHWA Traffic Noise Model
DOT National Transportation Integrated Search
1997-01-01
This report presents the measurement, data reduction and analysis of individual vehicle sound level and speed data for non-constant speed situations. These situations are referred to as interrupted flow conditions and include acceleration from stop s...
Ecosystems contain energy and materials such as carbon, nitrogen, phosphorus, and water, and are open to their flow-through. Turnover time refers to the amount of time required for replacement by flow-through of the energy or substance of interest contained in the system, and is ...
Mixed Convection Opposing Flow in a Vertical Porous Annulus-Two Temperature Model
NASA Astrophysics Data System (ADS)
Al-Rashed, Abdullah A. AA; J, Salman Ahmed N.; Khaleed, H. M. T.; Yunus Khan, T. M.; NazimAhamed, K. S.
2016-09-01
The opposing flow in a porous medium refers to a condition when the forcing velocity flows in opposite direction to thermal buoyancy obstructing the buoyant force. The present research refers to the effect of opposing flow in a vertical porous annulus embedded with fluid saturated porous medium. The thermal non-equilibrium approach with Darcy modal is considered. The boundary conditions are such that the inner radius is heated with constant temperature Tw the outer radius is maintained at constant temperature Tc. The coupled nonlinear partial differential equations such as momentum equation, energy equation for fluid and energy equation for solid are solved using the finite element method. The opposing flow variation of average Nusselt number with respect to radius ratio Rr, Aspect ratioAr and Radiation parameter Rd for different values of Peclet number Pe are investigated. It is found that the flow behavior is quite different from that of aiding flow.
Self-Similar Compressible Free Vortices
NASA Technical Reports Server (NTRS)
vonEllenrieder, Karl
1998-01-01
Lie group methods are used to find both exact and numerical similarity solutions for compressible perturbations to all incompressible, two-dimensional, axisymmetric vortex reference flow. The reference flow vorticity satisfies an eigenvalue problem for which the solutions are a set of two-dimensional, self-similar, incompressible vortices. These solutions are augmented by deriving a conserved quantity for each eigenvalue, and identifying a Lie group which leaves the reference flow equations invariant. The partial differential equations governing the compressible perturbations to these reference flows are also invariant under the action of the same group. The similarity variables found with this group are used to determine the decay rates of the velocities and thermodynamic variables in the self-similar flows, and to reduce the governing partial differential equations to a set of ordinary differential equations. The ODE's are solved analytically and numerically for a Taylor vortex reference flow, and numerically for an Oseen vortex reference flow. The solutions are used to examine the dependencies of the temperature, density, entropy, dissipation and radial velocity on the Prandtl number. Also, experimental data on compressible free vortex flow are compared to the analytical results, the evolution of vortices from initial states which are not self-similar is discussed, and the energy transfer in a slightly-compressible vortex is considered.
Determination of the air w-value in proton beams using ionization chambers with gas flow capability.
Moyers, M F; Vatnitsky, S M; Miller, D W; Slater, J M
2000-10-01
The purpose of this work was to determine the w-value of air for protons using the paired gas method. Several plastic- and magnesium-walled chambers were used with air, synthetic air, nitrogen, and argon flowing gases. Using argon as a reference gas, the w-value of air was measured and ranged from 32.7 to 34.5 J/C for protons with energies encountered in radiotherapy. Using nitrogen as a reference gas, the w-value of air ranged from 35.2 to 35.4 J/C over the same range of proton energies. The w-value was found, at a given energy, to be independent of the ion chamber used. The uncertainty in these measurements was estimated at 5.2% at the 2sigma level. This uncertainty was dominated by the 4.4% uncertainty in the w-value of the reference gas.
Helicity and singular structures in fluid dynamics
Moffatt, H. Keith
2014-01-01
Helicity is, like energy, a quadratic invariant of the Euler equations of ideal fluid flow, although, unlike energy, it is not sign definite. In physical terms, it represents the degree of linkage of the vortex lines of a flow, conserved when conditions are such that these vortex lines are frozen in the fluid. Some basic properties of helicity are reviewed, with particular reference to (i) its crucial role in the dynamo excitation of magnetic fields in cosmic systems; (ii) its bearing on the existence of Euler flows of arbitrarily complex streamline topology; (iii) the constraining role of the analogous magnetic helicity in the determination of stable knotted minimum-energy magnetostatic structures; and (iv) its role in depleting nonlinearity in the Navier-Stokes equations, with implications for the coherent structures and energy cascade of turbulence. In a final section, some singular phenomena in low Reynolds number flows are briefly described. PMID:24520175
International energy outlook 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-01
This International Energy Outlook presents historical data from 1970 to 1993 and EIA`s projections of energy consumption and carbon emissions through 2015 for 6 country groups. Prospects for individual fuels are discussed. Summary tables of the IEO96 world energy consumption, oil production, and carbon emissions projections are provided in Appendix A. The reference case projections of total foreign energy consumption and of natural gas, coal, and renewable energy were prepared using EIA`s World Energy Projection System (WEPS) model. Reference case projections of foreign oil production and consumption were prepared using the International Energy Module of the National Energy Modeling Systemmore » (NEMS). Nuclear consumption projections were derived from the International Nuclear Model, PC Version (PC-INM). Alternatively, nuclear capacity projections were developed using two methods: the lower reference case projections were based on analysts` knowledge of the nuclear programs in different countries; the upper reference case was generated by the World Integrated Nuclear Evaluation System (WINES)--a demand-driven model. In addition, the NEMS Coal Export Submodule (CES) was used to derive flows in international coal trade. As noted above, foreign projections of electricity demand are now projected as part of the WEPS. 64 figs., 62 tabs.« less
USDA-ARS?s Scientific Manuscript database
The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...
NASA Technical Reports Server (NTRS)
Frost, W.; Harper, W. L.
1975-01-01
Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required.
Does reintroducing large wood influence the hydraulic landscape of a lowland river system?
NASA Astrophysics Data System (ADS)
Matheson, Adrian; Thoms, Martin; Reid, Michael
2017-09-01
Our understanding of the effectiveness of reintroduced large wood for restoration is largely based on studies from high energy river systems. By contrast, few studies of the effectiveness of reintroducing large wood have been undertaken on large, low energy, lowland river systems: river systems where large wood is a significant physical feature on the in-channel environment. This study investigated the effect of reintroduced large wood on the hydraulic landscape of the Barwon-Darling River, Australia, at low flows. To achieve this, the study compared three hydraulic landscapes of replicated reference (naturally wooded), control (unwooded,) and managed (wood reintroduced) treatments on three low flow periods. These time periods were prior to the reintroduction of large wood to managed reaches; several months after the reintroduction of large wood into the managed reaches; and then more than four years after wood reintroduction following several large flood events. Hydraulic landscapes of reaches were characterised using a range of spatial measures calculated from velocity measurements taken with a boat-mounted Acoustic Doppler Profiler. We hypothesised that reintroduced large wood would increase the diversity of the hydraulic landscape at low flows and that managed reaches would be more similar to the reference reaches. Our results suggest that the reintroduction of large wood did not significantly change the character of the hydraulic landscape at the reach scale after several months (p = 0.16) or several years (p = 0.29). Overall, the character of the hydraulic landscape in the managed reaches was more similar to the hydraulic landscape of the control reaches than the hydraulic landscape of the reference reaches, at low flows. Some variability in the hydraulic landscapes was detected over time, and this may reflect reworking of riverbed sediments and sensitivity to variation in discharge. The lack of a response in the low flow hydraulic landscape to the reintroduction of large wood is inferred because the character (the size and complexity of individual pieces) and positioning of large wood in managed reaches did not mimic that of reference reaches effectively despite the abundance of wood pieces being similar in the reference and managed reaches. The results of this study highlight the importance of understanding the natural character and distribution of large wood on hydraulic landscapes in large low energy lowland river systems, especially when reintroducing large wood for river management purposes.
A judging principle of crucial vibrational transmission paths in plates
NASA Astrophysics Data System (ADS)
Wang, Bin; Li, Dong-Xu; Jiang, Jian-Ping; Liao, Yi-Huan
2016-10-01
This paper developed a judging principle of crucial vibrational transmission path (VTP) in plates. Novel generalized definitions of VTPs are given referred to the meaning of streamlines. And by comparing governing equations, the similarity between energy flow and fluid motion is firstly found so that an analytic method of VTPs in plates is proposed by analogy with fluid motion. Hereafter, the crucial VTP is defined for energy flows at objective points and relative judging criteria is given. Finally, based on two numerical experiments of passive control, the judging principle is indirectly verified by comparing the reduction effects of energy flows at focused points and relative judgment results of crucial VTPs. This paper is meaningful for analyzing and applying the VTPs in plates to guide the control design in future.
U.S. Department of Energy Reference Model Program RM1: Experimental Results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Craig; Neary, Vincent Sinclair; Gunawan, Budi
The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing nonproprietary Reference Models (RM) of MHK technology designs as study objects for opensource research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN-SAFL). Reference Model 1 (RM1) is a 1:40 geometric scale dual-rotor axial flow horizontal axis device withmore » counter-rotating rotors, each with a rotor diameter dT = 0.5m. Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADVs) aligned with each rotor and the midpoint for RM1. Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Qw = 2.425m3s-1, resulting in a hub height velocity of approximately Uhub = 1.05ms-1 and blade chord length Reynolds numbers of Rec ≈ 3.0x105. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing turbulence performance models and their ability to accurately predict device performance metrics, including computational fluid dynamics (CFD) models that can be used to predict turbulent inflow environments, reproduce wake velocity deficit, recovery and higher order turbulent statistics, as well as device performance metrics.« less
Natural convection in annular cone: Influence of radius ratio
NASA Astrophysics Data System (ADS)
Ahmed, N. J. Salman; Kamangar, Sarfaraz; Al-Rashed, Abdullah A. A. A.; Govindaraju, Kalimuthu; Khan, T. M. Yunus
2018-05-01
The viscous dissipation in the fluid flow refers to the transformation of the kinetic energy to the internal energy due to the viscosity of the fluid. The current work investigates the effect of viscous dissipation and radius ratio on the heat transfer characteristics and fluid flow behavior in an annular cone embedded with the porous medium. It is observed that the viscous dissipation effect leads to the decrease in the heat transfer rate from the external wall of the cone to the inner region of the geometry.
Energy harvesting by means of flow-induced vibrations on aerospace vehicles
NASA Astrophysics Data System (ADS)
Li, Daochun; Wu, Yining; Da Ronch, Andrea; Xiang, Jinwu
2016-10-01
This paper reviews the design, implementation, and demonstration of energy harvesting devices that exploit flow-induced vibrations as the main source of energy. Starting with a presentation of various concepts of energy harvesters that are designed to benefit from a general class of flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to extend the operational capabilities and to monitor critical parameters of unmanned aerial vehicles. Various phenomena characterized by flow-induced vibrations are discussed, including limit cycle oscillations of plates and wing sections, vortex-induced and galloping oscillations of bluff bodies, vortex-induced vibrations of downstream structures, and atmospheric turbulence and gusts. It was found that linear or linearized modeling approaches are commonly employed to support the design phase of energy harvesters. As a result, highly nonlinear and coupled phenomena that characterize flow-induced vibrations are neglected in the design process. The Authors encourage a shift in the current design paradigm: considering coupled nonlinear phenomena, and adequate modeling tools to support their analysis, from a design limitation to a design opportunity. Special emphasis is placed on identifying designs and implementations applicable to aircraft configurations. Application fields of flow-induced vibrations-based energy harvesters are discussed including power supply for wireless sensor networks and simultaneous energy harvest and control. A large body of work on energy harvesters is included in this review journal. Whereas most of the references claim direct applications to unmanned aerial vehicles, it is apparent that, in most of the cases presented, the working principles and characteristics of the energy harvesters are incompatible with any aerospace applications. Finally, the challenges that hold back the integration of energy harvesting technologies in the aerospace field are discussed.
A perspective of laminar-flow control. [aircraft energy efficiency program
NASA Technical Reports Server (NTRS)
Braslow, A. L.; Muraca, R. J.
1978-01-01
A historical review of the development of laminar flow control technology is presented with reference to active laminar boundary-layer control through suction, the use of multiple suction slots, wind-tunnel tests, continuous suction, and spanwise contamination. The ACEE laminar flow control program is outlined noting the development of three-dimensional boundary-layer codes, cruise-noise prediction techniques, airfoil development, and leading-edge region cleaning. Attention is given to glove flight tests and the fabrication and testing of wing box designs.
Aero-optics overview. [laser applications
NASA Technical Reports Server (NTRS)
Gilbert, K. G.
1980-01-01
Various aero-optical phenomena are discussed with reference to their effect on airborne high energy lasers. Major emphasis is placed on: compressibility effects induced in the surrounding flow field; viscous effects which manifests themselves as aircraft boundary layers or shear layers; inviscid flow fields surrounding the aircraft due to airflow around protuberance such as laser turret assemblies; and shocks, established whenever local flow exceeds Mach one. The significant physical parameters affecting the interaction of a laser beam with a turbulent boundary layer are also described.
Study on the flow in the pipelines of the support system of circulating fluidized bed
NASA Astrophysics Data System (ADS)
Meng, L.; Yang, J.; Zhou, L. J.; Wang, Z. W.; Zhuang, X. H.
2013-12-01
In the support system of Circulating Fluidized Bed (Below referred to as CFB) of thermal power plant, the pipelines of primary wind are used for transporting the cold air to the boiler, which is important in controlling and combustion effect. The pipeline design will greatly affect the energy loss of the system, and accordingly affect the thermal power plant economic benefits and production environment. Three-dimensional numerical simulation is carried out for the pipeline internal flow field of a thermal power plant in this paper. Firstly three turbulence models were compared and the results showed that the SST k-ω model converged better and the energy losses predicted were closer to the experimental results. The influence of the pipeline design form on the flow characteristics are analysed, then the optimization designs of the pipeline are proposed according to the energy loss distribution of the flow field, in order to reduce energy loss and improve the efficiency of tunnel. The optimization plan turned out to be efficacious; about 36% of the pressure loss is reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, R.D.
Microconvective, instability, experimental, and correlational aspects of subcooled flow boiling critical heat flux (CHF) are summarized. The present understanding of CHF in subcooled flow boiling is reviewed and research directions that will permit the accommodation of higher heat fluxes are outlined. This survey (Parts I and II), which contains a representative coverage of the literature over the last 30 years, is concerned only with CHF in the subcooled flow boiling regime, and unless otherwise noted, all references to CHF are confined to that regime.
Partial-depth lock-release flows
NASA Astrophysics Data System (ADS)
Khodkar, M. A.; Nasr-Azadani, M. M.; Meiburg, E.
2017-06-01
We extend the vorticity-based modeling concept for stratified flows introduced by Borden and Meiburg [Z. Borden and E. Meiburg, J. Fluid Mech. 726, R1 (2013), 10.1017/jfm.2013.239] to unsteady flow fields that cannot be rendered quasisteady by a change of reference frames. Towards this end, we formulate a differential control volume balance for the conservation of mass and vorticity in the fully unsteady parts of the flow, which we refer to as the differential vorticity model. We furthermore show that with the additional assumptions of locally uniform parallel flow within each layer, the unsteady vorticity modeling approach reproduces the familiar two-layer shallow-water equations. To evaluate its accuracy, we then apply the vorticity model approach to partial-depth lock-release flows. Consistent with the shallow water analysis of Rottman and Simpson [J. W. Rottman and J. E. Simpson, J. Fluid Mech. 135, 95 (1983), 10.1017/S0022112083002979], the vorticity model demonstrates the formation of a quasisteady gravity current front, a fully unsteady expansion wave, and a propagating bore that is present only if the lock depth exceeds half the channel height. When this bore forms, it travels with a velocity that does not depend on the lock height and the interface behind it is always at half the channel depth. We demonstrate that such a bore is energy conserving. The differential vorticity model gives predictions for the height and velocity of the gravity current and the bore, as well as for the propagation velocities of the edges of the expansion fan, as a function of the lock height. All of these predictions are seen to be in good agreement with the direct numerical simulation data and, where available, with experimental results. An energy analysis shows lock-release flows to be energy conserving only for the case of a full lock, whereas they are always dissipative for partial-depth locks.
U.S. Department of Energy Reference Model Program RM2: Experimental Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Craig; Neary, Vincent Sinclair; Gunawan, Budi
2014-08-01
The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing non-proprietary Reference Models (RM) of MHK technology designs as study objects for open-source research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN - SAFL) . Reference Model 2 (RM2) is a 1:15 geometric scale dual - rotor crossmore » flow vertical axis device with counter - rotating rotors, each with a rotor diameter d T = 0.43m and rotor height, h T = 0.323 m. RM2 is a river turbine designed for a site modeled after a reach in the lower Mississippi River near Baton Rouge, Louisiana (Barone et al. 2014) . Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADV) aligned with each rotor and the midpoint for RM2 . Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Q w = 2. 35m 3s -1 , resulting in a hub height velocity of approximately U hub = 1. 2 ms -1 and blade chord length Reynolds numbers of Re c = 6 .1x10 4. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing computational fluid dynamics (CFD) models and their ability to accurately simulate turbulent inflow environments, device performance metrics, and to reproduce wake velocity deficit, recovery and higher order turbulent statistics.« less
Pillai, Indu M Sasidharan; Gupta, Ashok K
2017-05-15
A continuous flow electrochemical reactor was developed, and its application was tested for the treatment of textile wastewater. A parallel plate configuration with serpentine flow was chosen for the continuous flow reactor. Uniparameter optimization was carried out for electrochemical oxidation of synthetic and real textile wastewater (collected from the inlet of the effluent treatment plant). Chemical Oxygen Demand (COD) removal efficiency of 90% was achieved for synthetic textile wastewater (initial COD - 780 mg L -1 ) at a flow rate of 500 mL h -1 (retention time of 6 h) and a current density of 1.15 mA cm -2 and the energy consumption for the degradation was 9.2 kWh (kg COD) -1 . The complete degradation of real textile wastewater (initial COD of 368 mg L -1 ) was obtained at a current density of 1.15 mA cm -2 , NaCl concentration of 1 g L -1 and retention time of 6 h. Energy consumption and mass transfer coefficient of the reactions were calculated. The continuous flow reactor performed better than batch reactor with reference to energy consumption and economy. The overall treatment cost for complete COD removal of real textile wastewater was 5.83 USD m -3 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Bidirectional Pressure-Regulator System
NASA Technical Reports Server (NTRS)
Burke, Kenneth; Miller, John R.
2008-01-01
A bidirectional pressure-regulator system has been devised for use in a regenerative fuel cell system. The bidirectional pressure-regulator acts as a back-pressure regulator as gas flows through the bidirectional pressure-regulator in one direction. Later, the flow of gas goes through the regulator in the opposite direction and the bidirectional pressure-regulator operates as a pressure- reducing pressure regulator. In the regenerative fuel cell system, there are two such bidirectional regulators, one for the hydrogen gas and another for the oxygen gas. The flow of gases goes from the regenerative fuel cell system to the gas storage tanks when energy is being stored, and reverses direction, flowing from the storage tanks to the regenerative fuel cell system when the stored energy is being withdrawn from the regenerative fuel cell system. Having a single bidirectional regulator replaces two unidirectional regulators, plumbing, and multiple valves needed to reverse the flow direction. The term "bidirectional" refers to both the bidirectional nature of the gas flows and capability of each pressure regulator to control the pressure on either its upstream or downstream side, regardless of the direction of flow.
Process viscometry in flows of non-Newtonian fluids using an anchor agitator
NASA Astrophysics Data System (ADS)
Jo, Hae Jin; Jang, Hye Kyeong; Kim, Young Ju; Hwang, Wook Ryol
2017-11-01
In this work, we present a viscosity measurement technique for inelastic non-Newtonian fluids directly in flows of anchor agitators that are commonly used in highly viscous fluid mixing particularly with yield stress. A two-blade anchor impeller is chosen as a model flow system and Carbopol 940 solutions and Xanthan gum solutions with various concentrations are investigated as test materials. Following the Metzner-Otto correlation, the effective shear rate constant and the energy dissipation rate constant have been estimated experimentally by establishing (i) the relationship between the power number and the Reynolds number using a reference Newtonian fluid and (ii) the proportionality between the effective shear rate and the impeller speed with a reference non-Newtonian fluid. The effective viscosity that reproduces the same amount of the energy dissipation rate, corresponding to that of Newtonian fluid, has been obtained by measuring torques for various impeller speeds and the accuracy in the viscosity prediction as a function of the shear rate has been compared with the rheological measurement. We report that the process viscometry with the anchor impeller yields viscosity estimation within the relative error of 20% with highly shear-thinning fluids.
Emergy accounting of the Province of Siena: towards a thermodynamic geography for regional studies.
Pulselli, R M; Pulselli, F M; Rustici, M
2008-01-01
This research is part of the SPIn-Eco project for the Province of Siena, Italy, and applies an environmental accounting method to a region with reference to its population, human activities, natural cycles, infrastructures and other settings. This study asserts that the consumption of resources due to the human economy is a source of great concern because of the load it places on the biosphere. Environmental resources locally used, whether directly or indirectly, from both renewable energy fluxes and storage of materials and energies, are investigated. In this paper emergy analysis is presented and applied to the Province of Siena and to each of its municipalities, in order to evaluate the main flows of energy and materials that supply the territorial system, including human subsystems, with reference to their actual environmental cost. Therefore, the behaviour of the whole system and the interactions between natural and human agents were studied; in other words, the attitudes of the territorial systems toward resource use as revealed by their patterns of emergy consumption were observed. Once expressed in units of the same form of energy through the emergy evaluation, categories of resource consumption and systems of varying scales and organization are compared. Furthermore, indexes of environmental performance based on emergy are calculated. Flows of energy and materials are assessed, and their intensities, which vary throughout the area of the Province, are then visualized on maps.
Homopolar Transformer for Conversion of Electrical Energy
1997-08-14
machine rotor. In the case of a 14 homopolar motor , the current will develop a force perpendicular to the direction of its flow 15 through the conductor...reference numeral 10, incorporated within a homopolar 14 machine 12 corresponding for example to the motor or generator disclosed in U.S. Patent No...current flow. During 3 operation of the homopolar machine 12 as a motor , a voltage source 16 connected to the stator 5 terminals 26 and 28 causes a
How shear increments affect the flow production branching ratio in CSDX
NASA Astrophysics Data System (ADS)
Li, J. C.; Diamond, P. H.
2018-06-01
The coupling of turbulence-driven azimuthal and axial flows in a linear device absent magnetic shear (Controlled Shear Decorrelation Experiment) is investigated. In particular, we examine the apportionment of Reynolds power between azimuthal and axial flows, and how the azimuthal flow shear affects axial flow generation and saturation by drift wave turbulence. We study the response of the energy branching ratio, i.e., ratio of axial and azimuthal Reynolds powers, PzR/PyR , to incremental changes of azimuthal and axial flow shears. We show that increasing azimuthal flow shear decreases the energy branching ratio. When axial flow shear increases, this ratio first increases but then decreases to zero. The axial flow shear saturates below the threshold for parallel shear flow instability. The effects of azimuthal flow shear on the generation and saturation of intrinsic axial flows are analyzed. Azimuthal flow shear slows down the modulational growth of the seed axial flow shear, and thus reduces intrinsic axial flow production. Azimuthal flow shear reduces both the residual Reynolds stress (of axial flow, i.e., ΠxzR e s ) and turbulent viscosity ( χzDW ) by the same factor |⟨vy⟩'|-2Δx-2Ln-2ρs2cs2 , where Δx is the distance relative to the reference point where ⟨vy⟩=0 in the plasma frame. Therefore, the stationary state axial flow shear is not affected by azimuthal flow shear to leading order since ⟨vz⟩'˜ΠxzR e s/χzDW .
Ecological Understanding 2: Transformation--A Key to Ecological Understanding.
ERIC Educational Resources Information Center
Carlsson, Britta
2002-01-01
Describes the structure and general features of the phenomenon of ecological understanding. Presents qualitatively different ways of experiencing cycling of matter and the flow of energy in the context of ecosystems. The idea of transformation is key to the development of ecological understanding. (Contains 17 references.) (Author/YDS)
Two spinning ways for precession dynamo.
Cappanera, L; Guermond, J-L; Léorat, J; Nore, C
2016-04-01
It is numerically demonstrated by means of a magnetohydrodynamic code that precession can trigger dynamo action in a cylindrical container. Fixing the angle between the spin and the precession axis to be 1/2π, two limit configurations of the spinning axis are explored: either the symmetry axis of the cylinder is parallel to the spin axis (this configuration is henceforth referred to as the axial spin case), or it is perpendicular to the spin axis (this configuration is referred to as the equatorial spin case). In both cases, the centro-symmetry of the flow breaks when the kinetic Reynolds number increases. Equatorial spinning is found to be more efficient in breaking the centro-symmetry of the flow. In both cases, the average flow in the reference frame of the mantle converges to a counter-rotation with respect to the spin axis as the Reynolds number grows. We find a scaling law for the average kinetic energy in term of the Reynolds number in the axial spin case. In the equatorial spin case, the unsteady asymmetric flow is shown to be capable of sustaining dynamo action in the linear and nonlinear regimes. The magnetic field is mainly dipolar in the equatorial spin case, while it is is mainly quadrupolar in the axial spin case.
Research of performance prediction to energy on hydraulic turbine
NASA Astrophysics Data System (ADS)
Quan, H.; Li, R. N.; Li, Q. F.; Han, W.; Su, Q. M.
2012-11-01
Refer to the low specific speed Francis turbine blade design principle and double-suction pump structure. Then, design a horizontal double-channel hydraulic turbine Francis. Through adding different guide vane airfoil and and no guide vane airfoil on the hydraulic conductivity components to predict hydraulic turbine energy and using Fluent software to numerical simulation that the operating conditions and point. The results show that the blade pressure surface and suction surface pressure is low when the hydraulic turbine installation is added standard positive curvature of the guide vane and modified positive curvature of guide vane. Therefore, the efficiency of energy recovery is low. However, the pressure of negative curvature guide vane and symmetric guide vane added on hydraulic turbine installations is larger than that of the former ones, and it is conducive to working of runner. With the decreasing of guide vane opening, increasing of inlet angle, flow state gets significantly worse. Then, others obvious phenomena are that the reflux and horizontal flow appeared in blade pressure surface. At the same time, the vortex was formed in Leaf Road, leading to the loss of energy. Through analyzing the distribution of pressure, velocity, flow lines of over-current flow in the the back hydraulic conductivity components in above programs we can known that the hydraulic turbine installation added guide vane is more reasonable than without guide vanes, it is conducive to improve efficiency of energy conversion.
1994-10-10
suitable base for water quality process models. ACKNOWLEDGEMENT Lorraine Dorm typed the document and compiled the reference list and Jennifer Angelatos...intersection is essentially enhanced ( Craik 1985). To study the behavioutr of dispersion surfaces in the small vicinity of the place of intersection one has...Cairns R.A. 1979 The role of negative energy waves in some instabilities of parallel flows. J. Fluid Mech., 92, 1 - 14. Craik A.D.D. 1985 Wave
NASA Technical Reports Server (NTRS)
Chen, Shu-cheng, S.
2009-01-01
For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.
Self-oscillations of a two-dimensional shear flow with forcing and dissipation
NASA Astrophysics Data System (ADS)
López Zazueta, A.; Zavala Sansón, L.
2018-04-01
Two-dimensional shear flows continuously forced in the presence of dissipative effects are studied by means of numerical simulations. In contrast with most previous studies, the forcing is confined in a finite region, so the behavior of the system is characterized by the long-term evolution of the global kinetic energy. We consider regimes with 1 < Reλ << Re, where Reλ is the Reynolds number associated with an external friction (such as bottom friction in quasi-two-dimensional flows), and Re is the traditional Reynolds number associated with Laplacian viscosity. Depending on Reλ, the flow may develop Kelvin-Helmholtz instabilities that exhibit either regular or irregular oscillations. The results are discussed in two parts. First, the flow is limited to develop only one vortical instability by choosing an appropriate width of the forcing band. The most relevant regime is found for Reλ > 36, in which the energy maintains a regular oscillation around a reference value. The flow configuration is an elliptical vortex tilted with respect to the forcing axis, which oscillates steadily also. Second, the flow is allowed to develop two Kelvin-Helmholtz billows and eventually more complicated structures. The regimes of the one-vortex case are observed again, except for Reλ > 135. At these values, the energy oscillates chaotically as the two vortices merge, form dipolar structures, and split again, with irregular periodicity. The self-oscillations are explained as a result of the alternate competition between forcing and dissipation, which is verified by calculating the budget terms in the energy equation. The relevance of the forcing-vs.-dissipation competition is discussed for more general flow systems.
NASA Astrophysics Data System (ADS)
VerHulst, Claire; Meneveau, Charles
2014-02-01
In this study, we address the question of how kinetic energy is entrained into large wind turbine arrays and, in particular, how large-scale flow structures contribute to such entrainment. Previous research has shown this entrainment to be an important limiting factor in the performance of very large arrays where the flow becomes fully developed and there is a balance between the forcing of the atmospheric boundary layer and the resistance of the wind turbines. Given the high Reynolds numbers and domain sizes on the order of kilometers, we rely on wall-modeled large eddy simulation (LES) to simulate turbulent flow within the wind farm. Three-dimensional proper orthogonal decomposition (POD) analysis is then used to identify the most energetic flow structures present in the LES data. We quantify the contribution of each POD mode to the kinetic energy entrainment and its dependence on the layout of the wind turbine array. The primary large-scale structures are found to be streamwise, counter-rotating vortices located above the height of the wind turbines. While the flow is periodic, the geometry is not invariant to all horizontal translations due to the presence of the wind turbines and thus POD modes need not be Fourier modes. Differences of the obtained modes with Fourier modes are documented. Some of the modes are responsible for a large fraction of the kinetic energy flux to the wind turbine region. Surprisingly, more flow structures (POD modes) are needed to capture at least 40% of the turbulent kinetic energy, for which the POD analysis is optimal, than are needed to capture at least 40% of the kinetic energy flux to the turbines. For comparison, we consider the cases of aligned and staggered wind turbine arrays in a neutral atmospheric boundary layer as well as a reference case without wind turbines. While the general characteristics of the flow structures are robust, the net kinetic energy entrainment to the turbines depends on the presence and relative arrangement of the wind turbines in the domain.
Splash flow from a metal plate hit by an electron beam pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, M., LLNL
1997-09-01
When a pulsed electron beam hits a metal plate with sufficient energy a volume of the metal becomes hot fluid that subsequently sprays out of the plate. A second pulse of electrons traveling toward the plate would scatter and degrade before impacting the solid plate because of its encounter with the diffuse material of the initial splash. People designing electron beam machines for use as pulsed radiation sources wish to eliminate the interaction between the electrons and the splash because they want sharp radiation pulses emitted from the solid plate. This report presents a compressible fluid model of this splashmore » flow and compares specific cases with experiments and comprehensive calculations performed by B. DeVolder and others at the Los Alamos National Laboratory, see reference (1). My aim was to develop as simple a theory as possible to calculate the speed and density of the splash flow. I have used both simplifying assumptions and mathematical approximations to develop convenient formulas. As I wished to make a clear and interesting presentation of this work to a diverse audience that includes people outside the specialty of fluid dynamics, some of my descriptions may seem wordier than necessary. The plan of the report is as follows. In the section called ``energy deposition`` I describe how an electron beam deposits energy in a solid plate, converting some of the material into a hot fluid. The initial temperature of this fluid is the key parameter in determining the nature of the subsequent flow; an explicit formula is shown. Flow occurs in two regions: along a streamtube within the metal plate and as an expanding plume outside the metal plate. Flow within the plate is described in the section called ``isentropic flow.`` This flow occurs as expansion waves move at the speed of sound through the streamtube. The analysis of this flow provides a formula for the mass flow over time from the plate into the external splash. The section called ``centered expansion`` elaborates on the nature of certain approximations I have made in treating the wave phenomena in both the streamtube and splash flows. The section called ``splash flow`` presents a formula to describe the material density as a function of space and time outside the plate. This formula depends on the time- dependent material density at the plate, which was found during the streamtube analysis. The section called ``examples`` shows the results of specific calculations and a comparison to computational and experimental results described in reference (1). The final section, ``possible future work,`` poses new questions.« less
Energy Options for Wireless Sensor Nodes.
Knight, Chris; Davidson, Joshua; Behrens, Sam
2008-12-08
Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting.
Energy Options for Wireless Sensor Nodes
Knight, Chris; Davidson, Joshua; Behrens, Sam
2008-01-01
Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting. PMID:27873975
Center, S A; Warner, K L; Randolph, J F; Wakshlag, J J; Sunvold, G D
2011-01-01
Resting energy expenditure (REE) approximates ≥60% of daily energy expenditure (DEE). Accurate REE determination could facilitate sequential comparisons among patients and diseases if normalized against lean body mass (LBM). (1) Validate open-flow indirect calorimetry (IC) system and multifrequency bioelectrical impedance analysis (MF-BIA) to determine REE and LBM, respectively, in healthy nonsedated cats of varied body conditions; (2) normalize REE against LBM. Fifty-seven adult neutered domestic short-haired cats with stable BW. Continuous (45-min) IC-measurements determined least observed metabolism REE. Cage gas flow regulated with mass flow controllers was verified using nitrogen dilution; span gases calibrated gas measurements. Respiratory quotient accuracy was verified using alcohol combustion. IC-REE was compared to DEE, determined using doubly labeled water. MF-BIA LBM was validated against criterion references (deuterium, sodium bromide). Intra- and interassay variation was determined for IC and MF-BIA. Mean IC-REE (175 ± 38.7 kcal; 1.5-14% intra- and interassay CV%) represented 61 ± 14.3% of DEE. Best MF-BIA measurements were collected in sternal recumbency and with electrodes in neck-tail configuration. MF-BIA LBM was not significantly different from criterion references and generated LBM interassay CV% of 6.6-10.1%. Over- and underconditioned cats had significantly (P ≤ .05) lower and higher IC-REE (kcal/kg) respectively, compared with normal-conditioned cats. However, differences resolved with REE/LBM (approximating 53 ± 10.3 kcal/LBM [kg]). IC and MF-BIA validated herein reasonably estimate REE and LBM in cats. REE/LBM(kg) may permit comparison of energy utilization in sequential studies or among different cats. Copyright © 2011 by the American College of Veterinary Internal Medicine.
Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Huh, Hyung Kyu; Lee, Sang Joon; Koo, Hyun Jung; Kang, Joon-Won; Lim, Tae-Hwan; Kim, Dae-Hee; Kim, Young-Hak
2016-01-01
Background Although the measurement of turbulence kinetic energy (TKE) by using magnetic resonance imaging (MRI) has been introduced as an alternative index for quantifying energy loss through the cardiac valve, experimental verification and clinical application of this parameter are still required. Objectives The goal of this study is to verify MRI measurements of TKE by using a phantom stenosis with particle image velocimetry (PIV) as the reference standard. In addition, the feasibility of measuring TKE with MRI is explored. Methods MRI measurements of TKE through a phantom stenosis was performed by using clinical 3T MRI scanner. The MRI measurements were verified experimentally by using PIV as the reference standard. In vivo application of MRI-driven TKE was explored in seven patients with aortic valve disease and one healthy volunteer. Transvalvular gradients measured by MRI and echocardiography were compared. Results MRI and PIV measurements of TKE are consistent for turbulent flow (0.666 < R2 < 0.738) with a mean difference of −11.13 J/m3 (SD = 4.34 J/m3). Results of MRI and PIV measurements differ by 2.76 ± 0.82 cm/s (velocity) and −11.13 ± 4.34 J/m3 (TKE) for turbulent flow (Re > 400). The turbulence pressure drop correlates strongly with total TKE (R2 = 0.986). However, in vivo measurements of TKE are not consistent with the transvalvular pressure gradient estimated by echocardiography. Conclusions These results suggest that TKE measurement via MRI may provide a potential benefit as an energy-loss index to characterize blood flow through the aortic valve. However, further clinical studies are necessary to reach definitive conclusions regarding this technique. PMID:26978529
Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Huh, Hyung Kyu; Lee, Sang Joon; Koo, Hyun Jung; Kang, Joon-Won; Lim, Tae-Hwan; Kim, Dae-Hee; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun
2016-01-01
Although the measurement of turbulence kinetic energy (TKE) by using magnetic resonance imaging (MRI) has been introduced as an alternative index for quantifying energy loss through the cardiac valve, experimental verification and clinical application of this parameter are still required. The goal of this study is to verify MRI measurements of TKE by using a phantom stenosis with particle image velocimetry (PIV) as the reference standard. In addition, the feasibility of measuring TKE with MRI is explored. MRI measurements of TKE through a phantom stenosis was performed by using clinical 3T MRI scanner. The MRI measurements were verified experimentally by using PIV as the reference standard. In vivo application of MRI-driven TKE was explored in seven patients with aortic valve disease and one healthy volunteer. Transvalvular gradients measured by MRI and echocardiography were compared. MRI and PIV measurements of TKE are consistent for turbulent flow (0.666 < R2 < 0.738) with a mean difference of -11.13 J/m3 (SD = 4.34 J/m3). Results of MRI and PIV measurements differ by 2.76 ± 0.82 cm/s (velocity) and -11.13 ± 4.34 J/m3 (TKE) for turbulent flow (Re > 400). The turbulence pressure drop correlates strongly with total TKE (R2 = 0.986). However, in vivo measurements of TKE are not consistent with the transvalvular pressure gradient estimated by echocardiography. These results suggest that TKE measurement via MRI may provide a potential benefit as an energy-loss index to characterize blood flow through the aortic valve. However, further clinical studies are necessary to reach definitive conclusions regarding this technique.
Evaluation of Foreign Investment in Power Plants using Real Options
NASA Astrophysics Data System (ADS)
Kato, Moritoshi; Zhou, Yicheng
This paper proposes new methods for evaluating foreign investment in power plants under market uncertainty using a real options approach. We suppose a thermal power plant project in a deregulated electricity market. One of our proposed methods is that we calculate the cash flow generated by the project in a reference year using actual market data to incorporate periodic characteristics of energy prices into a yearly cash flow model. We make the stochastic yearly cash flow model with the initial value which is the cash flow in the reference year, and certain trend and volatility. Then we calculate the real options value (ROV) of the project which has abandonment options using the yearly cash flow model. Another our proposed method is that we evaluate foreign currency/domestic currency exchange rate risk by representing ROV in foreign currency as yearly pay off and exchanging it to ROV in domestic currency using a stochastic exchange rate model. We analyze the effect of the heat rate and operation and maintenance costs of the power plant on ROV, and evaluate exchange rate risk through numerical examples. Our proposed method will be useful for the risk management of foreign investment in power plants.
Specific features of the flow structure in a reactive type turbine stage
NASA Astrophysics Data System (ADS)
Chernikov, V. A.; Semakina, E. Yu.
2017-04-01
The results of experimental studies of the gas dynamics for a reactive type turbine stage are presented. The objective of the studies is the measurement of the 3D flow fields in reference cross sections, experimental determination of the stage characteristics, and analysis of the flow structure for detecting the sources of kinetic energy losses. The integral characteristics of the studied stage are obtained by averaging the results of traversing the 3D flow over the area of the reference cross sections before and behind the stage. The averaging is performed using the conservation equations for mass, total energy flux, angular momentum with respect to the axis z of the turbine, entropy flow, and the radial projection of the momentum flux equation. The flow parameter distributions along the channel height behind the stage are obtained in the same way. More thorough analysis of the flow structure is performed after interpolation of the experimentally measured point parameter values and 3D flow velocities behind the stage. The obtained continuous velocity distributions in the absolute and relative coordinate systems are presented in the form of vector fields. The coordinates of the centers and the vectors of secondary vortices are determined using the results of point measurements of velocity vectors in the cross section behind the turbine stage and their subsequent interpolation. The approach to analysis of experimental data on aerodynamics of the turbine stage applied in this study allows one to find the detailed space structure of the working medium flow, including secondary coherent vortices at the root and peripheral regions of the air-gas part of the stage. The measured 3D flow parameter fields and their interpolation, on the one hand, point to possible sources of increased power losses, and, on the other hand, may serve as the basis for detailed testing of CFD models of the flow using both integral and local characteristics. The comparison of the numerical and experimental results, as regards local characteristics, using statistical methods yields the quantitative estimate of their agreement.
Black Hole Firewalls and Lorentzian Relativity
NASA Astrophysics Data System (ADS)
Winterberg, Friedwardt
2013-04-01
In a paper published (Z. f. Naturforsch. 56a, 889, 2001) I had shown that the pre-Einstein theory of relativity by Lorentz and Poincare, extended to the general theory of relativity and quantum mechanics, predicts the disintegration of matter by passing through the event horizon. The zero point vacuum energy is there cut-off at the Planck energy, but Lorentz-invariant all the way up to this energy. The cut-off creates a distinguished reference system in which this energy is at rest. For non-relativistic velocities relative to this reference system, the special and general relativity remain a good approximations, with matter held together in a stable equilibrium by electrostatic forces (or forces acting like them) as a solution of an elliptic partial differential equation derived from Maxwell's equation. But in approaching and crossing the velocity of light in the distinguished reference system, which is equivalent in approaching and crossing of the event horizon, the elliptic differential equation goes over into a hyperbolic differential equation (as in fluid dynamics from subsonic to supersonic flow), and there is no such equilibrium. According to Schwarzschild's interior solution, the event horizon of a collapsing mass appears first as a point in its center, thereafter moving radially outwards, thereby converting all the mass into energy, explaining the observed gamma ray bursters.
NASA Astrophysics Data System (ADS)
Kafle, Jeevan; Kattel, Parameshwari; Mergili, Martin; Fischer, Jan-Thomas; Tuladhar, Bhadra Man; Pudasaini, Shiva P.
2017-04-01
Dense geophysical mass flows such as landslides, debris flows and debris avalanches may generate super tsunami waves as they impact water bodies such as the sea, hydraulic reservoirs or mountain lakes. Here, we apply a comprehensive and general two-phase, physical-mathematical mass flow model (Pudasaini, 2012) that consists of non-linear and hyperbolic-parabolic partial differential equations for mass and momentum balances, and present novel, high-resolution simulation results for two-phase flows, as a mixture of solid grains and viscous fluid, impacting fluid reservoirs with obstacles. The simulations demonstrate that due to the presence of different obstacles in the water body, the intense flow-obstacle-interaction dramatically reduces the flow momentum resulting in the rapid energy dissipation around the obstacles. With the increase of obstacle height overtopping decreases but, the deflection and capturing (holding) of solid mass increases. In addition, the submarine solid mass is captured by the multiple obstacles and the moving mass decreases both in amount and speed as each obstacle causes the flow to deflect into two streams and also captures a portion of it. This results in distinct tsunami and submarine flow dynamics with multiple surface water and submarine debris waves. This novel approach can be implemented in open source GIS modelling framework r.avaflow, and be applied in hazard mitigation, prevention and relevant engineering or environmental tasks. This might be in particular for process chains, such as debris impacts in lakes and subsequent overtopping. So, as the complex flow-obstacle-interactions strongly and simultaneously dissipate huge energy at impact such installations potentially avoid great threat against the integrity of the dam. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.
R&D of the CEPC scintillator-tungsten ECAL
NASA Astrophysics Data System (ADS)
Dong, M. Y.
2018-03-01
The circular electron and positron collider (CEPC) was proposed as a future Higgs factory. To meet the physics requirements, a particle flow algorithm-oriented calorimeter system with high energy resolution and precise reconstruction is considered. A sampling calorimeter with scintillator-tungsten sandwich structure is selected as one of the electromagnetic calorimeter (ECAL) options due to its good performance and relatively low cost. We present the design, the test and the optimization of the scintillator module read out by silicon photomultiplier (SiPM), including the design and the development of the electronics. To estimate the performance of the scintillator and SiPM module for particles with different energy, the beam test of a mini detector prototype without tungsten shower material was performed at the E3 beams in Institute of High Energy Physics (IHEP). The results are consistent with the expectation. These studies provide a reference and promote the development of particle flow electromagnetic calorimeter for the CEPC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieckmann, M.E.; Shukla, P.K.; Eliasson, B.
2006-06-15
The ever increasing performance of supercomputers is now enabling kinetic simulations of extreme astrophysical and laser produced plasmas. Three-dimensional particle-in-cell (PIC) simulations of relativistic shocks have revealed highly filamented spatial structures and their ability to accelerate particles to ultrarelativistic speeds. However, these PIC simulations have not yet revealed mechanisms that could produce particles with tera-electron volt energies and beyond. In this work, PIC simulations in one dimension (1D) of the foreshock region of an internal shock in a gamma ray burst are performed to address this issue. The large spatiotemporal range accessible to a 1D simulation enables the self-consistent evolutionmore » of proton phase space structures that can accelerate particles to giga-electron volt energies in the jet frame of reference, and to tens of tera-electron volt in the Earth's frame of reference. One potential source of ultrahigh energy cosmic rays may thus be the thermalization of relativistically moving plasma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liscom, W.L.
This book presents a complete graphic and statistical portrait of the dramatic shifts in global energy flows during the 1970s and the resultant transfer of economic and political power from the industrial nations to the oil-producing states. The information was extracted from government-source documents and compiled in a computer data base. Computer graphics were combined with the data base to produce over 400 full-color graphs. The energy commodities covered are oil, natural gas, coal, nuclear, and conventional electric-power generation. Also included are data on hydroelectric and geothermal power, oil shale, tar sands, and other alternative energy sources. 72 references.
Analytical and experimental studies of flow-induced vibration of SSME components
NASA Technical Reports Server (NTRS)
Chen, S. S.; Jendrzejczyk, J. A.; Wambsganss, M. W.
1987-01-01
Components of the Space Shuttle Main Engines (SSMEs) are subjected to a severe environment that includes high-temperature, high-velocity flows. Such flows represent a source of energy that can induce and sustain large-amplitude vibratory stresses and/or result in fluidelastic instabilities. Three components are already known to have experienced failures in evaluation tests as a result of flow-induced structural motion. These components include the liquid-oxygen (LOX) posts, the fuel turbine bellows shield, and the internal inlet tee splitter vane. Researchers considered the dynamic behavior of each of these components with varying degrees of effort: (1) a theoretical and experimental study of LOX post vibration excited by a fluid flow; (2) an assessment of the internal inlet tee splitter vane vibration (referred to as the 4000-Hz vibration problem); and (3) a preliminary consideration of the bellows shield problem. Efforts to resolve flow-induced vibration problems associated with the SSMEs are summarized.
Precipitation patterns during channel flow
NASA Astrophysics Data System (ADS)
Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.
2013-12-01
Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001
Theoretical analysis for scaling law of thermal blooming based on optical phase deference
NASA Astrophysics Data System (ADS)
Sun, Yunqiang; Huang, Zhilong; Ren, Zebin; Chen, Zhiqiang; Guo, Longde; Xi, Fengjie
2016-10-01
In order to explore the laser propagation influence of thermal blooming effect of pipe flow and to analysis the influencing factors, scaling law theoretical analysis of the thermal blooming effects in pipe flow are carry out in detail based on the optical path difference caused by thermal blooming effects in pipe flow. Firstly, by solving the energy coupling equation of laser beam propagation, the temperature of the flow is obtained, and then the optical path difference caused by the thermal blooming is deduced. Through the analysis of the influence of pipe size, flow field and laser parameters on the optical path difference, energy scaling parameters Ne=nTαLPR2/(ρɛCpπR02) and geometric scaling parameters Nc=νR2/(ɛL) of thermal blooming for the pipe flow are derived. Secondly, for the direct solution method, the energy coupled equations have analytic solutions only for the straight tube with Gauss beam. Considering the limitation of directly solving the coupled equations, the dimensionless analysis method is adopted, the analysis is also based on the change of optical path difference, same scaling parameters for the pipe flow thermal blooming are derived, which makes energy scaling parameters Ne and geometric scaling parameters Nc have good universality. The research results indicate that when the laser power and the laser beam diameter are changed, thermal blooming effects of the pipeline axial flow caused by optical path difference will not change, as long as you keep energy scaling parameters constant. When diameter or length of the pipe changes, just keep the geometric scaling parameters constant, the pipeline axial flow gas thermal blooming effects caused by optical path difference distribution will not change. That is to say, when the pipe size and laser parameters change, if keeping two scaling parameters with constant, the pipeline axial flow thermal blooming effects caused by the optical path difference will not change. Therefore, the energy scaling parameters and the geometric scaling parameters can really describe the gas thermal blooming effect in the axial pipe flow. These conclusions can give a good reference for the construction of the thermal blooming test system of laser system. Contrasted with the thermal blooming scaling parameters of the Bradley-Hermann distortion number ND and Fresnel number NF, which were derived based on the change of far field beam intensity distortion, the scaling parameters of pipe flow thermal blooming deduced from the optical path deference variation are very suitable for the optical system with short laser propagation distance, large Fresnel number and obviously changed optical path deference.
Design of a stateless low-latency router architecture for green software-defined networking
NASA Astrophysics Data System (ADS)
Saldaña Cercós, Silvia; Ramos, Ramon M.; Ewald Eller, Ana C.; Martinello, Magnos; Ribeiro, Moisés. R. N.; Manolova Fagertun, Anna; Tafur Monroy, Idelfonso
2015-01-01
Expanding software defined networking (SDN) to transport networks requires new strategies to deal with the large number of flows that future core networks will have to face. New south-bound protocols within SDN have been proposed to benefit from having control plane detached from the data plane offering a cost- and energy-efficient forwarding engine. This paper presents an overview of a new approach named KeyFlow to simultaneously reduce latency, jitter, and power consumption in core network nodes. Results on an emulation platform indicate that round trip time (RTT) can be reduced above 50% compared to the reference protocol OpenFlow, specially when flow tables are densely populated. Jitter reduction has been demonstrated experimentally on a NetFPGA-based platform, and 57.3% power consumption reduction has been achieved.
Centrality Evolution of pt and yt Spectra from Au-Au Collisions at √ {sNN} = 200 GeV
NASA Astrophysics Data System (ADS)
Trainor, Thomas A.
A two-component analysis of spectra to pt = 12 GeV/c for identified pions and protons from 200 GeV Au-Au collisions is presented. The method is similar to an analysis of the nch dependence of pt spectra from p-p collisions at 200 GeV, but applied to Au-Au centrality dependence. The soft-component reference is a Lévy distribution on transverse mass mt. The hard-component reference is a Gaussian on transverse rapidity yt with exponential (pt power-law) tail. Deviations of data from the reference are described by hard-component ratio rAA, which generalizes nuclear modification factor RAA. The analysis suggests that centrality evolution of pion and proton spectra is dominated by changes in parton fragmentation. The structure of rAA suggests that parton energy loss produces a negative boost Δyt of a large fraction (but not all) of the minimum-bias fragment distribution, and that lower-energy partons suffer relatively less energy loss, possibly due to color screening. The analysis also suggests that the anomalous p/π ratio may be due to differences in the parton energy-loss process experienced by the two hadron species. This analysis provides no evidence for radial flow.
Performance and cavitation characteristics of bi-directional hydrofoils
NASA Astrophysics Data System (ADS)
Nedyalkov, Ivaylo; Wosnik, Martin
2013-11-01
Tidal turbines extract energy from flows which reverse direction. One way to address this bi-directionality in horizontal axis turbines that avoid the use of complex and maintenance-intensive yaw or blade pitch mechanisms, is to design bi-directional blades which perform (equally) well in either flow direction. A large number of proposed hydrofoil designs were investigated using numerical simulations. Selected candidate foils were also tested (at various speeds and angles of attack) in the High-Speed Cavitation Tunnel (HICaT) at the University of New Hampshire. Lift and drag were measured using a force balance, and cavitation inception and desinence were recorded. Experimental and numerical results were compared, and the foils were compared to each other and to reference foils. Bi-directional hydrofoils may provide a feasible solution to the problem of reversing flow direction, when their performance and cavitation characteristics are comparable to those for unidirectional foils, and the penalty in decreased energy production is outweighed by the cost reduction due to lower complexity and respectively lower installation and maintenance costs.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Gases), 2.5 (Test Pressures and Burner Adjustments), 2.6 (Static Pressure and Air Flow Adjustments), 2... pressure, as specified in Section 2.5.1 of ANSI Standard Z21.47-1998, (Incorporated by reference, see § 431... thermal efficiency test), 41 (Initial Test Conditions), 42 (Combustion Test—Burner and Furnace), 43.2...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Gases), 2.5 (Test Pressures and Burner Adjustments), 2.6 (Static Pressure and Air Flow Adjustments), 2... pressure, as specified in Section 2.5.1 of ANSI Standard Z21.47-1998, (Incorporated by reference, see § 431... thermal efficiency test), 41 (Initial Test Conditions), 42 (Combustion Test—Burner and Furnace), 43.2...
Highlights from BNL and RHIC 2014
NASA Astrophysics Data System (ADS)
Tannenbaum, M. J.
The following sections are included: * Introduction * News from BNL since ISSP2013 * RHIC Operations and accelerator future plans * Detector issues in A+A compared to p+p collisions * Nch, ET distributions and constituent-quarks as the fundamental elements of particle production * Collective Flow * RHIC Beam Energy Scan (BES)-in search of the critical point * Jet quenching, RHIC's main claim to fame * References
Harnessing Wind Power in Moving Reference Frames with Application to Vehicles
NASA Astrophysics Data System (ADS)
Goushcha, Oleg; Felicissimo, Robert; Danesh-Yazdi, Amir; Andreopoulos, Yiannis
2017-11-01
The extraction of wind power from unique configurations embedded in moving vehicles by using micro-turbine devices has been investigated. In such moving environments, the specific power of the air motion is much greater and less intermittent than in stationary wind turbines anchored to the ground in open atmospheric conditions. In a translational frame of reference, the rate of work done by the drag force acting on the wind harnessing device due the relative motion of air should be taken into account in the overall performance evaluation through an energy balance. A device with a venting tube has been tested that connects a high-pressure stagnating flow region in the front of the vehicle with a low-pressure region at its rear. Our analysis identified two key areas to focus on for potentially significant rewards: (1) Vehicles with high energy conversion efficiency which require a high mass flow rate through the venting duct, and (2) low efficiency vehicles with wakes, which will be globally affected by the introduction of the venting duct device in a manner that reduces their drag so that there is a net gain in power generation.
Rigorous Statistical Bounds in Uncertainty Quantification for One-Layer Turbulent Geophysical Flows
NASA Astrophysics Data System (ADS)
Qi, Di; Majda, Andrew J.
2018-04-01
Statistical bounds controlling the total fluctuations in mean and variance about a basic steady-state solution are developed for the truncated barotropic flow over topography. Statistical ensemble prediction is an important topic in weather and climate research. Here, the evolution of an ensemble of trajectories is considered using statistical instability analysis and is compared and contrasted with the classical deterministic instability for the growth of perturbations in one pointwise trajectory. The maximum growth of the total statistics in fluctuations is derived relying on the statistical conservation principle of the pseudo-energy. The saturation bound of the statistical mean fluctuation and variance in the unstable regimes with non-positive-definite pseudo-energy is achieved by linking with a class of stable reference states and minimizing the stable statistical energy. Two cases with dependence on initial statistical uncertainty and on external forcing and dissipation are compared and unified under a consistent statistical stability framework. The flow structures and statistical stability bounds are illustrated and verified by numerical simulations among a wide range of dynamical regimes, where subtle transient statistical instability exists in general with positive short-time exponential growth in the covariance even when the pseudo-energy is positive-definite. Among the various scenarios in this paper, there exist strong forward and backward energy exchanges between different scales which are estimated by the rigorous statistical bounds.
High Energy Boundary Conditions for a Cartesian Mesh Euler Solver
NASA Technical Reports Server (NTRS)
Pandya, Shishir; Murman, Scott; Aftosmis, Michael
2003-01-01
Inlets and exhaust nozzles are common place in the world of flight. Yet, many aerodynamic simulation packages do not provide a method of modelling such high energy boundaries in the flow field. For the purposes of aerodynamic simulation, inlets and exhausts are often fared over and it is assumed that the flow differences resulting from this assumption are minimal. While this is an adequate assumption for the prediction of lift, the lack of a plume behind the aircraft creates an evacuated base region thus effecting both drag and pitching moment values. In addition, the flow in the base region is often mis-predicted resulting in incorrect base drag. In order to accurately predict these quantities, a method for specifying inlet and exhaust conditions needs to be available in aerodynamic simulation packages. A method for a first approximation of a plume without accounting for chemical reactions is added to the Cartesian mesh based aerodynamic simulation package CART3D. The method consists of 3 steps. In the first step, a components approach where each triangle is assigned a component number is used. Here, a method for marking the inlet or exhaust plane triangles as separate components is discussed. In step two, the flow solver is modified to accept a reference state for the components marked inlet or exhaust. In the third step, the flow solver uses these separated components and the reference state to compute the correct flow condition at that triangle. The present method is implemented in the CART3D package which consists of a set of tools for generating a Cartesian volume mesh from a set of component triangulations. The Euler equations are solved on the resulting unstructured Cartesian mesh. The present methods is implemented in this package and its usefulness is demonstrated with two validation cases. A generic missile body is also presented to show the usefulness of the method on a real world geometry.
