Sample records for energy laboratory program

  1. DOE Solar Energy Technologies Program FY 2005 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  2. ICF Annual Report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correll, D

    The continuing objective of Lawrence Livermore National Laboratory's (LLNL's) Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory and to support the nuclear weapons program in its use of ICF facilities. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship Program (SSP). The mission of the US Inertial Fusion Program is twofold: (1) to address high-energy-density physics issues for the SSP and (2) to develop a laboratory microfusion capability for defense and energy applications.more » In pursuit of this mission, the ICF Program has developed a state-of-the-art capability to investigate high-energy-density physics in the laboratory. The near-term goals pursued by the ICF Program in support of its mission are demonstrating fusion ignition in the laboratory and expanding the Program's capabilities in high-energy-density science. The National Ignition Facility (NIF) project is a cornerstone of this effort.« less

  3. Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkins, RR

    This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support tomore » the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.« less

  4. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describesmore » the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.« less

  5. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It alsomore » summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.« less

  6. DOE standard: The Department of Energy Laboratory Accreditation Program for radiobioassay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP) for Radiobioassay, for use by the US Department of Energy (DOE) and DOE Contractor radiobioassay programs. This standard is intended to be used in conjunction with the general administrative technical standard that describes the overall DOELAP accreditation process--DOE-STD-1111-98, Department of Energy Laboratory Accreditation Program Administration. This technical standard pertains to radiobioassay service laboratories that provide either direct or indirect (in vivo or in vitro) radiobioassay measurements in support of internal dosimetry programs at DOE facilities or for DOE and DOE contractors. Similar technical standards have been developedmore » for other DOELAP dosimetry programs. This program consists of providing an accreditation to DOE radiobioassay programs based on successful completion of a performance-testing process and an on-site evaluation by technical experts. This standard describes the technical requirements and processes specific to the DOELAP Radiobioassay Accreditation Program as required by 10 CFR 835 and as specified generically in DOE-STD-1111-98.« less

  7. Los Alamos Scientific Laboratory energy-related history, research, managerial reorganization proposals, actions taken, and results. History report, 1945--1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammel, E.F.

    1997-03-01

    This report documents the development of major energy-related programs at the Los Alamos Scientific Laboratory between 1945 and 1979. Although the Laboratory`s primary mission during that era was the design and development of nuclear weapons and most of the Laboratory`s funding came from a single source, a number of factors were at work that led to the development of these other programs. Some of those factors were affected by the Laboratory`s internal management structure and organization; others were the result of increasing environmental awareness within the general population and the political consequences of that awareness; still others were related tomore » the increasing demand for energy and the increasing turmoil in the energy-rich Middle East. This report also describes the various activities in Los Alamos, in Washington, and in other areas of the world that contributed to the development of major energy-related programs at Los Alamos. The author has a unique historical perspective because of his involvement as a scientist and manager at the Los Alamos Scientific Laboratory during the time period described within the report. In addition, in numerous footnotes and references, he cites a large body of documents that include the opinions and perspectives of many others who were involved at one time or another in these programs. Finally the report includes a detailed chronology of geopolitical events that led to the development of energy-related programs at Los Alamos.« less

  8. Fred Hutchinson Cancer Research Center, Seattle, Washington: Laboratories for the 21st Century Case Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2001-12-01

    This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the laboratories in the Fred Hutchinson Cancer Research Center complex in Seattle, Washington, include extensive use of efficient lighting, variable-air-volume controls, variable-speed drives, motion sensors, and high-efficiency chillers and motors. With aboutmore » 532,000 gross square feet, the complex is estimated to use 33% less electrical energy than most traditional research facilities consume because of its energy-efficient design and features.« less

  9. Fred Hutchinson Cancer Research Center, Seattle, Washington: Laboratories for the 21st Century Case Studies (Revision)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2002-03-01

    This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the laboratories in the Fred Hutchinson Cancer Research Center complex in Seattle, Washington, include extensive use of efficient lighting, variable-air-volume controls, variable-speed drives, motion sensors, and high-efficiency chillers and motors. With aboutmore » 532,000 gross square feet, the complex is estimated to use 33% less electrical energy than most traditional research facilities consume because of its energy-efficient design and features.« less

  10. 41 CFR 109-50.102 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DISPOSAL AUTHORITIES 50.1-Used Energy-Related Laboratory Equipment Grant Program § 109-50.102 General. DOE, to encourage research and development in the field of energy, awards grants of excess energy-related laboratory equipment to eligible institutions for use in energy-oriented educational programs. Under the Used...

  11. Quantitative Uncertainty Assessment and Numerical Simulation of Micro-Fluid Systems

    DTIC Science & Technology

    2005-04-01

    flow at Sandia, that was supported by the Laboratory Directed Research and Devel- opment program, and by the Dept. of Energy , Office of Basic Energy ...finite energy . 6 θ is used to denote the random nature of the corresponding quantity. Being symmetrical and positive definite, REE has all its...Laboratory Directed Research and Development Program at Sandia National Laboratories, funded by the U.S. Department of Energy . Support was also provided

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nancy Carlisle: NREL

    This publication is one of a series of case studies of energy-efficient modern laboratories; it was prepared for "Laboratories for the 21st Century," a joint program of the Environmental Protection Agency and the U.S. DOE Federal Energy Management Program

  13. Energy Storage Systems Program Report for FY99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOYES,JOHN D.

    2000-06-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

  14. Laboratory-Directed Research and Development 2016 Summary Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclearmore » Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy, enable clean energy deployment, and secure and modernize critical infrastructure. INL’s research, development, and demonstration capabilities, its resources, and its unique geography enable integration of scientific discovery, innovation, engineering, operations, and controls into complex large-scale testbeds for discovery, innovation, and demonstration of transformational clean energy and security concepts. These attributes strengthen INL’s leadership as a demonstration laboratory. As a national resource, INL also applies its capabilities and skills to the specific needs of other federal agencies and customers through DOE’s Strategic Partnership Program.« less

  15. Flow Induced Vibration Program at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    1984-01-01

    The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  16. Solar buildings program contract summary, calendar year 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-06-07

    The mission of the US Department of Energy's Solar Buildings Program is to advance the development and widespread deployment of competitive solar thermal technologies for use in buildings. The long-term goal of the Program is to combine solar energy technologies with energy-efficient construction techniques and create cost-effective buildings that have a zero net need for fossil fuel energy on an annual basis. The Solar Buildings Program conducts research and development on solar technologies that can deliver heat, light, and hot water to residential and commercial buildings. By working closely with manufacturers in both the buildings and solar energy industries andmore » by supporting research at universities and national laboratories, the Solar Buildings Program brings together the diverse players developing reliable and affordable solar technologies for building applications. The National Renewable Energy Laboratory (NREL) in Golden, Colorado, and Sandia National Laboratories (SNL) in Albuquerque, New Mexico, jointly participate in the Solar Buildings Program. These two national laboratories work closely with industry researching new concepts, developing technology improvements, reducing manufacturing costs, monitoring system performance, promoting quality assurance, and identifying potential new markets. In calendar year 1999, the Solar Buildings Program focused primarily on solar hot water system research and development (R and D), US industry manufacturing assistance, and US market assistance. The Program also completed a number of other projects that were begun in earlier years. This Contract Summary describes the Program's contracted activities that were active during 1999.« less

  17. Advanced Nuclear Technologies

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research of the nuclear energy age, scientists and engineers have conceived and developed advanced

  18. Manual for ERLE (Energy-Related Laboratory Equipment). Instructions and information for institutions of higher learning concerning used energy-related laboratory equipment grants; Manual para ERLE [Equipo de Laboratorio Relacionado con la Energia]. Instrucciones e informacion para instituciones de educacion superior sobre subvenciones de equipo de laboratorio usado relacionado con la energia (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-10-01

    This is a listing of energy related equipment available through the Energy-Related Laboratory Equipment Grant Program which grants used equipment to institutions of higher education for energy-related research. Information included is an overview of the program, how to apply for a grant of equipment, eligibility requirements, types of equipment available, and the costs for the institution.

  19. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describesmore » the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.« less

  20. Laboratory Directed Research and Development Program Assessment for FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, Diane; Flynn, Liz

    2017-03-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2C, and this report fulfills that requirement.

  1. Laboratory Directed Research and Development Program Assessment for FY 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Jack; Flynn, Liz

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2C. This report fulfills that requirement.

  2. Resources

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Service Academies Research Associates (SARA) Postdocs, Students Employee, Retiree Resources Benefits New

  3. Sustainable Transportation Program 2011 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, Kathi H

    2012-06-01

    Highlights of selected research and development efforts at Oak Ridge National Laboratory funded by the Vehicle Technologies Program, Biomass Program, and Hydrogen and Fuel Cells Program of the Department of Energy, Office of Energy Efficiency and Renewable Energy; and the Department of Transportation.

  4. Conservation and Renewable Energy Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, K.H.

    1991-05-01

    This bibliography lists reports and selected papers published under the Oak Ridge National Laboratory Conservation and Renewable Energy Program from 1986 through February 1991. Information on documents published prior to 1986 can be obtained from ORNL. Most of the documents in the bibliography are available from Oak Ridge National Laboratory.

  5. Sustainability Goals

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Service Academies Research Associates (SARA) Postdocs, Students Employee, Retiree Resources Benefits New

  6. Service Unavailable

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Service Academies Research Associates (SARA) Postdocs, Students Employee, Retiree Resources Benefits New

  7. Laboratory directed research and development program FY 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less

  8. AEERL (AIR AND ENERGY ENGINEERING RESEARCH LABORATORY) RESEARCH PLAN ON THE GLOBAL CLIMATE EMISSIONS ASSESSMENT AND STABILIZATION PROGRAM

    EPA Science Inventory

    The paper discusses the Environmental Protection Agency's (EPA) Air and Energy Engineering Research Laboratory (AEERL) research plan for work in the global climate area. The plan, written for discussion with senior scientists and program managers at EPA's Global Climate Change Re...

  9. Badging, Badge Office

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Service Academies Research Associates (SARA) Postdocs, Students Employee, Retiree Resources Benefits New

  10. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizesmore » current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.« less

  11. Environmental Protection: Controlling the Present

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Service Academies Research Associates (SARA) Postdocs, Students Employee, Retiree Resources Benefits New

  12. National Renewable Energy Laboratory Renewable Energy Opportunity Assessment for USAID Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Andrea; Bracho, Ricardo; Romero, Rachel

    The United States Agency for International Development (USAID) Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program is designing its second phase of assistance to the Government of Mexico (GOM). In preparation for program design, USAID has asked the National Renewable Energy Laboratory (NREL) to assist in identifying options for enabling renewable energy in Mexico and reducing greenhouse gas (GHG) emissions in the energy sector. The NREL team conducted a literature review and consulted with over 20 Mexican agencies and organizations during a two-week temporary duty assignment (TDY) to Mexico to identify gaps, opportunities, and program theme areas for Mexico.

  13. 76 FR 38550 - Technical Standard DOE-STD-1095-2011, Department of Energy Laboratory Accreditation for External...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Laboratory Accreditation for External Dosimetry AGENCY: Office of Health, Safety and Security, Department of... Department) is issuing Technical Standard DOE-STD-1095-2011, Department of Energy Laboratory Accreditation... part, to determine whether to accredit dosimetry programs in accordance with the DOE Laboratory...

  14. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basques, Eric O.

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of programmore » promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoreen, Terrence P

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data andmore » an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel ideas with scientific and technological merit will be recognized and supported.« less

  16. IARC - Illinois Accelerator Research Center | Pilot Program

    Science.gov Websites

    Toggle navigation Pilot Program Agenda Directions Registration Illinois Accelerator Research Center National Laboratory present Accelerator Stewardship Test Facility Pilot Program Use accelerator technology , energy and environment. With this pilot program, the DOE Office of Science National Laboratories are

  17. Oak Ridge National Laboratory`s (ORNL) ecological and physical science study center: A hands-on science program for K-12 students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, S.P.

    1994-12-31

    In our tenth year of educational service and outreach, Oak Ridge National Laboratory`s Ecological and Physical Science Study Center (EPSSC) provides hands-on, inquiry-based science activities for area students and teachers. Established in 1984, the EPSSC now hosts over 20,000 student visits. Designed to foster a positive attitude towards science, each unit includes activities which reinforce the science concept being explored. Outdoor science units provide field experience at the Department of Energy`s Oak Ridge National Environmental Research Park and outreach programs are offered on-site in area schools. Other programs are offered as extensions of the EPSSC core programs, including on-site studentmore » science camps, all-girl programs, outreach science camps, student competitions, teacher in-service presentations and teacher workshops.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This publication is one in an ongoing series of case studies for "Laboratories for the 21st Century," a joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy Federal Energy Management Program. It is intended for all those who plan, design, and construct public and private-sector laboratory buildings. This study describes how the Nidus Center, a nonprofit incubator for life sciences and plan biotechnology established by Monsanto Company, employs daylighting, an energy-efficient mechanical system featuring energy recovery, and water conservation practices, among others, to save energy and money and help conserve natural resources.

  19. Laboratory Directed Research and Development FY-15 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Rekha Sukamar

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  20. Laboratory Directed Research and Development Program Assessment for FY 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annuallymore » in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities within existing mission areas, as well as to develop new research mission areas in response to DOE and National needs. As the largest expense in BNL's LDRD program is the support graduate students, post-docs, and young scientists, LDRD provides base for continually refreshing the research staff as well as the education and training of the next generation of scientists. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included are a metric of success indicators and Self Assessment.« less

  1. Energy - Sandia National Laboratories

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  2. Laboratory Directed Research and Development Program FY 2006 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoreen, Terrence P

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about themore » FY 2006 projects and an internal evaluation of the program's management process.« less

  3. 75 FR 71737 - Energy Employees Occupational Illness Compensation Program Act of 2000, as Amended

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... 1984-1997. Laboratory for Energy-Related Health Davis 1958-1989; 1991-Present.[dagger] Research.... Environmental Health, University of California (San Francisco). Lawrence Berkeley National Laboratory... Physics Laboratory, James Princeton 1951-Present. Forrestal Campus of Princeton University. New Mexico DOE...

  4. Excited State Processes in Electronic and Bio Nanomaterials (ESP-2016)

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Service Academies Research Associates (SARA) Postdocs, Students Employee, Retiree Resources Benefits New

  5. Laboratory Directed Research and Development Program Activities for FY 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annuallymore » in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.« less

  6. Results and Analysis of the Research and Development Work Scope Request for Information (DE-SOL-0008246)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidrich, Brenden John

    The Department of Energy (DOE) Office of Nuclear Energy (NE) released a request for information (RFI) (DE-SOL-0008246) for “University, National Laboratory, Industry and International Input to the Office of Nuclear Energy’s Competitive Research and Development Work Scope Development” on April 13, 2015. DOE-NE solicited information for work scopes for the four main program areas as well as any others suggested by the community. The RFI proposal period closed on June 19, 2015. From the 124 responses, 238 individual work scopes were extracted. Thirty-three were associated with a DOE national laboratory, including Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Idahomore » National Laboratory (INL), Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory (ORNL). Thirty US universities submitted proposals as well as ten industrial/commercial institutions. Four major R&D areas emerged from the submissions, appearing in more than 15% of the proposed work scopes. These were: nuclear fuel studies, safety and risk analysis, nuclear systems analysis and design and advanced instrumentation and controls. Structural materials for nuclear power plants, used nuclear fuel disposition and various types of systems analysis were also popular, each appearing in more than 10% of the proposals. Nuclear Energy Enabling Technologies (NEET) was the most popular program area with 42% of the proposals referencing the NEET-CTD program. The order of the remaining programs was Fuel Cycle Technologies (FC) at 34%, Nuclear Energy Advanced Modeling and Simulation (NEAMS) at 29% and Reactor Concepts at 17%.« less

  7. Department of Energy - Office of Science Early Career Research Program

    NASA Astrophysics Data System (ADS)

    Horwitz, James

    The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/

  8. Radiation and Health Technology Laboratory Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihl, Donald E.; Lynch, Timothy P.; Murphy, Mark K.

    2005-07-09

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrumentmore » calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.« less

  9. Home Performance with ENERGY STAR: Utility Bill Analysis on Homes Participating in Austin Energy's Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belzer, D.; Mosey, G.; Plympton, P.

    2007-07-01

    Home Performance with ENERGY STAR (HPwES) is a jointly managed program of the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). This program focuses on improving energy efficiency in existing homes via a whole-house approach to assessing and improving a home's energy performance, and helping to protect the environment. As one of HPwES's local sponsors, Austin Energy's HPwES program offers a complete home energy analysis and a list of recommendations for efficiency improvements, along with cost estimates. To determine the benefits of this program, the National Renewable Energy Laboratory (NREL) collaborated with the Pacific Northwest Nationalmore » Laboratory (PNNL) to conduct a statistical analysis using energy consumption data of HPwES homes provided by Austin Energy. This report provides preliminary estimates of average savings per home from the HPwES Loan Program for the period 1998 through 2006. The results from this preliminary analysis suggest that the HPwES program sponsored by Austin Energy had a very significant impact on reducing average cooling electricity for participating households. Overall, average savings were in the range of 25%-35%, and appear to be robust under various criteria for the number of households included in the analysis.« less

  10. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, S.

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure successmore » in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.« less

  11. Earth Sciences annual report, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younker, L.W.; Donohue, M.L.; Peterson, S.J.

    1988-12-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoreen, Terrence P

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects thatmore » were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoreen, Terrence P

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects thatmore » were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.« less

  14. July 2015

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Energy United States of America National Nuclear Security Administration Visit Blogger Join Us on key role in national security and nuclear deterrence in an increasingly dangerous and unstable world

  15. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data andmore » an internal evaluation of the program’s management process.« less

  16. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial datamore » and an internal evaluation of the program’s management process.« less

  17. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and anmore » internal evaluation of the program’s management process.« less

  18. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial datamore » and an internal evaluation of the program’s management process.« less

  19. 10 CFR 707.12 - Specimen collection, handling and laboratory analysis for drug testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... drug testing. 707.12 Section 707.12 Energy DEPARTMENT OF ENERGY WORKPLACE SUBSTANCE ABUSE PROGRAMS AT DOE SITES Procedures § 707.12 Specimen collection, handling and laboratory analysis for drug testing... collection to final disposition of specimens, and testing laboratories shall use appropriate cutoff levels in...

  20. 10 CFR 707.12 - Specimen collection, handling and laboratory analysis for drug testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... drug testing. 707.12 Section 707.12 Energy DEPARTMENT OF ENERGY WORKPLACE SUBSTANCE ABUSE PROGRAMS AT DOE SITES Procedures § 707.12 Specimen collection, handling and laboratory analysis for drug testing... collection to final disposition of specimens, and testing laboratories shall use appropriate cutoff levels in...

  1. 10 CFR 707.12 - Specimen collection, handling and laboratory analysis for drug testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... drug testing. 707.12 Section 707.12 Energy DEPARTMENT OF ENERGY WORKPLACE SUBSTANCE ABUSE PROGRAMS AT DOE SITES Procedures § 707.12 Specimen collection, handling and laboratory analysis for drug testing... collection to final disposition of specimens, and testing laboratories shall use appropriate cutoff levels in...

  2. 10 CFR 707.12 - Specimen collection, handling and laboratory analysis for drug testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... drug testing. 707.12 Section 707.12 Energy DEPARTMENT OF ENERGY WORKPLACE SUBSTANCE ABUSE PROGRAMS AT DOE SITES Procedures § 707.12 Specimen collection, handling and laboratory analysis for drug testing... collection to final disposition of specimens, and testing laboratories shall use appropriate cutoff levels in...

  3. 10 CFR 707.12 - Specimen collection, handling and laboratory analysis for drug testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... drug testing. 707.12 Section 707.12 Energy DEPARTMENT OF ENERGY WORKPLACE SUBSTANCE ABUSE PROGRAMS AT DOE SITES Procedures § 707.12 Specimen collection, handling and laboratory analysis for drug testing... collection to final disposition of specimens, and testing laboratories shall use appropriate cutoff levels in...

  4. Laboratory Directed Research and Development Program FY 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less

  5. Energy Systems Laboratory Groundbreaking

    ScienceCinema

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.

    2018-05-11

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  6. ECUT: Energy Conversion and Utilization Technologies program. Industry, university and research interest in the US Department of Energy ECUT biocatalysis research activity

    NASA Technical Reports Server (NTRS)

    Wilcox, R. E.

    1983-01-01

    The results of a Research Opportunity Notice (RON) disseminated by the Jet Propulsion Laboratory for the U.S. Department of Energy Conversion and Utilization Technologies (ECUT) Program's Biocatalysis Research Activity are presented. The RON was issued in late April of 1983 and solicited expressions of interest from petrochemical and chemical companies, bioengineering firms, biochemical engineering consultants, private research laboratories, and universities for participating in a federal research program to investigate potential applications of biotechnology in producing chemicals. The RON results indicate that broad interest exists within the nation's industry, universities, and research institutes for the Activity and its planned research and development program.

  7. Biomass Program 2007 Accomplishments - Full Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2009-10-27

    The Office of Energy Efficiency and Renewable Energy's (EERE’s) Biomass Program works with industry, academia and its national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. This document provides Program accomplishments for 2007.

  8. US Department of Energy education programs catalog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    Missions assigned to DOE by Congress include fundamental scientific research, research and development of energy technologies, energy conservation, strategic weapons development and production, energy regulation, energy data collection and analysis, federal power marketing, and education in science and technology. Contributing to mathematics and science education initiatives are nine DOE national laboratories and more than 30 additional specialized research facilities. Within their walls, some of the most exciting research in contemporary science is conducted. The Synchrotron Light Source at Brookhaven National Laboratory, the Intense Pulsed Neutron Source at Argonne National Laboratory, lasers, electron microscopes, advanced robotics and supercomputers are examples ofmore » some of the unique tools that DOE employs in exploring research frontiers. Nobel laureates and other eminent scientists employed by DOE laboratories have accomplished landmark work in physics, chemistry, biology, materials science, and other disciplines. The Department oversees an unparalleled collection of scientific and technical facilities and equipment with extraordinary potential for kindling in students and the general public a sense of excitement about science and increasing public science literacy. During 1991, programs funded by DOE and its contractors reached more than one million students and educators. This document is a catalog of these education programs.« less

  9. US Department of Energy education programs catalog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    Missions assigned to DOE by Congress include fundamental scientific research, research and development of energy technologies, energy conservation, strategic weapons development and production, energy regulation, energy data collection and analysis, federal power marketing, and education in science and technology. Contributing to mathematics and science education initiatives are nine DOE national laboratories and more than 30 additional specialized research facilities. Within their walls, some of the most exciting research in contemporary science is conducted. The Synchrotron Light Source at Brookhaven National Laboratory, the Intense Pulsed Neutron Source at Argonne National Laboratory, lasers, electron microscopes, advanced robotics and supercomputers are examples ofmore » some of the unique tools that DOE employs in exploring research frontiers. Nobel laureates and other eminent scientists employed by DOE laboratories have accomplished landmark work in physics, chemistry, biology, materials science, and other disciplines. The Department oversees an unparalleled collection of scientific and technical facilities and equipment with extraordinary potential for kindling in students and the general public a sense of excitement about science and increasing public science literacy. During 1991, programs funded by DOE and its contractors reached more than one million students and educators. This document is a catalog of these education programs.« less

  10. Batteries and Energy Storage | Argonne National Laboratory

    Science.gov Websites

    -energy density lithium-ion batteries, while using our fundamental science capabilities to develop storage ), headquartered at Argonne National Laboratory, seeks to develop new technologies that move beyond lithium-ion Transportation SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans

  11. NREL Taps Young to Oversee Geothermal Energy Program | News | NREL

    Science.gov Websites

    Taps Young to Oversee Geothermal Energy Program News Release: NREL Taps Young to Oversee Geothermal (NREL) promoted Katherine Young to laboratory program manager for geothermal energy. Young has been with NREL since 2008, working as a senior geothermal analyst and engineer in the Strategic Energy Analysis

  12. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of The Director)

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selectedmore » from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial datamore » and an internal evaluation of the program’s management process.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial datamore » and an internal evaluation of the program’s management process.« less

  15. Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Interim report, 1994 Summer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winiarski, D.W.

    1995-01-01

    The federal government is the largest single energy consumer in the United States cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studiedmore » under that program. This interim report provides the results of a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology-a hot water heater conversion system to convert electrically heated hot water tanks to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.« less

  16. Summer Internship Program for American Indian & Native Alaska College Students

    ScienceCinema

    None

    2017-12-09

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  17. DOE Solar Energy Technologies Program FY 2005 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutula, Raymond A.

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the program for fiscal year 2005. In particular, the report describes R&D performed by the Program’s national laboratories and university and industry partners.

  18. Verification of Employment (VOE)

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Service Academies Research Associates (SARA) Postdocs, Students Employee, Retiree Resources Benefits New employees need to show a photo ID. Employee, Retiree Resources Benefits Plan Reports & Notices

  19. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 1: Biomedical Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, C.C.; Park, J.F.

    1994-03-01

    This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciencesmore » Research section reports research conducted for the OHER human genome program.« less

  20. Materials and Chemical Sciences Division annual report, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  1. Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winiarski, D.W.

    1995-12-01

    The Federal government is the largest single energy consumer in the United States with consumption of nearly 1.5 quads/year of energy (10{sup 15} quad = 1015 Btu) and cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP) seeks to evaluate new energy -- saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate inmore » the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This report provides the results of a field evaluation that PNL conducted for DOE/FEMP with funding support from the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of 4 candidate energy-saving technology-a water heater conversion system to convert electrically powered water heaters to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.« less

  2. Summer Internship Program for American Indian and Native Alaska College Students

    ScienceCinema

    None

    2017-12-11

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  3. Summer Internship Program for American Indian and Native Alaska College Students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-01

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  4. Retiree Benefits

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Service Academies Research Associates (SARA) Postdocs, Students Employee, Retiree Resources Benefits New » Retiree Benefits Retiree Benefits Employees and retirees are the building blocks of the Lab's success. Our

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, A.G.

    The Pacific Northwest Laboratory (PNL)/Analytical Chemistry Laboratory (ACL) and the Westinghouse Hanford Company (WHC)/Process Analytical Laboratory (PAL) provide analytical support services to various environmental restoration and waste management projects/programs at Hanford. In response to a US Department of Energy -- Richland Field Office (DOE-RL) audit, which questioned the comparability of analytical methods employed at each laboratory, the Sample Exchange/Exchange (SEE) program was initiated. The SEE Program is a selfassessment program designed to compare analytical methods of the PAL and ACL laboratories using sitespecific waste material. The SEE program is managed by a collaborative, the Quality Assurance Triad (Triad). Triad membershipmore » is made up of representatives from the WHC/PAL, PNL/ACL, and WHC Hanford Analytical Services Management (HASM) organizations. The Triad works together to design/evaluate/implement each phase of the SEE Program.« less

  6. Program definition and assessment overview. [for thermal energy storage project management

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1980-01-01

    The implementation of a program level assessment of thermal energy storage technology thrusts for the near and far term to assure overall coherent energy storage program is considered. The identification and definition of potential thermal energy storage applications, definition of technology requirements, and appropriate market sectors are discussed along with the necessary coordination, planning, and preparation associated with program reviews, workshops, multi-year plans and annual operating plans for the major laboratory tasks.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virginia Finley

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program ismore » to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of non-radiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the presence of low levels of volatile organic compounds in an area adjacent to PPPL. Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report.« less

  8. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartock, Mike; Hansen, Todd

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategicmore » management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.« less

  9. Instrumentation, Control, and Intelligent Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-09-01

    Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a majormore » center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.« less

  10. Inertial Fusion and High-Energy-Density Science in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarter, C B

    2001-09-06

    Inertial fusion and high-energy density science worldwide is poised to take a great leap forward. In the US, programs at the University of Rochester, Sandia National Laboratories, Los Alamos National Laboratory, Lawrence Livermore National Laboratory (LLNL), the Naval Research Laboratory, and many smaller laboratories have laid the groundwork for building a facility in which fusion ignition can be studied in the laboratory for the first time. The National Ignition Facility (NIF) is being built by the Department of Energy's National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program (SSP) to ensure the dependabilitymore » of the country's nuclear deterrent without underground nuclear testing. NIF and other large laser systems being planned such as the Laser MegaJoule (LMJ) in France will also make important contributions to basic science, the development of inertial fusion energy, and other scientific and technological endeavors. NIF will be able to produce extreme temperatures and pressures in matter. This will allow simulating astrophysical phenomena (on a tiny scale) and measuring the equation of state of material under conditions that exist in planetary cores.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, T.; Savage, S.; Brown, J.

    At the request of the U. S. Department of Agriculture (USDA) Rural Development, the National Renewable Energy Laboratory reviewed projects awarded in the Section 9006 Program: Renewable Energy Systems and Energy Efficiency Improvements Program. This report quantifies federal and private investment, outlines project status based on recent field updates, and calculates the effects on energy and emissions of energy efficiency and renewable energy projects awarded grants in FY 2003, FY 2004, and FY 2005. An overview of the program challenges and modifications in the first three years of operation is also included.

  12. Alternative Fuel Transit Bus Evaluation Program Results

    DOT National Transportation Integrated Search

    1996-05-06

    The objective of this program, which is supported by the U.S. Department of : Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to : provide an unbiased and comprehensive comparison of transit buses operating on : alternative f...

  13. Evaluating Technology Transfer and Diffusion.

    ERIC Educational Resources Information Center

    Bozeman, Barry; And Others

    1988-01-01

    Four articles discuss the evaluation of technology transfer and diffusion: (1) "Technology Transfer at the U.S. National Laboratories: A Framework for Evaluation"; (2) "Application of Social Psychological and Evaluation Research: Lessons from Energy Information Programs"; (3) "Technology and Knowledge Transfer in Energy R and D Laboratories: An…

  14. Bureau of Indian Education Many Farms Training Program at Argonne

    ScienceCinema

    None

    2018-05-23

    Bureau of Indian Education Many Farms Training Program for Renewable Energy at Argonne National Laboratory. Principal Contacts; Harold Myron (ANL), Anthony Dvorak (ANL), Freddie Cardenas (BIA). Supported by; United States Department of the Interior, Bureau of Indian Education, and Argonne National Laboratory.

  15. Electron Microscopy Lab

    Science.gov Websites

    Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Science Seaborg Institute Fellows Conferences Research Opportunities Center for Integrated

  16. Office of Educational Programs 2009 Summer Internship Symposium and Poster Session

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White,K.; Morris, M.; Osiecki, C.

    2009-08-06

    Brookhaven National Laboratory offers college and pre-college faculty and students many opportunities to participate in Laboratory educational programs. The programs administered by the Office of Educational Programs are primarily funded by the U.S. Department of Energy, Brookhaven Science Associates, and other federal and non-federal agencies. Faculty and student research participation is welcomed in physical and life sciences, computer science and engineering, as well as in a variety of applied research areas relating to alternative energy, conservation, environmental technology, and national security. Visit our website at http://www.bnl.gov/education for application deadlines and more details. Following is a description of the programs managedmore » by the Office of Educational Programs.« less

  17. LDRD 2014 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, Diane

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2014, as required. In FY 2014, the BNL LDRD Program funded 40 projects, 8 of which were new starts, at a total cost of $9.6M.

  18. LDRD 2012 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bookless, William

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY2012, as required. In FY2012, the BNL LDRD Program funded 52 projects, 14 of which were new starts, at a total cost of $10,061,292.

  19. LDRD 2015 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, D.

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2015, as required. In FY 2015, the BNL LDRD Program funded 43 projects, 12 of which were new starts, at a total cost of $9.5M.

  20. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energymore » Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to meeting all reporting requirements during fiscal year 2009, our LDRD Office continues to enhance its electronic systems to streamline the LDRD management process. You will see from the following individual project reports that Argonne's researchers have once again done a superb job pursuing projects at the forefront of their respective fields and have contributed significantly to the advancement of Argonne's strategic thrusts. This work has not only attracted follow-on sponsorship in many cases, but is also proving to be a valuable basis upon which to continue realignment of our strategic portfolio to better match the Laboratory's Strategic Plan.« less

  1. Proceedings of the 18th Annual Conference on Fossil Energy Materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkins, RR

    2004-11-02

    The 18th Annual conference on Fossil Energy Materials was held in Knoxville, Tennessee, on June 2 through June 4, 2004. The meeting was sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy through the Advanced Research Materials Program (ARM). The objective of the ARM Program is to conduct research and development on materials for longer-term fossil energy applications, as well as for generic needs of various fossil fuel technologies. The management of the program has been decentralized to the DOE Oak Ridge Operations Office and Oak Ridge National Laboratory (ORNL). The research is performed by staff membersmore » at ORNL and by researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) structural, ceramics, (2) new alloys and coatings, (3) functional materials, and (4) technology development and transfer.« less

  2. 2015 Key Wind Program and National Laboratory Accomplishments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Energy Efficiency and Renewable Energy

    The U.S. Department of Energy (DOE) Wind Program is committed to helping the nation secure cost-competitive sources of renewable energy through the development and deployment of innovative wind power technologies. By investing in improvements to wind plant design, technology development, and operation as well as developing tools to identify the highest quality wind resources, the Wind Program serves as a leader in making wind energy technologies more competitive with traditional sources of energy and a larger part of our nation’s renewable energy portfolio.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    SLAC,

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  4. SOLTECH 1992 proceedings: Solar Process Heat Program, volume 1

    NASA Astrophysics Data System (ADS)

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the U.S. Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17-20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil, (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, and (6) Photovoltaic (PV) Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35 mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  5. Energy and technology review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quirk, W.J.; Canada, J.; de Vore, L.

