Guo, Shaoyin; Hihath, Joshua; Díez-Pérez, Ismael; Tao, Nongjian
2011-11-30
We report on the measurement and statistical study of thousands of current-voltage characteristics and transition voltage spectra (TVS) of single-molecule junctions with different contact geometries that are rapidly acquired using a new break junction method at room temperature. This capability allows one to obtain current-voltage, conductance voltage, and transition voltage histograms, thus adding a new dimension to the previous conductance histogram analysis at a fixed low-bias voltage for single molecules. This method confirms the low-bias conductance values of alkanedithiols and biphenyldithiol reported in literature. However, at high biases the current shows large nonlinearity and asymmetry, and TVS allows for the determination of a critically important parameter, the tunneling barrier height or energy level alignment between the molecule and the electrodes of single-molecule junctions. The energy level alignment is found to depend on the molecule and also on the contact geometry, revealing the role of contact geometry in both the contact resistance and energy level alignment of a molecular junction. Detailed statistical analysis further reveals that, despite the dependence of the energy level alignment on contact geometry, the variation in single-molecule conductance is primarily due to contact resistance rather than variations in the energy level alignment.
Adhesive properties and adhesive joints strength of graphite/epoxy composites
NASA Astrophysics Data System (ADS)
Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr
2017-05-01
The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.
Characteristics of level-spacing statistics in chaotic graphene billiards.
Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2011-03-01
A fundamental result in nonrelativistic quantum nonlinear dynamics is that the spectral statistics of quantum systems that possess no geometric symmetry, but whose classical dynamics are chaotic, are described by those of the Gaussian orthogonal ensemble (GOE) or the Gaussian unitary ensemble (GUE), in the presence or absence of time-reversal symmetry, respectively. For massless spin-half particles such as neutrinos in relativistic quantum mechanics in a chaotic billiard, the seminal work of Berry and Mondragon established the GUE nature of the level-spacing statistics, due to the combination of the chirality of Dirac particles and the confinement, which breaks the time-reversal symmetry. A question is whether the GOE or the GUE statistics can be observed in experimentally accessible, relativistic quantum systems. We demonstrate, using graphene confinements in which the quasiparticle motions are governed by the Dirac equation in the low-energy regime, that the level-spacing statistics are persistently those of GOE random matrices. We present extensive numerical evidence obtained from the tight-binding approach and a physical explanation for the GOE statistics. We also find that the presence of a weak magnetic field switches the statistics to those of GUE. For a strong magnetic field, Landau levels become influential, causing the level-spacing distribution to deviate markedly from the random-matrix predictions. Issues addressed also include the effects of a number of realistic factors on level-spacing statistics such as next nearest-neighbor interactions, different lattice orientations, enhanced hopping energy for atoms on the boundary, and staggered potential due to graphene-substrate interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poyer, D.A.
In this report, tests of statistical significance of five sets of variables with household energy consumption (at the point of end-use) are described. Five models, in sequence, were empirically estimated and tested for statistical significance by using the Residential Energy Consumption Survey of the US Department of Energy, Energy Information Administration. Each model incorporated additional information, embodied in a set of variables not previously specified in the energy demand system. The variable sets were generally labeled as economic variables, weather variables, household-structure variables, end-use variables, and housing-type variables. The tests of statistical significance showed each of the variable sets tomore » be highly significant in explaining the overall variance in energy consumption. The findings imply that the contemporaneous interaction of different types of variables, and not just one exclusive set of variables, determines the level of household energy consumption.« less
Photon strength and the low-energy enhancement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedeking, M.; Bernstein, L. A.; Bleuel, D. L.
2014-08-14
Several measurements in medium mass nuclei have reported a low-energy enhancement in the photon strength function. Although, much effort has been invested in unraveling the mysteries of this effect, its physical origin is still not conclusively understood. Here, a completely model-independent experimental approach to investigate the existence of this enhancement is presented. The experiment was designed to study statistical feeding from the quasi-continuum (below the neutron separation energy) to individual low-lying discrete levels in {sup 95}Mo produced in the (d, p) reaction. A key aspect to successfully study gamma decay from the region of high-level density is the detection andmore » extraction of correlated particle-gamma-gamma events which was accomplished using an array of Clover HPGe detectors and large area annular silicon detectors. The entrance channel excitation energy into the residual nucleus produced in the reaction was inferred from the detected proton energies in the silicon detectors. Gating on gamma-transitions originating from low-lying discrete levels specifies the state fed by statistical gamma-rays. Any particle-gamma-gamma event in combination with specific energy sum requirements ensures a clean and unambiguous determination of the initial and final state of the observed gamma rays. With these requirements the statistical feeding to individual discrete levels is extracted on an event-by-event basis. The results are presented and compared to {sup 95}Mo photon strength function data measured at the University of Oslo.« less
Emergent Irreversibility and Entanglement Spectrum Statistics
NASA Astrophysics Data System (ADS)
Chamon, Claudio; Hamma, Alioscia; Mucciolo, Eduardo R.
2014-06-01
We study the problem of irreversibility when the dynamical evolution of a many-body system is described by a stochastic quantum circuit. Such evolution is more general than a Hamiltonian one, and since energy levels are not well defined, the well-established connection between the statistical fluctuations of the energy spectrum and irreversibility cannot be made. We show that the entanglement spectrum provides a more general connection. Irreversibility is marked by a failure of a disentangling algorithm and is preceded by the appearance of Wigner-Dyson statistical fluctuations in the entanglement spectrum. This analysis can be done at the wave-function level and offers an alternative route to study quantum chaos and quantum integrability.
Effects of the water level on the flow topology over the Bolund island
NASA Astrophysics Data System (ADS)
Cuerva-Tejero, A.; Yeow, T. S.; Gallego-Castillo, C.; Lopez-Garcia, O.
2014-06-01
We have analyzed the influence of the actual height of Bolund island above water level on different full-scale statistics of the velocity field over the peninsula. Our analysis is focused on the database of 10-minute statistics provided by Risø-DTU for the Bolund Blind Experiment. We have considered 10-minut.e periods with near-neutral atmospheric conditions, mean wind speed values in the interval [5,20] m/s, and westerly wind directions. As expected, statistics such as speed-up, normalized increase of turbulent kinetic energy and probability of recirculating flow show a large dependence on the emerged height of the island for the locations close to the escarpment. For the published ensemble mean values of speed-up and normalized increase of turbulent kinetic energy in these locations, we propose that some ammount of uncertainty could be explained as a deterministic dependence of the flow field statistics upon the actual height of the Bolund island above the sea level.