NASA Astrophysics Data System (ADS)
Shao, Meng; Xiao, Chengsi; Sun, Jinwei; Shao, Zhuxiao; Zheng, Qiuhong
2017-12-01
The paper analyzes hydrodynamic characteristics and the strength of a novel dot-matrix oscillating wave energy converter, which is in accordance with nowadays’ research tendency: high power, high efficiency, high reliability and low cost. Based on three-dimensional potential flow theory, the paper establishes motion control equations of the wave energy converter unit and calculates wave loads and motions. On this basis, a three-dimensional finite element model of the device is built to check its strength. Through the analysis, it can be confirmed that the WEC is feasible and the research results could be a reference for wave energy’s exploration and utilization.
Two-Phase flow instrumentation for nuclear accidents simulation
NASA Astrophysics Data System (ADS)
Monni, G.; De Salve, M.; Panella, B.
2014-11-01
The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.
Hamiltonian methods of modeling and control of AC microgrids with spinning machines and inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Ronald C.; Weaver, Wayne W.; Robinett, Rush D.
This study presents a novel approach to the modeling and control of AC microgrids that contain spinning machines, power electronic inverters and energy storage devices. The inverters in the system can adjust their frequencies and power angles very quickly, so the modeling focuses on establishing a common reference frequency and angle in the microgrid based on the spinning machines. From this dynamic model, nonlinear Hamiltonian surface shaping and power flow control method is applied and shown to stabilize. From this approach the energy flow in the system is used to show the energy storage device requirements and limitations for themore » system. This paper first describes the model for a single bus AC microgrid with a Hamiltonian control, then extends this model and control to a more general class of multiple bus AC microgrids. Finally, simulation results demonstrate the efficacy of the approach in stabilizing and optimization of the microgrid.« less
Hamiltonian methods of modeling and control of AC microgrids with spinning machines and inverters
Matthews, Ronald C.; Weaver, Wayne W.; Robinett, Rush D.; ...
2017-12-22
This study presents a novel approach to the modeling and control of AC microgrids that contain spinning machines, power electronic inverters and energy storage devices. The inverters in the system can adjust their frequencies and power angles very quickly, so the modeling focuses on establishing a common reference frequency and angle in the microgrid based on the spinning machines. From this dynamic model, nonlinear Hamiltonian surface shaping and power flow control method is applied and shown to stabilize. From this approach the energy flow in the system is used to show the energy storage device requirements and limitations for themore » system. This paper first describes the model for a single bus AC microgrid with a Hamiltonian control, then extends this model and control to a more general class of multiple bus AC microgrids. Finally, simulation results demonstrate the efficacy of the approach in stabilizing and optimization of the microgrid.« less
NASA Technical Reports Server (NTRS)
Mckillop, A. A.; Baughn, J. W.; Dwyer, H. A.
1976-01-01
Major research advances in heat transfer and fluid dynamics are outlined, with particular reference to relevant energy problems. Of significant importance are such topics as synthetic fuels in combustion, turbulence models, combustion modeling, numerical methods for interacting boundary layers, and light-scattering diagnostics for gases. The discussion covers thermal convection, two-phase flow and boiling heat transfer, turbulent flows, combustion, and aerospace heat transfer problems. Other areas discussed include compressible flows, fluid mechanics and drag, and heat exchangers. Featured topics comprise heat and salt transfer in double-diffusive systems, limits of boiling heat transfer in a liquid-filled enclosure, investigation of buoyancy-induced flow stratification in a cylindrical plenum, and digital algorithms for dynamic analysis of a heat exchanger. Individual items are announced in this issue.
Hybrid thermal link-wise artificial compressibility method
NASA Astrophysics Data System (ADS)
Obrecht, Christian; Kuznik, Frédéric
2015-10-01
Thermal flow prediction is a subject of interest from a scientific and engineering points of view. Our motivation is to develop an accurate, easy to implement and highly scalable method for convective flows simulation. To this end, we present an extension to the link-wise artificial compressibility method (LW-ACM) for thermal simulation of weakly compressible flows. The novel hybrid formulation uses second-order finite difference operators of the energy equation based on the same stencils as the LW-ACM. For validation purposes, the differentially heated cubic cavity was simulated. The simulations remained stable for Rayleigh numbers up to Ra =108. The Nusselt numbers at isothermal walls and dynamics quantities are in good agreement with reference values from the literature. Our results show that the hybrid thermal LW-ACM is an effective and easy-to-use solution to solve convective flows.
Preliminary Study of Turbulence for a Lobed Body in Hypersonic Flight
2013-02-22
physics. Modest improvements in numerical algorithms, particularly those for solving partial differential equations ( PDEs ), can now be fully...dramatically.[7] In slower speed flow fields, this energy is absorbed mostly in molecular translational and rotational modes, but for hypersonic...REFERENCES 1. Génin, F., Fryxell, B. and Menon, S., “Simulation of Detonation Propagation in Turbulent Gas- Solid Reactive Mixtures”, 41 st
Impact of viscous boundary layers on the emission of lee-waves
NASA Astrophysics Data System (ADS)
Renaud, Antoine; Venaille, Antoine; Bouchet, Freddy
2017-04-01
Oceans large-scale structures such as jets and vortices can lose their energy into small-scale turbulence. Understanding the physical mechanisms underlying those energy transfers remains a major theoretical challenge. Here we propose an approach that shed new light on the role of bottom topography in this problem. At a linear level, one efficient way of extracting energy and momentum from the mean-flow above topography undulations is the radiation of lee-waves. The generated lee-waves are well described by inviscid theory which gives a prediction for the energy-loss rate at short time [1]. Using a quasi-linear approach we describe the feedback of waves on the mean-flow occurring mostly close to the bottom topography. This can thereafter impact the lee-waves radiation and thus modify the energy-loss rate for the mean-flow. In this work, we consider the Boussinesq equations with periodic boundary conditions in the zonal direction. Taking advantage of this idealized geometry, we apply zonally-symmetric wave-mean interaction theory [2,3]. The novelty of our work is to discuss the crucial role of dissipative effects, such as molecular or turbulent viscosities, together with the importance of the boundary conditions (free-slip vs no-slip). We provide explicite computations in the case of the free evolution of an initially barotropic flow above a sinusoidal topography with free-slip bottom boundary condition. We show how the existence of the boundary layer for the wave-field can enhance the streaming close to the topography. This leads to the emergence of boundary layer for the mean-flow impacting the energy-loss rate through lee-wave emissions. Our results are compared against direct numerical simulations using the MIT general circulation model and are found to be in good agreement. References [1] S.L. Smith, W.R. Young, Conversion of the Barotropic Tide, JPhysOcean 2002 [2] 0. Bühler, Waves and Mean Flows, second edition, Cambridge university press 2014 [3] J. Muraschko et al, On the application of WKB theory for the simulation of the weakly nonlinear dynamics of gravity waves, Q. J. R. Meteorol. Soc. 2013
A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy
NASA Astrophysics Data System (ADS)
Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan
2018-01-01
The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.
Optimizing energy growth as a tool for finding exact coherent structures
NASA Astrophysics Data System (ADS)
Olvera, D.; Kerswell, R. R.
2017-08-01
We discuss how searching for finite-amplitude disturbances of a given energy that maximize their subsequent energy growth after a certain later time T can be used to probe the phase space around a reference state and ultimately to find other nearby solutions. The procedure relies on the fact that of all the initial disturbances on a constant-energy hypersphere, the optimization procedure will naturally select the one that lies closest to the stable manifold of a nearby solution in phase space if T is large enough. Then, when in its subsequent evolution the optimal disturbance transiently approaches the new solution, a flow state at this point can be used as an initial guess to converge the solution to machine precision. We illustrate this approach in plane Couette flow by rediscovering the spanwise-localized "snake" solutions of Schneider et al. [Phys. Rev. Lett. 104, 104501 (2010), 10.1103/PhysRevLett.104.104501], probing phase space at very low Reynolds numbers (less than 127.7 ) where the constant-shear solution is believed to be the global attractor and examining how the edge between laminar and turbulent flow evolves when stable stratification eliminates the turbulence. We also show that the steady snake solution smoothly delocalizes as unstable stratification is gradually turned on until it connects (via an intermediary global three-dimensional solution) to two-dimensional Rayleigh-Bénard roll solutions.
Barta, Zsolt; Reczey, Kati; Zacchi, Guido
2010-09-15
Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat.
2010-01-01
Background Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Results Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Conclusions Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat. PMID:20843330
Thermal response test data of five quadratic cross section precast pile heat exchangers.
Alberdi-Pagola, Maria
2018-06-01
This data article comprises records from five Thermal Response Tests (TRT) of quadratic cross section pile heat exchangers. Pile heat exchangers, typically referred to as energy piles, consist of traditional foundation piles with embedded heat exchanger pipes. The data presented in this article are related to the research article entitled "Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests" (Alberdi-Pagola et al., 2018) [1]. The TRT data consists of measured inlet and outlet temperatures, fluid flow and injected heat rate recorded every 10 min. The field dataset is made available to enable model verification studies.
DNS/LES Simulations of Separated Flows at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Balakumar, P.
2015-01-01
Direct numerical simulations (DNS) and large-eddy simulations (LES) simulations of flow through a periodic channel with a constriction are performed using the dynamic Smagorinsky model at two Reynolds numbers of 2800 and 10595. The LES equations are solved using higher order compact schemes. DNS are performed for the lower Reynolds number case using a fine grid and the data are used to validate the LES results obtained with a coarse and a medium size grid. LES simulations are also performed for the higher Reynolds number case using a coarse and a medium size grid. The results are compared with an existing reference data set. The DNS and LES results agreed well with the reference data. Reynolds stresses, sub-grid eddy viscosity, and the budgets for the turbulent kinetic energy are also presented. It is found that the turbulent fluctuations in the normal and spanwise directions have the same magnitude. The turbulent kinetic energy budget shows that the production peaks near the separation point region and the production to dissipation ratio is very high on the order of five in this region. It is also observed that the production is balanced by the advection, diffusion, and dissipation in the shear layer region. The dominant term is the turbulent diffusion that is about two times the molecular dissipation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Arijit; Koch, Donald L., E-mail: dlk15@cornell.edu
2015-11-15
The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study.more » We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.« less
NASA Technical Reports Server (NTRS)
Steffen, C. J., Jr.
1993-01-01
Turbulent backward-facing step flow was examined using four low turbulent Reynolds number k-epsilon models and one standard high Reynolds number technique. A tunnel configuration of 1:9 (step height: exit tunnel height) was used. The models tested include: the original Jones and Launder; Chien; Launder and Sharma; and the recent Shih and Lumley formulation. The experimental reference of Driver and Seegmiller was used to make detailed comparisons between reattachment length, velocity, pressure, turbulent kinetic energy, Reynolds shear stress, and skin friction predictions. The results indicated that the use of a wall function for the standard k-epsilon technique did not reduce the calculation accuracy for this separated flow when compared to the low turbulent Reynolds number techniques.
Chao, Jinquan; Yang, Shuguang; Chen, Yueyi; Tian, Wei-Min
2016-01-01
Latex exploitation-caused latex flow is effective in enhancing latex regeneration in laticifer cells of rubber tree. It should be suitable for screening appropriate reference gene for analysis of the expression of latex regeneration-related genes by quantitative real-time PCR (qRT-PCR). In the present study, the expression stability of 23 candidate reference genes was evaluated on the basis of latex flow by using geNorm and NormFinder algorithms. Ubiquitin-protein ligase 2a (UBC2a) and ubiquitin-protein ligase 2b (UBC2b) were the two most stable genes among the selected candidate references in rubber tree clones with differential duration of latex flow. The two genes were also high-ranked in previous reference gene screening across different tissues and experimental conditions. By contrast, the transcripts of latex regeneration-related genes fluctuated significantly during latex flow. The results suggest that screening reference gene during latex flow should be an efficient and effective clue for selection of reference genes in qRT-PCR. PMID:27524995
Substorm onset: Current sheet avalanche and stop layer
NASA Astrophysics Data System (ADS)
Haerendel, Gerhard
2015-03-01
A new scenario is presented for the onset of a substorm and the nature of the breakup arc. There are two main components, current sheet avalanche and stop layer. The first refers to an earthward flow of plasma and magnetic flux from the central current sheet of the tail, triggered spontaneously or by some unknown interaction with an auroral streamer or a suddenly appearing eastward flow at the end of the growth phase. The second offers a mechanism to stop the flow abruptly at the interface between magnetosphere and tail and extract momentum and energy to be partially processed locally and partially transmitted as Poynting flux toward the ionosphere. The stop layer has a width of the order of the ion inertial length. The different dynamics of the ions entering freely and the magnetized electrons create an electric polarization field which stops the ion flow and drives a Hall current by which flow momentum is transferred to the magnetic field. A simple formalism is used to describe the operation of the process and to enable quantitative conclusions. An important conclusion is that by necessity the stop layer is also highly structured in longitude. This offers a natural explanation for the coarse ray structure of the breakup arc as manifestation of elementary paths of energy and momentum transport. The currents aligned with the rays are balanced between upward and downward directions. While the avalanche is invoked for explaining the spontaneous substorm onset at the inner edge of the tail, the expansion of the breakup arc for many minutes is taken as evidence for a continued formation of new stop layers by arrival of flow bursts from the near-Earth neutral line. This is in line with earlier conclusions about the nature of the breakup arc. Small-scale structure, propagation speed, and energy flux are quantitatively consistent with observations. However, the balanced small-scale currents cannot constitute the substorm current wedge. The source of the latter must be located just earthward of the stop layer in the near-dipolar magnetosphere and be powered by the internal energy of the flow bursts. The stop layer mechanism is in some way the inverse of reconnection, as it converts flow into electromagnetic energy, and may have wide applicability in astrophysical plasmas.
NASA Astrophysics Data System (ADS)
Arafat, Md Nayeem
Distributed generation systems (DGs) have been penetrating into our energy networks with the advancement in the renewable energy sources and energy storage elements. These systems can operate in synchronism with the utility grid referred to as the grid connected (GC) mode of operation, or work independently, referred to as the standalone (SA) mode of operation. There is a need to ensure continuous power flow during transition between GC and SA modes, referred to as the transition mode, in operating DGs. In this dissertation, efficient and effective transition control algorithms are developed for DGs operating either independently or collectively with other units. Three techniques are proposed in this dissertation to manage the proper transition operations. In the first technique, a new control algorithm is proposed for an independent DG which can operate in SA and GC modes. The proposed transition control algorithm ensures low total harmonic distortion (THD) and less voltage fluctuation during mode transitions compared to the other techniques. In the second technique, a transition control is suggested for a collective of DGs operating in a microgrid system architecture to improve the reliability of the system, reduce the cost, and provide better performance. In this technique, one of the DGs in a microgrid system, referred to as a dispatch unit , takes the additional responsibility of mode transitioning to ensure smooth transition and supply/demand balance in the microgrid. In the third technique, an alternative transition technique is proposed through hybridizing the current and droop controllers. The proposed hybrid transition control technique has higher reliability compared to the dispatch unit concept. During the GC mode, the proposed hybrid controller uses current control. During the SA mode, the hybrid controller uses droop control. During the transition mode, both of the controllers participate in formulating the inverter output voltage but with different weights or coefficients. Voltage source inverters interfacing the DGs as well as the proposed transition control algorithms have been modeled to analyze the stability of the algorithms in different configurations. The performances of the proposed algorithms are verified through simulation and experimental studies. It has been found that the proposed control techniques can provide smooth power flow to the local loads during the GC, SA and transition modes.
NASA Astrophysics Data System (ADS)
Kikuchi, Ryota; Misaka, Takashi; Obayashi, Shigeru
2016-04-01
An integrated method consisting of a proper orthogonal decomposition (POD)-based reduced-order model (ROM) and a particle filter (PF) is proposed for real-time prediction of an unsteady flow field. The proposed method is validated using identical twin experiments of an unsteady flow field around a circular cylinder for Reynolds numbers of 100 and 1000. In this study, a PF is employed (ROM-PF) to modify the temporal coefficient of the ROM based on observation data because the prediction capability of the ROM alone is limited due to the stability issue. The proposed method reproduces the unsteady flow field several orders faster than a reference numerical simulation based on Navier-Stokes equations. Furthermore, the effects of parameters, related to observation and simulation, on the prediction accuracy are studied. Most of the energy modes of the unsteady flow field are captured, and it is possible to stably predict the long-term evolution with ROM-PF.
NASA Astrophysics Data System (ADS)
Ramesh, S.; Ashok, S. Denis; Nagaraj, Shanmukha; Reddy, M. Lohith Kumar; Naulakha, Niranjan Kumar; Adithyakumar, C. R.
2018-02-01
At present, energy consumption is to such an extent that if the same trend goes on then in the future at some point of time, the energy sources will all be exploited. Energy conservation in a hydraulic power pack refers to the reduction in the energy consumed by the power pack. Many experiments have been conducted to reduce the energy consumption and one of those methods is by introducing a variable frequency drive. The main objective of the present work is to reduce the energy consumed by the hydraulic power pack using variable frequency drive. Variable Frequency drive is used to vary the speed of the motor by receiving electrical signals from the pressure switch which acts as the feedback system. Using this concept, the speed of the motor can be varied between the specified limits. In the present work, a basic hydraulic power pack and a variable frequency drive based hydraulic power pack were designed and compared both of them with the results obtained. The comparison was based on the power consumed, rise in temperature, noise levels, and flow of oil through pressure relief valve, total oil flow during loading cycle. By comparing both the circuits, it is found that for the proposed system, consumption of power reduces by 78.4% and is as powerful as the present system.
NASA Astrophysics Data System (ADS)
Shapira, Barak; Cohen, Izaak; Penki, Tirupathi Rao; Avraham, Eran; Aurbach, Doron
2018-02-01
The use of sodium manganese oxide as an intercalation electrode for water treatment was recently explored, and referred to as a "desalination battery" and "hybrid capacitive deionization". Here, we examine the feasibility of using such a desalination battery, comprising crystalline Na4Mn9O18 as the cathode and Ag/AgCl/Cl- electrode as the anode, to extract energy from low-grade waste heat sources. Sodium manganese oxide electrode's material was produced via a solid-state synthesis. Electrodes were produced by spray-coated onto graphite foils, and showed a temperature dependence of the electrode potential, namely, ∂ E / ∂ T , of -0.63 mV/K (whereas, the Ag/AgCl/Cl- mesh electrode showed much lower temperature dependence, < 0.1 mV/K). In order to demonstrate ion-removal capabilities together with the feasibility of thermal-energy conversion, a flow battery system was constructed. Thermally regenerative electrochemical cycles (TREC) were constructed for the flow battery cell. The thermal energy conversion, in this particular system, was shown to be feasible at relatively low C-rate (C/19) with temperatures varying between 30 °C and 70 °C.
Distributed Energy Resources Customer Adoption Model Plus (DER-CAM+), Version 1.0.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, Michael; Cardorso, Goncalo; Mashayekh, Salman
DER-CAM+ v1.0.0 is internally referred to as DER-CAM v5.0.0. Due to fundamental changes from previous versions, a new name (DER-CAM+) will be used for DER-CAM version 5.0.0 and above. DER-CAM+ is a Decision Support Tool for Decentralized Energy Systems that has been tailored for microgrid applications, and now explicitly considers electrical and thermal networks within a microgrid, ancillary services, and operating reserve. DER-CAM was initially created as an exclusively economic energy model, able to find the cost minimizing combination and operation profile of a set of DER technologies that meet energy loads of a building or microgrid for a typicalmore » test year. The previous versions of DER-CAM were formulated without modeling the electrical/thermal networks within the microgrid, and hence, used aggregate single-node approaches. Furthermore, they were not able to consider operating reserve constraints, and microgrid revenue streams from participating in ancillary services markets. This new version DER-CAM+ considers these issues by including electrical power flow and thermal flow equations and constraints in the microgrid, revenues from various ancillary services markets, and operating reserve constraints.« less
The Optical Flow Technique on the Research of Solar Non-potentiality
NASA Astrophysics Data System (ADS)
Liu, Ji-hong; Zhang, Hong-qi
2010-06-01
Several optical flow techniques, which have being applied to the researches of solar magnetic non-potentiality recently, have been summarized here. And a few new non-potential parameters which can be derived from them have been discussed, too. The main components of the work are presented as follows: (1) The optical flow techniques refers to a series of new image analyzing techniques arisen recently on the researches of solar magnetic non-potentiality. They mainly include LCT (local correlation tracking), ILCT (inductive equation combining with LCT), MEF (minimum energy effect), DAVE (differential affine velocity estimator) and NAVE (nonlinear affine velocity estimator). Their calculating and applying conditions, merits and deficiencies, all have been discussed detailedly in this work. (2) Benefit from the optical flow techniques, the transverse velocity fields of the magnetic features on the solar surface may be determined by a time sequence of high-quality images currently produced by high-resolution observations either from the ground or in space. Consequently, several new non-potential parameters may be acquired, such as the magnetic helicity flux, the induced electric field in the photosphere, the non-potential magnetic stress (whose area integration is the Lorentz force), etc. Then we can determine the energy flux across the photosphere, and subsequently evaluate the energy budget. Former works on them by small or special samples have shown that they are probably related closely to the erupting events, such as flare, filament eruptions and coronal mass ejections.
NASA Astrophysics Data System (ADS)
Liu, Jian; Bearden, Mark D.; Fernandez, Carlos A.; Fifield, Leonard S.; Nune, Satish K.; Motkuri, Radha K.; Koech, Philip K.; McGrail, B. Pete
2018-03-01
Magnesium (Mg) has many useful applications especially in the form of various Mg alloys that can decrease weight while increasing strength compared with common steels. To increase the affordability and minimize environment consequence, a novel catalyzed organo-metathetical (COMET) process was proposed to extract Mg from seawater aiming to achieve a significant reduction in total energy and production cost compared with the melting salt electrolysis method currently adapted by US Mg LLC. A process flow sheet for a reference COMET process was set up using Aspen Plus. The energy consumption, production cost, and CO2 emissions were estimated using the Aspen economic analyzer. Our results showed that it is possible to produce Mg from seawater with a production cost of 2.0/kg-Mg while consuming about 35.6 kWh/kg-Mg and releasing 7.7 kg CO2/kg-Mg. Under the simulated conditions, the reference COMET process maintains a comparable CO2 emission rate, saves about 40% in production cost, and saves about 15% in energy consumption compared with a simplified US Mg process.
Special Course on Acoustic Wave Propagation
1979-08-01
experimentally . REFERENCES 1. C.L. MORFEY 1971 Journal of Sound and Vibration 14, 159-170. Azoustic energy in non -uniform flows. 2. R.lH. CANTRELL and R.W...Some experimental procedures and results are mentioned. INTRODUCTION The non -linearity of Nature is a fact that has frequently been recognized by... experimental investigations may roughly be divided into three main groups . (i) The nonlinearity of the pressure-density relation of the fluid expressed by
An in vitro investigation of the influence of stenosis severity on the flow in the ascending aorta.
Gülan, Utku; Lüthi, Beat; Holzner, Markus; Liberzon, Alex; Tsinober, Arkady; Kinzelbach, Wolfgang
2014-09-01
Cardiovascular diseases can lead to abnormal blood flows, some of which are linked to hemolysis and thrombus formation. Abnormal turbulent flows of blood in the vessels with stenosis create strong shear stresses on blood elements and may cause blood cell destruction or platelet activation. We implemented a Lagrangian (following the fluid elements) measurement technique of three dimensional particle tracking velocimetry that provides insight on the evolution of viscous and turbulent stresses along blood element trajectories. We apply this method to study a pulsatile flow in a compliant phantom of an aorta and compare the results in three cases: the reference case (called "healthy" case), and two cases of abnormal flows due to mild and severe stenosis, respectively. The chosen conditions can mimic a clinical application of an abnormal flow due to a calcific valve. We estimate the effect of aortic stenosis on the kinetic energy of the mean flow and the turbulent kinetic energy, which increases about two orders of magnitude as compared with the healthy flow case. Measuring the total flow stress acting on a moving fluid element that incorporates viscous stresses and the apparent turbulent-induced stresses (the so-called Reynolds stresses) we find out similar increase of the stresses with the increased severity of the stenosis. Furthermore, these unique Lagrangian measurements provide full acceleration and, consequently, the forces acting on the blood elements that are estimated to reach the level that can considerably deform red blood cells. These forces are strong and abrupt due to the contribution of the turbulent fluctuations which is much stronger than the typically measured phase-averaged values. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Application of Energy Integration Techniques to the Design of Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Levri, Julie; Finn, Cory
2000-01-01
Exchanging heat between hot and cold streams within an advanced life support system can save energy. This savings will reduce the equivalent system mass (ESM) of the system. Different system configurations are examined under steady-state conditions for various percentages of food growth and waste treatment. The scenarios investigated represent possible design options for a Mars reference mission. Reference mission definitions are drawn from the ALSS Modeling and Analysis Reference Missions Document, which includes definitions for space station evolution, Mars landers, and a Mars base. For each scenario, streams requiring heating or cooling are identified and characterized by mass flow, supply and target temperatures and heat capacities. The Pinch Technique is applied to identify good matches for energy exchange between the hot and cold streams and to calculate the minimum external heating and cooling requirements for the system. For each pair of hot and cold streams that are matched, there will be a reduction in the amount of external heating and cooling required, and the original heating and cooling equipment will be replaced with a heat exchanger. The net cost savings can be either positive or negative for each stream pairing, and the priority for implementing each pairing can be ranked according to its potential cost savings. Using the Pinch technique, a complete system heat exchange network is developed and heat exchangers are sized to allow for calculation of ESM. The energy-integrated design typically has a lower total ESM than the original design with no energy integration. A comparison of ESM savings in each of the scenarios is made to direct future Pinch Analysis efforts.
Coupling strength assumption in statistical energy analysis
Lafont, T.; Totaro, N.
2017-01-01
This paper is a discussion of the hypothesis of weak coupling in statistical energy analysis (SEA). The examples of coupled oscillators and statistical ensembles of coupled plates excited by broadband random forces are discussed. In each case, a reference calculation is compared with the SEA calculation. First, it is shown that the main SEA relation, the coupling power proportionality, is always valid for two oscillators irrespective of the coupling strength. But the case of three subsystems, consisting of oscillators or ensembles of plates, indicates that the coupling power proportionality fails when the coupling is strong. Strong coupling leads to non-zero indirect coupling loss factors and, sometimes, even to a reversal of the energy flow direction from low to high vibrational temperature. PMID:28484335
Do Doppler color flow algorithms for mapping disturbed flow make sense?
Gardin, J M; Lobodzinski, S M
1990-01-01
It has been suggested that a major advantage of Doppler color flow mapping is its ability to visualize areas of disturbed ("turbulent") flow, for example, in valvular stenosis or regurgitation and in shunts. To investigate how various color flow mapping instruments display disturbed flow information, color image processing was used to evaluate the most common velocity-variance color encoding algorithms of seven commercially available ultrasound machines. In six of seven machines, green was reportedly added by the variance display algorithms to map areas of disturbed flow. The amount of green intensity added to each pixel along the red and blue portions of the velocity reference color bar was calculated for each machine. In this study, velocities displayed on the reference color bar ranged from +/- 46 to +/- 64 cm/sec, depending on the Nyquist limit. Of note, changing the Nyquist limits depicted on the color reference bars did not change the distribution of the intensities of red, blue, or green within the contour of the reference map, but merely assigned different velocities to the pixels. Most color flow mapping algorithms in our study added increasing intensities of green to increasing positive (red) or negative (blue) velocities along their color reference bars. Most of these machines also added increasing green to red and blue color intensities horizontally across their reference bars as a marker of increased variance (spectral broadening). However, at any given velocity, marked variations were noted between different color flow mapping instruments in the amount of green added to their color velocity reference bars.(ABSTRACT TRUNCATED AT 250 WORDS)
Zhang, Xiangping; Strømman, Anders H; Solli, Christian; Hertwich, Edgar G
2008-07-01
Industrial symbiosis promises environmental and economic gains through a utilization of the waste of some processes as a resource for other processes. Because of the costs and difficulties of transporting some wastes, the largest theoretical potential for industrial symbiosis is given when facilities are colocated in an eco-industrial park (EIP). This study proposes a model-centered approach with an eight-step procedure for the early planning and design of an eco-industrial park considering technical and environmental factors. Chemical process simulation software was used to model the energy and material flows among the prospective members and to quantify the benefits of integration among different firms in terms of energy and resources saved as compared to a reference situation. Process simulation was based on a combination of physical models of industrial processes and empirical models. The modeling allows for the development and evaluation of different collaboration opportunities and configurations. It also enables testing chosen configurations under hypothetical situations or external conditions. We present a case study around an existing oil and gas refinery in Mongstad, Norway. We used the approach to propose the colocation of a number of industrial facilities around the refinery, focused on integrating energy use among the facilities. An EIP with six main members was designed and simulated, matching new hypothetical members in size to the existing operations, modeling material and energy flows in the EIP, and assessing these in terms of carbon and hydrogen flows.
NASA Astrophysics Data System (ADS)
Galindo-Rosales, F. J.; Rubio-Hernández, F. J.
2008-07-01
Process engineering deals with the processing of large quantities of materials and they must be transported from one unit operation to another within the processing environment. This is commonly made through pipelines, where occurs a dissipation of energy due essentially to frictional losses against the inside wall of the pipe and changes in the internal energy. Then it is needed an energy source to keep the fluid moving, commonly a pump. Due to differences in the internal structure, dissipations of energy must be different from Newtonian fluids to shear thickening fluids. Moreover, because of the inherent structure that is exhibited by shear thickening fluids, laminar motion of these fluids is encountered far more commonly than with Newtonian fluids. Rheological experiments confirm that suspensions of Aerosil®R816 in Polypropylene glycol (PPG) of low molecular weights (400 and 2000 g/mol) exhibit reversible shear thickening behaviour. Cross model fits properly their viscosity curve in the region of shear thickening behaviour. Thus the constitutive equations obtained experimentally have been incorporated into the momentum conservation equation in order to study the reference case of the steady laminar flow in a pipe of circular cross-section, providing us with relevant information including the fully-developed velocity profiles, the friction factor and the entrance length, depending on the rheological properties of each suspension. Our results could be applied to the optimal design and layout of flow networks, which may represent a significant fraction of the total plant cost.
Acceleration of low-energy protons and alpha particles at interplanetary shock waves
NASA Technical Reports Server (NTRS)
Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.
1983-01-01
The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.
NASA Astrophysics Data System (ADS)
Ranković, Miloš Lj.; Maljković, Jelena B.; Tökési, Károly; Marinković, Bratislav P.
2018-02-01
Measurements and calculations for electron elastic differential cross sections (DCS) of argon atom in the energy range from 40 to 300 eV are presented. DCS have been measured in the crossed beam arrangement of the electron spectrometer with an energy resolution of 0.5 eV and angular resolution of 1.5∘ in the range of scattering angles from 20∘ to 126∘. Both angular behaviour and energy dependence of DCS are obtained in a separate sets of experiments, while the absolute scale is achieved via relative flow method, using helium as a reference gas. All data is corrected for the energy transmission function, changes of primary electron beam current and target pressure, and effective path length (volume correction). DCSs are calculated in relativistic framework by expressing the Mott's cross sections in partial wave expansion. Our results are compared with other available data.
Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong
1989-01-01
Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.
Storing free magnetic energy in the solar corona
NASA Astrophysics Data System (ADS)
Vekstein, G.
2016-08-01
This article presents a mini-tutorial aimed at a wide readership not familiar with the field of solar plasma physics. The exposition is centred around the issue of excess/free magnetic energy stored in the solar corona. A general consideration is followed with a particular example of coronal magnetic arcade, where free magnetic energy builds up by photospheric convective flows. In the context of solar physics the major task is to explain how this free energy can be released quickly enough to match what is observed in coronal explosive events such as solar flares. Therefore, in the last section of the paper we discuss briefly a possible role of magnetic reconnection in these processes. This is done in quite simple qualitative physical terms, so that an interested reader can follow it up in more detail with help of the provided references.
1997-11-01
The goal of the ELF investigation is to improve our fundamental understanding of the effects of the flow environment on flame stability. The flame's stability refers to the position of its base and ultimately its continued existence. Combustion research focuses on understanding the important hidden processes of ignitions, flame spreading, and flame extinction. Understanding these processes will directly affect the efficiency of combustion operations in converting chemical energy to heat and will create a more balanced ecology and healthy environment by reducing pollutants emitted during combustion.
Ha, Hojin; Hwang, Dongha; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Baek, Jehyun; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun
2016-07-01
Quantifying turbulence velocity fluctuation is important because it indicates the fluid energy dissipation of the blood flow, which is closely related to the pressure drop along the blood vessel. This study aims to evaluate the effects of scan parameters and the target vessel size of 4D phase-contrast (PC)-MRI on quantification of turbulent kinetic energy (TKE). Comprehensive 4D PC-MRI measurements with various velocity-encoding (VENC), echo time (TE), and voxel size values were carried out to estimate TKE distribution in stenotic flow. The total TKE (TKEsum), maximum TKE (TKEmax), and background noise level (TKEnoise) were compared for each scan parameter. The feasibility of TKE estimation in small vessels was also investigated. Results show that the optimum VENC for stenotic flow with a peak velocity of 125cm/s was 70cm/s. Higher VENC values overestimated the TKEsum by up to six-fold due to increased TKEnoise, whereas lower VENC values (30cm/s) underestimated it by 57.1%. TE and voxel size did not significantly influence the TKEsum and TKEnoise, although the TKEmax significantly increased as the voxel size increased. TKE quantification in small-sized vessels (3-5-mm diameter) was feasible unless high-velocity turbulence caused severe phase dispersion in the reference image. Copyright © 2016 Elsevier Inc. All rights reserved.
From Hills to Holes: How Climate Change and Mining are Altering Runoff Processes in Canada
NASA Astrophysics Data System (ADS)
Carey, S. K.
2015-12-01
Canadian environments are under considerable pressure from both climate and land-use change. While warming temperatures are widespread and amplified in the north, surface mining has resulted in large-scale landscape disturbance. How these changes affect catchment response is profound, fundamentally altering the cycling and delivery of water and geochemicals to the drainage network. In permafrost-underlain environments, coupled mass and energy processes control runoff response, and as ground thaw increases, new subsurface pathways become accessible while changing overall catchment storage. With surface mining, watersheds are altered such that they bare little resemblance to what existed prior to mining. In this presentation, data will be presented from long-term experiments exploring the impact of climate and mining on runoff processes in cold catchments using stable isotopes of water and associated hydrometric measurements. In southern Yukon, results from the Wolf Creek Research Basin highlights the influence of surface energy balances on controlling the timing and magnitude of flow response, with inter-annual variability largely driven by how atmospheric forcing interacts with permafrost-underlain areas of the catchment. In mountainous areas of southern British Columbia, surface mining reconfigures landscapes as valleys are filled with waste-rock. Mine-influenced catchments exhibit attenuated flows with delays in spring freshet and a more muted to precipitation. Stable isotopes in stream water suggests that both waste-rock and reference catchments are well mixed, however reference catchments are more responsive to enrichment and depletion events and that mine-influenced catchments had a heavier isotope signature than reference watersheds, suggesting enhanced influence of rainfall on recharge. In both cases, snow storage and release exerts considerable control on streamflow responses, and future changes in streamflow regimes will reflect both a changes in the snow regime and inherent catchment storage properties that are dynamic with time.
NASA Astrophysics Data System (ADS)
Bieliński, Henryk
2016-09-01
The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.
Some topics in the magnetohydrodynamics of accreting magnetic compact objects
NASA Technical Reports Server (NTRS)
Aly, J. J.
1986-01-01
Magnetic compact objects (neutron stars or white dwarfs) are currently thought to be present in many accreting systems that are releasing large amounts of energy. The magnetic field of the compact star may interact strongly with the accretion flow and play an essential role in the physics of these systems. Some magnetohydrodynamic (MHD) problems that are likely to be relevant in building up self-consistent models of the interaction between the accreting plasma and the star's magnetosphere are addressed in this series of lectures. The basic principles of MHD are first introduced and some important MHD mechanisms (Rayleigh-Taylor and Kelvin-Helmholtz instabilities; reconnection) are discussed, with particular reference to their role in allowing the infalling matter to penetrate the magnetosphere and mix with the field. The structure of a force-free magnetosphere and the possibility of quasistatic momentum and energy transfer between regions linked by field-aligned currents are then studied in some detail. Finally, the structure of axisymmetric accretion flows onto magnetic compact objects is considered.
The spanwise spectra in wall-bounded turbulence
NASA Astrophysics Data System (ADS)
Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei
2017-12-01
The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.
Quarkonium production in Pb-Pb collisions at √SNN = 5.02 TeV with ALICE
NASA Astrophysics Data System (ADS)
Francisco, Audrey
2018-02-01
Ultra-relativistic heavy-ion collisions at the Large Hadron Collider provide a unique opportunity to study the properties of matter at extreme energy densities where a phase transition from the hadronic matter to a deconfined medium of quarks and gluons, the Quark-Gluon Plasma (QGP) is predicted. Among the prominent probes of the QGP, heavy quarks play a crucial role since they are created during the initial stages of the collision, before the QGP formation, and their number is conserved throughout the partonic and hadronic phases of the collision. The azimuthal anisotropy of charmonium production, quantified using the second harmonic Fourier coefficient (referred to as elliptic flow), provides important information on the magnitude and dynamics of charmonium production. Measurements of the quarkonium nuclear modification factor at forward rapidity and J/ψ elliptic flow in Pb-Pb collisions as a function of centrality, transverse momentum and rapidity will be presented and compared to different collision energy results and available theoretical calculations.
The spanwise spectra in wall-bounded turbulence
NASA Astrophysics Data System (ADS)
Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei
2018-06-01
The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.
Stratified flows with variable density: mathematical modelling and numerical challenges.
NASA Astrophysics Data System (ADS)
Murillo, Javier; Navas-Montilla, Adrian
2017-04-01
Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux-ADER schemes with application to hyperbolic conservation laws with geometric source terms, J. Comput. Phys. 317 (2016) 108-147. J. Murillo and A. Navas-Montilla, A comprehensive explanation and exercise of the source terms in hyperbolic systems using Roe type solutions. Application to the 1D-2D shallow water equations, Advances in Water Resources 98 (2016) 70-96.
Jain, Preeti
2014-01-01
An analysis study is presented to study the effects of Hall current and Soret effect on unsteady hydromagnetic natural convection of a micropolar fluid in a rotating frame of reference with slip-flow regime. A uniform magnetic field acts perpendicularly to the porous surface which absorbs the micropolar fluid with variable suction velocity. The effects of heat absorption, chemical reaction, and thermal radiation are discussed and for this Rosseland approximation is used to describe the radiative heat flux in energy equation. The entire system rotates with uniform angular velocity Ω about an axis normal to the plate. The nonlinear coupled partial differential equations are solved by perturbation techniques. In order to get physical insight, the numerical results of translational velocity, microrotation, fluid temperature, and species concentration for different physical parameters entering into the analysis are discussed and explained graphically. Also, the results of the skin-friction coefficient, the couple stress coefficient, Nusselt number, and Sherwood number are discussed with the help of figures for various values of flow pertinent flow parameters. PMID:27350957
The macroecology of sustainability
Burger, Joseph R.; Allen, Craig D.; Brown, James H.; Burnside, William R.; Davidson, Ana D.; Fristoe, Trevor S.; Hamilton, Marcus J.; Mercado-Silva, Norman; Nekola, Jeffrey C.; Okie, Jordan G.; Zuo, Wenyun
2012-01-01
The discipline of sustainability science has emerged in response to concerns of natural and social scientists, policymakers, and lay people about whether the Earth can continue to support human population growth and economic prosperity. Yet, sustainability science has developed largely independently from and with little reference to key ecological principles that govern life on Earth. A macroecological perspective highlights three principles that should be integral to sustainability science: 1) physical conservation laws govern the flows of energy and materials between human systems and the environment, 2) smaller systems are connected by these flows to larger systems in which they are embedded, and 3) global constraints ultimately limit flows at smaller scales. Over the past few decades, decreasing per capita rates of consumption of petroleum, phosphate, agricultural land, fresh water, fish, and wood indicate that the growing human population has surpassed the capacity of the Earth to supply enough of these essential resources to sustain even the current population and level of socioeconomic development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, R.D.
This paper reviews the present understanding of critical heat flux (CHF) in subcooled flow boiling and outlines research directions which will permit the accommodation of higher heat fluxes. This survey, which covers the last 30 years, is concerned only with CHF in the subcooled flow boiling regime and unless otherwise noted, all references to CHF will be confined to that regime. This paper (Part II) summarizes microconvective, instability, experimental and correlational aspects of CHF. Section II covers microconvection and instabilities, section III covers representative experimental work, and section IV summarizes and compares selected CHF correlations. Section V documents previous flowmore » visualization work and section VI contains conclusions and recommendations concerning problem areas and suggested research directions essential to the HHFCDP, which involves extending steady state and transient CHF towards 30 kW/cm/sup 2/.« less
Analysis of Pulsed Flow Modification Alternatives, Lower Missouri River, 2005
Jacobson, Robert B.
2008-01-01
The graphical, tabular, and statistical data presented in this report resulted from analysis of alternative flow regime designs considered by a group of Missouri River managers, stakeholders, and scientists during the summer of 2005. This plenary group was charged with designing a flow regime with increased spring flow pulses to support reproduction and survival of the endangered pallid sturgeon. Environmental flow components extracted from the reference natural flow regime were used to design and assess performance of alternative flow regimes. The analysis is based on modeled flow releases from Gavins Point Dam (near Yankton, South Dakota) for nine design alternatives and two reference scenarios; the reference scenarios are the run-of-the-river and the water-control plan implemented in 2004. The alternative designs were developed by the plenary group with the goal of providing pulsed spring flows, while retaining traditional social and economic uses of the river.
Control of Vibratory Energy Harvesters in the Presence of Nonlinearities and Power-Flow Constraints
NASA Astrophysics Data System (ADS)
Cassidy, Ian L.
Over the past decade, a significant amount of research activity has been devoted to developing electromechanical systems that can convert ambient mechanical vibrations into usable electric power. Such systems, referred to as vibratory energy harvesters, have a number of useful of applications, ranging in scale from self-powered wireless sensors for structural health monitoring in bridges and buildings to energy harvesting from ocean waves. One of the most challenging aspects of this technology concerns the efficient extraction and transmission of power from transducer to storage. Maximizing the rate of power extraction from vibratory energy harvesters is further complicated by the stochastic nature of the disturbance. The primary purpose of this dissertation is to develop feedback control algorithms which optimize the average power generated from stochastically-excited vibratory energy harvesters. This dissertation will illustrate the performance of various controllers using two vibratory energy harvesting systems: an electromagnetic transducer embedded within a flexible structure, and a piezoelectric bimorph cantilever beam. Compared with piezoelectric systems, large-scale electromagnetic systems have received much less attention in the literature despite their ability to generate power at the watt--kilowatt scale. Motivated by this observation, the first part of this dissertation focuses on developing an experimentally validated predictive model of an actively controlled electromagnetic transducer. Following this experimental analysis, linear-quadratic-Gaussian control theory is used to compute unconstrained state feedback controllers for two ideal vibratory energy harvesting systems. This theory is then augmented to account for competing objectives, nonlinearities in the harvester dynamics, and non-quadratic transmission loss models in the electronics. In many vibratory energy harvesting applications, employing a bi-directional power electronic drive to actively control the harvester is infeasible due to the high levels of parasitic power required to operate the drive. For the case where a single-directional drive is used, a constraint on the directionality of power-flow is imposed on the system, which necessitates the use of nonlinear feedback. As such, a sub-optimal controller for power-flow-constrained vibratory energy harvesters is presented, which is analytically guaranteed to outperform the optimal static admittance controller. Finally, the last section of this dissertation explores a numerical approach to compute optimal discretized control manifolds for systems with power-flow constraints. Unlike the sub-optimal nonlinear controller, the numerical controller satisfies the necessary conditions for optimality by solving the stochastic Hamilton-Jacobi equation.
NASA Astrophysics Data System (ADS)
Bertens, R. A.; Alice Collaboration
2017-11-01
Elliptic (v2) and higher harmonic (v3,v4) flow coefficients of π±, K±, p (p ‾), and the ϕ-meson, measured in Pb-Pb collisions at the highest-ever center-of-mass energy of √{sNN} = 5.02 TeV, are presented. The results were obtained with the scalar product method, correlating hadrons with reference particles from a different η region. The vn exhibit a clear mass ordering for pT ≲ 2 GeV/c and only approximate particle type scaling for pT ≳ 2 GeV/c. Reasonable agreement with hydrodynamic calculations (IP-Glasma+MUSIC+UrQMD) is seen at pT ≲ 1 GeV/c.
Aero-Optical Investigation of a Pod Directed Energy System
2010-02-28
mounted in an enclosure and is now being used to record unsteady wavefront data. 31 Reference [1] Gordeyev , S., and Jumper , E.J., “Aero... Jumper , E. J., “Forcing of a Two-Dimensional, Weakly-Compressible Subsonic Free Shear Layer,” AIAA 2006-0561, Jan., 2006. [3] Gordeyev , S., Hayden, T...and Jumper , E., “Aero-Optical and Flow Measurements Over a Flat-Windowed Turret,” AIAA Journal, Vol. 45, No. 2, 2007, pp.347-357. [4] Gordeyev , S
An Investigation of Certain Thermodynamic Loses in Miniature Cryocoolers
2006-03-06
temperature at a particular point is the same from one cycle to the next. Over a cycle there is no change in internal energy. The net heat flow out must...looking at the loss of exergy in terms of entropy creation. The Gouy-Stodola (ref. 7) theorem states that the loss of exergy and hence work dissipated is...the Gouy-Stodola theorem (ref. 7) already referred to above. This states that the loss of exergy and hence lost work associated with any entropy
Nofoam System Technology for Aircraft Hangar Fire Suppression Foam System
2011-07-01
use of a firefighting agent that meets Military Specification MIL - F - 24385 [Reference 2]. Significant amounts of AFFF wastewater is generated...rates, Table 3, were the established baseline for comparison. Table 3 theoretical flow rates were derived from Military Specification MIL - F - 24385 [Reference...flow rates, Table 3, was the established baseline for comparison. Table 3 theoretical flow rates were derived from Military Specification MIL - F - 24385 [Reference
Lunar power system summary of studies for the lunar enterprise task force NASA-office of exploration
NASA Technical Reports Server (NTRS)
Criswell, David R.
1989-01-01
The capacity of global power systems must be increased by a factor of ten to provide the predicted power needs of electric power by the year 2050. The Lunar Power System (LPS) would collect solar energy at power bases located on opposing limbs of the moon as seen from Earth. LPS can provide dependable, economic, renewable, and environmentally benign solar energy to Earth. A preliminary engineering and cash flow model of the LPS was developed. Results are shown for a system scaled to a peak capacity of 355 GWe on Earth and to provide 13,600 GWe-Yrs of energy over a 70 year life cycle of construction and full operation. The growth in capacity of the reference system from start of installation on the moon in 2005 to completion of its nominal life cycle in the year 2070 is shown. World needs for power could be accommodated by expansion in capacity of the reference LPS beyond 344 GWe. This would be done by steadily incorporating newer technology during full operation and by establishing additional bases. The results presented encourage consideration of a faster paced program than is assumed herein.
Decommissioning of offshore oil and gas facilities: a comparative assessment of different scenarios.
Ekins, Paul; Vanner, Robin; Firebrace, James
2006-06-01
A material and energy flow analysis, with corresponding financial flows, was carried out for different decommissioning scenarios for the different elements of an offshore oil and gas structure. A comparative assessment was made of the non-financial (especially environmental) outcomes of the different scenarios, with the reference scenario being to leave all structures in situ, while other scenarios envisaged leaving them on the seabed or removing them to shore for recycling and disposal. The costs of each scenario, when compared with the reference scenario, give an implicit valuation of the non-financial outcomes (e.g. environmental improvements), should that scenario be adopted by society. The paper concludes that it is not clear that the removal of the topsides and jackets of large steel structures to shore, as currently required by regulations, is environmentally justified; that concrete structures should certainly be left in place; and that leaving footings, cuttings and pipelines in place, with subsequent monitoring, would also be justified unless very large values were placed by society on a clear seabed and trawling access.
Hamiltonian derivation of the nonhydrostatic pressure-coordinate model
NASA Astrophysics Data System (ADS)
Salmon, Rick; Smith, Leslie M.
1994-07-01
In 1989, the Miller-Pearce (MP) model for nonhydrostatic fluid motion governed by equations written in pressure coordinates was extended by removing the prescribed reference temperature, T(sub s)(p), while retaining the conservation laws and other desirable properties. It was speculated that this extension of the MP model had a Hamiltonian structure and that a slick derivation of the Ertel property could be constructed if the relevant Hamiltonian were known. In this note, the extended equations are derived using Hamilton's principle. The potential vorticity law arises from the usual particle-relabeling symmetry of the Lagrangian, and even the absence of sound waves is anticipated from the fact that the pressure inside the free energy G(p, theta) in the derived equation is hydrostatic and thus G is insensitive to local pressure fluctuations. The model extension is analogous to the semigeostrophic equations for nearly geostrophic flow, which do not incorporate a prescribed reference state, while the earlier MP model is analogous to the quasigeostrophic equations, which become highly inaccurate when the flow wanders from a prescribed state with nearly flat isothermal surfaces.
Kuniansky, Eve L.
2016-09-22
Understanding karst aquifers, for purposes of their management and protection, poses unique challenges. Karst aquifers are characterized by groundwater flow through conduits (tertiary porosity), and (or) layers with interconnected pores (secondary porosity) and through intergranular porosity (primary or matrix porosity). Since the late 1960s, advances have been made in the development of numerical computer codes and the use of mathematical model applications towards the understanding of dual (primary [matrix] and secondary [fractures and conduits]) porosity groundwater flow processes, as well as characterization and management of karst aquifers. The Floridan aquifer system (FAS) in Florida and parts of Alabama, Georgia, and South Carolina is composed of a thick sequence of predominantly carbonate rocks. Karst features are present over much of its area, especially in Florida where more than 30 first-magnitude springs occur, numerous sinkholes and submerged conduits have been mapped, and numerous circular lakes within sinkhole depressions are present. Different types of mathematical models have been applied for simulation of the FAS. Most of these models are distributed parameter models based on the assumption that, like a sponge, water flows through connected pores within the aquifer system and can be simulated with the same mathematical methods applied to flow through sand and gravel aquifers; these models are usually referred to as porous-equivalent media models. The partial differential equation solved for groundwater flow is the potential flow equation of fluid mechanics, which is used when flow is dominated by potential energy and has been applied for many fluid problems in which kinetic energy terms are dropped from the differential equation solved. In many groundwater model codes (basic MODFLOW), it is assumed that the water has a constant temperature and density and that flow is laminar, such that kinetic energy has minimal impact on flow. Some models have been developed that incorporate the submerged conduits as a one-dimensional pipe network within the aquifer rather than as discrete, extremely transmissive features in a porous-equivalent medium; these submerged conduit models are usually referred to as hybrid models and may include the capability to simulate both laminar and turbulent flow in the one-dimensional pipe network. Comparisons of the application of a porous-equivalent media model with and without turbulence (MODFLOW-Conduit Flow Process mode 2 and basic MODFLOW, respectively) and a hybrid (MODFLOW-Conduit Flow Process mode 1) model to the Woodville Karst Plain near Tallahassee, Florida, indicated that for annual, monthly, or seasonal average hydrologic conditions, all methods met calibration criteria (matched observed groundwater levels and average flows). Thus, the increased effort required, such as the collection of data on conduit location, to develop a hybrid model and its increased computational burden, is not necessary for simulation of average hydrologic conditions (non-laminar flow effects on simulated head and spring discharge were minimal). However, simulation of a large storm event in the Woodville Karst Plain with daily stress periods indicated that turbulence is important for matching daily springflow hydrographs. Thus, if matching streamflow hydrographs over a storm event is required, the simulation of non-laminar flow and the location of conduits are required. The main challenge in application of the methods and approaches for developing hybrid models relates to the difficulty of mapping conduit networks or having high-quality datasets to calibrate these models. Additionally, hybrid models have long simulation times, which can preclude the use of parameter estimation for calibration. Simulation of contaminant transport that does not account for preferential flow through conduits or extremely permeable zones in any approach is ill-advised. Simulation results in other karst aquifers or other parts of the FAS may differ from the comparison demonstrated herein.
Experimental performance study of a proposed desiccant based air conditioning system.
Bassuoni, M M
2014-01-01
An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.
Experimental performance study of a proposed desiccant based air conditioning system
Bassuoni, M.M.
2013-01-01
An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475
Elliptical, parabolic, and hyperbolic exchanges of energy in drag reducing plane Couette flows
NASA Astrophysics Data System (ADS)
Pereira, Anselmo S.; Mompean, Gilmar; Thompson, Roney L.; Soares, Edson J.
2017-11-01
In the present paper, we investigate the polymer-turbulence interaction by discriminating between the mechanical responses of this system to three different subdomains: elliptical, parabolic, and hyperbolic, corresponding to regions where the magnitude of vorticity is greater than, equal to, or less than the magnitude of the rate of strain, respectively, in accordance with the Q-criterion. Recently, it was recognized that hyperbolic structures play a crucial role in the drag reduction phenomenon of viscoelastic turbulent flows, thanks to the observation that hyperbolic structures, as well as vortical ones, are weakened by the action of polymers in turbulent flows in a process that can be referred to as flow parabolization. We employ direct numerical simulations of a viscoelastic finite extensible nonlinear elastic model with the Peterlin approximation to examine the transient evolution and statistically steady regimes of a plane Couette flow that has been perturbed from a laminar flow at an initial time and developed a turbulent regime as a result of this perturbation. We have found that even more activity is located within the confines of the hyperbolic structures than in the elliptical ones, which highlights the importance of considering the role of hyperbolic structures in the drag reduction mechanism.
Acoustics flow analysis in circular duct using sound intensity and dynamic mode decomposition
NASA Astrophysics Data System (ADS)
Weyna, S.
2014-08-01
Sound intensity generation in hard-walled duct with acoustic flow (no mean-flow) is treated experimentally and shown graphically. In paper, numerous methods of visualization illustrating the vortex flow (2D, 3D) can graphically explain diffraction and scattering phenomena occurring inside the duct and around open end area. Sound intensity investigation in annular duct gives a physical picture of sound waves in any duct mode. In the paper, modal energy analysis are discussed with particular reference to acoustics acoustic orthogonal decomposition (AOD). The image of sound intensity fields before and above "cut-off" frequency region are found to compare acoustic modes which might resonate in duct. The experimental results show also the effects of axial and swirling flow. However acoustic field is extremely complicated, because pressures in non-propagating (cut-off) modes cooperate with the particle velocities in propagating modes, and vice versa. Measurement in cylindrical duct demonstrates also the cut-off phenomenon and the effect of reflection from open end. The aim of experimental study was to obtain information on low Mach number flows in ducts in order to improve physical understanding and validate theoretical CFD and CAA models that still may be improved.
Self-organization, preferential flow and rainfall runoff behavior - is there a connection?