    1994-04-01

    This issue highlights the Lawrence Livermore National Laboratory`s 1993 accomplishments in our mission areas and core programs: economic competitiveness, national security, energy, the environment, lasers, biology and biotechnology, engineering, physics, chemistry, materials science, computers and computing, and science and math education. Secondary topics include: nonproliferation, arms control, international security, environmental remediation, and waste management.

  6. DOE/NREL Next Generation Natural Gas Vehicle Program : an overview

    DOT National Transportation Integrated Search

    2001-05-14

    This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energys (DOEs) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of...

  7. Fermi National Accelerator Laboratory Annual Program Review 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Jeffrey A.; Jovanovic, Drasko; Pordes, Stephen

    1991-01-01

    This book is submitted as a written adjunct to the Annual DOE High Energy Physics Program Review of Fermilab, scheduled this year for April 10-12, 1991. In it are described the functions and activities of the various Laboratory areas plus statements of plans and goals for the coming year.

  8. 10 CFR 26.153 - Using certified laboratories for testing urine specimens.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... for Substance Abuse Prevention, Substance Abuse and Mental Health Services Administration, Room 815.... 26.153 Section 26.153 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Laboratories... Workplace Drug Testing Programs [published in the Federal Register on April 11, 1988 (53 FR 11970), and as...

  9. 10 CFR 26.153 - Using certified laboratories for testing urine specimens.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for Substance Abuse Prevention, Substance Abuse and Mental Health Services Administration, Room 815.... 26.153 Section 26.153 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Laboratories... Workplace Drug Testing Programs [published in the Federal Register on April 11, 1988 (53 FR 11970), and as...

  10. 10 CFR 26.153 - Using certified laboratories for testing urine specimens.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for Substance Abuse Prevention, Substance Abuse and Mental Health Services Administration, Room 815.... 26.153 Section 26.153 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Laboratories... Workplace Drug Testing Programs [published in the Federal Register on April 11, 1988 (53 FR 11970), and as...

  11. 10 CFR 26.153 - Using certified laboratories for testing urine specimens.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... for Substance Abuse Prevention, Substance Abuse and Mental Health Services Administration, Room 815.... 26.153 Section 26.153 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Laboratories... Workplace Drug Testing Programs [published in the Federal Register on April 11, 1988 (53 FR 11970), and as...

  12. 10 CFR 26.153 - Using certified laboratories for testing urine specimens.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... for Substance Abuse Prevention, Substance Abuse and Mental Health Services Administration, Room 815.... 26.153 Section 26.153 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Laboratories... Workplace Drug Testing Programs [published in the Federal Register on April 11, 1988 (53 FR 11970), and as...

  13. Director's Discretionary Research and Development Program: Annual Report, Fiscal Year 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-12-01

    The Director's Discretionary Research and Development (DDRD) program is designed to encourage technical innovation and build new research and development capabilities at the National Renewable Energy Laboratory (NREL). Technical innovation is critical to the long-term viability of NREL (also referred to as the Laboratory) and to the success of the U.S. Department of Energy (DOE). The strategic value of DDRD is being continuously enhanced by expanding the opportunities to propose and pursue innovative ideas for building new and enhanced capabilities.

  14. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOX,K.J.

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually inmore » March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2004. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2004 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2005. The BNL LDRD budget authority by DOE in FY 2004 was $9.5 million. The actual allocation totaled $8.5 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators and Self Assessment.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney,J.P.; Fox, K.

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to themore » U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts with limited management filtering to encourage the creativity of individual researchers. The competition is open to all BNL staff in programmatic, scientific, engineering, and technical support areas. Researchers submit their project proposals to the Assistant Laboratory Director for Policy and Strategic Planning. A portion of the LDRD budget is held for the Strategic LDRD (S-LDRD) category. Projects in this category focus on innovative R&D activities that support the strategic agenda of the Laboratory. The Laboratory Director entertains requests or articulates the need for S-LDRD funds at any time. Strategic LDRD Proposals also undergo rigorous peer review; the approach to review is tailored to the size and scope of the proposal. These Projects are driven by special opportunities, including: (1) Research project(s) in support of Laboratory strategic initiatives as defined and articulated by the Director; (2) Research project(s) in support of a Laboratory strategic hire; (3) Evolution of Program Development activities into research and development activities; and (4) ALD proposal(s) to the Director to support unique research opportunities. The goals and objectives of BNL's LDRD Program can be inferred fronl the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. To be one of the premier DOE National Laboratories, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address National needs within the overall mission of the DOE and BNL.« less

  16. Low Energy X-Ray and Electron Physics and Technology for High-Temperature Plasma Diagnostics

    DTIC Science & Technology

    1987-10-01

    This program in low-energy x-ray physics and technology has expanded into a major program with the principal objective of supporting research and application programs at the new large x-ray source facilities, particularly the high temperature plasma and synchrotron radiation sources. This program addresses the development of absolute x-ray diagnostics for the fusion energy and x-ray laser research and development. The new laboratory includes five specially designed

  17. Modeling Laser-Driven Laboratory Astrophysics Experiments Using the CRASH Code

    NASA Astrophysics Data System (ADS)

    Grosskopf, Michael; Keiter, P.; Kuranz, C. C.; Malamud, G.; Trantham, M.; Drake, R.

    2013-06-01

    Laser-driven, laboratory astrophysics experiments can provide important insight into the physical processes relevant to astrophysical systems. The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density laboratory astrophysics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. The CRASH model has been used on many applications including: radiative shocks, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL) collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  18. Sandia National Laboratories, California Environmental Management System program manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a setmore » of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories, New Mexico (SNL/NM). Although these groups, from an organizational perspective, are part of Division 8000, they are managed locally and fall under the environmental requirements specific to their New Mexico location. The New Mexico groups in Division 8000 follow the corporate EMS Program for New Mexico operations.« less

  19. 1995 Laboratory-Directed Research and Development Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  20. ENergy and Power Evaluation Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-11-01

    In the late 1970s, national and international attention began to focus on energy issues. Efforts were initiated to design and test analytical tools that could be used to assist energy planners in evaluating energy systems, particularly in developing countries. In 1984, the United States Department of Energy (DOE) commissioned Argonne National Laboratory`s Decision and Information Sciences Division (DIS) to incorporate a set of analytical tools into a personal computer-based package for distribution in developing countries. The package developed by DIS staff, the ENergy and Power Evaluation Program (ENPEP), covers the range of issues that energy planners must face: economic development,more » energy demand projections, supply-and-demand balancing, energy system expansion, and environmental impact analysis. Following the original DOE-supported development effort, the International Atomic Energy Agency (IAEA), with the assistance from the US Department of State (DOS) and the US Department of Energy (DOE), provided ENPEP training, distribution, and technical support to many countries. ENPEP is now in use in over 60 countries and is an international standard for energy planning tools. More than 500 energy experts have been trained in the use of the entire ENPEP package or some of its modules during the international training courses organized by the IAEA in collaboration with Argonne`s Decision and Information Sciences (DIS) Division and the Division of Educational Programs (DEP). This report contains the ENPEP program which can be download from the internet. Described in this report is the description of ENPEP Program, news, forums, online support and contacts.« less

  1. Single-Family Energy Auditor Job Task Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Head, Heather R.; Kurnik, Charles W.

    The National Renewable Energy Laboratory (NREL) is contracted by the U.S. Department of Energy (DOE) Weatherization Assistance Program (WAP) to develop and maintain the resources under the Guidelines for Home Energy Professionals (GHEP) project. As part of the GHEP strategy to increase the quality of work conducted for single-family, residential energy-efficiency retrofits, the Home Energy Professionals Job Task Analysis are used as the foundation for quality training programs and trainers.

  2. Modeling Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Drake, R. P.; Grosskopf, Michael; Bauerle, Matthew; Kruanz, Carolyn; Keiter, Paul; Malamud, Guy; Crash Team

    2013-10-01

    The understanding of high energy density systems can be advanced by laboratory astrophysics experiments. Computer simulations can assist in the design and analysis of these experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport and electron heat conduction. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Radiative shocks experiments, Kelvin-Helmholtz experiments, Rayleigh-Taylor experiments, plasma sheet, and interacting jets experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  3. Helical Explosive Flux Compression Generator Research at the Air Force Research Laboratory

    DTIC Science & Technology

    1999-06-01

    Air Force Research Laboratory Kirtland AFB...ORGANIZATION NAME(S) AND ADDRESS(ES) Directed Energy Directorate, Air Force Research Laboratory Kirtland AFB, NM 8. PERFORMING ORGANIZATION REPORT...in support of the Air Force Research Laboratory ( AFRL ) explosive pulsed power program. These include circuit codes such as Microcap and

  4. Center for Electrochemical Energy Science | Argonne National Laboratory

    Science.gov Websites

    Electrochemical Energy Science Research Program Publications & Presentations News An Energy Frontier Research Center Exploring the electrochemical reactivity of oxide materials and their interfaces under the extreme

  5. 10 CFR 26.165 - Testing split specimens and retesting single specimens.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Testing split specimens and retesting single specimens. 26.165 Section 26.165 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Laboratories... laboratory or maintained in secure storage at the licensee testing facility, as required by § 26.135(a) and...

  6. Tour of Research Laboratories at the Ford Company

    NASA Astrophysics Data System (ADS)

    Reitz, J. R.

    1981-01-01

    A brief description of the physics programs encountered on the tour of the Ford Motor Company Research Laboratories is provided. A visit to the Research Laboratories of the Ford Motor Company is part of the Conference on Physics in the Automotive Industry. The visit will show a cross-section of the programs in Research Staff which are clearly identified as physics research as well as other areas where physicists have established themselves as dominant or team members in what might traditionally be regarded as the province of engineering R&D. After a brief orientation, the Conference visitors will be divided into tour groups and will visit laboratories involved in combustion research, arc-discharge physics, various spectroscopic applications, metal gauging, energy management, optical display systems and solar energy research. Synopses of the specific tour visits follow.

  7. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  8. Programmed Instruction Manual for a New Solar and Energy Conservation Laboratory. Final Evaluation Report.

    ERIC Educational Resources Information Center

    State Univ. of New York, Farmingdale. Agricultural and Technical Coll.

    A programmed instruction course was developed, consisting of fifteen experiments encompassing eleven separate pieces of equipment operational in a solar and energy conservation lab. The programmed instruction manual for the lab was evaluated and revised during a workshop. This evaluation indicated that both the lab and manual are valuable tools…

  9. 2017 TRIAD Small Business Advisory Panel

    DTIC Science & Technology

    2017-10-11

    government service in 2007 as the Science & Technology (S&T) Project Manager for the United States Navy’s Unmanned Maritime Systems Program Office...National Renewable Energy Laboratory (NREL) as a Program Manager for over 110 energy and water projects on military installations. He worked... management , project management , program management , donor relation service, contract and subcontract policy development and implementation, data integrity

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Joshua; Burnham, Laurie; Jones, Christian Birk

    The U.S. DOE Regional Test Center for Solar Technologies program was established to validate photovoltaic (PV) technologies installed in a range of different climates. The program is funded by the Energy Department's SunShot Initiative. The initiative seeks to make solar energy cost competitive with other forms of electricity by the end of the decade. Sandia National Laboratory currently manages four different sites across the country. The National Renewable Energy Laboratory manages a fifth site in Colorado. The entire PV portfolio currently includes 20 industry partners and almost 500 kW of installed systems. The program follows a defined process that outlinesmore » tasks, milestones, agreements, and deliverables. The process is broken out into four main parts: 1) planning and design, 2) installation, 3) operations, and 4) decommissioning. This operations manual defines the various elements of each part.« less

  12. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours formore » the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.« less

  13. Single-Family Quality Control Inspector Job Task Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Head, Heather R; Kurnik, Charles W

    The National Renewable Energy Laboratory (NREL) is contracted by the U.S. Department of Energy (DOE) Weatherization Assistance Program (WAP) to develop and maintain the resources under the Guidelines for Home Energy Professionals (GHEP) project. As part of the GHEP strategy to increase the quality of work conducted for single-family, residential energy-efficiency retrofits, the Home Energy Professionals Job Task Analysis are used as the foundation for quality training programs and trainers.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schatz, Glenn

    Higher education uses less energy per square foot than most commercial building sectors. However, higher education campuses house energy-intensive laboratories and data centers that may spend more than this average; laboratories, in particular, are disproportionately represented in the higher education sector. The Commercial Building Partnership (CBP), a public/private, cost-shared program sponsored by the U.S. Department of Energy (DOE), paired selected commercial building owners and operators with representatives of DOE, its national laboratories, and private-sector technical experts. These teams explored energy-saving measures across building systems–including some considered too costly or technologically challenging–and used advanced energy modeling to achieve peak whole-building performance.more » Modeling results were then included in new construction or retrofit designs to achieve significant energy reductions.« less

  15. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A waste water treatment plant in Wilton, Maine, where sludge is converted to methane gas, and Monsanto Company's Environmental Health Laboratory in St. Louis Missouri, where more than 200 solar collectors provide preheating of boiler feed water for laboratory use are representative of Grumman's Sunstream line of solar energy equipment. This equipment was developed with technology from NASA's Apollo lunar module program.

  16. Proceedings of the Antiproton Science and Technology Workshop Held in Santa Monica, California on 6-9 October 1987

    DTIC Science & Technology

    1988-07-01

    I Activities 1. Potential Low Energy Antiproton Sources in the United States 15 D.C. Peaslee (University of Maryland) 2. Low Energy Antiproton...Nieto, R.J. Hughes (Los Alamos National Laboratory) 2. Basic Physics Program for a Low Energy Antiproton Source in North America 245 B.E. Bonner (Rice...J.L. Callas (Jet Propulsioi< Laboratory) 5r> Energy Transfer in Antiproton Annihilation Rockets 577 B.N. Cassenti (United Technologies Research Center

  17. Transportation Energy - Sandia Energy

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  18. How Schools Can Plug the Energy Drain

    ERIC Educational Resources Information Center

    Nation's Schools, 1973

    1973-01-01

    Schools could conserve energy by following recommendations by Educational Facilities Laboratories: (1) review operations and maintenance personnel qualifications to handle mechanical-electrical equipment, (2) analyze energy consumption to identify waste sources in schools, (3) incorporate energy conservation into all architectural programs for…

  19. Teacher Programs | Argonne National Laboratory

    Science.gov Websites

    Biology IMEInstitute for Molecular Engineering JCESRJoint Center for Energy Storage Research MCSGMidwest Science and Engineering RISCRisk and Infrastructure Science Center SBCStructural Biology Center Energy.gov

  20. Educational Programs | Argonne National Laboratory

    Science.gov Websites

    Biology IMEInstitute for Molecular Engineering JCESRJoint Center for Energy Storage Research MCSGMidwest Science and Engineering RISCRisk and Infrastructure Science Center SBCStructural Biology Center Energy.gov

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lower, Mark D; Christopher, Timothy W; Oland, C Barry

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPImore » program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL reduce its overall utility costs by decreasing the amount of fuel used to generate steam. Reduced fuel consumption also decreased air emissions. These improvements also helped lower the risk of burn injuries to workers and helped prevent shrapnel injuries resulting from missiles produced by pressurized component failures. In most cases, the economic benefit and cost effectiveness of the SPRS Safety and Energy Efficiency Improvement Project is reflected in payback periods of 1 year or less.« less

  2. Annual Report: Unconventional Fossil Energy Resource Program (30 September 2013)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soong, Yee; Guthrie, George

    2013-09-30

    Yee Soong, Technical Coordinator, George Guthrie, Focus Area Lead, UFER Annual Report, NETL-TRS-UFER-2013, NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA, 2013, p 14.

  3. Proceedings of the sixth annual conference on fossil energy materials. Fossil Energy AR and TD Mateials Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, N.C.; Judkins, R.R.

    1992-07-01

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy`s Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program, and ASM International. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technicalmore » support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.« less

  4. Energy Fact Sheets - Sandia Energy

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  5. External Performance Evaluation Program Participation at Fluor Hanford (FH) 222S Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CLARK, G.A.

    2002-06-01

    Fluor Hanford operates the U. S. Department of Energy's (DOE) 2224 Laboratory on the Hanford Site in Southeastern Washington State. 222-S Laboratory recently celebrated its 50th anniversary of providing laboratory services to DOE and DOE contractors on the Hanford Site. The laboratory operated for many years as a production support analytical laboratory, but in the last two decades has supported the Hanford Site cleanup mission. The laboratory performs radioanalytical, inorganic, and organic characterization analyses on highly radioactive liquid and solid tank waste that will eventually be vitrified for long-term storage and or disposal. It is essential that the laboratory reportmore » defensible, highly credible data in its role as a service provider to DOE and DOE contractors. Among other things, the participation in a number of performance evaluation (PE) programs helps to ensure the credibility of the laboratory. The laboratory currently participates in Environmental Resource Associates' Water Pollution (WP) Studies and the DOE Environmental Management Laboratory (EML) Quality Assessment Program (QAP). DOE has mandated participation of the laboratory in the EML QAP. This EML program evaluates the competence of laboratories performing environmental radioanalytical measurements for DOE, and is the most comprehensive and well-established PE program in the DOE community for radiochemical laboratories. Samples are received and analyzed for radionuclides in air filter, soil, vegetation, and water matrices on a semiannual basis. The 222-S Laboratory has performed well in this program over the years as evidenced by the scores in the chart below.« less

  6. Preliminary Analysis of the Jobs and Economic Impacts of Renewable Energy Projects Supported by the §1603 Treasury Grant Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, Daniel; Porro, Gian; Goldberg, Marshall

    This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the §1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the §1603 grant program.

  7. Preliminary Analysis of the Jobs and Economic Impacts of Renewable Energy Projects Supported by the ..Section..1603 Treasury Grant Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, D.; Porro, G.; Goldberg, M.

    This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the Section 1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the Section 1603 grant program.

  8. Preliminary Analysis of the Jobs and Economic Impacts of Renewable Energy Projects Supported by the §1603Treasury Grant Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, Daniel; Porro, Gian; Goldberg, Marshall

    2012-04-01

    This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the §1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the §1603 grant program.

  9. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Manuel, Mario; Keiter, Paul; Drake, R. P.

    2014-10-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, imploding bubbles, and interacting jet experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via Grant DEFC52-08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0001840, and by the National Laser User Facility Program, Grant Number DE-NA0000850.

  10. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOX, K.J.

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE)more » annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.« less

  11. California Energy Systems for the 21st Century 2016 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Randwyk, J.; Boutelle, A.; McClelland, C.

    The California Energy Systems for the 21st Century (CES-21) Program is a public-private collaborative research and development program between the California Joint Utilities1 and Lawrence Livermore National Laboratory (LLNL). The purpose of this annual report is to provide the California Public Utilities Commission (CPUC or Commission) with a summary of the 2016 progress of the CES-21 Program.

  12. Laboratory Directed Research and Development FY2011 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundationalmore » science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial-Fusion Energy; (12) Advanced Laser Optical Systems and Applications; (12) Space Security; (13) Stockpile Stewardship Science; (14) National Security; (15) Alternative Energy; and (16) Climatic Change.« less

  13. About Educational Programs | Argonne National Laboratory

    Science.gov Websites

    Transformations IGSBInstitute for Genomics and Systems Biology IMEInstitute for Molecular Engineering JCESRJoint Science Center SBCStructural Biology Center Energy.gov U.S. Department of Energy Office of Science

  14. Space nuclear safety program

    NASA Astrophysics Data System (ADS)

    George, T. G.

    1990-02-01

    This quarterly report describes studies related to the use of Pu(238)O sub 2 in radioisotope power systems, carried out of the Office of Defense Energy Programs and Special Applications of the U.S. Department of Energy by Los Alamos National Laboratory. The studies are ongoing; the results and conclusions described may change as the work progresses.

  15. Overview of the biomedical and environmental programs at the Oak Ridge National Laboratory. [Lead abstract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfuderer, H.A.; Moody, J.B.

    Separate abstracts were prepared for each of the 6 chapters presented by the six divisions involved in the Biomedical and Environmental Sciences Program at Oak Ridge National Laboratory. The introduction is not covered by an abstract and deals with the environmental, health and safety considerations of energy technology decisions, the major initiatives now being taken by these 6 divisions, and recent major accomplishments in the biomedical and environmental science program. (KRM)

  16. DOE Office of Energy Research laboratories self-asessment workshop: The nuts and bolts of implementation, July 27--28, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Making self-assessment a ``cultural norm`` at the DOE Office of Energy Research (ER) laboratories has been a tremendous challenge. In an effort to provide a forum for the ER laboratories to share their self-assessment program implementation experiences, the Lawrence Berkeley Laboratory hosted a Self-Assessment Workshop: July 1993. The workshop was organized to cover such areas as: DOE`s vision of self-assessment; what makes a workable program; line management experiences; how to identify root causes and trends; integrating quality assurance, conduct of operations, and self-assessment; and going beyond environment, safety, and health. Individuals from the ER laboratories wishing to participate in themore » workshop were invited to speak on topics of their choice. The workshop was organized to cover general topics in morning presentations to all attendees and to cover selected topics at afternoon breakout sessions. This report summarizes the presentations and breakout discussions.« less

  17. LDRD 2016 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, D.

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2C dated October 22, 2015. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2016, as required. In FY 2016, the BNL LDRD Program funded 48 projects, 21 of which were new starts, at a total cost of $11.5M. The investments that BNL makes in its LDRD program support the Laboratory’smore » strategic goals. BNL has identified four Critical Outcomes that define the Laboratory’s scientific future and that will enable it to realize its overall vision. Two operational Critical Outcomes address essential operational support for that future: renewal of the BNL campus; and safe, efficient laboratory operations.« less

  18. Sandia National Laboratories: Directed-energy tech receives funding to

    Science.gov Websites

    Accomplishments Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Cyber & Infrastructure Security Global Security Remote Sensing & Verification Research Research

  19. Earth Science - Sandia Energy

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  20. Stationary Power - Sandia Energy

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  1. Grid Modernization - Sandia Energy

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  2. FY2014 LBNL LDRD Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Darren

    2015-06-01

    Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nationmore » by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.« less

  3. Exploratory technology research program for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, K.

    1992-06-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This report summarizes the research, financial and management activities relevant to the ETR Program in FY 1991.

  4. Nuclear energy related capabilities at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickering, Susan Y.

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing themore » nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillesheim, Michael; Kandt, Alicen; Phillips, Steven

    The National Renewable Energy Laboratory, supporting the Department of the Navy Renewable Energy Program Office, has developed an innovative glint/glare analysis and visualization methodology to understand and mitigate the possible impacts of light reflecting off solar photovoltaic arrays.

  6. Mission and Programs | NREL

    Science.gov Websites

    Government International, Research, and Nonprofit Organizations R&D Programs NREL is the only federal laboratory dedicated to the research, development, commercialization, and deployment of renewable energy and Program supports NREL research and development that focuses on biomass characterization, thermochemical

  7. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigali, Mark J.; Miller, James E.; Altman, Susan J.

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documentsmore » Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.« less

  8. ACCELERATED EXTRACTION OF ORGANIC POLLUTANTS USING MICROWAVE ENERGY

    EPA Science Inventory

    This study is part of an ongoing U.S. Environmental Protection Agency research program, carried out by the National Exposure Research Laboratory, Characterization Research Division-Las Vegas (formerly Environmental Monitoring Systems Laboratory-Las Vegas), addresses new sample pr...

  9. Role of National Laboratories in Science, Mathematics and Engineering Education. Hearing before the Subcommittee on Energy Research and Development of the Committee on Science, Space, and Technology. House of Representatives, One Hundred First Congress, First Session (May 15, 1989).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science, Space and Technology.

    The programs developed by the U.S. Department of Energy and the National Laboratories to lure an untapped well of students into scientific fields and to increase the number of qualified scientists coming into the research environment are described. The witnesses of this hearing are from the Department of Energy and the National Labs; the outside…

  10. Laboratory Directed Research and Development FY2001 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R

    2002-06-20

    Established by Congress in 1991, the Laboratory Directed Research and Development (LDRD) Program provides the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) laboratories, like Lawrence Livermore National Laboratory (LLNL or the Laboratory), with the flexibility to invest up to 6% of their budget in long-term, high-risk, and potentially high payoff research and development (R&D) activities to support the DOE/NNSA's national security missions. By funding innovative R&D, the LDRD Program at LLNL develops and extends the Laboratory's intellectual foundations and maintains its vitality as a premier research institution. As proof of the Program's success, many of the research thrusts thatmore » started many years ago under LDRD sponsorship are at the core of today's programs. The LDRD Program, which serves as a proving ground for innovative ideas, is the Laboratory's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. Basic and applied research activities funded by LDRD enhance the Laboratory's core strengths, driving its technical vitality to create new capabilities that enable LLNL to meet DOE/NNSA's national security missions. The Program also plays a key role in building a world-class multidisciplinary workforce by engaging the Laboratory's best researchers, recruiting its future scientists and engineers, and promoting collaborations with all sectors of the larger scientific community.« less

  11. NREL: News - Customer Choice Would Advance Renewable Energy

    Science.gov Websites

    Awarded Xcel Energy Contracts for Renewable Research Golden, Colo., Jan. 03, 2002 The U.S . Department of Energy's National Renewable Energy Laboratory (NREL) has been selected to perform three research projects, worth $2.8 million, as part of a program to advance renewable energy that is funded by

  12. Advanced Industrial Materials Program

    NASA Astrophysics Data System (ADS)

    Stooksbury, F.

    1994-06-01

    The mission of the Advanced Industrial Materials (AIM) program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDA's. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  13. Wind for Schools: A Wind Powering America Project

    ERIC Educational Resources Information Center

    US Department of Energy, 2007

    2007-01-01

    The U.S. Department of Energy's (DOE's) Wind Powering America program (based at the National Renewable Energy Laboratory) sponsors the Wind for Schools Project to raise awareness in rural America about the benefits of wind energy while simultaneously educating college seniors regarding wind energy applications. The three primary project goals of…

  14. 10 CFR 430.61 - Prohibited acts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Certification and... standard or water conservation standard (in the case of faucets, showerheads, water closets, and urinals... covered products to a test laboratory designated by the Secretary; (3) Failure of a manufacturer to permit...

  15. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the US Department of Energy quarter ending September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, G.; Mansur, D.L.; Ruhter, W.D.

    1994-10-01

    This report presents the details of the Lawrence Livermore National Laboratory safeguards and securities program. This program is focused on developing new technology, such as x- and gamma-ray spectrometry, for measurement of special nuclear materials. This program supports the Office of Safeguards and Securities in the following five areas; safeguards technology, safeguards and decision support, computer security, automated physical security, and automated visitor access control systems.

  16. The Super Efficient Refrigerator Program: Case study of a Golden Carrot program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, J B

    1995-07-01

    The work in this report was conducted by the Analytic Studies Division (ASD) of the National Renewable Energy Laboratory (NREL) for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Office of Building Technologies. This case study describes the development and implementation of the Super Efficient Refrigerator Program (SERP), which awarded $30 million to the refrigerator manufacturer that developed and commercialized a refrigerator that exceeded 1993 federal efficiency standards by at least 25%. The program was funded by 24 public and private utilities. As the first Golden Carrot program to be implemented in the United States, SERPmore » was studied as an example for future `market-pull` efforts.« less

  17. Renewable energy for an environmentally sustainable energy future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderman, D.N.

    1993-12-31

    One of the major objectives of the renewable energy program is to allow the employment of environmentally benign energy technologies based upon the sun. Other objectives include national energy independence and industrial competitiveness in future energy technology markets. The National Renewable Energy Laboratory (formerly SERI) in Golden, Colorado, has for 15 years been the lead U.S. laboratory in research on photovoltaics, wind energy systems, and ethanol from biomass. During this period, substantional cost reductions were achieved and efficiencies improved. NREL also works closely with industry to facilitate the commercialization of these and related technologies. As much as 50% of NRELmore » funding goes to industry in cost-shared contracts for research and development, planned with industry representatives and the U.S. Department of Energy. Besides lessening dependence on fossil fuels and their short-term environmental impacts, these technologies will also alleviate the impact on the potential global warming issue. Other direct environmental research at NREL is the solar-detox program, in which solar radiation is employed to destroy hazardous organic materials in ground water and other waste streams.« less

  18. Education and Strategic Research Collaborations

    Science.gov Websites

    Los Alamos National Laboratory National Security Education Center Image Search Site submit LaboratoryNational Security Education Center Menu Program Offices Energy Security Council New Mexico Consortium Geophysics, Planetary Physics, Signatures Events Collaborations for education and strategic research, student

  19. Site Sustainability Plan with FY2015 Performance Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Teresa A.; Lapsa, Melissa Voss; Hudey, Bryce D.

    Oak Ridge National Laboratory (ORNL) is both the largest science and energy laboratory in the US Department of Energy (DOE) complex and one of the oldest national laboratories still operating at its original site. ORNL implemented an aggressive modernization program in 2000, providing modern, energy-efficient facilities that help to support the growth of important national scientific missions while faced with the unique and challenging opportunity to integrate sustainability into legacy assets. ORNL is committed to leveraging the outcomes of DOE-sponsored research programs to maximize the efficient use of energy and natural resources across a diverse campus. ORNL leadership in conjunctionmore » with the Sustainable Campus Initiative (SCI) maintains a commitment to the integration of technical innovations into new and existing facilities, systems, and processes with a comprehensive approach to achieving DOE directives and the new Executive Order 13693. Energy efficiency, greenhouse gas reductions, climate change resiliency, and other pursuits toward integrated sustainability factor in all we do. ORNL continues to pursue and deploy innovative solutions and initiatives to advance regional, national, and worldwide sustainability and continues to transform its culture and engage employees in supporting sustainability at work, at home, and in the community.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOX,K.J.

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually inmore » March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2002. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All Fy 2002 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2003. The BNL LDRD budget authority by DOE in FY 2002 was $7 million. The actual allocation totaled $6.7 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOX,K.J.

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually inmore » March, as required by DOE Order 41 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2003. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2003 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2004. The BNL LDRD budget authority by DOE in FY 2003 was $8.5 million. The actual allocation totaled $7.8 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators.« less

  2. Fossil energy program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-12-01

    The progress made during the period from July 1 through September 30 for the Oak Ridge National Laboratory research and development projects in support of the increased utilization of coal and other fossil fuels as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, fossil energy materials program, liquefaction projects, component development, process analysis, environmental control technology, atmospheric fluidized bed combustion, underground coal gasification, coal preparation and waste utilization.

  3. Transferring new technologies within the federal sector: The New Technology Demonstration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, D.R.; Hunt, D.M.

    1994-08-01

    The federal sector is the largest consumer of products in the United States and annually purchases almost 1.5 quads of energy measured at the building site at a cost of almost $10 billion (U.S. Department of Energy 1991). A review of design, construction, and procurement practices in the federal sector, as well as discussions with manufacturers and vendors, indicated that new technologies are not utilized in as timely a manner as possible. As a consequence of this technology transfer lag, the federal sector loses valuable energy and environmental benefits that can be derived through the application of new technologies. Inmore » addition, opportunities are lost to reduce federal energy expenditures and spur U.S. economic growth through the procurement of such technologies. In 1990, under the direction of the U.S. Department of Energy (DOE) Federal Energy Management Program, the Pacific Northwest Laboratory began the design of a program to accelerate the introduction of new U.S. technologies into the federal sector. Designated first as the Test Bed Demonstration Program and more recently the New Technology Demonstration Program, it sought to shorten the acceptance period of new technologies within the federal sector. By installing and evaluating various new technologies at federal facilities, the Program attempts to increase the acceptance of those new technologies through the results of {open_quotes}real-world{close_quotes} federal installations. Since that time, the Program has conducted new technology demonstrations and evaluations, evolved to address the need for more timely information transfer, and explored collaborative opportunities with other DOE offices and laboratories. This paper explains the processes by which a new technology demonstration project is implemented and presents a general description of the Program results to date.« less

  4. Design of Standards and Labeling programs in Chile: Techno-Economic Analysis for Refrigerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letschert, Virginie E.; McNeil, Michael A.; Pavon, Mariana

    2013-05-01

    Lawrence Berkeley National Laboratory is a global leader in the study of energy efficiency and its effective implementation through government policy. The Energy Analysis and Environmental Impacts Department of LBNL’s Environmental Energy Technologies Division provides technical assistance to help federal, stat e and local government agencies in the United States, and throughout the world, develop long-term strategies, policy, and programs to encourage energy efficiency in all sectors and industries. In the past, LBNL has assisted staff of various countries government agencies and their con tractors in providing methodologies to analyze cost-effectiveness of regulations and asses s overall national impacts ofmore » efficiency programs. The paper presents the work done in collaboration with the Ministry of Energy (MoE) in Chile and the Collaborative Labeling Appliance Standards Programs (CLASP) on designing a Minimum Energy Performance Standards (MEPS) and ext ending the current labeling program for refrigerators.« less

  5. Exploratory Technology Research Program for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  6. Exploratory Technology Research Program for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the FIR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  7. How to Read an LLNL Energy Flow Chart (Sankey Diagram)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, A. J.

    Each year, the Lawrence Livermore National Laboratory releases energy flow charts that illustrate the nation's consumption and use of energy. A.J. Simon, group leader for LLNL’s energy program, breaks the 2015 chart down in this video, describing how to read the chart and what year-to-year trends he sees.

  8. Proceedings of the sixth annual conference on fossil energy materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, N.C.; Judkins, R.R.

    1992-07-01

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) asmore » the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.« less

  9. Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 2, Heating season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.D.