NASA Astrophysics Data System (ADS)
Su, Jun; Zhu, Long; Guo, Chenchen
2018-05-01
Background: Special attention has been paid to study the shell effect and odd-even staggering (OES) in the nuclear spallation. Purpose: In this paper, we investigate the influence of the nuclear level density on the OES in the 56Fe+p spallations at energies from 300 to 1500 MeV/nucleon. Method: The isospin-dependent quantum molecular dynamics (IQMD) model is applied to produce the highly excited and equilibrium remnants, which is then de-excited using the statistical model gemini. The excitation energy of the heaviest hot fragments is applied to match the IQMD model with the gemini model. In the gemini model, the statistical description of the evaporation are based on the Hauser-Feshbach formalism, in which level density prescriptions are applied. Results: By investigating the OES of the excited pre-fragments, it is found that the OES originates at the end of the decay process when the excitation energy is close to the nucleon-emission threshold energy, i.e., the smaller value of the neutron separation energy and proton separation energy. The strong influence of level density on the OES is noticed. Two types of the nuclear level densities, the discrepancy of which is only about 7% near the nucleon emission threshold energy, are used in the model. However, the calculated values of the OES differ by the factor of 3 for the relevant nuclei. Conclusions: It is suggested that, although the particle-separation energies play a key role in determining the OES, the level density at excitation energy lower than the particle-separation energies should be taken into consideration
Level statistics of disordered spin-1/2 systems and materials with localized Cooper pairs.
Cuevas, Emilio; Feigel'man, Mikhail; Ioffe, Lev; Mezard, Marc
2012-01-01
The origin of continuous energy spectra in large disordered interacting quantum systems is one of the key unsolved problems in quantum physics. Although small quantum systems with discrete energy levels are noiseless and stay coherent forever in the absence of any coupling to external world, most large-scale quantum systems are able to produce a thermal bath and excitation decay. This intrinsic decoherence is manifested by a broadening of energy levels, which aquire a finite width. The important question is: what is the driving force and the mechanism of transition(s) between these two types of many-body systems - with and without intrinsic decoherence? Here we address this question via the numerical study of energy-level statistics of a system of interacting spin-1/2 with random transverse fields. We present the first evidence for a well-defined quantum phase transition between domains of discrete and continous many-body spectra in such spin models, implying the appearance of novel insulating phases in the vicinity of the superconductor-insulator transition in InO(x) and similar materials.
Many-body localization in a long range XXZ model with random-field
NASA Astrophysics Data System (ADS)
Li, Bo
2016-12-01
Many-body localization (MBL) in a long range interaction XXZ model with random field are investigated. Using the exact diagonal method, the MBL phase diagram with different tuning parameters and interaction range is obtained. It is found that the phase diagram of finite size results supplies strong evidence to confirm that the threshold interaction exponent α = 2. The tuning parameter Δ can efficiently change the MBL edge in high energy density stats, thus the system can be controlled to transfer from thermal phase to MBL phase by changing Δ. The energy level statistics data are consistent with result of the MBL phase diagram. However energy level statistics data cannot detect the thermal phase correctly in extreme long range case.
NASA Astrophysics Data System (ADS)
Czachor, Andrzej
2016-02-01
In this paper we consider the assembly of weakly interacting identical particles, where the occupation of single-particle energy-levels at thermal equilibrium is governed by statistics. The analytic form of the inter-energy-level jump matrix is derived and analytic solution of the related eigen-problem is given. It allows one to demonstrate the nature of decline in time of the energy emission (fluorescence, recombination) of such many-level system after excitation in a relatively simple and unifying way - as a multi-exponential de-excitation. For the system of L energy levels the number of the de-excitation lifetimes is L-1. The lifetimes depend on the energy level spectrum as a whole. Two- and three-level systems are considered in detail. The impact of the energy level degeneracy on the lifetimes is discussed.
NASA Astrophysics Data System (ADS)
Sargolzaeipor, S.; Hassanabadi, H.; Chung, W. S.
2018-04-01
In this paper, we study the T -fluctuated form of superstatistics. In this form, some thermodynamic quantities such as the Helmholtz energy, the entropy and the internal energy, are expressed in terms of the T -fluctuated form for a canonical ensemble. In addition, the partition functions in the formalism for 2-level and 3-level distributions are derived. Then we make use of the T -fluctuated superstatistics for a quantum harmonic oscillator problem and the thermal properties of the system for three statistics of the Bose-Einstein, Maxwell-Boltzmann and Fermi-Dirac statistics are calculated. The effect of the deformation parameter on these properties is examined. All the results recover the well-known results by removing the deformation parameter.
Relative mass distributions of neutron-rich thermally fissile nuclei within a statistical model
NASA Astrophysics Data System (ADS)
Kumar, Bharat; Kannan, M. T. Senthil; Balasubramaniam, M.; Agrawal, B. K.; Patra, S. K.
2017-09-01
We study the binary mass distribution for the recently predicted thermally fissile neutron-rich uranium and thorium nuclei using a statistical model. The level density parameters needed for the study are evaluated from the excitation energies of the temperature-dependent relativistic mean field formalism. The excitation energy and the level density parameter for a given temperature are employed in the convolution integral method to obtain the probability of the particular fragmentation. As representative cases, we present the results for the binary yields of 250U and 254Th. The relative yields are presented for three different temperatures: T =1 , 2, and 3 MeV.
Yan, Jianjun; Shen, Xiaojing; Wang, Yiqin; Li, Fufeng; Xia, Chunming; Guo, Rui; Chen, Chunfeng; Shen, Qingwei
2010-01-01
This study aims at utilising Wavelet Packet Transform (WPT) and Support Vector Machine (SVM) algorithm to make objective analysis and quantitative research for the auscultation in Traditional Chinese Medicine (TCM) diagnosis. First, Wavelet Packet Decomposition (WPD) at level 6 was employed to split more elaborate frequency bands of the auscultation signals. Then statistic analysis was made based on the extracted Wavelet Packet Energy (WPE) features from WPD coefficients. Furthermore, the pattern recognition was used to distinguish mixed subjects' statistical feature values of sample groups through SVM. Finally, the experimental results showed that the classification accuracies were at a high level.
Alternative Derivations of the Statistical Mechanical Distribution Laws
Wall, Frederick T.
1971-01-01
A new approach is presented for the derivation of statistical mechanical distribution laws. The derivations are accomplished by minimizing the Helmholtz free energy under constant temperature and volume, instead of maximizing the entropy under constant energy and volume. An alternative method involves stipulating equality of chemical potential, or equality of activity, for particles in different energy levels. This approach leads to a general statement of distribution laws applicable to all systems for which thermodynamic probabilities can be written. The methods also avoid use of the calculus of variations, Lagrangian multipliers, and Stirling's approximation for the factorial. The results are applied specifically to Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. The special significance of chemical potential and activity is discussed for microscopic systems. PMID:16578712
Alternative derivations of the statistical mechanical distribution laws.
Wall, F T
1971-08-01
A new approach is presented for the derivation of statistical mechanical distribution laws. The derivations are accomplished by minimizing the Helmholtz free energy under constant temperature and volume, instead of maximizing the entropy under constant energy and volume. An alternative method involves stipulating equality of chemical potential, or equality of activity, for particles in different energy levels. This approach leads to a general statement of distribution laws applicable to all systems for which thermodynamic probabilities can be written. The methods also avoid use of the calculus of variations, Lagrangian multipliers, and Stirling's approximation for the factorial. The results are applied specifically to Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. The special significance of chemical potential and activity is discussed for microscopic systems.