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Blume, Theresa; Kleidon, Axel; Ehret, Uwe; Scherer, Ulrike; Westhoff, Martijn
2013-04-01
In line with the studies of Kleidon et al. (2012) and Zehe et al. (2010) the proposed study analyzes mass flow related flows of free energy in open hydrological systems - hillslopes and small catchments - using thermodynamics methods. Why a thermodynamic treatment? A small part of the kinetic energy input from incoming rainfall is dissipated into heat and to break up soil aggregates. Depending on the partitioning of the incoming rainfall into overland flow and soil water, the remaining part of the incoming kinetic energy is partly transformed into potential energy of surface water and subsequently partly exported as kinetic energy of overland flow from the system; the rest is dissipated by frictional losses. The other part of rainfall infiltrates thereby increasing potential energy of soil water but depleting at the same time (gradients in) capillary binding energy of soil water, which again comprises energy dissipation into heat of immersion. Although, these mass fluxes are not associated with large heat fluxes, they reflect the overall conservation of energy as well as the second law of thermodynamics. They require thus a thermodynamic treatment, because tiny amounts of kinetic energy, surface energy and potential energy are dissipated into heat: this implies irreversibility and explains why water does not flow uphill. Soil hydraulic equilibrium (HE), arising from a balance in potential and capillary binding energy in soil, can be interpreted as a state of maximum entropy in soil. Soil water potential, defined as sum of matric potential and gravity potential, is in HE equal to zero along the soil profile. This corresponds to a state of maximum entropy due to a zero potential gradient, which implies due to Zehe et al. (2010) a state of minimum (Helmholtz) free energy. Our first main objective is to quantify to which extent connected preferential flow path, in our case vertical macropores and the river network enhance flow velocities at a given driving gradient and thus power in the associated mass fluxes. This implies either an enhanced export of free energy in form of kinetic energy in case of the river net, or an accelerated reduction of potential energy of infiltrating surface water which implies a reduction free energy in form of capillary binding energy of soil water. We hypothesize (H1) that network like structures act as dissipative structures "serving the purpose" of reducing the relaxation time to a state of lower "free" energy in the entire system. This is because they minimize dissipative losses of kinetic energy along their extent. This faster relaxation towards a state of smaller free energy is deemed to be favorable for mechanic stability of the entire hydrological system because a) mass flows perform due to the enhanced export of kinetic energy less work on the system itself and b) mechanical stress from ponded surface water is quickly reduced by fast infiltration and preferential flow. Our second main objective is, in line with the study of Zehe et al. (2010), the search for thermodynamic optimal hillslope architectures both with respect to the surface density of vertical macropores in soil and with respect to the spatial arrangement of soil types and macropores at the hillslope scale. In line with H1 we suggest (H2) that a hydro-geo-ecosystem is closer to a functional optimum than other possible configurations if it dissipates and exports more of the kinetic energy input from incoming rainfall by redistributing water against internal gradients and exporting water against macroscale geo-potential gradients. Note that H2 does not postulate that functionally optimal hillslope architectures necessarily exist, if they exist H2 implies however that they maximize entropy production and thus reduction of total free energy of the system at a "wisely" selected time scale. The surface density of apparent macropores does for instance control the tradeoff between Hortonian overland flow formation and infiltration, which implies a tradeoff between the amount of kinetic energy input from rainfall that is converted in to power associated with overland flow and power associated with soil water flows depleting gradients in soil water potential. Does this tradeoff imply an optimum surface density of macropores at the hillslope scale in the sense that power in soil water flow is maximized or reduction of free energy is maximized? In case such an optimum hillslope architecture existed, and in case that the evolution of the hydrological systems of interested was indeed in accordance with hypothesis H2, this optimal architecture should allow an acceptable uncalibrated simulation of the systems rainfall -runoff behavior (if the selected model structure can properly represent this architecture). We will address these questions and test the main implications of our hypotheses by means of numerical experiments with the physically based hydrological model CATFLOW. We use behavioral model structures as basic model setup, which have been shown to closely portray system behavior and its architecture in a sense that they reproduce distributed observations of soil moisture and catchment scale discharge and represent the observed structural and textural signatures of soils, flow networks and vegetation. Our test areas are the Weiherbach (Germany) and the Malalcahuello research headwaters (Chile), which are located in distinctly different hydro-climatic and hydro-pedological settings. Within the numerical experiments we will simulate the full concert of hydrological processes at the hillslope and headwater scales for meaningful perturbations of the behavioral model structure and compare them with respect to dynamics of free energy and production of power. These perturbations affect a) the river network and the geomorphology of the Weiherbach catchment, b) surface density of macropores in both catchments c) the spatial arrangement of soils and preferential pathways at the hillslope scale in the Weiherbach catchment. References: Kleidon, A., Zehe, E., Ehret, U., and Scherer, U.: Thermodynamics, maximum power, and the dynamics of preferential river flow structures on continents, Hydrol. Earth Syst. Sci. Discuss., 9, 7317-7378, 10.5194/hessd-9-7317-2012, 2012. Zehe, E., Blume, T., and Blöschl, G.: The principle of 'maximum energy dissipation': a novel thermodynamic perspective on rapid water flow in connected soil structures, Phil. Trans. R. Soc. B, 1-10, doi:10.1098/rstb.2009.0308, 2010.
Plasma focus ion beam-scaling laws
NASA Astrophysics Data System (ADS)
Saw, S. H.
2014-08-01
Measurements on plasma focus ion beams include various advanced techniques producing a variety of data which has yet to produce benchmark numbers. Recent numerical experiments using an extended version of the Lee Code has produced reference numbers and scaling trends for number and energy fluence of deuteron beams as functions of stored energy E0. At the pinch exit the ion number fluence (ions m-2) and energy fluence (J m-2) computed as 2.4-7.8×1020 and 2.2-33×106 respectively were found to be independent of E0 from 0.4 - 486 kJ. This work was extended to the ion beams for various gases. The results show that, for a given plasma focus, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow and damage factors are relatively constant from H2 to N2 but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper reviews this work and in a concluding section attempts to put the accumulating large amounts of data into the form of a scaling law of beam energy Ebeam versus storage energy E0 taking the form for deuteron as: {Ebeam} = 18.2{E}01.23; where Ebeam is in J and E0 is in kJ. It is hoped that the establishment of such scaling laws places on a firm footing the reference quantitative ideas for plasma focus ion beams.
NASA Astrophysics Data System (ADS)
Zou, Zongxing; Tang, Huiming; Xiong, Chengren; Su, Aijun; Criss, Robert E.
2017-10-01
The Jiweishan rockslide of June 5, 2009 in China provides an important opportunity to elucidate the kinetic characteristics of high-speed, long-runout debris flows. A 2D discrete element model whose mechanical parameters were calibrated using basic field data was used to simulate the kinetic behavior of this catastrophic landslide. The model output shows that the Jiweishan debris flow lasted about 3 min, released a gravitational potential energy of about 6 × 10^13 J with collisions and friction dissipating approximately equal amounts of energy, and had a maximum fragment velocity of 60-70 m/s, almost twice the highest velocity of the overall slide mass (35 m/s). Notable simulated characteristics include the high velocity and energy of the slide material, the preservation of the original positional order of the slide blocks, the inverse vertical grading of blocks, and the downslope sorting of the slide deposits. Field observations that verify these features include uprooted trees in the frontal collision area of the air-blast wave, downslope reduction of average clast size, and undamaged plants atop huge blocks that prove their lack of downslope tumbling. The secondary acceleration effect and force chains derived from the numerical model help explain these deposit features and the long-distance transport. Our back-analyzed frictions of the motion path in the PFC model provide a reference for analyzing and predicting the motion of similar geological hazards.
2015-09-01
OPTICAL FLOW SENSORS FOR DEAD RECKONING, HEADING REFERENCE, OBSTACLE DETECTION, AND OBSTACLE AVOIDANCE by Tarek M. Nejah September 2015...SENSORS FOR DEAD RECKONING, HEADING REFERENCE, OBSTACLE DETECTION, AND OBSTACLE AVOIDANCE 5. FUNDING NUMBERS 6. AUTHOR(S) Nejah, Tarek M. 7...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) A novel approach for dead reckoning, heading reference, obstacle detection, and obstacle
Arkuszewski, M; Krejza, J; Chen, R; Kwiatkowski, J L; Ichord, R; Zimmerman, R; Ohene-Frempong, K; Desiderio, L; Melhem, E R
2011-09-01
TCD screening is widely used to identify children with SCD at high risk of stroke. Those with high mean flow velocities in major brain arteries have increased risk of stroke. Thus, our aim was to establish reference values of interhemispheric differences and ratios of blood flow Doppler parameters in the tICA, MCA, and ACA as determined by conventional TCD in children with sickle cell anemia. Reference limits of blood flow parameters were established on the basis of a consecutive cohort of 56 children (mean age, 100 ± 40 months; range, 29-180 months; 30 females) free of neurologic deficits and intracranial stenosis detectable by MRA, with blood flow velocities <170 cm/s by conventional TCD. Reference limits were estimated by using tolerance intervals, within which are included with a probability of .90 of all possible data values from 95% of a population. Average peak systolic velocities were significantly higher in the right hemisphere in the MCA and ACA (185 ± 28 cm/s versus 179 ± 27 and 152 ± 30 cm/s versus 143 ± 34 cm/s respectively). Reference limits for left-to-right differences in the mean flow velocities were the following: -43 to 33 cm/s for the MCA; -49 to 38 cm/s for the ACA, and -38 to 34 cm/s for the tICA, respectively. Respective reference limits for left-to-right velocity ratios were the following: 0.72 to 1.25 cm/s for the MCA; 0.62 to 1.39 cm/s for the ACA, and 0.69 to 1.27 cm/s for the tICA. Flow velocities in major arteries were inversely related to age and Hct or Hgb. The study provides reference intervals of TCD flow velocities and their interhemispheric differences and ratios that may be helpful in identification of intracranial arterial stenosis in children with SCD undergoing sonographic screening for stroke prevention.
Into the deep: A coarse-grained carbonate turbidite thalweg generated by gigantic submarine chutes
NASA Astrophysics Data System (ADS)
Mulder, Thierry; Gillet, Hervé; Reijmer, John; Droxler, André; cavailhes, Thibault; Hanquiez, Vincent; Fauquembergue, Kelly; Bujan, Stéphane; Blanck, David; bashah, Sara; Guiastrennec, Léa; Fabregas, Natacha; Recouvreur, Audrey; Seibert, Chloé
2017-04-01
New high-resolution multibeam mapping, in the Southeastern Bahamas, images in exquisite details the southern part of Exuma Sound, and its unchartered transition area to the deep abyssal plain of the Western North Atlantic bounded by the Bahama Escarpment (BE) between San Salvador Island and Samana Cay, referred here to the San Salvador abyssal plain. The transition area is locally referred to as Crooked Island Passage, loosely delineated by Crooked, Long, and Conception Islands, Rum and Samana Cays. Surprisingly in such a pure carbonate landscape, the newly established map reveals the detailed and complex morphology of a giant valley formed by numerous gravity flows originated in Exuma Sound itself, in addition to many secondary slope gullies and smaller tributaries draining the surrounding upper slopes. The valley referred here as the Exuma canyon system starts with a perched valley with low sinuosity, characterized by several flow restrictions and knickpoints initiated by the presence of drowned isolated platforms and merging tributaries. The valley abruptly transforms itself into a deep incised canyon, rivaling the depth of the Colorado Grand Canyon, through two major knickpoints with outsized chutes exceeding several hundred of meters in height, a total of 1600-1800 m. The sudden transformation of the wide valley into a deep narrow canyon, occurring when the flows incised deep into an underlying lower Cretaceous drowned carbonate platform, generates a huge hydraulic jump and creates an enormous plunge pool and related deposits with mechanisms comparable to the ones operating along giant subaerial waterfalls. The high kinetic flow energy, constrained by this narrow and deeply incised canyon, formed, when it is released at its mouth in the abyssal plain, a wide deep-sea channel with well-developed levees and fan, made of coarse-grained carbonate defined layers separated by fine carbonate sediments mixed with fine siliciclastics transported along the BE by the energetic Western Boundary Undercurrent.
Application of active control landing gear technology to the A-10 aircraft
NASA Technical Reports Server (NTRS)
Ross, I.; Edson, R.
1983-01-01
Two concepts which reduce the A-10 aircraft's wing/gear interface forces as a result of applying active control technology to the main landing gear are described. In the first concept, referred to as the alternate concept a servovalve in a closed pressure control loop configuration effectively varies the size of the third stage spool valve orifice which is embedded in the strut. This action allows the internal energy in the strut to shunt hydraulic flow around the metering orifice. The command signal to the loop is reference strut pressure which is compared to the measured strut pressure, the difference being the loop error. Thus, the loop effectively varies the spool valve orifice size to maintain the strut pressure, and therefore minimizes the wing/gear interface force referenced.
Incidence loss for fan turbine rotor blade in two-dimensional cascade
NASA Technical Reports Server (NTRS)
Kline, J. F.; Moffitt, T. P.; Stabe, R. G.
1983-01-01
The effect of incidence angle on the aerodynamic performance of a fan turbine rotor blade was investigated experimentally in a two dimensional cascade. The test covered a range of incidence angles from -15 deg to 10 deg and exit ideal critical velocity ratios from 0.75 to 0.95. The principal measurements were blade-surface static pressures and cross-channel survey of exit total pressure, static pressure, and flow angle. Flow adjacent to surfaces was examined using a visualization technique. The results of the investigation include blade-surface velocity distribution and overall kinetic energy loss coefficients for the incidence angles and exit velocity ratios tested. The measured losses are compared with those from a reference core turbine rotor blade and also with two common analytical methods of predicting incidence loss.
Catchment organisation, free energy dynamics and network control on critical zone water flows
NASA Astrophysics Data System (ADS)
Zehe, E.; Ehret, U.; Kleidon, A.; Jackisch, C.; Scherer, U.; Blume, T.
2012-04-01
From a functional point of view the catchment system is compiled by patterns of permeable and less permeable textural elements - soils and mother rock. Theses textural elements provide a mechanical stabile matrix for growth of terrestrial biota and soil formation. They furthermore organize subsurface storage of water against gravity, dissolved nutrients and heat. Storage against gravity is only possible because water acts as wetting fluid and is thus attracted by capillary forces in the pores space. Capillarity increases non-linearly with decreasing pore size and is zero at local saturation. The pore size distribution of a soil is thus characteristic of its capability to store water against losses such as drainage, evaporation and root extraction and at the same time a fingerprint of the work that has been performed by physical, chemical and biological processes to weather solid mother rock and form a soil. A strong spatial covariance of soil hydraulic properties within the same soil type is due to a fingerprint of strong spatial organization at small scales. Spatial organization at the hillslope scale implies the existence of a typical soil catena i.e. that hillslopes exhibit the same/ downslope sequence of different soils types. Textural storage elements are separated by strikingly self-similar network like structures, we name them flow structures. These flow structures are created in a self-reinforcing manner by work performed either by biota like earth worms and plant roots or by dissipative processes such as soil cracking and water/fluvial erosion. Regardless of their different origin connected flow structures exhibit a highly similar functioning and similar characteristics: they allow for high mass flows at small driving potential gradients because specific flow resistance along the network is continuously very small. This implies temporal stability even during small extremes, due to the small amount of local momentum dissipation per unit mass flow, as well as that these flow structures organize and dominate flows of water, dissolved matter and sediments during rainfall driven conditions at various scales: - Surface connected vertical flow structures of anecic worm burrows or soil cracks organize and dominated vertical flows at the plot scale - this is usually referred to as preferential flow; - Rill networks at the soil surface organise and dominate hillslope scale overland flow response and sediment yields; - Subsurface pipe networks at the bedrock interface organize and dominate hillslope scale lateral subsurface water and tracer flows; - The river net organizes and dominates flows of water, dissolved matter and sediments to the catchment outlet and finally across continental gradients to the sea. Fundamental progress with respect to the parameterization of hydrological models, subscale flow networks and to understand the adaptation of hydro-geo ecosystems to change could be achieved by discovering principles that govern the organization of catchments flow networks in particular at least during steady state conditions. This insight has inspired various scientists to suggest principles for organization of ecosystems, landscapes and flow networks; as Bejans constructural law, Minimum Energy Expenditure , Maximum Entropy Production. In line with these studies we suggest that a thermodynamic/energetic treatment of the catchment is might be a key for understanding the underlying principles that govern organisation of flow and transport. Our approach is to employ a) physically based hydrological model that address at least all the relevant hydrological processes in the critical zone in a coupled way, behavioural representations of the observed organisation of flow structures and textural elements, that are consistent with observations in two well investigated research catchments and have been tested against distributed observations of soil moisture and catchment scale discharge; to simulate the full concert of hydrological processes using the behavioural system architecture and small perturbations and compare them with respect to their efficiency to dissipate free energy which is equivalent to produce entropy. The study will present the underlying theory and discuss simulation results with respect to the following core hypotheses: H1: A macro scale configuration of a hydro-geo-ecosystem, is in stationary non equilibrium closer to a functional optimum as other possible configurations, if it "dissipates" more of the available free energy to maintain the stationary cycles that redistribute and export mass and energy within/from the system. This implies (I1) that the system approaches faster a dynamic equilibrium state characterised by a minimum in free energy, and less free energy from persistent gradients is available to perform work in the system. H2: Macroscopically connected flow networks enhance redistribution of mass against macroscale gradients and thus dissipation of free energy, because they minimise local energy dissipation per unit mass flow along the flow path. This implies (I2) mechanic stability of the flow network, of the textural storage elements and thus of the entire system against frequent disturbances under stationary conditions.
Three dimensional nozzle-exhaust flow field analysis by a reference plane technique.
NASA Technical Reports Server (NTRS)
Dash, S. M.; Del Guidice, P. D.
1972-01-01
A numerical method based on reference plane characteristics has been developed for the calculation of highly complex supersonic nozzle-exhaust flow fields. The difference equations have been developed for three coordinate systems. Local reference plane orientations are employed using the three coordinate systems concurrently thus catering to a wide class of flow geometries. Discontinuities such as the underexpansion shock and contact surfaces are computed explicitly for nonuniform vehicle external flows. The nozzles considered may have irregular cross-sections with swept throats and may be stacked in modules using the vehicle undersurface for additional expansion. Results are presented for several nozzle configurations.
Numerical simulation of flow field in umbrella wind turbine
NASA Astrophysics Data System (ADS)
Daorina, Bao; Xiaoxue, Wang; Wei, Shang; Yadong, Liu; Daorina, Bao; Xiaoxue, Wang; Wei, Shang; Yadong, Liu
2018-05-01
Umbrella wind turbine can control the swept area by adjusting the shrinking angle of the rotor so as to ensure that output power is near the rated value. This is very helpful for the utilization of wind energy in sandstorms and typhoon-prone areas of our country. In this paper, Fluent software is used to simulate the velocity field and pressure field of 5kW Umbrella Wind Turbine at 0° 45°and 60°angle of contraction. The results provide a theoretical basis for further improving the power adjustment mechanism of Umbrella Wind Turbines, At the same time, it also provide a reference for our country to perfect the wind energy utilization system about the typhoon environment in the coastal areas.
Dynamic interactions in the IT system via LCS analysis
NASA Astrophysics Data System (ADS)
Wang, N.; Ramirez, U.; Datta-Barua, S.
2017-12-01
In the ionosphere-thermosphere (IT) system, charged and neutral particles interact to re-distribute energy and momentum by collisions, diffusion and advection. The ion-neutral interactions have been analyzed through modeling, measurements, and data assimilation. Recently, Lagrangian coherent structure (LCS) analysis is showing promise as a novel way to predict transport and interaction processes in time-varying flow fields. LCSs describing the maximum divergence or convergence in the flow are invisible manifolds independent of the observer [Haller 2005]. LCSs are most commonly defined with the locally maximum finite time Lyapunov exponent (FTLE), a scalar field measuring the ratio of stretching after a given interval of time among neighboring particles, relative to their initial separation. Previous work showed that LCSs were found and illustrated in both thermospheric neutral wind flows [Wang et al. 2017] and ionospheric plasma drifts . In this work, we apply the LCS technique to analyze the material and energy transport processes in the coupled thermosphere and ionosphere. Ionosphere-Thermosphere Algorithm for Lagrangian Coherent Structures (ITALCS) is used for computing the forward-time FTLE scalar fields in the two-dimension thermospheric and ionospheric flows. For the initial study, the thermospheric flows are generated by the Horizontal Wind Model 2014 (HWM14) [Drob et al. 2015] and ionospheric plasma drifts are computed with the electric potential simulated with Weimer 2005 [Weimer 2005] and magnetic field generated by 12th generation International Geomagnetic Reference Field (IGRF12) [Thébault et al. 2015]. A preliminary comparison between the thermospheric LCSs and ionospheric LCSs based on independent empirical models of the thermosphere and the plasma drifts shows that both thermospheric LCSs and ionospheric LCSs appear at higher latitudes and extend to lower latitudes during a geomagnetic storm. By comparing the LCS patterns and their tendencies to spread fluid elements for both the thermosphere and ionosphere, the material and energy transport processes can be analyzed in the coupled thermosphere and ionosphere.
2012-01-01
Background Pulsed wave (PW) Doppler echocardiography has become a routine non invasive cardiac diagnostic tool in most species. However, evaluation of intracardiac blood flow requires reference values, which are poorly documented in goats. The aim of this study was to test the repeatability, the variability, and to establish the reference values of PW measurements in healthy adult Saanen goats. Using a standardised PW Doppler echocardiographic protocol, 10 healthy adult unsedated female Saanen goats were investigated three times at one day intervals by the same observer. Mitral, tricuspid, aortic and pulmonary flows were measured from a right parasternal view, and mitral and aortic flows were also measured from a left parasternal view. The difference between left and right side measurements and the intra-observer inter-day repeatability were tested and then the reference values of PW Doppler echocardiographic parameters in healthy adult female Saanen goats were established. Results As documented in other species, all caprine PW Doppler parameters demonstrated a poor inter-day repeatability and a moderate variability. Tricuspid and pulmonary flows were best evaluated on the right side whereas mitral and aortic flows were best obtained on the left side, and reference values are reported for healthy adult Saanen goats. Conclusions PW Doppler echocardiography allows the measurement of intracardiac blood flow indices in goats. The reference values establishment will help interpreting these indices of cardiac function in clinical cardiac cases and developing animal models for human cardiology research. PMID:23067875
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2013-01-01
A computational fluid dynamics code that solves the compressible Navier-Stokes equations was applied to the Taylor-Green vortex problem to examine the code s ability to accurately simulate the vortex decay and subsequent turbulence. The code, WRLES (Wave Resolving Large-Eddy Simulation), uses explicit central-differencing to compute the spatial derivatives and explicit Low Dispersion Runge-Kutta methods for the temporal discretization. The flow was first studied and characterized using Bogey & Bailley s 13-point dispersion relation preserving (DRP) scheme. The kinetic energy dissipation rate, computed both directly and from the enstrophy field, vorticity contours, and the energy spectra are examined. Results are in excellent agreement with a reference solution obtained using a spectral method and provide insight into computations of turbulent flows. In addition the following studies were performed: a comparison of 4th-, 8th-, 12th- and DRP spatial differencing schemes, the effect of the solution filtering on the results, the effect of large-eddy simulation sub-grid scale models, and the effect of high-order discretization of the viscous terms.
Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEntee, Jarlath; Polagye, Brian; Fabien, Brian
2016-03-31
The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated withmore » implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at an optimal tip-speed ratio set-point is difficult, which anticipated the outcome from field experiments. The clear message is that the feedforward Kω2 controller out-performs the feedback controllers in almost all aspects and modes of evaluation. The controllers proved a substantial improvement over the baseline performance of the TidGen® turbine, in terms of energy capture. The effects of noise-contaminated angular velocity signals were investigated and validated by simulation as an explanation for the performance limitations observed for TidGen® turbine operations in Eastport, Maine. Measurements of loads performed as part of the laboratory testing indicate that there are limited differences in average axial thrust force between control architectures. This suggests that none of the control strategies are likely to substantially affect loads on the turbine support structure. Velocity measurements during the ORPC RivGen® turbine deployment at Igiugig, Alaska, in 2014 were used to assess the variability of the river flow. Results suggest that the river flow is approximately steady, in the mean sense, at any particular location in the river, with random turbulent fluctuations that are around 10% of the mean flow. The mean flow in the center channel of the river is 2.5 m/s, with reductions near the riverbanks and in the shallows. Spectral analysis and lagged correlation results indicate that temporal fluctuations at a given point are dominated by large scale fluctuations, such that measurements at the turbine location are just as useful for inflow control implementation as upstream measurements. At this site, and likely at many other river sites, flow is generally steady at a given location, but flow varies dramatically between locations, particularly laterally across the river. The primary result is that a lateral change in position of a few meters results in changes to flow speed that far exceed the turbulence fluctuations at any given location. The turbulence is dominated by long time scales. Following final system tests, the RivGen® device was submerged and each evaluated controller was tested across a range of gain/set point values and filter configurations for a minimum of 5 minutes, with longer runs attempted for well-performing cases. In addition to testing controllers during the 2015 deployment season, LGL Alaska Research Associates Inc. (LGL) performed a fish monitoring study in compliance with Alaska Department of Fish and Game fisheries habitat permit for the project. During the season, LGL reviewed 10% of 179 one-hour blocks of footage (6 minutes on the hour) and documented a total of over 1200 fish in the vicinity of the RivGen® device, including over 800 salmon smolt and over 350 adult salmon. No evidence of adverse effects including passage delay by upstream migrating salmon was noted. This is an important result for future deployments and has a direct impact on commercial system designs.« less
Reference Solutions for Benchmark Turbulent Flows in Three Dimensions
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Pandya, Mohagna J.; Rumsey, Christopher L.
2016-01-01
A grid convergence study is performed to establish benchmark solutions for turbulent flows in three dimensions (3D) in support of turbulence-model verification campaign at the Turbulence Modeling Resource (TMR) website. The three benchmark cases are subsonic flows around a 3D bump and a hemisphere-cylinder configuration and a supersonic internal flow through a square duct. Reference solutions are computed for Reynolds Averaged Navier Stokes equations with the Spalart-Allmaras turbulence model using a linear eddy-viscosity model for the external flows and a nonlinear eddy-viscosity model based on a quadratic constitutive relation for the internal flow. The study involves three widely-used practical computational fluid dynamics codes developed and supported at NASA Langley Research Center: FUN3D, USM3D, and CFL3D. Reference steady-state solutions computed with these three codes on families of consistently refined grids are presented. Grid-to-grid and code-to-code variations are described in detail.
Geothermal Energy Geopressure Subprogram, GCO-DOE, Pleasant Bayou No. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
none
1978-03-01
This Environmental Assessment (EA) has been prepared to assess the environmental implications of the Department of Energy's proposal to drill, complete, and test one geopressure well located in Brazoria County on a 2 hectares (five acre) test site 64 km (40 mi) south of Houston, Abstract 107, Perry and Austin Survey, Brazoria County, TX. The test well is herein referred to as GCO-DOE Pleasant Bayou No. 1. A maximum of four disposal wells will be located within .8 km (1/2 mi) of the proposed well. The DOE and the University of Texas Center for Energy Studies propose to operate themore » test facility for three years to evaluate the geopressure potential of the subsurface. Tests to be conducted include flow rates, fluid composition, temperature, gas content, geologic characteristics, and the land subsidence potential for subsequent production.« less
The Macroecology of Sustainability
Burger, Joseph R.; Allen, Craig D.; Brown, James H.; Burnside, William R.; Davidson, Ana D.; Fristoe, Trevor S.; Hamilton, Marcus J.; Mercado-Silva, Norman; Nekola, Jeffrey C.; Okie, Jordan G.; Zuo, Wenyun
2012-01-01
The discipline of sustainability science has emerged in response to concerns of natural and social scientists, policymakers, and lay people about whether the Earth can continue to support human population growth and economic prosperity. Yet, sustainability science has developed largely independently from and with little reference to key ecological principles that govern life on Earth. A macroecological perspective highlights three principles that should be integral to sustainability science: 1) physical conservation laws govern the flows of energy and materials between human systems and the environment, 2) smaller systems are connected by these flows to larger systems in which they are embedded, and 3) global constraints ultimately limit flows at smaller scales. Over the past few decades, decreasing per capita rates of consumption of petroleum, phosphate, agricultural land, fresh water, fish, and wood indicate that the growing human population has surpassed the capacity of the Earth to supply enough of these essential resources to sustain even the current population and level of socioeconomic development. PMID:22723741
Experimental observations of a complex, supersonic nozzle concept
NASA Astrophysics Data System (ADS)
Magstadt, Andrew; Berry, Matthew; Glauser, Mark; Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry; Skytop Turbulence Labs, Syracuse University Team; Spectral Energies, LLC. Team; Air Force Research Laboratory Team
2015-11-01
A complex nozzle concept, which fuses multiple canonical flows together, has been experimentally investigated via pressure, schlieren and PIV in the anechoic chamber at Syracuse University. Motivated by future engine designs of high-performance aircraft, the rectangular, supersonic jet under investigation has a single plane of symmetry, an additional shear layer (referred to as a wall jet) and an aft deck representative of airframe integration. Operating near a Reynolds number of 3 ×106 , the nozzle architecture creates an intricate flow field comprised of high turbulence levels, shocks, shear & boundary layers, and powerful corner vortices. Current data suggest that the wall jet, which is an order of magnitude less energetic than the core, has significant control authority over the acoustic power through some non-linear process. As sound is a direct product of turbulence, experimental and analytical efforts further explore this interesting phenomenon associated with the turbulent flow. The authors acknowledge the funding source, a SBIR Phase II project with Spectral Energies, LLC. and AFRL turbine engine branch under the direction of Dr. Barry Kiel.
Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenne, D. S.; Yu, Y. H.; Neary, V.
2015-04-24
In 2010 the U.S. Department of Energy initiated the development of six marine energy converter reference models. The reference models are point designs of well-known marine energy converters. Each device was designed to operate in a specific marine resource, instead of a generic device that can be deployed at any location. This method allows each device to be used as a benchmark for future reference model to benchmark future devices. The six designs consist of three current energy converters and three wave energy converters. The reference model project has generated both technical and economic data sets that are available inmore » the public domain. The methodology to calculate the levelized cost of energy for the reference model project and an overall comparison of the cost of energy from these six reference-model designs are presented in this paper.« less
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1982-01-01
The objective of the Energy Efficient Engine Component Development and Integration program is to develop, evaluate, and demonstrate the technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines. Minimum goals have been set for a 12 percent reduction in thrust specific fuel consumption (TSFC), 5 percent reduction in direct operating cost (DOC), and 50 percent reduction in performance degradation for the Energy Efficient Engine (flight propulsion system) relative to the JT9D-7A reference engine. The Energy Efficienct Engine features a twin spool, direct drive, mixed flow exhaust configuration, utilizing an integrated engine nacelle structure. A short, stiff, high rotor and a single stage high pressure turbine are among the major enhancements in providing for both performance retention and major reductions in maintenance and direct operating costs. Improved clearance control in the high pressure compressor and turbines, and advanced single crystal materials in turbine blades and vanes are among the major features providing performance improvement. Highlights of work accomplished and programs modifications and deletions are presented.
Waste biomass toward hydrogen fuel supply chain management for electricity: Malaysia perspective
NASA Astrophysics Data System (ADS)
Zakaria, Izatul Husna; Ibrahim, Jafni Azhan; Othman, Abdul Aziz
2016-08-01
Green energy is becoming an important aspect of every country in the world toward energy security by reducing dependence on fossil fuel import and enhancing better life quality by living in the healthy environment. This conceptual paper is an approach toward determining physical flow's characteristic of waste wood biomass in high scale plantation toward producing gas fuel for electricity using gasification technique. The scope of this study is supply chain management of syngas fuel from wood waste biomass using direct gasification conversion technology. Literature review on energy security, Malaysia's energy mix, Biomass SCM and technology. This paper uses the theoretical framework of a model of transportation (Lumsden, 2006) and the function of the terminal (Hulten, 1997) for research purpose. To incorporate biomass unique properties, Biomass Element Life Cycle Analysis (BELCA) which is a novel technique develop to understand the behaviour of biomass supply. Theoretical framework used to answer the research questions are Supply Chain Operations Reference (SCOR) framework and Sustainable strategy development in supply chain management framework
NASA Astrophysics Data System (ADS)
Marras, Simone; Suckale, Jenny; Giraldo, Francis X.; Constantinescu, Emil
2016-04-01
We present the solution of the viscous shallow water equations where viscosity is built as a residual-based subgrid scale model originally designed for large eddy simulation of compressible [1] and stratified flows [2]. The necessity of viscosity for a shallow water model not only finds motivation from mathematical analysis [3], but is supported by physical reasoning as can be seen by an analysis of the energetics of the solution. We simulated the flow of an idealized wave as it hits a set of obstacles. The kinetic energy spectrum of this flow shows that, although the inviscid Galerkin solutions -by spectral elements and discontinuous Galerkin [4]- preserve numerical stability in spite of the spurious oscillations in the proximity of the wave fronts, the slope of the energy cascade deviates from the theoretically expected values. We show that only a sufficiently small amount of dynamically adaptive viscosity removes the unwanted high-frequency modes while preserving the overall sharpness of the solution. In addition, it yields a physically plausible energy decay. This work is motivated by a larger interest in the application of a shallow water model to the solution of tsunami triggered coastal flows. In particular, coastal flows in regions around the world where coastal parks made of mitigation hills of different sizes and configurations are considered as a means to deviate the power of the incoming wave. References [1] M. Nazarov and J. Hoffman (2013) "Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods" Int. J. Numer. Methods Fluids, 71:339-357 [2] S. Marras, M. Nazarov, F. X. Giraldo (2015) "Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES" J. Comput. Phys. 301:77-101 [3] J. F. Gerbeau and B. Perthame (2001) "Derivation of the viscous Saint-Venant system for laminar shallow water; numerical validation" Discrete Contin. Dyn. Syst. Ser. B, 1:89?102 [4] F. X. Giraldo and M. Restelli (2010) "High-order semi-implicit time-integrators for a triangular discontinuous Galerkin oceanic shallow water model. Int. J. Numer. Methods Fluids, 63:1077-1102
NASA Astrophysics Data System (ADS)
Fang, Min; Xu, Ke-Jun; Zhu, Wen-Jiao; Shen, Zi-Wen
2016-01-01
Most of the ultrasonic gas flow-meters measure the gas flow rate by calculating the ultrasonic transmission time difference between the downstream and upstream. Ultrasonic energy attenuation occurs in the processes of the ultrasonic generation, conversion, transmission, and reception. Additionally, at the same time, the gas flow will also affect the ultrasonic propagation during the measurement, which results in the ultrasonic energy attenuation and the offset of ultrasonic propagation path. Thus, the ultrasonic energy received by the transducer is weaker. When the gas flow rate increases, this effect becomes more apparent. It leads to the measurement accuracy reduced, and the measurement range narrowed. An energy transfer model, where the ultrasonic gas flow-meter under without/with the gas flow, is established by adopting the statistical analysis and curve fitting based on a large amount of experimental data. The static sub model without the gas flow expresses the energy conversion efficiency of ultrasonic gas transducers, and the dynamic sub model with the gas flow reflects the energy attenuation pattern following the flow rate variations. The mathematical model can be used to determine the minimum energy of the excitation signal for meeting the requirement of specific measurement range, and predict the maximum measurable flow rate in the case of fixed energy of excitation signal. Based on the above studies, a method to enhance the excitation signal energy is proposed under the output power of the transmitting circuit being a finite value so as to extend the measurement rage of ultrasonic gas flow-meter.
CFD Analysis of Upper Plenum Flow for a Sodium-Cooled Small Modular Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, A.; Hu, R.
2015-01-01
Upper plenum flow behavior is important for many operational and safety issues in sodium fast reactors. The Prototype Gen-IV Sodium Fast Reactor (PGSFR), a pool-type, 150 MWe output power design, was used as a reference case for a detailed characterization of upper plenum flow for normal operating conditions. Computational Fluid Dynamics (CFD) simulation was utilized with detailed geometric modeling of major structures. Core outlet conditions based on prior system-level calculations were mapped to approximate the outlet temperatures and flow rates for each core assembly. Core outlet flow was found to largely bypass the Upper Internal Structures (UIS). Flow curves overmore » the shield and circulates within the pool before exiting the plenum. Cross-flows and temperatures were evaluated near the core outlet, leading to a proposed height for the core outlet thermocouples to ensure accurate assembly-specific temperature readings. A passive scalar was used to evaluate fluid residence time from core outlet to IHX inlet, which can be used to assess the applicability of various methods for monitoring fuel failure. Additionally, the gas entrainment likelihood was assessed based on the CFD simulation results. Based on the evaluation of velocity gradients and turbulent kinetic energies and the available gas entrainment criteria in the literature, it was concluded that significant gas entrainment is unlikely for the current PGSFR design.« less
Simulating drought impacts on energy balance in an Amazonian rainforest
NASA Astrophysics Data System (ADS)
Imbuzeiro, H. A.; Costa, M. H.; Galbraith, D.; Christoffersen, B. O.; Powell, T.; Harper, A. B.; Levine, N. M.; Rowland, L.; Moorcroft, P. R.; Benezoli, V. H.; Meir, P.; da Costa, A. C. L.; Brando, P. M.; Malhi, Y.; Saleska, S. R.; Williams, M. D.
2014-12-01
The studies of the interaction between vegetation and climate change in the Amazon Basin indicate that up to half of the region's forests may be displaced by savanna vegetation by the end of the century. Additional analyses suggest that complex interactions among land use, fire-frequency, and episodic drought are driving an even more rapid process of the forest impoverishment and displacement referred here as "savannization". But it is not clear whether surface/ecosystem models are suitable to analyze extreme events like a drought. Long-term simulations of throughfall exclusion experiments has provided unique insights into the energy dynamics of Amazonian rainforests during drought conditions. In this study, we evaluate how well six surface/ecosystem models quantify the energy dynamics from two Amazonian throughfall exclusion experiments. All models were run for the Tapajós and Caxiuanã sites with one control plot using normal precipitation (i.e. do not impose a drought) and then the drought manipulation was imposed for several drought treatments (10 to 90% rainfall exclusion). The sap flow, net radiation (Rn), sensible (H), latent (LE) and ground (G) heat flux are used to analyze if the models are able to capture the dynamics of water stress and what the implications for the energy dynamics are. With respect to the model validation, when we compare the sap flow observed and transpiration simulated, models are more accurate to simulate control plots than drought treatments (50% rainfall exclusion). The results show that the models overestimate the sap flow data during the drought conditions, but they were able to capture the changes in the main energy balance components for different drought treatments. The Rn and LE decreased and H increased with more intensity of drought. The models sensitivity analysis indicate that models are more sensitive to drought when rainfall is excluded for more than 60% and when this reduction occurs during the dry season.
Reference Model MHK Turbine Array Optimization Study within a Generic River System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Erick; Barco Mugg, Janet; James, Scott
2011-12-01
Increasing interest in marine hydrokinetic (MHK) energy has spurred to significant research on optimal placement of emerging technologies to maximize energy conversion and minimize potential effects on the environment. However, these devices will be deployed as an array in order to reduce the cost of energy and little work has been done to understand the impact these arrays will have on the flow dynamics, sediment-bed transport and benthic habitats and how best to optimize these arrays for both performance and environmental considerations. An "MHK-friendly" routine has been developed and implemented by Sandia National Laboratories (SNL) into the flow, sediment dynamicsmore » and water-quality code, SNL-EFDC. This routine has been verified and validated against three separate sets of experimental data. With SNL-EFDC, water quality and array optimization studies can be carried out to optimize an MHK array in a resource and study its effects on the environment. The present study examines the effect streamwise and spanwise spacing has on the array performance. Various hypothetical MHK array configurations are simulated within a trapezoidal river channel. Results show a non-linear increase in array-power efficiency as turbine spacing is increased in each direction, which matches the trends seen experimentally. While the sediment transport routines were not used in these simulations, the flow acceleration seen around the MHK arrays has the potential to significantly affect the sediment transport characteristics and benthic habitat of a resource. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd« less
10 CFR 434.505 - Reference building method.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Reference building method. 434.505 Section 434.505 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.505 Reference building method. 505...
10 CFR 434.505 - Reference building method.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Reference building method. 434.505 Section 434.505 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.505 Reference building method. 505.1...
10 CFR 434.505 - Reference building method.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Reference building method. 434.505 Section 434.505 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.505 Reference building method. 505...
10 CFR 434.505 - Reference building method.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Reference building method. 434.505 Section 434.505 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.505 Reference building method. 505...
10 CFR 434.505 - Reference building method.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Reference building method. 434.505 Section 434.505 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.505 Reference building method. 505...
Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows: A survey
NASA Astrophysics Data System (ADS)
Wang, Zhen-guo; Sun, Xi-wan; Huang, Wei; Li, Shi-bin; Yan, Li
2016-12-01
The drag and heat reduction problem of hypersonic vehicles has always attracted the attention worldwide, and the experimental test approach is the basis of theoretical analysis and numerical simulation. In the current study, research progress of experimental investigations on drag and heat reduction are summarized by several kinds of mechanism, namely the forward-facing cavity, the opposing jet, the aerospike, the energy deposition and their combinational configurations, and the combinational configurations include the combinational opposing jet and forward-facing cavity concept and the combinational opposing jet and aerospike concept. The geometric models and flow conditions are emphasized, especially for the basic principle for the drag and heat flux reduction of each device. The measurement results of aerodynamic and aerothermodynamic are compared and analyzed as well, which can be a reference for assessing the accuracy of numerical results.
10 CFR 434.506 - Use of the reference building to determine the energy cost budget.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1Each floor shall... 10 Energy 3 2011-01-01 2011-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW...
10 CFR 434.506 - Use of the reference building to determine the energy cost budget.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1Each floor shall... 10 Energy 3 2012-01-01 2012-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW...
10 CFR 434.506 - Use of the reference building to determine the energy cost budget.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1 Each floor... 10 Energy 3 2014-01-01 2014-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW...
10 CFR 434.506 - Use of the reference building to determine the energy cost budget.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1Each floor shall... 10 Energy 3 2013-01-01 2013-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW...
Probe for measurement of velocity and density of vapor in vapor plume
Berzins, L.V.; Bratton, B.A.; Fuhrman, P.W.
1997-03-11
A probe is disclosed which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0{degree} to less than 90{degree}, reflecting the light beam back through the vapor plume at a 90{degree} angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume. 10 figs.
Probe for measurement of velocity and density of vapor in vapor plume
Berzins, Leon V.; Bratton, Bradford A.; Fuhrman, Paul W.
1997-01-01
A probe which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0.degree. to less than 90.degree., reflecting the light beam back through the vapor plume at a 90.degree. angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume.
Flow cytogenetics and chromosome sorting.
Cram, L S
1990-06-01
This review of flow cytogenetics and chromosome sorting provides an overview of general information in the field and describes recent developments in more detail. From the early developments of chromosome analysis involving single parameter or one color analysis to the latest developments in slit scanning of single chromosomes in a flow stream, the field has progressed rapidly and most importantly has served as an important enabling technology for the human genome project. Technological innovations that advanced flow cytogenetics are described and referenced. Applications in basic cell biology, molecular biology, and clinical investigations are presented. The necessary characteristics for large number chromosome sorting are highlighted. References to recent review articles are provided as a starting point for locating individual references that provide more detail. Specific references are provided for recent developments.
De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken
2016-08-12
When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. Copyright © 2016 Elsevier B.V. All rights reserved.
CADDIS Volume 2. Sources, Stressors and Responses: Flow Alteration
Introduction to the flow alteration module, when to list flow alteration as a candidate cause, ways to measure flow alteration, simple and detailed conceptual model diagrams for flow alteration, flow alteration module references and literature reviews.
An Optical Flow-Based Full Reference Video Quality Assessment Algorithm.
K, Manasa; Channappayya, Sumohana S
2016-06-01
We present a simple yet effective optical flow-based full-reference video quality assessment (FR-VQA) algorithm for assessing the perceptual quality of natural videos. Our algorithm is based on the premise that local optical flow statistics are affected by distortions and the deviation from pristine flow statistics is proportional to the amount of distortion. We characterize the local flow statistics using the mean, the standard deviation, the coefficient of variation (CV), and the minimum eigenvalue ( λ min ) of the local flow patches. Temporal distortion is estimated as the change in the CV of the distorted flow with respect to the reference flow, and the correlation between λ min of the reference and of the distorted patches. We rely on the robust multi-scale structural similarity index for spatial quality estimation. The computed temporal and spatial distortions, thus, are then pooled using a perceptually motivated heuristic to generate a spatio-temporal quality score. The proposed method is shown to be competitive with the state-of-the-art when evaluated on the LIVE SD database, the EPFL Polimi SD database, and the LIVE Mobile HD database. The distortions considered in these databases include those due to compression, packet-loss, wireless channel errors, and rate-adaptation. Our algorithm is flexible enough to allow for any robust FR spatial distortion metric for spatial distortion estimation. In addition, the proposed method is not only parameter-free but also independent of the choice of the optical flow algorithm. Finally, we show that the replacement of the optical flow vectors in our proposed method with the much coarser block motion vectors also results in an acceptable FR-VQA algorithm. Our algorithm is called the flow similarity index.
Robust Power Management Control for Stand-Alone Hybrid Power Generation System
NASA Astrophysics Data System (ADS)
Kamal, Elkhatib; Adouane, Lounis; Aitouche, Abdel; Mohammed, Walaa
2017-01-01
This paper presents a new robust fuzzy control of energy management strategy for the stand-alone hybrid power systems. It consists of two levels named centralized fuzzy supervisory control which generates the power references for each decentralized robust fuzzy control. Hybrid power systems comprises: a photovoltaic panel and wind turbine as renewable sources, a micro turbine generator and a battery storage system. The proposed control strategy is able to satisfy the load requirements based on a fuzzy supervisor controller and manage power flows between the different energy sources and the storage unit by respecting the state of charge and the variation of wind speed and irradiance. Centralized controller is designed based on If-Then fuzzy rules to manage and optimize the hybrid power system production by generating the reference power for photovoltaic panel and wind turbine. Decentralized controller is based on the Takagi-Sugeno fuzzy model and permits us to stabilize each photovoltaic panel and wind turbine in presence of disturbances and parametric uncertainties and to optimize the tracking reference which is given by the centralized controller level. The sufficient conditions stability are formulated in the format of linear matrix inequalities using the Lyapunov stability theory. The effectiveness of the proposed Strategy is finally demonstrated through a SAHPS (stand-alone hybrid power systems) to illustrate the effectiveness of the overall proposed method.
The Influence of Waves on the Near-Wake of an Axial-Flow Marine Hydrokinetic Turbine
NASA Astrophysics Data System (ADS)
Lust, Ethan; Luznik, Luksa; Flack, Karen
2017-11-01
Flow field results are presented for the near-wake of an axial-flow hydrokinetic turbine in the presence of surface gravity waves. The turbine is a 1/25 scale, 0.8 m diameter, two bladed turbine based on the U.S. Department of Energy's Reference Model 1 tidal current turbine. Measurements were obtained in the large towing tank facility at the U.S. Naval Academy with the turbine towed at a constant carriage speed and a tip speed ratio selected to provide maximum power. The turbine has been shown to be nearly scale independent for these conditions. Velocity measurements were obtained using an in-house designed and manufactured, submersible, planar particle image velocimetry (PIV) system at streamwise distances of up to two diameters downstream of the rotor plane. Phase averaged results for steady and unsteady conditions are presented for comparison showing further expansion of the wake in the presence of waves as compared to the quiescent case. The impact of waves on turbine tip vortex characteristics is also examined showing variation in core radius, swirl velocity, and circulation with wave phase. Some aspects of the highly coherent wake observed in the steady case are recognized in the unsteady wake, however, the unsteady velocities imposed by the waves, particularly the vertical velocity component, appears to convect tip vortices into the wake, potentially enhancing energy transport and accelerating the re-energization process.
Effect of synthetic jet modulation schemes on the reduction of a laminar separation bubble
NASA Astrophysics Data System (ADS)
Seo, J. H.; Cadieux, F.; Mittal, R.; Deem, E.; Cattafesta, L.
2018-03-01
The response of a laminar separation bubble to synthetic jet forcing with various modulation schemes is investigated via direct numerical simulations. A simple sinusoidal waveform is considered as a reference case, and various amplitude modulation schemes, including the square-wave "burst" modulation, are employed in the simulations. The results indicate that burst modulation is less effective at reducing the length of the flow separation than the sinusoidal forcing primarily because burst modulation is associated with a broad spectrum of input frequencies that are higher than the target frequency for the flow control. It is found that such high-frequency forcing delays vortex roll-up and promotes vortex pairing and merging, which have an adverse effect on reducing the separation bubble length. A commonly used amplitude modulation scheme is also found to have reduced effectiveness due to its spectral content. A new amplitude modulation scheme which is tailored to impart more energy at the target frequency is proposed and shown to be more effective than the other modulation schemes. Experimental measurements confirm that modulation schemes can be preserved through the actuator and used to enhance the energy content at the target modulation frequency. The present study therefore suggests that the effectiveness of synthetic jet-based flow control could be improved by carefully designing the spectral content of the modulation scheme.
NASA Astrophysics Data System (ADS)
Chen, Zhengwei; Wang, Yueshe; Hao, Yun; Wang, Qizhi
2013-07-01
The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux in the inner surface of the cavity will show the characteristics of non-continuous step change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore, the research of dynamic characteristics of the receiver plays a very important role in the operation and the control safely in solar cavity receiver system. In this paper, based on the non-continuous step change of radiation flux, a non-linear dynamic model is put forward to obtain the effects of the non-continuous step change radiation flux and step change feed water flow on the receiver performance by sequential modular approach. The subject investigated in our study is a 1MW solar power station constructed in Yanqing County, Beijing. This study has obtained the dynamic responses of the characteristic parameters in the cavity receiver, such as drum pressure, drum water level, main steam flow and main steam enthalpy under step change radiation flux. And the influence law of step-change feed water flow to the dynamic characteristics in the receiver also has been analyzed. The results have a reference value for the safe operation and the control in solar cavity receiver system.
Study of compressible turbulent flows in supersonic environment by large-eddy simulation
NASA Astrophysics Data System (ADS)
Genin, Franklin
The numerical resolution of turbulent flows in high-speed environment is of fundamental importance but remains a very challenging problem. First, the capture of strong discontinuities, typical of high-speed flows, requires the use of shock-capturing schemes, which are not adapted to the resolution of turbulent structures due to their intrinsic dissipation. On the other hand, low-dissipation schemes are unable to resolve shock fronts and other sharp gradients without creating high amplitude numerical oscillations. Second, the nature of turbulence in high-speed flows differs from its incompressible behavior, and, in the context of Large-Eddy Simulation, the subgrid closure must be adapted to the modeling of compressibility effects and shock waves on turbulent flows. The developments described in this thesis are two-fold. First, a state of the art closure approach for LES is extended to model subgrid turbulence in compressible flows. The energy transfers due to compressible turbulence and the diffusion of turbulent kinetic energy by pressure fluctuations are assessed and integrated in the Localized Dynamic ksgs model. Second, a hybrid numerical scheme is developed for the resolution of the LES equations and of the model transport equation, which combines a central scheme for turbulent resolutions to a shock-capturing method. A smoothness parameter is defined and used to switch from the base smooth solver to the upwind scheme in regions of discontinuities. It is shown that the developed hybrid methodology permits a capture of shock/turbulence interactions in direct simulations that agrees well with other reference simulations, and that the LES methodology effectively reproduces the turbulence evolution and physical phenomena involved in the interaction. This numerical approach is then employed to study a problem of practical importance in high-speed mixing. The interaction of two shock waves with a high-speed turbulent shear layer as a mixing augmentation technique is considered. It is shown that the levels of turbulence are increased through the interaction, and that the mixing is significantly improved in this flow configuration. However, the region of increased mixing is found to be localized to a region close to the impact of the shocks, and that the statistical levels of turbulence relax to their undisturbed levels some short distance downstream of the interaction. The present developments are finally applied to a practical configuration relevant to scramjet injection. The normal injection of a sonic jet into a supersonic crossflow is considered numerically, and compared to the results of an experimental study. A fair agreement in the statistics of mean and fluctuating velocity fields is obtained. Furthermore, some of the instantaneous flow structures observed in experimental visualizations are identified in the present simulation. The dynamics of the interaction for the reference case, based on the experimental study, as well as for a case of higher freestream Mach number and a case of higher momentum ratio, are examined. The classical instantaneous vortical structures are identified, and their generation mechanisms, specific to supersonic flow, are highlighted. Furthermore, two vortical structures, recently revealed in low-speed jets in crossflow but never documented for high-speed flows, are identified during the flow evolution.
Propellant-Flow-Actuated Rocket Engine Igniter
NASA Technical Reports Server (NTRS)
Wollen, Mark
2013-01-01
A rocket engine igniter has been created that uses a pneumatically driven hammer that, by specialized geometry, is induced into an oscillatory state that can be used to either repeatedly impact a piezoelectric crystal with sufficient force to generate a spark capable of initiating combustion, or can be used with any other system capable of generating a spark from direct oscillatory motion. This innovation uses the energy of flowing gaseous propellant, which by means of pressure differentials and kinetic motion, causes a hammer object to oscillate. The concept works by mass flows being induced through orifices on both sides of a cylindrical tube with one or more vent paths. As the mass flow enters the chamber, the pressure differential is caused because the hammer object is supplied with flow on one side and the other side is opened with access to the vent path. The object then crosses the vent opening and begins to slow because the pressure differential across the ball reverses due to the geometry in the tube. Eventually, the object stops because of the increasing pressure differential on the object until all of the kinetic energy has been transferred to the gas via compression. This is the point where the object reverses direction because of the pressure differential. This behavior excites a piezoelectric crystal via direct impact from the hammer object. The hammer strikes a piezoelectric crystal, then reverses direction, and the resultant high voltage created from the crystal is transferred via an electrode to a spark gap in the ignition zone, thereby providing a spark to ignite the engine. Magnets, or other retention methods, might be employed to favorably position the hammer object prior to start, but are not necessary to maintain the oscillatory behavior. Various manifestations of the igniter have been developed and tested to improve device efficiency, and some improved designs are capable of operation at gas flow rates of a fraction of a gram per second (0.001 lb/s) and pressure drops on the order of 30 to 50 kilopascal (a few psi). An analytical model has been created and tested in conjunction with a precisely calibrated reference model. The analytical model accurately captures the overall behavior of this innovation. The model is a simple "volume-orifice" concept, with each chamber considered a single temperature and pressure "node" connected to adjacent nodes, or to vent paths through flow control orifices. Mass and energy balances are applied to each node, with gas flow predicted using simple compressible flow equations.
Flow interaction in the combustor-diffusor system of industrial gas turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, A.K.; Kapat, J.S.; Yang, T.
1996-05-01
This paper presents an experimental/computational study of cold flow in the combustor-diffuser system of industrial gas turbines to address issues relating to flow interactions and pressure losses in the pre- and dump diffusers. The present configuration with can annular combustors differs substantially from the aircraft engines which typically use a 360 degree annular combustor. Experiments were conducted in a one-third scale, annular 360-degree model using several can combustors equispaced around the turbine axis. A 3-D computational fluid dynamics analysis employing the multidomain procedure was performed to supplement the flow measurements. The measured data correlated well with the computations. The airflowmore » in the dump diffuser adversely affected the prediffuser flow by causing it to accelerate in the outer region at the prediffuser exit. This phenomenon referred to as the sink-effect also caused a large fraction of the flow to bypass much of the dump diffuser and go directly from the prediffuser exit to the bypass air holes on the combustor casing, thereby, rendering the dump diffuser ineffective in diffusing the flow. The dump diffuser was occupied by a large recirculation region which dissipated the flow kinetic energy. Approximately 1.2 dynamic head at the prediffuser inlet was lost in the combustor-diffuser system; much of it in the dump diffuser where the fluid passed through the narrow gaps and pathways. Strong flow interactions in the combustor-diffuser system indicate the need for design modifications which could not be addressed by empirical correlations based on simple flow configurations.« less
NASA Astrophysics Data System (ADS)
Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish
2015-10-01
Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.