    1995-11-01

    The Federal Government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US Government. Pacific Northwest Laboratory (PNL) is one of four DOE national multiprogram laboratories that participate in themore » NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer; Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Bernadette Lugue; Eipeldauer, Mary D; Whitaker, J Michael

    In 2007, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined trends and events impacting the mission of international safeguards and the implications of expanding and evolving mission requirements on the legal authorities and institutions that serve as the foundation of the international safeguards system, as well as the technological, financial, and human resources required for effective safeguards implementation. The review's findings and recommendations were summarized in the report, 'International Safeguards: Challenges and Opportunitiesmore » for the 21st Century (October 2007)'. One of the report's key recommendations was for DOE/NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency's General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: (1) Policy development and outreach; (2) Concepts and approaches; (3) Technology and analytical methodologies; (4) Human resource development; and (5) Infrastructure development. The ensuing report addresses the 'Human Resource Development (HRD)' component of NGSI. The goal of the HRD as defined in the NNSA Program Plan (November 2008) is 'to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.' One of the major objectives listed in the HRD goal includes education and training, outreach to universities, professional societies, postdoctoral appointments, and summer internships at national laboratories. ORNL is a participant in the NGSI program, together with several DOE laboratories such as Pacific Northwest National Laboratory (PNNL), Lawrence Livermore National Laboratory (LLNL), Brookhaven National Laboratory (BNL), and Los Alamos National Laboratory (LANL). In particular, ORNL's participation encompasses student internships, postdoctoral appointments, collaboration with universities in safeguards curriculum development, workshops, and outreach to professional societies through career fairs.« less

  11. 10 CFR 850.2 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Applicability. 850.2 Section 850.2 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM General Provisions § 850.2 Applicability. (a) This... part does not apply to: (1) Beryllium articles; and (2) DOE laboratory operations that meet the...

  12. 10 CFR 850.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Applicability. 850.2 Section 850.2 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM General Provisions § 850.2 Applicability. (a) This... part does not apply to: (1) Beryllium articles; and (2) DOE laboratory operations that meet the...

  13. Sandia and General Motors: Advancing Clean Combustion Engines with

    Science.gov Websites

    Quantitative Risk Assessment Technical Reference for Hydrogen Compatibility of Materials Hydrogen Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs ARPA-E Basic Energy Sciences Materials

  14. Verify by Genability - Providing Solar Customers with Accurate Reports of Utility Bill Cost Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The National Renewable Energy Laboratory (NREL), partnering with Genability and supported by the U.S. Department of Energy's SunShot Incubator program, independently verified the accuracy of Genability's monthly cost savings.

  15. DOE Hydropower Program biennial report 1996-1997 (with an updated annotated bibliography)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinehart, B.N.; Francfort, J.E.; Sommers, G.L.

    1997-06-01

    This report, the latest in a series of biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1996 and 1997. The report discusses the activities in the six areas of the hydropower program: advanced hydropower turbine systems; environmental research; hydropower research and development; renewable Indian energy resources; resource assessment; and technology transfer. The report also includes an annotated bibliography of reports pertinent to hydropower, written by the staff of the Idaho National Engineering and Environmental Laboratory, Oak Ridge National Laboratory, Federal and state agencies, cities, metropolitanmore » water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.« less

  16. Overview of the National Ignition Campaign (NIC)

    NASA Astrophysics Data System (ADS)

    Moses, Edward

    2010-11-01

    The 192-beam National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is now operational. NIF has conducted 192-beam implosion experiments with energies as high as 1.2 MJ and has also demonstrated the unprecedented energy and pulse shaping control required for ignition experiments. The successful commissioning of the NIF laser is the first step in demonstrating inertial confinement fusion (ICF) ignition in the laboratory. The NIF ignition program is executed via the National Ignition Campaign (NIC)---a partnership between Los Alamos National Laboratory, Lawrence Berkeley Laboratory, LLNL, General Atomics, the University of Rochester Laboratory for Laser Energetics, Sandia National Laboratories, the Massachusetts Institute of Technology, and other national and international partners. The NIC relies on a novel integrated experimental and computational program to tune the target to the conditions required for indirect-drive ignition. This approach breaks the tuning process into four phases. The first two phases involve tuning of the hohlraum and capsule to produce the correct radiation drive, symmetry, and shock timing conditions. The third phase consists of layered cryogenic implosions conducted with a 50%/49%/1% mixture of tritium, hydrogen, and deuterium (THD) respectively. The reduced yield from these THD targets allows the full diagnostic suite to be employed and the presence of the required temperature and fuel areal density to be verified. The final step is DT ignition implosions with expected gains of 10-20. DT ignition experiments will be conducted with Elaser ˜1.2 MJ. Laser energies of 1.8 MJ should be available for subsequent experiments. This talk will review the multi-phase tuning approach to the ignition effort, including the physics issues associated with the various steps, and current and future plans for the NIF ignition program.

  17. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from componentsmore » for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.« less

  18. New Brunswick Laboratory: Progress report, October 1993 through September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The mission of the New Brunswick Laboratory of the US Department of Energy (DOE) is to serve as the National Certifying Authority for nuclear reference materials and to provide an independent Federal technical staff and laboratory resource performing nuclear material measurement, safeguards and non-proliferation functions in support of multiple program sponsors. During FY 94 New Brunswick Laboratory (NBL) completed development of a Strategic Plan which will aid in better defining performance oriented laboratory goals and objectives in each functional area consistent with the changing needs of the global nuclear community. This annual report describes accomplishments achieved in carrying out NBL`smore » assigned missions. Details of completed projects are reported in separate topical reports or as open-literature publications. Programs discussed here are: (1) safeguards assistance; (2) reference materials program; (3) measurement evaluation; (4) measurement services; and (5) measurement development.« less

  19. 2015 Key Water Power Program and National Laboratory Accomplishments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Energy Efficiency and Renewable Energy

    The U.S. Department of Energy Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources across the United States.

  20. Broad Overview of Energy Efficiency and Renewable Energy Opportunities for Department of Defense Installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, E.; Antkowiak, M.; Butt, R.

    The Strategic Environmental Research and Developmental Program (SERDP)/Environmental Security Technology Certification Program (ESTCP) is the Department of Defense?s (DOD) environmental science and technology program focusing on issues related to environment and energy for the military services. The SERDP/ESTCP Office requested that the National Renewable Energy Laboratory (NREL) provide technical assistance with strategic planning by evaluating the potential for several types of renewable energy technologies at DOD installations. NREL was tasked to provide technical expertise and strategic advice for the feasibility of geothermal resources, waste-to-energy technology, photovoltaics (PV), wind, microgrids, and building system technologies on military installations. This technical report ismore » the deliverable for these tasks.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Barbose, Galen; Heeter, Jenny

    This analysis is the first-ever comprehensive assessment of the benefits and impacts of state renewable portfolio standards (RPSs). This joint National Renewable Energy Laboratory-Lawrence Berkeley National Laboratory project provides a retrospective analysis of RPS program benefits and impacts, including greenhouse gas emissions reductions, air pollution emission reductions, water use reductions, gross jobs and economic development impacts, wholesale electricity price reduction impacts, and natural gas price reduction impacts. Wherever possible, benefits and impacts are quantified in monetary terms. The paper will inform state policymakers, RPS program administrators, industry, and others about the costs and benefits of state RPS programs. In particular,more » the work seeks to inform decision-making surrounding ongoing legislative proposals to scale back, freeze, or expand existing RPS programs, as well as future discussions about increasing RPS targets or otherwise increasing renewable energy associated with Clean Power Plan compliance or other emission-reduction goals.« less

  2. Retrospective Analysis of the Benefits and Impacts of U.S. Renewable Portfolio Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Barbose, Galen; Heeter, Jenny

    This analysis is the first-ever comprehensive assessment of the benefits and impacts of state renewable portfolio standards (RPSs). This joint National Renewable Energy Laboratory-Lawrence Berkeley National Laboratory project provides a retrospective analysis of RPS program benefits and impacts, including greenhouse gas emissions reductions, air pollution emission reductions, water use reductions, gross jobs and economic development impacts, wholesale electricity price reduction impacts, and natural gas price reduction impacts. Wherever possible, benefits and impacts are quantified in monetary terms. The paper will inform state policymakers, RPS program administrators, industry, and others about the costs and benefits of state RPS programs. In particular,more » the work seeks to inform decision-making surrounding ongoing legislative proposals to scale back, freeze, or expand existing RPS programs, as well as future discussions about increasing RPS targets or otherwise increasing renewable energy associated with Clean Power Plan compliance or other emission-reduction goals.« less

  3. US Department of Energy High School Student Supercomputing Honors Program: A follow-up assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    The US DOE High School Student Supercomputing Honors Program was designed to recognize high school students with superior skills in mathematics and computer science and to provide them with formal training and experience with advanced computer equipment. This document reports on the participants who attended the first such program, which was held at the National Magnetic Fusion Energy Computer Center at the Lawrence Livermore National Laboratory (LLNL) during August 1985.

  4. Second NBL measurement evaluation program meeting: A summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaletto, M.I.; Clapper, M.; Tolbert, M.E.M.

    New Brunswick Laboratory (NBL), the US government`s nuclear materials measurements and reference materials laboratory, administers interlaboratory measurement evaluation programs to evaluate the quality and adequacy of safeguards measurements. The NBL Measurement Evaluation Program covers several types of safeguards analytical measurements. The Safeguards Measurement Evaluation (SME) program distributes test materials destructive measurements of uranium for both elemental concentration and isotopic abundances, and of plutonium for isotopic abundances. The Calorimetry Exchange (CalEx) Program tests the quality of nondestructive measurements of plutonium isotopic abundances by gamma spectroscopy and plutonium concentration by calorimetry. In May 1997, more than 30 representatives from the Department ofmore » Energy (DOE), its contractor laboratories, and Nuclear Regulatory Commission licensees met at NBL in Argonne, Illinois, for the annual meeting of the Measurement Evaluation Program. The summary which follows details key points that were discussed or presented at the meeting.« less

  5. Energy efficiency in nonprofit agencies: Creating effective program models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M.A.; Prindle, B.; Scherr, M.I.

    Nonprofit agencies are a critical component of the health and human services system in the US. It has been clearly demonstrated by programs that offer energy efficiency services to nonprofits that, with minimal investment, they can educe their energy consumption by ten to thirty percent. This energy conservation potential motivated the Department of Energy and Oak Ridge National Laboratory to conceive a project to help states develop energy efficiency programs for nonprofits. The purpose of the project was two-fold: (1) to analyze existing programs to determine which design and delivery mechanisms are particularly effective, and (2) to create model programsmore » for states to follow in tailoring their own plans for helping nonprofits with energy efficiency programs. Twelve existing programs were reviewed, and three model programs were devised and put into operation. The model programs provide various forms of financial assistance to nonprofits and serve as a source of information on energy efficiency as well. After examining the results from the model programs (which are still on-going) and from the existing programs, several replicability factors'' were developed for use in the implementation of programs by other states. These factors -- some concrete and practical, others more generalized -- serve as guidelines for states devising program based on their own particular needs and resources.« less

  6. Environmental surveillance at Los Alamos during 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2006-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (LANL or the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.IA, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory's efforts to ensure public safety and to monitor environmental quality atmore » and near the Laboratory. Chapter 1 provides an overview of the Laboratory's major environmental programs. Chapter 2 reports the Laboratory's compliance status for 2005. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, Air; Chapters 5 and 6, Water and Sediments; Chapter 7, Soils; and Chapter 8, Foodstuffs and Biota) in a format to meet the needs of a general and scientific audience. Chapter 9, new for this year, provides a summary of the status of environmental restoration work around LANL. A glossary and a list ofacronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory's technical areas and their associated programs, and Appendix D provides web links to more information.« less

  7. Secondary standards laboratories for ionizing radiation calibrations: The national laboratory interests

    NASA Astrophysics Data System (ADS)

    Roberson, P. I.; Campbell, G. W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary.

  8. Technical developments at the NASA Space Radiation Laboratory.

    PubMed

    Lowenstein, D I; Rusek, A

    2007-06-01

    The NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory (BNL) is a center for space radiation research in both the life and physical sciences. BNL is a multidisciplinary research facility operated for the Office of Science of the US Department of Energy (DOE). The BNL scientific research portfolio supports a large and diverse science and technology program including research in nuclear and high-energy physics, material science, chemistry, biology, medial science, and nuclear safeguards and security. NSRL, in operation since July 2003, is an accelerator-based facility which provides particle beams for radiobiology and physics studies (Lowenstein in Phys Med 17(supplement 1):26-29 2001). The program focus is to measure the risks and to ameliorate the effects of radiation encountered in space, both in low earth orbit and extended missions beyond the earth. The particle beams are produced by the Booster synchrotron, an accelerator that makes up part of the injector sequence of the DOE nuclear physics program's Relativistic Heavy Ion Collider. Ion species from protons to gold are presently available, at energies ranging from <100 to >1,000 MeV/n. The NSRL facility has recently brought into operation the ability to rapidly switch species and beam energy to supply a varied spectrum onto a given specimen. A summary of past operation performance, plans for future operations and recent and planned hardware upgrades will be described.

  9. Modeling Laboratory Astrophysics Experiments in the High-Energy-Density Regime Using the CRASH Radiation-Hydrodynamics Model

    NASA Astrophysics Data System (ADS)

    Grosskopf, M. J.; Drake, R. P.; Trantham, M. R.; Kuranz, C. C.; Keiter, P. A.; Rutter, E. M.; Sweeney, R. M.; Malamud, G.

    2012-10-01

    The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density physics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. CRASH model results have shown good agreement with a experimental results from a variety of applications, including: radiative shock, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL), collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  10. Laboratory for Nuclear Science. High Energy Physics Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milner, Richard

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group aremore » given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.« less

  11. Southern California Regional Technology Acceleration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochoa, Rosibel; Rasochova, Lada

    2014-09-30

    UC San Diego and San Diego State University are partnering to address these deficiencies in the renewable energy space in the greater San Diego region, accelerating the movement of clean energy innovation from the university laboratory into the marketplace, building on the proven model of the William J. von Liebig Center’s (vLC’s) Proof of Concept (POC) program and virtualizing the effort to enable a more inclusive environment for energy innovation and expansion of the number of clean energy start-ups and/or technology licenses in greater California.

  12. The role of women in sustainable energy development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cecelski, E.

    This paper explores the question of how sustainable energy development--specifically, decentralized renewable energy technologies--can complement and benefit from the goal of increasing women's role in development. It is based on a paper that was originally presented at the World Renewable Energy Congress-V held in Florence, Italy, in September 1998, as a contribution to the National Renewable Energy Laboratory's program on gender and energy.

  13. Department of Energy Support of Energy Intensive Manufacturing Related to Refractory Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemrick, James Gordon

    For many years, the United States Department of Energy (DOE) richly supported refractory related research to enable greater energy efficiency processes in energy intensive manufacturing industries such as iron and steel, glass, aluminum and other non-ferrous metal production, petrochemical, and pulp and paper. Much of this support came through research projects funded by the former DOE Energy Efficiency and Renewable Energy (EERE) Office of Industrial Technologies (OIT) under programs such as Advanced Industrial Materials (AIM), Industrial Materials of the Future (IMF), and the Industrial Technologies Program (ITP). Under such initiatives, work was funded at government national laboratories such as Oakmore » Ridge National Laboratory (ORNL), at universities such as West Virginia University (WVU) and the Missouri University of Science and Technology (MS&T) which was formerly the University of Missouri Rolla, and at private companies engaged in these manufacturing areas once labeled industries of the future by DOE due to their strategic and economic importance to American industry. Examples of such projects are summarized below with information on the scope, funding level, duration, and impact. This is only a sampling of representative efforts funded by the DOE in which ORNL was involved over the period extending from 1996 to 2011. Other efforts were also funded during this time at various other national laboratories, universities and private companies under the various programs mentioned above. Discussion of the projects below was chosen because I was an active participant in them and it is meant to give a sampling of the magnitude and scope of investments made by DOE in refractory related research over this time period.« less

  14. How to Read an LLNL Energy Flow Chart (Sankey Diagram)

    ScienceCinema

    Simon, A. J.

    2018-01-16

    Each year, the Lawrence Livermore National Laboratory releases energy flow charts that illustrate the nation's consumption and use of energy. A.J. Simon, group leader for LLNL’s energy program, breaks the 2015 chart down in this video, describing how to read the chart and what year-to-year trends he sees.

  15. Primary calibrations of radionuclide solutions and sources for the EML quality assessment program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisenne, I.M.

    1993-12-31

    The quality assurance procedures established for the operation of the U.S. Department of Energy`s Environmental Measurements Laboratory (DOE-EML`s) Quality Assessment Program (QAP) are essentially the same as those that are in effect for any EML program involving radiometric measurements. All these programs have at their core the use of radionuclide standards for their instrument calibration. This paper focuses on EML`s approach to the acquisition, calibration and application of a wide range of radionuclide sources that are required to meet its programmatic needs.

  16. Bibliography on Biomass Feedstock Research: 1978-2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cushman, J.H.

    2003-05-01

    This report provides bibliographic citations for more than 1400 reports on biomass feedstock development published by Oak Ridge National Laboratory and its collaborators from 1978 through 2002. Oak Ridge National Laboratory is engaged in analysis of biomass resource supplies, research on the sustainability of feedstock resources, and research on feedstock engineering and infrastructure. From 1978 until 2002, Oak Ridge National Laboratory also provided technical leadership for the U.S. Department of Energy's Bioenergy Feedstock Development Program (BFDP), which supported research to identify and develop promising energy crops. This bibliography lists reports published by Oak Ridge National Laboratory and by its collaboratorsmore » in the BFDP, including graduate student theses and dissertations.« less

  17. Identifying new technologies that save energy and reduce costs to the Federal sector: The New Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, W.D.M.; Conover, D.R.; Stockmeyer, M.K.

    1995-11-01

    In 1990 the New Technology Demonstration Program (formerly the Test Bed Demonstration Program) was initiated by the US Department of Energy`s Office (DOE`s) of Federal Energy Management Programs with the purpose of accelerating the introduction of new technologies into the Federal sector. The program has since expanded into a multi-laboratory collaborative effort that evaluates new technologies and shares the results with the Federal design and procurement communities. These evaluations are performed on a collaborative basis which typically includes technology manufacturers, Federal facilities, utilities, trade associations, research institutes, and other in partnership with DOE. The end result is a range ofmore » effective technology transfer tools that provide operations and performance data on new technologies to Federal designers, building managers, and procurement officials. These tools assist in accelerating a technology`s Federal application and realizing reductions in energy consumption and costs.« less

  18. LDRD Annual Report FY2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sketchley, J A; Kotta, P; De Yoreo, J

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Laboratory Science and Technology Office, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration in national security, energy security, environmental management, bioscience and technology to improve human health, and breakthroughs in fundamental science and technology. The accomplishments described in this Annual Report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals.more » The LDRD budget of $92 million for FY2006 sponsored 188 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities, industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission.« less

  19. Building America Systems Integration Research Annual Report. FY 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gestwick, Michael

    2013-05-01

    This Building America FY2012 Annual Report includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  20. Laboratory Directed Research and Development Program FY 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.« less

  1. Sandia National Laboratories: National Security Missions: International

    Science.gov Websites

    Transportation Energy Energy Research Global Security WMD Counterterrorism & Response Global Threat Reduction Homeland Defense & Force Protection Homeland Security Cyber & Infrastructure Security Global Business Procurement Technical Assistance Program (PTAP) Current Suppliers iSupplier Account Accounts

  2. Technology Validation: Fuel Cell Bus Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie

    This presentation describing the FY 2016 accomplishments for the National Renewable Energy Laboratory's Fuel Cell Bus Evaluations project was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, June 7, 2016.

  3. Using Machine Learning and Data Analysis to Improve Customer Acquisition and Marketing in Residential Solar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigrin, Benjamin O

    High customer acquisition costs remain a persistent challenge in the U.S. residential solar industry. Effective customer acquisition in the residential solar market is increasingly achieved with the help of data analysis and machine learning, whether that means more targeted advertising, understanding customer motivations, or responding to competitors. New research by the National Renewable Energy Laboratory, Sandia National Laboratories, Vanderbilt University, University of Pennsylvania, and the California Center for Sustainable Energy and funded through the U.S. Department of Energy's Solar Energy Evolution and Diffusion (SEEDS) program demonstrates novel computational methods that can help drive down costs in the residential solar industry.

  4. Residential Building Energy Code Field Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Bartlett, M. Halverson, V. Mendon, J. Hathaway, Y. Xie

    This document presents a methodology for assessing baseline energy efficiency in new single-family residential buildings and quantifying related savings potential. The approach was developed by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) Building Energy Codes Program with the objective of assisting states as they assess energy efficiency in residential buildings and implementation of their building energy codes, as well as to target areas for improvement through energy codes and broader energy-efficiency programs. It is also intended to facilitate a consistent and replicable approach to research studies of this type and establish a transparent data setmore » to represent baseline construction practices across U.S. states.« less

  5. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita

    1991-01-01

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less

  6. A woman like you: Women scientists and engineers at Brookhaven National Laboratory. Careers in action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less

  7. Building Energy Audit Report, for Hickam AFB, HI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvala, William D.; De La Rosa, Marcus I.; Brown, Daryl R.

    2010-09-30

    A building energy assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Department of Energy/Federal Energy Management program (FEMP). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at Hickam AFB, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings. This documents reports the results of that assessment.

  8. Building Energy Audit Report for Camp Smith, HI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvala, William D.; De La Rosa, Marcus I.; Brown, Daryl R.

    2010-09-30

    A detailed energy assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Department of Energy/Federal Energy Management program (FEMP). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at Camp Smith, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings. This report documents the results of that assessment.

  9. Summaries of physical research in the geosciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, industry, universities, and other governmental agencies. The summaries in this document, prepared by the investigators, briefly describe the scope of the individual programs. The Geosciences Research Program includes research inmore » geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.« less

  10. Counter Trafficking System Development "Analysis Training Program"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Dennis C.

    This document will detail the training curriculum for the Counter-Trafficking System Development (CTSD) Analysis Modules and Lesson Plans are derived from the United States Military, Department of Energy doctrine and Lawrence Livermore National Laboratory (LLNL), Global Security (GS) S Program.

  11. Lessons learned from new construction utility demand side management programs and their implications for implementing building energy codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, B.K.; Hughes, K.R.; Danko, S.L.

    1994-07-01

    This report was prepared for the US Department of Energy (DOE) Office of Codes and Standards by the Pacific Northwest Laboratory (PNL) through its Building Energy Standards Program (BESP). The purpose of this task was to identify demand-side management (DSM) strategies for new construction that utilities have adopted or developed to promote energy-efficient design and construction. PNL conducted a survey of utilities and used the information gathered to extrapolate lessons learned and to identify evolving trends in utility new-construction DSM programs. The ultimate goal of the task is to identify opportunities where states might work collaboratively with utilities to promotemore » the adoption, implementation, and enforcement of energy-efficient building energy codes.« less

  12. Bachelor of Science-Engineering Technology Program and Fuel Cell Education Program Concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, David L.; Sleiti, Ahmad

    2011-09-19

    The Hydrogen and Fuel Cell Technology education project has addressed DOE goals by supplying readily available, objective, technical, and accurate information that is available to students, industry and the public. In addition, the program has supplied educated trainers and training opportunities for the next generation workforce needed for research, development, and demonstration activities in government, industry, and academia. The project has successfully developed courses and associated laboratories, taught the new courses and labs and integrated the HFCT option into the accredited engineering technology and mechanical engineering programs at the University of North Carolina at Charlotte (UNCC). The project has alsomore » established ongoing collaborations with the UNCC energy related centers of the Energy Production & Infrastructure Center (EPIC), the NC Motorsports and Automotive Research Center (NCMARC) and the Infrastructure, Design, Environment and Sustainability Center (IDEAS). The results of the project activities are presented as two major areas – (1) course and laboratory development, offerings and delivery, and (2) program recruitment, promotions and collaborations. Over the project period, the primary activity has been the development and offering of 11 HFCT courses and accompanying laboratories. This process has taken three years with the courses first being developed and then offered each year over the timeframe.« less

  13. A Sustainable Energy Laboratory Course for Non-Science Majors

    NASA Astrophysics Data System (ADS)

    Nathan, Stephen A.; Loxsom, Fred

    2016-10-01

    Sustainable energy is growing in importance as the public becomes more aware of climate change and the need to satisfy our society's energy demands while minimizing environmental impacts. To further this awareness and to better prepare a workforce for "green careers," we developed a sustainable energy laboratory course that is suitable for high school and undergraduate students, especially non-science majors. Thirteen hands-on exercises provide an overview of sustainable energy by demonstrating the basic principles of wind power, photovoltaics, electric cars, lighting, heating/cooling, insulation, electric circuits, and solar collectors. The order of content presentation and instructional level (secondary education or college) can easily be modified to suit instructor needs and/or academic programs (e.g., engineering, physics, renewable and/or sustainable energy).

  14. Fiscal Year 2013 Trails Management Program Mitigation Action Plan Annual Report, October 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pava, Daniel S.

    This Trails Management Program Mitigation Action Plan Annual Report (Trails MAPAR) has been prepared for the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) as part of implementing the 2003 Final Environmental Assessment for the Proposed Los Alamos National Laboratory Trails Management Program (DOE 2003). The Trails Mitigation Action Plan (MAP) is now a part of the Site-Wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (DOE/EIS 0380) Mitigation Action Plan (2008 SWEIS MAP) (DOE 2008). The MAP provides guidance for the continued implementation of the Trails Management Program at Los Alamos National Laboratory (LANL) andmore » integration of future mitigation actions into the 2008 SWEIS MAP to decrease impacts associated with recreational trails use at LANL. This eighth MAPAR includes a summary of Trails Management Program activities and actions during Fiscal Year (FY) 2013, from October 2012 through September 2013.« less

  15. The Virtual Robotics Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, R.L.; Love, L.J.

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well asmore » many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.« less

  16. Fermilab Friends for Science Education | Programs | Historical Review

    Science.gov Websites

    U.S. Department of Energy. The Laboratory's mission is to conduct research in high-energy physics. To institute and academic year follow-on for high school biology, chemistry, physics and mathematics teachers Modern Physics: a teacher resource book on high-energy physics topics; a three- or four-week institute

  17. NREL's Sustainable Campus Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rukavina, Frank; Pless, Shanti

    2015-04-06

    The high-performance buildings across the Energy Department's National Renewable Energy Laboratory's (NREL) South Table Mountain campus incorporate a number of state-of-the art energy efficiency and renewable energy technologies, making them models for sustainability. Each building, designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) program, brings NREL closer to developing the campus of the future.

  18. Development of a Fan-Filter Unit Test Standard, LaboratoryValidations, and its Applications across Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tengfang

    2006-10-20

    Lawrence Berkeley National Laboratory (LBNL) is now finalizing the Phase 2 Research and Demonstration Project on characterizing 2-foot x 4-foot (61-cm x 122-cm) fan-filter units in the market using the first-ever standard laboratory test method developed at LBNL.[1][2][3] Fan-filter units deliver re-circulated air and provide particle filtration control for clean environments. Much of the energy in cleanrooms (and minienvironments) is consumed by 2-foot x 4-foot (61-cm x 122-cm) or 4-foot x 4-foot (122-cm x 122-cm) fan-filter units that are typically located in the ceiling (25-100% coverage) of cleanroom controlled environments. Thanks to funding support by the California Energy Commission's Industrialmore » Program of the Public Interest Energy Research (PIER) Program, and significant participation from manufacturers and users of fan-filter units from around the world, LBNL has developed and performed a series of standard laboratory tests and reporting on a variety of 2-foot x 4-foot (61-cm x 122-cm) fan-filter units (FFUs). Standard laboratory testing reports have been completed and reported back to anonymous individual participants in this project. To date, such reports on standard testing of FFU performance have provided rigorous and useful data for suppliers and end users to better understand, and more importantly, to quantitatively characterize performance of FFU products under a variety of operating conditions.[1] In the course of the project, the standard laboratory method previously developed at LBNL has been under continuous evaluation and update.[2][3] Based upon the updated standard, it becomes feasible for users and suppliers to characterize and evaluate energy performance of FFUs in a consistent way.« less

  19. Third annual US Department of Energy review of laboratory programs for women

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, L.; Engle, J.; Hassil, C.

    1993-12-31

    The Third Annual DOE Review of Laboratory Programs for Women was held May 11-13, 1993 at the Oak Ridge Institute for Science and Education (ORISE). The participants and organizers are men and women dedicted to highlighting programs that encourage women at all academic levels to consider career options in science, mathematics, and engineering. Cohosted by ORISE and the Oak Ridge National Laboratory (ORNL), the review was organized by an Oversight Committee whose goal was to develop an agenda and bring together concerned, skilled, and committed parties to discuss issues, make recommendations, and set objectives for the entire DOE community. Reportsmore » from each of six working groups are presented, including recommendations, objectives, descriptions, participants, and references.« less

  20. Innovative Commercialization Efforts Underway at the National Renewable Energy Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheesbrough, Kate; Bader, Meghan

    New clean energy and energy efficiency technology solutions hold the promise of significant reductions in energy consumption. However, proven barriers for these technologies, including the technological and commercialization valleys of death, result in promising technologies falling to the wayside. To address these gaps, NREL's Innovation & Entrepreneurship Center designs and manages advanced programs aimed at supporting the development and commercialization of early stage clean energy technologies with the goal of accelerating new technologies to market. These include: Innovation Incubator (IN2) in partnership with Wells Fargo: this technology incubator supports energy efficiency building-related startups to overcome market gaps by providing accessmore » to technical support at NREL; Small Business Voucher Pilot: this program offers paid vouchers for applicants to access a unique skill, capability, or facility at any of the 17 DOE National Laboratories to bring next-generation clean energy technologies to market; Energy Innovation Portal: NREL designed and developed the Energy Innovation Portal, providing access to EERE focused intellectual property available for licensing from all of the DOE National Laboratories; Lab-Corps: Lab-Corps aims to better train and empower national lab researchers to understand market drivers and successfully transition their discoveries into high-impact, real world technologies in the private sector; Incubatenergy Network: the Network provides nationwide coordination of clean energy business incubators, share best practices, support clean energy entrepreneurs, and help facilitate a smoother transition to a more sustainable clean energy economy; Industry Growth Forum: the Forum is the perfect venue for clean energy innovators to maximize their exposure to receptive capital and strategic partners. Since 2003, presenting companies have collectively raised more than $5 billion in growth financing.« less

  1. Photovoltaic module certification and laboratory accreditation criteria development

    NASA Astrophysics Data System (ADS)

    Osterwald, Carl R.; Zerlaut, Gene; Hammond, Robert; D'Aiello, Robert

    1996-01-01

    This paper overviews a model product certification and test laboratory accreditation program for photovoltaic (PV) modules that was recently developed by the National Renewable Energy Laboratory and Arizona State University. The specific objective of this project was to produce a document that details the equipment, facilities, quality assurance procedures, and technical expertise an accredited laboratory needs for performance and qualification testing of PV modules, along with the specific tests needed for a module design to be certified. The document was developed in conjunction with a criteria development committee consisting of representatives from 30 U.S. PV manufacturers, end users, standards and codes organizations, and testing laboratories. The intent is to lay the groundwork for a future U.S. PV certification and accreditation program that will be beneficial to the PV industry as a whole.

  2. Kirtland Operations progress report, October--December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Kirtland Operations (KO) is an integral part of EG&G Energy Measurements, Inc., whose primary mission is to support the US Department of Energy`s (DOE`s) programs in weapons development and testing and in nuclear safeguards and security. KO performs much of its work in close coordination with and often at the technical direction of Sandia National Laboratories. In addition to aiding Sandia`s weapons programs, KO provides a wide spectrum of technical support to other Sandia activities, particularly their safeguards, security, and treaty verification programs. Support is also provided to other elements of the Department of Energy community and to other federalmore » agencies, primarily in weapons testing and safeguards. This report documents our support to these programs from October to December 1991.« less

  3. Kirtland Operations progress report, April--June 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Kirtland Operations (KO) is an integral part of EG&G Energy Measurements, Inc., whose primary mission is to support the US Department of Energy`s (DOE`s) programs in weapons development and testing and in nuclear safeguards and security. KO performs much of its work in close coordination with and often at the technical direction of Sandia National Laboratories. In addition to aiding Sandia`s weapons programs, KO provides a wide spectrum of technical support to other Sandia activities, particularly their safeguards, security, and treaty verification programs. Support is also provided to other elements of the Department of Energy community and to other federalmore » agencies, primarily in weapons testing and safeguards. This report documents our support to these programs from April to June 1991.« less

  4. Waste certification program plan for Oak Ridge National Laboratory. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrin, R.C.

    1997-05-01

    This document defines the waste certification program developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the waste certification program is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements outlined in US Department of Energy (DOE) Order 5820.2A, Radioactive Waste Management, and ensures that 40 CFR documentation requirements for waste characterization are met for mixed (both radioactive and hazardous) and hazardous (including polychlorinated biphenyls)more » waste. Program activities will be conducted according to ORNL Level 1 document requirements.« less

  5. LDRD FY2004 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotta, P. R.; Kline, K. M.

    2005-02-28

    The Laboratory Directed Research and Development (LDRD) Program is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and the National Nuclear Security Administration in national security, homeland security, energy security, environmental management, bioscience and healthcare technology, and breakthroughs in fundamental science and technology. The LDRD Program was authorized by Congress in 1991 and is administered by the Laboratory Science and Technology Office. The accomplishments described in this Annual Report demonstrate how the LDRD portfolio is strongly aligned with these missions and contributes to the Laboratory’smore » success in meeting its goals. The LDRD budget of $69.8 million for FY2004 sponsored 220 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific and technical quality and mission relevance. Each year, the number of meritorious proposals far exceeds the funding available, making the selection a challenging one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the Nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory’s multidisciplinary team approach to science and technology. Safeguarding the Nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities, industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security and homeland security missions.« less

  6. Laboratory Directed Research and Development LDRD-FY-2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  7. Quality assurance program for isotopic power systems

    NASA Astrophysics Data System (ADS)

    Hannigan, R. L.; Harnar, R. R.