Sarkodie, Samuel Asumadu; Strezov, Vladimir
2018-10-15
Energy production remains the major emitter of atmospheric emissions, thus, in accordance with Australia's Emissions Projections by 2030, this study analyzed the impact of Australia's energy portfolio on environmental degradation and CO 2 emissions using locally compiled data on disaggregate energy production, energy imports and exports spanning from 1974 to 2013. This study employed the fully modified ordinary least squares, dynamic ordinary least squares, and canonical cointegrating regression estimators; statistically inspired modification of partial least squares regression analysis with a subsequent sustainability sensitivity analysis. The validity of the environmental Kuznets curve hypothesis proposes a paradigm shift from energy-intensive and carbon-intensive industries to less-energy-intensive and green energy industries and its related services, leading to a structural change in the economy. Thus, decoupling energy services provide better interpretation of the role of the energy sector portfolio in environmental degradation and CO 2 emissions assessment. The sensitivity analysis revealed that nonrenewable energy production above 10% and energy imports above 5% will dampen the goals for the 2030 emission reduction target. Increasing the share of renewable energy penetration in the energy portfolio decreases the level of CO 2 emissions, while increasing the share of non-renewable energy sources in the energy mix increases the level of atmospheric emissions, thus increasing climate change and their impacts. Copyright © 2018 Elsevier B.V. All rights reserved.
Poisson statistics of PageRank probabilities of Twitter and Wikipedia networks
NASA Astrophysics Data System (ADS)
Frahm, Klaus M.; Shepelyansky, Dima L.
2014-04-01
We use the methods of quantum chaos and Random Matrix Theory for analysis of statistical fluctuations of PageRank probabilities in directed networks. In this approach the effective energy levels are given by a logarithm of PageRank probability at a given node. After the standard energy level unfolding procedure we establish that the nearest spacing distribution of PageRank probabilities is described by the Poisson law typical for integrable quantum systems. Our studies are done for the Twitter network and three networks of Wikipedia editions in English, French and German. We argue that due to absence of level repulsion the PageRank order of nearby nodes can be easily interchanged. The obtained Poisson law implies that the nearby PageRank probabilities fluctuate as random independent variables.
Computation of statistical secondary structure of nucleic acids.
Yamamoto, K; Kitamura, Y; Yoshikura, H
1984-01-01
This paper presents a computer analysis of statistical secondary structure of nucleic acids. For a given single stranded nucleic acid, we generated "structure map" which included all the annealing structures in the sequence. The map was transformed into "energy map" by rough approximation; here, the energy level of every pairing structure consisting of more than 2 successive nucleic acid pairs was calculated. By using the "energy map", the probability of occurrence of each annealed structure was computed, i.e., the structure was computed statistically. The basis of computation was the 8-queen problem in the chess game. The validity of our computer programme was checked by computing tRNA structure which has been well established. Successful application of this programme to small nuclear RNAs of various origins is demonstrated. PMID:6198622
Energy Cascade Analysis: from Subscale Eddies to Mean Flow
NASA Astrophysics Data System (ADS)
Cheikh, Mohamad Ibrahim; Wonnell, Louis; Chen, James
2017-11-01
Understanding the energy transfer between eddies and mean flow can provide insights into the energy cascade process. Much work has been done to investigate the energy cascade at the level of the smallest eddies using different numerical techniques derived from the Navier-Stokes equations. These methodologies, however, prove to be computationally inefficient when producing energy spectra for a wide range of length scales. In this regard, Morphing Continuum Theory (MCT) resolves the length-scales issues by assuming the fluid continuum to be composed of inner structures that play the role of subscale eddies. The current study show- cases the capabilities of MCT in capturing the dynamics of energy cascade at the level of subscale eddies, through a supersonic turbulent flow of Mach 2.93 over an 8× compression ramp. Analysis of the results using statistical averaging procedure shows the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding rotational kinetic energy of the subscale eddies, indicating a multiscale transfer of energy. The results show that MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.
Emergent irreversibility and entanglement spectrum statistics
NASA Astrophysics Data System (ADS)
Mucciolo, Eduardo; Chamon, Claudio; Hamma, Alioscia
2014-03-01
We study the problem of irreversibility when the dynamical evolution of a many-body system is described by a stochastic quantum circuit. Such evolution is more general than Hamitonian, and since energy levels are not well defined, the well-established connection between the statistical fluctuations of the energy spectrum and irreversibility cannot be made. We show that the entanglement spectrum provides a more general connection. Irreversibility is marked by a failure of a disentangling algorithm and is preceded by the appearance of Wigner-Dyson statistical fluctuations in the entanglement spectrum. This analysis can be done at the wavefunction level and offers a new route to study quantum chaos and quantum integrability. We acknowledge financial support from the U.S. National Science Foundation through grants CCF 1116590 and CCF 1117241, from the National Basic Research Program of China through grants 2011CBA00300 and 2011CBA00301, and from the National Natural Science Fo.
NASA Astrophysics Data System (ADS)
Langley, Robin S.
2018-03-01
This work is concerned with the statistical properties of the frequency response function of the energy of a random system. Earlier studies have considered the statistical distribution of the function at a single frequency, or alternatively the statistics of a band-average of the function. In contrast the present analysis considers the statistical fluctuations over a frequency band, and results are obtained for the mean rate at which the function crosses a specified level (or equivalently, the average number of times the level is crossed within the band). Results are also obtained for the probability of crossing a specified level at least once, the mean rate of occurrence of peaks, and the mean trough-to-peak height. The analysis is based on the assumption that the natural frequencies and mode shapes of the system have statistical properties that are governed by the Gaussian Orthogonal Ensemble (GOE), and the validity of this assumption is demonstrated by comparison with numerical simulations for a random plate. The work has application to the assessment of the performance of dynamic systems that are sensitive to random imperfections.
Cold-Plasma Coagulation on the Surface of the Small Bowel Is Safe in Pigs.
Hoffmann, Martin; Ulrich, Anita; Habermann, Jens Karsten; Bouchard, Ralf; Laubert, Tilman; Bruch, Hans-Peter; Keck, Tobias; Schloericke, Erik
2016-02-01
Surgical treatment in patients with peritoneal carcinomatosis is often limited by the extent of small bowel involvement. We investigated the results of the application of cold-plasma coagulation on the surface of the small bowel. After permission by the federal government of Schleswig-Holstein, 8 female pigs underwent a laparoscopy and cold-plasma coagulation on the small bowel with different energy levels. Cold plasma is generated by high-frequency energy that is directed through helium gas. After 12 to 18 days a laparotomy was done and the abdomen was inspected for peritonitis, fistula, or other pathology. Perioperative morbidity was low with transient diarrhea in 1 pig and loss of appetite for 1 day in another pig. We saw 1 interenteric fistula that was clinically not apparent after accidently prolonged application of cold-plasma coagulation (6 seconds instead of 2 seconds) with the highest energy level of 100 W. We did not observe any mortality. The depth of necrosis after application of different energy levels was dependent on the generator energy. We observed statistically significant differences between the different energy levels (20 W vs 10 W [P = .014], 75 W vs 50 W [P = .011]). The comparison of the necrosis depths after the application of 100 W and 75 W almost reached statistical significance (P = .059). We observed distinct interenteric adhesions as a result of the coagulation. The application of cold-plasma coagulation on the surface of vital bowel in pigs is safe. We would recommend against the use of the highest energy level of 100 W before more clinical data are available. © The Author(s) 2015.