Parajuli, Ranjan; Knudsen, Marie Trydeman; Birkved, Morten; Djomo, Sylvestre Njakou; Corona, Andrea; Dalgaard, Tommy
2017-11-15
This study evaluates the environmental impacts of biorefinery products using consequential (CLCA) and attributional (ALCA) life cycle assessment (LCA) approaches. Within ALCA, economic allocation method was used to distribute impacts among the main products and the coproducts, whereas within the CLCA system expansion was adopted to avoid allocation. The study seeks to answer the questions (i) what is the environmental impacts of process integration?, and (ii) do CLCA and ALCA lead to different conclusions when applied to biorefinery?. Three biorefinery systems were evaluated and compared: a standalone system producing bioethanol from winter wheat-straw (system A), a standalone system producing biobased lactic acid from alfalfa (system B), and an integrated biorefinery system (system C) combining the two standalone systems and producing both bioethanol and lactic acid. The synergy of the integration was the exchange of useful energy necessary for biomass processing in the two standalone systems. The systems were compared against a common reference flow: "1MJ EtOH +1kg LA ", which was set on the basis of products delivered by the system C. Function of the reference flow was to provide service of both fuel (bioethanol) at 99.9% concentration (wt. basis) and biochemical (biobased lactic acid) in food industries at 90% purity; both products delivered at biorefinery gate. The environmental impacts of interest were global warming potential (GWP 100 ), eutrophication potential (EP), non-renewable energy (NRE) use and the agricultural land occupation (ALO). Regardless of the LCA approach adopted, system C performed better in most of the impact categories than both standalone systems. The process wise contribution to the obtained environmental impacts also showed similar impact pattern in both approaches. The study also highlighted that the recirculation of intermediate materials, e.g. C 5 sugar to boost bioethanol yield and that the use of residual streams in the energy conversion were beneficial for optimizing the system performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine.
Bachant, Peter; Wosnik, Martin; Gunawan, Budi; Neary, Vincent S
The mechanical power, total rotor drag, and near-wake velocity of a 1:6 scale model (1.075 m diameter) of the US Department of Energy's Reference Model vertical-axis cross-flow turbine were measured experimentally in a towing tank, to provide a comprehensive open dataset for validating numerical models. Performance was measured for a range of tip speed ratios and at multiple Reynolds numbers by varying the rotor's angular velocity and tow carriage speed, respectively. A peak power coefficient CP = 0.37 and rotor drag coefficient CD = 0.84 were observed at a tip speed ratio λ0 = 3.1. A regime of weak linear Re-dependence of the power coefficient was observed above a turbine diameter Reynolds number ReD ≈ 106. The effects of support strut drag on turbine performance were investigated by covering the rotor's NACA 0021 struts with cylinders. As expected, this modification drastically reduced the rotor power coefficient. Strut drag losses were also measured for the NACA 0021 and cylindrical configurations with the rotor blades removed. For λ = λ0, wake velocity was measured at 1 m (x/D = 0.93) downstream. Mean velocity, turbulence kinetic energy, and mean kinetic energy transport were compared with results from a high solidity turbine acquired with the same test apparatus. Like the high solidity case, mean vertical advection was calculated to be the largest contributor to near-wake recovery. However, overall, lower levels of streamwise wake recovery were calculated for the RM2 case-a consequence of both the relatively low solidity and tapered blades reducing blade tip vortex shedding-responsible for mean vertical advection-and lower levels of turbulence caused by higher operating tip speed ratio and therefore reduced dynamic stall. Datasets, code for processing and visualization, and a CAD model of the turbine have been made publicly available.
CADDIS Volume 2. Sources, Stressors and Responses: Flow Alteration - Simple Conceptual Diagram
Introduction to the flow alteration module, when to list flow alteration as a candidate cause, ways to measure flow alteration, simple and detailed conceptual model diagrams for flow alteration, flow alteration module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Flow Alteration - Detailed Conceptual Diagram
Introduction to the flow alteration module, when to list flow alteration as a candidate cause, ways to measure flow alteration, simple and detailed conceptual model diagrams for flow alteration, flow alteration module references and literature reviews.
An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder
NASA Technical Reports Server (NTRS)
Cantwell, B.; Coles, D.
1983-01-01
Attention is given to an experimental investigation of transport processes in the near wake of a circular cylinder, for a Reynolds number of 140,000, in which an X-array of hot wire probes mounted on a pair of whirling arms was used for flow measurement. Rotation of the arms in a uniform flow applies a wide range of relative flow angles to these X-arrays, making them inherently self-calibrating in pitch. A phase signal synchronized with the vortex-shedding process allowed a sorting of the velocity data into 16 populations, each having essentially constant phase. An ensemble average for each population yielded a sequence of pictures of the instantaneous mean flow field in which the vortices are frozen, as they would be on a photograph. The measurements also yield nonsteady mean data for velocity, intermittency, vorticity, stress, and turbulent energy production, as a function of phase. Emphasis is given in a discussion of study results to the nonsteady mean flow, which emerges as a pattern of centers and saddles in a frame of reference that moves with the eddies. The kinematics of the vortex formation process are described in terms of the formation and evolution of saddle points between vortices in the first few diameters of the near wake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunk, Peter Randall; Rao, Rekha Ranjana; Chen, Ken S
Goma 6.0 is a finite element program which excels in analyses of multiphysical processes, particularly those involving the major branches of mechanics (viz. fluid/solid mechanics, energy transport and chemical species transport). Goma is based on a full-Newton-coupled algorithm which allows for simultaneous solution of the governing principles, making the code ideally suited for problems involving closely coupled bulk mechanics and interfacial phenomena. Example applications include, but are not limited to, coating and polymer processing flows, super-alloy processing, welding/soldering, electrochemical processes, and solid-network or solution film drying. This document serves as a users guide and reference.
NASA Astrophysics Data System (ADS)
Mitter, H.; Böse, N.; Benyon, R.; Vicente, T.
2012-09-01
During calibration of precision optical dew-point hygrometers (DPHs), it is usually necessary to take into account the pressure drop induced by the gas flow between the "point of reference" and the "point of use" (mirror or measuring head of the DPH) either as a correction of the reference dew-point temperature or as part of the uncertainty estimation. At dew-point temperatures in the range of ambient temperature and below, it is sufficient to determine the pressure drop for the required gas flow, and to keep the volumetric flow constant during the measurements. In this case, it is feasible to keep the dry-gas flow into the dew-point generator constant or to measure the flow downstream the DPH at ambient temperature. In normal operation, at least one DPH in addition to the monitoring DPH are used, and this operation has to be applied to each instrument. The situation is different at high dew-point temperatures up to 95 °C, the currently achievable upper limit reported in this paper. With increasing dew-point temperatures, the reference gas contains increasing amounts of water vapour and a constant dry-gas flow will lead to a significant enhanced volume flow at the conditions at the point of use, and therefore, to a significantly varying pressure drop depending on the applied dew-point temperature. At dew-point temperatures above ambient temperature, it is also necessary to heat the reference gas and the mirror head of the DPH sufficiently to avoid condensation which will additionally increase the volume flow and the pressure drop. In this paper, a method is provided to calculate the dry-gas flow rate needed to maintain a known wet-gas flow rate through a chilled mirror for a range of temperature and pressures.
The Effect of Fin Pitch on Fluid Elastic Instability of Tube Arrays Subjected to Cross Flow of Water
NASA Astrophysics Data System (ADS)
Desai, Sandeep Rangrao; Pavitran, Sampat
2018-02-01
Failure of tubes in shell and tube exchangers is attributed to flow induced vibrations of such tubes. There are different excitations mechanisms due to which flow induced vibration occurs and among such mechanisms, fluid elastic instability is the most prominent one as it causes the most violent vibrations and may lead to rapid tube failures within short time. Fluid elastic instability is the fluid-structure interaction phenomenon which occurs when energy input by the fluid force exceeds energy expended in damping. This point is referred as instability threshold and corresponding velocity is referred as critical velocity. Once flow velocity exceeds critical flow velocity, the vibration amplitude increases very rapidly with flow velocity. An experimental program is carried out to determine the critical velocity at instability for plain and finned tube arrays subjected to cross flow of water. The tube array geometry is parallel triangular with cantilever end condition and pitch ratios considered are 2.6 and 2.1. The objective of research is to determine the effect of increase in pitch ratio on instability threshold for plain tube arrays and to assess the effect of addition of fins as well as increase in fin density on instability threshold for finned tube arrays. Plain tube array with two different pitch ratios; 2.1 and 2.6 and finned tube arrays with same pitch ratio; 2.6 but with two different fin pitches; such as fine (10 fpi) and coarse (4 fpi) are considered for the experimentation. Connors' equation that relates critical velocity at instability to different parameters, on which instability depends, has been used as the basis for analysis and the concept of effective diameter is used for the present investigation. The modal parameters are first suitably modified using natural frequency reduction setup that is already designed and developed to reduce natural frequency and hence to achieve experimental simulation of fluid elastic instability within the limited flow capacity of the pump. The tests are carried out first on plain tube arrays to establish the same as the datum case and results are compared to known results of plain tube arrays and hence the quality of the test rig is also assessed. The fluid elastic vibration tests are then carried out on finned tube arrays with coarse and fine fin pitches and effects of fins and fin pitch on instability threshold are shown. The vibration response of the tube is recorded for each gradually increasing flow rates of water till instability point is reached. The parameters at the instability are then presented in terms of dimensionless parameters to compare them with published results. It is concluded that, arrays with higher pitch ratios are unstable at comparatively higher flow velocities and instability threshold for finned tube arrays is delayed due to addition of the fins. Further, it is concluded that, instability threshold for finned tube arrays with fine fin pitch is delayed compared to coarse fin pitch and hence for increased fin density, instability threshold is delayed. The experimental results in terms of critical velocities obtained for different tube arrays subjected to water cross flow will serve as the base flow rates for air-water cross flow experiments to be conducted in the next phase.
Vasoactive drugs and the gut: is there anything new?
Woolsey, Cheryl A; Coopersmith, Craig M
2006-04-01
Systemic changes in blood pressure and cardiac output induced by pressors and inotropes do not always correlate to improvements in regional perfusion. Since the gut is often referred to as the 'motor' of the systemic inflammatory response syndrome, the impact of vasoactive agents on splanchnic perfusion has theoretical importance. This review will highlight recent studies examining secondary effects of vasoactive agents on intestinal perfusion, metabolism, and barrier function. Norepinephrine has minimal impact on mesenteric blood flow although the combination of norepinephrine and dobutamine increases splanchnic blood flow in sepsis. Dopamine also increases mesenteric blood flow although this may be associated with negative hepatic energy balance at high does. Vasopressin and epinephrine both have negative effects on splanchnic blood flow. Newer inodilators levosimendan and olprinone preferentially improve mesenteric perfusion in animal models. Secondary effects of norepinephrine and dopamine on splanchnic perfusion are minor compared with their systemic effects. While vasopressin usage is increasing in the intensive care unit, caution should be used because of its adverse effects on gut perfusion. Experimental agents for the treatment of heart failure have beneficial gut-specific effects although the clinical significance of this is currently limited by their availability.
Momentum and Heat Flux Measurements in the Exhaust of VASIMR Using Helium Propellant
NASA Technical Reports Server (NTRS)
Chavers, D. Gregory
2002-01-01
Electromagnetic thrusters typically use electric and magnetic fields to accelerate and exhaust plasma through interactions with the charged particles in the plasma. The energy required to create the plasma, i.e. ionization energy, is potential energy between the electron and ion. This potential energy is typically lost since it is not recovered as the plasma is exhausted and is known as frozen flow loss. If the frozen flow energy is a small fraction of the total plasma energy, this frozen flow loss may be negligible. However, if the frozen flow energy is a major fraction of the total plasma energy, this loss can severely reduce the energy efficiency of the thruster. Recovery and utilization of this frozen flow energy can improve the energy efficiency of a thruster during low specific impulse operating regimes when the ionization energy is a large fraction of the total plasma energy. This paper quantifies the recovery of the frozen flow energy, i.e. recombination energy, via the process of surface recombination for helium. To accomplish this task the momentum flux and heat flux of the plasma flow were measured and compared to calculated values from electrostatic probe data. This information was used to deduce the contribution of recombination energy to the total heat flux on a flat plate as well as to characterize the plasma conditions. Helium propellant was investigated initially due to its high ionization potential and hence available recombination energy.
Johanson, Edward W.; Simms, Richard
1981-01-01
A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.
Johanson, E.W.; Simms, R.
A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.
NASA Astrophysics Data System (ADS)
Lian, Enyang; Ren, Yingyu; Han, Yunfeng; Liu, Weixin; Jin, Ningde; Zhao, Junying
2016-11-01
The multi-scale analysis is an important method for detecting nonlinear systems. In this study, we carry out experiments and measure the fluctuation signals from a rotating electric field conductance sensor with eight electrodes. We first use a recurrence plot to recognise flow patterns in vertical upward gas-liquid two-phase pipe flow from measured signals. Then we apply a multi-scale morphological analysis based on the first-order difference scatter plot to investigate the signals captured from the vertical upward gas-liquid two-phase flow loop test. We find that the invariant scaling exponent extracted from the multi-scale first-order difference scatter plot with the bisector of the second-fourth quadrant as the reference line is sensitive to the inhomogeneous distribution characteristics of the flow structure, and the variation trend of the exponent is helpful to understand the process of breakup and coalescence of the gas phase. In addition, we explore the dynamic mechanism influencing the inhomogeneous distribution of the gas phase in terms of adaptive optimal kernel time-frequency representation. The research indicates that the system energy is a factor influencing the distribution of the gas phase and the multi-scale morphological analysis based on the first-order difference scatter plot is an effective method for indicating the inhomogeneous distribution of the gas phase in gas-liquid two-phase flow.
NASA Astrophysics Data System (ADS)
Moradi, A.; Smits, K. M.
2014-12-01
A promising energy storage option to compensate for daily and seasonal energy offsets is to inject and store heat generated from renewable energy sources (e.g. solar energy) in the ground, oftentimes referred to as soil borehole thermal energy storage (SBTES). Nonetheless in SBTES modeling efforts, it is widely recognized that the movement of water vapor is closely coupled to thermal processes. However, their mutual interactions are rarely considered in most soil water modeling efforts or in practical applications. The validation of numerical models that are designed to capture these processes is difficult due to the scarcity of experimental data, limiting the testing and refinement of heat and water transfer theories. A common assumption in most SBTES modeling approaches is to consider the soil as a purely conductive medium with constant hydraulic and thermal properties. However, this simplified approach can be improved upon by better understanding the coupled processes at play. Consequently, developing new modeling techniques along with suitable experimental tools to add more complexity in coupled processes has critical importance in obtaining necessary knowledge in efficient design and implementation of SBTES systems. The goal of this work is to better understand heat and mass transfer processes for SBTES. In this study, we implemented a fully coupled numerical model that solves for heat, liquid water and water vapor flux and allows for non-equilibrium liquid/gas phase change. This model was then used to investigate the influence of different hydraulic and thermal parameterizations on SBTES system efficiency. A two dimensional tank apparatus was used with a series of soil moisture, temperature and soil thermal properties sensors. Four experiments were performed with different test soils. Experimental results provide evidences of thermally induced moisture flow that was also confirmed by numerical results. Numerical results showed that for the test conditions applied here, moisture flow is more influenced by thermal gradients rather than hydraulic gradients. The results also demonstrate that convective fluxes are higher compared to conductive fluxes indicating that moisture flow has more contribution to the overall heat flux than conductive fluxes.
Truong, Quynh A; Knaapen, Paul; Pontone, Gianluca; Andreini, Daniele; Leipsic, Jonathon; Carrascosa, Patricia; Lu, Bin; Branch, Kelley; Raman, Subha; Bloom, Stephen; Min, James K
2015-10-01
Dual-energy CT (DECT) has potential to improve myocardial perfusion for physiologic assessment of coronary artery disease (CAD). Diagnostic performance of rest-stress DECT perfusion (DECTP) is unknown. DECIDE-Gold is a prospective multicenter study to evaluate the accuracy of DECT to detect hemodynamic (HD) significant CAD, as compared to fractional flow reserve (FFR) as a reference standard. Eligible participants are subjects with symptoms of CAD referred for invasive coronary angiography (ICA). Participants will undergo DECTP, which will be performed by pharmacological stress, and participants will subsequently proceed to ICA and FFR. HD-significant CAD will be defined as FFR ≤ 0.80. In those undergoing myocardial stress imaging (MPI) by positron emission tomography (PET), single photon emission computed tomography (SPECT) or cardiac magnetic resonance (CMR) imaging, ischemia will be graded by % ischemic myocardium. Blinded core laboratory interpretation will be performed for CCTA, DECTP, MPI, ICA, and FFR. Primary endpoint is accuracy of DECTP to detect ≥1 HD-significant stenosis at the subject level when compared to FFR. Secondary and tertiary endpoints are accuracies of combinations of DECTP at the subject and vessel levels compared to FFR and MPI. DECIDE-Gold will determine the performance of DECTP for diagnosing ischemia.
Model for economic evaluation of high energy gas fracturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engi, D.
1984-05-01
The HEGF/NPV model has been developed and adapted for interactive microcomputer calculations of the economic consequences of reservoir stimulation by high energy gas fracturing (HEGF) in naturally fractured formations. This model makes use of three individual models: a model of the stimulated reservoir, a model of the gas flow in this reservoir, and a model of the discounted expected net cash flow (net present value, or NPV) associated with the enhanced gas production. Nominal values of the input parameters, based on observed data and reasonable estimates, are used to calculate the initial expected increase in the average daily rate ofmore » production resulting from the Meigs County HEGF stimulation experiment. Agreement with the observed initial increase in rate is good. On the basis of this calculation, production from the Meigs County Well is not expected to be profitable, but the HEGF/NPV model probably provides conservative results. Furthermore, analyses of the sensitivity of the expected NPV to variations in the values of certain reservoir parameters suggest that the use of HEGF stimulation in somewhat more favorable formations is potentially profitable. 6 references, 4 figures, 3 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mouradian, E. M.
1983-12-31
Thermal analyses for the preliminary design phase of the Receiver of the Carrizo Plains Solar Power Plant are presented. The sodium reference operating conditions (T/sub in/ = 610/sup 0/F, T/sub out/ = 1050/sup 0/F) have been considered. Included are: Nominal flux distribution on receiver panal, Energy input to tubes, Axial temperature distribution; sodium and tubes, Sodium flow distribution, Sodium pressure drop, orifice calculations, Temperature distribution in tube cut (R-0), Backface structure, and Nonuniform sodium outlet temperature. Transient conditions and panel front face heat losses are not considered. These are to be addressed in a subsequent design phase. Also to bemore » considered later are the design conditions as variations from the nominal reference (operating) condition. An addendum, designated Appendix C, has been included describing panel heat losses, panel temperature distribution, and tube-manifold joint thermal model.« less
NASA Astrophysics Data System (ADS)
Jarmain, C.; Everson, C. S.; Gush, M. B.; Clulow, A. D.
2009-09-01
The contribution of hydrological research in South Africa in quantifying green water flows for improved Integrated Land and Water Resources Management is reviewed. Green water refers to water losses from land surfaces through transpiration (seen as a productive use) and evaporation from bare soil (seen as a non-productive use). In contrast, blue water flows refer to streamflow (surface water) and groundwater / aquifer recharge. Over the past 20 years, a number of methods have been used to quantify the green water and blue water flows. These include micrometeorological techniques (e.g. Bowen ratio energy balance, eddy covariance, surface renewal, scintillometry, lysimetry), field scale models (e.g. SWB, SWAP), catchment scale hydrological models (e.g. ACRU, SWAT) and more recently remote sensing based models (e.g. SEBAL, SEBS). The National Water Act of South Africa of 1998 requires that water resources are managed, protected and used (developed, conserved and controlled) in an equitable way which is beneficial to the public. The quantification of green water flows in catchments under different land uses has been pivotal in (a) regulating streamflow reduction activities (e.g. forestry) and the management of alien invasive plants, (b) protecting riparian and wetland areas through the provision of an ecological reserve, (c) assessing and improving the water use efficiency of irrigated pastures, fruit tree orchards and vineyards, (d) quantifying the potential impact of future land uses like bio-fuels (e.g. Jatropha) on water resources, (e) quantifying water losses from open water bodies, and (f) investigating "biological” mitigation measures to reduce the impact of polluted water resources as a result of various industries (e.g. mining). This paper therefore captures the evolution of measurement techniques applied across South Africa, the impact these results have had on water use and water use efficiency and the extent to which it supported the National Water Act of South Africa.
Reynolds Stress Closure for Inertial Frames and Rotating Frames
NASA Astrophysics Data System (ADS)
Petty, Charles; Benard, Andre
2017-11-01
In a rotating frame-of-reference, the Coriolis acceleration and the mean vorticity field have a profound impact on the redistribution of kinetic energy among the three components of the fluctuating velocity. Consequently, the normalized Reynolds (NR) stress is not objective. Furthermore, because the Reynolds stress is defined as an ensemble average of a product of fluctuating velocity vector fields, its eigenvalues must be non-negative for all turbulent flows. These fundamental properties (realizability and non-objectivity) of the NR-stress cannot be compromised in computational fluid dynamic (CFD) simulations of turbulent flows in either inertial frames or in rotating frames. The recently developed universal realizable anisotropic prestress (URAPS) closure for the NR-stress depends explicitly on the local mean velocity gradient and the Coriolis operator. The URAPS-closure is a significant paradigm shift from turbulent closure models that assume that dyadic-valued operators associated with turbulent fluctuations are objective.
Spray scrubbing of particulate-laden SO(2) using a critical flow atomizer.
Bandyopadhyay, Amitava; Biswas, Manindra Nath
2008-08-01
The performance of a spray tower using an energy efficient two-phase critical flow atomizer on the scrubbing of particulate-laden SO(2) using water and dilute NaOH is reported in this article. Experimentation revealed that SO(2) removal was enhanced due to presence of particles (fly-ash) and almost 100% removal efficiency was achieved in water scrubbing. The removal efficiency is elucidated in reference to atomizing air pressure, droplet diameter and droplet velocity besides other pertinent variables of the system studied. The presence of fly-ash particles improved the removal efficiency to about 20% within the range of variables studied. Empirical and semi-empirical correlations were developed for predicting the removal efficiency in water and dilute NaOH respectively. Predicted data fitted excellently well with experimental values. The performance of the spray tower is compared with the performances of existing systems and very encouraging results are obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Ingham County solar system consists of approximately 10,000 square feet of solar collectors connected in a closed configuration loop. The primary loop solution is a 1:12 mixture of water and propylene glycol which flows through the tube side of a heat exchanger connected to the primary storage tank. The heat energy which is supplied to the primary storage tank is subsequently used to preheat the temperature of the laundry water, kitchen water, and domestic potable water. Included in this report are: detailed drawings and flow chart; operational methodology; preventive maintenance instructions; general instructions and safety precautions; and a correctivemore » maintenance and tabulation of failure modes. Appendices include: manufacturers technical manual and component specifications; IBM data sensors and responsibilities; digital county monitor operations manual; and on site monitor operations manual. Reference CAPE-2834. (LS)« less
NASA Technical Reports Server (NTRS)
1991-01-01
This Magellan image is centered at 55 degrees north latitude, 348.5 degrees longitude, in the eastern Lakshmi region of Venus. This image, which is of an area 300 kilometers (180 miles) in width and 230 kilometers (138 miles) in length, is a mosaic of orbits 458 through 484. The image shows a relatively flat plains region composed of many lava flows. The dark flows mostly likely represent smooth lava flows similar to 'pahoehoe' flows on Earth while the brighter lava flows are rougher flows similar to 'aa' flows on Earth. (The terms 'pahoehoe' and 'aa' refer to textures of lava with pahoehoe a smooth or ropey surface, and aa a rough, clinkery texture). The rougher flows are brighter because the rough surface returns more energy to the radar than the smooth flows. Situated on top of the lava flows are three dark splotches. Because of the thick Venusian atmosphere, the small impactors break up before they reached the surface. Only the fragments from the broken up impactor are deposited on the surface and these fragments produce the dark splotches in this image. The splotch at the far right (east) has a crater centered in it, indicating that the impactor was not completely destroyed during its journey through the atmosphere. The dark splotches in the center and to the far left in this image each represent an impactor that was broken up into small fragments that did not penetrate the surface to produce a crater. The dark splotch at the left has been modified by the wind. A southwest northeast wind flow has moved some of the debris making up the splotch to the northeast where it has piled up against some small ridges.
Electric oxygen-iodine laser discharge scaling and laser performance
NASA Astrophysics Data System (ADS)
Woodard, Brian S.
In 2004, a research partnership between the University of Illinois and CU Aerospace demonstrated the first electric discharge pumped oxygen-iodine laser referred to as ElectricOIL. This exciting improvement over the standard oxygen-iodine laser utilizes a gas discharge to produce the necessary electronically-excited molecular oxygen, O2(a 1Delta), that serves as the energy reservoir in the laser system. Pumped by a near-resonant energy transfer, the atomic iodine lases on the I(2P1/2) → I(2P3/2) transition at 1315 nm. Molecular oxygen diluted with helium and a small fraction of nitric oxide flows through a radiofrequency discharge where O2(a 1Delta) and many other excited species are created. Careful investigations to understand the benefits and problems associated with these other states in the laser system allowed this team to succeed where other research groups had failed, and after the initial demonstration, the ElectricOIL research focus shifted to increasing the efficiencies along with the output laser energy. Among other factors, the laser power scales with the flow rate of oxygen in the desired excited state. Therefore, high yields of O2(a 1Delta) are desired along with high input oxygen flow rates. In the early ElectricOIL experiments, the pressure in the discharge was approximately 10 Torr, but increased flow rates forced the pressure to between 50 and 60 Torr requiring a number of new discharge designs in order to produce similar yields of O2(a1Delta) efficiently. Experiments were conducted with only the electric discharge portion of the laser system using emission diagnostics to study the effects of changing the discharge geometry, flow residence time, and diluent. The power carried by O2(a 1Delta) is the maximum power that could be extracted from the laser, and the results from these studies showed approximately 2500 W stored in the O2(a1Delta) state. Transferring this energy into the atomic iodine has been another challenge in ElectricOIL as experiments have shown that the iodine is pumped into the excited state slower than is predicted by the known kinetics, resulting in reduced output power. An elementary model is presented that may partially explain this problem. Larger laser resonator volumes are employed to improve power extraction by providing more flow time for iodine pumping. The results presented in this work in conjunction with the efforts of others led to ElectricOIL scaling from 200 mW in the initial demonstration to nearly 500 W.
Energy structure of MHD flow coupling with outer resistance circuit
NASA Astrophysics Data System (ADS)
Huang, Z. Y.; Liu, Y. J.; Chen, Y. Q.; Peng, Z. L.
2015-08-01
Energy structure of MHD flow coupling with outer resistance circuit is studied to illuminate qualitatively and quantitatively the energy relation of this basic MHD flow system with energy input and output. Energy structure are analytically derived based on the Navier-Stocks equations for two-dimensional fully-developed flow and generalized Ohm's Law. The influences of applied magnetic field, Hall parameter and conductivity on energy structure are discussed based on the analytical results. Associated energies in MHD flow are deduced and validated by energy conservation. These results reveal that energy structure consists of two sub structures: electrical energy structure and internal energy structure. Energy structure and its sub structures provide an integrated theoretical energy path of the MHD system. Applied magnetic field and conductivity decrease the input energy, dissipation by fluid viscosity and internal energy but increase the ratio of electrical energy to input energy, while Hall parameter has the opposite effects. These are caused by their different effects on Bulk velocity, velocity profiles, voltage and current in outer circuit. Understanding energy structure helps MHD application designers to actively adjust the allocation of different parts of energy so that it is more reasonable and desirable.
The Initial Flow of Classical Gluon Fields in Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
Fries, Rainer J.; Chen, Guangyao
2015-03-01
Using analytic solutions of the Yang-Mills equations we calculate the initial flow of energy of the classical gluon field created in collisions of large nuclei at high energies. We find radial and elliptic flow which follows gradients in the initial energy density, similar to a simple hydrodynamic behavior. In addition we find a rapidity-odd transverse flow field which implies the presence of angular momentum and should lead to directed flow in final particle spectra. We trace those energy flow terms to transverse fields from the non-abelian generalization of Gauss' Law and Ampere's and Faraday's Laws.
NASA Technical Reports Server (NTRS)
Deiwert, George S.
1997-01-01
The flow behind the shock wave formed around objects which fly at hypervelocity behaves differently from that of a perfect gas. Molecules become vibrationally excited, dissociated, and ionized. The hot gas may emit or absorb radiation. When the atoms produced by dissociation reach the wall surface, chemical reactions, including recombination, may occur. The thermochemical phenomena of vibration, dissociation, ionization, surface chemical reaction, and radiation are referred to commonly as high-temperature real-gas phenomena. The phenomena cause changes in the dynamic behavior of the flow and the surface pressure and heat transfer distribution around the object. The character of a real gas is described by the internal degrees of freedom and state of constituent molecules; nitrogen and oxygen for air. The internal energy states, rotation, vibration and electronic, of the molecules are excited and, in the limit, the molecular bonds are exceeded and the gas dissociated into atomic and, possibly, ionic constituents. The process of energy transfer causing excitation, dissociation and recombination is a rate process controlled by particle collisions. Binary, two-body, collisions are sufficient to cause internal excitation, dissociation and ionization while three-body collisions are required to recombine the particles into molecular constituents. If the rates of energy transfer are fast with respect to the local fluid dynamic time scale the gas is in, or nearly in, equilibrium. If the energy transfer rates are very slow the gas can be described as frozen. In all other instances, wherein any of the energy exchange rates are comparable to the local fluid time scale, the gas will be thermally or chemically reacting and out of equilibrium. Real gas thermochemical nonequilibrium processes are important in the determination of aerodynamic heating; both convective (including wall catalytic effects) and radiative heating. To illustrate this we consider the hypervelocity flow over a bluff body typical of an atmospheric entry vehicle or an aerospace transfer vehicle (ASTV). The qualitative aspects of a hypersonic flow field over a bluff body are discussed in two parts, forebody and afterbody, with attention to which particular physical effects must be included in an analysis. This will indicate what type of numerical modeling will be adequate in each region of the flow. A bluff forebody flow field is dominated by the presence of the strong bow shock wave and the consequent heating, and chemical reaction of the gas. At high altitude hypersonic flight conditions the thermal excitation and chemical reaction of the gas occur slowly enough that a significant portion of the flow field is in a state of thermochemical nonequilibrium. A second important effect is the presence of the thick boundary layer along the forebody surface. In this region there are large thermal and chemical species gradients due to the interaction of the gas with the wall. Also at high altitudes the shock wave and the boundary layer may become so thick that they merge; in this case the entire shock layer is dominated by viscous effects.
Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki
2013-06-17
We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as "our previous method") using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as "our new method"). Our new method detects vehicles based on tires' thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8%) out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.
Closure Report for Corrective Action Unit 340: NTS Pesticide Release Sites Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. M. Obi
The purpose of this report is to provide documentation of the completed corrective action and to provide data confirming the corrective action. The corrective action was performed in accordance with the approved Corrective Action Plan (CAP) (U.S. Department of Energy [DOE], 1999) and consisted of clean closure by excavation and disposal. The Area 15 Quonset Hut 15-11 was formerly used for storage of farm supplies including pesticides, herbicides, and fertilizers. The Area 23 Quonset Hut 800 was formerly used to clean pesticide and herbicide equipment. Steam-cleaning rinsate and sink drainage occasionally overflowed a sump into adjoining drainage ditches. One ditchmore » flows south and is referred to as the quonset hut ditch. The other ditch flows southeast and is referred to as the inner drainage ditch. The Area 23 Skid Huts were formerly used for storing and mixing pesticide and herbicide solutions. Excess solutions were released directly to the ground near the skid huts. The skid huts were moved to a nearby location prior to the site characterization performed in 1998 and reported in the Corrective Action Decision Document (CADD) (DOE, 1998). The vicinity and site plans of the Area 23 sites are shown in Figures 2 and 3, respectively.« less
Recent improvements of the French liquid micro-flow reference facility
NASA Astrophysics Data System (ADS)
Florestan, Ogheard; Sandy, Margot; Julien, Savary
2018-02-01
According to the mission of the national reference laboratory, LNE-CETIAT achieved in 2012 the construction and accreditation of a modern and innovative calibration laboratory based on the gravimetric method. The measurement capabilities cover a flow rate range for liquid from 10 kg · h-1 down to 1 g · h-1 with expanded relative uncertainties from 0.1% to 0.6% (k = 2). Since 2012, several theoretical and experimental studies have allowed a better knowledge and control over uncertainty sources and have decreased calibration time. When dealing with liquid micro-flow using a reference method such as the gravimetric method, several difficulties have to be overcome. The main improvements described in this paper relate to the enhancement of the evaporation trap system, the merging of the four dedicated measurement lines into one, and the implementation of a gravimetric dynamic ‘flying’ method for the calculation of the reference flow rate. The evaporation-avoiding system has been replaced by an oil layer in order to remove the possibility of condensation of water on both the weighed vessel and the immersed capillary. The article describes the experimental method used to quantify the effect of surface tension of water/oil/air interfaces on the weighed mass. The traditional static gravimetric method has been upgraded by a dynamic ‘flying’ gravimetric method. The article presents the newly implemented method, its validation and its advantages compared to the static method. The four dedicated weighing devices, dispatched over four sub-ranges of flow rate, have been merged leading to the use of only one weighing scale with the same uncertainties on the reference flow rate. The article discusses the new uncertainty budget over the full flow rate range capability. Finally, the article discusses the improvements still under development and the general prospects of liquid micro-flow metrology.
Developing guidelines for elementary flow nomenclature
In general, a flow in life cycle inventory data refers to an input or output to a process. Flows may be of two broad types: elementary flows or intermediate (known as “technosphere”) flows according to ISO 14044 (ISO 14044 2006). Elementary flows may be defined as mat...
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Liu, Nan-Suey
2012-01-01
This paper presents the numerical simulations of the Jet-A spray reacting flow in a single element lean direct injection (LDI) injector by using the National Combustion Code (NCC) with and without invoking the Eulerian scalar probability density function (PDF) method. The flow field is calculated by using the Reynolds averaged Navier-Stokes equations (RANS and URANS) with nonlinear turbulence models, and when the scalar PDF method is invoked, the energy and compositions or species mass fractions are calculated by solving the equation of an ensemble averaged density-weighted fine-grained probability density function that is referred to here as the averaged probability density function (APDF). A nonlinear model for closing the convection term of the scalar APDF equation is used in the presented simulations and will be briefly described. Detailed comparisons between the results and available experimental data are carried out. Some positive findings of invoking the Eulerian scalar PDF method in both improving the simulation quality and reducing the computing cost are observed.
Wind noise spectra in small Reynolds number turbulent flows.
Zhao, Sipei; Cheng, Eva; Qiu, Xiaojun; Burnett, Ian; Liu, Jacob Chia-Chun
2017-11-01
Wind noise spectra caused by wind from fans in indoor environments have been found to be different from those measured in outdoor atmospheric conditions. Although many models have been developed to predict outdoor wind noise spectra under the assumption of large Reynolds number [Zhao, Cheng, Qiu, Burnett, and Liu (2016). J. Acoust. Soc. Am. 140, 4178-4182, and the references therein], they cannot be applied directly to the indoor situations because the Reynolds number of wind from fans in indoor environments is usually much smaller than that experienced in atmospheric turbulence. This paper proposes a pressure structure function model that combines the energy-containing and dissipation ranges so that the pressure spectrum for small Reynolds number turbulent flows can be calculated. The proposed pressure structure function model is validated with the experimental results in the literature, and then the obtained pressure spectrum is verified with the numerical simulation and experiment results. It is demonstrated that the pressure spectrum obtained from the proposed pressure structure function model can be utilized to estimate wind noise spectra caused by turbulent flows with small Reynolds numbers.
NASA Technical Reports Server (NTRS)
Davis, R. L.
1986-01-01
A program called ALESEP is presented for the analysis of the inviscid-viscous interaction which occurs due to the presence of a closed laminar-transitional separation bubble on an airfoil or infinite swept wing. The ALESEP code provides an iterative solution of the boundary layer equations expressed in an inverse formulation coupled to a Cauchy integral representation of the inviscid flow. This interaction analysis is treated as a local perturbation to a known solution obtained from a global airfoil analysis; hence, part of the required input to the ALESEP code are the reference displacement thickness and tangential velocity distributions. Special windward differencing may be used in the reversed flow regions of the separation bubble to accurately account for the flow direction in the discretization of the streamwise convection of momentum. The ALESEP code contains a forced transition model based on a streamwise intermittency function, a natural transition model based on a solution of the integral form of the turbulent kinetic energy equation, and an empirical natural transition model.
NASA Astrophysics Data System (ADS)
Badfar, Homayoun; Motlagh, Saber Yekani; Sharifi, Abbas
2017-10-01
In this paper, biomagnetic blood flow in the stenosis vessel under the effect of the solenoid magnetic field is studied using the ferrohydrodynamics (FHD) model. The parabolic profile is considered at an inlet of the axisymmetric stenosis vessel. Blood is modeled as electrically non-conducting, Newtonian and homogeneous fluid. Finite volume and the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm are utilized to discretize governing equations. The investigation is studied at different magnetic numbers ( MnF=164, 328, 1640 and 3280) and the number of the coil loops (three, five and nine loops). Results indicate an increase in heat transfer, wall shear stress and energy loss (pressure drop) with an increment in the magnetic number (ratio of Kelvin force to dynamic pressure force), arising from the FHD, and the number of solenoid loops. Furthermore, the flow pattern is affected by the magnetic field, and the temperature of blood can be decreased up to 1.48 {}°C under the effect of the solenoid magnetic field with nine loops and reference magnetic field ( B0) of 2 tesla.
Relativistic theory of particles in a scattering flow I: basic equations, diffusion and drift.
NASA Astrophysics Data System (ADS)
Achterberg, A.; Norman, C. A.
2018-06-01
We reconsider the theory of particle transport in a scattering medium, allowing for relativistic flow velocities. The theory uses a mixed set of variables, with position and time measured in the Laboratory Frame, and particle energy and momentum measured in the Fluid Rest Frame, the reference frame where scattering is assumed to be elastic. We give a new derivation for the fictitious force terms in the equation of motion that are present if the Fluid Rest Frame is not an inertial frame. By using a 3+1 notation we discuss the physical interpretation of the different terms in the fictitious force. It is shown that different approaches to the problem of particle propagation in a magnetized medium due to Skilling (1975) and Kulsrud (1983) are largely equivalent. We extend known results for non-relativistic flows to include the effects of cross-field diffusion for cosmic rays in a magnetized plasma. We also carefully consider the correct form of the diffusion approximation for scattering, and show that the resulting equations can be cast in conservation form.
Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research
Roach, Michael; Cohen, Wesley M.
2013-01-01
This paper assesses the validity and accuracy of firms’ backward patent citations as a measure of knowledge flows from public research by employing a newly constructed dataset that matches patents to survey data at the level of the R&D lab. Using survey-based measures of the dimensions of knowledge flows, we identify sources of systematic measurement error associated with backward citations to both patent and nonpatent references. We find that patent citations reflect the codified knowledge flows from public research, but they appear to miss knowledge flows that are more private and contract-based in nature, as well as those used in firm basic research. We also find that firms’ patenting and citing strategies affect patent citations, making citations less indicative of knowledge flows. In addition, an illustrative analysis examining the magnitude and direction of measurement error bias suggests that measuring knowledge flows with patent citations can lead to substantial underestimation of the effect of public research on firms’ innovative performance. Throughout our analyses we find that nonpatent references (e.g., journals, conferences, etc.), not the more commonly used patent references, are a better measure of knowledge originating from public research. PMID:24470690
Re-examination of globally flat space-time.
Feldman, Michael R
2013-01-01
In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of "dark energy," "dark matter," and "dark flow." Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at "large enough" scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems) and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of "dark energy," "dark matter," and "dark flow." In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems.
Re-Examination of Globally Flat Space-Time
NASA Astrophysics Data System (ADS)
Feldman, Michael R.
2013-11-01
In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of "dark energy," "dark matter," and "dark flow." Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at "large enough" scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems) and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of "dark energy," "dark matter," and "dark flow." In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems.
Vibrational Power Flow Analysis of Rods and Beams
NASA Technical Reports Server (NTRS)
Wohlever, James Christopher; Bernhard, R. J.
1988-01-01
A new method to model vibrational power flow and predict the resulting energy density levels in uniform rods and beams is investigated. This method models the flow of vibrational power in a manner analogous to the flow of thermal power in a heat conduction problem. The classical displacement solutions for harmonically excited, hysteretically damped rods and beams are used to derive expressions for the vibrational power flow and energy density in the rod and beam. Under certain conditions, the power flow in these two structural elements will be shown to be proportional to the energy density gradient. Using the relationship between power flow and energy density, an energy balance on differential control volumes in the rod and beam leads to a Poisson's equation which models the energy density distribution in the rod and beam. Coupling the energy density and power flow solutions for rods and beams is also discussed. It is shown that the resonant behavior of finite structures complicates the coupling of solutions, especially when the excitations are single frequency inputs. Two coupling formulations are discussed, the first based on the receptance method, and the second on the travelling wave approach used in Statistical Energy Analysis. The receptance method is the more computationally intensive but is capable of analyzing single frequency excitation cases. The traveling wave approach gives a good approximation of the frequency average of energy density and power flow in coupled systems, and thus, is an efficient technique for use with broadband frequency excitation.
Pneumafil casing blower through moving reference frame (MRF) - A CFD simulation
NASA Astrophysics Data System (ADS)
Manivel, R.; Vijayanandh, R.; Babin, T.; Sriram, G.
2018-05-01
In this analysis work, the ring frame of Pneumafil casing blower of the textile mills with a power rating of 5 kW have been simulated using Computational Fluid Dynamics (CFD) code. The CFD analysis of the blower is carried out in Ansys Workbench 16.2 with Fluent using MRF solver settings. The simulation settings and boundary conditions are based on literature study and field data acquired. The main objective of this work is to reduce the energy consumption of the blower. The flow analysis indicated that the power consumption is influenced by the deflector plate orientation and deflector plate strip situated at the outlet casing of the blower. The energy losses occurred in the blower is due to the recirculation zones formed around the deflector plate strip. The deflector plate orientation is changed and optimized to reduce the energy consumption. The proposed optimized model is based on the simulation results which had relatively lesser power consumption than the existing and other cases. The energy losses in the Pneumafil casing blower are reduced through CFD analysis.
Physics of the Jovian Magnetosphere
NASA Astrophysics Data System (ADS)
Dessler, A. J.
2002-08-01
List of tables; Foreword James A. Van Allen; Preface; 1. Jupiter's magnetic field and magnetosphere Mario H. Acuña, Kenneth W. Behannon and J. E. P. Connerney; 2. Ionosphere Darrell F. Strobel and Sushil K. Atreya; 3. The low-energy plasma in the Jovian magnetosphere J. W. Belcher; 4. Low-energy particle population S. M. Krimigis and E. C. Roelof; 5. High-energy particles A. W. Schardt and C. K. Goertz; 6. Spectrophotometric studies of the Io torus Robert A. Brown, Carl B. Pilcher and Darrell F. Strobel; 7. Phenomenology of magnetospheric radio emissions T. D. Carr, M. D. Desch and J. K. Alexander; 8. Plasma waves in the Jovian magnetosphere D. A. Gurnett and F. L. Scarf; 9. Theories of radio emissions and plasma waves Melvyn L. Goldstein and C. K. Goertz; 10. Magnetospheric models T. W. Hill, A. J. Dessler and C. K. Goertz; 11. Plasma distribution and flow Vytenis M. Vasyliunas; 12. Microscopic plasma processes in the Jovian magnetosphere Richard Mansergh Thorne; Appendixes; References; Index.
NASA Astrophysics Data System (ADS)
Hu, R.; Liu, Q.
2016-12-01
For civil engineering projects, especially in the subsurface with groundwater, the artificial ground freezing (AGF) method has been widely used. Commonly, a refrigerant is circulated through a pre-buried pipe network to form a freezing wall to support the construction. In many cases, the temperature change is merely considered as a result of simple heat conduction. However, the influence of the water-ice phase change on the flow properties should not be neglected, if large amount of groundwater with high flow velocities is present. In this work, we perform a 2D modelling (software: Comsol Multiphysics) of an AFG project of a metro tunnel in Southern China, taking groundwater flow into account. The model is validated based on in-situ measurement of groundwater flow and temperature. We choose a cross section of this horizontal AGF project and set up a model with horizontal groundwater flow normal to the axial of the tunnel. The Darcy velocity is a coupling variable and related to the temperature field. During the phase change of the pore water and the decrement of permeability in freezing zone, we introduce a variable of effective hydraulic conductivity which is described by a function of temperature change. The energy conservation problem is solved by apparent heat capacity method and the related parameter change is described by a step function (McKenzie, et. al. 2007). The results of temperature contour maps combined with groundwater flow velocity at different times indicate that the freezing wall appears in an asymmetrical shape along the groundwater flow direction. It forms slowly and on the upstream side the thickness of the freezing wall is thinner than that on the downstream side. The closure time of the freezing wall increases at the middle of the both up and downstream sides. The average thickness of the freezing wall on the upstream side is mostly affected by the groundwater flow velocity. With the successful validation of this model, this numerical simulation could provide guidance in this AGF project in the future. ReferenceJeffrey M. McKenzie, et. al. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs. Advances in Water Resources 30 966-983 (2007).
Kneifel, Joshua; O'Rear, Eric; Webb, David; O'Fallon, Cheyney
2018-02-01
To conduct a more complete analysis of low-energy and net-zero energy buildings that considers both the operating and embodied energy/emissions, members of the building community look to life-cycle assessment (LCA) methods. This paper examines differences in the relative impacts of cost-optimal energy efficiency measure combinations depicting residential buildings up to and beyond net-zero energy consumption on operating and embodied flows using data from the Building Industry Reporting and Design for Sustainability (BIRDS) Low-Energy Residential Database. Results indicate that net-zero performance leads to a large increase in embodied flows (over 40%) that offsets some of the reductions in operational flows, but overall life-cycle flows are still reduced by over 60% relative to the state energy code. Overall, building designs beyond net-zero performance can partially offset embodied flows with negative operational flows by replacing traditional electricity generation with solar production, but would require an additional 8.34 kW (18.54 kW in total) of due south facing solar PV to reach net-zero total life-cycle flows. Such a system would meet over 239% of operational consumption of the most energy efficient design considered in this study and over 116% of a state code-compliant building design in its initial year of operation.
Coupling desalination and energy storage with redox flow electrodes.
Hou, Xianhua; Liang, Qian; Hu, Xiaoqiao; Zhou, Yu; Ru, Qiang; Chen, Fuming; Hu, Shejun
2018-06-26
Both freshwater shortage and energy crisis are global issues. Herein, we present a double-function system of faradaic desalination and a redox flow battery consisting of VCl3|NaI redox flow electrodes and a feed stream. The system has a nominal cell potential (E0 = +0.79 V). During the discharge process, the salt ions in the feed are extracted by the redox reaction of the flow electrodes, which is indicated by salt removal. Stable and reversible salt removal capacity and electricity can be achieved up to 30 cycles. The energy consumption is as low as 10.27 kJ mol-1 salt. The energy efficiency is as high as 50% in the current aqueous redox flow battery. With energy recovery, the desalination energy consumption decreases greatly to 5.38 kJ mol-1; this is the lowest reported value to date. This "redox flow battery desalination generator" can be operated in a voltage range of 0.3-1.1 V. Our research provides a novel method for obtaining energy-saving desalination and redox flow batteries.
Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.
Huang, Qizhao; Li, Hong; Grätzel, Michael; Wang, Qing
2013-02-14
Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow battery, the energy storage materials of RFLB stored in separate energy tanks remain stationary upon operation, giving us a fresh perspective on building large-scale energy storage systems with higher energy density and improved safety.
Material design and engineering of next-generation flow-battery technologies
NASA Astrophysics Data System (ADS)
Park, Minjoon; Ryu, Jaechan; Wang, Wei; Cho, Jaephil
2017-01-01
Spatial separation of the electrolyte and electrode is the main characteristic of flow-battery technologies, which liberates them from the constraints of overall energy content and the energy/power ratio. The concept of a flowing electrolyte not only presents a cost-effective approach for large-scale energy storage, but has also recently been used to develop a wide range of new hybrid energy storage and conversion systems. The advent of flow-based lithium-ion, organic redox-active materials, metal-air cells and photoelectrochemical batteries promises new opportunities for advanced electrical energy-storage technologies. In this Review, we present a critical overview of recent progress in conventional aqueous redox-flow batteries and next-generation flow batteries, highlighting the latest innovative alternative materials. We outline their technical feasibility for use in long-term and large-scale electrical energy-storage devices, as well as the limitations that need to be overcome, providing our view of promising future research directions in the field of redox-flow batteries.
Engström, Rebecka Ericsdotter; Howells, Mark; Destouni, Georgia; ...
2017-05-01
Urban water and energy systems are crucial for sustainably meeting basic service demands in cities. Therefore, this paper proposes and applies a technology-independent “reference resource-to-service system” framework for concurrent evaluation of urban water and energy system interventions and their ‘nexus’ or ‘interlinkages’. In a concrete application, data that approximate New York City conditions are used to evaluate a limited set of interventions in the residential sector, spanning from low-flow toilet shifts to extensive green roof installations. Results indicate that interventions motivated primarily by water management goals can considerably reduce energy use and contribute to mitigation of greenhouse gas emissions. Similarly,more » energy efficiency interventions can considerably reduce water use in addition to lowering emissions. However, interventions yielding the greatest reductions in energy use and emissions are not necessarily the most water conserving ones, and vice versa. Useful further research, expanding the present analysis should consider a broader set of resource interactions, towards a full climate, land, energy and water (CLEW) nexus approach. Overall, assessing the impacts, trade-offs and co-benefits from interventions in one urban resource system on others also holds promise as support for increased resource efficiency through integrated decision making.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engström, Rebecka Ericsdotter; Howells, Mark; Destouni, Georgia
Urban water and energy systems are crucial for sustainably meeting basic service demands in cities. Therefore, this paper proposes and applies a technology-independent “reference resource-to-service system” framework for concurrent evaluation of urban water and energy system interventions and their ‘nexus’ or ‘interlinkages’. In a concrete application, data that approximate New York City conditions are used to evaluate a limited set of interventions in the residential sector, spanning from low-flow toilet shifts to extensive green roof installations. Results indicate that interventions motivated primarily by water management goals can considerably reduce energy use and contribute to mitigation of greenhouse gas emissions. Similarly,more » energy efficiency interventions can considerably reduce water use in addition to lowering emissions. However, interventions yielding the greatest reductions in energy use and emissions are not necessarily the most water conserving ones, and vice versa. Useful further research, expanding the present analysis should consider a broader set of resource interactions, towards a full climate, land, energy and water (CLEW) nexus approach. Overall, assessing the impacts, trade-offs and co-benefits from interventions in one urban resource system on others also holds promise as support for increased resource efficiency through integrated decision making.« less
High-energy redox-flow batteries with hybrid metal foam electrodes.
Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun
2014-07-09
A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.
10 CFR 431.293 - Materials incorporated by reference.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2010-01-01 2010-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
10 CFR 433.3 - Materials incorporated by reference.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 433.3 Section 433.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Sixth...
10 CFR 431.293 - Materials incorporated by reference.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2011-01-01 2011-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
10 CFR 431.293 - Materials incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
10 CFR 431.63 - Materials incorporated by reference.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2011-01-01 2011-01-01 false Materials incorporated by reference. 431.63 Section 431.63 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...
10 CFR 431.323 - Materials incorporated by reference.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 431.323 Section 431.323 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
10 CFR 431.63 - Materials incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.63 Section 431.63 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...
10 CFR 433.3 - Materials incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 433.3 Section 433.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Sixth...
10 CFR 431.63 - Materials incorporated by reference.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 431.63 Section 431.63 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...
10 CFR 431.293 - Materials incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
10 CFR 431.293 - Materials incorporated by reference.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
10 CFR 431.63 - Materials incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 431.63 Section 431.63 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...
10 CFR 433.3 - Materials incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 433.3 Section 433.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Sixth...
10 CFR 431.323 - Materials incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.323 Section 431.323 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
Evaluating flow laws for dynamically recrystallized quartz based on field data
NASA Astrophysics Data System (ADS)
Peters, Max; Herwegh, Marco
2013-04-01
The extrapolation of experimentally controlled deformation conditions, and the resulting relations between physical parameters acting during ductile deformation, to nature is considered controversial (see Herwegh et al., 2005 and references therein). Whereas the relationship between flow stress and recrystallized grain size can be empirically derived from lab experiments using paleopiezometers (e.g. Stipp & Tullis, 2003), the relation between recrystallized grain size, strain rate, differential stress, temperature and activation energy for dislocation creep requires further constraints. For these relations, various power law flow laws for dynamically recrystallized quartz were proposed over the past years (Paterson & Luan, 1990; Luan & Paterson, 1992; Gleason & Tullis, 1995; Hirth et al., 2001, Rutter & Brodie, 2004). The variations in the flow laws are mainly characterized by different starting materials, experimental conditions, the activation energy for dislocation creep and the stress exponent n. In this study we compare and evaluate experimentally derived flow laws regarding their reliability for the prediction of rheology of background deformation of naturally deformed crystalline samples from mylonites of the Aar massif (Swiss Central Alps). The majority of samples comprises highly deformed rocks (e.g. Central Aare granite), which exhibit severe grain size reduction. This reduction dominantly occurred by subgrain rotation (SGR), in the case of low temperature overprint by bulging recrystallization (BLG). Towards elevated temperatures, grain boundary migration (GBM) and SGR recrystallization were active. Along the metamorphic gradient (300 - 475°C) quartz microstructures and associated recrystallized grain size distributions indicate steady state mean grain sizes. The quantification of the metamorphic gradient (temperature, pressure, water fugacity) over the sampling area allowed the application of flow laws, yielding variations of 6 orders of magnitude in deformation rates between different calibrations for one corresponding grain size. The calibrations of Paterson & Luan (1990) and Hirth et al. (2001) yield most reliable results for peak metamorphic conditions, which are in line with the geological framework. Strain rates range between 10E-13 and 10E-10 s-1 (Paterson & Luan, 1990) with corresponding flow stresses between ca. 200 MPa (BLG) to ca. 20 MPa (SGR and transition SGR-GBM). Nevertheless, the applicability of single flow laws shall be discussed in greater detail. REFERENCES Herwegh, M., de Bresser, J.H.P. and ter Heege, J.H. 2005: Combining natural microstructures with composite flow laws: an improved approach for the extrapolation of lab data to nature. Journal of Structural Geology, 27. Hirth, G., Teyssier, C. and Dunlap, W.J. 2011: An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. International Journal of Earth Sciences, 90. Luan, F.C. and Paterson, S.R. 1992: Perparation and deformation of synthetic aggregates of quartz. Journal of Geophysical Research, 97. Paterson, S.R. and Luan, F.C. 1990: Quartzite rheology under geological conditions. In: de Meer, S., Drury, M.R., de Bresser, J.H.P., Pennock, G.M Deformation mechanisms, rheology and tectonics: from minerals to the lithosphere. Geological Society of Lonodn Special Publications, 54. Rutter, E.H. and Brodie, K.H. 2004: Experimental grain size-sensitive flow of hot-pressed Brazilian quartz aggregates. Journal of Structural Geology, 26. Stipp, M. and Tullis, J. 2003: The recrystallized grain size piezometer for quartz. Geophysical Research Letters, 30.
High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane
Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing
2015-01-01
Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage. PMID:26702440
Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua
2015-11-21
Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.
High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.
Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing
2015-11-01
Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage.
Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications
NASA Astrophysics Data System (ADS)
Hoffmann, D.; Willmann, A.; Göpfert, R.; Becker, P.; Folkmer, B.; Manoli, Y.
2013-12-01
In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced.
NASA Astrophysics Data System (ADS)
Luznik, Luksa; Lust, Ethan; Flack, Karen
2015-11-01
Near wake flow field results are presented for a 1/25 scale, 0.8 m diameter (D) two bladed horizontal axis tidal turbine. The 2D PIV measurements were obtained in the USNA 380 ft tow tank for two inflow conditions. The first case had steady inflow conditions, i.e. the turbine was towed at a constant carriage speed (Utow = 1.68 m/s) and the second case had a constant carriage speed and incoming regular waves with a period of 2.3 seconds and 0.18 m wave height. The underwater PIV system is comprised of two submersible housings with forward looking submersible containing laser sheet forming optics, and the side looking submersible includes a camera and remote focus/aperture electronics. The resulting individual field of view for this experiment was nominally 30x30 cm2. Near wake mapping is accomplished by ``tiling'' individual fields of view with approximately 5 cm overlap. All measurements were performed at the nominal tip speed ratio (TSR) of 7. The mapping is accomplished in a vertical streamwise plane (x-z plane) centered on the turbine nacelle and the image pair captures were phase locked to two phases: reference blade horizontal and reference blade vertical. Results presented include distribution of mean velocities, Reynolds stresses, 2D turbulent kinetic energy. The discussion will focus on comparisons between steady and unsteady case. Further discussion will include comparisons between the current high resolution PIV measurements and the previous point measurements with the same turbine at different lateral planes in the same flow conditions.