    1982-12-01

    The Sandia National Laboratories Quality Assurance Program that applies to non-weapon (reimbursable) Radioisotopic Thermoelectric Generators is summarized. The program was implemented over the past 16 years on power supplies used in various space and terrestrial systems. The quality assurance (QA) activity of the program is in support of the Department of Energy, Office of Space Nuclear Projects. Basic elements of the program are described and examples of program documentation are presented.

  8. 2014 SRNL LDRD Annual Report, Rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcwhorter, S.

    2015-03-15

    Laboratory Directed Research and Development is a congressionally authorized program that provides the ‘innovation inspiration’ from which many of the Laboratory’s multi-discipline advancements are made in both science and engineering technology. The program is the backbone for insuring that scientific, technical and engineering capabilities can meet current and future needs. It is an important tool in reducing the probability of technological surprise by allowing laboratory technical staff room to innovate and keep abreast of scientific breakthroughs. Drawing from the synergism among the EM and NNSA missions, and work from other federal agencies ensures that LDRD is the key element inmore » maintaining the vitality of SRNL’s technical programs. The LDRD program aims to position the Laboratory for new business in clean energy, national security, nuclear materials management and environmental stewardship by leveraging the unique capabilities of the Laboratory to yield foundational scientific research in core business areas, while aligning with SRS strategic initiatives and maintaining a vision for ultimate DOE applications.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Alastair; Regnier, Cindy; Settlemyre, Kevin

    Massachusetts Institute of Technology (MIT) partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program.1 Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program. MIT is one of the U.S.’s foremost higher education institutions, occupying a campus that is nearly 100 years old, with a building floor area totaling more than 12 million square feet. The CBP project focused on improving the energy performance of two campus buildings, the Ray andmore » Maria Stata Center (RMSC) and the Building W91 (BW91) data center. A key goal of the project was to identify energy saving measures that could be applied to other buildings both within MIT’s portfolio and at other higher education institutions. The CBP retrofits at MIT are projected to reduce energy consumption by approximately 48%, including a reduction of around 72% in RMSC lighting energy and a reduction of approximately 55% in RMSC server room HVAC energy. The energy efficiency measure (EEM) package proposed for the BW91 data center is expected to reduce heating, ventilation, and air-conditioning (HVAC) energy use by 30% to 50%, depending on the final air intake temperature that is established for the server racks. The RMSC, an iconic building designed by Frank Gehry, houses the Computer Science and Artificial Intelligence Laboratory, the Laboratory for Information and Decision Systems, and the Department of Linguistics and Philosophy.« less

  10. Low Energy Neutrino Physics at the Kuo-Sheng Reactor Laboratory in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, S.-T.

    2006-11-17

    A laboratory has been constructed by the TEXONO Collaboration at the Kuo-Sheng Reactor Power Plant in Taiwan to study low energy neutrino physics. A limit on the neutrino magnetic moment of {mu}{nu}({nu}-bare) < 7.2 x 10-11 {mu}B at 90% confidence level has been achieved from measurements with a high-purity germanium detector, as well as the electron neutrinos ({nu}{sub e}) produced from nuclear power reactors has been studied. Other research program at Kuo-Sheng are surveyed.

  11. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jiyeon; Jeters, Robert T.; Gill, Gary A.

    2015-10-01

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  12. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. Finley

    2000-03-06

    The results of the 1998 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1998. One significant initiative is the Integrated Safety Management (ISM) program that embraces environment, safety, and health principles as one.

  13. Albert Einstein Distinguished Educator Fellowship Act of 1994. Hearing on S. 2104 To Establish within the National Laboratories of the Department of Energy a National Albert Einstein Distinguished Educator Fellowship Program, before the Subcommittee on Energy Research and Development of the Committee on Energy and Natural Resources. United States Senate, One Hundred Third Congress, Second Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Energy and Natural Resources.

    These hearings addressed proposed Bill S. 2104 to create a Department of Energy (DOE) fellowship program for math and science teachers that would provide them opportunities to work at DOE labs in order to enhance coordination and communication among the educational community, the Congress, and the Executive Agencies responsible for developing and…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, R

    The Physics and Advanced Technologies (PAT) Directorate was created in July 2000 by Bruce Tarter, Director of Lawrence Livermore National Laboratory (LLNL). The Director called for the new organization to execute and support programs that apply cutting-edge physics and advanced technology to develop integrated solutions to problems in national security, fusion energy, information science, health care, and other national grand challenges. When I was appointed a year later as the PAT Directorate's first Associate Director, I initiated a strategic planning project to develop a vision, mission, and long-term goals for the Directorate. We adopted the goal of becoming a leadermore » in frontier physics and technology for twenty-first-century national security missions: Stockpile Stewardship, homeland security, energy independence, and the exploration of space. Our mission is to: (1) Help ensure the scientific excellence and vitality of the major LLNL programs through its leadership role in performing basic and applied multidisciplinary research and development with programmatic impact, and by recruiting and retaining science and technology leaders; (2) Create future opportunities and directions for LLNL and its major programs by growing new program areas and cutting-edge capabilities that are synergistic with, and supportive of, its national security mission; (3) Provide a direct conduit to the academic and high-tech industrial sectors for LLNL and its national security programs, through which the Laboratory gains access to frontier science and technology, and can impact the science and technology communities; (4) Leverage unique Laboratory capabilities, to advance the state universe. This inaugural PAT Annual Report begins a series that will chronicle our progress towards fulfilling this mission. I believe the report demonstrates that the PAT Directorate has a strong base of capabilities and accomplishments on which to build in meeting its goals. Some of the highlights include: (1) Leadership of the Laboratory's Physical Data Research Program that provides fundamental physics information for the Stockpile Stewardship Program. (2) Development of the handheld Microbead Immunoassay Dipstick System that will allow relatively untrained first-responders to run sophisticated onsite diagnostics for pathogens, including those associated with biowarfare agents, by using a simple, one-step measurement. (3) Major advances in target design for inertial fusion energy research using both laser and ion-beam drivers. (4) Development of the Advanced Technology Kill Vehicle concept for use as a high-performance interceptor in a broad range of missile defense programs. Over the course of the past decade, the Laboratory has seen its major program evolve from weapons research, development, and testing, to Stockpile Stewardship. Today, the country's national security priorities are changing rapidly: nuclear security is becoming a broader set of missions, and the Laboratory is being asked to contribute to a range of new mission areas from countering bioterrorism to ensuring information security. As we embark on the twenty-first century, the new PAT Directorate is poised to help lead the Laboratory's response to the country's changing national security needs.« less

  15. An expanded safeguards role for the DOE safeguards analytical laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, C.D.

    The New Brunswick Laboratory (NBL) is a Government-owned, Government-operated (GOGO) laboratory, with the mission to provide and maintain a nuclear material measurements and standards laboratory. The functional responsibilities of NBL serve as a technical response to the statutory responsibility of the Department of Energy (DOE) to assure the safeguarding of nuclear materials. In the execution of its mission, NBL carries out activities in six safeguards-related programs: measurement development, measurement evaluation, measurement services, safeguards assessment, reference and calibration materials and site-specific assistance. These program activities have been implemented by NBL for many years; their relative emphases, however, have been changed recentlymore » to address the priorities defined by the DOE Office of Safeguards and Security, Defense Programs (OSS/DP). As a consequence, NBL operations are in the ''mainstream'' of domestic safeguards activities. This expanded safeguards role for NBL is discussed in this paper.« less

  16. Laboratory directed research and development: Annual report to the Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    As one of the premier scientific laboratories of the DOE, Brookhaven must continuously foster the development of new ideas and technologies, promote the early exploration and exploitation of creative and innovative concepts, and develop new fundable R and D projects and programs. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achievingmore » and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments are described in this report. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.« less

  17. Site Environmental Report for 2006. Volume I, Environment, Health, and Safety Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2007-09-30

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2006 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2006. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters thatmore » contain an overview of the Laboratory, a discussion of the Laboratory’s environmental management system, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from surveillance and monitoring activities.« less

  18. Sandia National Laboratories: National Security Programs

    Science.gov Websites

    policy. Topics About Nuclear Weapons Safety & Security Science & Technology Defense Systems & science and technology to help defend and protect the United States. Topics About Defense Systems & . Topics Stationary Power Earth Science Transportation Energy Energy Research Global Security Birc We

  19. Energy and technology review, July--August, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, A.K.

    1990-01-01

    This report highlights various research programs conducted at the Lab to include: defense systems, laser research, fusion energy, biomedical and environmental sciences, engineering, physics, chemistry, materials science, and computational analysis. It also contains a statement on the state of the Lab and Laboratory Administration. (JEF)

  20. Institutional Conservation Program Evaluation Project: Results of hospital survey pretest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, N.E.; Hatfield, B.K.; Kier, P.H.

    As part of a study of energy conservation efforts in schools and hospitals and an evaluation of the Institutional Conservation Program sponsored by the US Department of Energy (DOE), teams from Argonne National Laboratory, Lawrence Berkeley Laboratory, and DOE visited 15 hospitals to pretest a survey instrument (in the form of a 10-page questionnaire and a list of definitions) that will be sent to 1800 hospitals to solicit information on their energy consumption, energy conservation activities, and decision-making processes. The pretest had several purposes, including identification of problems in the survey instrument's format and in the wording of instructions andmore » questions. This report covers all aspects of the pretest. Characteristics of the hospitals and of the interviewees are discussed. Pretest procedures are described and responses to some of the survey questions are provided. Narrative summaries of selected interviews, containing informative anecdotes, are included in an appendix, as are technology transfer ideas and the final version of the survey instrument.« less

  1. Sharing values, sharing a vision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    Teamwork, partnership and shared values emerged as recurring themes at the Third Technology Transfer/Communications Conference. The program drew about 100 participants who sat through a packed two days to find ways for their laboratories and facilities to better help American business and the economy. Co-hosts were the Lawrence Livermore National Laboratory and the Lawrence Berkeley Laboratory, where most meetings took place. The conference followed traditions established at the First Technology Transfer/Communications Conference, conceived of and hosted by the Pacific Northwest Laboratory in May 1992 in Richmond, Washington, and the second conference, hosted by the National Renewable Energy Laboratory in Januarymore » 1993 in Golden, Colorado. As at the other conferences, participants at the third session represented the fields of technology transfer, public affairs and communications. They came from Department of Energy headquarters and DOE offices, laboratories and production facilities. Continued in this report are keynote address; panel discussion; workshops; and presentations in technology transfer.« less

  2. NREL's Sustainable Campus Overview

    ScienceCinema

    Rukavina, Frank; Pless, Shanti

    2018-05-11

    The high-performance buildings across the Energy Department's National Renewable Energy Laboratory's (NREL) South Table Mountain campus incorporate a number of state-of-the art energy efficiency and renewable energy technologies, making them models for sustainability. Each building, designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) program, brings NREL closer to developing the campus of the future.

  3. New Brunswick Laboratory progress report, October 1994--September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The mission of the New Brunswick Laboratory (NBL) of the A. S. Department of Energy (DOE) is to serve as the National Certifying Authority for nuclear reference materials and to provide an independent Federal technical staff and laboratory resource performing nuclear material measurement, safeguards, and non-proliferation functions in support of multiple program sponsors. This annual report describes accomplishments achieved in carrying out NBL`s assigned missions.

  4. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruski, Marek; Sadow, Aaron; Slowing, Igor

    Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/ molecular catalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through trans-formative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to attack scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appoint-ments at a university and a National Laboratory.« less

  5. Pacific Northwest Laboratory annual report for 1990 to the DOE Office of Energy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.F.

    This report summarizes progress on OHER human health, biological, and general life sciences research programs conducted at PNL in FY 1990. The research develops the knowledge and scientific principles necessary to identify understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased of understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns epidemiological and statistical studiesmore » for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program.« less

  6. LDRD Highlights at the National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alayat, R. A.

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then,more » this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Richard P.; Stamp, Jason E.; Eddy, John P.

    Many critical loads rely on simple backup generation to provide electricity in the event of a power outage. An Energy Surety Microgrid TM can protect against outages caused by single generator failures to improve reliability. An ESM will also provide a host of other benefits, including integration of renewable energy, fuel optimization, and maximizing the value of energy storage. The ESM concept includes a categorization for microgrid value proposi- tions, and quantifies how the investment can be justified during either grid-connected or utility outage conditions. In contrast with many approaches, the ESM approach explic- itly sets requirements based on unlikelymore » extreme conditions, including the need to protect against determined cyber adversaries. During the United States (US) Department of Defense (DOD)/Department of Energy (DOE) Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) effort, the ESM methodology was successfully used to develop the preliminary designs, which direct supported the contracting, construction, and testing for three military bases. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military installations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Melanie Johnson and Harold Sanborn of the U.S. Army Corps of Engineers Construc- tion Engineering Research Laboratory * Experts from the National Renewable Energy Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory« less

  8. Required Assets for a Nuclear Energy Applied R&D Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harold F. McFarlane; Craig L. Jacobson

    2009-03-01

    This report is one of a set of three documents that have collectively identified and recommended research and development capabilities that will be required to advance nuclear energy in the next 20 to 50 years. The first report, Nuclear Energy for the Future: Required Research and Development Capabilities—An Industry Perspective, was produced by Battelle Memorial Institute at the request of the Assistant Secretary of Nuclear Energy. That report, drawn from input by industry, academia, and Department of Energy laboratories, can be found in Appendix 5.1. This Idaho National Laboratory report maps the nuclear-specific capabilities from the Battelle report onto facilitymore » requirements, identifying options from the set of national laboratory, university, industry, and international facilities. It also identifies significant gaps in the required facility capabilities. The third document, Executive Recommendations for Nuclear R&D Capabilities, is a letter report containing a set of recommendations made by a team of senior executives representing nuclear vendors, utilities, academia, and the national laboratories (at Battelle’s request). That third report can be found in Appendix 5.2. The three reports should be considered as set in order to have a more complete picture. The basis of this report was drawn from three sources: previous Department of Energy reports, workshops and committee meetings, and expert opinion. The facilities discussed were winnowed from several hundred facilities that had previously been catalogued and several additional facilities that had been overlooked in past exercises. The scope of this report is limited to commercial nuclear energy and those things the federal government, or more specifically the Office of Nuclear Energy, should do to support its expanded deployment in order to increase energy security and reduce carbon emissions. In the context of this report, capabilities mean innovative, well-structured research and development programs, a viable work force, and well-equipped specialized facilities.« less

  9. Addressing the Underrepresentation of Women in Physics at Multiple Levels

    NASA Astrophysics Data System (ADS)

    Greco, Shannon; Dominguez, Arturo; Ortiz, Deedee; Zwicker, Andrew

    2016-10-01

    APS provides support to several universities and research institutions to host Conferences for Undergraduate Women in Physics (CUWiP). The goal of these Conferences is to provide practical tools and a community to help women persist in physics and STEM careers. This is particularly relevant for the DPP where women make up only 7% of the membership. In January 2017, Princeton University and the Princeton Plasma Physics Laboratory (PPPL) will host a CUWiP. CUWiP and the Science Undergraduate Laboratory Internship (SULI) program expose undergraduates to the variety of possible careers in plasma physics and fusion energy in academia, government labs or private industry. We will report on the success of a number of PPPL programs to engage women at all levels in physics and highlight how programs such as CUWiP and SULI contribute to this goal. Special thanks to the Department of Energy for supporting PPPL's education programs and to APS for supporting the Conference for Undergraduate Women in Physics.

  10. Concentrated solar power in the built environment

    NASA Astrophysics Data System (ADS)

    Montenon, Alaric C.; Fylaktos, Nestor; Montagnino, Fabio; Paredes, Filippo; Papanicolas, Costas N.

    2017-06-01

    Solar concentration systems are usually deployed in large open spaces for electricity generation; they are rarely used to address the pressing energy needs of the built environment sector. Fresnel technology offers interesting and challenging CSP energy pathways suitable for the built environment, due to its relatively light weight (<30 kg.m-2) and low windage. The Cyprus Institute (CyI) and Consorzio ARCA are cooperating in such a research program; we report here the construction and integration of a 71kW Fresnel CSP system into the HVAC (Heating, Ventilation, and Air Conditioning) system of a recently constructed office & laboratory building, the Novel Technologies Laboratory (NTL). The multi-generative system will support cooling, heating and hot water production feeding the system of the NTL building, as a demonstration project, part of the STS-MED program (Small Scale Thermal Solar District Units for Mediterranean Communities) financed by the European Commission under the European Neighbourhood and Partnership Instrument (ENPI), CBCMED program.

  11. The Jet Propulsion Laboratory Electric and Hybrid Vehicle System Research and Development Project, 1977-1984: A Review

    NASA Technical Reports Server (NTRS)

    Kurtz, D.; Roan, V.

    1985-01-01

    The JPL Electric and Hybrid Vehicle System Research and Development Project was established in the spring of 1977. Originally administered by the Energy Research and Development Administration (ERDA) and later by the Electric and Hybrid Vehicle Division of the U.S. Department of Energy (DOE), the overall Program objective was to decrease this nation's dependence on foreign petroleum sources by developing the technologies and incentives necessary to bring electric and hybrid vehicles successfully into the marketplace. The ERDA/DOE Program structure was divided into two major elements: (1) technology research and system development and (2) field demonstration and market development. The Jet Propulsion Laboratory (JPL) has been one of several field centers supporting the former Program element. In that capacity, the specific historical areas of responsibility have been: (1) Vehicle system developments (2) System integration and test (3) Supporting subsystem development (4) System assessments (5) Simulation tool development.

  12. Department of Energy WindSentinel Loan Program Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, William J.; Sturges, Mark H.

    The U.S. Department of Energy (DOE) currently owns two AXYS WindSentinel buoys that collect a comprehensive set of meteorological and oceanographic data to support resource characterization for wind energy offshore. The two buoys were delivered to DOE’s Pacific Northwest National Laboratory (PNNL) in September, 2014. After acceptance testing and initial performance testing and evaluation at PNNL’s Marine Sciences Laboratory in Sequim, Washington, the buoys have been deployed off the U.S. East Coast. One buoy was deployed approximately 42 km east of Virginia Beach, Virginia from December, 2014 through June, 2016. The second buoy was deployed approximately 5 km off Atlanticmore » City, New Jersey in November, 2015. Data from the buoys are available to the public. Interested parties can create an account and log in to http://offshoreweb.pnnl.gov. In response to a number of inquiries and unsolicited proposals, DOE’s Wind Energy Technologies Office is implementing a program, to be managed by PNNL, to lend the buoys to qualified parties for the purpose of acquiring wind resource characterization data in areas of interest for offshore wind energy development. This document describes the buoys, the scope of the loans, the process of how borrowers will be selected, and the schedule for implementation of this program, including completing current deployments.« less

  13. 75 FR 22581 - Energy Conservation Program for Commercial Equipment: Decision and Order Granting a Waiver to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    .... (Mitsubishi) for a similar line of commercial multi-split air-conditioning systems: Testing laboratories...-conditioning systems: (1) Testing laboratories cannot test products with so many indoor units; (2) there are too many possible combinations of indoor and outdoor unit to test. The Daikin VRV-WIII systems have...

  14. Building America Systems Integration Research Annual Report: FY 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gestwick, M.

    2013-05-01

    This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  15. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.

    Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for coarse grained models of electrolyte solution. Here, we provide rigorous definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation (DFT-MD) and isolate the effects of charge and cavitation,more » comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to highly unphysical values for the solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry (CHA) for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation. We would like to thank Thomas Beck, Shawn Kathmann, Richard Remsing and John Weeks for helpful discussions. Computing resources were generously allocated by PNNL's Institutional Computing program. This research also used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. TTD, GKS, and CJM were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated by Battelle for the U.S. Department of Energy.« less

  16. Department of Energy: Nuclear S&T workforce development programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, Michelle; Bala, Marsha; Beierschmitt, Kelly

    The U.S. Department of Energy (DOE) national laboratories use their expertise in nuclear science and technology (S&T) to support a robust national nuclear S&T enterprise from the ground up. Traditional academic programs do not provide all the elements necessary to develop this expertise, so the DOE has initiated a number of supplemental programs to develop and support the nuclear S&T workforce pipeline. This document catalogs existing workforce development programs that are supported by a number of DOE offices (such as the Offices of Nuclear Energy, Science, Energy Efficiency, and Environmental Management), and by the National Nuclear Security Administration (NNSA) andmore » the Naval Reactor Program. Workforce development programs in nuclear S&T administered through the Department of Homeland Security, the Nuclear Regulatory Commission, and the Department of Defense are also included. The information about these programs, which is cataloged below, is drawn from the program websites. Some programs, such as the Minority Serving Institutes Partnership Programs (MSIPPs) are available through more than one DOE office, so they appear in more than one section of this document.« less

  17. Kirtland Operations progress report, April--June 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Kirtland Operations (KO) is an integral part of EG G Energy Measurements, Inc., whose primary mission is to support the US Department of Energy's (DOE's) programs in weapons development and testing and in nuclear safeguards and security. KO performs much of its work in close coordination with and often at the technical direction of Sandia National Laboratories. In addition to aiding Sandia's weapons programs, KO provides a wide spectrum of technical support to other Sandia activities, particularly their safeguards, security, and treaty verification programs. Support is also provided to other elements of the Department of Energy community and to othermore » federal agencies, primarily in weapons testing and safeguards. This report documents our support to these programs from April to June 1991.« less

  18. Kirtland Operations progress report, October--December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Kirtland Operations (KO) is an integral part of EG G Energy Measurements, Inc., whose primary mission is to support the US Department of Energy's (DOE's) programs in weapons development and testing and in nuclear safeguards and security. KO performs much of its work in close coordination with and often at the technical direction of Sandia National Laboratories. In addition to aiding Sandia's weapons programs, KO provides a wide spectrum of technical support to other Sandia activities, particularly their safeguards, security, and treaty verification programs. Support is also provided to other elements of the Department of Energy community and to othermore » federal agencies, primarily in weapons testing and safeguards. This report documents our support to these programs from October to December 1991.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.

    THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

  20. U.S. Department of Energy Isotope Program

    ScienceCinema

    None

    2018-01-16

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. PNNL’s Isotope Program operates in a multi-program category-2 nuclear facility, the Radiochemical Processing Laboratory (RPL), that contains 16 hot cells and 20 gloveboxes. As part of the DOE Isotope Program, the Pacific Northwest National Laboratory dispenses strontium-90, neptunium-237, radium-223, and thorium-227. PNNL’s Isotope Program uses a dedicated hot-cell for strontium-90 dispensing and a dedicated glovebox for radium-223 and thorium-227 dispensing. PNNL’s Isotope Program has access to state of the art analytical equipment in the RPL to support their research and production activities. DOE Isotope Program funded research at PNNL has advanced the application of automated radiochemistry for isotope such as zirconium-89 and astatine-211 in partnership with the University of Washington.

  1. U.S. Department of Energy Isotope Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. PNNL’s Isotope Program operates in a multi-program category-2 nuclear facility, the Radiochemical Processing Laboratory (RPL), that contains 16 hot cells and 20 gloveboxes. As part of the DOE Isotope Program, the Pacific Northwestmore » National Laboratory dispenses strontium-90, neptunium-237, radium-223, and thorium-227. PNNL’s Isotope Program uses a dedicated hot-cell for strontium-90 dispensing and a dedicated glovebox for radium-223 and thorium-227 dispensing. PNNL’s Isotope Program has access to state of the art analytical equipment in the RPL to support their research and production activities. DOE Isotope Program funded research at PNNL has advanced the application of automated radiochemistry for isotope such as zirconium-89 and astatine-211 in partnership with the University of Washington.« less

  2. 78 FR 25627 - Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ...-fired furnaces, Underwriters Laboratories (UL) Standard 727-1994, ``Standard for Safety for Oil-Fired... supplementary method called a catalog teardown (or ``virtual teardown'') uses published manufacturer catalogs... similar products and in manufacturer literature and information, to estimate the costs using virtual...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview ofmore » the research and development program, program management, program funding, and Fiscal Year 1997 projects.« less

  4. DOE-OES-EML quality assurance program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanderson, C.G.

    1980-01-01

    Contractor laboratories handling radioactive materials for the US Department of Energy (DOE) are required to monitor the environmental exposure and publish annual reports for the Division of Operational and Environmental Safety (OES). In order to determine the validity of the data contained in these reports the Environmental Measurements Laboratory (EML) was requested to develop, coordinate, and conduct an Environmental Quality Assurance Program (QAP). There are four major phases to the DOE-OES-EML Quality Assurance Program: sample collection and preparation, sample analyses at EML, quarterly sample distribution, and reporting the data returned by the participants. The various phases of the QAP andmore » the data reported during the first year of the program are discussed.« less

  5. Annual Site Environmental Report Calendar Year 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dan Kayser-Ames Laboratory

    This report summarizes the environmental status of Ames Laboratory for calendar year 2007. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring activities. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies 11 buildings owned by the Department of Energy (DOE). See the Laboratory's Web page at www.external.ameslab.gov for locations and Laboratory overview. The Laboratory also leases space in ISU owned buildings. In 2007, the Laboratory accumulated andmore » disposed of waste under U.S. Environmental Protection Agency (EPA) issued generator numbers. All waste is handled according to all applicable EPA, State, Local and DOE Orders. In 2006 the Laboratory reduced its generator status from a Large Quantity Generator (LQG) to a Small Quantity Generator (SQG). EPA Region VII was notified of this change. The Laboratory's RCRA hazardous waste management program was inspected by EPA Region VII in April 2006. There were no notices of violations. The inspector was impressed with the improvements of the Laboratory's waste management program over the past ten years. The Laboratory was in compliance with all applicable federal, state, local and DOE regulations and orders in 2007. There were no radiological air emissions or exposures to the general public due to Laboratory activities in 2007. See U.S. Department of Energy Air Emissions Annual Report in Appendix B. As indicated in prior SERs, pollution awareness, waste minimization and recycling programs have been in practice since 1990, with improvements implemented most recently in 2003. Included in these efforts were battery and CRT recycling, waste white paper and green computer paper-recycling. Ames Laboratory also recycles/reuses salvageable metal, used oil, styrofoam peanuts, batteries, fluorescent lamps and telephone books. Ames Laboratory reported to DOE-Ames Site Office (AMSO), through the Laboratory's Self Assessment Report, on its Affirmative Procurement Performance Measure. A performance level of 'A' was achieved in 2007 for Integrated Safety, Health, and Environmental Protection. As reported in Site Environmental Reports for prior years, the Laboratory's Environmental Management System has been integrated into the Laboratory's Integrated Safety Management System since 2005. The integration of EMS into the way the Laboratory does business allows the Laboratory to systematically review, address and respond to the Laboratory's environmental impacts.« less

  6. U. S. Department of Energy (DOE) Industrial Programs and Their Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Roop, Joseph M.

    The U.S. Department of Energy's Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environmental performance, product quality, and productivity. To help ITP determine the impacts of its programs, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP program benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commercialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technologies, and estimates air pollution and carbon emission reductions. This paper discusses the results of the most recent PNNL review (conducted in 2003). From 1976-2002, the commercialized technologies from ITP's R&D programs and other activities have cumulatively saved 3.7 quadrillion Btu, with a net cost savings of $14.6 billion.« less

  7. National University Consortium on Microwave Research (NUCOMR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, R.J.; Agee, F.J.

    1995-11-01

    This paper introduces a new cooperative research program of national scale that is focused on crucial research issues in the development of high energy microwave sources. These have many applications in the DOD and industry. The Air Force Office of Scientific Research (AFOSR), in cooperation with the Phillips Laboratory, the Naval Research Laboratory, and the Army Research Laboratory, has established a tri-service research consortium to investigate novel high energy microwave sources. To facilitate the rapid transition of research results into the industrial community, formal collaborative subcontracts are already in-place with James Benford at Physics International, Carter Armstrong at Northrop, andmore » Glen Huffman at Varian Associates. Although this new program officially only came into existence in mid-March of this year, it builds on over a decade of microwave research efforts funded by the plasma physics office at AFOSR. It also is synergistic with the ongoing Tri-Service Vacuum Electronics Initiative led by Robert Parker of NRL as well as with the AFOSR`s and Rome Laboratory`s long-standing Advanced Thermionic Research Initiative (ATRI). An overview will be given of the broad spectrum of research objectives encompassed by NUCOMR. Areas of collaboration and technology transfer will be highlighted. The areas in which the three university consortia will conduct research are described, and the connectivity to industry and to the DOD laboratories are discussed. There are a number of critical technical barriers to reaching the desired goals for high power and high energy sources. These are discussed and the planned focus of research to resolve them is also presented.« less

  8. Program Direction FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    Program Direction enables EERE to maintain and support a world-class federal workforce to accomplish its mission of creating and sustaining American leadership in the sustainable transportation, renewable power, and energy efficiency sectors. The FY 2017 Program Direction budget request provides resources for program and project management, administrative support, contract administration, human capital management, headquarters and field site non-laboratory facilities and infrastructure, and contractor support.

  9. The DOE photovoltaics program

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.

    1980-01-01

    As part of the National Solar Energy program, the US Department of Energy is now engaged in the development of technically feasible, low cost candidate component and system technologies to the point where technical readiness can be demonstrated by 1982. The overall strategy is to pursue parallel options that continue to show promise of meeting the program goals, thus increasing the probability that at least one technology will be successful. Included in technology development are both flat plate solar collectors and concentrator solar collectors, as well as the balance of system components, such as structures, power conditioning, power controls, protection, and storage. Generally, these last items are common to both flat plate and concentrator systems, but otherwise there is considerable disparity in design philosophy, photovoltaic cell requirements, and possible applications between the two systems. Objectives for research activities at NASA Lewis for stand alone applications, and at Sandia Laboratories where intermediate load center applications are addressed, are highlighted as well as college projects directed by Oak Ridge National Laboratory, and international applications managed by the Solar Energy Research Institute. Joint DOD/DOE effects for military applications are also summarized.

  10. APPLICATION ANALYSIS REPORT - DEMONSTRATION OF A TRIAL EXCAVATION AT THE MCCOLL SUPERFUND SITE

    EPA Science Inventory

    In June 1990, the U.S. Environmental Protection Agency’s Region IX Superfund Program, in cooperation with EPA’s Air and Energy Engineering Research Laboratory (AEERL), and EPA’s Superfund Innovative Technology Evaluation (SITE) Program performed a trial excavation of approximatel...

  11. Inertial Confinement Fusion Annual Report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correll, D

    The ICF Annual Report provides documentation of the achievements of the LLNL ICF Program during the fiscal year by the use of two formats: (1) an Overview that is a narrative summary of important results for the fiscal year and (2) a compilation of the articles that previously appeared in the ICF Quarterly Report that year. Both the Overview and Quarterly Report are also on the Web at http://lasers.llnl.gov/lasers/pubs/icfq.html. Beginning in Fiscal Year 1997, the fourth quarter issue of the ICF Quarterly was no longer printed as a separate document but rather included in the ICF Annual. This change providedmore » a more efficient process of documenting our accomplishments with-out unnecessary duplication of printing. In addition we introduced a new document, the ICF Program Monthly Highlights. Starting with the September 1997 issue and each month following, the Monthly Highlights will provide a brief description of noteworthy activities of interest to our DOE sponsors and our stakeholders. The underlying theme for LLNL's ICF Program research continues to be defined within DOE's Defense Programs missions and goals. In support of these missions and goals, the ICF Program advances research and technology development in major interrelated areas that include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology. While in pursuit of its goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application of inertial fusion energy for civilian power production. ICF technologies continue to have spin-off applications for additional government and industrial use. In addition to these topics, the ICF Annual Report covers non-ICF funded, but related, laser research and development and associated applications. We also provide a short summary of the quarterly activities within Nova laser operations, Beamlet laser operations, and National Ignition Facility laser design. LLNL's ICF Program falls within DOE's national ICF program, which includes the Nova and Beamlet (LLNL), OMEGA (University of Rochester Laboratory for Laser Energetics), Nike (Naval Research Laboratory), and Trident (Los Alamos National Laboratory) laser facilities. The Particle Beam Fusion Accelerator (Z) and Saturn pulsed-power facilities are at Sandia National Laboratories. General Atomics, Inc., develops and provides many of the targets for the above experimental facilities. Many of the ICF Annual Report articles are co-authored with our colleagues from these other ICF institutions.« less

  12. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusionmore » power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.« less

  13. Facilities and Infrastructure FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    The Facilities and Infrastructure Program includes EERE’s capital investments, operations and maintenance, and site-wide support of the National Renewable Energy Laboratory (NREL). It is the nation’s only national laboratory with a primary mission dedicated to the research, development and demonstration (RD&D) of energy efficiency, renewable energy and related technologies. EERE is NREL’s steward, primary client and sponsor of NREL’s designation as a Federally Funded Research and Development Center. The Facilities and Infrastructure (F&I) budget maintains NREL’s research and support infrastructure, ensures availability for EERE’s use, and provides a safe and secure workplace for employees.

  14. The Weatherization Assistant User's Manual (Version 8.9)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gettings, Michael B.; Malhotra, Mini; Ternes, Mark P.