The effects of an energy efficiency retrofit on indoor air quality.
Frey, S E; Destaillats, H; Cohn, S; Ahrentzen, S; Fraser, M P
2015-04-01
To investigate the impacts of an energy efficiency retrofit, indoor air quality and resident health were evaluated at a low-income senior housing apartment complex in Phoenix, Arizona, before and after a green energy building renovation. Indoor and outdoor air quality sampling was carried out simultaneously with a questionnaire to characterize personal habits and general health of residents. Measured indoor formaldehyde levels before the building retrofit routinely exceeded reference exposure limits, but in the long-term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long-term follow-up sampling within certain resident subpopulations (i.e. residents who report smoking and residents who had lived longer at the apartment complex). © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Electric Power Monthly, June 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-09-13
The EPM is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity andmore » quality of fuel, and cost of fuel. Quantity, quality, and cost of fuel data lag the net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour data by 1 month. This difference in reporting appears in the national, Census division, and State level tables. However, at the plant level, all statistics presented are for the earlier month for the purpose of comparison. 40 tabs.« less
LaRiccia, Patrick J; Farrar, John T; Sammel, Mary D; Gallo, Joseph J
2008-07-01
To determine the efficacy of the food supplement OPC Factor to increase energy levels in healthy adults aged 45 to 65. Randomized, placebo-controlled, triple-blind crossover study. Twenty-five (25) healthy adults recruited from the University of Pennsylvania Health System. OPC Factor,trade mark (AlivenLabs, Lebanon, TN) a food supplement that contains oligomeric proanthocyanidins from grape seeds and pine bark along with other nutrient supplements including vitamins and minerals, was in the form of an effervescent powder. The placebo was similar in appearance and taste. Five outcome measurements were performed: (1) Energy subscale scores of the Activation-Deactivation Adjective Check List (AD ACL); (2) One (1) global question of percent energy change (Global Energy Percent Change); (3) One (1) global question of energy change measured on a Likert scale (Global Energy Scale Change); 4. One (1) global question of percent overall status change (Global Overall Status Percent Change); and (5) One (1) global question of overall status change measured on a Likert scale (Global Overall Status Scale Change). There were no carryover/period effects in the groups randomized to Placebo/Active Product sequence versus Active Product/Placebo sequence. Examination of the AD ACL Energy subscale scores for the Active Product versus Placebo comparison revealed no significant difference in the intention-to-treat (IT) analysis and the treatment received (TR) analysis. However, Global Energy Percent Change (p = 0.06) and Global Energy Scale Change (p = 0.09) both closely approached conventional levels of statistical significance for the active product in the IT analysis. Global Energy Percent Change (p = 0.05) and Global Energy Scale Change (p = 0.04) reached statistical significance in the TR analysis. A cumulative percent responders analysis graph indicated greater response rates for the active product. OPC Factor may increase energy levels in healthy adults aged 45-65 years. A larger study is recommended. Clinical Trials.gov identifier: NCT03318019.
Roshanravan, Neda; Alizadeh, Mohammad; Hedayati, Mehdi; Asghari-Jafarabadi, Mohammad; Mesri Alamdari, Naimeh; Anari, Farideh; Tarighat-Esfanjani, Ali
2015-02-01
Hyperglycemia and gestational diabetes mellitus are complications of pregnancy. Both mothers and newborns are typically at increased risk for complications. This study sought to determine effect of zinc supplementation on serum glucose levels, insulin resistance, energy and macronutrients intakes in pregnant women with impaired glucose tolerance. In this clinical trial 44 pregnant women with impaired glucose tolerance, from December 2012 -April 2013 were randomly divided into zinc (n=22) and placebo (n=22) groups and recived 30mg/day zinc gluconate and (n=22), and placebo for eight consecutive weeks respectively. Dietary food intake was estimated from 3-days diet records. Serum levels of zinc, fasting blood sugar, and insulin were measured by conventional methods. Also homeostatic model assessment of insulin resistance was calculated. Serumlevels of fasting blood sugar, insulin and homeostatic model assessment of insulin resistance slightly decreased in zinc group, but these changes were not statistically significant. Serum zinc levels (P =0.012), energy (P=0.037), protein (P=0.019) and fat (P=0.017) intakes increased statistically significant in the zinc group after intervention but not in the placebo group. Oral supplementation with zinc could be effective in increasing serum zinc levels and energy intake with no effects on fasting blood sugar, homeostatic model assessment of insulin resistance and insulin levels.
Li, Changyang; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Yin, Yong; Dagan Feng, David
2015-01-01
Automated and general medical image segmentation can be challenging because the foreground and the background may have complicated and overlapping density distributions in medical imaging. Conventional region-based level set algorithms often assume piecewise constant or piecewise smooth for segments, which are implausible for general medical image segmentation. Furthermore, low contrast and noise make identification of the boundaries between foreground and background difficult for edge-based level set algorithms. Thus, to address these problems, we suggest a supervised variational level set segmentation model to harness the statistical region energy functional with a weighted probability approximation. Our approach models the region density distributions by using the mixture-of-mixtures Gaussian model to better approximate real intensity distributions and distinguish statistical intensity differences between foreground and background. The region-based statistical model in our algorithm can intuitively provide better performance on noisy images. We constructed a weighted probability map on graphs to incorporate spatial indications from user input with a contextual constraint based on the minimization of contextual graphs energy functional. We measured the performance of our approach on ten noisy synthetic images and 58 medical datasets with heterogeneous intensities and ill-defined boundaries and compared our technique to the Chan-Vese region-based level set model, the geodesic active contour model with distance regularization, and the random walker model. Our method consistently achieved the highest Dice similarity coefficient when compared to the other methods.
Jorgensen, William L; Tirado-Rives, Julian
2005-05-10
An overview is provided on the development and status of potential energy functions that are used in atomic-level statistical mechanics and molecular dynamics simulations of water and of organic and biomolecular systems. Some topics that are considered are the form of force fields, their parameterization and performance, simulations of organic liquids, computation of free energies of hydration, universal extension for organic molecules, and choice of atomic charges. The discussion of water models covers some history, performance issues, and special topics such as nuclear quantum effects.