Devise of an exhaust gas heat exchanger for a thermal oil heater in a palm oil refinery plant
NASA Astrophysics Data System (ADS)
Chucherd, Panom; Kittisupakorn, Paisan
2017-08-01
This paper presents the devise of an exhaust gas heat exchanger for waste heat recovery of the exhausted flue gas of palm oil refinery plant. This waste heat can be recovered by installing an economizer to heat the feed water which can save the fuel consumption of the coal fired steam boiler and the outlet temperature of flue gas will be controlled in order to avoid the acid dew point temperature and protect the filter bag. The decrease of energy used leads to the reduction of CO2 emission. Two designed economizer studied in this paper are gas in tube and water in tube. The gas in tube exchanger refers to the shell and tube heat exchanger which the flue gas flows in tube; this designed exchanger is used in the existing unit. The new designed water in tube refers to the shell and tube heat exchanger which the water flows in the tube; this designed exchanger is proposed for new implementation. New economizer has the overall coefficient of heat transfer of 19.03 W/m2.K and the surface heat transfer area of 122 m2 in the optimized case. Experimental results show that it is feasible to install economizer in the exhaust flue gas system between the air preheater and the bag filter, which has slightly disadvantage effect in the system. The system can raise the feed water temperature from 40 to 104°C and flow rate 3.31 m3/h, the outlet temperature of flue gas is maintained about 130 °C.
Effects of Stream Turbine Array Configuration on Current Energy Extraction Near an Island
NASA Astrophysics Data System (ADS)
Chen, Y.; Lin, B.; Lin, J.
2014-12-01
Enhanced tidal currents close to an island appear to present the potential for power extraction. In this research, a three-dimensional numerical model is employed to predict the tidal current energy extraction potential from turbine arrays near an island. One of the significant challenges is to determine an optimal configuration of turbine array. This paper presents a detailed work to investigate the combined influences of topographic features and array configuration on the performance of power generation. Three single row arrays and three multiple-row arrays, with turbines being arranged in a staggered manner, are examined. It has been found that a single row array with a relatively small spacing between two turbines could achieve good efficiency due to the blockage effects, whereas a larger lateral spacing gives a better performance for multi-row arrays. The reason is that the bypass flow in a staggered layout would results in shadowing effect on downstream turbines. Model results also show that the wake influence can be minimized by increasing not only the longitudinal spacing, but also the lateral spacing. The tidal current flows are shown to have been affected by the inclusion of turbines, with less fluctuant wave in a tidal cycle. The extents of the observed impacts are not only within the turbine array field, but also moving around the island and propagating to the far-field. This study can be used to provide the reference information of the commercial-scale farms for tidal energy development. Keywords: Tidal currents; Array configuration; Energy extraction; Hydrodynamic process
40 CFR 1065.330 - Exhaust-flow calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Flow-Related Measurements § 1065.330... use other reference meters such as laminar flow elements, which are not commonly designed to withstand...
ERIC Educational Resources Information Center
George, Philip; And Others
1984-01-01
Discusses the nature of experimental resonance energy, explaining how its magnitude depends upon choice of reference molecules from which bond energies are derived. Also explains how it can be evaluated more simply, without recourse to bond energies, as enthalpy change for a reaction predetermined by choice of reference molecules. (JN)
Ion conducting membranes for aqueous flow battery systems.
Yuan, Zhizhang; Zhang, Huamin; Li, Xianfeng
2018-06-07
Flow batteries, aqueous flow batteries in particular, are the most promising candidates for stationary energy storage to realize the wide utilization of renewable energy sources. To meet the requirement of large-scale energy storage, there has been a growing interest in aqueous flow batteries, especially in novel redox couples and flow-type systems. However, the development of aqueous flow battery technologies is at an early stage and their performance can be further improved. As a key component of a flow battery, the membrane has a significant effect on battery performance. Currently, the membranes used in aqueous flow battery technologies are very limited. In this feature article, we first cover the application of porous membranes in vanadium flow battery technology, and then the membranes in most recently reported aqueous flow battery systems. Meanwhile, we hope that this feature article will inspire more efforts to design and prepare membranes with outstanding performance and stability, and then accelerate the development of flow batteries for large scale energy storage applications.
10 CFR 431.75 - Materials incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
... available for inspection at U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 431.75 Section 431.75 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...
10 CFR 431.75 - Materials incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
... available for inspection at U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.75 Section 431.75 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...
NASA Astrophysics Data System (ADS)
Jacobson, R. B.; Elliott, C. M.; Reuter, J. M.
2008-12-01
Ecological reference conditions are especially challenging for large, intensively managed rivers like the Lower Missouri. Historical information provides broad understanding of how the river has changed, but translating historical information into quantitative reference conditions remains a challenge. Historical information is less available for biological and chemical conditions than for physical conditions. For physical conditions, much of the early historical condition is documented in date-specific measurements or maps, and it is difficult to determine how representative these conditions are for a river system that was characterized historically by large floods and high channel migration rates. As an alternative to a historically defined least- disturbed condition, spatial variation within the Missouri River basin provides potential for defining a best- attainable reference condition. A possibility for the best-attainable condition for channel morphology is an unchannelized segment downstream of the lowermost dam (rkm 1298 - 1203). This segment retains multiple channels and abundant sandbars although it has a highly altered flow regime and a greatly diminished sediment supply. Conversely, downstream river segments have more natural flow regimes, but have been narrowed and simplified for navigation and bank stability. We use two computational tools to compensate for the lack of ideal reference conditions. The first is a hydrologic model that synthesizes natural and altered flow regimes based on 100 years of daily inputs to the river (daily routing model, DRM, US Army Corps of Engineers, 1998); the second tool is hydrodynamic modeling of habitat availability. The flow-regime and hydrodynamic outputs are integrated to define habitat-duration curves as the basis for reference conditions (least-disturbed flow regime and least-disturbed channel morphology). Lacking robust biological response models, we use mean residence time of water and a habitat diversity index as generic ecosystem indicators.
Cid, N; Verkaik, I; García-Roger, E M; Rieradevall, M; Bonada, N; Sánchez-Montoya, M M; Gómez, R; Suárez, M L; Vidal-Abarca, M R; Demartini, D; Buffagni, A; Erba, S; Karaouzas, I; Skoulikidis, N; Prat, N
2016-01-01
Many streams in the Mediterranean Basin have temporary flow regimes. While timing for seasonal drought is predictable, they undergo strong inter-annual variability in flow intensity. This high hydrological variability and associated ecological responses challenge the ecological status assessment of temporary streams, particularly when setting reference conditions. This study examined the effects of flow connectivity in aquatic macroinvertebrates from seven reference temporary streams across the Mediterranean Basin where hydrological variability and flow conditions are well studied. We tested for the effect of flow cessation on two streamflow indices and on community composition, and, by performing random forest and classification tree analyses we identified important biological predictors for classifying the aquatic state either as flowing or disconnected pools. Flow cessation was critical for one of the streamflow indices studied and for community composition. Macroinvertebrate families found to be important for classifying the aquatic state were Hydrophilidae, Simuliidae, Hydropsychidae, Planorbiidae, Heptageniidae and Gerridae. For biological traits, trait categories associated to feeding habits, food, locomotion and substrate relation were the most important and provided more accurate predictions compared to taxonomy. A combination of selected metrics and associated thresholds based on the most important biological predictors (i.e. Bio-AS Tool) were proposed in order to assess the aquatic state in reference temporary streams, especially in the absence of hydrological data. Although further development is needed, the tool can be of particular interest for monitoring, restoration, and conservation purposes, representing an important step towards an adequate management of temporary rivers not only in the Mediterranean Basin but also in other regions vulnerable to the effects of climate change. Copyright © 2015 Elsevier B.V. All rights reserved.
Zaccariello, Lucio; Cremiato, Raffaele; Mastellone, Maria Laura
2015-10-01
The main role of a waste management plan is to define which is the combination of waste management strategies and method needed to collect and manage the waste in such a way to ensure a given set of targets is reached. Objectives have to be sustainable and realistic, consistent with the environmental policies and regulations and monitored to verify the progressive achievement of the given targets. To get the aim, the setting up and quantification of indicators can allow the measurement of efficiency of a waste management system. The quantification of efficiency indicators requires the developing of a material flow analysis over the system boundary, from waste collection to secondary materials selling, processing and disposal. The material flow analysis has been carried out with reference to a case study for which a reliable, time- and site-specific database was available. The material flow analysis allowed the evaluation of the amount of materials sent to recycling, to landfilling and to waste-to-energy, by highlighting that the sorting of residual waste can further increase the secondary materials amount. The utilisation of energy recovery to treat the low-grade waste allows the maximisation of waste diversion from landfill with a low production of hazardous ash. A preliminary economic balance has been carried out to define the gate fee of the waste management system that was in the range of 84-145 € t(-1) without including the separate collection cost. The cost of door-by-door separate collection, designed to ensure the collection of five separate streams, resulted in 250 € t(-1) ±30%. © The Author(s) 2015.
Schmidt, Eric; Ros, Maxime; Moyse, Emmanuel; Lorthois, Sylvie; Swider, Pascal
2016-01-01
In line with the first law of thermodynamics, Bernoulli's principle states that the total energy in a fluid is the same at all points. We applied Bernoulli's principle to understand the relationship between intracranial pressure (ICP) and intracranial fluids. We analyzed simple fluid physics along a tube to describe the interplay between pressure and velocity. Bernoulli's equation demonstrates that a fluid does not flow along a gradient of pressure or velocity; a fluid flows along a gradient of energy from a high-energy region to a low-energy region. A fluid can even flow against a pressure gradient or a velocity gradient. Pressure and velocity represent part of the total energy. Cerebral blood perfusion is not driven by pressure but by energy: the blood flows from high-energy to lower-energy regions. Hydrocephalus is related to increased cerebrospinal fluid (CSF) resistance (i.e., energy transfer) at various points. Identification of the energy transfer within the CSF circuit is important in understanding and treating CSF-related disorders. Bernoulli's principle is not an abstract concept far from clinical practice. We should be aware that pressure is easy to measure, but it does not induce resumption of fluid flow. Even at the bedside, energy is the key to understanding ICP and fluid dynamics.
Character of energy flow in air shower core
NASA Technical Reports Server (NTRS)
Mizushima, K.; Asakimori, K.; Maeda, T.; Kameda, T.; Misaki, Y.
1985-01-01
Energy per charged particle near the core of air showers was measured by 9 energy flow detectors, which were the combination of Cerenkov counters and scintillators. Energy per particle of each detector was normalized to energy at 2m from the core. The following results were obtained as to the energy flow: (1) integral frequency distribution of mean energy per particle (averaged over 9 detectors) is composed of two groups separated distinctly; and (2) showers contained in one group show an anisotropy of arrival direction.
NASA Astrophysics Data System (ADS)
Wosnik, M.; Bachant, P.
2014-12-01
Cross-flow turbines, often referred to as vertical-axis turbines, show potential for success in marine hydrokinetic (MHK) and wind energy applications, ranging from small- to utility-scale installations in tidal/ocean currents and offshore wind. As turbine designs mature, the research focus is shifting from individual devices to the optimization of turbine arrays. It would be expensive and time-consuming to conduct physical model studies of large arrays at large model scales (to achieve sufficiently high Reynolds numbers), and hence numerical techniques are generally better suited to explore the array design parameter space. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries (e.g., grid resolution into the viscous sublayer on turbine blades), the turbines' interaction with the energy resource (water current or wind) needs to be parameterized, or modeled. Models used today--a common model is the actuator disk concept--are not able to predict the unique wake structure generated by cross-flow turbines. This wake structure has been shown to create "constructive" interference in some cases, improving turbine performance in array configurations, in contrast with axial-flow, or horizontal axis devices. Towards a more accurate parameterization of cross-flow turbines, an extensive experimental study was carried out using a high-resolution turbine test bed with wake measurement capability in a large cross-section tow tank. The experimental results were then "interpolated" using high-fidelity Navier--Stokes simulations, to gain insight into the turbine's near-wake. The study was designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. The end product of this work will be a cross-flow turbine actuator line model to be used as an extension to the OpenFOAM computational fluid dynamics (CFD) software framework, which will likely require modifications to commonly-used dynamic stall models, in consideration of the turbines' high angle of attack excursions during normal operation.
10 CFR 431.95 - Materials incorporated by reference.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Energy Efficiency and Renewable Energy, Hearings and Dockets, “Test Procedures and Efficiency Standards... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 431.95 Section 431.95 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...
10 CFR 431.105 - Materials incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor, 950 L'Enfant... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.105 Section 431.105 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
10 CFR 431.105 - Materials incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor, 950 L'Enfant... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 431.105 Section 431.105 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...
Tong, Liuchuan; Chen, Qing; Wong, Andrew A; Gómez-Bombarelli, Rafael; Aspuru-Guzik, Alán; Gordon, Roy G; Aziz, Michael J
2017-12-06
Quinone-based aqueous flow batteries provide a potential opportunity for large-scale, low-cost energy storage due to their composition from earth abundant elements, high aqueous solubility, reversible redox kinetics and their chemical tunability such as reduction potential. In an operating flow battery utilizing 9,10-anthraquinone-2,7-disulfonic acid, the aggregation of an oxidized quinone and a reduced hydroquinone to form a quinhydrone dimer causes significant variations from ideal solution behavior and of optical absorption from the Beer-Lambert law. We utilize in situ UV-Vis spectrophotometry to establish (a), quinone, hydroquinone and quinhydrone molar attenuation profiles and (b), an equilibrium constant for formation of the quinhydrone dimer (K QHQ ) ∼ 80 M -1 . We use the molar optical attenuation profiles to identify the total molecular concentration and state of charge at arbitrary mixtures of quinone and hydroquinone. We report density functional theory calculations to support the quinhydrone UV-Vis measurements and to provide insight into the dimerization conformations. We instrument a quinone-bromine flow battery with a Pd-H reference electrode in order to demonstrate how complexation in both the negative (quinone) and positive (bromine) electrolytes directly impacts measured half-cell and full-cell voltages. This work shows how accounting for electrolyte complexation improves the accuracy of electrochemical modeling of flow battery electrolytes.
Integrated and spectral energy flows of the GLAS GCM
NASA Technical Reports Server (NTRS)
Tennebaum, J.
1981-01-01
Methods to analyze the generation, transport, and dissipation of energy to study geophysical fluid flows are discussed. Energetics analyses are pursued in several directions: (1) the longitudinal and time dependence on the energy flow to the stratosphere was examined as a function of geographical sector; (2) strong and weak energy flows were correlated by medium range forecasts; (3) the one dimensional spectral results (Fourier services around latitude circles) were extended to spherical harmonics over a global domain; (4) the validity of vertical velocities derived from mass convergence was examined for their effect on the conversion of eddy available potential energy to eddy kinetic energy.
Martin, Caroline; Bideau, Benoit; Bideau, Nicolas; Nicolas, Guillaume; Delamarche, Paul; Kulpa, Richard
2014-11-01
Energy flow has been hypothesized to be one of the most critical biomechanical concepts related to tennis performance and overuse injuries. However, the relationships among energy flow during the tennis serve, ball velocity, and overuse injuries have not been assessed. To investigate the relationships among the quality and magnitude of energy flow, the ball velocity, and the peaks of upper limb joint kinetics and to compare the energy flow during the serve between injured and noninjured tennis players. Case-control study; Level of evidence, 3. The serves of expert tennis players were recorded with an optoelectronic motion capture system. The forces and torques of the upper limb joints were calculated from the motion captures by use of inverse dynamics. The amount of mechanical energy generated, absorbed, and transferred was determined by use of a joint power analysis. Then the players were followed during 2 seasons to identify upper limb overuse injuries with a questionnaire. Finally, players were classified into 2 groups according to the questionnaire results: injured or noninjured. Ball velocity increased and upper limb joint kinetics decreased with the quality of energy flow from the trunk to the hand + racket segment. Injured players showed a lower quality of energy flow through the upper limb kinetic chain, a lower ball velocity, and higher rates of energy absorbed by the shoulder and elbow compared with noninjured players. The findings of this study imply that improper energy flow during the tennis serve can decrease ball velocity, increase upper limb joint kinetics, and thus increase overuse injuries of the upper limb joints. © 2014 The Author(s).
Energy cost and game flow of 5 exer-games in trained players.
Bronner, Shaw; Pinsker, Russell; Noah, J Adam
2013-05-01
To determine energy expenditure and player experience in exer-games designed for novel platforms. Energy cost of 7 trained players was measured in 5 music-based exer-games. Participants answered a questionnaire about "game flow," experience of enjoyment, and immersion in game play. Energy expenditure during game play ranged from moderate to vigorous intensity (4 - 9 MET). Participant achieved highest MET levels and game flow while playing StepMania and lowest MET levels and game flow when playing Wii Just Dance 3(®) and Kinect Dance Central™. Game flow scores positively correlated with MET levels. Physiological measurement and game flow testing during game development may help to optimize exer-game player activity and experience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
KLEM, M.J.
2000-05-11
The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.
A Variational Approach to Video Registration with Subspace Constraints.
Garg, Ravi; Roussos, Anastasios; Agapito, Lourdes
2013-01-01
This paper addresses the problem of non-rigid video registration, or the computation of optical flow from a reference frame to each of the subsequent images in a sequence, when the camera views deformable objects. We exploit the high correlation between 2D trajectories of different points on the same non-rigid surface by assuming that the displacement of any point throughout the sequence can be expressed in a compact way as a linear combination of a low-rank motion basis. This subspace constraint effectively acts as a trajectory regularization term leading to temporally consistent optical flow. We formulate it as a robust soft constraint within a variational framework by penalizing flow fields that lie outside the low-rank manifold. The resulting energy functional can be decoupled into the optimization of the brightness constancy and spatial regularization terms, leading to an efficient optimization scheme. Additionally, we propose a novel optimization scheme for the case of vector valued images, based on the dualization of the data term. This allows us to extend our approach to deal with colour images which results in significant improvements on the registration results. Finally, we provide a new benchmark dataset, based on motion capture data of a flag waving in the wind, with dense ground truth optical flow for evaluation of multi-frame optical flow algorithms for non-rigid surfaces. Our experiments show that our proposed approach outperforms state of the art optical flow and dense non-rigid registration algorithms.
NASA Astrophysics Data System (ADS)
Rajewski, D. A.
2015-12-01
Wind farms are an important resource for electrical generation in the Central U.S., however with each installation there are many poorly documented interactions with the local and surrounding environment. The impact of wind farms on surface microclimate is largely understood conceptually using numerical or wind tunnel models or ex situ satellite-detected changes. Measurements suitable for calibration of numerical simulations are few and of limited applicability but are urgently needed to improve parameterization of wind farm aerodynamics influenced by the diurnal evolution of the boundary layer. Among large eddy simulations of wind farm wakes in thermally stable stratification, there are discrepancies on the influence of turbine-induced mixing on the surface heat flux. We provide measurements from seven surface flux stations, vertical profiling LiDARs located upwind and downwind of turbines, and SCADA measurements from turbines during the 2013 Crop Wind Energy Experiment (CWEX-13) as the best evidence for the variability of turbine induced heat flux within a large wind farm. Examination of ambient conditions (wind direction, wind veer, and thermal stratification) and on turbine operation factors (hub-height wind speed, normalized power) reveal conditions that lead to the largest modification of heat flux. Our results demonstrate the highest flux change from the reference station to be where the leading few lines of turbines influence the surface. Under stably stratified conditions turbine-scale turbulence is highly efficient at bringing warmer air aloft to the surface, leading to an increase in downward heat flux. Conversely we see that the combination of wakes from several lines of turbines reduces the flux contrast from the reference station. In this regime of deep wind-farm flow, wake turbulence is similar in scale and intensity to the reference conditions. These analysis tools can be extended to other turbine SCADA and microclimate variables (e.g. temperature) to improve basic understanding of turbine-turbine and total wind farm wake interactions. Forthcoming tall-tower measurements will provide additional opportunities for comparison of simulated wind and thermal profiles in non-wake, and waked flow conditions.
NASA Astrophysics Data System (ADS)
McClure, M. D.; Sirbaugh, J. R.
1991-02-01
The computational fluid dynamics (CFD) computer code PARC3D was used to predict the inlet reference plane (IRP) flow field for a side-mounted inlet and forebody simulator in a free jet for five different flow conditions. The calculations were performed for free-jet conditions, mass flow rates, and inlet configurations that matched the free-jet test conditions. In addition, viscous terms were included in the main flow so that the viscous free-jet shear layers emanating from the free-jet nozzle exit were modeled. A measure of the predicted accuracy was determined as a function of free-stream Mach number, angle-of-attack, and sideslip angle.
Low energy consumption vortex wave flow membrane bioreactor.
Wang, Zhiqiang; Dong, Weilong; Hu, Xiaohong; Sun, Tianyu; Wang, Tao; Sun, Youshan
2017-11-01
In order to reduce the energy consumption and membrane fouling of the conventional membrane bioreactor (MBR), a kind of low energy consumption vortex wave flow MBR was exploited based on the combination of biofilm process and membrane filtration process, as well as the vortex wave flow technique. The experimental results showed that the vortex wave flow state in the membrane module could be formed when the Reynolds number (Re) of liquid was adjusted between 450 and 1,050, and the membrane flux declined more slowly in the vortex wave flow state than those in the laminar flow state and turbulent flow state. The MBR system was used to treat domestic wastewater under the condition of vortex wave flow state for 30 days. The results showed that the removal efficiency for CODcr and NH 3 -N was 82% and 98% respectively, and the permeate quality met the requirement of 'Water quality standard for urban miscellaneous water consumption (GB/T 18920-2002)'. Analysis of the energy consumption of the MBR showed that the average energy consumption was 1.90 ± 0.55 kWh/m 3 (permeate), which was only two thirds of conventional MBR energy consumption.
Fricke, Wieland
2017-06-01
Water transport in plants occurs along various paths and is driven by gradients in its free energy. It is generally considered that the mode of transport, being either diffusion or bulk flow, is a passive process, although energy may be required to sustain the forces driving water flow. This review aims at putting water flow at the various organisational levels (cell, organ, plant) in the context of the energy that is required to maintain these flows. In addition, the question is addressed (1) whether water can be transported against a difference in its chemical free energy, 'water potential' (Ψ), through, directly or indirectly, active processes; and (2) whether the energy released when water is flowing down a gradient in its energy, for example during day-time transpiration and cell expansive growth, is significant compared to the energy budget of plant and cell. The overall aim of review is not so much to provide a definite 'Yes' and 'No' to these questions, but rather to stimulate discussion and raise awareness that water transport in plants has its real, associated, energy costs and potential energy gains. © 2016 John Wiley & Sons Ltd.
Magnetic energy flow in the solar wind.
NASA Technical Reports Server (NTRS)
Modisette, J. L.
1972-01-01
Discussion of the effect of rotation (tangential flow) of the solar wind on the conclusions of Whang (1971) suggesting an increase in the solar wind velocity due to the conversion of magnetic energy to kinetic energy. It is shown that the effect of the rotation of the sun on the magnetic energy flow results in most of the magnetic energy being transported by magnetic shear stress near the sun.
Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.
Guo, Lan-Yuen; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan
2003-02-01
To investigate the characteristics of mechanical energy and power flow of the upper limb during wheelchair propulsion. Mechanical energy and power flow of segments were calculated. Very few studies have taken into account the mechanical energy and power flow of the musculoskeletal system during wheelchair propulsion. Mechanical energy and power flow have proven to be useful tools for investigating locomotion disorders during human gait. Twelve healthy male adults (mean age, 23.5 years) were recruited for this study. Three-dimensional kinematic and kinetic data of the upper extremity were collected during wheelchair propulsion using a Hi-Res Expert Vision system and an instrumented wheel, respectively. During the initiation of the propulsion phase, joint power is generated in the upper arm or is transferred from the trunk downward to the forearm and hand to propel the wheel forward. During terminal propulsion, joint power is transferred upward to the trunk from the forearm and upper arm. The rate of change of mechanical energy and power flow for the forearm and hand have similar patterns, but the upper arm values differ. Joint power plays an important role in energy transfer as well as the energy generated and absorbed by muscles spanning the joints during wheelchair propulsion. Energy and power flow information during wheelchair propulsion allows us to gain a better understanding of the coordination of the movement by the musculoskeletal system.
Energy distributions in rods and beams
NASA Technical Reports Server (NTRS)
Wohlever, J. C.; Bernhard, R. J.
1989-01-01
A hypothesis proposed by Nefske and Sung (1987) that the mechanical energy flow in acoustic/structural systems can be modeled using a thermal energy flow analogy was tested for both longitudinal vibration in rods and transverse flexural vibrations in beams. It was found that the rod behaves according to the energy flow analogy. However, the beam solutions behaved significantly differently than predicted by the thermal analogy, unless spatially averaged energy and power flow were considered. Otherwise, the beam analysis is restricted to frequencies where the near-field terms in the displacement solution are negligible over most of the beam.
Energy Use and Carbon Dioxide Emissions from Cropland Production in the United States, 1990-2004
Nelson, R. G.; Hellwinckel, C. H.; Brandt, C. C.; West, T. O.; De La Torre Ugarte, D. G.; Marland, G.
2008-01-01
These data represent energy use and fossil-fuel CO2 emissions associated with cropland production in the U.S. Energy use and emissions occurring on the farm are referred to as on-site energy and on-site emissions. Energy use and emissions associated with cropland production that occur off the farm (e.g., use of electricity, energy and emissions associated with fertilizer and pesticide production) are referred to as off-site energy and off-site emissions. The combination of on-site and off-site energy and carbon is referred to as total energy and total carbon, respectively.
Shockwave generation by a semiconductor bridge operation in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zvulun, E.; Toker, G.; Gurovich, V. Tz.
2014-05-28
A semiconductor bridge (SCB) is a silicon device, used in explosive systems as the electrical initiator element. In recent years, SCB plasma has been extensively studied, both electrically and using fast photography and spectroscopic imaging. However, the value of the pressure buildup at the bridge remains unknown. In this study, we operated SCB devices in water and, using shadow imaging and reference beam interferometry, obtained the velocity of the shock wave propagation and distribution of the density of water. These results, together with a self-similar hydrodynamic model, were used to calculate the pressure generated by the exploding SCB. In addition,more » the results obtained showed that the energy of the water flow exceeds significantly the energy deposited into the exploded SCB. The latter can be explained by the combustion of the aluminum and silicon atoms released in water, which acts as an oxidizing medium.« less
Emission of dimers from a free surface of heated water
NASA Astrophysics Data System (ADS)
Bochkarev, A. A.; Polyakova, V. I.
2014-09-01
The emission rate of water dimers from a free surface and a wetted solid surface in various cases was calculated by a simplified Monte Carlo method with the use of the binding energy of water molecules. The binding energy of water molecules obtained numerically assuming equilibrium between the free surface of water and vapor in the temperature range of 298-438 K corresponds to the coordination number for liquid water equal to 4.956 and is close to the reference value. The calculation results show that as the water temperature increases, the free surface of water and the wetted solid surface become sources of free water dimers. At a temperature of 438 K, the proportion of dimers in the total flow of water molecules on its surface reaches 1%. It is found that in the film boiling mode, the emission rate of dimers decreases with decreasing saturation vapor. Two mechanisms of the emission are described.
Results of the GABLS3 diurnal-cycle benchmark for wind energy applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigo, J. Sanz; Allaerts, D.; Avila, M.
We present results of the GABLS3 model intercomparison benchmark revisited for wind energy applications. The case consists of a diurnal cycle, measured at the 200-m tall Cabauw tower in the Netherlands, including a nocturnal low-level jet. The benchmark includes a sensitivity analysis of WRF simulations using two input meteorological databases and five planetary boundary-layer schemes. A reference set of mesoscale tendencies is used to drive microscale simulations using RANS k-ϵ and LES turbulence models. The validation is based on rotor-based quantities of interest. Cycle-integrated mean absolute errors are used to quantify model performance. The results of the benchmark are usedmore » to discuss input uncertainties from mesoscale modelling, different meso-micro coupling strategies (online vs offline) and consistency between RANS and LES codes when dealing with boundary-layer mean flow quantities. Altogether, all the microscale simulations produce a consistent coupling with mesoscale forcings.« less
Results of the GABLS3 diurnal-cycle benchmark for wind energy applications
Rodrigo, J. Sanz; Allaerts, D.; Avila, M.; ...
2017-06-13
We present results of the GABLS3 model intercomparison benchmark revisited for wind energy applications. The case consists of a diurnal cycle, measured at the 200-m tall Cabauw tower in the Netherlands, including a nocturnal low-level jet. The benchmark includes a sensitivity analysis of WRF simulations using two input meteorological databases and five planetary boundary-layer schemes. A reference set of mesoscale tendencies is used to drive microscale simulations using RANS k-ϵ and LES turbulence models. The validation is based on rotor-based quantities of interest. Cycle-integrated mean absolute errors are used to quantify model performance. The results of the benchmark are usedmore » to discuss input uncertainties from mesoscale modelling, different meso-micro coupling strategies (online vs offline) and consistency between RANS and LES codes when dealing with boundary-layer mean flow quantities. Altogether, all the microscale simulations produce a consistent coupling with mesoscale forcings.« less
Mechanical energy flow models of rods and beams
NASA Technical Reports Server (NTRS)
Wohlever, J. C.; Bernhard, R. J.
1992-01-01
It has been proposed that the flow of mechanical energy through a structural/acoustic system may be modeled in a manner similar to that of flow of thermal energy/in a heat conduction problem. If this hypothesis is true, it would result in relatively efficient numerical models of structure-borne energy in large built-up structures. Fewer parameters are required to approximate the energy solution than are required to model the characteristic wave behavior of structural vibration by using traditional displacement formulations. The energy flow hypothesis is tested in this investigation for both longitudinal vibration in rods and transverse flexural vibrations of beams. The rod is shown to behave approximately according to the thermal energy flow analogy. However, the beam solutions behave significantly differently than predicted by the thermal analogy unless locally-space-averaged energy and power are considered. Several techniques for coupling dissimilar rods and beams are also discussed. Illustrations of the solution accuracy of the methods are included.
10 CFR 435.3 - Material incorporated by reference.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Material incorporated by reference. 435.3 Section 435.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435...
10 CFR 435.3 - Material incorporated by reference.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Material incorporated by reference. 435.3 Section 435.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435...
Energy dissipation of slot-type flip buckets
NASA Astrophysics Data System (ADS)
Wu, Jian-hua; Li, Shu-fang; Ma, Fei
2018-03-01
The energy dissipation is a key index in the evaluation of energy dissipation elements. In the present work, a flip bucket with a slot, called the slot-type flip bucket, is theoretically and experimentally investigated by the method of estimating the energy dissipation. The theoretical analysis shows that, in order to have the energy dissipation, it is necessary to determine the sequent flow depth h 1 and the flow speed V 1 at the corresponding position through the flow depth h 2 after the hydraulic jump. The relative flow depth h 2 / h 。 is a function of the approach flow Froude number Fr 。, the relative slot width b/B 。, and the relative slot angle θ/β. The expression for estimating the energy dissipation is developed, and the maximum error is not larger than 9.21%.
Energy dissipation of slot-type flip buckets
NASA Astrophysics Data System (ADS)
Wu, Jian-hua; Li, Shu-fang; Ma, Fei
2018-04-01
The energy dissipation is a key index in the evaluation of energy dissipation elements. In the present work, a flip bucket with a slot, called the slot-type flip bucket, is theoretically and experimentally investigated by the method of estimating the energy dissipation. The theoretical analysis shows that, in order to have the energy dissipation, it is necessary to determine the sequent flow depth h 1 and the flow speed V 1 at the corresponding position through the flow depth h 2 after the hydraulic jump. The relative flow depth h 2 / h o is a function of the approach flow Froude number Fr o, the relative slot width b/ B o, and the relative slot angle θ/ β. The expression for estimating the energy dissipation is developed, and the maximum error is not larger than 9.21%.
The Influence of Slope Breaks on Lava Flow Surface Disruption
NASA Technical Reports Server (NTRS)
Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert
2014-01-01
Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.
On the cooperativity of association and reference energy scales in thermodynamic perturbation theory
NASA Astrophysics Data System (ADS)
Marshall, Bennett D.
2016-11-01
Equations of state for hydrogen bonding fluids are typically described by two energy scales. A short range highly directional hydrogen bonding energy scale as well as a reference energy scale which accounts for dispersion and orientationally averaged multi-pole attractions. These energy scales are always treated independently. In recent years, extensive first principles quantum mechanics calculations on small water clusters have shown that both hydrogen bond and reference energy scales depend on the number of incident hydrogen bonds of the water molecule. In this work, we propose a new methodology to couple the reference energy scale to the degree of hydrogen bonding in the fluid. We demonstrate the utility of the new approach by showing that it gives improved predictions of water-hydrocarbon mutual solubilities.
10 CFR 300.13 - Incorporation by reference.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Incorporation by reference. 300.13 Section 300.13 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.13 Incorporation by reference. The Technical Guidelines for the Voluntary Reporting of Greenhouse Gases (1605(b...
10 CFR 300.13 - Incorporation by reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Incorporation by reference. 300.13 Section 300.13 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.13 Incorporation by reference. The Technical Guidelines for the Voluntary Reporting of Greenhouse Gases (1605(b...
10 CFR 300.13 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Incorporation by reference. 300.13 Section 300.13 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.13 Incorporation by reference. The Technical Guidelines for the Voluntary Reporting of Greenhouse Gases (1605(b...
10 CFR 300.13 - Incorporation by reference.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Incorporation by reference. 300.13 Section 300.13 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.13 Incorporation by reference. The Technical Guidelines for the Voluntary Reporting of Greenhouse Gases (1605(b...
10 CFR 300.13 - Incorporation by reference.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Incorporation by reference. 300.13 Section 300.13 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.13 Incorporation by reference. The Technical Guidelines for the Voluntary Reporting of Greenhouse Gases (1605(b...
Energy behaviour of extraordinary waves in magnetized quantum plasmas
NASA Astrophysics Data System (ADS)
Moradi, Afshin
2018-05-01
We study the storage and flow of energy in a homogeneous magnetized quantum electron plasma that occurs when an elliptically polarized extraordinary electromagnetic wave propagates in the system. Expressions for the stored energy, energy flow, and energy velocity of extraordinary electromagnetic waves are derived by means of the quantum magnetohydrodynamics theory in conjunction with the Maxwell equations. Numerical results show that the energy flow of the high-frequency mode of extraordinary wave is modified only due to the Bohm potential in the short wavelength limit.
10 CFR 434.506 - Use of the reference building to determine the energy cost budget.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance...
NASA Astrophysics Data System (ADS)
Goh, J. B.; Jamaludin, Z.; Jafar, F. A.; Mat Ali, M.; Mokhtar, M. N. Ali; Tan, C. H.
2017-06-01
Wasted kinetic energy recovery system (WKERS) is a wind renewable gadget installed above a cooling tower outlet to harvest the discharged wind for electrical regeneration purpose. The previous WKERS is operated by a horizontal axis wind turbine (HAWT) with delta blade design but the performance is still not at the optimum level. Perhaps, a better blade-shape design should be determined to obtain the optimal performance, as it is believed that the blade-shape design plays a critical role in HAWT. Hence, to determine a better blade-shape design for a new generation of WKERS, elliptical blade, swept blade and NREL Phase IV blade are selected for this benchmarking process. NREL Phase IV blade is a modern HAWT’s blade design by National Renewable Energy Laboratory (NREL) research lab. During the process of benchmarking, Computational Fluid Dynamics (CFD) analysis was ran by using SolidWorks design software, where all the designs are simulated with linear flow simulation. The wind speed in the simulation is set at 10.0 m/s, which is compatible with the average wind speed produced by a standard size cooling tower. The result is obtained by flow trajectories of air motion, surface plot and cut plot of the applied blade-shape. Besides, the aspect ratio of each blade is calculated and included as one of the reference in the comparison. Hence, the final selection of the best blade-shape design will bring to the new generation of WKERS.
10 CFR 435.3 - Materials incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 435.3 Section 435.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE... Renewable Energy, Building Technologies Program, Sixth Floor, 950 L'Enfant Plaza, SW., Washington, DC 20024...
10 CFR 435.3 - Materials incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 435.3 Section 435.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE... Renewable Energy, Building Technologies Program, Sixth Floor, 950 L'Enfant Plaza, SW., Washington, DC 20024...
10 CFR 435.3 - Materials incorporated by reference.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 435.3 Section 435.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE... Renewable Energy, Building Technologies Program, Sixth Floor, 950 L'Enfant Plaza, SW., Washington, DC 20024...
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor)
2017-01-01
Apparatus, systems and methods for implementing flow cages and flow cage assemblies in association with high pressure fluid flows and fluid valves are provided. Flow cages and flow assemblies are provided to dissipate the energy of a fluid flow, such as by reducing fluid flow pressure and/or fluid flow velocity. In some embodiments the dissipation of the fluid flow energy is adapted to reduce erosion, such as from high-pressure jet flows, to reduce cavitation, such as by controllably increasing the flow area, and/or to reduce valve noise associated with pressure surge.
Qi, H.P.; Coplen, T.B.
2003-01-01
Soufre de Lacq elemental sulfur reference material (IAEA-S-4) isotopically is homogeneous in amounts as small as 41 ??g as determined by continuous flow isotope-ratio mass spectrometry. The ??34S value for this reference material is +16.90 ?? 0.12??? (1??) on a scale (Vienna Can??on Diablo troilite, VCDT) where IAEA-S-1 Ag2S is -0.3??? and IAEA-S-2 Ag2S is +22.67???. Published by Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Gallardo Estrella, L.; van Ginneken, B.; van Rikxoort, E. M.
2013-03-01
Chronic Obstructive Pulmonary Disease (COPD) is a lung disease characterized by progressive air flow limitation caused by emphysema and chronic bronchitis. Emphysema is quantified from chest computed tomography (CT) scans as the percentage of attentuation values below a fixed threshold. The emphysema quantification varies substantially between scans reconstructed with different kernels, limiting the possibilities to compare emphysema quantifications obtained from scans with different reconstruction parameters. In this paper we propose a method to normalize scans reconstructed with different kernels to have the same characteristics as scans reconstructed with a reference kernel and investigate if this normalization reduces the variability in emphysema quantification. The proposed normalization splits a CT scan into different frequency bands based on hierarchical unsharp masking. Normalization is performed by changing the energy in each frequency band to the average energy in each band in the reference kernel. A database of 15 subjects with COPD was constructed for this study. All subjects were scanned at total lung capacity and the scans were reconstructed with four different reconstruction kernels. The normalization was applied to all scans. Emphysema quantification was performed before and after normalization. It is shown that the emphysema score varies substantially before normalization but the variation diminishes after normalization.
Bayes to the Rescue: Continuous Positive Airway Pressure Has Less Mortality Than High-Flow Oxygen.
Modesto I Alapont, Vicent; Khemani, Robinder G; Medina, Alberto; Del Villar Guerra, Pablo; Molina Cambra, Alfred
2017-02-01
The merits of high-flow nasal cannula oxygen versus bubble continuous positive airway pressure are debated in children with pneumonia, with suggestions that randomized controlled trials are needed. In light of a previous randomized controlled trial showing a trend for lower mortality with bubble continuous positive airway pressure, we sought to determine the probability that a new randomized controlled trial would find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure through a "robust" Bayesian analysis. Sample data were extracted from the trial by Chisti et al, and requisite to "robust" Bayesian analysis, we specified three prior distributions to represent clinically meaningful assumptions. These priors (reference, pessimistic, and optimistic) were used to generate three scenarios to represent the range of possible hypotheses. 1) "Reference": we believe bubble continuous positive airway pressure and high-flow nasal cannula oxygen are equally effective with the same uninformative reference priors; 2) "Sceptic on high-flow nasal cannula oxygen": we believe that bubble continuous positive airway pressure is better than high-flow nasal cannula oxygen (bubble continuous positive airway pressure has an optimistic prior and high-flow nasal cannula oxygen has a pessimistic prior); and 3) "Enthusiastic on high-flow nasal cannula oxygen": we believe that high-flow nasal cannula oxygen is better than bubble continuous positive airway pressure (high-flow nasal cannula oxygen has an optimistic prior and bubble continuous positive airway pressure has a pessimistic prior). Finally, posterior empiric Bayesian distributions were obtained through 100,000 Markov Chain Monte Carlo simulations. In all three scenarios, there was a high probability for more death from high-flow nasal cannula oxygen compared with bubble continuous positive airway pressure (reference, 0.98; sceptic on high-flow nasal cannula oxygen, 0.982; enthusiastic on high-flow nasal cannula oxygen, 0.742). The posterior 95% credible interval on the difference in mortality identified a future randomized controlled trial would be extremely unlikely to find a mortality benefit for high-flow nasal cannula oxygen over bubble continuous positive airway pressure, regardless of the scenario. Interpreting these findings using the "range of practical equivalence" framework would recommend rejecting the hypothesis that high-flow nasal cannula oxygen is superior to bubble continuous positive airway pressure for these children. For children younger than 5 years with pneumonia, high-flow nasal cannula oxygen has higher mortality than bubble continuous positive airway pressure. A future randomized controlled trial in this population is unlikely to find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure.
Effects of high-energy particles on accretion flows onto a super massive black hole
NASA Astrophysics Data System (ADS)
Kimura, Shigeo
We study effects of high-energy particles on the accretion flow onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma-rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and high-energy particles, supposing that some fraction of viscous dissipation energy is converted to the acceleration of high-energy particles. The thermal component is governed by fluid dynamics while the high-energy particles obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection dominated flows as steady state solutions. Effects of the high-energy particles on the flow structure turn out to be very small because the compressional heating is so effective that the thermal component always provides the major part of the pressure. We calculate luminosities of escaping particles for these steady solutions. For a broad range of mass accretion rates, escaping particles can extract the energy about one-thousandth of the accretion energy. We also discuss some implications on relativistic jet production by escaping particles.
The effect of visualizing the flow of multimedia content among and inside devices.
Lee, Dong-Seok
2009-05-01
This study introduces a user interface, referred to as the flow interface, which provides a graphical representation of the movement of content among and inside audio/video devices. The proposed interface provides a different frame of reference with content-oriented visualization of the generation, manipulation, storage, and display of content as well as input and output. The flow interface was applied to a VCR/DVD recorder combo, one of the most complicated consumer products. A between-group experiment was performed to determine whether the flow interface helps users to perform various tasks and to examine the learning effect of the flow interface, particularly in regard to hooking up and recording tasks. The results showed that participants with access to the flow interface performed better in terms of success rate and elapsed time. In addition, the participants indicated that they could easily understand the flow interface. The potential of the flow interface for application to other audio video devices, and design issues requiring further consideration, are discussed.
Conservation laws of wave action and potential enstrophy for Rossby waves in a stratified atmosphere
NASA Technical Reports Server (NTRS)
Straus, D. M.
1983-01-01
The evolution of wave energy, enstrophy, and wave motion for atmospheric Rossby waves in a variable mean flow are discussed from a theoretical and pedagogic standpoint. In the absence of mean flow gradients, the wave energy density satisfies a local conservation law, with the appropriate flow velocity being the group velocity. In the presence of mean flow variations, wave energy is not conserved, but wave action is, provided the mean flow is independent of longitude. Wave enstrophy is conserved for arbitrary variations of the mean flow. Connections with Eiiassen-Palm flux are also discussed.
Conservation laws of wave action and potential enstrophy for Rossby waves in a stratified atmosphere
NASA Technical Reports Server (NTRS)
Straus, D. M.
1983-01-01
The evolution of wave energy, enstrophy, and wave motion for atmospheric Rossby waves in a variable mean flow are discussed from a theoretical and pedagogic standpoint. In the absence of mean flow gradients, the wave energy density satisfies a local conservation law, with the appropriate flow velocity being the group velocity. In the presence of mean flow variations, wave energy is not conserved, but wave action is, provided the mean flow is independent of longitude. Wave enstrophy is conserved for arbitrary variations of the mean flow. Connections with Eliassen-Palm flux are also discussed.
Alternative Energy: A Bay Area Reference Center Workshop. Proceedings.
ERIC Educational Resources Information Center
Roberts, Kay, Ed.; And Others
Presented are proceedings and related documents of a workshop on alternative energy resources which was held in April, 1980. This information is intended to bring reference librarians up to date on alternative energy technologies and available reference materials to which library patrons may be directed. Among the speeches included are those…
Carbon Emission Flow in Networks
Kang, Chongqing; Zhou, Tianrui; Chen, Qixin; Xu, Qianyao; Xia, Qing; Ji, Zhen
2012-01-01
As the human population increases and production expands, energy demand and anthropogenic carbon emission rates have been growing rapidly, and the need to decrease carbon emission levels has drawn increasing attention. The link between energy production and consumption has required the large-scale transport of energy within energy transmission networks. Within this energy flow, there is a virtual circulation of carbon emissions. To understand this circulation and account for the relationship between energy consumption and carbon emissions, this paper introduces the concept of “carbon emission flow in networks” and establishes a method to calculate carbon emission flow in networks. Using an actual analysis of China's energy pattern, the authors discuss the significance of this new concept, not only as a feasible approach but also as an innovative theoretical perspective. PMID:22761988
Stability of boundary layer flow based on energy gradient theory
NASA Astrophysics Data System (ADS)
Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong
2018-05-01
The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.
Small organic molecule based flow battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huskinson, Brian; Marshak, Michael; Aziz, Michael J.
The invention provides an electrochemical cell based on a new chemistry for a flow battery for large scale, e.g., gridscale, electrical energy storage. Electrical energy is stored chemically at an electrochemical electrode by the protonation of small organic molecules called quinones to hydroquinones. The proton is provided by a complementary electrochemical reaction at the other electrode. These reactions are reversed to deliver electrical energy. A flow battery based on this concept can operate as a closed system. The flow battery architecture has scaling advantages over solid electrode batteries for large scale energy storage.
NASA Astrophysics Data System (ADS)
Kitsikoudis, V.; Kibler, K. M.; Spiering, D. W.
2017-12-01
This study analyzes flow patterns and sediment distributions around three oyster reefs in a bar-built estuarine lagoon. We studied a degraded reef, a recently restored reef, and a reference condition reef with a healthy live oyster community. The restored reef had been regraded and restored with oyster shell mats to aid in recruitment of oyster spat, with the goal of reestablishing a healthy oyster community. Despite the fact that flow-biota-sediment interaction constitutes a blossoming research field, actual field data are sparse and current knowledge emanates from flume studies and numerical modeling. Moreover, the hydraulic effect of restored oyster reefs has not been thoroughly investigated and it is not clear if the flow field and sediment erosion/deposition are similar or diverge from natural reefs. Instantaneous three-dimensional flow velocities were collected on reefs using a Nortek Vectrino Profiler and an acoustic Doppler current profiler (Nortek Aquadopp). The former measured a 2 - 3 cm velocity profile above the oyster bed, while the latter quantified incoming velocities across the flow profile approximately 10 m from the edge of the reef. Flow measurements were conducted during rising tides and are coupled with simultaneous wind speed and direction data. In addition, 20 cm deep sediment cores were retrieved on and off the investigated reefs. Sediment grain size distributions were determined after individual cores were processed for loss on ignition. Incoming flow velocities were as high as 10 cm/s, relatively higher than those recorded close to reefs. Mean and turbulent flow velocities close to the reefs, varied among the investigated sites, despite the similar wind flow conditions offshore. For instance, the measurements at the degraded reef showed decreased wave attenuation and augmented flow velocities compared to the other sites. Boat wakes exhibited a very distinct signal in the flow velocity time-series and significantly increased the approaching flow velocity at the reefs. The oyster roughness height at the restored reef (68 mm) was higher than the roughness at the reference reef (45 mm); however, the variance was higher at the latter. Sediments from degraded reef and the recently restored reef were coarser and contained less organic matter compared to the reference condition reef.
Allosteric Ligand Binding and Anisotropic Energy Flow in Albumin
NASA Astrophysics Data System (ADS)
Dyer, Brian
2014-03-01
Protein allostery usually involves propagation of local structural changes through the protein to a remote site. Coupling of structural changes at remote sites is thought to occur through anisotropic energy transport, but the nature of this process is poorly understood. We have studied the relationship between allosteric interactions of remote ligand binding sites of the protein and energy flow through the structure of bovine serum albumin (BSA). We applied ultrafast infrared spectroscopy to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic flow through the protein structure following input of thermal energy into the flexible ligand binding sites. We also observe anisotropic heat flow through the structure, without local heating of the rigid helix bundles that connect these sites. We will discuss the implications of this efficient energy transport mechanism with regard to the allosteric propagation of binding energy through the connecting helix structures.
Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery
Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei
2015-01-01
Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l−1). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l−1 is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from −20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications. PMID:25709083
Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.
Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei
2015-02-24
Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications.
Trachet, Bram; Bols, Joris; De Santis, Gianluca; Vandenberghe, Stefaan; Loeys, Bart; Segers, Patrick
2011-12-01
Computational fluid dynamics (CFD) simulations allow for calculation of a detailed flow field in the mouse aorta and can thus be used to investigate a potential link between local hemodynamics and disease development. To perform these simulations in a murine setting, one often needs to make assumptions (e.g. when mouse-specific boundary conditions are not available), but many of these assumptions have not been validated due to a lack of reference data. In this study, we present such a reference data set by combining high-frequency ultrasound and contrast-enhanced micro-CT to measure (in vivo) the time-dependent volumetric flow waveforms in the complete aorta (including seven major side branches) of 10 male ApoE -/- deficient mice on a C57Bl/6 background. In order to assess the influence of some assumptions that are commonly applied in literature, four different CFD simulations were set up for each animal: (i) imposing the measured volumetric flow waveforms, (ii) imposing the average flow fractions over all 10 animals, presented as a reference data set, (iii) imposing flow fractions calculated by Murray's law, and (iv) restricting the geometrical model to the abdominal aorta (imposing measured flows). We found that - even if there is sometimes significant variation in the flow fractions going to a particular branch - the influence of using average flow fractions on the CFD simulations is limited and often restricted to the side branches. On the other hand, Murray's law underestimates the fraction going to the brachiocephalic trunk and strongly overestimates the fraction going to the distal aorta, influencing the outcome of the CFD results significantly. Changing the exponential factor in Murray's law equation from 3 to 2 (as suggested by several authors in literature) yields results that correspond much better to those obtained imposing the average flow fractions. Restricting the geometrical model to the abdominal aorta did not influence the outcome of the CFD simulations. In conclusion, the presented reference dataset can be used to impose boundary conditions in the mouse aorta in future studies, keeping in mind that they represent a subsample of the total population, i.e., relatively old, non-diseased, male C57Bl/6 ApoE -/- mice.
Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki
2013-01-01
We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as “our previous method”) using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as “our new method”). Our new method detects vehicles based on tires' thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8%) out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal. PMID:23774988
A reference Pelton turbine - High speed visualization in the rotating frame
NASA Astrophysics Data System (ADS)
Solemslie, Bjørn W.; Dahlhaug, Ole G.
2016-11-01
To enable a detailed study the flow mechanisms effecting the flow within the reference Pelton runner designed at the Waterpower Laboratory (NTNLT) a flow visualization system has been developed. The system enables high speed filming of the hydraulic surface of a single bucket in the rotating frame of reference. It is built with an angular borescopes adapter entering the turbine along the rotational axis and a borescope embedded within a bucket. A stationary high speed camera located outside the turbine housing has been connected to the optical arrangement by a non-contact coupling. The view point of the system includes the whole hydraulic surface of one half of a bucket. The system has been designed to minimize the amount of vibrations and to ensure that the vibrations felt by the borescope are the same as those affecting the camera. The preliminary results captured with the system are promising and enable a detailed study of the flow within the turbine.
Optimal energy growth in a stably stratified shear flow
NASA Astrophysics Data System (ADS)
Jose, Sharath; Roy, Anubhab; Bale, Rahul; Iyer, Krithika; Govindarajan, Rama
2018-02-01
Transient growth of perturbations by a linear non-modal evolution is studied here in a stably stratified bounded Couette flow. The density stratification is linear. Classical inviscid stability theory states that a parallel shear flow is stable to exponentially growing disturbances if the Richardson number (Ri) is greater than 1/4 everywhere in the flow. Experiments and numerical simulations at higher Ri show however that algebraically growing disturbances can lead to transient amplification. The complexity of a stably stratified shear flow stems from its ability to combine this transient amplification with propagating internal gravity waves (IGWs). The optimal perturbations associated with maximum energy amplification are numerically obtained at intermediate Reynolds numbers. It is shown that in this wall-bounded flow, the three-dimensional optimal perturbations are oblique, unlike in unstratified flow. A partitioning of energy into kinetic and potential helps in understanding the exchange of energies and how it modifies the transient growth. We show that the apportionment between potential and kinetic energy depends, in an interesting manner, on the Richardson number, and on time, as the transient growth proceeds from an optimal perturbation. The oft-quoted stabilizing role of stratification is also probed in the non-diffusive limit in the context of disturbance energy amplification.
Influence of the nuclear symmetry energy on the collective flows of charged pions
NASA Astrophysics Data System (ADS)
Gao, Yuan; Yong, Gao-Chan; Zhang, Lei; Zuo, Wei
2018-01-01
Based on the isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model, we studied charged pion transverse and elliptic flows in semicentral 197Au+197Au collisions at 600 MeV/nucleon. It is found that π+-π- differential transverse flow and the difference of π+ and π- transverse flows almost show no effects of the symmetry energy. Their corresponding elliptic flows are largely affected by the symmetry energy, especially at high transverse momenta. The isospin-dependent pion elliptic flow at high transverse momenta thus provides a promising way to probe the high-density behavior of the symmetry energy in heavy-ion collisions at the Facility for Antiproton and Ion Research (FAIR) at GSI, Darmstadt or at the Cooling Storage Ring (CSR) at HIRFL, Lanzhou.
NASA Technical Reports Server (NTRS)
Morin, T.; Chapman, R.; Filpus, J.; Hawley, M.; Kerber, R.; Asmussen, J.; Nakanishi, S.
1982-01-01
A microwave plasma system for transfer of electrical energy to hydrogen flowing through the system has potential application for coupling energy to a flowing gas in the electrothermal propulsion concept. Experimental systems have been designed and built for determination of the energy inputs and outputs and thrust for the microwave coupling of energy to hydrogen. Results for experiments with pressure in the range 100 microns-6 torr, hydrogen flow rate up to 1000 micronmoles/s, and total absorbed power to 700 w are presented.
Optical measurement of high-temperature melt flow rate.
Bizjan, Benjamin; Širok, Brane; Chen, Jinpeng
2018-05-20
This paper presents an optical method and system for contactless measurement of the mass flow rate of melts by digital cameras. The proposed method is based on reconstruction of melt stream geometry and flow velocity calculation by cross correlation, and is very cost-effective due its modest hardware requirements. Using a laboratory test rig with a small inductive melting pot and reference mass flow rate measurement by weighing, the proposed method was demonstrated to have an excellent dynamic response (0.1 s order of magnitude) while producing deviations from the reference of about 5% in the steady-state flow regime. Similar results were obtained in an industrial stone wool production line for two repeated measurements. Our method was tested in a wide range of melt flow rates (0.05-1.2 kg/s) and did not require very fast cameras (120 frames per second would be sufficient for most industrial applications).