    The Weatherization Assistant is a Windows-based energy audit software tool that was developed by Oak Ridge National Laboratory (ORNL) to help states and their local weatherization agencies implement the U.S. Department of Energy (DOE) Weatherization Assistance Program. The Weatherization Assistant is an umbrella program for two individual energy audits or measure selection programs: the National Energy Audit Tool (NEAT) for site-built single-family homes and the Manufactured Home Energy Audit (MHEA) for mobile homes. The Weatherization Assistant User's Manual documents the operation of the user interface for Version 8.9 of the software. This includes how to install and setup the software,more » navigate through the program, and initiate an energy audit. All of the user interface forms associated with the software and the data fields on these forms are described in detail. The manual is intended to be a training manual for new users of the Weatherization Assistant and as a reference manual for experienced users.« less

  15. A Compilation of Internship Reports - 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegman M.; Morris, M.; Blackburn, N.

    This compilation documents all research project undertaken by the 2012 summer Department of Energy - Workforce Development for Teachers and Scientists interns during their internship program at Brookhaven National Laboratory.

  16. Fuel Cell Electric Vehicle Evaluation; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Jennifer; Sprik, Sam; Ainscough, Chris

    2015-06-10

    This presentation provides a summary of NREL's FY15 fuel cell electric vehicle evaluation project activities and accomplishments. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting on June 10, 2015, in Arlington, Virginia.

  17. 77 FR 55201 - State Energy Advisory Board (STEAB); Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    .... L. 92- 463; 86 Stat.770) requires that public notice of these meetings be announced in the Federal... responsibilities as designated in the State Energy Efficiency Programs Improvement Act of 1990 (Pub. L. 101-440... partnerships, new initiatives and technologies being created at the Laboratory, explore possible technology...

  18. Accelerated Climate Modeling for Energy (ACME) Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhary, Aashish

    Seven Department of Energy (DOE) national laboratories, Universities, and Kitware, undertook a coordinated effort to build an Earth system modeling capability tailored to meet the climate change research strategic objectives of the DOE Office of Science, as well as the broader climate change application needs of other DOE programs.

  19. Laboratory directed research and development FY98 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R; Holzrichter, J

    1999-05-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNLmore » with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs.« less

  20. Conserving Our Energy. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 11.

    ERIC Educational Resources Information Center

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P9 SIS unit deals with: (1) the importance of energy in students' everyday lives; (2) energy forms and…

  1. A Laboratory Exercise Relating Soil Energy Budgets to Soil Temperature

    ERIC Educational Resources Information Center

    Koenig, Richard T.; Cerny-Koenig, Teresa; Kotuby-Amacher, Janice; Grossl, Paul R.

    2008-01-01

    Enrollment by students in degree programs other than traditional horticulture, agronomy, and soil science has increased in basic plant and soil science courses. In order to broaden the appeal of these courses to students from majors other than agriculture, we developed a hands-on laboratory exercise relating the basic concepts of a soil energy…

  2. NREL technical assistance to Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lilienthal, P.

    1997-12-01

    This paper describes assistance to Argentina from the National Renewable Energy Laboratory which has touched on four programs: tariff analysis for rural concessions programs; wind/diesel hybrid retrofits in Patagonia; small hybrid systems designs for rural schools; an assessment of wind resources. The paper expands briefly on the first two points.

  3. 10 CFR 431.20 - Department of Energy recognition of nationally recognized certification programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... requirements for the competence of calibration and testing laboratories. (4) Expertise in electric motor test... PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Electric Motors Test Procedures, Materials... to assure that basic models of electric motor continue to conform to the efficiency levels for which...

  4. Evaluation of the US Department of Energy Weatherization Innovation Pilot Program (2010-2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, Bruce Edward; Rose, Erin M.; Hawkins, Beth A.

    This report contains results from analysis conducted on each of the Weatherization Innovation Pilot Program (WIPP) grants awarded to 16 organizations by the US Department of Energy (DOE) in 2010. The purpose of WIPP was to explore the potential adoptability or replicability of innovative processes or technologies for the enhancement of DOE’s Weatherization Assistance Program (WAP). DOE initiated the WIPP grant to accelerate effective innovations in home energy efficiency and other WAP mission-related goals for income-qualifying households of low socioeconomic status. This study was performed alongside a broader, national evaluation of WAP conducted by Oak Ridge National Laboratory (ORNL) formore » DOE.« less

  5. Report on the Progress of Weld Development of Irradiated Materials at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Miller, Roger G.; Chen, Jian

    This report summarizes recent welding activities on irradiated alloys in the advanced welding facility at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory and the development of post-weld characterization capabilities and procedures that will be critical for assessing the ability of the advanced welding processes housed within the facility to make successful repairs on irradiated alloys. This facility and its capabilities were developed jointly by the U.S. Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program (and the Welding and Repair Technology Center), with additionalmore » support from Oak Ridge National Laboratory. The significant, on-going effort to weld irradiated alloys with high Helium concentrations and comprehensively analyze the results will eventually yield validated repair techniques and guidelines for use by the nuclear industry in extending the operational lifetimes of nuclear power plants.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regnier, Cindy; Settlemyre, Kevin

    The University of South Carolina (USC), a public university in Columbia, South Carolina, partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build a new, low-energy educational building. The new Darla Moore School of Business (DMSB) will consume at least 50% less energy than requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE's Commerical Building Partnerships (CBP) program. 4 Lawrence Berkeley National Laboratory (LBNL) provided technical expertise inmore » support of this DOE program.« less

  7. Chemistry Research

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Philip Morris research center scientists use a computer program called CECTRP, for Chemical Equilibrium Composition and Transport Properties, to gain insight into the behavior of atoms as they progress along the reaction pathway. Use of the program lets the scientist accurately predict the behavior of a given molecule or group of molecules. Computer generated data must be checked by laboratory experiment, but the use of CECTRP saves the researchers hundreds of hours of laboratory time since experiments must run only to validate the computer's prediction. Philip Morris estimates that had CECTRP not been available, at least two man years would have been required to develop a program to perform similar free energy calculations.

  8. Electron-Scavenging Chemistry of Benzoquinone on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.; Shen, Mingmin

    The chemistry of benzoquinone (BQ) on TiO2(110) was examined using temperature programmed desorption (TPD), electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES). BQ adsorbs mostly molecularly on the clean surface, although EELS demonstrates that electrons from surface Ti3+ sites at oxygen vacancy sites (VO) are readily oxidized by the high electron scavenging ability of the molecule. In contrast, when the surface is covered with water, subsequently adsorbed BQ molecules that scavenge surface electrons also abstract H from surface OHbr groups to form hydroquinone (HQ), which desorbs at ~450 K. This work was supported by the US Department ofmore » Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virginia L. Finley

    The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program ismore » to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface, ground, a nd waste water monitoring. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the presence of low levels of volatile organic compounds in an area adjacent to PPPL. Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report.« less

  10. Laser safety research and modeling for high-energy laser systems

    NASA Astrophysics Data System (ADS)

    Smith, Peter A.; Montes de Oca, Cecilia I.; Kennedy, Paul K.; Keppler, Kenneth S.

    2002-06-01

    The Department of Defense has an increasing number of high-energy laser weapons programs with the potential to mature in the not too distant future. However, as laser systems with increasingly higher energies are developed, the difficulty of the laser safety problem increases proportionally, and presents unique safety challenges. The hazard distance for the direct beam can be in the order of thousands of miles, and radiation reflected from the target may also be hazardous over long distances. This paper details the Air Force Research Laboratory/Optical Radiation Branch (AFRL/HEDO) High-Energy Laser (HEL) safety program, which has been developed to support DOD HEL programs by providing critical capability and knowledge with respect to laser safety. The overall aim of the program is to develop and demonstrate technologies that permit safe testing, deployment and use of high-energy laser weapons. The program spans the range of applicable technologies, including evaluation of the biological effects of high-energy laser systems, development and validation of laser hazard assessment tools, and development of appropriate eye protection for those at risk.

  11. Environmental surveillance at Los Alamos during 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuehne, David; Gallagher, Pat; Hjeresen, Denny

    2009-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Programs Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at andmore » near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information.« less

  12. Characterizing Scintillation and Cherenkov Light in Water-Based Liquid Scintillators

    NASA Astrophysics Data System (ADS)

    Land, Benjamin; Caravaca, Javier; Descamps, Freija; Orebi Gann, Gabriel

    2016-09-01

    The recent development of Water-based Liquid Scintillator (WbLS) has made it possible to produce scintillating materials with highly tunable light yields and excellent optical clarity. This allows for a straightforward combination of the directional properties of Cherenkov light with the greater energy resolution afforded by the typically brighter scintillation light which lends itself well to a broad program of neutrino physics. Here we explore the light yields and time profiles of WbLS materials in development for Theia (formerly ASDC) as measured in CheSS: our bench-top Cherenkov and scintillation separation R&D project at Berkeley Lab. This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.

  13. Science and Technology for a Safer Nation

    DTIC Science & Technology

    2008-03-01

    facilities. “Harvesting Innovation” gathers detailed information about efforts supporting Laboratory-Directed Research and Development ( LDRD ...programs and shares this with DHS directors, division heads and program managers. Energy Department labs allocate some $400 million per year in LDRD ...correlate LDRD projects with DHS S&T strategic goals and ongoing programs as well as planned projects in all six S&T divisions. This minimizes

  14. Energy Efficient Engine: Control system preliminary definition report

    NASA Technical Reports Server (NTRS)

    Howe, David C.

    1986-01-01

    The object of the Control Preliminary Definition Program was to define a preliminary control system concept as a part of the Energy Efficient Engine program. The program was limited to a conceptual definition of a full authority digital electronic control system. System requirements were determined and a control system was conceptually defined to these requirements. Areas requiring technological development were identified and a plan was established for implementing the identified technological features, including a control technology demonstration. A significant element of this program was a study of the potential benefits of closed-loop active clearance control, along with laboratory tests of candidate clearance sensor elements for a closed loop system.

  15. Efficient System Design and Sustainable Finance for China's Village Electrification Program: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, S.; Yin, H.; Kline, D. M.

    2006-08-01

    This paper describes a joint effort of the Institute for Electrical Engineering of the Chinese Academy of Sciences (IEE), and the U.S. National Renewable Energy Laboratory (NREL) to support China's rural electrification program. This project developed a design tool that provides guidelines both for off-grid renewable energy system designs and for cost-based tariff and finance schemes to support them. This tool was developed to capitalize on lessons learned from the Township Electrification Program that preceded the Village Electrification Program. We describe the methods used to develop the analysis, some indicative results, and the planned use of the tool in themore » Village Electrification Program.« less

  16. NREL Photovoltaic Program FY 1996 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's andmore » the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.« less

  17. Data Quality Objectives Supporting the Environmental Soil Monitoring Program for the Idaho National Laboratory Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haney, Thomas Jay

    This document describes the process used to develop data quality objectives for the Idaho National Laboratory (INL) Environmental Soil Monitoring Program in accordance with U.S. Environmental Protection Agency guidance. This document also develops and presents the logic that was used to determine the specific number of soil monitoring locations at the INL Site, at locations bordering the INL Site, and at locations in the surrounding regional area. The monitoring location logic follows the guidance from the U.S. Department of Energy for environmental surveillance of its facilities.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, T

    I am pleased to present the fiscal year 2007 Laboratory Directed Research and Development (LDRD) annual report. This represents the first year that SRNL has been eligible for LDRD participation and our results to date demonstrate we are off to an excellent start. SRNL became a National Laboratory in 2004, and was designated the 'Corporate Laboratory' for the DOE Office of Environmental Management (EM) in 2006. As you will see, we have made great progress since these designations. The LDRD program is one of the tools SRNL is using to enable achievement of our strategic goals for the DOE. Themore » LDRD program allows the laboratory to blend a strong basic science component into our applied technical portfolio. This blending of science with applied technology provides opportunities for our scientists to strengthen our capabilities and delivery. The LDRD program is vital to help SRNL attract and retain leading scientists and engineers who will help build SRNL's future and achieve DOE mission objectives. This program has stimulated our research staff creativity, while realizing benefits from their participation. This investment will yield long term dividends to the DOE in its Environmental Management, Energy, and National Security missions.« less

  19. Nuclear security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dingell, J.D.

    1991-02-01

    The Department of Energy's (DOE) Lawrence Livermore National Laboratory, located in Livermore, California, generates and controls large numbers of classified documents associated with the research and testing of nuclear weapons. Concern has been raised about the potential for espionage at the laboratory and the national security implications of classified documents being stolen. This paper determines the extent of missing classified documents at the laboratory and assesses the adequacy of accountability over classified documents in the laboratory's custody. Audit coverage was limited to the approximately 600,000 secret documents in the laboratory's custody. The adequacy of DOE's oversight of the laboratory's secretmore » document control program was also assessed.« less

  20. Calendar Year 2013 Annual Site Environmental Report for Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, Stacy

    2014-09-01

    Sandia National Laboratories, New Mexico is a government-owned/contractor-operated facility. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s sustainability, environmental protection, and monitoring programs through December 31, 2013. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of themore » National Environmental Policy Act. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).« less

  1. Behavior of U 3Si 2 Fuel and FeCrAl Cladding under Normal Operating and Accident Reactor Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, Kyle Allan Lawrence; Hales, Jason Dean; Barani, Tommaso

    2016-09-01

    As part of the Department of Energy's Nuclear Energy Advanced Modeling and Simulation program, an Accident Tolerant Fuel High Impact Problem was initiated at the beginning of fiscal year 2015 to investigate the behavior of \\usi~fuel and iron-chromium-aluminum (FeCrAl) claddings under normal operating and accident reactor conditions. The High Impact Problem was created in response to the United States Department of Energy's renewed interest in accident tolerant materials after the events that occurred at the Fukushima Daiichi Nuclear Power Plant in 2011. The High Impact Problem is a multinational laboratory and university collaborative research effort between Idaho National Laboratory, Losmore » Alamos National Laboratory, Argonne National Laboratory, and the University of Tennessee, Knoxville. This report primarily focuses on the engineering scale research in fiscal year 2016 with brief summaries of the lower length scale developments in the areas of density functional theory, cluster dynamics, rate theory, and phase field being presented.« less

  2. Performance Audit of the U.S. Geological Survey, Energy Resource Program Inorganic Geochemistry Laboratory

    USGS Publications Warehouse

    Luppens, James A.; Janke, Louis G.; McCord, Jamey D.; Bullock, John H.; Brazeau, Lisa; Affronter, Ronald H.

    2007-01-01

    A performance audit of the U.S. Geological Survey (USGS), Energy Resource Program (ERP) Inorganic Geochemistry Laboratory (IGL) was conducted between August, 2003 and October, 2005. The goals were to ensure that a high level of analytical performance was maintained and identify any areas that could be enhanced. The audit was subdivided into three phases. Phase 1 was a preliminary assessment of current performance based on recent performance on CANSPEX samples. IGL performance was also compared to laboratories world-wide with similar scope. Phase 2 consisted of the implementation of the recommended changes made in Phase 1. Phase 3 of the audit consisted of a reassessment effort to evaluate the effectiveness of the recommendations made in the Phase 1 and an on-site audit of the laboratory facilities. Phases 1 and 3 required summary reports that are included in Appendices A and B of this report. The audit found that the IGL was one of the top two laboratories compared for trace element analyses. Several recommendations to enhance performance on major and minor elemental parameters were made and implemented. Demonstrated performance improvements as a result of the recommended changes were documented. Several initiatives to sustain the performance improvements gained from the audit have been implemented.

  3. Recommended HSE-7 documents hierarchy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, R.B.; Jennrich, E.A.; Lund, D.M.

    1990-12-12

    This report recommends a hierarchy of waste management documents at Los Alamos National Laboratory (LANL or Laboratory''). The hierarchy addresses documents that are required to plan, implement, and document waste management programs at Los Alamos. These documents will enable the waste management group and the six sections contained within that group to satisfy requirements that are imposed upon them by the US Department of Energy (DOE), DOE Albuquerque Operations, US Environmental Protection Agency, various State of New Mexico agencies, and Laboratory management.

  4. Recommended HSE-7 documents hierarchy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, R.B.; Jennrich, E.A.; Lund, D.M.

    1990-12-12

    This report recommends a hierarchy of waste management documents at Los Alamos National Laboratory (LANL or ``Laboratory``). The hierarchy addresses documents that are required to plan, implement, and document waste management programs at Los Alamos. These documents will enable the waste management group and the six sections contained within that group to satisfy requirements that are imposed upon them by the US Department of Energy (DOE), DOE Albuquerque Operations, US Environmental Protection Agency, various State of New Mexico agencies, and Laboratory management.

  5. Savannah River Ecology Laboratory annual technical progress report of ecological research for the year ending July 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.H.

    1995-07-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory`s work in the future. Following severalmore » years of planning, opening ceremonies were held for the 5000 ft{sup 2} multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE`s new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft{sup 2} office and library addition to S@s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building.« less

  6. Eleven Tribes Jump START Clean Energy Projects, Summer 2012 (Newsletter)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This newsletter describes key activities of the DOE Office of Indian Energy Policy and Programs for Summer 2012. The U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) has selected 11 Tribes - five in Alaska and six in the contiguous United States - to receive on-the-ground technical support for community-based energy efficiency and renewable energy projects as part of DOE-IE's Strategic Technical Assistance Response Team (START) Program. START finalists were selected based on the clarity of their requests for technical assistance and the ability of START to successfully work with their projects or community. Technical expertsmore » from DOE and its National Renewable Energy Laboratory (NREL) will work directly with community-based project teams to analyze local energy issues and assist the Tribes in moving their projects forward. In Alaska, the effort will be bolstered by DOE-IE's partnership with the Denali Commission, which will provide additional assistance and expertise, as well as funding to fuel the Alaska START initiative.« less

  7. ICF quarterly report January - March 1997 volume 7, number 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, J

    The National Ignition Facility Project The mission of the National Ignition Facility (NIF) is to produce ignition and modest energy gain in inertial confinement fusion (ICF) targets. Achieving these goals will maintain U.S. world leadership in ICF and will directly benefit the U.S. Department of Energy (DOE) missions in national security, science and technology, energy resources, and industrial competitiveness. Development and operation of the NIF are consistent with DOE goals for environmental quality, openness to the community, and nuclear nonproliferation and arms control. Although the primary mission of inertial fusion is for defense applications, inertial fusion research will provide criticalmore » information for the development of inertial fusion energy. The NIF, under construction at Lawrence Livermore National Laboratory (LLNL), is a cornerstone of the DOE's science-based Stockpile Stewardship Program for addressing high-energy-density physics issues in the absence of nuclear weapons testing. In pursuit of this mission, the DOE's Defense Programs has developed a state-of-the-art capability with the NIF to investigate high-energy-density physics in the laboratory with a microfusion capability for defense and energy applications. As a Strategic System Acquisition, the NIF Project has a separate and disciplined reporting chain to DOE as shown below.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, Tarik A.; Quintana, Matthew Estevan; Romero, Tobias J.

    As a part of the project “High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation” an Integrated Research Program (IRP) project from the U.S. Department of Energy, Nuclear Energy University Programs (NEUP), TEM geometry samples of ferritic cladding alloys, Ni based super alloys and model alloys were irradiated in the BOR-60 reactor to ~16 dpa at ~370°C and ~400°C. Samples were sent to Los Alamos National Laboratory and subjected to shear punch testing. This report presents the results from this testing.

  9. Environmental Report 1994

    DOT National Transportation Integrated Search

    1995-09-01

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  10. Environmental Report 1995

    DOT National Transportation Integrated Search

    1996-09-03

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  11. Environmental Report 1993

    DOT National Transportation Integrated Search

    1994-09-01

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  12. Summaries of FY 92 geosciences research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries,more » equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions and their subdivisions including Earth dynamics, properties of Earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.« less

  13. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.

    Catalysis research at the U.S. Department of Energy’s (DOE’s) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to tackle scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appointments at a university and a National Laboratory.« less

  14. Physics division progress report for period ending September 30 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, A.B.

    1992-03-01

    This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development. (LSP)

  15. An Experiment in the Use of Computer-Based Education to Teach Energy Considerations in Architectural Design.

    ERIC Educational Resources Information Center

    Arumi, Francisco N.

    Computer programs capable of describing the thermal behavior of buildings are used to help architectural students understand environmental systems. The Numerical Simulation Laboratory at the Architectural School of the University of Texas at Austin was developed to provide the necessary software capable of simulating the energy transactions…

  16. Innovation and Entrepreneurship | NREL

    Science.gov Websites

    disadvantaged businesses. Programs A photo of a woman and a man creating a planning diagram. Energy I-Corps (DOE) national laboratory-developed technologies into the commercial marketplace. Read more A photo of two men working on a machine. Small Business Vouchers Pilot Provides selected clean energy small

  17. Reduced enrichment for research and test reactors: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-07-01

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris{o} National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately.

  18. Federal Labs and Research Centers Benefiting California: 2017 Impact Report for State Leaders.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koning, Patricia Brady

    Sandia National Laboratories is the largest of the Department of Energy national laboratories with more than 13,000 staff spread across its two main campuses in New Mexico and California. For more than 60 years, the Sandia National Laboratories campus in Livermore, California has delivered cutting-edge science and technology solutions to resolve the nation’s most challenging and complex problems. As a multidisciplinary laboratory, Sandia draws from virtually every science and engineering discipline to address challenges in energy, homeland security, cybersecurity, climate, and biosecurity. Today, collaboration is vital to ensuring that the Lab stays at the forefront of science and technology innovation.more » Partnerships with industry, state, and local governments, and California universities help drive innovation and economic growth in the region. Sandia contributed to California’s regional and statewide economy with more than $145 million in contracts to California companies, $92 million of which goes to California small businesses. In addition, Sandia engages the community directly by running robust STEM education programs for local schools and administering community giving programs. Meanwhile, investments like the Livermore Valley Open Campus (LVOC), an innovation hub supported by LLNL and Sandia, help catalyze the local economy.« less

  19. U.S. Department of Energy (DOE) Industrial Programs and Their Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Roop, Joseph M.

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environmental performance, product quality, and productivity. To help ITP determine the impacts of its programs, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP program benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commercialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technologies, and estimates air pollution and carbon emission reductions. This paper discusses the results of the most recent PNNL review (conducted in 2005). From 1976-2004, the commercialized technologies from ITP’s research and development (R&D) programs and other activities have cumulatively saved 4.72 quadrillion Btu, with a net cost savings of $23.1 billion.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in amore » DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.« less

  1. Institutional research and development, FY 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87. (DWL)

  2. NREL Photovoltaic Program. FY 1994 annual report, October 1, 1993--September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    This report summarizes the in-house and subcontracted research and development activities under the National renewable Energy Laboratory (NREL) Photovoltaics (PV) program for fiscal year 1994. Research is organized under the following areas; PV program management; crystalline silicon and advanced devices; thin-film PV technologies; PV manufacturing; PV module and system performance and engineering; and PV applications and markets.

  3. Solar thermal power storage applications lead laboratory overview

    NASA Technical Reports Server (NTRS)

    Radosevich, L. G.

    1980-01-01

    The implementation of the applications elements of the thermal energy storage for Solar Thermal Applications program is described. The program includes the accelerated development of thermal storage technologies matched to solar thermal power system requirements and scheduled milestones. The program concentrates on storage development in the FY80 to 85 time period with emphasis on the more near-term solar thermal power system application.

  4. 2014 Wind Program Peer Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    The Wind Program Peer Review Meeting was held March 24-28, 2014 in Arlington, VA. Principle investigators from the Energy Department, National Laboratories, academic, and industry representatives presented the progress of their DOE-funded research. This report documents the formal, rigorous evaluation process and findings of nine independent reviewers who examined the technical, scientific, and business results of Wind Program funded projects, as well as the productivity and management effectiveness of the Wind Program itself.

  5. Perspectives in Energy Research: How Can We Change the Game? (2011 Summit)

    ScienceCinema

    Isaacs, Eric

    2018-02-12

    Eric Issacs, Director of DOE's Argonne National Laboratory, discussed the role of the EFRC Program and National Laboratories in developing game-changing energy technologies in the EFRC Summit session titled "Leading Perspectives in Energy Research." The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  6. In-core flux sensor evaluations at the ATR critical facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy Unruh; Benjamin Chase; Joy Rempe

    2014-09-01

    Flux detector evaluations were completed as part of a joint Idaho State University (ISU) / Idaho National Laboratory (INL) / French Atomic Energy commission (CEA) ATR National Scientific User Facility (ATR NSUF) project to compare the accuracy, response time, and long duration performance of several flux detectors. Special fixturing developed by INL allows real-time flux detectors to be inserted into various ATRC core positions and perform lobe power measurements, axial flux profile measurements, and detector cross-calibrations. Detectors initially evaluated in this program include the French Atomic Energy Commission (CEA)-developed miniature fission chambers; specialized self-powered neutron detectors (SPNDs) developed by themore » Argentinean National Energy Commission (CNEA); specially developed commercial SPNDs from Argonne National Laboratory. As shown in this article, data obtained from this program provides important insights related to flux detector accuracy and resolution for subsequent ATR and CEA experiments and flux data required for bench-marking models in the ATR V&V Upgrade Initiative.« less

  7. A Web-Based Simulation Tool on The Performance of Different Roofing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Joe; New, Joshua Ryan; Miller, William A

    The Roof Savings Calculator (www.roofcalc.com) provides the general public with a web-based program for calculating the energy savings of different roofing and attic systems on four different building types (residential, office, retail, and warehouse) in 239 US TMY2 locations. The core simulation engine of the RSC is doe2attic, which couples the AtticSim program developed by Oak Ridge National Laboratory with the DOE-2.1E program originally developed by Lawrence Berkeley National Laboratory a widely used whole-building simulation program since the 1980 s. Although simulating heat flows through the roof may seem to be an easy task, simulating the net effect of roofingmore » strategies on building heating and cooling energy use can be quite challenging. Few simulation programs can reliably capture dynamics including an attic or plenum with large day-night temperature swings, high ventilation rates, significant radiant exchange between the roof and the attic floor and thermal interactions when there are ducts in the attic, as is typical in North American buildings. The doe2attic program has been tested against detailed measurements gathered in two residential buildings in Fresno, California from cooling energy use to air and surface temperatures, and heat fluxes of the roof and attic floor. The focus of this paper is on the doe2attic simulation tool, but the user interface of the RSC will also be briefly described.« less

  8. Visualizing Coolant Flow in Sodium Reactor Subassemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-01

    Uniformity of temperature controls peak power output. Interchannel cross-flow is the principal cross-assembly energy transport mechanism. The areas of fastest flow all occur at the exterior of the assembly. Further, the fast moving region winds around the assembly in a continuous swath. This Nek5000 simulation uses an unstructured mesh with over one billion grid points, resulting in five billion degrees of freedom per time slice. High speed patches of turbulence due to vertex shedding downstream of the wires persist for about a quarter of the wire-wrap periodic length. Credits: Science: Paul Fisher and Aleks Obabko, Argonne National Laboratory. Visualization: Hankmore » Childs and Janet Jacobsen, Lawrence Berkeley National Laboratory. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy under contract DE-AC02-06CH11357. This research was sponsored by the Department of Energy's Office of Nuclear Energy's NEAMS program.« less

  9. Advanced ion trap structures with integrated tools for qubit manipulation

    NASA Astrophysics Data System (ADS)

    Sterk, J. D.; Benito, F.; Clark, C. R.; Haltli, R.; Highstrete, C.; Nordquist, C. D.; Scott, S.; Stevens, J. E.; Tabakov, B. P.; Tigges, C. P.; Moehring, D. L.; Stick, D.; Blain, M. G.

    2012-06-01

    We survey the ion trap fabrication technologies available at Sandia National Laboratories. These include four metal layers, precision backside etching, and low profile wirebonds. We demonstrate loading of ions in a variety of ion traps that utilize these technologies. Additionally, we present progress towards integration of on-board filtering with trench capacitors, photon collection via an optical cavity, and integrated microwave electrodes for localized hyperfine qubit control and magnetic field gradient quantum gates. [4pt] This work was supported by Sandia's Laboratory Directed Research and Development (LDRD) Program and the Intelligence Advanced Research Projects Activity (IARPA). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, V.L.; Wiezcorek, M.A.

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasmamore » Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S&R) and TPX was prepared for submittal to the regulatory agencies.« less

  11. Renewable energy water supply - Mexico program summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, R.

    1997-12-01

    This paper describes a program directed by the US Agency for International Development and Sandia National Laboratory which installed sustainable energy sources in the form of photovoltaic modules and wind energy systems in rural Mexico to pump water and provide solar distillation services. The paper describes the guidelines which appeared most responsible for success as: promote an integrated development program; install quality systems that develop confidence; instill local project ownership; train local industry and project developers; develop a local maintenance infrastructure; provide users training and operations guide; develop clear lines of responsibilities for system upkeep. The paper emphasizes the importancemore » of training. It also presents much collected data as to the characteristics and performance of the installed systems.« less

  12. Kirtland Operations progress report, January--March 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Kirtland Operations (KO) is an integral part of EG G Energy Measurements, Inc., whose primary mission is to support the US Department of Energy's (DOE's) programs in weapons development and testing and in nuclear safeguards and security. KO performs much of its work in close coordination with and often at the technical direction of Sandia National Laboratories. In addition to aiding Sandia's weapons programs, KO provides a wide spectrum of technical support to other Sandia activities, particularly their safeguards, security, and treaty verification programs. Support is also provided to other elements of the Department of Energy community and to othermore » federal agencies, primarily in weapons testing and safeguards. This report documents our support to these porgrams from January to March 1991.« less

  13. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.D. Levine; V.L. Finley

    1998-03-01

    The results of the 1996 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1996, PPPL's Tokamak Fusion Test Reactor (TFTR) continued to conduct fusion experiments. Having set a world record on November 2, 1994, by achieving approximately 10.7 million watts of controlled fusion power during the deuterium-tritium (D-T) plasmamore » experiments, researchers turned their attention to studying plasma science experiments, which included ''enhanced reverse shear techniques.'' Since November 1993, more than 700 tritium-fueled experiments were conducted, which generated more than 4 x 10(superscript 20) neutrons and 1.4 gigajoules of fusion energy. In 1996, the overall performance of Princeton Plasma Physics Laboratory was rated ''excellent'' by the US Department of Energy in the Laboratory Appraisal report issued in early 1997. The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents) and petroleum hydrocarbons (past leaks of releases of diesel fuel from underground storage tanks). Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report. During 1996, PPPL completed the removal of contaminated soil from two locations that were identified through the monitoring program: petroleum hydrocarbons along a drainage swale and chromium adjacent to the cooling tower.« less

  14. Assessment of the Impacts of Standards and Labeling Programs inMexico (four products).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Itha; Pulido, Henry; McNeil, Michael A.

    2007-06-12

    This study analyzes impacts from energy efficiency standards and labeling in Mexico from 1994 through 2005 for four major products: household refrigerators, room air conditioners, three-phase (squirrel cage) induction motors, and clothes washers. It is a retrospective analysis, seeking to assess verified impacts on product efficiency in the Mexican market in the first ten years after standards were implemented. Such an analysis allows the Mexican government to compare actual to originally forecast program benefits. In addition, it provides an extremely valuable benchmark for other countries considering standards, and to the energy policy community as a whole. The methodology for evaluationmore » begins with historical test data taken for a large number of models of each product type between 1994 and 2005. The pre-standard efficiency of models in 1994 is taken as a baseline throughout the analysis. Model efficiency data were provided by an independent certification laboratory (ANCE), which tested products as part of the certification and enforcement mechanism defined by the standards program. Using this data, together with economic and market data provided by both government and private sector sources, the analysis considers several types of national level program impacts. These include: Energy savings; Environmental (emissions) impacts, and Net financial impacts to consumers, manufacturers and utilities. Energy savings impacts are calculated using the same methodology as the original projections, allowing a comparison. Other impacts are calculated using a robust and sophisticated methodology developed by the Instituto de Investigaciones Electricas (IIE) and Lawrence Berkeley National Laboratory (LBNL), in a collaboration supported by the Collaborative Labeling and Standards Program (CLASP).« less

  15. Lawrence Berkeley Laboratory/University of California lighting program overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, S.

    1981-12-01

    The objective of the Lighting Program is to assist and work in concert with the lighting community (composed of manufacturers, designers, and users) to achieve a more efficient lighting economy. To implement its objectives, the Lighting Program has been divided into three major categories: technical engineering, buildings applications, and human impacts (impacts on health and vision). The technical program aims to undertake research and development projects that are both long-range and high-risk and which the lighting industry has little interest in pursuing on its own, but from which significant benefits could accrue to both the public and the industry. Themore » building applications program studies the effects that introducing daylighting in commercial buildings has on lighting and cooling electrical energy requirements as well as on peak demand. This program also examines optimization strategies for integrating energy-efficient design, lighting hardware, daylighting, and overall building energy requirements. The impacts program examines relationships between the user and the physical lighting environment, in particular how new energy-efficient technologies relate to human productivity and health. These efforts are interdisciplinary, involving engineering, optometry, and medicine. The program facilities are described and the personnel in the program is identified.« less

  16. Proceedings of the Fifteenth Annual Conference on Fossil Energy Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkins, R.R.