New statistical potential for quality assessment of protein models and a survey of energy functions
2010-01-01
Background Scoring functions, such as molecular mechanic forcefields and statistical potentials are fundamentally important tools in protein structure modeling and quality assessment. Results The performances of a number of publicly available scoring functions are compared with a statistical rigor, with an emphasis on knowledge-based potentials. We explored the effect on accuracy of alternative choices for representing interaction center types and other features of scoring functions, such as using information on solvent accessibility, on torsion angles, accounting for secondary structure preferences and side chain orientation. Partially based on the observations made, we present a novel residue based statistical potential, which employs a shuffled reference state definition and takes into account the mutual orientation of residue side chains. Atom- and residue-level statistical potentials and Linux executables to calculate the energy of a given protein proposed in this work can be downloaded from http://www.fiserlab.org/potentials. Conclusions Among the most influential terms we observed a critical role of a proper reference state definition and the benefits of including information about the microenvironment of interaction centers. Molecular mechanical potentials were also tested and found to be over-sensitive to small local imperfections in a structure, requiring unfeasible long energy relaxation before energy scores started to correlate with model quality. PMID:20226048
Feasibility study of new energy projects on three-level indicator system
NASA Astrophysics Data System (ADS)
Zhan, Zhigang
2018-06-01
With the rapid development of new energy industry, many new energy development projects are being carried out all over the world. To analyze the feasibility of the project. we build feasibility of new energy projects assessment model, based on the gathered abundant data about progress in new energy projects.12 indicators are selected by principal component analysis(PCA). Then we construct a new three-level indicator system, where the first level has 1 indicator, the second level has 5 indicators and the third level has 12 indicators to evaluate. Moreover, we use the entropy weight method (EWM) to get weight vector of the indicators in the third level and the multivariate statistical analysis(MVA)to get the weight vector of indicators in the second-class. We use this evaluation model to evaluate the feasibility of the new energy project and make a reference for the subsequent new energy investment. This could be a contribution to the world's low-carbon and green development by investing in sustainable new energy projects. We will introduce new variables and improve the weight model in the future. We also conduct a sensitivity analysis of the model and illustrate the strengths and weaknesses.
Three-state combinatorial switch models as applied to the binding of oxygen by human hemoglobin.
Straume, M; Johnson, M L
1988-02-23
We have generated a series of all 6561 unique, discrete three-state combinatorial switch models to describe the partitioning of the cooperative oxygen-binding free change among the 10 variously ligated forms of human hemoglobin tetramers. These models were inspired by the experimental observation of Smith and Ackers that the cooperative free energy of the intersubunit contact regions of the 10 possible ligated forms of human hemoglobin tetramers can be represented by a particular distribution of three distinct energy levels [Smith, F. R., & Ackers, G. K. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5347-5351]. A statistical thermodynamic formulation accounting for both dimer-tetramer equilibria and ligand binding properties of hemoglobin solutions as a function of oxygen and protein concentrations was utilized to exhaustively test these thermodynamic models. In this series of models each of the 10 ligated forms of the hemoglobin tetramer can exist in one, and only one, of three possible energy levels; i.e., each ligated form was assumed to be associated with a discrete energy state. This series of models includes all possible ways that the 10 ligation states of hemoglobin can be distributed into three distinct cooperative energy levels. The mathematical models, as presented here, do not permit equilibria between energy states to exist for any of the 10 unique ligated forms of hemoglobin tetramers. These models were analyzed by nonlinear least-squares estimation of the free energy parameters characteristic of this statistical thermodynamic development.(ABSTRACT TRUNCATED AT 250 WORDS)
Final excitation energy of fission fragments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Karl-Heinz; Jurado, Beatriz
We study how the excitation energy of the fully accelerated fission fragments is built up. It is stressed that only the intrinsic excitation energy available before scission can be exchanged between the fission fragments to achieve thermal equilibrium. This is in contradiction with most models used to calculate prompt neutron emission, where it is assumed that the total excitation energy of the final fragments is shared between the fragments by the condition of equal temperatures. We also study the intrinsic excitation-energy partition in statistical equilibrium for different level-density descriptions as a function of the total intrinsic excitation energy of themore » fissioning system. Excitation energies are found to be strongly enhanced in the heavy fragment, if the level density follows a constant-temperature behavior at low energies, e.g., in the composed Gilbert-Cameron description.« less
Signatures of chaos in the Brillouin zone.
Barr, Aaron; Barr, Ariel; Porter, Max D; Reichl, Linda E
2017-10-01
When the classical dynamics of a particle in a finite two-dimensional billiard undergoes a transition to chaos, the quantum dynamics of the particle also shows manifestations of chaos in the form of scarring of wave functions and changes in energy level spacing distributions. If we "tile" an infinite plane with such billiards, we find that the Bloch states on the lattice undergo avoided crossings, energy level spacing statistics change from Poisson-like to Wigner-like, and energy sheets of the Brillouin zone begin to "mix" as the classical dynamics of the billiard changes from regular to chaotic behavior.
NASA Astrophysics Data System (ADS)
Crespo Campo, L.; Bello Garrote, F. L.; Eriksen, T. K.; Görgen, A.; Guttormsen, M.; Hadynska-Klek, K.; Klintefjord, M.; Larsen, A. C.; Renstrøm, T.; Sahin, E.; Siem, S.; Springer, A.; Tornyi, T. G.; Tveten, G. M.
2016-10-01
Particle-γ coincidence data have been analyzed to obtain the nuclear level density and the γ -strength function of 64Ni by means of the Oslo method. The level density found in this work is in very good agreement with known energy levels at low excitation energies as well as with data deduced from particle-evaporation measurements at excitation energies above Ex≈5.5 MeV. The experimental γ -strength function presents an enhancement at γ energies below Eγ≈3 MeV and possibly a resonancelike structure centered at Eγ≈9.2 MeV. The obtained nuclear level density and γ -strength function have been used to estimate the (n ,γ ) cross section for the s -process branch-point nucleus 63Ni, of particular interest for astrophysical calculations of elemental abundances.
Sinko, William; de Oliveira, César Augusto F; Pierce, Levi C T; McCammon, J Andrew
2012-01-10
Molecular dynamics (MD) is one of the most common tools in computational chemistry. Recently, our group has employed accelerated molecular dynamics (aMD) to improve the conformational sampling over conventional molecular dynamics techniques. In the original aMD implementation, sampling is greatly improved by raising energy wells below a predefined energy level. Recently, our group presented an alternative aMD implementation where simulations are accelerated by lowering energy barriers of the potential energy surface. When coupled with thermodynamic integration simulations, this implementation showed very promising results. However, when applied to large systems, such as proteins, the simulation tends to be biased to high energy regions of the potential landscape. The reason for this behavior lies in the boost equation used since the highest energy barriers are dramatically more affected than the lower ones. To address this issue, in this work, we present a new boost equation that prevents oversampling of unfavorable high energy conformational states. The new boost potential provides not only better recovery of statistics throughout the simulation but also enhanced sampling of statistically relevant regions in explicit solvent MD simulations.
ERIC Educational Resources Information Center
Halpern, Arthur M.
2010-01-01
Using readily available computational applications and resources, students can construct a high-level ab initio potential energy surface (PES) for the argon dimer. From this information, they can obtain detailed molecular constants of the dimer, including its dissociation energy, which compare well with experimental determinations. Using both…
Locke, Glenn L.; La Camera, Richard J.
2003-01-01
The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January 2000 through December 2002. Historical data on water levels, discharges, and withdrawals are graphically presented to indicate variations through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented for 1992-2002 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to selected baseline periods. Baseline periods varied for 1985-93. At six of the seven wells in Jackass Flats, the median water levels for 2002 were slightly higher (0.3-2.4 feet) than for their respective baseline periods. At the remaining well, data for 2002 was not summarized statistically but median water-level altitude in 2001 was 0.7 foot higher than that in its baseline period.