Mechanical algal disruption for efficient biodiesel extraction
NASA Astrophysics Data System (ADS)
Krehbiel, Joel David
Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of mass at the bubble center, and if the bubble-to-cell spacing is much larger than the cell radius, the flow around the cell is approximately extensional in the cell's frame of reference. It is known that the present algae are quasi-spherical with cytoplasmic viscosity approximately 100 times that of water, so the cell is approximated as a viscous sphere. Thus, conditions that cause cell disruption from an expanding microbubble are modeled as either steady inviscid extensional flow or steady point source flow over a viscous sphere. In the inviscid extensional flow model, the flow inside the sphere is dominated by viscous forces so the Stokes equation is solved with matched stresses at the sphere surface from the exterior inviscid extensional flow. The short-time deformation of the sphere surface suggests that inviscid extensional flow is insufficient to disrupt cells. This indicates that asymmetry of the flow over the sphere may be required to provide sufficient surface areal strain to rupture the cell. In a more detailed model, the bubble expansion is modeled as an expansion near a viscous sphere using finite element software. For conditions similar to those seen in the experiment, deformation shows similar scaling to disruption. The deformation in this model is significantly higher than predicted from the inviscid extensional flow model due to the effect of asymmetric flow on the cell membrane. Estimates suggest 21% average areal strain on the algal membrane is required to disrupt algal cells, and this result agrees well with areal strains typically required to disrupt cell membranes although the actual value would be lessened by the effect of an elastic membrane, which is neglected in the present model. The local areal strain on the sphere surface is a maximum closest to the point source, and there is compressive strain near theta = +/-pi/4 with theta the angle from the line between the cell center and the point source. The maximum local areal strain shows less sensitivity to the viscosity of the interior fluid than the average areal strain. Overall, the dissertation lays the groundwork for more efficient algal disruption through the judicious use of microbubbles. Separation of bubble generation and bubble growth provides the ability to improve the efficiency of each process and localize energy. Results suggest that effective disruption can occur by pulsing high-pressure ultrasound waves to a solution of cells co-suspended with microbubbles. The models are thought to represent basic phenomenological mechanisms of disruption that could be exploited to improve the overall energy efficiency of schemes. Analysis suggests that extensional flow alone cannot be the cause of cell disruption near an expanding microbubble. Additionally, this work provides an estimate of the areal strain required disrupt an algal cell membrane. This research suggests a couple routes toward reducing the energy required for production of algal biodiesel.
NASA Astrophysics Data System (ADS)
Canelas, Ricardo; Oliveira, Maria; Crespo, Alejandro; Neves, Ramiro; Costa, Pedro; Freitas, Conceição; Andrade, César; Ferreira, Rui
2014-05-01
The study of coastal boulder deposits related with marine abrupt inundation events has been addressed by several authors using conventional numerical solutions that simulate particle transport by storm and tsunami, sometimes with contradictory results (Nandasena et al. 2011, Kain et al. 2012). The biggest challenge has been the differentiation of the events (storm or tsunami), and the reconstruction of wave parameters (e.g. wave height, length, direction) responsible for the entrainment and transport of these megaclasts. In this study we employ an inverse-problem strategy to determine the cause of dislodgement of megaclasts and to explain the pattern of deposition found in some locations of the Portuguese western coast, well above maximum records of sea level. It is envisaged that the causes are either flows originated by wave breaking, typically associated to storms, which would impart large momentum in a short time interval (herein impulsive motion), or long waves such as a tsunamis, that would transport the clasts in a mode analogous to bedload (herein sustained motion). The geometry of the problem is idealized but represents the key features of overhanging layers related with fractures, bedding and differential erosion of sub-horizontal layers. In plan view, concave and convex coastline shapes are testes to assess the influence of flow concentration. These geometrical features are representative of the western Portuguese coast. The fluid-solid model solves numerically the Navier-Stokes equations for the liquid phase and Newton's motion equations for solid bodies. The discretization of both fluid and solids is performed with Smooth Particle Hydrodynamics (SPH). The model is based DualSPHyics code (www.dual.sphysics.org) and represents an effort to avoid different discretization techniques for different phases in motion. This approach to boulder transport demonstrates that the ability of high-energy flow events to entrain and transport large particles largely depends on fluid velocity, flow characteristic wavelength and local geometry. The results of the model allow for a classification of the deposition patterns associated with the combinations of hydrodynamic parameters characteristic of short (storms) and long waves (tsunamis). Ackownledgements: Project RECI/ECM-HID/0371/2012, funded by the Portuguese Foundation for Science and Technology (FCT), has partially supported this work. References Nandasena, N.A.K., Paris, R. e Tanaka, N., 2011. Reassessment of hydrodynamic equations: Minimum flow velocity to initaite boulder transport by high energy events (storms, tsunamis). Marine Geology, 281: 70-84. Kain, C.L; Gomez, C.; Moghaddam, A.E. (2012) Comment on 'Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis), by N.A.K. Nandasena, R. Paris and N. Tanaka [Marine Geology 281, 70-84], Marine Geology, Volumes 319-322, 1, pp. 75-76, ISSN 0025-3227, http://dx.doi.org/10.1016/j.margeo.2011.08.008.
Physical properties of biological entities: an introduction to the ontology of physics for biology.
Cook, Daniel L; Bookstein, Fred L; Gennari, John H
2011-01-01
As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration. © 2011 Cook et al.
Tables for Supersonic Flow Around Right Circular Cones at Small Angle of Attack
NASA Technical Reports Server (NTRS)
Sims, Joseph L.
1964-01-01
The solution of supersonic flow fields by the method of characteristics requires that starting conditions be known. Ferri, in reference 1, developed a method-of-characteristics solution for axially symmetric bodies of revolution at small angles of attack. With computing machinery that is now available, this has become a feasible method for computing the aerodynamic characteristics of bodies near zero angle of attack. For sharp-nosed bodies of revolution, the required starting line may be obtained by computing the flow field about a cone at a small angle of attack. This calculation is readily performed using Stone's theory in reference 2. Some solutions of this theory are available in reference 3. However, the manner in which these results are presented, namely in a wind-fixed coordinate system, makes their use somewhat cumbersome. Additionally, as pointed out in reference 4, the flow component perpendicular to the meridian planes was computed incorrectly. The results contained herein have been computed in the same basic manner as those of reference 3 with the correct velocity normal to the meridian planes. Also, all results have been transferred into the body-fixed coordinate system. Therefore, the values tabulated herein may be used, in conjunction with the respective zero-angle-of-attack results of reference 5, as starting conditions for the method-of-characteristics solution of the flow field about axially symmetric bodies of revolution at small angles of attack. As in the zero-angle-of-attack case (ref. 5) the present results have been computed using the ideal gas value of 1.4 for the ratio of the specific heats of air. Solutions are given for cone angles from 2.5 deg to 30 deg in increments of 2.5 deg. For each cone angle, results were computed for a constant series of free-stream Mach numbers from 1.5 to 20. In addition, a solution was computed which yielded the minimum free-stream Mach number for a completely supersonic conical flow field. For cone angles of 27.5 deg and 30 deg, this minimum free-stream Mach number was above 1.5. Consequently, solutions at this Mach number were not computed for these two cone angles.
Response of Sap-Flow Measurements on Environmental Forcings
NASA Astrophysics Data System (ADS)
Howe, J. A.; Dragoni, D.; Schmid, H.
2005-05-01
The exchange of water between the atmosphere and biosphere is an important determinant of climate and the productivity of vegetation. Both evaporation and transpiration involve substantial amounts of energy exchange at the interface of the biosphere and atmosphere. Knowing how transpiration changes throughout the seasonal and diurnal cycles can help increase the understanding of how a forest reacts to changes in the biosphere and atmosphere. A common way to estimate transpiration is by measuring the sap flowing through the living tissues of trees. A study was conducted at Morgan-Monroe State Forest, a mixed deciduous forest in south central Indiana (USA), to investigate how sap flow in trees responds to changes in meteorological and environmental conditions. The heat -dissipation technique was used to estimate sap velocities from two Big Tooth Aspen (Populus grandidentata) and two Tulip Poplars (Liriodendron tulipifera). Sap velocity patterns (normalized by a reference potential evapo-transpiration) were directly compared with meteorological and ecological measurements, such as vapor pressure deficits, photosynthetic active radiation (PAR), rain fall, and soil moisture content. In this study, we also investigated the uncertainties and problems that arise in using the heat dissipation technique to extrapolate the single-tree measurements to the forest scale.
Fly-by-feel aeroservoelasticity
NASA Astrophysics Data System (ADS)
Suryakumar, Vishvas Samuel
Recent experiments have suggested a strong correlation between local flow features on the airfoil surface such as the leading edge stagnation point (LESP), transition or the flow separation point with global integrated quantities such as aerodynamic lift. "Fly-By-Feel" refers to a physics-based sensing and control framework where local flow features are tracked in real-time to determine aerodynamic loads. This formulation offers possibilities for the development of robust, low-order flight control architectures. An essential contribution towards this objective is the theoretical development showing the direct relationship of the LESP with circulation for small-amplitude, unsteady, airfoil maneuvers. The theory is validated through numerical simulations and wind tunnel tests. With the availability of an aerodynamic observable, a low-order, energy-based control formulation is derived for aeroelastic stabilization and gust load alleviation. The sensing and control framework is implemented on the Nonlinear Aeroelastic Test Apparatus at Texas A&M University. The LESP is located using hot-film sensors distributed around the wing leading edge. Stabilization of limit cycle oscillations exhibited by a nonlinear wing section is demonstrated in the presence of gusts. Aeroelastic stabilization is also demonstrated on a flying wing configuration exhibiting body freedom flutter through numerical simulations.
Cerebral blood flow tomography with xenon-133
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lassen, N.A.
1985-10-01
Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-/sup 133/. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission computed tomograph (SPECT) is required. Two brain-dedicated SPECT systems designed for this purpose are mentioned, and the method is described with special reference to the limitations inherent in the soft energy of the 133Xe primary photons. CBF tomography can be used for a multitude of clinical and investigative purposes. This articlemore » discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use of other tracers for CBF tomography using SPECT is summarized with emphasis on the /sup 99m/Tc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Withers, C.; Cummings, J.; Nigusse, B.
A new generation of full variable-capacity, central, ducted air-conditioning (AC) and heat pump units has come on the market, and they promise to deliver increased cooling (and heating) efficiency. They are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they can vary their capacity over a wide range (approximately 40% to 118% of nominal full capacity), thus staying “on” for up to twice as many hours per day compared to fixed-capacity systems of the same nominal capacity. The heating and cooling capacity is varied bymore » adjusting the indoor fan air flow rate, compressor, and refrigerant flow rate as well as the outdoor unit fan air flow rate. Note that two-stage AC or heat pump systems were not evaluated in this research effort. The term dwell is used to refer to the amount of time distributed air spends inside ductwork during space-conditioning cycles. Longer run times mean greater dwell time and therefore greater exposure to conductive gains and losses.« less
Cloud-In-Cell modeling of shocked particle-laden flows at a ``SPARSE'' cost
NASA Astrophysics Data System (ADS)
Taverniers, Soren; Jacobs, Gustaaf; Sen, Oishik; Udaykumar, H. S.
2017-11-01
A common tool for enabling process-scale simulations of shocked particle-laden flows is Eulerian-Lagrangian Particle-Source-In-Cell (PSIC) modeling where each particle is traced in its Lagrangian frame and treated as a mathematical point. Its dynamics are governed by Stokes drag corrected for high Reynolds and Mach numbers. The computational burden is often reduced further through a ``Cloud-In-Cell'' (CIC) approach which amalgamates groups of physical particles into computational ``macro-particles''. CIC does not account for subgrid particle fluctuations, leading to erroneous predictions of cloud dynamics. A Subgrid Particle-Averaged Reynolds-Stress Equivalent (SPARSE) model is proposed that incorporates subgrid interphase velocity and temperature perturbations. A bivariate Gaussian source distribution, whose covariance captures the cloud's deformation to first order, accounts for the particles' momentum and energy influence on the carrier gas. SPARSE is validated by conducting tests on the interaction of a particle cloud with the accelerated flow behind a shock. The cloud's average dynamics and its deformation over time predicted with SPARSE converge to their counterparts computed with reference PSIC models as the number of Gaussians is increased from 1 to 16. This work was supported by AFOSR Grant No. FA9550-16-1-0008.
Sughimoto, Koichi; Takahara, Yoshiharu; Mogi, Kenji; Yamazaki, Kenji; Tsubota, Ken'ichi; Liang, Fuyou; Liu, Hao
2014-05-01
Aortic aneurysms may cause the turbulence of blood flow and result in the energy loss of the blood flow, while grafting of the dilated aorta may ameliorate these hemodynamic disturbances, contributing to the alleviation of the energy efficiency of blood flow delivery. However, evaluating of the energy efficiency of blood flow in an aortic aneurysm has been technically difficult to estimate and not comprehensively understood yet. We devised a multiscale computational biomechanical model, introducing novel flow indices, to investigate a single male patient with multiple aortic aneurysms. Preoperative levels of wall shear stress and oscillatory shear index (OSI) were elevated but declined after staged grafting procedures: OSI decreased from 0.280 to 0.257 (first operation) and 0.221 (second operation). Graftings may strategically counter the loss of efficient blood delivery to improve hemodynamics of the aorta. The energy efficiency of blood flow also improved postoperatively. Novel indices of pulsatile pressure index (PPI) and pulsatile energy loss index (PELI) were evaluated to characterize and quantify energy loss of pulsatile blood flow. Mean PPI decreased from 0.445 to 0.423 (first operation) and 0.359 (second operation), respectively; while the preoperative PELI of 0.986 dropped to 0.820 and 0.831. Graftings contributed not only to ameliorate wall shear stress or oscillatory shear index but also to improve efficient blood flow. This patient-specific modeling will help in analyzing the mechanism of aortic aneurysm formation and may play an important role in quantifying the energy efficiency or loss in blood delivery.
A Smart Power Electronic Multiconverter for the Residential Sector.
Guerrero-Martinez, Miguel Angel; Milanes-Montero, Maria Isabel; Barrero-Gonzalez, Fermin; Miñambres-Marcos, Victor Manuel; Romero-Cadaval, Enrique; Gonzalez-Romera, Eva
2017-05-26
The future of the grid includes distributed generation and smart grid technologies. Demand Side Management (DSM) systems will also be essential to achieve a high level of reliability and robustness in power systems. To do that, expanding the Advanced Metering Infrastructure (AMI) and Energy Management Systems (EMS) are necessary. The trend direction is towards the creation of energy resource hubs, such as the smart community concept. This paper presents a smart multiconverter system for residential/housing sector with a Hybrid Energy Storage System (HESS) consisting of supercapacitor and battery, and with local photovoltaic (PV) energy source integration. The device works as a distributed energy unit located in each house of the community, receiving active power set-points provided by a smart community EMS. This central EMS is responsible for managing the active energy flows between the electricity grid, renewable energy sources, storage equipment and loads existing in the community. The proposed multiconverter is responsible for complying with the reference active power set-points with proper power quality; guaranteeing that the local PV modules operate with a Maximum Power Point Tracking (MPPT) algorithm; and extending the lifetime of the battery thanks to a cooperative operation of the HESS. A simulation model has been developed in order to show the detailed operation of the system. Finally, a prototype of the multiconverter platform has been implemented and some experimental tests have been carried out to validate it.
A Smart Power Electronic Multiconverter for the Residential Sector
Guerrero-Martinez, Miguel Angel; Milanes-Montero, Maria Isabel; Barrero-Gonzalez, Fermin; Miñambres-Marcos, Victor Manuel; Romero-Cadaval, Enrique; Gonzalez-Romera, Eva
2017-01-01
The future of the grid includes distributed generation and smart grid technologies. Demand Side Management (DSM) systems will also be essential to achieve a high level of reliability and robustness in power systems. To do that, expanding the Advanced Metering Infrastructure (AMI) and Energy Management Systems (EMS) are necessary. The trend direction is towards the creation of energy resource hubs, such as the smart community concept. This paper presents a smart multiconverter system for residential/housing sector with a Hybrid Energy Storage System (HESS) consisting of supercapacitor and battery, and with local photovoltaic (PV) energy source integration. The device works as a distributed energy unit located in each house of the community, receiving active power set-points provided by a smart community EMS. This central EMS is responsible for managing the active energy flows between the electricity grid, renewable energy sources, storage equipment and loads existing in the community. The proposed multiconverter is responsible for complying with the reference active power set-points with proper power quality; guaranteeing that the local PV modules operate with a Maximum Power Point Tracking (MPPT) algorithm; and extending the lifetime of the battery thanks to a cooperative operation of the HESS. A simulation model has been developed in order to show the detailed operation of the system. Finally, a prototype of the multiconverter platform has been implemented and some experimental tests have been carried out to validate it. PMID:28587131
2013-09-09
indicates energy flowing into and out of the bone. (b) The average energy flux density through the surface of the cochlear cavity (relative to the incident...simulation tool capable of handling a variety of aspects of wave propagation and the resulting energy flow in a human head subject to an incident...small amounts of energy transferred from air to a dense inhomogeneous object: such small energy flows are relevant only because of the exceedingly high
Anisotropic energy flow and allosteric ligand binding in albumin
NASA Astrophysics Data System (ADS)
Li, Guifeng; Magana, Donny; Dyer, R. Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.
Anisotropic energy flow and allosteric ligand binding in albumin.
Li, Guifeng; Magana, Donny; Dyer, R Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.
Anisotropic energy flow and allosteric ligand binding in albumin
Li, Guifeng; Magana, Donny; Dyer, R. Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures. PMID:24445265
IMPACT ON DISINFECTION AT PEAK FLOWS DURING BLENDING/PARTIAL BYPASSING OF SECONDARY TREATMENT
A U.S EPA study evaluated the impact on disinfection during peak flows when a portion of the flow to the wastewater treatment plant (WWTP) bypasses secondary treatment prior to disinfection. The practice of bypassing secondary treatment during peak flows, referred to as blending...
Acceleration during magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beresnyak, Andrey; Li, Hui
2015-07-16
The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipationmore » in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.« less
Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization
NASA Astrophysics Data System (ADS)
Winterberg, F.
2016-01-01
Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.
Experimental investigation of a molten salt thermocline storage tank
NASA Astrophysics Data System (ADS)
Yang, Xiaoping; Yang, Xiaoxi; Qin, Frank G. F.; Jiang, Runhua
2016-07-01
Thermal energy storage is considered as an important subsystem for solar thermal power stations. Investigations into thermocline storage tanks have mainly focused on numerical simulations because conducting high-temperature experiments is difficult. In this paper, an experimental study of the heat transfer characteristics of a molten salt thermocline storage tank was conducted by using high-temperature molten salt as the heat transfer fluid and ceramic particle as the filler material. This experimental study can verify the effectiveness of numerical simulation results and provide reference for engineering design. Temperature distribution and thermal storage capacity during the charging process were obtained. A temperature gradient was observed during the charging process. The temperature change tendency showed that thermocline thickness increased continuously with charging time. The slope of the thermal storage capacity decreased gradually with the increase in time. The low-cost filler material can replace the expensive molten salt to achieve thermal storage purposes and help to maintain the ideal gravity flow or piston flow of molten salt fluid.
Diffuse interfacelets in transcritical flows of propellants into high-pressure combustors
NASA Astrophysics Data System (ADS)
Urzay, Javier; Jofre, Lluis
2017-11-01
Rocket engines and new generations of high-power jet engines and diesel engines oftentimes involve the injection of one or more reactants at subcritical temperatures into combustor environments at high pressures, and more particularly, at pressures higher than those corresponding to the critical points of the individual components of the mixture, which typically range from 13 to 50 bars for most propellants. This class of trajectories in the thermodynamic space has been traditionally referred to as transcritical. Under particular conditions often found in hydrocarbon-fueled chemical propulsion systems, and despite the prevailing high pressures, the flow in the combustor may contain regions close to the injector where a diffuse interface is formed in between the fuel and oxidizer streams that is sustained by surface-tension forces as a result of the elevation of the critical pressure of the mixture. This talk describes progress towards modeling these effects in the conservation equations. Funded by the US Department of Energy.
Mamatsashvili, G; Khujadze, G; Chagelishvili, G; Dong, S; Jiménez, J; Foysi, H
2016-08-01
To understand the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows, we performed direct numerical simulations of homogeneous shear turbulence for different aspect ratios of the flow domain with subsequent analysis of the dynamical processes in spectral or Fourier space. There are no exponentially growing modes in such flows and the turbulence is energetically supported only by the linear growth of Fourier harmonics of perturbations due to the shear flow non-normality. This non-normality-induced growth, also known as nonmodal growth, is anisotropic in spectral space, which, in turn, leads to anisotropy of nonlinear processes in this space. As a result, a transverse (angular) redistribution of harmonics in Fourier space is the main nonlinear process in these flows, rather than direct or inverse cascades. We refer to this type of nonlinear redistribution as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by a subtle interplay between the linear nonmodal growth and the nonlinear transverse cascade. This course of events reliably exemplifies a well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. These two basic processes mainly operate at large length scales, comparable to the domain size. Therefore, this central, small wave number area of Fourier space is crucial in the self-sustenance; we defined its size and labeled it as the vital area of turbulence. Outside the vital area, the nonmodal growth and the transverse cascade are of secondary importance: Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. Although the cascades and the self-sustaining process of turbulence are qualitatively the same at different aspect ratios, the number of harmonics actively participating in this process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) varies, but always remains quite large (equal to 36, 86, and 209) in the considered here three aspect ratios. This implies that the self-sustenance of subcritical turbulence cannot be described by low-order models.
NASA Astrophysics Data System (ADS)
Mamatsashvili, G.; Khujadze, G.; Chagelishvili, G.; Dong, S.; Jiménez, J.; Foysi, H.
2016-08-01
To understand the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows, we performed direct numerical simulations of homogeneous shear turbulence for different aspect ratios of the flow domain with subsequent analysis of the dynamical processes in spectral or Fourier space. There are no exponentially growing modes in such flows and the turbulence is energetically supported only by the linear growth of Fourier harmonics of perturbations due to the shear flow non-normality. This non-normality-induced growth, also known as nonmodal growth, is anisotropic in spectral space, which, in turn, leads to anisotropy of nonlinear processes in this space. As a result, a transverse (angular) redistribution of harmonics in Fourier space is the main nonlinear process in these flows, rather than direct or inverse cascades. We refer to this type of nonlinear redistribution as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by a subtle interplay between the linear nonmodal growth and the nonlinear transverse cascade. This course of events reliably exemplifies a well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. These two basic processes mainly operate at large length scales, comparable to the domain size. Therefore, this central, small wave number area of Fourier space is crucial in the self-sustenance; we defined its size and labeled it as the vital area of turbulence. Outside the vital area, the nonmodal growth and the transverse cascade are of secondary importance: Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. Although the cascades and the self-sustaining process of turbulence are qualitatively the same at different aspect ratios, the number of harmonics actively participating in this process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) varies, but always remains quite large (equal to 36, 86, and 209) in the considered here three aspect ratios. This implies that the self-sustenance of subcritical turbulence cannot be described by low-order models.
Giese, Daniel; Weiss, Kilian; Baeßler, Bettina; Madershahian, Navid; Choi, Yeong-Hoon; Maintz, David; Bunck, Alexander C
2018-02-01
The objective of the current work was to evaluate flow and turbulent kinetic energy in different transcatheter aortic valve implants using highly undersampled time-resolved multi-point 3-directional phase-contrast measurements (4D Flow MRI) in an in vitro setup. A pulsatile flow setup was used with a compliant tubing mimicking a stiff left ventricular outflow tract and ascending aorta. Five different implants were measured using a highly undersampled multi-point 4D Flow MRI sequence. Velocities and turbulent kinetic energy values were analysed and compared. Strong variations of turbulent kinetic energy distributions between the valves were observed. Maximum turbulent kinetic energy values ranged from 100 to over 500 J/m 3 while through-plane velocities were similar between all valves. Highly accelerated 4D Flow MRI for the measurement of velocities and turbulent kinetic energy values allowed for the assessment of hemodynamic parameters in five different implant models. The presented setup, measurement protocol and analysis methods provides an efficient approach to compare different valve implants and could aid future novel valve designs.
Parasitic momentum flux in the tokamak core
NASA Astrophysics Data System (ADS)
Stoltzfus-Dueck, T.
2017-10-01
Tokamak plasmas rotate spontaneously without applied torque. This intrinsic rotation is important for future low-torque devices such as ITER, since rotation stabilizes certain instabilities. In the mid-radius `gradient region,' which reaches from the sawtooth inversion radius out to the pedestal top, intrinsic rotation profiles may be either flat or hollow, and can transition suddenly between these two states, an unexplained phenomenon referred to as rotation reversal. Theoretical efforts to explain the mid-radius rotation shear have largely focused on quasilinear models, in which the phase relationships of some selected instability result in a nondiffusive momentum flux (``residual stress''). In contrast, the present work demonstrates the existence of a robust, fully nonlinear symmetry-breaking momentum flux that follows from the free-energy flow in phase space and does not depend on any assumed linear eigenmode structure. The physical origin is an often-neglected portion of the radial ExB drift, which is shown to drive a symmetry-breaking outward flux of co-current momentum whenever free energy is transferred from the electrostatic potential to ion parallel flows. The fully nonlinear derivation relies only on conservation properties and symmetry, thus retaining the important contribution of damped modes. The resulting rotation peaking is counter-current and scales as temperature over plasma current. As first demonstrated by Landau, this free-energy transfer (thus also the corresponding residual stress) becomes inactive when frequencies are much higher than the ion transit frequency, which allows sudden transitions between hollow and flat profiles. Simple estimates suggest that this mechanism may be consistent with experimental observations. This work was funded in part by the Max-Planck/Princeton Center for Plasma Physics and in part by the U.S. Dept. of Energy, Office of Science, Contract No. DE-AC02-09CH11466.
Energy transfer through a multi-layer liner for shaped charges
Skolnick, Saul; Goodman, Albert
1985-01-01
This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.
Beam energy dependence of elliptic and triangular flow with the AMPT model
NASA Astrophysics Data System (ADS)
Solanki, Dronika; Sorensen, Paul; Basu, Sumit; Raniwala, Rashmi; Nayak, Tapan Kumar
2013-03-01
A beam energy scan has been carried out at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory to search for the onset of deconfinement and a possible critical point where the transition from a Quark Gluon Plasma to a hadronic phase changes from a rapid cross-over to a first order phase transition. Anisotropy in the azimuthal distribution of produced particles such as the second and third harmonics v2 and v3 are expected to be sensitive to the existence of a Quark Gluon Plasma phase and the Equation of State of the system. For this reason, they are of great experimental interests. In this Letter we report on calculations of v2 and v3 from the AMPT model in the Default (Def.) and String Melting (SM) mode to provide a reference for the energy dependence of v2 and v3 for √{sNN} from 7.7 GeV to 2.76 TeV. We expect that in the case that collisions cease to produce QGP at lower colliding energies, data will deviate from the AMPT String Melting calculations and come in better agreement with the Default calculations.
Early-Morning Flow Transition in a Valley in Low-Mountain Terrain Under Clear-Sky Conditions
NASA Astrophysics Data System (ADS)
Brötz, Björn; Eigenmann, Rafael; Dörnbrack, Andreas; Foken, Thomas; Wirth, Volkmar
2014-07-01
We investigate the evolution of the early-morning boundary layer in a low-mountain valley in south-western Germany during COPS (convective and orographically induced precipitation study) in summer 2007. The term low-mountain refers to a mountainous region with a relief of gentle slopes and with an absolute altitude that remains under a specified height (usually 1,500 m a.s.l.). A subset of 23 fair weather days from the campaign was selected to study the transition of the boundary-layer flow in the early morning. The typical valley atmosphere in the morning hours was characterized by a stable temperature stratification and a pronounced valley wind system. During the reversal period—called the low wind period—of the valley wind system (duration of 1-2 h), the horizontal flow was very weak and the conditions for free convection were fulfilled close to the ground. Ground-based sodar observations of the vertical wind show enhanced values of upward motion, and the corresponding statistical properties differ from those observed under windless convective conditions over flat terrain. Large-eddy simulations of the boundary-layer transition in the valley were conducted, and statistical properties of the simulated flow agree with the observed quantities. Spatially coherent turbulence structures are present in the temporal as well as in the ensemble mean analysis. Thus, the complex orography induces coherent convective structures at predictable, specific locations during the early-morning low wind situations. These coherent updrafts, found in both the sodar observations and the simulation, lead to a flux counter to the gradient of the stably stratified valley atmosphere and reach up to the heights of the surrounding ridges. Furthermore, the energy balance in the surface layer during the low wind periods is closed. However, it becomes unclosed after the onset of the valley wind. The partition into the sensible and the latent heat fluxes indicates that missing flux components of sensible heat are the main reason for the unclosed energy balance in the considered situations. This result supports previously published investigations on the energy balance closure.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-14
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. P-13346-001] Free Flow...: February 18, 2011. d. Submitted By: Free Flow Power Corporation (Free Flow Power), on behalf of its... Officer, Free Flow Power Corporation, 239 Causeway Street, Boston, MA 02114-2130; or at (978) 283-2822. i...
Component-cost and performance based comparison of flow and static batteries
NASA Astrophysics Data System (ADS)
Hopkins, Brandon J.; Smith, Kyle C.; Slocum, Alexander H.; Chiang, Yet-Ming
2015-10-01
Flow batteries are a promising grid-storage technology that is scalable, inherently flexible in power/energy ratio, and potentially low cost in comparison to conventional or ;static; battery architectures. Recent advances in flow chemistries are enabling significantly higher energy density flow electrodes. When the same battery chemistry can arguably be used in either a flow or static electrode design, the relative merits of either design choice become of interest. Here, we analyze the costs of the electrochemically active stack for both architectures under the constraint of constant energy efficiency and charge and discharge rates, using as case studies the aqueous vanadium-redox chemistry, widely used in conventional flow batteries, and aqueous lithium-iron-phosphate (LFP)/lithium-titanium-phosphate (LTP) suspensions, an example of a higher energy density suspension-based electrode. It is found that although flow batteries always have a cost advantage (kWh-1) at the stack level modeled, the advantage is a strong function of flow electrode energy density. For the LFP/LTP case, the cost advantages decreases from ∼50% to ∼10% over experimentally reasonable ranges of suspension loading. Such results are important input for design choices when both battery architectures are viable options.
Origin of Permeability and Structure of Flows in Fractured Media
NASA Astrophysics Data System (ADS)
De Dreuzy, J.; Darcel, C.; Davy, P.; Erhel, J.; Le Goc, R.; Maillot, J.; Meheust, Y.; Pichot, G.; Poirriez, B.
2013-12-01
After more than three decades of research, flows in fractured media have been shown to result from multi-scale geological structures. Flows result non-exclusively from the damage zone of the large faults, from the percolation within denser networks of smaller fractures, from the aperture heterogeneity within the fracture planes and from some remaining permeability within the matrix. While the effect of each of these causes has been studied independently, global assessments of the main determinisms is still needed. We propose a general approach to determine the geological structures responsible for flows, their permeability and their organization based on field data and numerical modeling [de Dreuzy et al., 2012b]. Multi-scale synthetic networks are reconstructed from field data and simplified mechanical modeling [Davy et al., 2010]. High-performance numerical methods are developed to comply with the specificities of the geometry and physical properties of the fractured media [Pichot et al., 2010; Pichot et al., 2012]. And, based on a large Monte-Carlo sampling, we determine the key determinisms of fractured permeability and flows (Figure). We illustrate our approach on the respective influence of fracture apertures and fracture correlation patterns at large scale. We show the potential role of fracture intersections, so far overlooked between the fracture and the network scales. We also demonstrate how fracture correlations reduce the bulk fracture permeability. Using this analysis, we highlight the need for more specific in-situ characterization of fracture flow structures. Fracture modeling and characterization are necessary to meet the new requirements of a growing number of applications where fractures appear both as potential advantages to enhance permeability and drawbacks for safety, e.g. in energy storage, stimulated geothermal energy and non-conventional gas productions. References Davy, P., et al. (2010), A likely universal model of fracture scaling and its consequence for crustal hydromechanics, Journal of Geophysical Research-Solid Earth, 115, 13. de Dreuzy, J.-R., et al. (2012a), Influence of fracture scale heterogeneity on the flow properties of three-dimensional Discrete Fracture Networks (DFN), J. Geophys. Res.-Earth Surf., 117(B11207), 21 PP. de Dreuzy, J.-R., et al. (2012b), Synthetic benchmark for modeling flow in 3D fractured media, Computers and Geosciences(0). Pichot, G., et al. (2010), A Mixed Hybrid Mortar Method for solving flow in Discrete Fracture Networks, Applicable Analysis, 89(10), 1729-1643. Pichot, G., et al. (2012), Flow simulation in 3D multi-scale fractured networks using non-matching meshes, SIAM Journal on Scientific Computing (SISC), 34(1). Figure: (a) Fracture network with a broad-range of fracture lengths. (b) Flows (log-scale) with homogeneous fractures. (c) Flows (log-scale) with heterogeneous fractures [de Dreuzy et al., 2012a]. The impact of the fracture apertures (c) is illustrated on the organization of flows.
Pulsating electrolyte flow in a full vanadium redox battery
NASA Astrophysics Data System (ADS)
Ling, C. Y.; Cao, H.; Chng, M. L.; Han, M.; Birgersson, E.
2015-10-01
Proper management of electrolyte flow in a vanadium redox battery (VRB) is crucial to achieve high overall system efficiency. On one hand, constant flow reduces concentration polarization and by extension, energy efficiency; on the other hand, it results in higher auxiliary pumping costs, which can consume around 10% of the discharge power. This work seeks to reduce the pumping cost by adopting a novel pulsing electrolyte flow strategy while retaining high energy efficiency. The results indicate that adopting a short flow period, followed by a long flow termination period, results in high energy efficiencies of 80.5% with a pumping cost reduction of over 50%.
Direct observation of vibrational energy flow in cytochrome c.
Fujii, Naoki; Mizuno, Misao; Mizutani, Yasuhisa
2011-11-10
Vibrational energy flow in ferric cytochrome c has been examined by picosecond time-resolved anti-Stokes ultraviolet resonance Raman (UVRR) measurements. By taking advantage of the extremely short nonradiative excited state lifetime of heme in the protein (< ps), excess vibrational energy of 20000-25000 cm(-1) was optically deposited selectively at the heme site. Subsequent energy relaxation in the protein moiety was investigated by monitoring the anti-Stokes UVRR intensities of the Trp59 residue, which is a single tryptophan residue involved in the protein that is located close to the heme group. It was found from temporal changes of the anti-Stokes UVRR intensities that the energy flow from the heme to Trp59 and the energy release from Trp59 took place with the time constants of 1-3 and ~8 ps, respectively. These data are consistent with the time constants for the vibrational relaxation of the heme and heating of water reported for hemeproteins. The kinetics of the energy flow were not affected by the amount of excess energy deposited at the heme group. These results demonstrate that the present technique is a powerful tool for studying the vibrational energy flow in proteins.
NASA Astrophysics Data System (ADS)
Buren, Mandula; Jian, Yongjun; Zhao, Yingchun; Chang, Long
2018-05-01
In this paper we analytically investigate the electroviscous effect and electrokinetic energy conversion in the time periodic pressure-driven flow of an incompressible viscous Newtonian liquid through a parallel-plate nanochannel with surface charge-dependent slip. Analytical and semi-analytical solutions for electric potential, velocity and streaming electric field are obtained and are utilized to compute electrokinetic energy conversion efficiency. The results show that velocity amplitude and energy conversion efficiency are reduced when the effect of surface charge on slip length is considered. The surface charge effect increases with zeta potential and ionic concentration. In addition, the energy conversion efficiency is large when the ratio of channel half-height to the electric double layer thickness is small. The boundary slip results in a large increase in energy conversion. Higher values of the frequency of pressure pulsation lead to higher values of the energy conversion efficiency. We also obtain the energy conversion efficiency in constant pressure-driven flow and find that the energy conversion efficiency in periodical pressure-driven flow becomes larger than that in constant pressure-driven flow when the frequency is large enough.
ERIC Educational Resources Information Center
Norman, Donald A.
1996-01-01
Discusses the educational applications of experimental psychologist Mihaly Csikszentmihalyi's theory of peak experience, or optimal flow. Optimal flow refers to the receptive state people achieve when they are engaged in interesting and challenging activity. Includes an insightful critique of multimedia instruction from this perspective. (MJP)
NASA Astrophysics Data System (ADS)
Shin, Philip
2012-03-01
I feel the electricity as radar. We can send the energy from antenna to another antenna, and it is moving easy and better than an electrical wire and safe. As a result, the transistor radio is more accurate and move stronger than the digital radio by the fact that electricity flows as a substance. To explain how the energy flows, the trees do not move by itself to hurt man(it is to be.). So the energy flow from antenna to another antenna safely and possibly without hurt as a sword. I understand that energy, the electricity is existing as radar and it proves the fact that how it flows from one place to another.
Sichel, C; Garcia, C; Andre, K
2011-12-01
UV/chlorine (UV/HOCl and UV/ClO(2)) Advanced Oxidation Processes (AOPs) were assessed with varying process layout and compared to the state of the art UV/H(2)O(2) AOP. The process comparison focused on the economical and energy saving potential of the UV/chlorine AOP. Therefore the experiments were performed at technical scale (250 L/h continuous flow reactor) and at process energies, oxidant and model contaminant concentrations expected in full scale reference plants. As model compounds the emerging contaminants (ECs): desethylatrazine, sulfamethoxazole, carbamazepine, diclofenac, benzotriazole, tolyltriazole, iopamidole and 17α-ethinylestradiol (EE2) were degraded at initial compound concentrations of 1 μg/L in tap water and matrixes with increased organic load (46 mg/L DOC). UV/chlorine AOP organic by-product forming potential was assessed for trihalomethanes (THMs) and N-Nitrosodimethylamine (NDMA). A process design was evaluated which can considerably reduce process costs, energy consumption and by-product generation from UV/HOCl AOPs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kalra, Tarandeep S.; Aretxabaleta, Alfredo; Seshadri, Pranay; Ganju, Neil K.; Beudin, Alexis
2017-01-01
Coastal hydrodynamics can be greatly affected by the presence of submerged aquatic vegetation. The effect of vegetation has been incorporated into the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. The vegetation implementation includes the plant-induced three-dimensional drag, in-canopy wave-induced streaming, and the production of turbulent kinetic energy by the presence of vegetation. In this study, we evaluate the sensitivity of the flow and wave dynamics to vegetation parameters using Sobol' indices and a least squares polynomial approach referred to as Effective Quadratures method. This method reduces the number of simulations needed for evaluating Sobol' indices and provides a robust, practical, and efficient approach for the parameter sensitivity analysis. The evaluation of Sobol' indices shows that kinetic energy, turbulent kinetic energy, and water level changes are affected by plant density, height, and to a certain degree, diameter. Wave dissipation is mostly dependent on the variation in plant density. Performing sensitivity analyses for the vegetation module in COAWST provides guidance for future observational and modeling work to optimize efforts and reduce exploration of parameter space.
Beams of particles and papers: How digital preprint archives shape authorship and credit.
Delfanti, Alessandro
2016-08-01
In high energy physics, scholarly papers circulate primarily through online preprint archives based on a centralized repository, arXiv, that physicists simply refer to as 'the archive'. The archive is not just a tool for preservation and memory but also a space of flows where written objects are detected and their authors made available for scrutiny. In this article, I analyze the reading and publishing practices of two subsets of high energy physicists: theorists and experimentalists. In order to be recognized as legitimate and productive members of their community, they need to abide by the temporalities and authorial practices structured by the archive. Theorists live in a state of accelerated time that shapes their reading and publishing practices around precise cycles. Experimentalists turn to tactics that allow them to circumvent the slowed-down time and invisibility they experience as members of large collaborations. As digital platforms for the exchange of scholarly articles emerge in other fields, high energy physics could help shed light on general transformations of contemporary scholarly communication systems.
The Numerical Simulation of the Shock Wave of Coal Gas Explosions in Gas Pipe*
NASA Astrophysics Data System (ADS)
Chen, Zhenxing; Hou, Kepeng; Chen, Longwei
2018-03-01
For the problem of large deformation and vortex, the method of Euler and Lagrange has both advantage and disadvantage. In this paper we adopt special fuzzy interface method(volume of fluid). Gas satisfies the conditions of conservation equations of mass, momentum, and energy. Based on explosion and three-dimension fluid dynamics theory, using unsteady, compressible, inviscid hydrodynamic equations and state equations, this paper considers pressure gradient’s effects to velocity, mass and energy in Lagrange steps by the finite difference method. To minimize transport errors of material, energy and volume in Finite Difference mesh, it also considers material transport in Euler steps. Programmed with Fortran PowerStation 4.0 and visualized with the software designed independently, we design the numerical simulation of gas explosion with specific pipeline structure, check the key points of the pressure change in the flow field, reproduce the gas explosion in pipeline of shock wave propagation, from the initial development, flame and accelerate the process of shock wave. This offers beneficial reference and experience to coal gas explosion accidents or safety precautions.
Device for monitoring cell voltage
Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE
2012-08-21
A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.
Flow Cells for Scalable Energy Conversion and Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukundan, Rangachary
2017-10-26
This project is a response to current flow systems that are V-aqueous and not cost effective. It will hopefully enable high energy/ power density flow cells through rational materials and system design.
Thermocouple Boundary Layer Rake
NASA Technical Reports Server (NTRS)
Hwang, Danny P. (Inventor); Will, Herbert A. (Inventor); Fralick, Gustave C. (Inventor)
2002-01-01
Apparatus and method for providing a velocity flow profile near a reference surface. A measuring device utilizes a plurality of thermojunction pairs to provide the velocity flow profile in accordance with behavior of a gas relative to a constant thickness strut which stands vertically from the reference surface such that the span is normal to the surface, and the chord is parallel to the surface along the initial flow direction. Each thermojunction is carried on either side of a heater formed on a measuring surface in a constant thickness portion of a strut. Additionally, each thermojunction of a given pair is located at a predetermined height from the reference surface. Gas velocity data obtained from temperature differentials from one side of the heater to the other at each successive height is utilized to generate the velocity and turbulence level profiles.
NASA Technical Reports Server (NTRS)
Dash, S.; Delguidice, P.
1972-01-01
A second order numerical method employing reference plane characteristics has been developed for the calculation of geometrically complex three dimensional nozzle-exhaust flow fields, heretofore uncalculable by existing methods. The nozzles may have irregular cross sections with swept throats and may be stacked in modules using the vehicle undersurface for additional expansion. The nozzles may have highly nonuniform entrance conditions, the medium considered being an equilibrium hydrogen-air mixture. The program calculates and carries along the underexpansion shock and contact as discrete discontinuity surfaces, for a nonuniform vehicle external flow.
NASA Technical Reports Server (NTRS)
Dougherty, N. S.; Burnette, D. W.; Holt, J. B.; Nesman, T.
1993-01-01
Unsteady flow computations are being performed with the P&W (ATD) and the Rocketdyne baseline configurations of the SSME LO2 turbine turnaround duct (TAD) and heat exchanger (HEX). The work is in support of the HEX inner turning vane cracking investigation. Fatigue cracking has occurred during hot firings with the P&W configuration on the HEX inner vane, and it appears the fix will involve changes to the TAD splitter vane position and to the TAD inner wall curvature to reduce the dynamic loading on the inner vane. Unsteady flow computations on the P&W baseline and fix and on the Rocketdyne baseline reference follow steady-flow screening computations done by MSFC/ED32 on several trial configurations arriving at the fix. The P&W TAD inlet velocity profile has a strong radial velocity component that directs the flow toward the inner wall and raises the local velocity a factor of two and the dynamic pressure a factor, of four. The fix is intended to redistribute the flow more evenly across the HEX inner and outer vanes like the Rocketdyne baseline reference. Vane buffeting at frequencies around 4,000 Hz is the leading suspected cause of the problem. Our simulations (work in progress) are being done with the USA 2D axisymmetric code approximating the flow as axisymmetric u+v 2D (axial, u, and radial, v, components only). The HEX coils are included in the model to make sure the fix does not adversely affect the HEX environment. Turbulent kinetic energy, k, levels where k = 1/2 v' rms2 are locally as high as 10,000 ft2/sec2 for the P&W baseline at the engine interface (between the TAD and HEX) at the HEX inner vane location. However, k is less than 8,000 on the HEX outer vane and only about 4,500 on the HEX inner vane for the Rocketdyne baseline. Unsteady turbulence intensity, v'rms/v, and pressure, p', are being computed in the present computations to compare with steady-flow Reynolds-averaged computations where p'rms = const (pk) for overall rms random turbulence from 0.1 to 12,000 Hz frequency. Random overall static, p'rms fluctuations as large as 1.7 psi are estimated from k on the HEX inner vane for the P&W baseline configuration but only about 0.7 psi for the Rocketdyne configuration.
The Effects of the Impedance of the Flow Source on the Design of Tidal Stream Generators
NASA Astrophysics Data System (ADS)
Salter, S.
2011-12-01
The maximum performance of a wind turbine is set by the well-known Betz limit. If the designer of a wind turbine uses too fast a rotation, too large a blade chord or too high an angle of blade pitch, the air flow can take an easier path over or around the rotor. Most estimates of the tidal stream resource use equations borrowed from wind and would be reasonably accurate for a single unit. But water cannot flow through the seabed or over rotors which reach to the surface. If contra-rotating, vertical-axis turbines with a rectangular flow-window are placed close to one another and reach from the surface close to the seabed, the leakage path is blocked and they become more like turbines in a closed duct. Instead of an equation with area times velocity-cubed we should use the first power of volume flow rate though the rotor times the pressure difference across it. A long channel with a rough bed will already be losing lots of energy and will behave more like a high impedance flow. Attempts to block it with closely-packed turbines will increase the head across the turbines with only a small effect on flow rate. The same thing will occur if a close-packed line of turbines is built out to sea from a headland. It is necessary to understand the impedance of the flow source all the way out to mid-ocean. In deep seas where the current velocities at the seabed are too slow to disturb the ooze the friction coefficients will be similar to those of gloss paint, perhaps 0.0025. But the higher velocities in shallow water will remove ooze and quite large sediments leaving rough, bare rock and leading to higher friction-coefficients. Energy dissipation will be set by the higher friction coefficients and the cube of the higher velocities. The presence of turbines will reduce seabed losses and about one third of the present loss can be converted to electricity. The velocity reduction would be about 10%. In many sites the energy output will be far higher than the wind turbine equations would predict. It may be possible to measure friction coefficients by looking at the slope of the water across a likely tidal stream site as indicated by the pressure-sensing instruments built in to acoustic Doppler current profilers. If this reasoning is correct it would lead to large changes in turbine design for tidal streams particularly with regard to the very large forces which have to be passed into the seabed. The spacing of three rotor diameters, often recommended for tidal stream turbines becomes the equivalent of leaking pipes in conventional hydro-electric plant. These design changes will be discussed. Reference Salter SH. Correcting the Under-estimate of the Tidal-Stream Resource of the Pentland Firth. 8th European Wave and Tidal Energy Conference, Uppsala 2009 From www.see.ed.ac.uk/~shs then browse to /Tidal stream.
Green survivability in Fiber-Wireless (FiWi) broadband access network
NASA Astrophysics Data System (ADS)
Liu, Yejun; Guo, Lei; Gong, Bo; Ma, Rui; Gong, Xiaoxue; Zhang, Lincong; Yang, Jiangzi
2012-03-01
Fiber-Wireless (FiWi) broadband access network is a promising "last mile" access technology, because it integrates wireless and optical access technologies in terms of their respective merits, such as high capacity and stable transmission from optical access technology, and easy deployment and flexibility from wireless access technology. Since FiWi is expected to carry a large amount of traffic, numerous traffic flows may be interrupted by the failure of network components. Thus, survivability in FiWi is a key issue aiming at reliable and robust service. However, the redundant deployment of backup resource required for survivability usually causes huge energy consumption, which aggravates the global warming and accelerates the incoming of energy crisis. Thus, the energy-saving issue should be considered when it comes to survivability design. In this paper, we focus on the green survivability in FiWi, which is an innovative concept and remains untouched in the previous works to our best knowledge. We first review and discuss some challenging issues about survivability and energy-saving in FiWi, and then we propose some instructive solutions for its green survivability design. Therefore, our work in this paper will provide the technical references and research motivations for the energy-efficient and survivable FiWi development in the future.
Borcherdt, Roger D.; Wennerberg, Leif
1985-01-01
The physical characteristics for general plane-wave radiation fields in an arbitrary linear viscoelastic solid are derived. Expressions for the characteristics of inhomogeneous wave fields, derived in terms of those for homogeneous fields, are utilized to specify the characteristics and a set of reference curves for general P and S wave fields in arbitrary viscoelastic solids as a function of wave inhomogeneity and intrinsic material absorption. The expressions show that an increase in inhomogeneity of the wave fields cause the velocity to decrease, the fractional-energy loss (Q** minus **1) to increase, the deviation of maximum energy flow with respect to phase propagation to increase, and the elliptical particle motions for P and type-I S waves to approach circularity. Q** minus **1 for inhomogeneous type-I S waves is shown to be greater than that for type-II S waves, with the deviation first increasing then decreasing with inhomogeneity. The mean energy densities (kinetic, potential, and total), the mean rate of energy dissipation, the mean energy flux, and Q** minus **1 for inhomogeneous waves are shown to be greater than corresponding characteristics for homogeneous waves, with the deviations increasing as the inhomogeneity is increased for waves of fixed maximum displacement amplitude.
Acoustic Flow Monitor System - User Manual
LaHusen, Richard
2005-01-01
INTRODUCTION The Acoustic Flow Monitor (AFM) is a portable system that was designed by the U.S. Geological Survey Cascades Volcano Observatory to detect and monitor debris flows associated with volcanoes. It has been successfully used internationally as part of real-time warning systems in valleys threatened by such flows (Brantley, 1990; Marcial and others, 1996; Lavigne and others, 2000). The AFM system has also been proven to be an effective tool for monitoring some non-volcanic debris flows. This manual is intended to serve as a basic guide for the installation, testing, and maintenance of AFM systems. An overview of how the system works, as well as instructions for installation and guidelines for testing, is included. Interpretation of data is not covered in this manual; rather, the user should refer to the references provided for published examples of AFM data.
Preceiving Patterns of Reference Service: A Survey
ERIC Educational Resources Information Center
Blakely, Florence
1971-01-01
Reference librarians must, if they hope to survive, retool in preparation for becoming the interface between the patron and computer-based information systems. This involves sharpening the interview technique and understanding where to plug into the information flow process. (4 references) (Author)
TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries.
Wei, Xiaoliang; Xu, Wu; Vijayakumar, Murugesan; Cosimbescu, Lelia; Liu, Tianbiao; Sprenkle, Vincent; Wang, Wei
2014-12-03
A TEMPO-based non-aqueous electrolyte with the TEMPO concentration as high as 2.0 m is demonstrated as a high-energy-density catholyte for redox flow battery applications. With a hybrid anode, Li|TEMPO flow cells using this electrolyte deliver an energy efficiency of ca. 70% and an impressively high energy density of 126 W h L(-1) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2011 CFR
2011-04-01
....13, 001-1.0, 001-9.7, 001-14.1.3, and 001-15.1.2); (2) Open Access Same-Time Information Systems... reference of North American Energy Standards Board Wholesale Electric Quadrant standards. 38.2 Section 38.2... UTILITIES § 38.2 Incorporation by reference of North American Energy Standards Board Wholesale Electric...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ
The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in suchmore » scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.« less
ERIC Educational Resources Information Center
Energy Information Administration (DOE), Washington, DC.
This booklet is a compilation of energy data providing a reference to a much broader range of domestic and international energy data. It is designed especially as a quick reference to major facts about energy. The data includes information for 1976 through 1988, except for international energy data, which is for 1977 through 1987. Graphs, charts,…
76 FR 57982 - Building Energy Codes Cost Analysis
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-19
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Docket No. EERE-2011-BT-BC-0046] Building Energy Codes Cost Analysis Correction In notice document 2011-23236 beginning on page... heading ``Table 1. Cash flow components'' should read ``Table 7. Cash flow components''. [FR Doc. C1-2011...
Radiant energy absorption studies for laser propulsion. [gas dynamics
NASA Technical Reports Server (NTRS)
Caledonia, G. E.; Wu, P. K. S.; Pirri, A. N.
1975-01-01
A study of the energy absorption mechanisms and fluid dynamic considerations for efficient conversion of high power laser radiation into a high velocity flow is presented. The objectives of the study are: (1) to determine the most effective absorption mechanisms for converting laser radiation into translational energy, and (2) to examine the requirements for transfer of the absorbed energy into a steady flow which is stable to disturbances in the absorption zone. A review of inverse Bremsstrahlung, molecular and particulate absorption mechanisms is considered and the steady flow and stability considerations for conversion of the laser power to a high velocity flow in a nozzle configuration is calculated. A quasi-one-dimensional flow through a nozzle was formulated under the assumptions of perfect gas.
NETL Crosscutting Research Video Series: Multiphase Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Vaidheeswaran, Avinash
For over 30 years, NETL’s work in multiphase flow science has served as one of the cornerstones of the lab’s research portfolio. Multiphase flow refers to the simultaneous flow of gases, liquids and/or solid materials. The goal of the multiphase flow science team is to provide computational modeling tools to help offset the risk and cost of multiphase reactor development.
Spectral kinetic energy transfer in turbulent premixed reacting flows.
Towery, C A Z; Poludnenko, A Y; Urzay, J; O'Brien, J; Ihme, M; Hamlington, P E
2016-05-01
Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Bum; Kim, Chang Il; Jeong, Young Hun; Cho, Jeong-Ho; Paik, Jong-Hoo; Nahm, Sahn; Lim, Jong Bong; Seong, Tae-Hyeon
2013-10-01
A water flow energy harvester, which can convert water flow energy to electric energy, was fabricated for its application to rivers. This harvester can generate power from the bending and releasing motion of piezoelectric bimorph cantilevers. A Pb(Zr0.54Ti0.46)O3 + 0.2 wt % Cr2O3 + 1.0 wt % Nb2O5 (PZT-CN) thick film and a 250-µm-thick stainless steel were used as a bimorph cantilever. The electrical impedance matching was achieved across a resistive load of 1 kΩ. Four bimorph cantilevers can generate power from 5 to 105 rpm. The output powers were steadily increased by increasing the rpm. The maximum output power was 68 mW by 105 rpm. It was found that the water flow energy harvester can generate 58 mW by a flow velocity of (2 m/s) from the stream with the four bimorph cantilevers.
Energy Flow through a Paper Ecosystem.
ERIC Educational Resources Information Center
Aston, T. J.
1988-01-01
Presented is an exercise for high school students which illustrates the principle and practice of measuring energy flow through a community. Included are worksheets, instructions, a flow diagram, and a list of ecosystem parameters. (Author/CW)
Divett, T; Vennell, R; Stevens, C
2013-02-28
At tidal energy sites, large arrays of hundreds of turbines will be required to generate economically significant amounts of energy. Owing to wake effects within the array, the placement of turbines within will be vital to capturing the maximum energy from the resource. This study presents preliminary results using Gerris, an adaptive mesh flow solver, to investigate the flow through four different arrays of 15 turbines each. The goal is to optimize the position of turbines within an array in an idealized channel. The turbines are represented as areas of increased bottom friction in an adaptive mesh model so that the flow and power capture in tidally reversing flow through large arrays can be studied. The effect of oscillating tides is studied, with interesting dynamics generated as the tidal current reverses direction, forcing turbulent flow through the array. The energy removed from the flow by each of the four arrays is compared over a tidal cycle. A staggered array is found to extract 54 per cent more energy than a non-staggered array. Furthermore, an array positioned to one side of the channel is found to remove a similar amount of energy compared with an array in the centre of the channel.
A spatial emergy model for Alachua County, Florida
NASA Astrophysics Data System (ADS)
Lambert, James David
A spatial model of the distribution of energy flows and storages in Alachua County, Florida, was created and used to analyze spatial patterns of energy transformation hierarchy in relation to spatial patterns of human settlement. Emergy, the available energy of one kind previously required directly or indirectly to make a product or service, was used as a measure of the quality of the different forms of energy flows and storages. Emergy provides a common unit of measure for comparing the productive contributions of natural processes with those of economic and social processes---it is an alternative to using money for measuring value. A geographic information system was used to create a spatial model and make maps that show the distribution and magnitude of different types of energy and emergy flows and storages occurring in one-hectare land units. Energy transformities were used to convert individual energy flows and storages into emergy units. Maps of transformities were created that reveal a clear spatial pattern of energy transformation hierarchy. The maps display patterns of widely-dispersed areas with lower transformity energy flows and storages, and smaller, centrally-located areas with higher transformities. Energy signature graphs and spatial unit transformities were used to characterize and compare the types and amounts of energy being consumed and stored according to land use classification, planning unit, and neighborhood categories. Emergy ratio maps and spatial unit ratios were created by dividing the values for specific emergy flows or storages by the values for other emergy flows or storages. Spatial context analysis was used to analyze the spatial distribution patterns of mean and maximum values for emergy flows and storages. The modeling method developed for this study is general and applicable to all types of landscapes and could be applied at any scale. An advantage of this general approach is that the results of other studies using this method will be directly comparable with the results of this study. The results and conclusions of this study reinforce the hypothesis that an urban landscape will develop a predictable spatial pattern that can be described in terms of a universal energy transformation hierarchy.