    2002-02-12

    The Fifteenth Annual Conference on Fossil Energy Materials was held in Knoxville, Tennessee, on April 30 through May 2, 2001. The meeting was sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy through the Advanced Research Materials Program (ARM). The objective of the ARM Program is to conduct research and development on materials for longer-term fossil energy applications, as well as for generic needs of various fossil fuel technologies. The management of the program has been decentralized to the DOE Oak Ridge Operations Office and Oak Ridge National Laboratory (ORNL). The research is performed by staff membersmore » at ORNL and by researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) structural, ceramics, (2) new alloys and coatings, (3) functional materials, and (4) technology development and transfer. These proceedings were produced primarily from electronic files provided by the authors. They have been neither refereed nor extensively edited. However, most of the papers have already undergone technical review within the individual organizations before submission to the Program Office. The proceedings are available on the Fossil Energy home page at http://www.ornl.gov/fossil (Workshops and Conferences). The successful completion of the conference and publication of the proceedings has required help from several people. The organizers wish to thank Angela Beach of the ORNL Conference Office for her help in the many arrangements, and the numerous staff and support personnel associated with the conference. Finally, we express our sincere appreciation to the authors whose efforts are the very basis of the conference.« less

  17. Transactive Systems Simulation and Valuation Platform Trial Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widergren, Steven E.; Hammerstrom, Donald J.; Huang, Qiuhua

    Transactive energy systems use principles of value to coordinate responsive supply and demand in energy systems. Work continues within the Transactive Systems Program, which is funded by the U.S. Department of Energy at Pacific Northwest National Laboratory, to understand the value of, understand the theory behind, and simulate the behaviors of transactive energy systems. This report summarizes recent advances made by this program. The main capability advances include a more comprehensive valuation model, including recommended documentation that should make valuation studies of all sorts more transparent, definition of economic metrics with which transactive mechanisms can be evaluated, and multiple improvementsmore » to the time-simulation environment that is being used to evaluate transactive scenarios.« less

  18. Environmental Measurements Laboratory fiscal year 1998: Accomplishments and technical activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, M.D.

    1999-01-01

    The Environmental Measurements Laboratory (EML) is government-owned, government-operated, and programmatically under the DOE Office of Environmental Management. The Laboratory is administered by the Chicago Operations Office. EML provides program management, technical assistance and data quality assurance for measurements of radiation and radioactivity relating to environmental restoration, global nuclear nonproliferation, and other priority issues for the Department of Energy, as well as for other government, national, and international organizations. This report presents the technical activities and accomplishments of EML for Fiscal Year 1998.

  19. Tiger Team Assessment of the Fermi National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    This draft report documents the Tiger Team Assessment of the Fermi National Accelerator Laboratory (Fermilab) located in Batavia, Illinois. Fermilab is a program-dedicated national laboratory managed by the Universities Research Association, Inc. (URA) for the US Department of Energy (DOE). The Tiger Team Assessment was conducted from May 11 to June 8, 1992, under the auspices of DOE's Office of Special Projects (OSP) under the Office of the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety and health (ES H), and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations.more » Compliance with applicable Federal , State of Illinois, and local regulations; applicable DOE Orders; best management practices; and internal Fermilab requirements was addressed. In addition, an evaluation of the effectiveness of DOE and Fermilab management of the ES H/QA and self-assessment programs was conducted. The Fermilab Tiger Team Assessment is part a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary of Energy with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.« less

  20. Tiger Team Assessment of the Fermi National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    This draft report documents the Tiger Team Assessment of the Fermi National Accelerator Laboratory (Fermilab) located in Batavia, Illinois. Fermilab is a program-dedicated national laboratory managed by the Universities Research Association, Inc. (URA) for the US Department of Energy (DOE). The Tiger Team Assessment was conducted from May 11 to June 8, 1992, under the auspices of DOE`s Office of Special Projects (OSP) under the Office of the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety and health (ES&H), and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliancemore » with applicable Federal , State of Illinois, and local regulations; applicable DOE Orders; best management practices; and internal Fermilab requirements was addressed. In addition, an evaluation of the effectiveness of DOE and Fermilab management of the ES&H/QA and self-assessment programs was conducted. The Fermilab Tiger Team Assessment is part a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary of Energy with information on the compliance status of DOE facilities with regard to ES&H requirements, root causes for noncompliance, adequacy of DOE and contractor ES&H management programs, response actions to address the identified problem areas, and DOE-wide ES&H compliance trends and root causes.« less

  1. US DOE Regional Test Centers Program - 2016 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Joshua

    The US Department of Energy’s Regional Test Center (RTC) program provides outdoor validation and bankability data for innovative solar technologies at five sites across the US representing a range of climate conditions. Data helps get new technologies to market faster and improves US industry competitiveness. Managed by Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), the RTC program partners with US manufacturers of photovoltaic (PV) technologies, including modules, inverters, and balance-of-system equipment. The study is collaborative, with manufacturers (also known as RTC industry partners) and the national labs working together on a system design and validation strategy thatmore » meets a clearly defined set of performance and reliability objectives.« less

  2. Performance model for grid-connected photovoltaic inverters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyson, William Earl; Galbraith, Gary M.; King, David L.

    2007-09-01

    This document provides an empirically based performance model for grid-connected photovoltaic inverters used for system performance (energy) modeling and for continuous monitoring of inverter performance during system operation. The versatility and accuracy of the model were validated for a variety of both residential and commercial size inverters. Default parameters for the model can be obtained from manufacturers specification sheets, and the accuracy of the model can be further refined using measurements from either well-instrumented field measurements in operational systems or using detailed measurements from a recognized testing laboratory. An initial database of inverter performance parameters was developed based on measurementsmore » conducted at Sandia National Laboratories and at laboratories supporting the solar programs of the California Energy Commission.« less

  3. Environmental Report 1996 Volume 2

    DOT National Transportation Integrated Search

    1997-09-01

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  4. Environmental Report 1996 Volume 1

    DOT National Transportation Integrated Search

    1997-09-01

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  5. Environmental Report 1995, Volume 2

    DOT National Transportation Integrated Search

    1996-09-03

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  6. Oak Ridge National Laboratory Office of International Nuclear Safeguards: Human Capital Development Activity in FY16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilligan, Kimberly V.; Gaudet, Rachel N.

    In 2007, the U.S. Department of Energy National Nuclear Security Administration (DOE NNSA) Office of Nonproliferation and Arms Control (NPAC) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. One of the report’s key recommendations was for DOE NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency (IAEA) General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: policy development and outreach, conceptsmore » and approaches, technology and analytical methodologies, human capital development (HCD), and infrastructure development. This report addresses the HCD component of NGSI. The goal of the HCD component as defined in the NNSA Program Plan is “to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.” The major objectives listed in the HCD goal include education and training, outreach to universities and professional societies, postdoctoral appointments, and summer internships at national laboratories.« less

  7. U.S. Additional Protocol Outreach Program-Tabletop Exercises to Implement the AP.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langner, D. C.; Thomas, K. E.; Smith, M. K.

    2005-01-01

    The Office of International Regimes and Agreement (NA-243) is the lead office in the Department of Energy (DOE) to assist DOE and National Nuclear Security Administration (NNSA) sites in the preparation of providing declarations on relevant civilian, nuclear fuel cycle-related research and development activities to the International Atomic Energy Agency (IAEA). This is in accordance to the implementation of the ''Protocol Additional to the AGreement between the United STates and the International Atomic Energy Agency for the Applications of Safeguards in the United States. In preparation for entry-into-force, NA-243 conducted two tabletop exercises under the Additional Protocol Outreach Program. Themore » first one, held in May 2004 at Los Alamos National Laboratory, focused on the factors important to protect national security assets and intellectual property. The other, held in August 2004 at the Idaho National Laboratory explored the level of detail or granularity for reporting declarable activities. Both tabletops invited participants from the national laboratories and DOE/NNSA organizations. Discussions were based around the process to identify potential declarable activities relating to the nuclear fuel cycle-related R and D projects from the Advanced Fuel Cycle Initiative program. The two tabletop exercises provided recommendations and conclusions that would be helpful to other DOE/NNSA locations for preparing for and reporting relevant and concise information to the IAEA under the Additional Protocol. This paper provides details on the events, discussions, observations, and lessons learned from both the LANL and INL tabletop exercises.« less

  8. Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico, Calendar year 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agogino, Karen; Sanchez, Rebecca

    2008-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor-operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2007. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention,more » and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).« less

  9. Integrating Photovoltaic Systems into Low-Income Housing Developments: A Case Study on the Creation of a New Residential Financing Model and Low-Income Resident Job Training Program, September 2011 (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, J.; Smith-Dreier, C.; Mekonnen, G.

    2011-09-01

    This case study covers the process of successfully integrating photovoltaic (PV) systems into a low-income housing development in northeast Denver, Colorado, focusing specifically on a new financing model and job training. The Northeast Denver Housing Center (NDHC), working in cooperation with Del Norte Neighborhood Development Corporation, Groundwork Denver, and the National Renewable Energy Laboratory (NREL), was able to finance the PV system installations by blending private equity funding with utility rebates, federal tax credits, and public sector funding. A grant provided by the Governor's Energy Office allowed for the creation of the new financing model. In addition, the program incorporatedmore » an innovative low-income job training program and an energy conservation incentive program.« less

  10. Technical requirements for bioassay support services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickman, D.P.; Anderson, A.L.

    1991-05-01

    This document provides the technical basis for the Chem-Nuclear Geotech (Geotech) bioassay program. It includes information and details that can be used as a model in providing technical contents and requirements for bioassay laboratory support, either internally or in solicitations by Geotech to obtain subcontractor laboratory support. It provides a detailed summary and description of the types of bioassay samples to be expected in support of Geotech remedial projects for the US Department of Energy and the bioassay services and analytical requirements necessary to process such samples, including required limits of sensitivity. General responsibilities of the bioassay laboratory are alsomore » addressed, including quality assurance. Peripheral information of importance to the program is included in the appendices of this document. 7 tabs.« less

  11. Dual benefit robotics programs at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A.T.

    Sandia National Laboratories has one of the largest integrated robotics laboratories in the United States. Projects include research, development, and application of one-of-a-kind systems, primarily for the Department of Energy (DOE) complex. This work has been underway for more than 10 years. It began with on-site activities that required remote operation, such as reactor and nuclear waste handling. Special purpose robot systems were developed using existing commercial manipulators and fixtures and programs designed in-house. These systems were used in applications such as servicing the Sandia pulsed reactor and inspecting remote roof bolts in an underground radioactive waste disposal facility. Inmore » the beginning, robotics was a small effort, but with increasing attention to the use of robots for hazardous operations, efforts now involve a staff of more than 100 people working in a broad robotics research, development, and applications program that has access to more than 30 robotics systems.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Pruneda, J.H.

    This issue pays tribute to Roger Batzel, the Laboratory's sixth and longest-tenured direct (1971-1988). The articles in this issue are: (1) ''Roger Batzel--A Leader and a Gentleman''. (2) ''A Career of Distinguished Achievement'' A superb manager with a quiet and self-effacing demeanor. Roger Batzel presided over a period of unprecedented growth and technical diversification at Lawrence Livermore. (3) ''From Dosimetry to Genomics'' Roger Batzel's support of Livermore's relatively new biomedical research program led to its growth into a major contributor to the worldwide Human Genome Project. (4) ''Swords into Plowshares and Beyond'' Under Roger Batzel's leadership, the Laboratory championed numerousmore » long-term, innovative alternative energy technologies to help address challenges not unlike those we are facing today. (5) ''Adapting to a Changing Weapons Program'' Roger Batzel's knowledge of the US weapons program and his much-trusted professional judgment served the Laboratory and the nation well as arms control and deterrence emerged as national priorities.« less

  13. Radon intercomparisons at EML, January 1983 and February 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisenne, I.M.; George, A.C.; Keller, H.W.

    1985-02-01

    This report summarizes the results of two radon measurement intercomparison exercises held at the Environmental Measurements Laboratory (EML) in January 1983 and February 1984. Nineteen organizations, including five US federal facilities, one national laboratory, two state laboratories, six universities, three private sector laboratories and two non-US facilities participated in these exercises. The results indicate good agreement among the participants at /sup 222/Rn concentration levels of 50 and 80 pCi.L/sup -1/. Improvements in the EML calibration facilities, and the participation of two US laboratories in a Nuclear Energy Agency intercomparison program are also discussed. 8 references, 6 figures, 8 tables.

  14. Annual Report on the State of the DOE National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-01-01

    This first Annual Report to Congress on the State of the DOE National Laboratories provides a comprehensive overview of the Lab system, covering S&T programs, management and strategic planning. The Department committed to prepare this report in response to recommendations from the Congressionally mandated Commission to Review the Effectiveness of the National Energy Laboratories (CRENEL) that the Department should better communicate the value that the Laboratories provide to the Nation. We expect that future annual reports will be much more compact, building on the extensive description of the Laboratories and of the governance structures that are part of this firstmore » report.« less

  15. Opportunities for renewable energy technologies in water supply in developing country villages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niewoehner, J.; Larson, R.; Azrag, E.

    1997-03-01

    This report provides the National Renewable Energy Laboratory (NREL) with information on village water supply programs in developing countries. The information is intended to help NREL develop renewable energy technologies for water supply and treatment that can be implemented, operated, and maintained by villagers. The report is also useful to manufacturers and suppliers in the renewable energy community in that it describes a methodology for introducing technologies to rural villages in developing countries.

  16. Advanced Industrial Materials (AIM) program. Annual progress report. FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    The Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80% ofmore » industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 or 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.` Though AIM remains essentially a National Laboratory Program, it is necessary that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains healthy and productive, thanks to the superb investigators and Laboratory Program Managers. Separate abstracts have been indexed into the energy database for articles from this report.« less

  17. This is Sandia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-02-01

    Sandia is a multiprogram engineering and science laboratory operated for the Department of Energy with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. It has major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. The principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. This publication gives a brief overview of the multifaceted research programs conductedmore » by the laboratory.« less

  18. Microgrid Design Analysis Using Technology Management Optimization and the Performance Reliability Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamp, Jason E.; Eddy, John P.; Jensen, Richard P.

    Microgrids are a focus of localized energy production that support resiliency, security, local con- trol, and increased access to renewable resources (among other potential benefits). The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capa- bility Technology Demonstration (JCTD) program between the Department of Defense (DOD), Department of Energy (DOE), and Department of Homeland Security (DHS) resulted in the pre- liminary design and deployment of three microgrids at military installations. This paper is focused on the analysis process and supporting software used to determine optimal designs for energy surety microgrids (ESMs) in the SPIDERS project. There aremore » two key pieces of software, an ex- isting software application developed by Sandia National Laboratories (SNL) called Technology Management Optimization (TMO) and a new simulation developed for SPIDERS called the per- formance reliability model (PRM). TMO is a decision support tool that performs multi-objective optimization over a mixed discrete/continuous search space for which the performance measures are unrestricted in form. The PRM is able to statistically quantify the performance and reliability of a microgrid operating in islanded mode (disconnected from any utility power source). Together, these two software applications were used as part of the ESM process to generate the preliminary designs presented by SNL-led DOE team to the DOD. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military instal- lations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Tarek Abdallah, Melanie Johnson, and Harold Sanborn of the U.S. Army Corps of Engineers Construction Engineering Research Laboratory * Colleagues from Sandia National Laboratories (SNL) for their reviews, suggestions, and participation in the work.« less

  19. Energy technologies at Sandia National Laboratories: Past, Present, Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fallmore » of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.« less

  20. The USAID/DOE Mexico Renewable Energy Program: Using technology to build new markets

    NASA Astrophysics Data System (ADS)

    Hanley, Charles J.

    1997-02-01

    Under the Mexico Renewable Energy Program, managed by Sandia National Laboratories, sustainable markets for renewable energy technologies are developed through the implementation of pilot projects. Sandia provides technical assistance to several Mexican rural development organizations so they can gain the technical and institutional capability to appropriately utilize renewables within their ongoing programs. Activities in the area of water pumping have shown great replication potential, where the tremendous rural demand for water represents a potential renewable market of over 2 billion. Thirty-six photovoltaic water pumping projects have been installed thus far in the Mexican states of Chihuahua, Sonora, Baja California Sur, and Quintana Roo, and 60 more will be implemented this year. The majority of these projects are in partnership with the Mexican Trust for Shared Risk (FIRCO), which has asked Sandia for assistance in extending the program nationwide. This replication is beginning in five new states, and will continue to grow. Sandia is keeping the U.S. renewable energy industry involved in the program through facilitating partnerships between U.S. and Mexican vendors, and through commercialization assistance with new systems technologies. The program is sponsored by the Department of Energy and the U.S. Agency for International Development.

  1. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grove, L.K.

    1993-03-01

    The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part II: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions withmore » Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.« less

  2. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research. Part 2, Environmental sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grove, L.K.; Wildung, R.E.

    1993-03-01

    The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part 2: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions withmore » Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.« less

  3. User Access | Energy Systems Integration Facility | NREL

    Science.gov Websites

    User Access User Access The ESIF houses an unparalleled collection of state-of-the-art capabilities user access program, the ESIF allows researchers access to its premier laboratories in support of research and development that aims to optimize our entire energy system at full power. Requests for access

  4. MD PHEV/EV ARRA Project Data Collection and Reporting (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walkowicz, K.; Ramroth, L.; Duran, A.

    2012-01-01

    This presentation describes a National Renewable Energy Laboratory project to collect and analyze commercial fleet deployment data from medium-duty plug-in hybrid electric and all-electric vehicles that were deployed using funds from the American Recovery and Reinvestment Act. This work supports the Department of Energy's Vehicle Technologies Program and its Advanced Vehicle Testing Activity.

  5. Statistical analysis of DOE EML QAP data from 1982 to 1998.

    PubMed

    Mizanur Rahman, G M; Isenhour, T L; Larget, B; Greenlaw, P D

    2001-01-01

    The historical database from the Environmental Measurements Laboratory's Quality Assessment Program from 1982 to 1998 has been analyzed to determine control limits for future performance evaluations of the different laboratories contracted to the U.S. Department of Energy. Seventy-three radionuclides in four different matrices (air filter, soil, vegetation, and water) were analyzed. The evaluation criteria were established based on a z-score calculation.

  6. The AMTEX Partnership{sup trademark}. Second quarter report. Fiscal year 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemon, D.K.; Quisenberry, R.K.

    1996-03-01

    This quarterly report details activities of the AMTEX Partnership {sup TM} which is a collaborative research and development program among the U.S. Integrated Textile Industry, the Department of Energy (DOE), the national laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby preserving and creating U.S. jobs.

  7. US Army Research Laboratory power sources R and D programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher, H.A.; Gilman, S.; Hamlen, R.P.

    1993-05-01

    The development and application of new electronic technologies over the recent past has resulted in a major evolution of new electronic battlefield equipment. The need for lighter-weight and more cost effective power sources with higher power/energy density capability is critical to the successful development and deployment of these new, high performance battlefield devices. The current status and thrust of the Army Research Laboratory's (ARL's) battery and fuel cell R and D programs that support these new and emerging applications will be reviewed. Major technical barriers will be identified along with the corresponding proposed approaches to solving these anticipated problems.

  8. Metal hydride reasearch and development program at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.R.; Reilly, J.J.

    1978-01-01

    A progress report is presented covering work performed in the hydrogen materials development program at Brookhaven National Laboratory (BNL) for FY78 which encompasses the time period from October 1, 1977 through September 30, 1978. The subjects to be discussed here concern properties of importance in the utilization of metal hydrides as energy storage media. Most of the areas of research were initiated prior to FY78, however all of the results contained in this manuscript were obtained during the aforementioned period of time. The following subjects will be discussed: the properties of ferro-titanium and chrome-titanium alloy hydrides.

  9. Institutional plan. Fiscal year, 1997--2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    The Institutional Plan is the culmination of Argonne`s annual planning cycle. The document outlines what Argonne National Laboratory (ANL) regards as the optimal development of programs and resources in the context of national research and development needs, the missions of the Department of Energy and Argonne National Laboratory, and pertinent resource constraints. It is the product of ANL`s internal planning process and extensive discussions with DOE managers. Strategic planning is important for all of Argonne`s programs, and coordination of planning for the entire institution is crucial. This Institutional Plan will increasingly reflect the planning initiatives that have recently been implemented.

  10. INEEL Cultural Resource Management Program Annual Report - 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton F. Marler

    2005-01-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The Idaho National Engineering and Environmental Laboratory Site is located in southeastern Idaho, and is home to vast numbersmore » and a wide variety of important cultural resources representing at least 13,000-year span of human occupation in the region. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these resources with the management and ongoing operation of an active scientific laboratory, while also cleaning up the waste left by past programs and processes. The Department of Energy Idaho Operations Office has administrative responsibility for most of the Site, excluding lands and resources managed by the Naval Reactors Facility and (in 2004) Argonne National Laboratory-West. The Department of Energy is committed to a cultural resource program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative requirements. This annual report is an overview of Cultural Resource Management Program activities conducted during Fiscal Year 2004 and is intended to be both informative to external stakeholders and to serve as a planning tool for future cultural resource management work to be conducted on the Site.« less

  11. U.S. Radioecology Research Programs of the Atomic Energy Commission in the 1950s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichle, D.E.

    2004-01-12

    This report contains two companion papers about radiological and environmental research that developed out of efforts of the Atomic Energy Commission in the late 1940s and the 1950s. Both papers were written for the Joint U.S.-Russian International Symposium entitled ''History of Atomic Energy Projects in the 1950s--Sociopolitical, Environmental, and Engineering Lessons Learned,'' which was hosted by the International Institute for Applied Systems Analysis in Laxemberg, Austria, in October 1999. Because the proceedings of this symposium were not published, these valuable historic reviews and their references are being documented as a single ORNL report. The first paper, ''U.S. Radioecology Research Programsmore » Initiated in the 1950s,'' written by David Reichle and Stanley Auerbach, deals with the formation of the early radioecological research programs at the U.S. Atomic Energy Commission's nuclear production facilities at the Clinton Engineering Works in Oak Ridge, Tennessee; at the Hanford Plant in Richland, Washington; and at the Savannah River Plant in Georgia. These early radioecology programs were outgrowths of the environmental monitoring programs at each site and eventually developed into the world renowned National Laboratory environmental program sponsored by the Office of Biological and Environmental Research of the U.S. Department of Energy. The original version of the first paper was presented by David Reichle at the symposium. The second paper, ''U.S. Atomic Energy Commission's Environmental Research Programs Established in the 1950s,'' summarizes all the environmental research programs supported by the U.S. Atomic Energy Commission in the 1950s and discusses their present-day legacies. This paper is a modified, expanded version of a paper that was published in September 1997 in a volume commemorating the 50th anniversary symposium of the U.S. Department of Energy's Office of Biological and Environmental Research (DOE/BER). Contributors to the original work--Murray Schulman, DOE Headquarters, retired; Jerry Elwood, DOE/BER; David Reichle, Oak Ridge National Laboratory; and Ward Wicker, Colorado State University--provided further insight into environmental research in the decade of the 1950s and expanded the environmental part of the original document. The original version of the second paper was presented by David Reichle in poster session at the symposium.« less

  12. SRNL Atmospheric Technologies Group

    ScienceCinema

    Viner, Brian; Parker, Matthew J.

    2018-01-16

    The Savannah River National Laboratory, Atmospheric Technologies Group, conducts a best-in class Applied Meteorology Program to ensure the Department of Energy’s Savannah River Site is operated safely and complies with stringent environmental regulations.

  13. A History of Sandia’s Water Decision Modeling and Analysis Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Thomas Stephen; Pate, Ronald C.

    This document provides a brief narrative, and selected project descriptions, that represent Sandia’s history involving data, modeling, and analysis related to water, energy-water nexus, and energy-water-agriculture nexus within the context of climate change. Sandia National Laboratories has been engaged since the early-1990s with program development involving data, modeling, and analysis projects that address the interdependent issues, risks, and technology-based mitigations associated with increasing demands and stresses being placed on energy, water, and agricultural/food resources, and the related impacts on their security and sustainability in the face of both domestic and global population growth, expanding economic development, and climate change.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Allan; Mills, Evan; Vine, Edward.

    The promotion of technologies and services for insurance loss reduction and loss prevention is as old as the fields of insurance and risk management. This report addresses a new category of risk management opportunity involving technologies and procedures that use energy more efficiently or supply renewable energy. While the economic benefits of these measures are of interest to energy consumers seeking to reduce their energy expenditures, we have found that they also offer a novel and largely untapped pathway for achieving traditional risk management objectives. Most of the technologies described in this report were supported by government- sponsored RD Dmore » programs over many years of effort. These technologies have many benefits, including insurance loss reduction and prevention. The insurance and risk management communities could take advantage of these technologies, either independently or in cost-sharing partnerships with existing R D programs. In this report, we present a compilation of energy-efficiency and renewable energy projects (e.g., energy-efficient halogen torchiere replacements) and techniques (e.g., infrared cameras to detect fire hazards) that are currently being investigated at the U.S. Department of Energy's national laboratories and which the insurance and risk management communities could encourage their customers to use to address their short-term and long-term needs. Once the loss-prevention benefits of these technologies and techniques (many of which are not yet available in the marketplace) are sufficiently demonstrated, insurers can promote their use through informational programs and perhaps financial incentives (e.g., risk-adjusted insurance premium schemes) through the insurance regulatory and rate-making processes. We identified 78 technologies and techniques being investigated by nine national laboratories which can help to reduce insurance losses and manage risks, especially those associated with power failures, fire and wind damage, and home or workplace indoor air quality hazards. All help to reduce insurance losses in one or more of the following categories: boiler and machinery, builder's risk, business interruption, commercial property insurance, completed operations liability, comprehensive general liability, contractors liability, environmental liability, product liability, professional liability, service interruption, workers' compensation, health/life insurance, and homeowners insurance. We identify examples of existing collaborations between the national laboratories and the insurance industry, and indicate research activities being conducted by the insurance and risk management communities that would benefit from the work of the national laboratories. We also describe some of the risk factors associated with energy-efficient and renewable energy technologies. For the future, significant progress could be made through interdisciplinary collaborative applied research (i.e., integrating the actuarial sciences with the physical or engineering sciences). This collaboration could be sponsored jointly by the U.S. Department of Energy and the insurance and risk management communities (as well as working through the insurance regulatory and rate-making processes).« less

  15. Counted Sb donors in Si quantum dots

    NASA Astrophysics Data System (ADS)

    Singh, Meenakshi; Pacheco, Jose; Bielejec, Edward; Perry, Daniel; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael

    2015-03-01

    Deterministic control over the location and number of donors is critical for donor spin qubits in semiconductor based quantum computing. We have developed techniques using a focused ion beam and a diode detector integrated next to a silicon MOS single electron transistor to gain such control. With the diode detector operating in linear mode, the numbers of ions implanted have been counted and single ion implants have been detected. Poisson statistics in the number of ions implanted have been observed. Transport measurements performed on samples with counted number of implants have been performed and regular coulomb blockade and charge offsets observed. The capacitances to various gates are found to be in agreement with QCAD simulations for an electrostatically defined dot. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  16. Overview of Heavy Ion Fusion Accelerator Research in the U. S.

    NASA Astrophysics Data System (ADS)

    Friedman, Alex

    2002-12-01

    This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virginia L. Finley

    The purpose of this report is to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of the Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2001 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2001. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practicalmore » reality--a clean, alternative energy source. The Year 2001 marked the third year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. In 2001, PPPL's radiological environmental monitoring program measured tritium in the air at on- and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations; also included in PPPL's radiological environmental monitoring program, are water monitoring--precipitation, ground-, surface-, and waste-waters. PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report. Groundwater monitoring continue d under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the low levels of volatile organic compounds in an area adjacent to PPPL. In 2001, PPPL was in compliance with its permit limits for surface and sanitary discharges and had no reportable releases. Additionally, as part of DOE's program for the purchase of recycled content and other environmentally preferred products, PPPL has ranked in the excellent category of 80 to 90% of the goal.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, T

    The Laboratory Director is pleased to have the opportunity to present the 2008 Laboratory Directed Research and Development (LDRD) annual report. This is my first opportunity to do so, and only the second such report that has been issued. As will be obvious, SRNL has built upon the excellent start that was made with the LDRD program last year, and researchers have broken new ground in some important areas. In reviewing the output of this program this year, it is clear that the researchers implemented their ideas with creativity, skill and enthusiasm. It is gratifying to see this level ofmore » participation, because the LDRD program remains a key part of meeting SRNL's and DOE's strategic goals, and helps lay a solid scientific foundation for SRNL as the premier applied science laboratory. I also believe that the LDRD program's results this year have demonstrated SRNL's value as the EM Corporate Laboratory, having advanced knowledge in a spectrum of areas, including reduction of the technical risks of cleanup, separations science, packaging and transportation of nuclear materials, and many others. The research in support of Energy Security and National and Homeland Security has been no less notable. SRNL' s researchers have shown again that the nascent LDRD program is a sound investment for DOE that will pay off handsomely for the nation as time goes on.« less

  19. Characterization of contaminant removal by an optical strip material

    NASA Astrophysics Data System (ADS)

    Hamilton, James P.; Frigo, S. P.; Caroll, Brenden J.; Assoufidyen, L.; Lewis, Matthew S.; Cook, Russell E.; de Carlo, F.

    2001-03-01

    Department of Chemistry and Engineering Physics, University of Wisconsin-Platteville, Platteville, WI 53818 Advanced Photon Source, X-Ray Facilities Division, Argonne National Laboratory, Advanced Photon Source, User Program Division, Argonne National Laboratory, *Electron Microscopy Center, Materials Science Division, Argonne National Laboratory, Argonne National Laboratory, 9700 S. Cass Ave., Argonne IL 60439-4856 USA A novel optical strip coating material, Opticlean, has been shown to safely remove fingerprints, particles and contamination from a variety of optical surfaces including coated glass, Si and first surface mirrors. Contaminant removal was monitored by Nomarski, Atomic Force and Scanning Electron Microscopy. Sub-micron features on diffraction gratings and silicon wafers were also cleaned without leaving light scattering particles on the surface. **This work was supported in part by the U.S. Department of Energy, Basic Energy Sciences-Materials Sciences, under contract no. W-31-109-ENG-38. The authors acknowledge the support and facilities provided by the Advanced Photon Source and the Electron Microscopy Center at Argonne National Laboratory.

  20. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Wester

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals thatmore » were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.« less

  1. Green Pricing Program Marketing Expenditures: Finding the Right Balance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, B.; Miller, M.

    In practice, it is difficult to determine the optimal amount to spend on marketing and administering a green pricing program. Budgets for marketing and administration of green pricing programs are a function of several factors: the region of the country; the size of the utility service area; the customer base and media markets encompassed within that service area; the point or stage in the lifespan of the program; and certainly, not least, the utility's commitment to and goals for the program. All of these factors vary significantly among programs. This report presents data on programs that have funded both marketingmore » and program administration. The National Renewable Energy Laboratory (NREL) gathers the data annually from utility green pricing program managers. Programs reporting data to NREL spent a median of 18.8% of program revenues on marketing their programs in 2008 and 16.6% in 2007. The smallest utilities (those with less than 25,000 in their eligible customer base) spent 49% of revenues on marketing, significantly more than the overall median. This report addresses the role of renewable energy credit (REC) marketers and start-up costs--and the role of marketing, generally, in achieving program objectives, including expansion of renewable energy.« less

  2. Peptoid Backbone Flexibilility Dictates Its Interaction with Water and Surfaces: A Molecular Dynamics Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Arushi; Baer, Marcel D.; Mundy, Christopher J.

    Peptoids are peptide-mimetic biopolymers that are easy-to-synthesize and adaptable for use in drugs, chemical scaffolds, and coatings. However, there is insufficient information about their structural preferences and interactions with the environment in various applications. We conducted a study to understand the fundamental differences between peptides and peptoids using molecular dynamics simulations with semi-empirical (PM6) and empirical (AMBER) potentials, in conjunction with metadynamics enhanced sampling. From studies of single molecules in water and on surfaces, we found that sarcosine (model peptoid) is much more flexible than alanine (model peptide) in different environments. However, the sarcosine and alanine interact similarly with amore » hydrophobic or a hydrophilic. Finally, this study highlights the conformational landscape of peptoids and the dominant interactions that drive peptoids towards these conformations. ACKNOWLEDGMENT: MD simulations and manuscript preparation were supported by the MS3 (Materials Synthesis and Simulation Across Scales) Initiative at Pacific Northwest National Laboratory (PNNL), a multi-program national laboratory operated by Battelle for the U.S. Department of Energy. CJM was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by the US Department of Energy, Office of Basic Energy Sciences, Biomolecular Materials Program at PNNL. Computing resources were generously allocated by University of Washington's IT department and PNNL's Institutional Computing program. The authors greatly acknowledge conversations with Dr. Kayla Sprenger, Josh Smith, and Dr. Yeneneh Yimer.« less

  3. Site Environmental Report for 2004. Volume 1, Environment, Health, and Safety Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2005-09-30

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2004 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2004. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs,more » and summarized results from surveillance and monitoring activities. Volume II contains individual data results from these activities. This year, the Site Environmental Report was distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request.« less

  4. California Publicly-Owned Utilities (POUs) – LBNL ‘Beyond Widgets’ Project. Task: ambient lighting and occupancy-based plug load control. System Program Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Alastair; Mathew, Paul A.; Regnier, Cynthia

    This program manual contains detailed technical information for implementing an incentive program for task-ambient lighting and occupancy-based plug load control. This manual was developed by Lawrence Berkeley National Laboratory, in collaboration with the California Publicly-Owned Utilities (CA POUs) as a partner in the ‘Beyond Widgets’ program funded by the U.S. Department of Energy Building Technologies Office. The primary audience for this manual is the program staff of the various CA POUs. It may also be used by other utility incentive programs to help develop similar programs. It is anticipated that the content of this manual be utilized by the CAmore » POU staff for developing related documents such as the Technical Resource Manual and other filings pertaining to the rollout of an energy systems-based rebate incentive program.« less

  5. Argonne's 2012 Earth Day Event

    ScienceCinema

    Roberts, Jeff; Luck, Bill; Lynch, Peter; Lambiase,

    2018-05-30

    Argonne's 2012 Earth Day event drew crowds from across the laboratory. Argonne and U.S. Department of Energy employees toured booths and interactive displays set up by Argonne programs and clubs. Several of Argonne's partners participated, including U.S. Department of Energy, University of Chicago, Abri Credit Union, DuPage County Forest Preserve, DuPage Water Commission, PACE and Morton Arboretum. Argonne scientists and engineers also participated in a poster session, discussing their clean energy research.