Popko, Janusz; Karpiński, Michał; Chojnowska, Sylwia; Maresz, Katarzyna; Milewski, Robert; Badmaev, Vladimir; Schurgers, Leon J
2018-06-06
In the past decades, an increased interest in the roles of vitamin D and K has become evident, in particular in relation to bone health and prevention of bone fractures. The aim of the current study was to evaluate vitamin D and K status in children with low-energy fractures and in children without fractures. The study group of 20 children (14 boys, 6 girls) aged 5 to 15 years old, with radiologically confirmed low-energy fractures was compared with the control group of 19 healthy children (9 boys, 10 girls), aged 7 to 17 years old, without fractures. Total vitamin D (25(OH)D3 plus 25(OH)D2), calcium, BALP (bone alkaline phosphatase), NTx (N-terminal telopeptide), and uncarboxylated (ucOC) and carboxylated osteocalcin (cOC) serum concentrations were evaluated. Ratio of serum uncarboxylated osteocalcin to serum carboxylated osteocalcin ucOC:cOC (UCR) was used as an indicator of bone vitamin K status. Logistic regression models were created to establish UCR influence for odds ratio of low-energy fractures in both groups. There were no statistically significant differences in the serum calcium, NTx, BALP, or total vitamin D levels between the two groups. There was, however, a statistically significant difference in the UCR ratio. The median UCR in the fracture group was 0.471 compared with the control group value of 0.245 ( p < 0.0001). In the logistic regression analysis, odds ratio of low-energy fractures for UCR was calculated, with an increased risk of fractures by some 78.3 times. In this pilot study, better vitamin K status expressed as the ratio of ucOC:cOC-UCR—is positively and statistically significantly correlated with lower rate of low-energy fracture incidence.
Craven, Galen T; Nitzan, Abraham
2018-01-28
Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.
NASA Astrophysics Data System (ADS)
Craven, Galen T.; Nitzan, Abraham
2018-01-01
Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.
Identification of curriculum content for a renewable energy graduate degree program
NASA Astrophysics Data System (ADS)
Haughery, John R.
There currently exists a disconnect between renewable energy industry workforce needs and academic program proficiencies. This is evidenced by an absence of clear curriculum content on renewable energy graduate program websites. The purpose of this study was to identify a set of curriculum content for graduate degrees in renewable energy. At the conclusion, a clear list of 42 content items was identified and statistically ranked. The content items identified were based on a review of literature from government initiatives, professional society's body of knowledge, and related research studies. Leaders and experts in the field of renewable energy and sustainability were surveyed, using a five-point Likert-Scale model. This allowed each item's importance level to be analyzed and prioritized based on non-parametric statistical analysis methods. The study found seven competency items to be very important , 30 to be important, and five to be somewhat important. The results were also appropriate for use as a framework in developing or improving renewable energy graduate programs.
Self-powered monitoring of repeated head impacts using time-dilation energy measurement circuit.
Feng, Tao; Aono, Kenji; Covassin, Tracey; Chakrabartty, Shantanu
2015-04-01
Due to the current epidemic levels of sport-related concussions (SRC) in the U.S., there is a pressing need for technologies that can facilitate long-term and continuous monitoring of head impacts. Existing helmet-sensor technology is inconsistent, inaccurate, and is not economically or logistically practical for large-scale human studies. In this paper, we present the design of a miniature, battery-less, self-powered sensor that can be embedded inside sport helmets and can continuously monitor and store different spatial and temporal statistics of the helmet impacts. At the core of the proposed sensor is a novel time-dilation circuit that allows measurement of a wide-range of impact energies. In this paper an array of linear piezo-floating-gate (PFG) injectors has been used for self-powered sensing and storage of linear and rotational head-impact statistics. The stored statistics are then retrieved using a plug-and-play reader and has been used for offline data analysis. We report simulation and measurement results validating the functionality of the time-dilation circuit for different levels of impact energies. Also, using prototypes of linear PFG integrated circuits fabricated in a 0.5 μm CMOS process, we demonstrate the functionality of the proposed helmet-sensors using controlled drop tests.
Photon Strength Function at Low Energies in 95Mo
Wiedeking, M.; Bernstein, L. A.; Allmond, J. M.; ...
2014-05-01
A new and model-independent experimental method has been developed to determine the energy dependence of the photon strength function. It is designed to study statistical feeding from the quasi continuum to individual low-lying discrete levels. This new technique is presented and results for 95Mo are compared to data from the University of Oslo. In particular, questions regarding the existence of the low-energy enhancement in the photon strength function are addressed.
Development of the Concept of Energy Conservation using Simple Experiments for Grade 10 Students
NASA Astrophysics Data System (ADS)
Rachniyom, S.; Toedtanya, K.; Wuttiprom, S.
2017-09-01
The purpose of this research was to develop students’ concept of and retention rate in relation to energy conservation. Activities included simple and easy experiments that considered energy transformation from potential to kinetic energy. The participants were 30 purposively selected grade 10 students in the second semester of the 2016 academic year. The research tools consisted of learning lesson plans and a learning achievement test. Results showed that the experiments worked well and were appropriate as learning activities. The students’ achievement scores significantly increased at the statistical level of 05, the students’ retention rates were at a high level, and learning behaviour was at a good level. These simple experiments allowed students to learn to demonstrate to their peers and encouraged them to use familiar models to explain phenomena in daily life.
Spectroscopic signatures of localization with interacting photons in superconducting qubits
NASA Astrophysics Data System (ADS)
Roushan, P.; Neill, C.; Tangpanitanon, J.; Bastidas, V. M.; Megrant, A.; Barends, R.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Foxen, B.; Giustina, M.; Jeffrey, E.; Kelly, J.; Lucero, E.; Mutus, J.; Neeley, M.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Neven, H.; Angelakis, D. G.; Martinis, J.
2017-12-01
Quantized eigenenergies and their associated wave functions provide extensive information for predicting the physics of quantum many-body systems. Using a chain of nine superconducting qubits, we implement a technique for resolving the energy levels of interacting photons. We benchmark this method by capturing the main features of the intricate energy spectrum predicted for two-dimensional electrons in a magnetic field—the Hofstadter butterfly. We introduce disorder to study the statistics of the energy levels of the system as it undergoes the transition from a thermalized to a localized phase. Our work introduces a many-body spectroscopy technique to study quantum phases of matter.
NASA Astrophysics Data System (ADS)
Shul'ga, N. F.; Syshchenko, V. V.; Tarnovsky, A. I.; Solovyev, I. I.; Isupov, A. Yu.
2018-01-01
The motion of fast electrons through the crystal during axial channeling could be regular and chaotic. The dynamical chaos in quantum systems manifests itself in both statistical properties of energy spectra and morphology of wave functions of the individual stationary states. In this report, we investigate the axial channeling of high and low energy electrons and positrons near [100] direction of a silicon crystal. This case is particularly interesting because of the fact that the chaotic motion domain occupies only a small part of the phase space for the channeling electrons whereas the motion of the channeling positrons is substantially chaotic for the almost all initial conditions. The energy levels of transverse motion, as well as the wave functions of the stationary states, have been computed numerically. The group theory methods had been used for classification of the computed eigenfunctions and identification of the non-degenerate and doubly degenerate energy levels. The channeling radiation spectrum for the low energy electrons has been also computed.
Atomic Data and Spectral Line Intensities for Ni XXI
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Landi, E.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ni XXI. The configurations used are 2s(sup 2)2p(sup 4), 2s2p(sup 5), 2p(sup 6), 2s(sup 2)2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 58 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 85, 170, 255, 340, and 425 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of log T(sub e)(K)=6.9, corresponding to maximum abundance of Ni XXI. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted intensity ratios are compared with available observations.