Overdamped large-eddy simulations of turbulent pipe flow up to Reτ = 1500
NASA Astrophysics Data System (ADS)
Feldmann, Daniel; Avila, Marc
2018-04-01
We present results from large-eddy simulations (LES) of turbulent pipe flow in a computational domain of 42 radii in length. Wide ranges of shear the Reynolds number and Smagorinsky model parameter are covered, 180 ≤ Reτ ≤ 1500 and 0.05 ≤ Cs ≤ 1.2, respectively. The aim is to asses the effect of Cs on the resolved flow field and turbulence statistics as well as to test whether very large scale motions (VLSM) in pipe flow can be isolated from the near-wall cycle by enhancing the dissipative character of the static Smagorinsky model with elevated Cs values. We found that the optimal Cs to achieve best agreement with reference data varies with Reτ and further depends on the wall normal location and the quantity of interest. Furthermore, for increasing Reτ , the optimal Cs for pipe flow LES seems to approach the theoretically optimal value for LES of isotropic turbulence. In agreement with previous studies, we found that for increasing Cs small-scale streaks in simple flow field visualisations are gradually quenched and replaced by much larger smooth streaks. Our analysis of low-order turbulence statistics suggests, that these structures originate from an effective reduction of the Reynolds number and thus represent modified low-Reynolds number near-wall streaks rather than VLSM. We argue that overdamped LES with the static Smagorinsky model cannot be used to unambiguously determine the origin and the dynamics of VLSM in pipe flow. The approach might be salvaged by e.g. using more sophisticated LES models accounting for energy flux towards large scales or explicit anisotropic filter kernels.
Laboratory measurements of grain-bedrock interactions using inertial sensors.
NASA Astrophysics Data System (ADS)
Maniatis, Georgios; Hoey, Trevor; Hodge, Rebecca; Valyrakis, Manousos; Drysdale, Tim
2016-04-01
Sediment transport in steep mountain streams is characterized by the movement of coarse particles (diameter c.100 mm) over beds that are not fully sediment-covered. Under such conditions, individual grain dynamics become important for the prediction of sediment movement and subsequently for understanding grain-bedrock interaction. Technological advances in micro-mechanical-electrical systems now provide opportunities to measure individual grain dynamics and impact forces from inside the sediments (grain inertial frame of reference) instead of trying to infer them indirectly from water flow dynamics. We previously presented a new prototype sensor specifically developed for monitoring sediment transport [Maniatis et al. EGU 2014], and have shown how the definition of the physics of the grain using the inertial frame and subsequent derived measurements which have the potential to enhance the prediction of sediment entrainment [Maniatis et al. 2015]. Here we present the latest version of this sensor and we focus on beginning of the cessation of grain motion: the initial interaction with the bed after the translation phase. The sensor is housed in a spherical case, diameter 80mm, and is constructed using solid aluminum (density = 2.7 kg.m-3) after detailed 3D-CAD modelling. A complete Inertial Measurement Unit (a combination of micro- accelerometer, gyroscope and compass) was placed at the center of the mass of the assembly, with measurement ranges of 400g for acceleration, and 1200 rads/sec for angular velocity. In a 0.9m wide laboratory flume, bed slope = 0.02, the entrainment threshold of the sensor was measured, and the water flow was then set to this value. The sensor was then rolled freely from a static cylindrical bar positioned exactly on the surface of the flowing water. As the sensor enters the flow we record a very short period of transport (1-1.5 sec) followed by the impact on the channel bed. The measured Total Kinetic Energy (Joules) includes the translational energy component of transport (defined as a function of 3-dimensional translational velocity) as well as the rotational component (a function of the 3-axis angular velocity measurements from the gyroscope) which is neglected in the majority of contemporary saltation models. The results suggest that, for this grain scale, the magnitude of the impact of mobile grains on the bed is primarily controlled by their inertia. References Maniatis et al. 2014 EGU General assembly http://meetingorganizer.copernicus.org/EGU2014/EGU2014-12829.pdf Maniatis et. al 2015: "CALCULATION OF EXPLICIT PROBABILITY OF ENTRAINMENT BASED ON INERTIAL ACCELERATION MEASUREMENTS" J. Hydraulic Engineering, Under review.
Are mangroves as tough as a seawall? Flow-vegetation interaction in a living shoreline restoration
NASA Astrophysics Data System (ADS)
Kibler, K. M.; Kitsikoudis, V.; Spiering, D. W.
2017-12-01
This study aims to assess the impact of an established living shoreline restoration on near-shore hydraulics, shoreline slope, and sediment texture and organic matter content. We collected data from three 100 m shoreline sites within an estuarine lagoon in Canaveral National Seashore: one restored; one that had been stabilized by a seawall; and one in a reference condition stabilized by mature mangrove vegetation. The living shoreline site was restored five years prior with a breakwater of oyster shell bags, emergent marsh grasses (Spartina alterniflora), and mangroves (Rhizophora mangle and Avicennia germinans). We sampled water depth and incoming velocity profiles of the full water column at 2 Hz using a 2 MHz Acoustic Doppler Current Profiler (ADCP, Nortek), stationed down-looking, approximately 10 m offshore. A 2 - 3 cm velocity profile above the bed was sampled on the shoreline at 100 Hz, using a Nortek Vectrino profiler. In restored and reference sites, the onshore probe was placed within vegetation. We surveyed vegetation upstream of the probe for species and diameter at water level. Windspeed and direction were collected 2 m above the water surface. Shorelines were surveyed in transects using GPS survey equipment. Five sediment cores were collected to 20 cm depth from both onshore and offshore of each site. Individual cores were processed for loss on ignition before being pooled by site for analysis of grain size distribution. While incoming velocity profiles were similar between sites, hydraulic conditions onshore within the vegetated sites deviated from the seawall site, which was devoid of vegetation. Offshore to onshore gradients in shear stress, mean velocity, and turbulent kinetic energy differed widely between sites, despite similar wind and tidal conditions. Sediment grain sizes were finer and contained more organic matter in the restored and reference sites than in the seawall site. Profiles of the restored and seawall sites were similar, though the reference site had a more complex bathymetry. Variable hydraulic patterns observed at restored and reference sites may attribute to differences in dominant vegetation-water interactions. Interactions at the reference site were characterized by flow between mangrove prop roots while the restored site consisted mainly of Spartina leaves.
Advanced porous electrodes with flow channels for vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon
2017-02-01
Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.
Topological transitions in unidirectional flow of nematic liquid crystal
NASA Astrophysics Data System (ADS)
Cummings, Linda; Anderson, Thomas; Mema, Ensela; Kondic, Lou
2015-11-01
Recent experiments by Sengupta et al. (Phys. Rev. Lett. 2013) revealed interesting transitions that can occur in flow of nematic liquid crystal under carefully controlled conditions within a long microfluidic channel of rectangular cross-section, with homeotropic anchoring at the walls. At low flow rates the director field of the nematic adopts a configuration that is dominated by the surface anchoring, being nearly parallel to the channel height direction over most of the cross-section; but at high flow rates there is a transition to a flow-dominated state, where the director configuration at the channel centerline is aligned with the flow (perpendicular to the channel height direction). We analyze simple channel-flow solutions to the Leslie-Ericksen model for nematics. We demonstrate that two solutions exist, at all flow rates, but that there is a transition between the elastic free energies of these solutions: the anchoring-dominated solution has the lowest energy at low flow rates, and the flow-dominated solution has lowest energy at high flow rates. NSF DMS 1211713.
NASA Astrophysics Data System (ADS)
Paula Leite, Rodolfo; Freitas, Rodrigo; Azevedo, Rodolfo; de Koning, Maurice
2016-11-01
The Uhlenbeck-Ford (UF) model was originally proposed for the theoretical study of imperfect gases, given that all its virial coefficients can be evaluated exactly, in principle. Here, in addition to computing the previously unknown coefficients B11 through B13, we assess its applicability as a reference system in fluid-phase free-energy calculations using molecular simulation techniques. Our results demonstrate that, although the UF model itself is too soft, appropriately scaled Uhlenbeck-Ford (sUF) models provide robust reference systems that allow accurate fluid-phase free-energy calculations without the need for an intermediate reference model. Indeed, in addition to the accuracy with which their free energies are known and their convenient scaling properties, the fluid is the only thermodynamically stable phase for a wide range of sUF models. This set of favorable properties may potentially put the sUF fluid-phase reference systems on par with the standard role that harmonic and Einstein solids play as reference systems for solid-phase free-energy calculations.
Zhu, Xiuping; Kim, Taeyoung; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce E
2017-02-22
Salinity gradient energy can be directly converted into electrical power by using reverse electrodialysis (RED) and other technologies, but reported power densities have been too low for practical applications. Herein, the RED stack performance was improved by using 2,6-dihydroxyanthraquinone and ferrocyanide as redox couples. These electrolytes were then used in a flow battery to produce an integrated RED stack and flow battery (RED-FB) system capable of capturing, storing, and discharging salinity gradient energy. Energy captured from the RED stack was discharged in the flow battery at a maximum power density of 3.0 kW m -2 -anode, which was similar to the flow batteries charged by electrical power and could be used for practical applications. Salinity gradient energy captured from the RED stack was recovered from the electrolytes as electricity with 30 % efficiency, and the maximum energy density of the system was 2.4 kWh m -3 -anolyte. The combined RED-FB system overcomes many limitations of previous approaches to capture, store, and use salinity gradient energy from natural or engineered sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comparison of energy flows in deep inelastic scattering events with and without a large rapidity gap
NASA Astrophysics Data System (ADS)
Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Schlereth, J.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Romeo, G. Cara; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; Del Papa, C.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Garcia, Y. Zamora; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schneider, J.-L.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Gialas, I.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kȩdzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Böttcher, S.; Coldewey, C.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Göttlicher, P.; Gutjahr, B.; Haas, T.; Hagge, L.; Hain, W.; Hasell, D.; Heßling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Kröger, W.; Krüger, J.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schroeder, J.; Schulz, W.; Selonke, F.; Stiliaris, E.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlenstedt, S.; Barbagli, G.; Pelfer, P.; Anzivino, G.; De Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, I.; Forbes, J. R.; Jamieson, V. A.; Raine, C.; Saxon, D. H.; Stavrianakou, M.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Kammerlocher, H.; Krebs, B.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Fürtjes, A.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Terron, J.; Zetsche, F.; Bacon, T. C.; Beuselinck, R.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Kim, C. O.; Kim, T. Y.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; del Peso, J.; Puga, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Mitchell, J. W.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Laurent, M. St.; Ullmann, R.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Bentvelsen, S.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Jong, P.; de Kamps, M.; Kooijman, P.; Kruse, A.; O'Dell, V.; Tenner, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Luffman, P. E.; McFall, J.; Nath, C.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Gasparini, F.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Iori, M.; Marini, G.; Mattioli, M.; Nigro, A.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Dubbs, T.; Heusch, C.; Van Hook, M.; Hubbard, B.; Lockman, W.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nagira, T.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. S.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchuła, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Revel, D.; Shapira, A.; Ali, I.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Tsurugai, T.; Bhadra, S.; Frisken, W. R.; Furutani, K. M.; ZEUS Collaboration
1994-11-01
Energy flows in deep inelastic electron-proton scattering are investigated at a centre-of-mass energy of 269 GeV for the range Q2 ≥ 10 GeV 2 using the ZEUS detector. A comparison is made between events with and without a large rapidity gap between the hadronic system and the proton direction. The energy flows, corrected for detector acceptance and resolution, are shown for these two classes of events in both the HERA laboratory frame and the Breit frame. From the differences in the shapes of these energy flows we conclude that QCD radiation is suppressed in the large-rapidity-gap eents compared to the events without a large rapidity gap.
Non-invasive energy meter for fixed and variable flow systems
Menicucci, David F.; Black, Billy D.
2005-11-01
An energy metering method and apparatus for liquid flow systems comprising first and second segments of one or more conduits through which a liquid flows, comprising: attaching a first temperature sensor for connection to an outside of the first conduit segment; attaching a second temperature sensor for connection to an outside of the second conduit segment; via a programmable control unit, receiving data from the sensors and calculating energy data therefrom; and communicating energy data from the meter; whereby the method and apparatus operate without need to temporarily disconnect or alter the first or second conduit segments. The invention operates with both variable and fixed flow systems, and is especially useful for both active and passive solar energy systems.
2016-02-26
AFRL-AFOSR-VA-TR-2016-0104 Thermal and mechanical non-equilibrium effects on turbulent flows:fundamental studies of energy exchanges through direct...flows: fundamental studies of energy exchanges through direct numerical simulations, molecular simulations and experiments 5a. CONTRACT NUMBER 5b...AVAILABILITY STATEMENT A DISTRIBUTION UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Utilizing internal energy exchange for intelligent
Three Dimensional Energetics of Left Ventricle Flows Using Time-Resolved DPIV
NASA Astrophysics Data System (ADS)
Pierrakos, Olga; Vlachos, Pavlos
2006-11-01
Left ventricular (LV) flows in the human heart are very complex and in the presence of unhealthy or prosthetic heart valves (HV), the complexity of the flow is further increased. Yet to date, no study has documented the complex 3D hemodynamic characteristics and energetics of LV flows. We present high sampling frequency Time Resolved DPIV results obtained in a flexible, transparent LV documenting the evolution of eddies and turbulence. The purpose is to characterize the energetics of the LV flow field in the presence of four orientations of the most commonly implanted mechanical bileaflet HV and a porcine valve. By decomposing the energy scales of the flow field, the ultimate goal is to quantify the total energy losses associated with vortex ring formation and turbulence dissipation. The energies associated to vortex ring formation give a measure of the energy trapped within the structure while estimations of the turbulence dissipation rate (TDR) give a measure of the energy dissipated at the smaller scales. For the first time in cardiovascular applications, an LES-based PIV method, which overcomes the limitations of conventional TDR estimation methods that assume homogeneous isotropic turbulence, was employed. We observed that energy lost at the larger scales (vortex ring) is much higher than the energy lost at the smaller scales due to turbulence dissipation.
THE BERNOULLI EQUATION AND COMPRESSIBLE FLOW THEORIES
The incompressible Bernoulli equation is an analytical relationship between pressure, kinetic energy, and potential energy. As perhaps the simplest and most useful statement for describing laminar flow, it buttresses numerous incompressible flow models that have been developed ...
Negotiating Energy Dynamics through Embodied Action in a Materially Structured Environment
ERIC Educational Resources Information Center
Scherr, Rachel E.; Close, Hunter G.; Close, Eleanor W.; Flood, Virginia J.; McKagan, Sarah B.; Robertson, Amy D.; Seeley, Lane; Wittmann, Michael C.; Vokos, Stamatis
2013-01-01
We provide evidence that a learning activity called Energy Theater engages learners with key conceptual issues in the learning of energy, including disambiguating matter flow and energy flow and theorizing mechanisms for energy transformation. A participationist theory of learning, in which learning is indicated by changes in speech and behavior,…
NASA Technical Reports Server (NTRS)
Schmid, L. A.
1977-01-01
The case of a cold gas in the absence of external force fields is considered. Since the only energy involved is kinetic energy, the total kinetic action (i.e., the space-time integral of the kinetic energy density) should serve as the total free-energy functional in this case, and as such should be a local minimum for all possible fluctuations about stable flow. This conjecture is tested by calculating explicit, manifestly covariant expressions for the first and second variations of the total kinetic action in the context of Lagrangian kinematics. The general question of the correlation between physical stability and the convexity of any action integral that can be interpreted as the total free-energy functional of the flow is discussed and illustrated for the cases of rectillinear and rotating shearing flows.
Dynamic Response of an Energy Harvesting Device Under Realistic Flow Conditions
NASA Astrophysics Data System (ADS)
O'Connor, Joseph; Revell, Alistair
2017-11-01
The need for reliable, cost-efficient, green energy alternatives has led to increased research in the area of energy harvesting. One approach to energy harvesting is to take advantage of self-sustaining flow-induced vibrations. Through the use of a piezoelectric flag, the mechanical strain from the flapping motion can be converted into electrical energy. While such devices show a lot of promise, the fluid-structure-electrical interactions are highly nonlinear and their response to off-design variations in flow conditions, such as those likely to be encountered upon deployment, is relatively unexplored. The purpose of the present work is to examine how a representative energy harvesting device performs in realistic atmospheric flow conditions involving wind gusts with spatial and temporal variations. A recently developed lattice-Boltzmann-immersed boundary-finite element model is used to perform fully-coupled 3D simulations of the fluid-structure system. For a range of unsteady flow conditions the resulting flow features and structural motion are examined and key behaviour modes are mapped out. The findings of this work will be particularly relevant for self-powered remote sensing networks, which often require deployment in unpredictable and varied environments.
78 FR 33400 - Free Flow Power Corporation; Notice Soliciting Scoping Comments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-04
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Project No. 13346-003] Free Flow Power... Major License. b. Project No.: P-13346-003. c. Date filed: December 3, 2012. d. Applicant: Free Flow Power Corporation (Free Flow Power), on behalf of its subsidiary PayneBridge, LLC. e. Name of Project...
Chen, Yu; Mu, Xiaojing; Wang, Tao; Ren, Weiwei; Yang, Ya; Wang, Zhong Lin; Sun, Chengliang; Gu, Alex Yuandong
2016-01-01
Here, we report a stable and predictable aero-elastic motion in the flow-driven energy harvester, which is different from flapping and vortex-induced-vibration (VIV). A unified theoretical frame work that describes the flutter phenomenon observed in both “stiff” and “flexible” materials for flow driven energy harvester was presented in this work. We prove flutter in both types of materials is the results of the coupled effects of torsional and bending modes. Compared to “stiff” materials, which has a flow velocity-independent flutter frequency, flexible material presents a flutter frequency that almost linearly scales with the flow velocity. Specific to “flexible” materials, pre-stress modulates the frequency range in which flutter occurs. It is experimentally observed that a double-clamped “flexible” piezoelectric P(VDF-TrFE) thin belt, when driven into the flutter state, yields a 1,000 times increase in the output voltage compared to that of the non-fluttered state. At a fixed flow velocity, increase in pre-stress level of the P(VDF-TrFE) thin belt up-shifts the flutter frequency. In addition, this work allows the rational design of flexible piezoelectric devices, including flow-driven energy harvester, triboelectric energy harvester, and self-powered wireless flow speed sensor. PMID:27739484
Chen, Yu; Mu, Xiaojing; Wang, Tao; Ren, Weiwei; Yang, Ya; Wang, Zhong Lin; Sun, Chengliang; Gu, Alex Yuandong
2016-10-14
Here, we report a stable and predictable aero-elastic motion in the flow-driven energy harvester, which is different from flapping and vortex-induced-vibration (VIV). A unified theoretical frame work that describes the flutter phenomenon observed in both "stiff" and "flexible" materials for flow driven energy harvester was presented in this work. We prove flutter in both types of materials is the results of the coupled effects of torsional and bending modes. Compared to "stiff" materials, which has a flow velocity-independent flutter frequency, flexible material presents a flutter frequency that almost linearly scales with the flow velocity. Specific to "flexible" materials, pre-stress modulates the frequency range in which flutter occurs. It is experimentally observed that a double-clamped "flexible" piezoelectric P(VDF-TrFE) thin belt, when driven into the flutter state, yields a 1,000 times increase in the output voltage compared to that of the non-fluttered state. At a fixed flow velocity, increase in pre-stress level of the P(VDF-TrFE) thin belt up-shifts the flutter frequency. In addition, this work allows the rational design of flexible piezoelectric devices, including flow-driven energy harvester, triboelectric energy harvester, and self-powered wireless flow speed sensor.
The effects of radiation drag on radial, relativistic hydromagnetic winds
NASA Technical Reports Server (NTRS)
Li, Zhi-Yun; Begelman, Mitchell C.; Chiueh, Tzihong
1992-01-01
The effects of drag on an idealized relativistic MHD wind of radial geometry are studied. The astrophysical motivation is to understand the effects of radiation drag on the dynamics of a jet or wind passing through the intense radiation field of an accreting compact object. From a critical point analysis, it is found that a slow magnetosonic point can appear in a dragged flow even in the absence of gravitational force, as a result of a balance between the drag force and the combination of thermal pressure and centrifugal forces. As in the undragged case, the Alfven point does not impose any constraints on the flow. Although it is formally possible for a dragged flow to possess more than one fast magnetosonic point, it is shown that this is unlikely in practice. In the limit of a 'cold', centrifugally driven flow, it is shown that the fast magnetosonic point moves to infinite radius, just as in the drag-free case. For a given mass flux, the total energy output carried to infinity, and the final partition between the kinetic energy and the Poynting flux, are the same for the dragged and the drag-free flows. The main effects of radiation drag are to increase the amount of energy and angular momentum extracted from the source and to redistribute the regions where acceleration occurs in the flow. This is accomplished through the storage and release of magnetic energy, as a result of additional winding and compression of the field caused by the action of the drag. For a relativistic wind, the dissipated energy can exceed the final kinetic energy of the flow and may be comparable to the total flow energy (which is dominated by Poynting flux). The energy lost to radiation drag will appear as a Doppler-boosted beam of scattered radiation, which could dominate the background radiation if the flow is well-collimated.
Revision of dietary reference intakes for energy in preschool-age children
USDA-ARS?s Scientific Manuscript database
Dietary Reference Intakes (DRI) for energy aim to balance energy expenditure at a level of physical activity consistent with health and support adequate growth in children. DRIs were derived from total energy expenditure (TEE) measured by using the doubly labeled water (DLW) method; however, the dat...
Recent developments and emergent challenges in Ecohydrology: Focus on the belowground frontier
NASA Astrophysics Data System (ADS)
Mackay, D. S.
2017-12-01
The broad spectrum of ecohydrology issues touch on many areas of research in hydrology. But what are the emerging themes and challenges that represent the core of ecohydrology as a maturing discipline? To answer this question the ecohydrology lens was applied to manuscripts published in Water Resources Research over period of 2015 through July 2017. The 235 manuscripts retrieved can be broadly grouped into catchment hydrology, riparian-hyporheic-stream processes, critical zone, land-atmosphere exchange, wetlands, and sustainability. Three dominant crosscutting themes (i.e., coevolution, interfaces, and energy exchange) account for more than half the papers retrieved. In the context of ecohydrology, coevolution refers to the development of physical systems in concert with biological systems and their interactions. In an ecohydrology context, interfaces refer to subsurface, and sometime surface connections that influence transport (e.g., solutes concentration-discharge) influenced by vegetative plumbing, ecophysiology, animal behavior, and microbial processes. Energy exchange in ecohydrology connects vegetative processes to movement of water to the atmosphere through evapotranspiration. Across these themes there is emerging theory and methodology that emphasizes the integrated roles of biology and hydrology in the subsurface. In particular, there is a notable surge of interest in the role of plant roots on subsurface processes. But these are hard to observe and remain challenging to model. By adopting principles of coevolution, in particular, significant advances will be made in modeling plant roots and their depths, corroborated with new geophysical and tracer tools, for improving understanding of critical zone development, subsurface flow processes, and land-atmosphere energy exchange.
Effects of radial diffuser hydraulic design on a double-suction centrifugal pump
NASA Astrophysics Data System (ADS)
Hou, H. C.; Zhang, Y. X.; Xu, C.; Zhang, J. Y.; Li, Z. L.
2016-05-01
In order to study effects of radial diffuser on hydraulic performance of crude oil pump, the steady CFD numerical method is applied and one large double-suction oil pump running in long-distance pipeline is considered. The research focuses on analysing the influence of its diffuser vane profile on hydraulic performance of oil pump. The four different types of cylindrical vane have been designed by in-house codes mainly including double arcs (DA), triple arcs (TA), equiangular spiral line (ES) and linear variable angle spiral line (LVS). During design process diffuser vane angles at inlet and outlet are tentatively given within a certain range and then the wrapping angle of the four types of diffuser vanes can be calculated automatically. Under the given inlet and outlet angles, the linear variable angle spiral line profile has the biggest wrapping angle and profile length which is good to delay channel diffusion but bring more friction hydraulic loss. Finally the vane camber line is thickened at the certain uniform thickness distribution and the 3D diffuser models are generated. The whole flow passage of oil pump with different types of diffusers under various flow rate conditions are numerically simulated based on RNG k-ɛ turbulent model and SIMPLEC algorithm. The numerical results show that different types of diffusers can bring about great difference on the hydraulic performance of oil pump, of which the ES profile diffuser with its proper setting angle shows the best hydraulic performance and its inner flow field is improved obviously. Compared with the head data from model sample, all designed diffusers can make a certain improvement on head characteristic. At the large flow rate conditions the hydraulic efficiency increases obviously and the best efficiency point shift to the large flow rate range. The ES profile diffuser embodies the better advantages on pump performance which can be explained theoretically that the diffuser actually acts as a diffusion device and is good to transform the dynamic energy to pressure energy. Then through the hydraulic loss analysis of each pump component for all diffusers, it shows that the impeller takes up the biggest part of the whole loss about 8.19% averagely, the radial diffuser about 3.70% and the volute about 1.65%. The hydraulic loss of impeller is dominant at the large flow rate while the radial diffuser is at the small flow rate. Among all diffusers, the ES profile diffuser generates the least loss and combined to the distribution of velocity vector and turbulent kinetic energy for two kinds of diffusers it also shows that ES profile is fit to apply in radial diffuser. This research can offer a significant reference for the radial diffuser hydraulic design of such centrifugal pumps.
NASA Astrophysics Data System (ADS)
Znidarsic, F.; Robertson, G. A.
In this paper, the flow of energy in materials is presented as mechanical waves with a distinct velocity or speed of transition. This speed of transition came about through the observations of cold fusion experiments, i.e., Low Energy Nuclear Reactions (LENR) and superconductor gravity experiments, both assumed speculative by mainstream science. In consideration of superconductor junctions, the LENR experiments have a similar speed of transition, which seems to imply that the reactions in the LENR experiment are discrete quantized reactions (energy - burst vs. continuous). Here an attempt is made to quantify this new condition as it applies to electrons; toward the progression of quantized energy flows (discrete energy burst) as a new source of clean energy and force mechanisms (i.e, propulsion).
Energy density and energy flow of plasmonic waves in bilayer graphene
NASA Astrophysics Data System (ADS)
Moradi, Afshin
2017-07-01
The propagation of plasmonic waves in bilayer graphene is studied based on the classical electrodynamics. The interactions between conduction electrons confined to move on the surface of each layer are taken into account via the two-dimensional linearized hydrodynamic model. The energy theorem of electrodynamics is cast in a form which yields expressions for energy density and energy flow of p-polarized surface plasmon polariton waves in bilayer graphene. Numerical results show that the presence of two layers causes the appearance of two branches in the dispersion relation that introduce alterations in the physical behavior of the energy, power flow and the energy transport velocity, in comparison with the results of monolayer graphene.
NETL Crosscutting Research Video Series: Multiphase Flow (Short Version)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
For over 30 years, NETL’s work in multiphase flow science has served as one of the cornerstones of the lab’s research portfolio. Multiphase flow refers to the simultaneous flow of gases, liquids and/or solid materials. The goal of the multiphase flow science team is to provide computational modeling tools to help offset the risk and cost of multiphase reactor development.
Urschler, Martin; Höller, Johannes; Bornik, Alexander; Paul, Tobias; Giretzlehner, Michael; Bischof, Horst; Yen, Kathrin; Scheurer, Eva
2014-08-01
The increasing use of CT/MR devices in forensic analysis motivates the need to present forensic findings from different sources in an intuitive reference visualization, with the aim of combining 3D volumetric images along with digital photographs of external findings into a 3D computer graphics model. This model allows a comprehensive presentation of forensic findings in court and enables comparative evaluation studies correlating data sources. The goal of this work was to investigate different methods to generate anonymous and patient-specific 3D models which may be used as reference visualizations. The issue of registering 3D volumetric as well as 2D photographic data to such 3D models is addressed to provide an intuitive context for injury documentation from arbitrary modalities. We present an image processing and visualization work-flow, discuss the major parts of this work-flow, compare the different investigated reference models, and show a number of cases studies that underline the suitability of the proposed work-flow for presenting forensically relevant information in 3D visualizations. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Improvement in Rayleigh Scattering Measurement Accuracy
NASA Technical Reports Server (NTRS)
Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.
2012-01-01
Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous velocity, density, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of an acousto-optic frequency shifting device to improve measurement accuracy in Rayleigh scattering experiments at the NASA Glenn Research Center. The frequency shifting device is used as a means of shifting the incident or reference laser frequency by 1100 MHz to avoid overlap of the Rayleigh and reference signal peaks in the interference pattern used to obtain the velocity, density, and temperature measurements, and also to calibrate the free spectral range of the Fabry-Perot etalon. The measurement accuracy improvement is evaluated by comparison of Rayleigh scattering measurements acquired with and without shifting of the reference signal frequency in a 10 mm diameter subsonic nozzle flow.
Erwin, Susannah O.; Jacobson, Robert B.; Elliott, Caroline M.
2017-01-01
We present a quantitative analysis of habitat availability in a highly regulated lowland river, comparing a restored reach with two reference reaches: an un-restored, channelized reach, and a least-altered reach. We evaluate the effects of channel modifications in terms of distributions of depth and velocity as well as distributions and availability of habitats thought to be supportive of an endangered fish, the pallid sturgeon (Scaphirhynchus albus). It has been hypothesized that hydraulic conditions that support food production and foraging may limit growth and survival of juvenile pallid sturgeon. To evaluate conditions that support these habitats, we constructed two-dimensional hydrodynamic models for the three study reaches, two located in the Lower Missouri River (channelized and restored reaches) and one in the Yellowstone River (least-altered reach). Comparability among the reaches was improved by scaling by bankfull discharge and bankfull channel area. The analysis shows that construction of side-channel chutes and increased floodplain connectivity increase the availability of foraging habitat, resulting in a system that is more similar to the reference reach on the Yellowstone River. The availability of food-producing habitat is low in all reaches at flows less than bankfull, but the two reaches in the Lower Missouri River – channelized and restored – display a threshold-like response as flows overtop channel banks, reflecting the persistent effects of channelization on hydraulics in the main channel. These high lateral gradients result in punctuated ecological events corresponding to flows in excess of bankfull discharge. This threshold effect in the restored reach remains distinct from that of the least-altered reference reach, where hydraulic changes are less abrupt and overbank flows more gradually inundate the adjacent floodplain. The habitat curves observed in the reference reach on the Yellowstone River may not be attainable within the channelized system on the Missouri River, but the documented hydraulic patterns can be used to inform ongoing channel modifications. Although scaling to bankfull dimensions and discharges provides a basis for comparing the three reaches, implementation of the reference reach concept was complicated by differences in flow-frequency distributions among sites. In particular, habitat availability in the least-altered Yellowstone River reach is affected by increased frequency of low-flow events (less than 0.5 times bankfull flow) and moderately high-flow events (greater than 1.5 times bankfull flow) compared to downstream reaches on the Lower Missouri River.
NASA Astrophysics Data System (ADS)
Kumar, Vaibhav; Ng, Ivan; Sheard, Gregory J.; Brocher, Eric; Hourigan, Kerry; Fouras, Andreas
2011-08-01
This paper examines the shock cell structure, vorticity and velocity field at the exit of an underexpanded jet nozzle using a hydraulic analogy and the Reference Image Topography technique. Understanding the flow in this region is important for the mitigation of screech, an aeroacoustic problem harmful to aircraft structures. Experiments are conducted on a water table, allowing detailed quantitative investigation of this important flow regime at a greatly reduced expense. Conventional Particle Image Velocimetry is employed to determine the velocity and vorticity fields of the nozzle exit region. Applying Reference Image Topography, the wavy water surface is reconstructed and when combined with the hydraulic analogy, provides a pressure map of the region. With this approach subtraction of surfaces is used to highlight the unsteady regions of the flow, which is not as convenient or quantitative with conventional Schlieren techniques. This allows a detailed analysis of the shock cell structures and their interaction with flow instabilities in the shear layer that are the underlying cause of jet screech.
Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine
Wosnik, Martin; Gunawan, Budi; Neary, Vincent S.
2016-01-01
The mechanical power, total rotor drag, and near-wake velocity of a 1:6 scale model (1.075 m diameter) of the US Department of Energy’s Reference Model vertical-axis cross-flow turbine were measured experimentally in a towing tank, to provide a comprehensive open dataset for validating numerical models. Performance was measured for a range of tip speed ratios and at multiple Reynolds numbers by varying the rotor’s angular velocity and tow carriage speed, respectively. A peak power coefficient CP = 0.37 and rotor drag coefficient CD = 0.84 were observed at a tip speed ratio λ0 = 3.1. A regime of weak linear Re-dependence of the power coefficient was observed above a turbine diameter Reynolds number ReD ≈ 106. The effects of support strut drag on turbine performance were investigated by covering the rotor’s NACA 0021 struts with cylinders. As expected, this modification drastically reduced the rotor power coefficient. Strut drag losses were also measured for the NACA 0021 and cylindrical configurations with the rotor blades removed. For λ = λ0, wake velocity was measured at 1 m (x/D = 0.93) downstream. Mean velocity, turbulence kinetic energy, and mean kinetic energy transport were compared with results from a high solidity turbine acquired with the same test apparatus. Like the high solidity case, mean vertical advection was calculated to be the largest contributor to near-wake recovery. However, overall, lower levels of streamwise wake recovery were calculated for the RM2 case—a consequence of both the relatively low solidity and tapered blades reducing blade tip vortex shedding—responsible for mean vertical advection—and lower levels of turbulence caused by higher operating tip speed ratio and therefore reduced dynamic stall. Datasets, code for processing and visualization, and a CAD model of the turbine have been made publicly available. PMID:27684076
Re-Examination of Globally Flat Space-Time
Feldman, Michael R.
2013-01-01
In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of “dark energy,” “dark matter,” and “dark flow.” Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at “large enough” scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems) and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of “dark energy,” “dark matter,” and “dark flow.” In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems. PMID:24250790
APPLICATION OF STATISTICAL ENERGY ANALYSIS TO VIBRATIONS OF MULTI-PANEL STRUCTURES.
cylindrical shell are compared with predictions obtained from statistical energy analysis . Generally good agreement is observed. The flow of mechanical...the coefficients of proportionality between power flow and average modal energy difference, which one must know in order to apply statistical energy analysis . No
Theoretical features of MHD equilibria with flow
NASA Astrophysics Data System (ADS)
Beklemishev, Alexei; Tessarotto, Massimo
2002-11-01
The effect produced on plasma dynamics by plasma flows, especially those produced by strong E× B-drifts represent an important theoretical issue in magnetic confinement. These include in particular Stellarator equilibria in the presence of weak flows, with velocity much smaller in magnitude than the ion thermal velocity [1]. Strong flows, however, more generally can be produced locally in a variety of physical situations (for example due to strong radial electric fields, neutral beams, RF heating, etc.). These flows can be important in establishing advanced operational regimes, such as the recently discovered HDH mode in the W7-AS Stellarator [2]. Goal of this work is to investigate theoretical features of the MHD equilibria in the presence of strong flows, with particular reference to conditions of existence of kinetic equilibria, particle adiabatic and/or bounce-averaged invariants. References 1 - M. Tessarotto, J.L. Johnson, R.B. White and L.J. Zheng, Phys. Plasmas 3, 2653 (1996); 2 - K. McCormick et al., Phys. Rev. Lett. 89, 15001 (2002).
NASA Astrophysics Data System (ADS)
Schlueter-Kuck, Kristy L.; Dabiri, John O.
2017-09-01
We present a method for identifying the coherent structures associated with individual Lagrangian flow trajectories even where only sparse particle trajectory data are available. The method, based on techniques in spectral graph theory, uses the Coherent Structure Coloring vector and associated eigenvectors to analyze the distance in higher-dimensional eigenspace between a selected reference trajectory and other tracer trajectories in the flow. By analyzing this distance metric in a hierarchical clustering, the coherent structure of which the reference particle is a member can be identified. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Additionally, the method is able to assess the relative coherence of the associated structure in comparison to the surrounding flow. Although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems such as neuronal activity, gene expression, or social networks.
Kuś, Tomasz; Krylov, Anna I
2011-08-28
The charge-stabilization method is applied to double ionization potential equation-of-motion (EOM-DIP) calculations to stabilize unstable dianion reference functions. The auto-ionizing character of the dianionic reference states spoils the numeric performance of EOM-DIP limiting applications of this method. We demonstrate that reliable excitation energies can be computed by EOM-DIP using a stabilized resonance wave function instead of the lowest energy solution corresponding to the neutral + free electron(s) state of the system. The details of charge-stabilization procedure are discussed and illustrated by examples. The choice of optimal stabilizing Coulomb potential, which is strong enough to stabilize the dianion reference, yet, minimally perturbs the target states of the neutral, is the crux of the approach. Two algorithms of choosing optimal parameters of the stabilization potential are presented. One is based on the orbital energies, and another--on the basis set dependence of the total Hartree-Fock energy of the reference. Our benchmark calculations of the singlet-triplet energy gaps in several diradicals show a remarkable improvement of the EOM-DIP accuracy in problematic cases. Overall, the excitation energies in diradicals computed using the stabilized EOM-DIP are within 0.2 eV from the reference EOM spin-flip values. © 2011 American Institute of Physics
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13703-002] Free Flow Power.... c. Date filed: November 13, 2013. d. Applicant: Free Flow Power Missouri 2, LLC. e. Name of Project... President of Project Development, Free Flow Power Corporation, 239 Causeway Street, Suite 300, Boston, MA...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13704-002] Free Flow Power.... c. Date Filed: November 13, 2013. d. Applicant: Free Flow Power Missouri 2, LLC. e. Name of Project... Feldman, Vice President of Project Development, Free Flow Power Corporation, 239 Causeway Street, Suite...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13702-002] Free Flow Power.... c. Date filed: November 13, 2013. d. Applicant: Free Flow Power Missouri 2, LLC. e. Name of Project... President of Project Development, Free Flow Power Corporation, 239 Causeway Street, Suite 300, Boston, MA...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13701-002] Free Flow Power.... c. Date filed: November 13, 2013. d. Applicant: Free Flow Power Missouri 2, LLC. e. Name of Project..., Vice President of Project Development, Free Flow Power Corporation, 239 Causeway Street, Suite 300...
Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation
NASA Technical Reports Server (NTRS)
Frost, W.; Harper, W. L.; Fichtl, G. H.
1975-01-01
Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Mean-flow results are compared with those given in a previous paper where the same problem was attacked using a Prandtl mixing-length hypothesis. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow. They highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient.
Computational Analysis of a Chevron Nozzle Uniquely Tailored for Propulsion Airframe Aeroacoustics
NASA Technical Reports Server (NTRS)
Massey, Steven J.; Elmiligui, Alaa A.; Hunter, Craig A.; Thomas, Russell H.; Pao, S. Paul; Mengle, Vinod G.
2006-01-01
A computational flow field and predicted jet noise source analysis is presented for asymmetrical fan chevrons on a modern separate flow nozzle at take off conditions. The propulsion airframe aeroacoustic asymmetric fan nozzle is designed with an azimuthally varying chevron pattern with longer chevrons close to the pylon. A baseline round nozzle without chevrons and a reference nozzle with azimuthally uniform chevrons are also studied. The intent of the asymmetric fan chevron nozzle was to improve the noise reduction potential by creating a favorable propulsion airframe aeroacoustic interaction effect between the pylon and chevron nozzle. This favorable interaction and improved noise reduction was observed in model scale tests and flight test data and has been reported in other studies. The goal of this study was to identify the fundamental flow and noise source mechanisms. The flow simulation uses the asymptotically steady, compressible Reynolds averaged Navier-Stokes equations on a structured grid. Flow computations are performed using the parallel, multi-block, structured grid code PAB3D. Local noise sources were mapped and integrated computationally using the Jet3D code based upon the Lighthill Acoustic Analogy with anisotropic Reynolds stress modeling. In this study, trends of noise reduction were correctly predicted. Jet3D was also utilized to produce noise source maps that were then correlated to local flow features. The flow studies show that asymmetry of the longer fan chevrons near the pylon work to reduce the strength of the secondary flow induced by the pylon itself, such that the asymmetric merging of the fan and core shear layers is significantly delayed. The effect is to reduce the peak turbulence kinetic energy and shift it downstream, reducing overall noise production. This combined flow and noise prediction approach has yielded considerable understanding of the physics of a fan chevron nozzle designed to include propulsion airframe aeroacoustic interaction effects.
A new energy transfer model for turbulent free shear flow
NASA Technical Reports Server (NTRS)
Liou, William W.-W.
1992-01-01
A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.
Bootstrapping the energy flow in the beginning of life.
Hengeveld, R; Fedonkin, M A
2007-01-01
This paper suggests that the energy flow on which all living structures depend only started up slowly, the low-energy, initial phase starting up a second, slightly more energetic phase, and so on. In this way, the build up of the energy flow follows a bootstrapping process similar to that found in the development of computers, the first generation making possible the calculations necessary for constructing the second one, etc. In the biogenetic upstart of an energy flow, non-metals in the lower periods of the Periodic Table of Elements would have constituted the most primitive systems, their operation being enhanced and later supplanted by elements in the higher periods that demand more energy. This bootstrapping process would put the development of the metabolisms based on the second period elements carbon, nitrogen and oxygen at the end of the evolutionary process rather than at, or even before, the biogenetic event.
Wall, M A; Olson, D; Bonn, B A; Creelman, T; Buist, A S
1982-02-01
Reference standards of lung function was determined in 176 healthy North American Indian children (94 girls, 82 boys) 7 to 18 yr of age. Spirometry, maximal expiratory flow volume curves, and peak expiratory flow rate were measured using techniques and equipment recommended by the American Thoracic Society. Standing height was found to be an accurate predictor of lung function, and prediction equations for each lung function variable are presented using standing height as the independent variable. Lung volumes and expiratory flow rates in North American Indian children were similar to those previously reported for white and Mexican-American children but were greater than those in black children. In both boys and girls, lung function increased in a curvilinear fashion. Volume-adjusted maximal expiratory flow rates after expiring 50 or 75% of FVC tended to decrease in both sexes as age and height increased. Our maximal expiratory flow volume curve data suggest that as North American Indian children grow, lung volume increases at a slightly faster rate than airway size does.
Energy flow and energy dissipation in a free surface.
NASA Astrophysics Data System (ADS)
Goldburg, Walter; Cressman, John
2005-11-01
Turbulent flows on a free surface are strongly compressible [1] and do not conserve energy in the absence of viscosity as bulk fluids do. Despite violation of assumptions essential to Kolmogorov's theory of 1941 (K41) [2, 3], surface flows show strong agreement with Kolmogorov scaling, though intermittency is larger there. Steady state turbulence is generated in a tank of water, and the spatially averaged energy flux is measured from the four-fifth's law at each instant of time. Likewise, the energy dissipation rate as measured from velocity gradients is also a random variable in this experiment. The energy flux - dissipation rate cross-correlation is measured to be correlated in incompressible bulk flows, but strongly anti-correlated on the surface. We argue that the reason for this discrepancy between surface and bulk flows is due to compressible effects present on the surface. [1] J. R. Cressman, J. Davoudi, W. I. Goldburg, and J. Schumacher, New Journal of Physics, 6, 53, 2004. [2] U. Frisch. Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995. [3] A. N. Kolmogorov, Doklady Akad. Nauk SSSR, 32, 16, 1941.
Wang, Cheng; Wei, Chaofu; Gao, Ming; Luo, Guanglian; Jiang, Wei
2005-12-01
Land resource is the carrier for the exchange of matter, energy and information flows, while the change velocity and the intensity of land use has strong effects on the ecological processes such as matter circulation, energy flow, and biologic diversity. Land use structure change will alter the type, area, and spatial distribution of ecosystem, and in the meantime, result in the changes of regional ecological health. Employing the principles and methods of landscape ecology, and through endowing relative ecological value to land use type, this paper analyzed the charaeteristics of recent 10 years land use change in Shapingba County of Chongqing, and discussed the effects of land use change on regional ecological health, aimed to provide scientific references for land use planning and sustainable land resource utilization. The results indicated that transformation often occurred among different land use types, and the land use structure in each transformation phase differed quite obviously. Under different land use structure, there was a great disparity in relative ecological value of sub-ecosystems, which played various roles in regional ecological health. In general, the regional relative ecological value embodied both increase and decrease. In the future, the relative ecological value of sub-ecosystem would represent three tendencies, i.e., increase first and decrease then, continuous decrease, and continuous increase. The situation of regional ecological health would gradually become better.
NASA Astrophysics Data System (ADS)
Katchasuwanmanee, Kanet; Cheng, Kai; Bateman, Richard
2016-09-01
As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.
Epistemic uncertainty propagation in energy flows between structural vibrating systems
NASA Astrophysics Data System (ADS)
Xu, Menghui; Du, Xiaoping; Qiu, Zhiping; Wang, Chong
2016-03-01
A dimension-wise method for predicting fuzzy energy flows between structural vibrating systems coupled by joints with epistemic uncertainties is established. Based on its Legendre polynomial approximation at α=0, both the minimum and maximum point vectors of the energy flow of interest are calculated dimension by dimension within the space spanned by the interval parameters determined by fuzzy those at α=0 and the resulted interval bounds are used to assemble the concerned fuzzy energy flows. Besides the proposed method, vertex method as well as two current methods is also applied. Comparisons among results by different methods are accomplished by two numerical examples and the accuracy of all methods is simultaneously verified by Monte Carlo simulation.
Flow dynamics and energy efficiency of flow in the left ventricle during myocardial infarction.
Vasudevan, Vivek; Low, Adriel Jia Jun; Annamalai, Sarayu Parimal; Sampath, Smita; Poh, Kian Keong; Totman, Teresa; Mazlan, Muhammad; Croft, Grace; Richards, A Mark; de Kleijn, Dominique P V; Chin, Chih-Liang; Yap, Choon Hwai
2017-10-01
Cardiovascular disease is a leading cause of death worldwide, where myocardial infarction (MI) is a major category. After infarction, the heart has difficulty providing sufficient energy for circulation, and thus, understanding the heart's energy efficiency is important. We induced MI in a porcine animal model via circumflex ligation and acquired multiple-slice cine magnetic resonance (MR) images in a longitudinal manner-before infarction, and 1 week (acute) and 4 weeks (chronic) after infarction. Computational fluid dynamic simulations were performed based on MR images to obtain detailed fluid dynamics and energy dynamics of the left ventricles. Results showed that energy efficiency flow through the heart decreased at the acute time point. Since the heart was observed to experience changes in heart rate, stroke volume and chamber size over the two post-infarction time points, simulations were performed to test the effect of each of the three parameters. Increasing heart rate and stroke volume were found to significantly decrease flow energy efficiency, but the effect of chamber size was inconsistent. Strong complex interplay was observed between the three parameters, necessitating the use of non-dimensional parameterization to characterize flow energy efficiency. The ratio of Reynolds to Strouhal number, which is a form of Womersley number, was found to be the most effective non-dimensional parameter to represent energy efficiency of flow in the heart. We believe that this non-dimensional number can be computed for clinical cases via ultrasound and hypothesize that it can serve as a biomarker for clinical evaluations.
Compressible flow in fluidic oscillators
NASA Astrophysics Data System (ADS)
Graff, Emilio; Hirsch, Damian; Gharib, Mory
2013-11-01
We present qualitative observations on the internal flow characteristics of fluidic oscillator geometries commonly referred to as sweeping jets in active flow control applications. We also discuss the effect of the geometry on the output jet in conditions from startup to supersonic exit velocity. Supported by the Boeing Company.
Quantitative fluorescence angiography for neurosurgical interventions.
Weichelt, Claudia; Duscha, Philipp; Steinmeier, Ralf; Meyer, Tobias; Kuß, Julia; Cimalla, Peter; Kirsch, Matthias; Sobottka, Stephan B; Koch, Edmund; Schackert, Gabriele; Morgenstern, Ute
2013-06-01
Present methods for quantitative measurement of cerebral perfusion during neurosurgical operations require additional technology for measurement, data acquisition, and processing. This study used conventional fluorescence video angiography--as an established method to visualize blood flow in brain vessels--enhanced by a quantifying perfusion software tool. For these purposes, the fluorescence dye indocyanine green is given intravenously, and after activation by a near-infrared light source the fluorescence signal is recorded. Video data are analyzed by software algorithms to allow quantification of the blood flow. Additionally, perfusion is measured intraoperatively by a reference system. Furthermore, comparing reference measurements using a flow phantom were performed to verify the quantitative blood flow results of the software and to validate the software algorithm. Analysis of intraoperative video data provides characteristic biological parameters. These parameters were implemented in the special flow phantom for experimental validation of the developed software algorithms. Furthermore, various factors that influence the determination of perfusion parameters were analyzed by means of mathematical simulation. Comparing patient measurement, phantom experiment, and computer simulation under certain conditions (variable frame rate, vessel diameter, etc.), the results of the software algorithms are within the range of parameter accuracy of the reference methods. Therefore, the software algorithm for calculating cortical perfusion parameters from video data presents a helpful intraoperative tool without complex additional measurement technology.
Competition of Perpendicular and Parallel Flows in a Straight Magnetic Field
NASA Astrophysics Data System (ADS)
Li, Jiacong; Diamond, Patrick; Hong, Rongjie; Tynan, George
2017-10-01
In tokamaks, intrinsic rotations in both toroidal and poloidal directions are important for the stability and confinement. Since they compete for energy from background turbulence, the coupling of them is the key to understanding the physics of turbulent state and transport bifurcations, e.g. L-H transition. V⊥ can affect the parallel Reynolds stress via cross phase and energetics, and thus regulates the parallel flow generation. In return, the turbulence driven V∥ plays a role in the mean vorticity flux, influencing the generation of V⊥. Also, competition of intrinsic azimuthal and axial flows is observed in CSDX-a linear plasma device with straight magnetic fields. CSDX is a well diagnosed venue to study the basic physics of turbulence-flow interactions in straight magnetic fields. Here, we study the turbulent energy branching between the turbulence driven parallel flow and perpendicular flow. Specifically, the ratio between parallel and perpendicular Reynolds power decreases when the mean perpendicular flow increases. As the mean parallel flow increases, this ratio first increases and then decreases before the parallel flow shear hits the parallel shear flow instability threshold. We seek to understand the flow states and compare with CSDX experiments. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.
NASA Astrophysics Data System (ADS)
Nara, Yasushi; Niemi, Harri; Ohnishi, Akira; Steinheimer, Jan; Luo, Xiaofeng; Stöcker, Horst
2018-02-01
The beam energy dependence of the elliptic flow, v2, is studied in mid-central Au+Au collisions in the energy range of 3≤ √{s_{NN}} ≤ 30 GeV within the microscopic transport model JAM. The results of three different modes of JAM are compared; cascade-, hadronic mean field-, and a new mode with modified equations of state, with a first-order phase transition and with a crossover transition. The standard hadronic mean field suppresses the elliptic flow v2, while the inclusion of the effects of a first-order phase transition (and also of a crossover transition) does enhance the elliptic flow at √{s_{NN}} < 30 GeV. This is due to the high sensitivity of v2 on the early, compression stage, pressure gradients of the systems created in high-energy heavy-ion collisions. The enhancement or suppression of the scaled energy flow, dubbed "elliptic flow", v2= <(px2-py2)/pT2 >, is understood as being due to out-of-plane flow, py > px, i.e. v2 < 0, dubbed out of plane - "squeeze-out", which occurs predominantly in the early, compression stage. Subsequently, the in-plane flow dominates, px > py, in the expansion stage, v2 > 0. The directed flow, v1(y) = < px(y)/pT(y)>, dubbed "bounce-off", is an independent measure of the pressure, which quickly builds up the transverse momentum transfer in the reaction plane. When the spectator matter leaves the participant fireball region, where the highest compression occurs, a hard expansion leads to larger v2. A combined analysis of the three transverse flow coefficients, radial v0 ˜ v_{\\perp}-, directed v1- and elliptic v2- flow of nucleons, in the beam energy range 3≤√{s_{NN}} ≤ 10 GeV, distinguishes the different compression and expansion scenarios: a characteristic dependence on the early stage equation of state is observed. The enhancement of both the elliptic and the transverse radial flow and the simultaneous collapse of the directed flow of nucleons offers a clear signature if a first-order phase transition is realized at the highest baryon densities created in high-energy heavy-ion collisions.
Simulation of multistage turbine flows
NASA Technical Reports Server (NTRS)
Adamczyk, John J.; Mulac, Richard A.
1987-01-01
A flow model has been developed for analyzing multistage turbomachinery flows. This model, referred to as the average passage flow model, describes the time-averaged flow field with a typical passage of a blade row embedded within a multistage configuration. Computer resource requirements, supporting empirical modeling, formulation code development, and multitasking and storage are discussed. Illustrations from simulations of the space shuttle main engine (SSME) fuel turbine performed to date are given.
Hosten, N; Stier, A; Weigel, C; Kirsch, M; Puls, R; Nerger, U; Jahn, D; Stroszczynski, C; Heidecke, C-D; Speck, U
2003-03-01
A thin-caliber applicator system was developed for introducing a laser fiber under CT guidance into lung metastases with only minimal complications. A space-saving 5.5 French Teflon cannula with a titanium trocar and connectors for a laser light guide (2 or 3 cm Dornier Diffusor-Tip H-6111-T2 or H-6111-T3 coupled to a Dornier Medilas Fibertom 5100 laser, wavelength of 1064 nm) and a perfusion line for physiologic saline solution were developed. After puncture the laser Diffusor-Tip remains in the cannula and is cooled during its tissue passage by slowly flowing saline solution. The miniaturized applicator system (Monocath) was calibrated in nonperfused bovine liver for maximum energy supply and necessary flow of the cooling saline solution in reference to a commercially available 9 French laser catheter with an 11.5 French inducer sheath (Power-Applicator). The new applicator system was used for treating lung metastases in 10 patients over a period of 21 months. The size of heat coagulation in bovine liver was 24 +/- 2 ml using the miniaturized system with application of 15 W for 20 min and a saline flow of 0.75 ml/min, in comparison to a size of 29 +/- 7 ml for the commercial applicator (30 W, 20 min, 60 ml/min). All metastases could be safely approached with the miniaturized applicator, except for two metastatic lesions at the lung base in two patients. A minor pneumothorax developed in three patients and intrapulmonary bleeding in two. Contrast-enhanced CT demonstrated necrosis of the treated metastatic areas in 6 patients. Follow-up of three patients after 5, 6, and 8 months showed complete tumor regression with minimal scarring in one patient. The miniaturized applicator system enables the introduction of a laser fiber into pulmonary metastases with only minor complications. Complete ablation seems to be achievable in suitable patients with the applied laser energy and a slow cooling fluid flow rate.
NASA Astrophysics Data System (ADS)
Ermann, Leonardo; Vergini, Eduardo; Shepelyansky, Dima L.
2017-08-01
We study the dynamics of a Bose-Einstein condensate in a Sinai-oscillator trap under a monochromatic driving force. Such a trap is formed by a harmonic potential and a repulsive disk located in the center vicinity corresponding to the first experiments of condensate formation by Ketterle and co-workers in 1995. We allow that the external driving allows us to model the regime of weak wave turbulence with the Kolmogorov energy flow from low to high energies. We show that in a certain regime of weak driving and weak nonlinearity such a turbulent energy flow is defeated by the Anderson localization that leads to localization of energy on low energy modes. This is in a drastic contrast to the random phase approximation leading to energy flow to high modes. A critical threshold is determined above which the turbulent flow to high energies becomes possible. We argue that this phenomenon can be studied with ultracold atoms in magneto-optical traps.
Ermann, Leonardo; Vergini, Eduardo; Shepelyansky, Dima L
2017-08-04
We study the dynamics of a Bose-Einstein condensate in a Sinai-oscillator trap under a monochromatic driving force. Such a trap is formed by a harmonic potential and a repulsive disk located in the center vicinity corresponding to the first experiments of condensate formation by Ketterle and co-workers in 1995. We allow that the external driving allows us to model the regime of weak wave turbulence with the Kolmogorov energy flow from low to high energies. We show that in a certain regime of weak driving and weak nonlinearity such a turbulent energy flow is defeated by the Anderson localization that leads to localization of energy on low energy modes. This is in a drastic contrast to the random phase approximation leading to energy flow to high modes. A critical threshold is determined above which the turbulent flow to high energies becomes possible. We argue that this phenomenon can be studied with ultracold atoms in magneto-optical traps.