  6. Domestic Wind Energy Workforce; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, Suzanne

    2015-07-30

    A robust workforce is essential to growing domestic wind manufacturing capabilities. NREL researchers conducted research to better understand today's domestic wind workforce, projected needs for the future, and how existing and new education and training programs can meet future needs. This presentation provides an overview of this research and the accompanying industry survey, as well as the Energy Department's Career Maps, Jobs & Economic Development Impacts models, and the Wind for Schools project.

  7. Bibliography of Literature for Avian Issues in Solar and Wind Energy and Other Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walston, Leroy J.; White, Ellen M.; Meyers, Stephanie A.

    2015-04-01

    Utility-scale solar energy has been a rapidly expanding energy sector in the United States in recent years and is expected to continue to grow. In 2014, concerns were raised over the risk of avian fatalities associated with utility-scale solar plants. With funding from the U.S. Department of Energy SunShot Program, Argonne National Laboratory and the National Renewable Energy Laboratory studied the issue and released A Review of Avian Monitoring and Mitigation Information at Existing Utility-Scale Solar Facilities (ANL/EVS-15/2, March 2015). A comprehensive literature review included peer-reviewed journal articles on avian fatalities from solar energy facilities and other sources (e.g., windmore » energy, building collisions, etc.), project-specific technical reports on avian monitoring and fatality at solar facilities, information on mitigation measures and best management practices, and literature pertaining to avian behavioral patterns and habitat use. The source citations are listed in this bibliography; they are current through December 2014.« less

  8. Space Nuclear Program INL's role in energizing exploration

    ScienceCinema

    Idaho National Laboratory

    2017-12-09

    Idaho National Laboratory is helping make space exploration possible with the development of radioisotope power systems, which can work in areas too harsh and too isolated in space where the suns rays cannot be used for energy.

  9. Energy and technology review

    NASA Astrophysics Data System (ADS)

    Johnson, K. C.

    1991-04-01

    This issue of Energy and Technology Review discusses the various educational programs in which Lawrence Livermore National Laboratory (LLNL) participates or sponsors. LLNL has a long history of fostering educational programs for students from kindergarten through graduate school. A goal is to enhance the teaching of science, mathematics, and technology and thereby assist educational institutions to increase the pool of scientists, engineers, and technicians. LLNL programs described include: (1) contributions to the improvement of U.S. science education; (2) the LESSON program; (3) collaborations with Bay Area Science and Technology Education; (4) project HOPES; (5) lasers and fusion energy education; (6) a curriculum on global climate change; (7) computer and technology instruction at LLNL's Science Education Center; (8) the National Education Supercomputer Program; (9) project STAR; (10) the American Indian Program; (11) LLNL programs with historically Black colleges and Universities; (12) the Undergraduate Summer Institute on Contemporary Topics in Applied Science; (13) the National Physical Science Consortium: A Fellowship Program for Minorities and Women; (14) LLNL's participation with AWU; (15) the apprenticeship programs at LLNL; and (16) the future of LLNL's educational programs. An appendix lists all of LLNL's educational programs and activities. Contacts and their respective telephone numbers are given for all these programs and activities.

  10. Electricity end use demand study for Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turiel, I.; Lebot, B.; Nadel, S.

    1990-12-01

    This report describes the results of a study undertaken by Lawrence Berkeley Laboratory (LBL) to develop an approach for reducing electricity demand in the residential sector in Egypt. A team with expertise in appliance energy usage, appliance manufacturing, appliance testing, and energy analysis was assembled to work on this project. The team visited Egypt during the month of March 1990. They met with the Egyptian Organization for Energy Planning (OEP) and with many other parties. They also visited eleven appliance manufacturing facilities. The project tasks are: data gathering and analysis; assessment of appliance manufacturing plants; demonstration of microcomputer programs; gatheringmore » of data on appliance standards and test procedures; and impact of programs to foster energy efficiency of electricity use.« less

  11. The attitudes of science policy, environmental, and utility leaders on US energy issues and fusion

    NASA Astrophysics Data System (ADS)

    Miller, J. D.

    1986-11-01

    One example of basic and applied research at LLNL that has produced major, highly visible scientific and engineering advances has been the research related to controlled fusion energy. Continuing experimentation at LLNL and elsewhere is likely to demonstrate that fusion is a viable, inexhaustible alternative source of energy. Having conducted major fusion energy experiments for over 30 years at LLNL, it scientists and engineers recognized the enormous challenges that lay ahead in this important endeavor. To be successful, it was clear that collaborative efforts with universities, private industry, and other national laboratories would need to be greatly expanded. Along with invention and scientific discovery would come the challenge of transferring the myriad of new technologies from the laboratories to the private sector for commercialization of the fusion energy process and the application of related technologies to yet unimagined new industries and products. Therefore, using fusion energy research as the focus, the Laboratory's Technology Transfer Initiatives Program contracted with the Public Opinion Laboratory to conduct a survey designed to promote a better understanding of effective technology transfer. As one of the recognized authorities on scientific surveys, Dr. Jon Miller of the POL worked with Laboratory scientists to understand the objectives of the survey. He then formulated the questions, designed the survey, and derived his survey sample from a qualified list developed at the POL, which has formed the basis for other survey panels. This report, prepared by Dr. Miller, describes the basis and methodology of this survey process and then presents the survey findings and some conclusions.

  12. A new IBA-AMS laboratory at the Comenius University in Bratislava (Slovakia)

    NASA Astrophysics Data System (ADS)

    Povinec, Pavel P.; Masarik, Jozef; Kúš, Peter; Holý, Karol; Ješkovský, Miroslav; Breier, Robert; Staníček, Jaroslav; Šivo, Alexander; Richtáriková, Marta; Kováčik, Andrej; Szarka, Ján; Steier, Peter; Priller, Alfred

    2015-01-01

    A Centre for Nuclear and Accelerator Technologies (CENTA) has been established at the Comenius University in Bratislava comprising of a tandem laboratory designed for Ion Beam Analysis (IBA), Ion Beam Modification (IBM) of materials and Accelerator Mass Spectrometry (AMS). The main equipment of the laboratory, i.e. Alphatross and MC-SNICS ion sources, 3 MV Pelletron tandem accelerator, and analyzers of accelerated ions are described. Optimization of ion beam characteristics for different ion sources with gas and solid targets, for transmission of accelerated ions with different energy and charge state, for different parameters of the high-energy ion analyzers, as well as first AMS results are presented. The scientific program of the CENTA will be devoted mainly to nuclear, environmental, life and material sciences.

  13. Renewable Energy for Rural Health Clinics (Energia Removable para Centros de Salud Rurales)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, A. C.; Olson, K.

    This guide provides a broad understanding of the technical, social, and organizational aspects of health clinic electrification, especially through the use of renewable energy sources. It is intended to be used primarily by decision makers within governments or private agencies to accurately assess their health clinic's needs, select appropriate and cost-effective technologies to meet those needs, and to put into place effective infrastructure to install and maintain the hardware. This is the first in a series of rural applications guidebooks that the National Renewable Energy Laboratory (NREL) Village Power Program is commissioning to couple commercial renewable systems with rural applications.more » The guidebooks are complemented by NREL's Village Power Program's development activities, international pilot projects, and visiting professionals program. For more information on the NREL Village Power Program, visit the Renewables for Sustainable Village Power web site at http://www.rsvp.nrel .gov/rsvp/.« less

  14. Federal Geothermal Research Program Update Fiscal Year 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-02-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates howmore » the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.« less

  15. Geothermal research and development program of the US Atomic Energy Commission

    NASA Technical Reports Server (NTRS)

    Werner, L. B.

    1974-01-01

    Within the overall federal geothermal program, the Atomic Energy Commission has chosen to concentrate on development of resource utilization and advanced research and technology as the areas most suitable to the expertise of its staff and that of the National Laboratories. The Commission's work in geothermal energy is coordinated with that of other agencies by the National Science Foundation, which has been assigned lead agency by the Office of Management and Budget. The objective of the Commission's program, consistent with the goals of the total federal program is to facilitate, through technological advancement and pilot plant operations, achievement of substantial commercial production of electrical power and utilization of geothermal heat by the year 1985. This will hopefully be accomplished by providing, in conjunction with industry, credible information on the economic operation and technological reliability of geothermal power and use of geothermal heat.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    BROOKHAVEN NATIONAL LABORATORY

    Brookhaven National Laboratory (BNL) is a multi-program national laboratory operated by Brookhaven Science Associates for the U.S. Department of Energy (DOE) and is located on a 5,265-acre site in Suffolk County, Long Island, New York. BNL has a comprehensive Environmental Management System (EMS) in place, which meets the requirements of the International Organization for Standardization 14001 EMS Standard, as described in the BNL EMS Manual. BNL's extensive environmental monitoring program is one component of the EMS, and the BNL Environmental Monitoring Plan (EMP) describes this program in detail. The data derived from systematically monitoring the various environmental media on sitemore » enable BNL to make informed decisions concerning the protection of human health and the environment and to be responsive to community concerns.« less

  17. RERTR 2009 (Reduced Enrichment for Research and Test Reactors)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Totev, T.; Stevens, J.; Kim, Y. S.

    2010-03-01

    The U.S. Department of Energy/National Nuclear Security Administration's Office of Global Threat Reduction in cooperation with the China Atomic Energy Authority and International Atomic Energy Agency hosted the 'RERTR 2009 International Meeting on Reduced Enrichment for Research and Test Reactors.' The meeting was organized by Argonne National Laboratory, China Institute of Atomic Energy and Idaho National Laboratory and was held in Beijing, China from November 1-5, 2009. This was the 31st annual meeting in a series on the same general subject regarding the conversion of reactors within the Global Threat Reduction Initiative (GTRI). The Reduced Enrichment for Research and Testmore » Reactors (RERTR) Program develops technology necessary to enable the conversion of civilian facilities using high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, V.L.; Wieczorek, M.A.

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY94. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1994. The objective of the Annual Site Environmental Report is to document evidence that PPPL`s environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physicsmore » Laboratory has engaged in fusion energy research since 195 1. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1994, PPPL had one of its two large tokamak devices in operation-the Tokamak Fusion Test Reactor (TFTR). The Princeton Beta Experiment-Modification or PBX-M completed its modifications and upgrades and resumed operation in November 1991 and operated periodically during 1992 and 1993; it did not operate in 1994 for funding reasons. In December 1993, TFTR began conducting the deuterium-tritium (D-T) experiments and set new records by producing over ten @on watts of energy in 1994. The engineering design phase of the Tokamak Physics Experiment (T?X), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In December 1994, the Environmental Assessment (EA) for the TFTR Shutdown and Removal (S&R) and TPX was submitted to the regulatory agencies, and a finding of no significant impact (FONSI) was issued by DOE for these projects.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    ENVIRONMENT AND WASTE MANAGMENT SERVICES DIVISION; ET AL.

    Each year, Brookhaven National Laboratory (BNL), a multi-program national laboratory, prepares an annual Site Environmental Report (SER) in accordance with Order 231.1A, Environment, Safety and Health Reporting, of the U.S. Department of Energy (DOE). The SER is written to inform outside regulators, the public, and Laboratory employees of BNL's environmental performance during the calendar year in review, and to summarize BNL's on-site environmental data; environmental management performance; compliance with applicable DOE, Environmental Protection Agency (EPA), state, and local regulations; and environmental, restoration, and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of itsmore » environmental history since the Laboratory's inception in 1947. This report is intended to be a technical document. It is available in print and as a downloadable file on the BNL web page at http://www.bnl.ser.htm. A summary of the SER is also prepared each year to provide a general overview, and is distributed with a CD version of the full-length SER. The summary supports BNL's educational and community outreach program.« less

  20. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-24

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP), which is operated by the Pacific Northwest National Laboratory.( ) for the U.S. Department of Energy Richland Operations Office, Office of River Protection and their Hanford Site contractors. The manual describes the roles of and relationships between the IDP and the radiation protection programs of the Hanford Site contractors. Recommendations and guidance are also provided for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs.

  1. Health and Environmental Research. Summary of Accomplishments

    DOE R&D Accomplishments Database

    1984-04-01

    This is a short account of a 40-year-old health and environmental research program performed in national laboratories, universities, and research institutes. Under the sponsorship of the federal agencies that were consecutively responsible for the national energy mission, this research program has contributed to the understanding of the human health and environmental effects of emergining energy technologies. In so doing, it has also evolved several nuclear techniques for the diagnosis and treatment of human ills. The form of this presentation is through examples of significant, tangible accomplishments in each of these areas at certain times to illustrate the role and impact of the research program. The narrative of this research program concludes with a perspective of its past and a prospectus on its future.

  2. (Low-level radioactive waste management techniques)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoesen, S.D.; Kennerly, J.M.; Williams, L.C.

    1988-08-08

    The US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River plant (SRP), Idaho National Engineering Laboratory (INEL), and the Department of Energy, Oak Ridge Operations participated in a training program on French low-level radioactive waste (LLW) management techniques. Training in the rigorous waste characterization, acceptance and certification procedures required in France was provided at Agence Nationale pour les Gestion des Dechets Radioactif (ANDRA) offices in Paris.

  3. Molten nitrate salt technology development

    NASA Astrophysics Data System (ADS)

    Carling, R. W.

    1981-04-01

    This paper presents an overview of the experimental programs underway in support of the Thermal Energy Storage for Solar Thermal Applications (TESSTA) program. The experimental programs are concentrating on molten nitrate salts which have been proposed as heat transfer and energy storage medium. The salt composition of greatest interest is drawsalt, nominally a 50-50 molar mixture of NaNO3 and KNO3 with a melting point of 220 C. Several technical uncertainties have been identified that must be resolved before nitrate based solar plants can be commercialized. Research programs at Sandia National Laboratories, universities, and industrial suppliers have been implemented to resolve these technical uncertainties. The experimental programs involve corrosion, decomposition, physical properties, and environmental cracking. Summaries of each project and how they impact central receiver applications such as the repowering/industrial retrofit and cogeneration program are presented.

  4. Mass, Energy, Entropy and Exergy Rate Balance in a Ranque-Hilsh Vortex Tube

    ERIC Educational Resources Information Center

    Carrascal Lecumberri, Edorta; Sala Lizarraga, José María

    2013-01-01

    The objective of this paper is to present a laboratory program designed for the Thermodynamics course offered in the Department of Thermal Engineering at the University of the Basque Country. With reference to one of the examples given in the textbook by Moran, Shapiro, Boettner and Bailey (2012), the balances of mass, energy, entropy and exergy…

  5. New Stream-reach Development (NSD): A Comprehensive Assessment of Hydropower Energy Potential in the United States Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, Shih-Chieh

    2014-04-25

    The U.S. Department of Energy (DOE) Water Power Program tasked Oak Ridge National Laboratory with evaluating the new stream-reach development (NSD) resource potential of more than 3 million U.S. streams in order to help individuals and organizations evaluate the feasibility of developing new hydropower sources in the United States.

  6. Comparison of Building Loads Analysis and System Thermodynamics (BLAST) Computer Program Simulations and Measured Energy Use for Army Buildings.

    DTIC Science & Technology

    1980-05-01

    engineering ,ZteNo D R RPTE16 research w 9 laboratory COMPARISON OF BUILDING LOADS ANALYSIS AND SYSTEM THERMODYNAMICS (BLAST) AD 0 5 5,0 3COMPUTER PROGRAM...Building Loads Analysis and System Thermodynamics (BLAST) computer program. A dental clinic and a battalion headquarters and classroom building were...Building and HVAC System Data Computer Simulation Comparison of Actual and Simulated Results ANALYSIS AND FINDINGS

  7. Key results of battery performance and life tests at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1991-12-01

    Advanced battery technology evaluations are performed under simulated electric vehicle operating conditions at Argonne National Laboratory's & Diagnostic Laboratory (ADL). The ADL provide a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1991 on twelve single cells and eight 3- to 360-cell modules that encompass six battery technologies (Na/S, Li/MS, Ni/MH, Zn/Br, Ni/Fe, and Pb-Acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division. The results measure progress in battery R & D programs, compare battery technologies, and provide basic data for modeling and continuing R & D to battery users, developers, and program managers.

  8. Chemical Biodynamics Division: Annual report, October 1, 1985-September 30, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-10-01

    The research in the Laboratory of Chemical Biodynamics is almost entirely fundamental research. The biological research component is strongly dominated by a long term interest in two main themes which make up our Structural Biology Program. The first interest has to do with understanding the molecular dynamics of photosynthesis. The Laboratory's investigators are studying the various components that make up the photosynthetic reaction center complexes in many different organisms. This work not only involves understanding the kinetics of energy transfer and storage in plants, but also includes studies to work out how photosynthetic cells regulate the expression of genes encodingmore » the photosynthetic apparatus. The second biological theme is a series of investigations into the relationship between structure and function in nucleic acids. Our basic mission in this program is to couple our chemical and biophysical expertise to understand how not only the primary structure of nucleic acids, but also higher levels of structure including interactions with proteins and other nucleic acids regulate the functional activity of genes. In the chemical sciences work in the Laboratory, our investigators are increasing our understanding of the fundamental chemistry of electronically excited molecules, a critical dimension of every photosynthetic energy storage process. We are developing approaches not only toward the utilization of sophisticated chemistry to store photon energy, but also to develop systems that can emulate the photosynthetic apparatus in the trapping and transfer of photosynthetic energy.« less

  9. Federal Geothermal Research Program Update Fiscal Year 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2003-09-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The goals are: (1) Double the number of States with geothermal electric power facilities to eight by 2006; (2) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in themore » United States by 2010. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2002. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.« less

  10. The AMTEX Partnership{trademark} mid year report, fiscal year 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-03-01

    The AMTEX Partnership{trademark} is a collaborative research and development program among the US Integrated Textile Complex (ITC), the US Department of Energy (DOE), the DOE national laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby preserving and creating US jobs. Three AMTEX projects funded in FY 1997 are Diamond Activated Manufacturing Architecture (DAMA), Computer-Aided Fabric Evaluation (CAFE), and Textile Resource Conservation (TReC). The five sites involved in AMTEX work are Sandia National Laboratory (SNL), Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), the Oak Ridgemore » Y-12 Plant, and the Oak Ridge National Laboratory (ORNL) (the latter is funded through Y-12).« less

  11. Final Report National Laboratory Professional Development Workshop for Underrepresented Participants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Valerie

    The 2013 CMD-IT National Laboratories Professional Development Workshop for Underrepresented Participants (CMD-IT NLPDev 2013) was held at the Oak Ridge National Laboratory campus in Oak Ridge, TN. from June 13 - 14, 2013. Sponsored by the Department of Energy (DOE) Advanced Scientific Computing Research Program, the primary goal of these workshops is to provide information about career opportunities in computational science at the various national laboratories and to mentor the underrepresented participants through community building and expert presentations focused on career success. This second annual workshop offered sessions to facilitate career advancement and, in particular, the strategies and resources neededmore » to be successful at the national laboratories.« less

  12. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  13. Accelerator-based validation of shielding codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitlin, Cary; Heilbronn, Lawrence; Miller, Jack

    2002-08-12

    The space radiation environment poses risks to astronaut health from a diverse set of sources, ranging from low-energy protons and electrons to highly-charged, high-energy atomic nuclei and their associated fragmentation products, including neutrons. The low-energy protons and electrons are the source of most of the radiation dose to Shuttle and ISS crews, while the more energetic particles that comprise the Galactic Cosmic Radiation (protons, He, and heavier nuclei up to Fe) will be the dominant source for crews on long-duration missions outside the earth's magnetic field. Because of this diversity of sources, a broad ground-based experimental effort is required tomore » validate the transport and shielding calculations used to predict doses and dose-equivalents under various mission scenarios. The experimental program of the LBNL group, described here, focuses principally on measurements of charged particle and neutron production in high-energy heavy-ion fragmentation. Other aspects of the program include measurements of the shielding provided by candidate spacesuit materials against low-energy protons (particularly relevant to extra-vehicular activities in low-earth orbit), and the depth-dose relations in tissue for higher-energy protons. The heavy-ion experiments are performed at the Brookhaven National Laboratory's Alternating Gradient Synchrotron and the Heavy-Ion Medical Accelerator in Chiba in Japan. Proton experiments are performed at the Lawrence Berkeley National Laboratory's 88'' Cyclotron with a 55 MeV beam, and at the Loma Linda University Proton Facility with 100 to 250 MeV beam energies. The experimental results are an important component of the overall shielding program, as they allow for simple, well-controlled tests of the models developed to handle the more complex radiation environment in space.« less

  14. The National Ignition Facility Status and Plans for Laser Fusion and High Energy Density Experimental Studies

    NASA Astrophysics Data System (ADS)

    Wuest, Craig R.

    2001-03-01

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory is 192-beam, 1.8 Megajoule, 500 Terawatt, 351 nm laser for inertial confinement fusion and high energy density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program to ensure the country’s nuclear deterrent without underground nuclear testing. The experimental program for NIF will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% of the shots will be dedicated to basic science research. Additionally, most of the shots on NIF will be conducted in unclassified configurations that will allow participation from the greater scientific community in planned applied physics experiments. This presentation will provide a look at the status of the construction project as well as a description of the scientific uses of NIF. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  15. Process for selecting NEAMS applications for access to Idaho National Laboratory high performance computing resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Pernice

    2010-09-01

    INL has agreed to provide participants in the Nuclear Energy Advanced Mod- eling and Simulation (NEAMS) program with access to its high performance computing (HPC) resources under sponsorship of the Enabling Computational Technologies (ECT) program element. This report documents the process used to select applications and the software stack in place at INL.

  16. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ANNUAL REPORT TO THE DEPARTMENT OF ENERGY FOR FISCAL YEAR 1999. THE DEPARTMENT OF ENERGY, DECEMBER 1999.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PAUL,P.; FOX,K.J.

    2000-07-01

    In FY 1999, the BNL LDRD Program funded 33 projects, 25 of which were new starts, at a total cost of $4,525,584. A table is presented which lists all of the FY 1999 funded projects and gives a history of funding for each by year. Several of these projects have already experienced varying degrees of success as indicated in the individual Project Program Summaries which are given. A total of 29 informal publications (abstracts, presentations, reports and workshop papers) were reported and an additional 23 formal (full length) papers were either published, are in press or being prepared for publication.more » The investigators on five projects have filed for patents. Seven of the projects reported that proposals/grants had either been funded or were submitted for funding. The complete summary of follow-on activities is as follows: Information Publications--29, Formal Papers--23, Grants/Proposals/Follow-on Funding--7. In conclusion, a significant measure of success is already attributable to the FY 1999 LDRD Program in the short period of time involved. The Laboratory has experienced a significant scientific gain by these achievements.« less

  17. International Safeguards and the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Khris B.; Smith, Leon E.; Frazar, Sarah L.

    Established in 1965, Pacific Northwest National Laboratory’s (PNNL) strong technical ties and shared heritage with the nearby U.S. Department of Energy Hanford Site were central to the early development of expertise in nuclear fuel cycle signatures, separations chemistry, plutonium chemistry, environmental monitoring, modeling and analysis of reactor systems, and nuclear material safeguards and security. From these Hanford origins, PNNL has grown into a multi-program science and engineering enterprise that utilizes this diversity to strengthen the international safeguards regime. Today, PNNL supports the International Atomic Energy Agency (IAEA) in its mission to provide assurances to the international community that nations domore » not use nuclear materials and equipment outside of peaceful uses. PNNL also serves in the IAEA’s Network of Analytical Laboratories (NWAL) by providing analysis of environmental samples gathered around the world. PNNL is involved in safeguards research and development activities in support of many U.S. Government programs such as the National Nuclear Security Administration’s (NNSA) Office of Research and Development, NNSA Office of Nonproliferation and Arms Control, and the U.S. Support Program to IAEA Safeguards. In addition to these programs, PNNL invests internal resources including safeguards-specific training opportunities for staff, and laboratory-directed research and development funding to further ideas that may grow into new capabilities. This paper and accompanying presentation highlight some of PNNL’s contributions in technology development, implementation concepts and approaches, policy, capacity building, and human capital development, in the field of international safeguards.« less

  18. The AMTEX Partnership{trademark}. Fourth quarter FY95 report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    The AMTEX Partnership{trademark} is a collaborative research and development program among the US Integrated Textile Industry, the Department of Energy (DOE), the national laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby preserving and creating US jobs. The operations and program management of the AMTEX Partnership{trademark} is provided by the Program Office. This report is produced by the Program Office on a quarterly basis and provides information on the progress, operations, and project management of the partnership. Progress is reported on the following projects: computer-aided fabric evaluation;more » cotton biotechnology; demand activated manufacturing architecture; electronic embedded fingerprints; on-line process control for flexible fiber manufacturing; rapid cutting; sensors for agile manufacturing; and textile resource conservation.« less

  19. Health, Safety, and Environment Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, C

    1992-01-01

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from thesemore » applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.« less

  20. Site Environmental Report for 2002, Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauer, Ron

    2003-07-01

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The ''Site Environmental Report for 2002'' summarizes Berkeley Lab's compliance with environmental standards and requirements, characterizes environmental management efforts through surveillance and monitoring activities, and highlights significant programs and efforts for calendar year 2002. Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab,'' ''the Laboratory,'' ''Lawrence Berkeley National Laboratory,'' and ''LBNL.'' The report is separated into two volumes. Volume I contains a general overview of themore » Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from the monitoring programs. This year, the ''Site Environmental Report'' was distributed on a CD in PDF format that includes Volume I, Volume II, and related documents. The report is also available on the Web at http://www.lbl.gov/ehs/esg/. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are additionally reported using the more conventional (non-SI) system of measurements because this system is referenced by some current regulatory standards and is more familiar to some readers. The tables included at the end of the Glossary are intended to help readers understand the various prefixes used with SI units of measurement and convert these units from one system to the other.« less

  1. Site Environmental Report for 2002, Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauer, Ron

    2003-07-01

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The ''Site Environmental Report for 2002'' summarizes Berkeley Lab's compliance with environmental standards and requirements, characterizes environmental management efforts through surveillance and monitoring activities, and highlights significant programs and efforts for calendar year 2002. Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab,'' ''the Laboratory,'' ''Lawrence Berkeley National Laboratory,'' and ''LBNL.'' The report is separated into two volumes. Volume I contains a general overview of themore » Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from the monitoring programs. This year, the ''Site Environmental Report'' was distributed on a CD in PDF format that includes Volume I, Volume II, and related documents. The report is also available on the Web at http://www.lbl.gov/ehs/esg/. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are additionally reported using the more conventional (non-SI) system of measurements because this system is referenced by some current regulatory standards and is more familiar to some readers. The tables included at the end of the Glossary are intended to help readers understand the various prefixes used with SI units of measurement and convert these units from one system to the other.« less

  2. VMOMS — A computer code for finding moment solutions to the Grad-Shafranov equation

    NASA Astrophysics Data System (ADS)

    Lao, L. L.; Wieland, R. M.; Houlberg, W. A.; Hirshman, S. P.

    1982-08-01

    Title of program: VMOMS Catalogue number: ABSH Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland (See application form in this issue) Computer: PDP-10/KL10; Installation: ORNL Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA Operating system: TOPS 10 Programming language used: FORTRAN High speed storage required: 9000 words No. of bits in a word: 36 Overlay structure: none Peripherals used: line printer, disk drive No. of cards in combined program and test deck: 2839 Card punching code: ASCII

  3. Laboratory Directed Research and Development FY2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammeraad, J E; Jackson, K J; Sketchley, J A

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal yearmore » 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities, industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.« less

  4. Laboratory directed research and development annual report 2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Densitymore » Sciences; and (15) Corporate Objectives.« less

  5. Facilities to Support Beamed Energy Launch Testing at the Laser Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Lander, Michael L.

    2003-05-01

    The Laser Hardened Materials Evaluation Laboratory (LHMEL) has been characterizing material responses to laser energy in support of national defense programs and the aerospace industry for the past 26 years. This paper reviews the overall resources available at LHMEL to support fundamental materials testing relating to impulse coupling measurement and to explore beamed energy launch concepts. Located at Wright-Patterson Air Force Base, Ohio, LHMEL is managed by the Air Force Research Laboratory Materials Directorate AFRL/MLPJ and operated by Anteon Corporation. The facility's advanced hardware is centered around carbon dioxide lasers producing output power up to 135kW and neodymium glass lasers producing up to 10 kilojoules of repetitively pulsed output. The specific capabilities of each laser device and related optical systems are discussed. Materials testing capabilities coupled with the laser systems are also described including laser output and test specimen response diagnostics. Environmental simulation capabilities including wind tunnels and large-volume vacuum chambers relevant to beamed energy propulsion are also discussed. This paper concludes with a summary of the procedures and methods by which the facility can be accessed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, D L

    The US Department of Energy (DOE) has been conducting, through several of its operating contractors, an evaluation and testing program to qualify Type A radioactive material packagings per US Department of Transportation (DOT) Specification 7A (DOT-7A) of the Code of Federal Regulations (CFR), Title 49, Part 178 (49 CFR 178). This document summarizes the evaluation and testing performed for all of the packagings successfully qualified in this program. This document supersedes DOE Evaluation Document for DOT-7A Type A Packaging (Edling 1987), originally issued in 1987 by Monsanto Research Corporation Mound Laboratory (MLM), Miamisburg, Ohio, for the Department of Energy, Securitymore » Evaluation Program (I)P-4. Mound Laboratory issued four revisions to the document between November 1988 and December 1989. In September 1989, the program was transferred to Westinghouse Hanford Company (Westinghouse Hanford) in Richland, Washington. One additional revision was issued in March 1990 by Westinghouse Hanford. This revision reflects the earlier material and incorporates a number of changes. Evaluation and testing activities on 1208 three DOT-7A Program Dockets resulted in the qualification of three new packaging configurations, which are incorporated herein and summarized. This document presents approximately 300 different packagings that have been determined to meet the requirements for a DOT-7A, type A packaging per 49 CFR 178.350.« less

  7. Solid State Sciences Committee Forum

    DTIC Science & Technology

    1993-08-01

    Forum was provided by the Air Force Office of Scientific Research (AFOSR), the Department of Energy (DOE), and the National Science Foundation (NSF...Program in Materials Engineering Laboratory, NIST, and Science and Technology Chair, COMAT 1000 National Science Foundation William Harris, Asst

  8. NETL’s Rare Earth Elements Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The National Energy Technology Laboratory has established a Rare Earth Elements (REE) program. REEs are a series of 17 chemical elements found in the Earth’s crust. They are an essential component to technology, health care, transportation and national defense.

  9. Appliance Standard Testing

    ScienceCinema

    Hogan, Kathleen; Tiemann, Gregg

    2018-01-16

    The U.S. Department of Energy’s Appliance Standards and Equipment Program tests, sets and helps enforce efficiency standards on more than 60 U.S. products. A majority of that testing is performed at the Intertek laboratory in Cortland, NY.

  10. Development of a Low Cost 10kW Tubular SOFC Power System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessette, Norman; Litka, Anthony; Rawson, Jolyon

    The DOE program funded from 2003 through early 2013 has brought the Acumentrics SOFC program from an early stage R&D program to an entry level commercial product offering. The development work started as one of the main core teams under the DOE Solid State Energy Conversion Alliance (SECA) program administered by the National Energy Technology Laboratory (NETL) of the DOE. During the first phase of the program, lasting approximately 3-4 years, a 5kW machine was designed, manufactured and tested against the specification developed by NETL. This unit was also shipped to NETL for independent verification testing which validated all ofmore » the results achieved while in the laboratory at Acumentrics. The Acumentrics unit passed all criteria established from operational stability, efficiency, and cost projections. Passing of the SECA Phase I test allowed the program to move into Phase II of the program. During this phase, the overall objective was to further refine the unit meeting a higher level of performance stability as well as further cost reductions. During the first year of this new phase, the NETL SECA program was refocused towards larger size units and operation on coal gasification due to the severe rise in natural gas prices and refocus on the US supply of indigenous coal. At this point, the program was shifted to the U.S. DOE’s Energy Efficiency and Renewable Energy (EERE) division located in Golden, Colorado. With this shift, the focus remained on smaller power units operational on gaseous fuels for a variety of applications including micro combined heat and power (mCHP). To achieve this goal, further enhancements in power, life expectancy and reductions in cost were necessary. The past 5 years have achieved these goals with machines that can now achieve over 40% electrical efficiency and field units that have now operated for close to a year and a half with minimal maintenance. The following report details not only the first phase while under the SECA program and the key achievements but also the results while under EERE’s leadership and the transition to an early commercial product offering.« less

  11. Experimental Estimation Of Energy Damping During Free Rocking Of Unreinforced Masonry Walls. First Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorrentino, Luigi; Masiani, Renato; Benedetti, Stefano

    2008-07-08

    This paper presents an ongoing experimental program on unreinforced masonry walls undergoing free rocking. Aim of the laboratory campaign is the estimation of kinetic energy damping exhibited by walls released with non-zero initial conditions of motion. Such energy damping is necessary for dynamic modelling of unreinforced masonry local mechanisms. After a brief review of the literature on this topic, the main features of the laboratory tests are presented. The program involves the experimental investigation of several parameters: 1) unit material (brick or tuff), 2) wall aspect ratio (ranging between 14.5 and 7.1), 3) restraint condition (two-sided or one-sided rocking), andmore » 4) depth of the contact surface between facade and transverse walls (one-sided rocking only). All walls are single wythe and the mortar is pozzuolanic. The campaign is still in progress. However, it is possible to present the results on most of the mechanical properties of mortar and bricks. Moreover, a few time histories are reported, already indicating the need to correct some of the assumptions frequent in the literature.« less

  12. Pacific Northwest Laboratory annual report for 1989 to the DOE Office of Energy Research - Part 1: Biomedical Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.F.