Low-energy helium-neon laser irradiation and the tensile strength of incisional wounds in the rat.
Broadley, C; Broadley, K N; Disimone, G; Riensch, L; Davidson, J M
1995-01-01
Low-level laser energy has been reported to modulate the wound healing process in some but not all studies. To examine this hypothesis, we investigated incisional wounds made on the dorsal pelt of rats for changes in the healing produced by low-level irradiation with a helium-neon laser. The incisions were made with a scalpel and closed with sutures. The rats were irradiated daily for 12 days with four levels of laser light (0.0, 0.47, 0.93, and 1.73 J/cm(2)). Analysis of wound tensile strength indicated a possible strengthening of fresh wounds at the highest levels of irradiation (1.73 J/cm(2)). No change was observed in the tensile strength of formalin-fixed wounds. The distribution of measured tensile strengths did not follow normal statistics; instead they showed a platykurtic distribution. Using resampling statistics, where no assumption is made as to the nature of the distribution, we found that the results were contrary to other studies: no biostimulatory effect was seen.
Virial expansion for almost diagonal random matrices
NASA Astrophysics Data System (ADS)
Yevtushenko, Oleg; Kravtsov, Vladimir E.
2003-08-01
Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\
Qiu, Wei; Hamernik, Roger P; Davis, Robert I
2013-05-01
A series of Gaussian and non-Gaussian equal energy noise exposures were designed with the objective of establishing the extent to which the kurtosis statistic could be used to grade the severity of noise trauma produced by the exposures. Here, 225 chinchillas distributed in 29 groups, with 6 to 8 animals per group, were exposed at 97 dB SPL. The equal energy exposures were presented either continuously for 5 d or on an interrupted schedule for 19 d. The non-Gaussian noises all differed in the level of the kurtosis statistic or in the temporal structure of the noise, where the latter was defined by different peak, interval, and duration histograms of the impact noise transients embedded in the noise signal. Noise-induced trauma was estimated from auditory evoked potential hearing thresholds and surface preparation histology that quantified sensory cell loss. Results indicated that the equal energy hypothesis is a valid unifying principle for estimating the consequences of an exposure if and only if the equivalent energy exposures had the same kurtosis. Furthermore, for the same level of kurtosis the detailed temporal structure of an exposure does not have a strong effect on trauma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bochicchio, Davide; Panizon, Emanuele; Ferrando, Riccardo
2015-10-14
We compare the performance of two well-established computational algorithms for the calculation of free-energy landscapes of biomolecular systems, umbrella sampling and metadynamics. We look at benchmark systems composed of polyethylene and polypropylene oligomers interacting with lipid (phosphatidylcholine) membranes, aiming at the calculation of the oligomer water-membrane free energy of transfer. We model our test systems at two different levels of description, united-atom and coarse-grained. We provide optimized parameters for the two methods at both resolutions. We devote special attention to the analysis of statistical errors in the two different methods and propose a general procedure for the error estimation inmore » metadynamics simulations. Metadynamics and umbrella sampling yield the same estimates for the water-membrane free energy profile, but metadynamics can be more efficient, providing lower statistical uncertainties within the same simulation time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIAmore » publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravlev, B. V., E-mail: zhurav@ippe.ru; Lychagin, A. A., E-mail: Lychagin1@yandex.ru; Titarenko, N. N.
Level densities and their energy dependences for nuclei in the mass range of 47 {<=} A {<=} 59 were determined from the results obtained by measuring neutron-evaporation spectra in respective (p, n) reactions. The spectra of neutrons originating from the (p, n) reactions on {sup 47}Ti, {sup 48}Ti, {sup 49}Ti, {sup 53}Cr, {sup 54}Cr, {sup 57}Fe, and {sup 59}Co nuclei were measured in the proton-energy range of 7-11 MeV. These measurements were performed with the aid of a fast-neutron spectrometer by the time-of-flight method over the base of the EGP-15 pulsed tandem accelerator installed at the Institute for Physics andmore » Power Engineering (Obninsk, Russia). A high resolution of the spectrometer and its stability in the time of flight made it possible to identify reliably discrete low-lying levels along with the continuum part of neutron spectra. Our measured data were analyzed within the statistical equilibrium and preequilibrium models of nuclear reactions. The respective calculations were performed with the aid of the Hauser-Feshbach formalismof statistical theory supplemented with the generalized model of a superfluid nucleus, the back-shifted Fermi gas model, and the Gilbert-Cameron composite formula for nuclear level densities. Nuclear level densities for {sup 47}V, {sup 48}V, {sup 49}V, {sup 53}Mn, {sup 54}Mn, {sup 57}Co, and {sup 59}Ni and their energy dependences were determined. The results are discussed and compared with available experimental data and with recommendations of model-based systematics.« less
Probability of detection of internal voids in structural ceramics using microfocus radiography
NASA Technical Reports Server (NTRS)
Baaklini, G. Y.; Roth, D. J.
1986-01-01
The reliability of microfocous X-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 precent confidence level for voids ranging in size from 20 to 528 micro m in diameter.
Probability of detection of internal voids in structural ceramics using microfocus radiography
NASA Technical Reports Server (NTRS)
Baaklini, G. Y.; Roth, D. J.
1985-01-01
The reliability of microfocus x-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 percent confidence level for voids ranging in size from 20 to 528 micro m in diameter.
Theory of chaos regularization of tunneling in chaotic quantum dots.
Lee, Ming-Jer; Antonsen, Thomas M; Ott, Edward; Pecora, Louis M
2012-11-01
Recent numerical experiments of Pecora et al. [Phys. Rev. E 83, 065201 (2011)] have investigated tunneling between two-dimensional symmetric double wells separated by a tunneling barrier. The wells were bounded by hard walls and by the potential barrier which was created by a step increase from the zero potential within a well to a uniform barrier potential within the barrier region, which is a situation potentially realizable in the context of quantum dots. Numerical results for the splitting of energy levels between symmetric and antisymmetric eigenstates were calculated. It was found that the splittings vary erratically from state to state, and the statistics of these variations were studied for different well shapes with the fluctuation levels being much less in chaotic wells than in comparable nonchaotic wells. Here we develop a quantitative theory for the statistics of the energy level splittings for chaotic wells. Our theory is based on the random plane wave hypothesis of Berry. While the fluctuation statistics are very different for chaotic and nonchaotic well dynamics, we show that the mean splittings of differently shaped wells, including integrable and chaotic wells, are the same if their well areas and barrier parameters are the same. We also consider the case of tunneling from a single well into a region with outgoing quantum waves.