Yu, Mingzhe; McCulloch, William D; Beauchamp, Damian R; Huang, Zhongjie; Ren, Xiaodi; Wu, Yiying
2015-07-08
Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems.
A Galloping Energy Harvester with Attached Flow
NASA Astrophysics Data System (ADS)
Denissenko, Petr; Khovanov, Igor; Tucker-Harvey, Sam
2017-11-01
Aeroelastic energy harvesters are a promising technology for the operation of wireless sensors and microelectromechanical systems, as well as providing the possibility of harvesting wind energy in applications were conventional wind turbines are ineffective, such as in highly turbulent flows, or unreliable, such as in harsh environmental conditions. The development of aeroelastic energy harvesters to date has focused on the flutter of airfoils, the galloping of prismatic structures, and the vortex induced vibrations. We present a novel type of galloping energy harvester with the flow becoming attached when the oscillation amplitude is high enough. With the flow attached, the harvester blade acts closer to an aerofoil than a bluff body, which results in a higher efficiency. The dynamics of a prototype device has been characterised experimentally with the use of a motion tracking system. The flow structure in the vicinity of the device has been studied using smoke visualisation and PIV measurements. A lumped parameter mathematical model has been developed and related to the experimental results.
The Influence of Hydrofoil Oscillation on Boundary Layer Transition and Cavitation Noise.
1981-04-01
p., and V. are fluid density, reference free-stream AVERAGED static pressure and reference free-stream velocity, respec- ORSPL3. Lair tively. S3.1...of cavitation on a propeller in both uni- ly, the location of boundary layer transition with the foil in form and nonuniform flow. He concluded that...the presence of oscillation must be determined either theoretically or ex- sheet and bubble cavitation in nonuniform flow can be perimentally. Thirdly
Gravity Does it: Redshift of Light from the Galaxies Yes, Expanding Universe NO!
NASA Astrophysics Data System (ADS)
Malhotra, Satish
2018-04-01
In the history of physics, ideas on space and time have changed the course of physics a number of times; this is another such event. We postulate 'space and time' as a flow of quantum gravity energy, having the absolute velocity c (same as velocity of light), where time is the delay in the spread of space (delay from infinite velocity flow, when there would be no time), such a flow has to have a reverse cycle, as energy creating it (howsoever large it might be has to be limited and limited energy can only create a limited space and time energy spread) and the reverse cycle is that of the creation of fundamental particles. This explanation of the universe tells us that the idea of an expanding universe is only an appearance, the argument, in brief, is as follows: One, the universe is so large that we cannot see the edges, light from the edges, the reality is non-observable. Two, the process is dark, it is beyond observation, the process of creation of charge (the reflection of light starts with it), the space energy flow process is in the range of invisible (before charge emerged); it is the elusive dark energy of the universe; we never connected space and time to flow of energy, and so did not find its connection either to its limitedness or to its dark nature (dark energy). Three, the space energy flow has a reverse process which leads to the formation of fundamental particles we have not included it in the totality of the processes of the universe, the former is the dark energy and the initial part of the reverse process—till it reaches the state of ionisation-- is dark matter. In the continuity of the cycle of space flow and its reversal to matter forms, ionisation happens at a particular point and visibility comes through along with; ionisation here is a later event (which is a part of the reverse process, enters visibility).It is this reverse process which creates fundamental particles (no big bang creation. With no idea of space as energy flow and no idea of the reverse process, physicists could never take the step in the direction of the correct understanding of the 'dark energy' or 'dark matter'.
Ahn, Hyo-Sung; Kim, Byeong-Yeon; Lim, Young-Hun; Lee, Byung-Hun; Oh, Kwang-Kyo
2018-03-01
This paper proposes three coordination laws for optimal energy generation and distribution in energy network, which is composed of physical flow layer and cyber communication layer. The physical energy flows through the physical layer; but all the energies are coordinated to generate and flow by distributed coordination algorithms on the basis of communication information. First, distributed energy generation and energy distribution laws are proposed in a decoupled manner without considering the interactive characteristics between the energy generation and energy distribution. Second, a joint coordination law to treat the energy generation and energy distribution in a coupled manner taking account of the interactive characteristics is designed. Third, to handle over- or less-energy generation cases, an energy distribution law for networks with batteries is designed. The coordination laws proposed in this paper are fully distributed in the sense that they are decided optimally only using relative information among neighboring nodes. Through numerical simulations, the validity of the proposed distributed coordination laws is illustrated.
NASA Astrophysics Data System (ADS)
Ohtani, S.; Nose, M.; Miyashita, Y.; Lui, A.
2014-12-01
We investigate the responses of different ion species (H+, He+, He++, and O+) to fast plasma flows and local dipolarization in the plasma sheet in terms of energy density. We use energetic (9-210 keV) ion composition measurements made by the Geotail satellite at r = 10~31 RE. The results are summarized as follows: (1) whereas the O+-to-H+ ratio decreases with earthward flow velocity, it increases with tailward flow velocity with Vx dependence steeper for perpendicular flows than for parallel flows; (2) for fast earthward flows, the energy density of each ion species increases without any clear preference for heavy ions; (3) for fast tailward flows the ion energy density increases initially, then it decreases to below pre-flow levels except for O+; (4) the O+-to-H+ ratio does not increase through local dipolarization irrespective of dipolarization amplitude, background BZ, X distance, and VX; (5) in general, the H+ and He++ ions behave similarly. Result (1) can be attributed to radial transport along with the earthward increase of the background O+-to-H+ ratio. Results (2) and (4) indicate that ion energization associated with local dipolarization is not mass-dependent possibly because in the energy range of our interest the ions are not magnetized irrespective of species. In the tailward outflow region of reconnection, where the plasma sheet becomes thinner, the H+ ions escape along the field line more easily than the O+ ions, which possibly explains result (3). Result (5) suggests that the solar wind is the primary source of the high-energy H+ ions.
A study of the kinetic energy generation with general circulation models
NASA Technical Reports Server (NTRS)
Chen, T.-C.; Lee, Y.-H.
1983-01-01
The history data of winter simulation by the GLAS climate model and the NCAR community climate model are used to examine the generation of atmospheric kinetic energy. The contrast between the geographic distributions of the generation of kinetic energy and divergence of kinetic energy flux shows that kinetic energy is generated in the upstream side of jets, transported to the downstream side and destroyed there. The contributions from the time-mean and transient modes to the counterbalance between generation of kinetic energy and divergence of kinetic energy flux are also investigated. It is observed that the kinetic energy generated by the time-mean mode is essentially redistributed by the time-mean flow, while that generated by the transient flow is mainly responsible for the maintenance of the kinetic energy of the entire atmospheric flow.
MHD Modeling of the Solar Wind with Turbulence Transport and Heating
NASA Technical Reports Server (NTRS)
Goldstein, M. L.; Usmanov, A. V.; Matthaeus, W. H.; Breech, B.
2009-01-01
We have developed a magnetohydrodynamic model that describes the global axisymmetric steady-state structure of the solar wind near solar minimum with account for transport of small-scale turbulence associated heating. The Reynolds-averaged mass, momentum, induction, and energy equations for the large-scale solar wind flow are solved simultaneously with the turbulence transport equations in the region from 0.3 to 100 AU. The large-scale equations include subgrid-scale terms due to turbulence and the turbulence (small-scale) equations describe the effects of transport and (phenomenologically) dissipation of the MHD turbulence based on a few statistical parameters (turbulence energy, normalized cross-helicity, and correlation scale). The coupled set of equations is integrated numerically for a source dipole field on the Sun by a time-relaxation method in the corotating frame of reference. We present results on the plasma, magnetic field, and turbulence distributions throughout the heliosphere and on the role of the turbulence in the large-scale structure and temperature distribution in the solar wind.
Effect of catalysts on dc corona discharge poisoning
NASA Astrophysics Data System (ADS)
Pekárek, S.
2011-02-01
The processes of ozone generation in non-thermal plasma produced by an electrical discharge in air at atmospheric pressure are burdened by the presence of nitrogen oxides, which on the one hand contribute to ozone generation and on the other hand are responsible for unpleasant discharge poisoning. The term discharge poisoning refers to the situation when the discharge ozone formation completely breaks down. Discharge poisoning can be affected by placing a catalyst in the discharge chamber. For the dc hollow needle to mesh corona discharge enhanced by the flow of air through the needle electrode we studied the effect of titanium dioxide TiO2, ZSM-5 zeolite or Cu++ZSM-5 zeolite on discharge poisoning by monitoring the ozone, nitrogen monoxide and nitrogen dioxide discharge production. We found that placing globules of any of these catalysts on the mesh decreases the energy density of the onset of discharge poisoning, and this energy density is smallest for a discharge with globules of a TiO2 on the mesh.
Modeling of blob-hole correlations in GPI edge turbulence data
NASA Astrophysics Data System (ADS)
Myra, J. R.; Russell, D. A.; Zweben, S. J.
2017-10-01
Gas-puff imaging (GPI) observations made on NSTX have revealed two-point spatial correlation patterns in the plane perpendicular to the magnetic field. A common feature is the occurrence of dipole-like patterns with significant regions of negative correlation. In this work, we explore the possibility that these dipole patterns may be due to blob-hole pairs. Statistical methods are applied to determine the two-point spatial correlation that results from a model of blob-hole pair formation. It is shown that the model produces dipole correlation patterns that are qualitatively similar to the GPI data in many respects. Effects of the reference location (confined surfaces or scrape-off layer), a superimposed random background, hole velocity and lifetime, and background sheared flows are explored. The possibility of using the model to ascertain new information about edge turbulence is discussed. Work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02-02ER54678.
Energy mechanics of rock and snow avalanches and the role of fragmentation (invited)
NASA Astrophysics Data System (ADS)
Bartelt, Perry; Buser, Othmar; Glover, James
2014-05-01
The energy mechanics of rock and snow avalanches are traditionally described using a two-step transformation: potential energy is first converted into kinetic energy; kinetic energy is dissipated to heat by frictional processes. If the frictional processes are known, the energy fluxes of avalanches can be calculated completely. The break-up of the released mass, however, introduces several new energy fluxes into the avalanche problem. The first energy is associated with the fragmentation, which generates random particle motions. This is true kinetic energy. Inter-particle interactions (collisions, abrasion, fracture) cause the energy of the random particle motion to dissipate to heat. A constraint on the random motions is the basal boundary. It is at this interface that the dispersive pressure is created by vertical particle motions that are directed upwards into the flow. The integral of the upward particle motions can induce a change in avalanche flow volume and density, depending on the relationship between the weight of the flow and the dispersive pressure. Interestingly, normal pressures will only diverge from hydrostatic when there are changes in flow density. We are therefore confronted with the problem of calculating not only the vertical acceleration of the dispersive pressure, but also the change in vertical acceleration. In this contribution we discuss a method to calculate random particle motions, dispersive pressure and changes in avalanche flow density. These are dependent not only on the absolute mass, but also on the material properties of the disintegrating mass. This becomes particularly interesting when considering the motion of snow and rock avalanches as it allows the prediction of flow regime changes and therefore extreme avalanche run-out potential.
Energy dissipation in the blade tip region of an axial fan
NASA Astrophysics Data System (ADS)
Bizjan, B.; Milavec, M.; Širok, B.; Trenc, F.; Hočevar, M.
2016-11-01
A study of velocity and pressure fluctuations in the tip clearance flow of an axial fan is presented in this paper. Two different rotor blade tip designs were investigated: the standard one with straight blade tips and the modified one with swept-back tip winglets. Comparison of integral sound parameters indicates a significant noise level reduction for the modified blade tip design. To study the underlying mechanisms of the energy conversion and noise generation, a novel experimental method based on simultaneous measurements of local flow velocity and pressure has also been developed and is presented here. The method is based on the phase space analysis by the use of attractors, which enable more accurate identification and determination of the local flow structures and turbulent flow properties. Specific gap flow energy derived from the pressure and velocity time series was introduced as an additional attractor parameter to assess the flow energy distribution and dissipation within the phase space, and thus determines characteristic sources of the fan acoustic emission. The attractors reveal a more efficient conversion of the pressure to kinetic flow energy in the case of the modified (tip winglet) fan blade design, and also a reduction in emitted noise levels. The findings of the attractor analysis are in a good agreement with integral fan characteristics (efficiency and noise level), while offering a much more accurate and detailed representation of gap flow phenomena.
2013-08-01
earplug and earmuff showing HPD simulator elements for energy flow paths...unprotected or protected ear traditionally start with analysis of energy flow through schematic diagrams based on electroacoustic (EA) analogies between...Schröter, 1983; Schröter and Pösselt, 1986; Shaw and Thiessen, 1958, 1962; Zwislocki, 1957). The analysis method tracks energy flow through fluid and
Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatzell, K. B.; Boota, M.; Kumbur, E. C.
2015-01-01
This study reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributionsmore » (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Furthermore, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less
Flowable conducting particle networks in redox-active electrolytes for grid energy storage
Hatzell, K. B.; Boota, M.; Kumbur, E. C.; ...
2015-01-09
This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO 2+/VO 2 + redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage.more » Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO 2+/VO 2 + redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s -1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less
Smoothed particle hydrodynamics method for simulating waterfall flow
NASA Astrophysics Data System (ADS)
Suwardi, M. G.; Jondri; Tarwidi, D.
2018-03-01
The existence of waterfall in many nations, such as Indonesia has a potential to develop and to fulfill the electricity demand in the nation. By utilizing mechanical flow energy of the waterfall, it would be able to generate electricity. The study of mechanical energy could be done by simulating waterfall flow using 2-D smoothed particle hydrodynamics (SPH) method. The SPH method is suitable to simulate the flow of the waterfall, because it has an advantage which could form particles movement that mimic the characteristics of fluid. In this paper, the SPH method is used to solve Navier-Stokes and continuity equation which are the main cores of fluid motion. The governing equations of fluid flow are used to obtain the acceleration, velocity, density, and position of the SPH particles as well as the completion of Leapfrog time-stepping method. With these equations, simulating a waterfall flow would be more attractive and able to complete the analysis of mechanical energy as desired. The mechanical energy that generated from the waterfall flow is calculated and analyzed based on the mass, height, and velocity of each SPH particle.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-23
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14538-000] Go With the Flow..., Motions To Intervene, and Competing Applications On July 22, 2013, Go with the Flow Hydro Power, LLC...), proposing to study the feasibility of the Go with the Flow Hydroelectric Project (project) to be located on...
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Cao, Yongze; Suzuki, Yudai; Yoshimura, Satoru; Saito, Hitoshi
2018-06-01
In this report, the magnetic energy flow of AC magnetic field is imaged from a perpendicular magnetic recording head by alternating magnetic force microscopy (A-MFM) with high magnetic moment Co0.43(GdOx)0.57 superparamagnetic (SP) tip. The present magnetic energy flow imaging phenomenon is able to detect the flow direction of AC magnetic field energy from the recording head. A simple model for the flow direction of the AC magnetic energy is given and revealed that when the AC magnetic field energy from the surface of main pole increases, the energy from the side cross section decreases due to the periodical change of magnetization direction at the main pole area. The A-MFM magnetic energy imaging performance by 100 nm Co0.43(GdOx)0.57 SP tip is compared with the magnetic field imaging with the 25 nm Co0.80Zr0.05Nb0.15 soft magnetic (SM) tip. The spatial resolution measured by Fourier analysis for Co0.43(GdOx)0.57 SP tip is enhanced dramatically to ˜10 nm with low thermal noise, as compared to ˜13 nm by Co0.80Zr0.05Nb0.15 SM tip as well as the previously reported MFM tip. Moreover, the sensitivity and resolution are investigated for a range of head current to confirm the suitability of the magnetic energy flow imaging by Co0.43(GdOx)0.57 SP tip to low as well as high magnetic field source. Further, the A-MFM measurements are performed with the 100 nm Au coated conducting tip to investigate the possibility of electrostatic contribution in magnetic energy imaging by Co0.43(GdOx)0.57 SP tip and revealed that the present A-MFM measurement is free from any electrostatic artifacts. The present magnetic energy flow imaging phenomena with the high magnetic moment Co0.43(GdOx)0.57 SP tip provides an avenue for the analysis of the magnetic field energy component from the head field profile.
NASA Astrophysics Data System (ADS)
Harvey, C. F.; Michael, H. A.
2017-12-01
We formulate the energy balance for coastal groundwater systems and apply it to: (1) Explain the energy driving offshore saline circulation cells, and; (2) Assess the accuracy of numerical simulations of coastal groundwater systems. The flow of fresh groundwater to the ocean is driven by the loss of potential energy as groundwater drops from the elevation of the inland watertable, where recharge occurs, to discharge at sea level. This freshwater flow creates an underlying circulation cell of seawater, drawn into coastal aquifers offshore and discharging near shore, that adds to total submarine groundwater discharge. The saline water in the circulation cell enters and exits the aquifer through the sea floor at the same hydraulic potential. Existing theory explains that the saline circulation cell is driven by mixing of fresh and saline without any additional source of potential or mechanical power. This explanation raises a basic thermodynamic question: what is the source of energy that drives the saline circulation cell? Here, we resolve this question by building upon Hubbert's conception of hydraulic potential to formulate an energy balance for density-dependent flow and salt transport through an aquifer. We show that, because local energy dissipation within the aquifer is proportional to the square of the groundwater velocity, more groundwater flow may be driven through an aquifer for a given energy input if local variations in velocity are smoothed. Our numerical simulations of coastal groundwater systems show that dispersion of salt across the fresh-saline interface spreads flow over larger volumes of the aquifer, smoothing the velocity field, and increasing total flow and submarine groundwater discharge without consuming more power. The energy balance also provides a criterion, in addition to conventional mass balances, for judging the accuracy of numerical solutions of non-linear density-dependent flow problems. Our results show that some numerical simulations of saline circulation converge to excellent balances of both mass and energy, but that other simulations may poorly balance energy even after converging to a good mass balance. Thus, the energy balance can be used to identify incorrect simulations that pass convential mass balance criteria for accuracy.
1981-07-01
expanding the powerhouse) or uprating existing units to higher generating capacity by rehabilitating, modifying or replacing turbines and/or...fluid energy loss in flow passage and energy loss in converting fluid energy (flow and head) to mechanical energy ( turbine output) to electrical...energy (generator output). The significant practical opportunity is improvement of the energy conversion efficiency of the hydraulic turbine since the
Part 1 of a Computational Study of a Drop-Laden Mixing Layer
NASA Technical Reports Server (NTRS)
Okong'o, Nora A.; Bellan, Josette
2004-01-01
This first of three reports on a computational study of a drop-laden temporal mixing layer presents the results of direct numerical simulations (DNS) of well-resolved flow fields and the derivation of the large-eddy simulation (LES) equations that would govern the larger scales of a turbulent flow field. The mixing layer consisted of two counterflowing gas streams, one of which was initially laden with evaporating liquid drops. The gas phase was composed of two perfect gas species, the carrier gas and the vapor emanating from the drops, and was computed in an Eulerian reference frame, whereas each drop was tracked individually in a Lagrangian manner. The flow perturbations that were initially imposed on the layer caused mixing and eventual transition to turbulence. The DNS database obtained included transitional states for layers with various liquid mass loadings. For the DNS, the gas-phase equations were the compressible Navier-Stokes equations for conservation of momentum and additional conservation equations for total energy and species mass. These equations included source terms representing the effect of the drops on the mass, momentum, and energy of the gas phase. From the DNS equations, the expression for the irreversible entropy production (dissipation) was derived and used to determine the dissipation due to the source terms. The LES equations were derived by spatially filtering the DNS set and the magnitudes of the terms were computed at transitional states, leading to a hierarchy of terms to guide simplification of the LES equations. It was concluded that effort should be devoted to the accurate modeling of both the subgridscale fluxes and the filtered source terms, which were the dominant unclosed terms appearing in the LES equations.
Publications | Regional Energy Deployment System Model | Energy Analysis |
Methodologies: Approximated DC Flow vs. Pipe Flow along AC Lines. Golden, CO: National Renewable Energy Energy. DOE/GO-102015-4557. Macknick, Jordan, and Stuart Cohen. 2015. Water Impacts of High Solar PV , Jordan, Stuart Cohen, Robin Newmark, Andrew Martinez, Patrick Sullivan, and Vince Tidwell. 2015. Water
How to Read an LLNL Energy Flow Chart (Sankey Diagram)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, A. J.
Each year, the Lawrence Livermore National Laboratory releases energy flow charts that illustrate the nation's consumption and use of energy. A.J. Simon, group leader for LLNL’s energy program, breaks the 2015 chart down in this video, describing how to read the chart and what year-to-year trends he sees.
Pseudo-invariants contributing to inverse energy cascades in three-dimensional turbulence
NASA Astrophysics Data System (ADS)
Rathmann, Nicholas M.; Ditlevsen, Peter D.
2017-05-01
Three-dimensional (3D) turbulence is characterized by a dual forward cascade of both kinetic energy and helicity, a second inviscid flow invariant besides energy, from the integral scale of motion to the viscous dissipative scale. In helical flows, however, such as strongly rotating flows with broken mirror symmetry, an inverse (reversed) energy cascade can be observed analogous to that of two-dimensional turbulence (2D) where enstrophy, a second positive-definite flow invariant, unlike helicity in 3D, effectively blocks the forward cascade of energy. In the spectral-helical decomposition of the Navier-Stokes equation, it has previously been shown that a subset of three-wave (triad) interactions conserve helicity in 3D in a fashion similar to enstrophy in 2D, thus leading to a 2D-like inverse energy cascade in 3D. In this work, we show, both theoretically and numerically, that an additional subset of interactions exist, conserving a new pseudo-invariant in addition to energy and helicity, which contributes either to a forward or an inverse energy cascade depending on the specific triad interaction geometry.
NASA Technical Reports Server (NTRS)
Fontenla, J. M.; Avrett, E. H.; Loeser, R.
1990-01-01
The energy balance in the lower transition region is analyzed by constructing theoretical models which satisfy the energy balance constraint. The energy balance is achieved by balancing the radiative losses and the energy flowing downward from the corona. This energy flow is mainly in two forms: conductive heat flow and hydrogen ionization energy flow due to ambipolar diffusion. Hydrostatic equilibrium is assumed, and, in a first calculation, local mechanical heating and Joule heating are ignored. In a second model, some mechanical heating compatible with chromospheric energy-balance calculations is introduced. The models are computed for a partial non-LTE approach in which radiation departs strongly from LTE but particles depart from Maxwellian distributions only to first order. The results, which apply to cases where the magnetic field is either absent, or uniform and vertical, are compared with the observed Lyman lines and continuum from the average quiet sun. The approximate agreement suggests that this type of model can roughly explain the observed intensities in a physically meaningful way, assuming only a few free parameters specified as chromospheric boundary conditions.
Prediction of free turbulent mixing using a turbulent kinetic energy method
NASA Technical Reports Server (NTRS)
Harsha, P. T.
1973-01-01
Free turbulent mixing of two-dimensional and axisymmetric one- and two-stream flows is analyzed by a relatively simple turbulent kinetic energy method. This method incorporates a linear relationship between the turbulent shear and the turbulent kinetic energy and an algebraic relationship for the length scale appearing in the turbulent kinetic energy equation. Good results are obtained for a wide variety of flows. The technique is shown to be especially applicable to flows with heat and mass transfer, for which nonunity Prandtl and Schmidt numbers may be assumed.
Redox Species of Redox Flow Batteries: A Review.
Pan, Feng; Wang, Qing
2015-11-18
Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.
[The Yin and Yang movement in the cosmology of Chinese medicine].
Coutinho, Bernardo Diniz; Dulcetti, Pérola Goretti Sichero
2015-01-01
After being developed in the East, based on Taoist cosmology, Chinese medicine has been practiced in the West based on scientific foundations and biomedical paradigms. Some traditional elements of this philosophy were abandoned, such as the theory of Yin and Yang, knowledge that is essential for understanding the health-disease process resulting from the circulation of the body's energy flow. This article studies the movement of the dual elements of Yin and Yang in Chinese medical teaching, seeking to understand how this line of thought developed and how it has contributed towards establishing a system of diagnosis and therapy. The methodology employed was to analyze literature on the subject, based on theoretical references to Taoist thought and traditional Chinese medicine.
Four large-scale field-aligned current systmes in the dayside high-latitude region
NASA Technical Reports Server (NTRS)
Ohtani, S.; Potemra, T. A.; Newell, P.T.; Zanetti, L. J.; Iijima, T.; Watanabe, M.; Blomberg, L. G.; Elphinstone, R. D.; Murphree, J. S.; Yamauchi, M.
1995-01-01
A system of four current sheets of large-scale field-aligned currents (FACs) was discovered in the data set of simultaneous Viking and Defense Meteorological Satellire Program-F7 (DMSP-F7) crossing of the dayside high-latitude region. This paper reports four examples of this system that were observed in the prenoon sector. The flow polarities of FACs are upward, downward, upward, and downward, from equatorward to poleward. The lowest-latitude upward current is flowing mostly in the central plasma sheet (CPS) precipitation region, often overlapping with the boundary plasma sheet (BPS) at its poleward edge, andis interpreted as a region 2 current. The pair of downward and upward FACs in the middle of te structure are collocated with structured electron precipitation. The precipitation of high-energy (greater than 1 keV) electrons is more intense in the lower-latitude downward current sheet. The highest-latitude downward flowing current sheet is located in a weak, low-energy particle precipitation region, suggesting that this current is flowing on open field lines. Simulaneous observations in the postnoon local time sector reveal the standard three-sheet structure of FACs, sometimes described as region 2, region 1, and mantle (referred to the midday region O) currents. A high correlation was found between the occurrence of the four FAC sheet structure and negative interplanetary magnetic field (IMF) B(sub Y). We discuss the FAC structurein terms of three types of convection cells: the merging, viscous, andlobe cells. During strongly negative IMF B(sub Y), two convection reversals exist in the prenoon sector; one is inside the viscous cell, and the other is between the viscous cell and the lobe cell. This structure of convection flow is supported by the Viking electric field and auroral UV image data. Based on the convection pattern, the four FAC sheet structure is interpreted as the latitude overlap of midday and morning FAC systems. We suggest that the for-current sheet structure is common in a certain prenoon localtime sector during strongly negative IMF B(sub Y).
Efficiency and impacts of hythane (CH4+H2) underground storage
NASA Astrophysics Data System (ADS)
Sáinz-García, Alvaro; Abarca, Elena; Grandia, Fidel
2016-04-01
The foreseen increase share of renewable energy production requires energy storage to mitigate shortage periods of energy supply. Hydrogen is an efficient energy carrier that can be transported and storage. A very promising way to store large amounts of hydrogen is underground geological reservoirs. Hydrogen can be stored, among other options, as a mixture of natural gas and less than 20% of hydrogen (hythane) to avoid damages on the existing infrastructure for gas transport. This technology is known as power-to-gas and is being considered by a number of European countries (Simon et al., 2015). In this study, the feasibility of a deep aquifer to store CH4-H2 mixtures in the Lower Triassic of the Paris Basin is numerically analyzed. The solubility of gas mixture in the groundwater is extremely low (Panfilov, 2015) and, therefore, gas and water are considered immiscible and non-reactive. An immiscible multiphase flow model is developed using the coefficient-form PDE interface of the finite element method code, COMSOL Multiphysics. The modelled domain is a 2D section of 2500 x 290 m resembling the Lower Triassic aquifer of the Paris basin, consisting of 2 layers of sandstone separated by a layer of conglomerates. The domain dips 0.5% from east to west. The top of the aquifer is 500 m-deep and the lateral boundaries are assumed to be open. This case is considered conservative compared to a dome-like geological trap, which could be more favorable to retain higher gas concentration. A number of cycles of gas production and injection were modelled. An automatic shut-down of the pump is implemented in case pressure on the well exceeds an upper or lower threshold. The influence of the position of the well, the uncertain residual gas saturation and the regional flow are studied. The model shows that both gas and aquifer properties have a significant impact on storage. Due to its low viscosity, the mobility of the hythane is quite high and gas expands significantly, reducing the maximum gas saturation during injection/production cycles. The storage efficiency is hindered by inactivity periods. Furthermore, the gas fate is extremely affected by regional groundwater flow. References Panfilov, M., 2015. Underground and pipeline hydrogen storage, in: Gupta, R., Basile, A., Veziroglu, T.N. (Eds.), Compendium of Hydrogen Energy. Woodhead Publishing, pp. 91-116. Simon, J., Ferriz, A.M., Correas, L.C., 2015. HyUnder - Hydrogen Underground Storage at Large Scale: Case Study Spain. Energy Procedia. 73, 136 - 144.
Estimated United States Transportation Energy Use 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C A; Simon, A J; Belles, R D
A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within themore » transportation sector.« less
NASA Astrophysics Data System (ADS)
Barth, Aaron
2017-08-01
The nucleus of M81 is an object of singular importance as a template for low-luminosity accretion flows onto supermassive black holes. We propose to obtain a complete, small-aperture, high S/N STIS UV/optical spectrum of the M81 nucleus and multi-filter WFC3 imaging covering the UV through near-IR. Such data have never previously been obtained with HST; the only prior archival UV/optical spectra of M81 have low S/N, incomplete wavelength coverage, and are strongly contaminated by starlight. Combined with new Chandra X-ray data, our proposed observations will comprise the definitive reference dataset on the spectral energy distribution of this benchmark low-luminosity AGN. These data will provide unique new constraints on the possible contribution of a truncated thin accretion disk to the AGN emission spectrum, clarifying a fundamental property of low-luminosity accretion flows. The data will additionally provide new insights into broad-line region structure and black hole mass scaling relationships at the lowest AGN luminosities, and spatially resolved diagnostics of narrow-line region excitation conditions at unprecedented spatial resolution to assess the impact of the AGN on the ionization state of the gas in the host galaxy bulge.
Nonlinear Conservation Laws and Finite Volume Methods
NASA Astrophysics Data System (ADS)
Leveque, Randall J.
Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References
Three-dimensional flow measurements in a tesla turbine rotor
NASA Astrophysics Data System (ADS)
Fuchs, Thomas; Schosser, Constantin; Hain, Rainer; Kaehler, Christian
2015-11-01
Tesla turbines are fluid mechanical devices converting flow energy into rotation energy by two physical effects: friction and adhesion. The advantages of the tesla turbine are its simple and robust design, as well as its scalability, which makes it suitable for custom power supply solutions, and renewable energy applications. To this day, there is a lack of experimental data to validate theoretical studies, and CFD simulations of these turbines. This work presents a comprehensive analysis of the flow through a tesla turbine rotor gap, with a gap height of only 0.5 mm, by means of three-dimensional Particle Tracking Velocimetry (3D-PTV). For laminar flows, the experimental results match the theory very well, since the measured flow profiles show the predicted second order parabolic shape in radial direction and a fourth order behavior in circumferential direction. In addition to these laminar measurements, turbulent flows at higher mass flow rates were investigated.
Parametric distribution approach for flow availability in small hydro potential analysis
NASA Astrophysics Data System (ADS)
Abdullah, Samizee; Basri, Mohd Juhari Mat; Jamaluddin, Zahrul Zamri; Azrulhisham, Engku Ahmad; Othman, Jamel
2016-10-01
Small hydro system is one of the important sources of renewable energy and it has been recognized worldwide as clean energy sources. Small hydropower generation system uses the potential energy in flowing water to produce electricity is often questionable due to inconsistent and intermittent of power generated. Potential analysis of small hydro system which is mainly dependent on the availability of water requires the knowledge of water flow or stream flow distribution. This paper presented the possibility of applying Pearson system for stream flow availability distribution approximation in the small hydro system. By considering the stochastic nature of stream flow, the Pearson parametric distribution approximation was computed based on the significant characteristic of Pearson system applying direct correlation between the first four statistical moments of the distribution. The advantage of applying various statistical moments in small hydro potential analysis will have the ability to analyze the variation shapes of stream flow distribution.
Falcone, James A.; Carlisle, Daren M.; Wolock, David M.; Meador, Michael R.
2010-01-01
In addition, watersheds were assessed for their reference quality within nine broad regions for use in studies intended to characterize stream flows under conditions minimally influenced by human activities. Three primary criteria were used to assess reference quality: (1) a quantitative index of anthropogenic modification within the watershed based on GIS-derived variables, (2) visual inspection of every stream gage and drainage basin from recent high-resolution imagery and topographic maps, and (3) information about man-made influences from USGS Annual Water Data Reports. From the set of 6785 sites, we identified 1512 as reference-quality stream gages. All data derived for these watersheds as well as the reference condition evaluation are provided as an online data set termed GAGES (geospatial attributes of gages for evaluating stream flow).
Perceptual analysis of vibrotactile flows on a mobile device.
Seo, Jongman; Choi, Seungmoon
2013-01-01
"Vibrotactile flow" refers to a continuously moving sensation of vibrotactile stimulation applied by a few actuators directly onto the skin or through a rigid medium. Research demonstrated the effectiveness of vibrotactile flow for conveying intuitive directional information on a mobile device. In this paper, we extend previous research by investigating the perceptual characteristics of vibrotactile flows rendered on a mobile device and proposing a synthesis framework for vibrotactile flows with desired perceptual properties.
Golub, Mikhail V; Zhang, Chuanzeng
2015-01-01
This paper presents an elastodynamic analysis of two-dimensional time-harmonic elastic wave propagation in periodically multilayered elastic composites, which are also frequently referred to as one-dimensional phononic crystals, with a periodic array of strip-like interior or interface cracks. The transfer matrix method and the boundary integral equation method in conjunction with the Bloch-Floquet theorem are applied to compute the elastic wave fields in the layered periodic composites. The effects of the crack size, spacing, and location, as well as the incidence angle and the type of incident elastic waves on the wave propagation characteristics in the composite structure are investigated in details. In particular, the band-gaps, the localization and the resonances of elastic waves are revealed by numerical examples. In order to understand better the wave propagation phenomena in layered phononic crystals with distributed cracks, the energy flow vector of Umov and the corresponding energy streamlines are visualized and analyzed. The numerical results demonstrate that large energy vortices obstruct elastic wave propagation in layered phononic crystals at resonance frequencies. They occur before the cracks reflecting most of the energy transmitted by the incoming wave and disappear when the problem parameters are shifted from the resonant ones.
[Reference values of energy for the Venezuelan population].
Landaeta-Jiménez, Maritza; Aliaga, Carla; Sifontes, Yaritza; Vásquez, Maura; Ramírez, Guillermo; Falque Madrid, Luís; Herrera, Marianella; María Reyes, Ana; Emilia, Elzakem; Herrera, Ctor; Bernal, Jennifer
2013-12-01
The project of updating the Venezuelan energy reference values respond to the recommendations made by an FAO experts committee, several decades ago for the countries assuming this work. Because of the dramatic changes experienced globally regarding energy intake/expenditure and particularly variations on the Venezuelan nutritional scenario with the presence of "the double burden of malnutrition" it a review of Energy Reference Values (VRE) from a more integral approach is pertinent. This report follows the methodology proposed by FAO/WHO/UNU 2004 experts committee and energy reference values were established by group of age and gender, also average energy values for Venezuelan population were obtained. For calculation of these requirements, the energy expenditure was included by taking into account Basal Metabolic Rate and physical activity level for some specific groups. The score average values updated in 2012 of 2.200 kcal/dia reported to be lower than those of 2000 at all ages for masculine gender except for the 16-17 age group and for feminine gender just until ages 10-12 years and from there are slightly above the values obtained in 2000.
Creation of the reduced-density region by a pulsing optical discharge in the supersonic air flow
NASA Astrophysics Data System (ADS)
Kiseleva, T. A.; Orishich, A. M.; Chirkashenko, V. F.; Yakovlev, V. I.
2016-10-01
As a result of optical and pneumometric measurements is defined the flow shock wave structure that is formed by the optical breakdown, due to focused repetitively pulsed CO2 laser radiation when entering perpendicular to a supersonic (M = 1.36, 1.9) air flow direction. The dynamics of the bow shock formation in front of the energy input area is shown, depending on the frequency of energy impulse sequence. A flow structure is defined in the thermal wake behind pulsing laser plasma as well as wake's length with low thermal heterogeneity. A three-dimensional configuration of the energy area is defined in accordance with pneumometric and optical measuring results. It is shown that Pitot pressure decreases in thermal wake at a substantially constant static pressure, averaged flow parameters weakly depend on the energy impulse's frequency in range of 45-150 kHz.
An engineering analysis of a closed cycle plant growth module
NASA Technical Reports Server (NTRS)
Stickford, G. H., Jr.; Jakob, F. E.; Landstrom, D. K.
1986-01-01
The SOLGEM model is a numerical engineering model which solves the flow and energy balance equations for the air flowing through a growing environment, assuming quasi-steady state conditions within the system. SOLGEM provides a dynamic simulation of the controlled environment system in that the temperature and flow conditions of the growing environment are estimated on an hourly basis in response to the weather data and the plant growth parameters. The flow energy balance considers the incident solar flux; incoming air temperature, humidity, and flow rate; heat exchange with the roof and floor; and heat and moisture exchange with the plants. A plant transpiration subroutine was developed based plant growth research facility, intended for the study of bioregenerative life support theories. The results of a performance analysis of the plant growth module are given. The estimated energy requirements of the module components and the total energy are given.
Amplification, attenuation, and dispersion of sound in inhomogeneous flows
NASA Technical Reports Server (NTRS)
Kentzer, C. P.
1975-01-01
First order effects of gradients in nonuniform potential flows of a compressible gas are included in a dispersion relation for sound waves. Three nondimensional numbers, the ratio of the change in the kinetic energy in one wavelength to the thermal energy of the gas, the ratio of the change in the total energy in one wavelength to the thermal energy, and the ratio of the dillatation frequency (the rate of expansion per unit volume) to the acoustic frequency, play a role in the separation of the effects of flow gradients into isotropic and anisotropic effects. Dispersion and attenuation (or amplification) of sound are found to be proportional to the wavelength for small wavelength, and depend on the direction of wave propagation relative to flow gradients. Modification of ray acoustics for the effects of flow gradients is suggested, and conditions for amplification and attenuation of sound are discussed.
NASA Astrophysics Data System (ADS)
Zehe, E.; Blume, T.; Bloeschl, G.
2008-12-01
Preferential/rapid flow and transport is known as one key process in soil hydrology for more than 20 years. It seems to be rather the rule, than the exception. It occurs in soils, in surface rills and river networks. If connective preferential are present at any scale, they crucially control water flow and solute transport. Why? Is there an underlying principle? If energy is conserved a system follows Fermat's principle of minimum action i.e. it follows the trajectory that minimise the integral of the total energy/ La Grangian over time. Hydrological systems are, however, non-conservative as surface and subsurface water flows dissipate energy. From thermodynamics it is well known that natural processes minimize the free energy of the system. For hydrological systems we suggest, therefore, that flow in a catchment arranges in such a way that time to a minimum of free energy becomes minimal for a given rainfall input (disturbance) and under given constraints. Free energy in a soil is determined by potential energy and capillary energy. The pore size distribution of the soil, soil structures, depth to groundwater and most important vegetation make up the constraints. The pore size distribution determines whether potential energy or capillarity dominates the free energy of the soil system. The first term is minimal when the pore space is completely de-saturated the latter becomes minimal at soil saturation. Hence, the soil determines a) the amount of excess (gravity) water that has to be exported from the soil to reach a minimum state of free energy and b) whether redistribution or groundwater recharge is more efficient to reach that equilibrium. On the other hand, the pore size distribution of the soil and the connectivity of preferential pathways (root channels, worm holes and cracks) determine flow velocities and the redistribution of water within the pore space. As water flow and ground water recharge are fast in sandy soils and capillary energy is of minor importance, connective preferential pathways do not mean any advantage for an efficient transition to an equilibrium in these systems. In fine grained soils Darcy velocities and therefore redistribution of water is 2-4 orders of magnitude slower. As capillary energy dominates in these soils an effective redistribution of water within the pore space is crucial for a fast transition of system to an equilibrium state. Connective preferential pathways ore even cracks allow a faster redistribution of water and seem therefore necessary for a fast transition into a state of minimum free energy. The suggested principle "of minimum time to equilibrium" may explain the "advantage" of preferential flow as a much more efficient dissipation of energy in fine grained soils and therefore why connective preferential pathways control environmental flow. From a fundamental, long term perspective the principle may help us to understand whether and why soil structures and even cracks evolve in different landscapes and climates and b) to link soil hydrology and (landscape) ecology. Along the lines the proposed study will present model results to test the stated hypothesis.
Genetics Home Reference: paramyotonia congenita
... tense (contract) and relax in a coordinated way. Muscle contractions are triggered by the flow of positively charged ... resulting increase in ion flow interferes with normal muscle contraction and relaxation, leading to episodes of muscle stiffness ...
Second opinion on data flow machines and languages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gajski, D.D.; Padua, D.A.; Kuck, D.J.
1982-02-01
The authors argue that due to their simplicity and strong appeal to intuition, data flow techniques attract a great deal of attention. Other alternatives, however, offer more hope for the future. 25 references.
The effect of transverse flow on the nuclear modification factor at RHIC and LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betz, Barbara; Gyulassy, Miklos
2016-01-22
We determine the nuclear modification factor at RHIC and LHC energies using a generic jet-energy loss model that is expanded by an additional flow factor accounting for the impact of transverse flow. We consider a pQCD-based ansatz with and without jet-energy loss fluctuations that is coupled to a state-of-the-art hydrodynamic prescription and includes a running coupling effect. We show that the nuclear modification factor is a rather insensitive quantity that is barely affected by the flow dynamics of the medium created in a heavy-ion collision.
Phlegethon flow: A proposed origin for spicules and coronal heating
NASA Technical Reports Server (NTRS)
Schatten, Kenneth H.; Mayr, Hans G.
1986-01-01
A model was develped for the mass, energy, and magnetic field transport into the corona. The focus is on the flow below the photosphere which allows the energy to pass into, and be dissipated within, the solar atmosphere. The high flow velocities observed in spicules are explained. A treatment following the work of Bailyn et al. (1985) is examined. It was concluded that within the framework of the model, energy may dissipate at a temperature comparable to the temperature where the waves originated, allowing for an equipartition solution of atmospheric flow, departing the sun at velocities approaching the maximum Alfven speed.
Kinematic, Dynamic, and Energy Characteristics of Diastolic Flow in the Left Ventricle
Khalafvand, Seyed Saeid; Hung, Tin-Kan; Ng, Eddie Yin-Kwee; Zhong, Liang
2015-01-01
Blood flow characteristics in the normal left ventricle are studied by using the magnetic resonance imaging, the Navier-Stokes equations, and the work-energy equation. Vortices produced during the mitral valve opening and closing are modeled in a two-dimensional analysis and correlated with temporal variations of the Reynolds number and pressure drop. Low shear stress and net pressures on the mitral valve are obtained for flow acceleration and deceleration. Bernoulli energy flux delivered to blood from ventricular dilation is practically balanced by the energy influx and the rate change of kinetic energy in the ventricle. The rates of work done by shear and energy dissipation are small. The dynamic and energy characteristics of the 2D results are comparable to those of a 3D model. PMID:26417381
NASA Technical Reports Server (NTRS)
Manhardt, P. D.
1982-01-01
The CMC fluid mechanics program system was developed to transmit the theoretical solution of finite element numerical solution methodology, applied to nonlinear field problems into a versatile computer code for comprehensive flow field analysis. Data procedures for the CMC 3 dimensional Parabolic Navier-Stokes (PNS) algorithm are presented. General data procedures a juncture corner flow standard test case data deck is described. A listing of the data deck and an explanation of grid generation methodology are presented. Tabulations of all commands and variables available to the user are described. These are in alphabetical order with cross reference numbers which refer to storage addresses.
1976-03-01
those of reference 14, for the case shown. As can be seen agreement is fair. In reference 12, which developed the basic inner flow field program used...through which the nozzle protruded, the other end being open to the outside. Orifice plates of specific diameters were constructed and mated to cylinders...corresponding to the orifice diameters. The purpose of the orifice was to seal the open end such that entrained air could only enter through the porous
Vibrational energy on surfaces: Ultrafast flash-thermal conductance of molecular monolayers
NASA Astrophysics Data System (ADS)
Dlott, Dana
2008-03-01
Vibrational energy flow through molecules remains a perennial problem in chemical physics. Usually vibrational energy dynamics are viewed through the lens of time-dependent level populations. This is natural because lasers naturally pump and probe vibrational transitions, but it is also useful to think of vibrational energy as being conducted from one location in a molecule to another. We have developed a new technique where energy is driven into a specific part of molecules adsorbed on a metal surface, and ultrafast nonlinear coherent vibrational spectroscopy is used to watch the energy arrive at another part. This technique is the analog of a flash thermal conductance apparatus, except it probes energy flow with angstrom spatial and femtosecond temporal resolution. Specific examples to be presented include energy flow along alkane chains, and energy flow into substituted benzenes. Ref: Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Ultrafast flash thermal conductance of molecular chains, Science 317, 787-790 (2007). This material is based upon work supported by the National Science Foundation under award DMR 0504038 and the Air Force Office of Scientific Research under award FA9550-06-1-0235.
On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimbrall, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean
2012-01-01
Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kW tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated. A second portion of this DOE project involves sizing and costing a 15 MW tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation s 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one MW per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine s Western Passage. All would be connected to a high-pressure (20 MPa, 2900 psi) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, watermiscible fluid. Hydraulic adaptations to ORPC s cross-flow turbines are also discussed. For 15 MW of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.
On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimball, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean
2012-01-01
Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kilowatt tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated.A second portion of this DOE project involves sizing and costing a 15 megawatt tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation's 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one megawatt per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine's Western Passage. All would be connected to a high-pressure (20 megapascals, 2900 pounds per square inch) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, water-miscible fluid. Hydraulic adaptations to ORPC's cross-flow turbines are also discussed.For 15 megawatt of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.
NASA Astrophysics Data System (ADS)
Sengupta, Tapan K.; Gullapalli, Atchyut
2016-11-01
Spinning cylinder rotating about its axis experiences a transverse force/lift, an account of this basic aerodynamic phenomenon is known as the Robins-Magnus effect in text books. Prandtl studied this flow by an inviscid irrotational model and postulated an upper limit of the lift experienced by the cylinder for a critical rotation rate. This non-dimensional rate is the ratio of oncoming free stream speed and the surface speed due to rotation. Prandtl predicted a maximum lift coefficient as CLmax = 4π for the critical rotation rate of two. In recent times, evidences show the violation of this upper limit, as in the experiments of Tokumaru and Dimotakis ["The lift of a cylinder executing rotary motions in a uniform flow," J. Fluid Mech. 255, 1-10 (1993)] and in the computed solution in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)]. In the latter reference, this was explained as the temporal instability affecting the flow at higher Reynolds number and rotation rates (>2). Here, we analyze the flow past a rotating cylinder at a super-critical rotation rate (=2.5) by the enstrophy-based proper orthogonal decomposition (POD) of direct simulation results. POD identifies the most energetic modes and helps flow field reconstruction by reduced number of modes. One of the motivations for the present study is to explain the shedding of puffs of vortices at low Reynolds number (Re = 60), for the high rotation rate, due to an instability originating in the vicinity of the cylinder, using the computed Navier-Stokes equation (NSE) from t = 0 to t = 300 following an impulsive start. This instability is also explained through the disturbance mechanical energy equation, which has been established earlier in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)].
NASA Astrophysics Data System (ADS)
Katz, J.
2004-03-01
The presentation has two parts, both dealing with flow structure, turbulence and flow-particle interactions in the ocean. The first part examines PIV data obtained in the bottom boundary layer of the coastal ocean in periods when the mean currents are higher, of the same order and weaker than the wave induced motions. The energy spectra display substantial anisotropy at all scales, and the flow consists of periods of "gusts" dominated by large vortical structures, separated by periods of quiescent flows. The frequency of these gusts increases with Reynolds number, and they disappear when the currents are weak. Conditional sampling shows that the Reynolds shear stress, and as a result the shear production, are generated only during periods of gusts. When the mean flow is weak and during quiescent periods of moderate flow the shear stresses are essentially zero. Dissipation, on the other hand, occurs continuously, and increases only slightly during gust periods. The second part focuses on interactions of zooplankton with the local flow. Digital in-line holographic cinematography is used for measuring the three-dimensional trajectory of a free-swimming copepod, and simultaneously the instantaneous 3-D velocity field around this copepod. The velocity field and trajectory of particles entrained by the copepod have a recirculating pattern in the copepod's frame of reference. This pattern is caused by the copepod sinking at a rate that is lower than its terminal sinking speed, due to the propulsive force generated by its feeding current. Consequently, the copepod has to hop periodically to scan different fluid for food. Using Stokeslets to model the velocity field, the measured velocity distributions enable us to estimate the excess weight of the copepod and the propulsive force generated by its feeding appendages. Sponsored in part by the Office of Naval Research and by the National Science Foundation.
PCB Food Web Dynamics Quantify Nutrient and Energy Flow in Aquatic Ecosystems.
McLeod, Anne M; Paterson, Gordon; Drouillard, Ken G; Haffner, G Douglas
2015-11-03
Measuring in situ nutrient and energy flows in spatially and temporally complex aquatic ecosystems represents a major ecological challenge. Food web structure, energy and nutrient budgets are difficult to measure, and it is becoming more important to quantify both energy and nutrient flow to determine how food web processes and structure are being modified by multiple stressors. We propose that polychlorinated biphenyl (PCB) congeners represent an ideal tracer to quantify in situ energy and nutrient flow between trophic levels. Here, we demonstrate how an understanding of PCB congener bioaccumulation dynamics provides multiple direct measurements of energy and nutrient flow in aquatic food webs. To demonstrate this novel approach, we quantified nitrogen (N), phosphorus (P) and caloric turnover rates for Lake Huron lake trout, and reveal how these processes are regulated by both growth rate and fish life history. Although minimal nutrient recycling was observed in young growing fish, slow growing, older lake trout (>5 yr) recycled an average of 482 Tonnes·yr(-1) of N, 45 Tonnes·yr(-1) of P and assimilated 22 TJ yr(-1) of energy. Compared to total P loading rates of 590 Tonnes·yr(-1), the recycling of primarily bioavailable nutrients by fish plays an important role regulating the nutrient states of oligotrophic lakes.
Zehe, Erwin; Blume, Theresa; Blöschl, Günter
2010-01-01
Preferential flow in biological soil structures is of key importance for infiltration and soil water flow at a range of scales. In the present study, we treat soil water flow as a dissipative process in an open non-equilibrium thermodynamic system, to better understand this key process. We define the chemical potential and Helmholtz free energy based on soil physical quantities, parametrize a physically based hydrological model based on field data and simulate the evolution of Helmholtz free energy in a cohesive soil with different populations of worm burrows for a range of rainfall scenarios. The simulations suggest that flow in connected worm burrows allows a more efficient redistribution of water within the soil, which implies a more efficient dissipation of free energy/higher production of entropy. There is additional evidence that the spatial pattern of worm burrow density at the hillslope scale is a major control of energy dissipation. The pattern typically found in the study is more efficient in dissipating energy/producing entropy than other patterns. This is because upslope run-off accumulates and infiltrates via the worm burrows into the dry soil in the lower part of the hillslope, which results in an overall more efficient dissipation of free energy. PMID:20368256
Tracking Photospheric Energy Transport in Active Regions with SDO
NASA Astrophysics Data System (ADS)
Attié, R.; Thompson, B. J.
2017-12-01
The solar photosphere presents flow fields at all observable scales. Where energy-bearing magnetic active regions break through the photosphere these flows are particularly strong, as sheared and twisted magnetic fields come into equilibrium with their surroundings while transporting magnetic energy into the corona. A part of this magnetic energy - the so-called `free energy' stored in the magnetic field in the form of "twisted" and shear of the field - is released in flares and eruptions. We can quantify the energy arrival and build-up in the corona by tracking flow fields and magnetic features at the photosphere as magnetic flux emerges and evolves before and after a flare or eruption.To do this reliably requires two things: a long series of photospheric observations at high sensitivity, spatial and temporal resolution, and an efficient, reliable and robust framework that tracks the photospheric plasma flows and magnetic evolution in both the quiet sun and active regions. SDO/HMI provides the observations, and we present here an innovative high resolution tracking framework that involves the `Balltracking' and `Magnetic Balltracking' algorithms. We show the first results of a systematic, quantitative and comprehensive measurements of the flows and transport of magnetic energy into the solar atmosphere and investigate whether this dynamic view can improve predictions of flares and Coronal Mass Ejections (CMEs).
Acoustic energy exchange through flow turning
NASA Astrophysics Data System (ADS)
Baum, Joseph D.
1987-01-01
A numerical investigation of the mechanisms of acoustic energy exchange between the mean and acoustic flow fields in resonance chambers, such as rocket engines, is reported. A noniterative linearized block implicit scheme was used to solve the time-dependent compressible Navier-Stokes equations. Two test cases were investigated: acoustic wave propagation in a tube with a coexisting sheared mean flow (the refraction test) and acoustic wave propagation in a tube where the mean sheared flow was injected into the tube through its lateral boundary (the flow turning study). For flow turning, significant excitation of mean flow energy was observed at two locations: at the edge of the acoustic boundary layer and within a zone adjacent to the acoustic boundary layer extending up to 0.1 radii away from the wall. A weaker streaming effect was observed for the refraction study, and only at the edge of the acoustic boundary layer. The total dissipation for the flow turning test was twice the dissipation for refraction.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-25
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12817-002, Project No. 14083-000] Free Flow Power Corporation, Northland Power Mississippi River LLC; Notice Announcing Filing... priority is as follows: 1. Free Flow Power Corporation; Project No. 12817-002. 2. Northland Power...
Nonsteady-Flow Thrust Augmenting Ejectors
NASA Technical Reports Server (NTRS)
Foa, J. V.
1979-01-01
Ejector augmenters in which the transfer of mechanical energy from the primary to the secondary flow takes place through the work of interface pressure forces are investigated. Nonsteady flow processes are analyzed from the standpoint of energy transfer efficiency and a comparison of a rotary jet augmenter to an ejector is presented.
How to Read an LLNL Energy Flow Chart (Sankey Diagram)
Simon, A. J.
2018-01-16
Each year, the Lawrence Livermore National Laboratory releases energy flow charts that illustrate the nation's consumption and use of energy. A.J. Simon, group leader for LLNLâs energy program, breaks the 2015 chart down in this video, describing how to read the chart and what year-to-year trends he sees.
Reference States and Relative Values of Internal Energy, Enthalpy, and Entropy.
ERIC Educational Resources Information Center
Fredrickson, A. G.
1983-01-01
Discusses two reference states (pure chemical compounds and pure elements at specified condition of temperature and pressure) and the relation between these reference states for internal energy and enthalpy. Problem 5.11 from Modell and Reid's "Thermodynamics and its Applications" (p. 141) is used to apply the ideas discussed. (JN)
Optimum free energy in the reference functional approach for the integral equations theory
NASA Astrophysics Data System (ADS)
Ayadim, A.; Oettel, M.; Amokrane, S.
2009-03-01
We investigate the question of determining the bulk properties of liquids, required as input for practical applications of the density functional theory of inhomogeneous systems, using density functional theory itself. By considering the reference functional approach in the test particle limit, we derive an expression of the bulk free energy that is consistent with the closure of the Ornstein-Zernike equations in which the bridge functions are obtained from the reference system bridge functional. By examining the connection between the free energy functional and the formally exact bulk free energy, we obtain an improved expression of the corresponding non-local term in the standard reference hypernetted chain theory derived by Lado. In this way, we also clarify the meaning of the recently proposed criterion for determining the optimum hard-sphere diameter in the reference system. This leads to a theory in which the sole input is the reference system bridge functional both for the homogeneous system and the inhomogeneous one. The accuracy of this method is illustrated with the standard case of the Lennard-Jones fluid and with a Yukawa fluid with very short range attraction.
Flows of the Tycho Crater type, comparative analysis
NASA Astrophysics Data System (ADS)
Bratkov, Yury
Some embeddings of the Tycho Crater type flow or, more generally, of the Tycho Butterfly type flow, are demonstrated, and comparative analysis is given. Additionally, identity of the Earthen World Ocean and the Moon Global Ocean is demonstrated. Supersonic flows (jets, shock waves, Mach stems) are comparatively studied [1]. References: [1] Bratkov Yu.N., Caspian Seas, http://viXra.org/abs/1211.0067, 12 Nov 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, Samuel F.; Sellar, Brian; Richmond, Marshall C.
An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the watermore » column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation.« less