    This report summarizes progress on OHER human health, biological, general life sciences, and medical applications research programs conducted at PNL in FY 1989. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns statistical and epidemiologicalmore » studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program, and the medical applications section summarizes commercial radioisotope production and distribution activities at DOE facilities. 6 refs., 50 figs., 35 tabs.« less

  13. The Nova Upgrade Facility for ICF ignition and gain

    NASA Astrophysics Data System (ADS)

    Lowdermilk, W. H.; Campbell, E. M.; Hunt, J. T.; Murray, J. R.; Storm, E.; Tobin, M. T.; Trenholme, J. B.

    1992-01-01

    Research on Inertial Confinement Fusion (ICF) is motivated by its potential defense and civilian applications, including ultimately the generation of electric power. The U.S. ICF Program was reviewed recently by the National Academy of Science (NAS) and the Fusion Policy Advisory Committee (FPAC). Both committees issued final reports in 1991 which recommended that first priority in the ICF program be placed on demonstrating fusion ignition and modest gain (G less than 10). The U.S. Department of Energy and Lawrence Livermore National Laboratory (LLNL) have proposed an upgrade of the existing Nova Laser Facility at LLNL to accomplish these goals. Both the NAS and FPAC have endorsed the upgrade of Nova as the optimal path to achieving ignition and gain. Results from Nova Upgrade Experiments will be used to define requirements for driver and target technology both for future high-yield military applications, such as the Laboratory Microfusion Facility (LMF) proposed by the Department of Energy, and for high-gain energy applications leading to an ICF engineering test facility. The central role and modifications which Nova Upgrade would play in the national ICF strategy are described.

  14. Conclusions drawn from actions implemented within the first stage of the Cracow program of energy conservation and clean fossil fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieda, J.; Bardel, J.; Pierce, B.

    1995-12-31

    Since 1992 Brookhaven National Laboratory (BNL) and Pacific Northwest Laboratory (PNL), acting on behalf of the U.S. Department of Energy, executed the first stage of the Cracow Program of Energy Conservation and Clean Fossil Fuels, called also American-Polish Program of Actions for Elimination of Low Emission Sources in Cracow. The main contractor for BNL and PNL was the Cracow Development Office (BRK). The interest in improving the condition of Cracow air results from the fact that the standard for permissible air pollution was exceeded several times in Cracow and especially within the central part of the town. Therefore, air pollutionmore » appeared one of the most important problems that faced the municipal authorities. It followed from monitoring investigations that the high level of air pollutant concentration is caused by in-home coal-fired tile stoves operated in winter seasons and by coal- and coke-fired boiler houses simulated mainly in the central part of the town. The results obtained in first stage are presented. This paper is an attempt to formulate conclusions drawn from these works and recommendations with regard to the future policy of the town authorities; selected results are presented to clarify or illustrate the conclusions.« less

  15. Analysis of Plane-Parallel Electron Beam Propagation in Different Media by Numerical Simulation Methods

    NASA Astrophysics Data System (ADS)

    Miloichikova, I. A.; Bespalov, V. I.; Krasnykh, A. A.; Stuchebrov, S. G.; Cherepennikov, Yu. M.; Dusaev, R. R.

    2018-04-01

    Simulation by the Monte Carlo method is widely used to calculate the character of ionizing radiation interaction with substance. A wide variety of programs based on the given method allows users to choose the most suitable package for solving computational problems. In turn, it is important to know exactly restrictions of numerical systems to avoid gross errors. Results of estimation of the feasibility of application of the program PCLab (Computer Laboratory, version 9.9) for numerical simulation of the electron energy distribution absorbed in beryllium, aluminum, gold, and water for industrial, research, and clinical beams are presented. The data obtained using programs ITS and Geant4 being the most popular software packages for solving the given problems and the program PCLab are presented in the graphic form. A comparison and an analysis of the results obtained demonstrate the feasibility of application of the program PCLab for simulation of the absorbed energy distribution and dose of electrons in various materials for energies in the range 1-20 MeV.

  16. U.S. Department of Energy’s Industrial Technology Program and Its Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Roop, Joseph M.

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2009). From 1976-2008, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 9.27 quadrillion Btu, with a net cost savings of $63.91 billion.« less

  17. U.S. Department of Energy’s Industrial Technologies Program and Its Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Brown, Scott A.

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technolo-gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2010). From 1976-2009, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 10.0 quadrillion Btu, with a net cost savings of $61.82 billion.« less

  18. U.S. Department of Energy’s Industrial Technology Program and Its Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Roop, Joseph M.

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2008). From 1976-2007, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 6.17 quadrillion Btu, with a net cost savings of $63.0 billion.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document contains the summaries of papers presented at the 1996 Atmospheric Radiation Measurement (ARM) Science Team meeting held at San Antonio, Texas. The history and status of the ARM program at the time of the meeting helps to put these papers in context. The basic themes have not changed. First, from its beginning, the Program has attempted to respond to the most critical scientific issues facing the US Global Change Research Program. Second, the Program has been strongly coupled to other agency and international programs. More specifically, the Program reflects an unprecedented collaboration among agencies of the federal researchmore » community, among the US Department of Energy`s (DOE) national laboratories, and between DOE`s research program and related international programs, such as Global Energy and Water Experiment (GEWEX) and the Tropical Ocean Global Atmosphere (TOGA) program. Next, ARM has always attempted to make the most judicious use of its resources by collaborating and leveraging existing assets and has managed to maintain an aggressive schedule despite budgets that have been much smaller than planned. Finally, the Program has attracted some of the very best scientific talent in the climate research community and has, as a result, been productive scientifically.« less

  20. Standing Up a Narcotic Confirmation Laboratory for the Russian Federation Ministry of Defense Nuclear Personnel Reliability Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LukyanenkoMD, Victor; Eisele, Gerhard R; Coates, Cameron W

    2010-01-01

    Through a cooperative effort between the U. S. Department of Energy and the Russian Federation (RF) Ministry of Defense (MOD) a Personnel Reliability Program (PRP) for the nuclear handlers within the RF MOD has been implemented. A key element in the RF MOD PRP is the detection and confirmation of narcotic use in subject military and civilian personnel. This paper describes the process of narcotics screening and testing in the RF MOD and explains the confirmation process once screening has shown a positive result. Issues of laboratory certification, employee certification, employee training, sample chain-of-custody, and equipment needs will be addressed.

  1. Comprehensive Angular Response Study of LLNL Panasonic Dosimeter Configurations and Artificial Intelligence Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, D. K.

    In April of 2016, the Lawrence Livermore National Laboratory External Dosimetry Program underwent a Department of Energy Laboratory Accreditation Program (DOELAP) on-site assessment. The assessment reported a concern that the study performed in 2013 Angular Dependence Study Panasonic UD-802 and UD-810 Dosimeters LLNL Artificial Intelligence Algorithm was incomplete. Only the responses at ±60° and 0° were evaluated and independent data from dosimeters was not used to evaluate the algorithm. Additionally, other configurations of LLNL dosimeters were not considered in this study. This includes nuclear accident dosimeters (NAD) which are placed in the wells surrounding the TLD in the dosimeter holder.

  2. REopt Screenings Catalyze Development of Hundreds of Megawatts of Renewable Energy for Federal Agencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Federal Energy Management Program (FEMP) offers renewable energy project assistance to federal agencies, which often begins with a desktop screening to develop a prioritized portfolio of project opportunities. FEMP uses the National Renewable Energy Laboratory's REopt energy planning platform to screen potential renewable energy opportunities at a single site or across a range of sites. REopt helps organizations prioritize the most economi­cally and technically viable projects for further study and identifies the size and mix of technologies that meet the orga­nization's goals at minimum cost, along with the optimal operating strategies.

  3. A Primer on Electric Utilities, Deregulation, and Restructuring of U.S. Electricity Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warwick, William M.

    2002-06-03

    This primer is offered as an introduction to utility restructuring to better prepare readers for ongoing changes in public utilities and associated energy markets. It is written for use by individuals with responsibility for the management of facilities that use energy, including energy managers, procurement staff, and managers with responsibility for facility operations and budgets. The primer was prepared by the Pacific Northwest National Laboratory under sponsorship from the U.S. Department of Energy?s Federal Energy Management Program. The impetus for this primer originally came from the Government Services Administration who supported its initial development.

  4. Generation of narrow energy spread ion beams via collisionless shock waves using ultra-intense 1 um wavelength laser systems

    NASA Astrophysics Data System (ADS)

    Albert, Felicie; Pak, A.; Kerr, S.; Lemos, N.; Link, A.; Patel, P.; Pollock, B. B.; Haberberger, D.; Froula, D.; Gauthier, M.; Glenzer, S. H.; Longman, A.; Manzoor, L.; Fedosejevs, R.; Tochitsky, S.; Joshi, C.; Fiuza, F.

    2017-10-01

    In this work, we report on electrostatic collisionless shock wave acceleration experiments that produced proton beams with peak energies between 10-17.5 MeV, with narrow energy spreads between Δ E / E of 10-20%, and with a total number of protons in these peaks of 1e7-1e8. These beams of ions were created by driving an electrostatic collisionless shock wave in a tailored near critical density plasma target using the ultra-intense ps duration Titan laser that operates at a wavelength of 1 um. The near critical density target was produced through the ablation of an initially 0.5 um thick Mylar foil with a separate low intensity laser. A narrow energy spread distribution of carbon / oxygen ions with a similar velocity to the accelerated proton distribution, consistent with the reflection and acceleration of ions from an electrostatic field, was also observed. This work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development program under project 15-LW-095, and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.

  5. High temperature, harsh environment sensors for advanced power generation systems

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Credle, S.; Buric, M.; Lewis, R.; Seachman, S.

    2015-05-01

    One mission of the Crosscutting Technology Research program at the National Energy Technology Laboratory is to develop a suite of sensors and controls technologies that will ultimately increase efficiencies of existing fossil-fuel fired power plants and enable a new generation of more efficient and lower emission power generation technologies. The program seeks to accomplish this mission through soliciting, managing, and monitoring a broad range of projects both internal and external to the laboratory which span sensor material and device development, energy harvesting and wireless telemetry methodologies, and advanced controls algorithms and approaches. A particular emphasis is placed upon harsh environment sensing for compatibility with high temperature, erosive, corrosive, and highly reducing or oxidizing environments associated with large-scale centralized power generation. An overview of the full sensors and controls portfolio is presented and a selected set of current and recent research successes and on-going projects are highlighted. A more detailed emphasis will be placed on an overview of the current research thrusts and successes of the in-house sensor material and device research efforts that have been established to support the program.

  6. Energy Conversion and Storage Program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  7. Research and development needs in the Department of Energy. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-05

    In April 1980, the Deputy Secretary requested that the Board participate in the Department's review of the technology base component of DOE's R and D programs and that the Board address the following broad concerns: (1) The adequacy of the research underpinning for technology development programs; (2) Possible gaps or duplications of effort; (3) The balance among research performers (universities, laboratories, industry); (4) Significant R and D opportunities that DOE's programs may be missing. The Board offered the following recommendations to the Secretary: (1) Place greater research emphasis on environmental and health issues to ensure the success of the nationalmore » synfuels program. (2) Provide more research in energy use and productivity projects. (3) Increase the level of effort in basic research. (4) Place higher priority for high-level radioactive waste disposal R and D. (5) Evaluate the various energy technology options on a common comparison basis to clearly identify the costs, benefits and risks of each option. (6) Develop more effective DOE procurement practices. Additional recommendations were directed to the Under Secretary and Assistant Secretaries of Energy reviewing specific issues in conservation, fossil, nuclear and solar energy, resource applications, environment, and energy research.« less

  8. NREL Energy Storage Projects. FY2014 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pesaran, Ahmad; Ban, Chunmei; Burton, Evan

    2015-03-01

    The National Renewable Energy Laboratory supports energy storage R&D under the Office of Vehicle Technologies at the U.S. Department of Energy. The DOE Energy Storage Program’s charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation’s goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are; Advanced Battery Development through the United States Advanced Batterymore » Consortium (USABC); Battery Testing, Analysis, and Design; Applied Battery Research (ABR); and Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT) In FY14, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL’s R&D projects in FY14 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY14 projects under NREL’s Energy Storage R&D program are briefly described below. Each of these is discussed in depth in this report.« less

  9. International Jobs and Economic Development Impacts (I-JEDI) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    International Jobs and Economic Development Impacts (I-JEDI) is a freely available economic model that estimates gross economic impacts from wind, solar, biomass, and geothermal energy projects. Building on a similar model for the United States, I-JEDI was developed by the National Renewable Energy Laboratory under the U.S. government's Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program to support partner countries in assessing economic impacts of LEDS actions in the energy sector.

  10. The furnace in the basement: Part 1, The early days of the Hot Dry Rock Geothermal Energy Program, 1970--1973

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.C.

    1995-09-01

    This report presents the descriptions of the background information and formation of the Los Alamos Scientific Laboratory Geothermal Energy Group. It discusses the organizational, financial, political, public-relations,geologic, hydrologic, physical, and mechanical problems encountered by the group during the period 1970--1973. It reports the failures as well as the successes of this essential first stage in the development of hot dry rock geothermal energy systems.

  11. Laboratory for Energy-Related Health Research annual report, fiscal year 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abell, D.L.

    1989-02-01

    This report to the US Department of Energy summarizes research activities for the period from 1 October 1985--30 September 1986 at the Laboratory for Energy-related Health Research (LEHR) which is operated by the University of California, Davis. The laboratory's research objective is to provide new knowledge for an improved understanding of the potential bioenvironmental and occupational health problems associated with energy utilization to contribute to the safe and healthful development of energy resources for the benefit of mankind. This research encompasses several areas of basic investigation that relate to toxicological and biomedical problems associated with potentially toxic chemical and radioactivemore » substances and ionizing radiation, with particular emphasis on carcinogenicity. Studies of systemic injury and nuclear medical diagnostic and therapeutic methods are also involved. This is an interdisciplinary program spanning physics, chemistry, environmental engineering, biophysics and biochemistry, cellular and molecular biology, physiology, immunology, toxicology, both human and veterinary medicine, nuclear medicine, pathology, hematology, radiation biology, reproductive biology, oncology, biomathematics, and computer science. The principal themes of the research at LEHR center around the biology, radiobiology, and health status of the skeleton and its blood-forming constituents; the toxicology and properties of airborne materials; the beagle as an experimental animal model; carcinogenesis; and the scaling of the results from laboratory animal studies to man for appropriate assessment of risk.« less

  12. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsom, H.C.

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted.

  13. ORNL superconducting technology program for electric energy systems

    NASA Astrophysics Data System (ADS)

    Hawsey, R. A.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY-92 Peer Review of Projects, which was conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Teresa A.; Lapsa, Melissa Voss

    Oak Ridge National Laboratory (ORNL) is both the largest science and energy laboratory of the US Department of Energy (DOE) and one of the oldest national laboratories still operating at its original site. These characteristics provide the Sustainable Campus Initiative (SCI) both a unique opportunity and a unique challenge to integrate sustainability into facilities and activities. As outlined in this report, SCI is leveraging the outcomes of ORNL’s DOE-sponsored research and development programs to maximize the efficient use of energy and natural resources across ORNL. Wherever possible, ORNL is integrating technical innovations into new and existing facilities, systems, and processesmore » with a widespread approach to achieving Executive Order 13514. ORNL continues to pursue and deploy innovative solutions and initiatives to advance regional, national, and worldwide sustainability and continues to transform its culture and engage employees in supporting sustainability at work, at home, and in the community. Table 1 summarizes ORNL's FY 2013 performance and planned actions to attain future goals. ORNL has achieved numerous successes during FY 2013, which are described in detail throughout this document.« less

  15. DOE research and development report. Progress report, October 1980-September 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, Carleton D.

    The DOE New Brunswick Laboratory (NBL) is the US Government's Nuclear Materials Standards and Measurement Laboratory. NBL is assigned the mission to provide and maintain, as an essential part of federal statutory responsibilities related to national and international safeguards of nuclear materials for USA defense and energy programs, an ongoing capability for: the development, preparation, certification, and distribution of reference materials for the calibration and standardization of nuclear materials measurements; the development, improvement, and evaluation of nuclear materials measurement technology; the assessment and evaluation of the practice and application of nuclear materials measurement technology; expert and reliable specialized nuclear materialsmore » measurement services for the government; and technology exchange and training in nuclear materials measurement and standards. Progress reports for this fiscal year are presented under the following sections: (1) development or evaluation of measurement technology (elemental assay of uranium plutonium; isotope composition); (2) standards and reference materials (NBL standards and reference materials; NBS reference materials); and (3) evaluation programs (safeguards analytical laboratory evaluation; general analytical evaluation program; other evaluation programs).« less

  16. Research and development program in fiber optic sensors and distributed sensing for high temperature harsh environment energy applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Romanosky, Robert R.

    2017-05-01

    he National Energy Technology Laboratory (NETL) under the Department of Energy (DOE) Fossil Energy (FE) Program is leading the effort to not only develop near zero emission power generation systems, but to increaser the efficiency and availability of current power systems. The overarching goal of the program is to provide clean affordable power using domestic resources. Highly efficient, low emission power systems can have extreme conditions of high temperatures up to 1600 oC, high pressures up to 600 psi, high particulate loadings, and corrosive atmospheres that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Advancements in sensing using optical fibers are key efforts within NETL's sensor development program as these approaches offer the potential to survive and provide critical information about these processes. An overview of the sensor development supported by the National Energy Technology Laboratory (NETL) will be given, including research in the areas of sensor materials, designs, and measurement types. New approaches to intelligent sensing, sensor placement and process control using networked sensors will be discussed as will novel approaches to fiber device design concurrent with materials development research and development in modified and coated silica and sapphire fiber based sensors. The use of these sensors for both single point and distributed measurements of temperature, pressure, strain, and a select suite of gases will be addressed. Additional areas of research includes novel control architecture and communication frameworks, device integration for distributed sensing, and imaging and other novel approaches to monitoring and controlling advanced processes. The close coupling of the sensor program with process modeling and control will be discussed for the overarching goal of clean power production.

  17. Energy resource alternatives competition. Progress report for the period February 1, 1975--December 31, 1975. [Space heating and cooling, hot water, and electricity for homes, farms, and light industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzke, D.J.; Osowski, D.M.; Radtke, M.L.

    1976-01-01

    This progress report describes the objectives and results of the intercollegiate Energy Resource Alternatives competition. The one-year program concluded in August 1975, with a final testing program of forty student-built alternative energy projects at the Sandia Laboratories in Albuquerque, New Mexico. The goal of the competition was to design and build prototype hardware which could provide space heating and cooling, hot water, and electricity at a level appropriate to the needs of homes, farms, and light industry. The hardware projects were powered by such nonconventional energy sources as solar energy, wind, biologically produced gas, coal, and ocean waves. The competitionmore » rules emphasized design innovation, economic feasibility, practicality, and marketability. (auth)« less

  18. U.S. Army Research Laboratory Directed Energy Visiting Scholars Program 2012

    DTIC Science & Technology

    2013-03-01

    area under each peak was found and matched to its corresponding manifold. 48 5. References Gruber, J.; Nijar, A.; Sarder, D. K .; Yow, R...Electronics. Cambridge University Press, 1989. 8. Satyan, Naresh . Optoelectronic Control of the Phase and Frequency of Semiconductor Lasers. PhD...1 GOVT PRINTG OFC (PDF) A MALHOTRA 732 N CAPITOL ST NW WASHINGTON DC 20401 ADELPHI LABORATORY CENTER 1 DIR USARL (PDF) RDRL SEE M J WHITE

  19. The Muon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zisman, Michael S

    2010-05-17

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  20. The Muon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  1. 2014 Water Power Program Peer Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-08-18

    The Water Power Peer Review Meeting was held February 24-28, 2014 in Arlington, VA. Principle investigators from the Energy Department National Laboratories, academic, and industry representatives presented the progress of their DOE-funded research. This report documents the formal, rigorous evaluation process and findings of nine independent reviewers who examined the technical, scientific, and business results of 96 projects of the Water Power Program, as well as the productivity and management effectiveness of the Water Power Program itself.

  2. Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the Nationalmore » Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)« less

  3. Environmental Performance Report 2013: Annual Site Environmental Report per the U.S. Department of Energy Order 231.1-1B (Management Publication)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlomberg, K.; Eickhoff, J.; Beatty, B.

    The National Renewable Energy Laboratory's (NREL's) Environmental Performance Report provides a description of the laboratory's environmental management activities for 2013, including information on environmental and sustainability performance, environmental compliance activities and status, and environmental protection programs, highlights, and successes. The purpose of this report is to ensure that U.S. Department of Energy (DOE) and the public receive timely, accurate information about events that have affected or could adversely affect the health, safety, and security of the public or workers; the environment; or the operations of DOE facilities. This report meets the requirements of the Annual Site Environmental Report and ismore » prepared in accordance with the DOE Order 231.1B, Environment, Safety and Health Reporting.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NREL's Sustainability Program is responsible for upholding all executive orders, federal regulations, U.S. Department of Energy (DOE) orders, and goals related to sustainable and resilient facility operations. But NREL continues to expand sustainable practices above and beyond the laboratory's regulations and requirements to ensure that the laboratory fulfills its mission into the future, leaves the smallest possible legacy footprint, and models sustainable operations and behaviors on national, regional, and local levels. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called 'NREL's Resiliencymore » is Taking Many Forms' provides insight into how NREL is drawing on its deep knowledge of renewable energy and energy efficiency to help mitigate or avoid climate change impacts.« less

  5. Technical challenges for the future of high energy lasers

    NASA Astrophysics Data System (ADS)

    LaFortune, K. N.; Hurd, R. L.; Fochs, S. N.; Rotter, M. D.; Pax, P. H.; Combs, R. L.; Olivier, S. S.; Brase, J. M.; Yamamoto, R. M.

    2007-02-01

    The Solid-State, Heat-Capacity Laser (SSHCL) program at Lawrence Livermore National Laboratory is a multi-generation laser development effort scalable to the megawatt power levels with current performance approaching 100 kilowatts. This program is one of many designed to harness the power of lasers for use as directed energy weapons. There are many hurdles common to all of these programs that must be overcome to make the technology viable. There will be a in-depth discussion of the general issues facing state-of-the-art high energy lasers and paths to their resolution. Despite the relative simplicity of the SSHCL design, many challenges have been uncovered in the implementation of this particular system. An overview of these and their resolution are discussed. The overall system design of the SSHCL, technological strengths and weaknesses, and most recent experimental results will be presented.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Ames Laboratory conducts fundamental research in the physical, chemical, materials, and mathematical sciences and engineering which underlie energy generating, conversion, transmission and storage technologies, environmental improvement, and other technical areas essential to national needs. These efforts will be maintained so as to contribute to the achievement of the vision of DOE and, more specifically, to increase the general levels of knowledge and technical capabilities, to prepare engineering and physical sciences students for the future, both academia and industry, and to develop new technologies and practical applications from our basic scientific programs that will contribute to a strengthening of themore » US economy. The Laboratory approaches all its operations with the safety and health of all workers as a constant objective and with genuine concern for the environment. The Laboratory relies upon its strengths in materials synthesis and processing, materials reliability, chemical analysis, chemical sciences, photosynthesis, materials sciences, metallurgy, high-temperature superconductivity, and applied mathematical sciences to conduct the long term basic and intermediate range applied research needed to solve the complex problems encountered in energy production, and utilization as well as environmental restoration and waste management. Ames Laboratory will continue to maintain a very significant and highly beneficial pre-college math and science education program which currently serves both teachers and students at the middle school and high school levels. Our technology transfer program is aided by joint efforts with ISU`s technology development and commercialization enterprise and will sustain concerted efforts to implement Cooperative Research and Development Agreements, industrially sponsored Work for Others projects. and scientific personnel exchanges with our various customers.« less

  7. Environmental testing of terrestrial flat plate photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Hoffman, A.; Griffith, J.

    1979-01-01

    The Low-Cost Solar Array (LSA) Project at the Jet Propulsion Laboratory has as one objective: the development and implementation of environmental tests for flat plate photovoltaic modules as part of the Department of Energy's terrestrial photovoltaic program. Modules procured under this program have been subjected to a variety of laboratory tests intended to simulate service environments, and the results of these tests have been compared to available data from actual field service. This comparison indicates that certain tests (notably temperature cycling, humidity cycling, and cyclic pressure loading) are effective indicators of some forms of field failures. Other tests have yielded results useful in formulating module design guidelines. Not all effects noted in field service have been successfully reproduced in the laboratory, however, and work is continuing in order to improve the value of the test program as a tool for evaluating module design and workmanship. This paper contains a review of these ongoing efforts and an assessment of significant test results to date.

  8. Transport Measurements on Si Nanostructures with Counted Sb Donors

    NASA Astrophysics Data System (ADS)

    Singh, Meenakshi; Bielejec, Edward; Garratt, Elias; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael

    2014-03-01

    Donor based spin qubits are a promising platform for quantum computing. Single qubits using timed implant of donors have been demonstrated.1 Extending this to multiple qubits requires precise control over the placement and number of donors. Such control can be achieved by using a combination of low-energy heavy-ion implants (to reduce depth straggle), electron-beam lithography (to define position), focused ion beam (to localize implants to one lithographic site) and counting the number of implants with a single ion detector.2 We report transport measurements on MOS quantum dots implanted with 5, 10 and 20 Sb donors using the approach described above. A donor charge transition is identified by a charge offset in the transport characteristics. Correlation between the number of donors and the charge offsets is studied. These results are necessary first steps towards fabricating donor nanostructures for two qubit interactions. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. 1J. J. Pla et al., Nature 496, 334 (2013) 2J. A. Seamons et al., APL 93, 043124 (2008).

  9. Pacific Northwest Laboratory annual report for 1988 to the DOE Office of Energy Research: Part 4, Physical sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touburen, L.H.

    1989-03-01

    This document contains brief descriptions of various research programs in the physical science. Topics include Chernobyl Information Management, Supercritical Fluids, Laser Spectroscopy, DNA Adducts, Dosimetry, Biophysics, and Genetic Damage. (TEM)

  10. BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and themore » nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.« less

  11. Laboratory Directed Research and Development FY2010 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader nationalmore » needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.« less

  12. Transitioning the California Energy Commission Eligible Equipment List to a National Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truitt, Sarah; Nobler, Erin; Krasko, Vitaliy

    The Energy Commission called on the National Renewable Energy Laboratory's (NREL)'s Solar Technical Assistance Team to explore various pathways for supporting continued evolution of the list. NREL staff utilized the Database of State Incentives for Renewables and Efficiency (DSIRE), California Solar Initiative (CSI) data, and information from in-depth interviews to better understand the impact of a lack of an updated list and suggest potential solutions. A total of 18 people from state energy offices, rebate program administrators, utilities, national testing laboratories, private companies, nonprofit organizations, and the federal government were interviewed between July and September 2013. CSI data were analyzedmore » to illustrate the monetary benefits of the algorithm behind calculating performance of PV modules included on the list. The primary objectives of this study are to: 1) Determine the impact of not maintaining the list, and 2) Explore alternatives to the State of California's maintenance of the list.« less

  13. 21st Century Power Partnership Fellowship Program: Supporting Next-generation Planning Modeling Practices at South Africa's Power Utility Eskom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinaman, Owen

    This presentation details the 21st Century Power Partnership's fellowship program accomplishments from 2016. This fellowship brought two fellows from South Africa's power utility, Eskom, to the U.S. Department of Energy's National Renewable Energy Laboratory. The fellows spent two weeks working to improve the fidelity of Eskom's PLEXOS long-term and short-term models, which are used in long-term generation planning exercises and capacity adequacy assessments. The fellows returned to Eksom equipped with a new suite of tools and skills to enhance Eksom's PLEXOS modeling capabilities.

  14. Cooperative Research in High Energy Astrophysics between JHU and GSFC

    NASA Technical Reports Server (NTRS)

    Vishniac, Ethan

    2004-01-01

    This grant was awarded to establish and support cooperative research programs between the Center of Astrophysical Sciences (CAS) at the Johns Hopkins University and the Laboratory for High Energy Astrophysics (LHEA) at the NASA/Goddard Space Flight Center (GSFC). The goals o f the program are to facilitate, encourage and initiate: (1) sharing of resources, knowledge and expertise in the general astrophysics, and relevant databases; (2) new collaborations and projects between the two institutions and its scientists, (3) training and mentoring of JHU students and junior researchers by way of connecting them with appropriate researchers and experts at the LHEA.

  15. Abstracts for student symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, B.

    Lawrence Livermore National Laboratory Science and Engineering Research Semester (SERS) students are participants in a national program sponsored by the DOE Office of Energy Research. Presented topics from Fall 1993 include: Laser glass, wiring codes, lead in food and food containers, chromium removal from ground water, fiber optic sensors for ph measurement, CFC replacement, predator/prey simulation, detection of micronuclei in germ cells, DNA conformation, stimulated brillouin scattering, DNA sequencing, evaluation of education programs, neural network analysis of nuclear glass, lithium ion batteries, Indonesian snails, optical switching systems, and photoreceiver design. Individual papers are indexed separately on the Energy Data Base.

  16. Analysis of the performance of the drive system and diffuser of the Langley unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Hasel, L. E.; Stallings, R. L.

    1981-01-01

    A broad program was initiated at the Langley Research Center in 1973 to reduce the energy consumption of the laboratory. As a part of this program, the performance characteristics of the Unitary Plan Wind Tunnel were reexamined to determine if potential methods for incresing the operating efficiencies of the tunnel could be formulated. The results of that study are summarized. The performance characteristics of the drive system components and the variable-geometry diffuser system of the tunnel are documented and analyzed. Several potential methods for reducing the energy requirements of the facility are discussed.

  17. Student Outreach With Renewable Energy Technology

    NASA Technical Reports Server (NTRS)

    Clark, Eric B. (Technical Monitor); Buffinger, D.; Fuller, C.; Kalu, A.

    2003-01-01

    The Student Outreach with Renewable Energy Technology (SORET) program is a joint grant that involves a collaboration between three HBCU's (Central State University, Savannah State University, and Wilberforce University) and NASA John H. Glenn Research Center at Lewis Field. The overall goal of the grant is to increase the interest of minority students in the technical disciplines, to encourage participating minority students to continue their undergraduate study in these disciplines, and to promote graduate school to these students. As a part of SORET, Central State University has developed an undergraduate research associates program over the past two years. As part of this program, students are required to take special laboratory courses offered at Wilberforce University that involve the application of renewable energy systems. The course requires the students to design, construct, and install a renewable energy project. In addition to the applied renewable energy course, Central State University provided four undergraduate research associates the opportunity to participate in summer internships at Texas Southern University (Renewable Energy Environmental Protection Program) and the Cleveland African-American Museum (Renewable Energy Summer Camp for High School Students) an activity co sponsored by NASA and the Cleveland African-American Museum. Savannah State University held a high school summer program with a theme of the Direct Impact of Science on Our Every Day Lives. The purpose of the institute was to whet the interest of students in science, mathematics, engineering, and technology (SMET) by demonstrating the effectiveness of science to address real world problems. The 2001 institute involved the design and installation of a PV water pumping system at the Center for Advanced Water Technology and Energy Systems at Savannah State. Both high school students and undergraduates contributed to this project. Wilberforce University has used NASA support to provide resources for an Applied Renewable Energy Laboratory offered to both Central State and Wilberforce students. In addition, research endeavors for high school and undergraduates were funded during the summer. The research involved attempts to layer photovoltaic materials on a conducting polymer (polypyrrole) substrate. Two undergraduate students who were interested in polymer research originated this concept. Finally, the university was able to purchase a meteorological station to assist in the analysis of the solar/wind hybrid power system operating at the university.

  18. A survey of electric and hybrid vehicles simulation programs. Volume 2: Questionnaire responses

    NASA Technical Reports Server (NTRS)

    Bevan, J.; Heimburger, D. A.; Metcalfe, M. A.

    1978-01-01

    The data received in a survey conducted within the United States to determine the extent of development and capabilities of automotive performance simulation programs suitable for electric and hybrid vehicle studies are presented. The survey was conducted for the Department of Energy by NASA's Jet Propulsion Laboratory. Volume 1 of this report summarizes and discusses the results contained in Volume 2.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. Finley

    This report provides the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2004 environmental surveillance and monitoring program for PPPL's are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2004.

  20. Proceedings of the 5. DOE review of laboratory programs for women

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The Fifth DOE Review of Laboratory Programs for Women was held at Brookhaven National Laboratory, May 6--8, 1996, and was co-sponsored by Princeton Plasma Physics Laboratory. The 1996 Review was organized as a Professional Workshop, that is, there were Invited Talks, plus Oral and Poster Presentations from the participants. These sessions were organized around the Focus Topics selected for the Review. The Focus Topics were: school-lab programs, college programs, positive image of women, cultural audits, employee development, employee mentoring, networking, dependent care, and alternate work schedules. On Monday evening, Toni Joseph gave an informal talk to the participants. She stressedmore » the importance of submitting the Action Items for the respective facilities, and assured them that they would be looked at by the Office of Energy Research. On Tuesday morning, the DOE Points-of-Contact (POC) presented an overview of the past Reviews to give some background on the present DOE Review, and discussed plans for the future. The Review concluded with Focus Sessions, one for each Focus Topic. Each of these sessions was charged with producing a report on the session topic. The Focus Group Reports are included in the Proceedings, along with abstracts to the invited talks, oral presentations and poster presentations.« less

Top