KECSA-Movable Type Implicit Solvation Model (KMTISM)
2015-01-01
Computation of the solvation free energy for chemical and biological processes has long been of significant interest. The key challenges to effective solvation modeling center on the choice of potential function and configurational sampling. Herein, an energy sampling approach termed the “Movable Type” (MT) method, and a statistical energy function for solvation modeling, “Knowledge-based and Empirical Combined Scoring Algorithm” (KECSA) are developed and utilized to create an implicit solvation model: KECSA-Movable Type Implicit Solvation Model (KMTISM) suitable for the study of chemical and biological systems. KMTISM is an implicit solvation model, but the MT method performs energy sampling at the atom pairwise level. For a specific molecular system, the MT method collects energies from prebuilt databases for the requisite atom pairs at all relevant distance ranges, which by its very construction encodes all possible molecular configurations simultaneously. Unlike traditional statistical energy functions, KECSA converts structural statistical information into categorized atom pairwise interaction energies as a function of the radial distance instead of a mean force energy function. Within the implicit solvent model approximation, aqueous solvation free energies are then obtained from the NVT ensemble partition function generated by the MT method. Validation is performed against several subsets selected from the Minnesota Solvation Database v2012. Results are compared with several solvation free energy calculation methods, including a one-to-one comparison against two commonly used classical implicit solvation models: MM-GBSA and MM-PBSA. Comparison against a quantum mechanics based polarizable continuum model is also discussed (Cramer and Truhlar’s Solvation Model 12). PMID:25691832
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics formore » the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.« less
Zamani, Pouya
2017-08-01
Traditional ratio measures of efficiency, including feed conversion ratio (FCR), gross milk efficiency (GME), gross energy efficiency (GEE) and net energy efficiency (NEE) may have some statistical problems including high correlations with milk yield. Residual energy intake (REI) or residual feed intake (RFI) is another criterion, proposed to overcome the problems attributed to the traditional ratio criteria, but it does not account for production or intake levels. For example, the same REI value could be considerable for low producing and negligible for high producing cows. The aim of this study was to propose a new measure of efficiency to overcome the problems attributed to the previous criteria. A total of 1478 monthly records of 268 lactating Holstein cows were used for this study. In addition to FCR, GME, GEE, NEE and REI, a new criterion called proportional residual energy intake (PREI) was calculated as REI to net energy intake ratio and defined as proportion of net energy intake lost as REI. The PREI had an average of -0·02 and range of -0·36 to 0·27, meaning that the least efficient cow lost 0·27 of her net energy intake as REI, while the most efficient animal saved 0·36 of her net energy intake as less REI. Traditional ratio criteria (FCR, GME, GEE and NEE) had high correlations with milk and fat corrected milk yields (absolute values from 0·469 to 0·816), while the REI and PREI had low correlations (0·000 to 0·069) with milk production. The results showed that the traditional ratio criteria (FCR, GME, GEE and NEE) are highly influenced by production traits, while the REI and PREI are independent of production level. Moreover, the PREI adjusts the REI magnitude for intake level. It seems that the PREI could be considered as a worthwhile measure of efficiency for future studies.
NASA Astrophysics Data System (ADS)
Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan
2016-10-01
This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.
Rethinking the measurement of energy poverty in Europe: A critical analysis of indicators and data
Bouzarovski, Stefan; Snell, Carolyn
2017-01-01
Energy poverty – which has also been recognised via terms such as ‘fuel poverty’ and ‘energy vulnerability’ – occurs when a household experiences inadequate levels of energy services in the home. Measuring energy poverty is challenging, as it is a culturally sensitive and private condition, which is temporally and spatially dynamic. This is compounded by the limited availability of appropriate data and indicators, and lack of consensus on how energy poverty should be conceptualised and measured. Statistical indicators of energy poverty are an important and necessary part of the research and policy landscape. They carry great political weight, and are often used to guide the targeting of energy poverty measures – due to their perceived objectivity – with important consequences for both the indoor and built environment of housing. Focussing on the European Union specifically, this paper critically assesses the available statistical options for monitoring energy poverty, whilst also presenting options for improving existing data. This is examined through the lens of vulnerability thinking, by considering the ways in which policies and institutions, the built fabric and everyday practices shape energy use, alongside the manner in which energy poor households experience and address the issue on a day-to-day basis. PMID:28919837
Statistical properties of Pu 243 , and Pu 242 ( n , γ ) cross section calculation
Laplace, T. A.; Zeiser, F.; Guttormsen, M.; ...
2016-01-29
The level density and γ-ray strength function (γSF) of 243Pu have been measured in the quasicontinuum using the Oslo method. Excited states in 243Pu were populated using the 242Pu(d,p) reaction. The level density closely follows the constant-temperature level density formula for excitation energies above the pairing gap. The γSF displays a double-humped resonance at low energy as also seen in previous investigations of actinide isotopes. The structure is interpreted as the scissors resonance and has a centroid of ω SR = 2.42(5) MeV and a total strength of B SR = 10.1(15) μ 2 N, which is in excellent agreementmore » with sum-rule estimates. Lastly, the measured level density and γSF were used to calculate the 242Pu(n,γ) cross section in a neutron energy range for which there were previously no measured data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravlev, B. V., E-mail: zhurav@ippe.ru; Titarenko, N. N.
The spectra of neutrons from the reactions {sup 49}Ti(p, n){sup 49}V and {sup 57}Fe (p, n){sup 57}Co were measured in the range of proton energies between 8 and 11 MeV along with their counterparts from the reactions {sup 48}Ti(d, n){sup 49}V and {sup 56}Fe (d, n){sup 57}Co at the deuteron energies of 2.7 and 3.8 MeV. These measurements were conducted with the aid of a time-of-flight fast-neutron spectrometer on the basis of the EGP-15 pulsed tandem accelerator of the Institute for Physics and Power Engineering (IPPE, Obninsk). An analysis of measured data was performed within the statistical equilibrium and preequilibriummore » models of nuclear reactions. The respective calculations based on the Hauser–Feshbach formalism of statistical theory were carried out with nuclear-level densities given by the generalized superfluid model of the nucleus, the backshifted Fermi-gas model, and the Gilbert–Cameron composite formula. The nuclear-level densities of {sup 49}V and {sup 57}Co and their energy dependences were determined. The results were discussed together with available experimental data and data recommended by model systematics.« less
Total cross section for the γd-->π-pp reaction between 380 and 840 MeV
NASA Astrophysics Data System (ADS)
Asai, M.; Endo, I.; Harada, M.; Kasai, S.; Niki, K.; Sumi, Y.; Kato, S.; Maruyama, K.; Murata, Y.; Muto, M.; Yoshida, K.; Iwatani, K.; Hasai, H.; Ito, H.; Maki, T.; Rangacharyulu, C.; Shimizu, H.; Wada, Y.
1990-09-01
The total cross section for the γd-->π-pp reaction has been measured for incident photon energies from 380 to 840 MeV in steps of 10 MeV, with the best energy resolution attained so far. A large-acceptance detector was used to observe the reaction products. Overall uncertainties in the deduced cross sections are less than 9% (~4% statistical and ~8% systematic). The results are in excellent agreement with previous bubble chamber measurements and do not show any statistically significant structure which can be interpreted as evidence for the formation of dibaryon resonances. An upper limit at 95% confidence level of σpeakΓ<230 μb MeV is obtained for a resonance in the vicinity of photon energy 700 MeV (mass~2490 MeV).
Ab initio Study on Ionization Energies of 3-Amino-1-propanol
NASA Astrophysics Data System (ADS)
Wang, Ke-dong; Jia, Ying-bin; Lai, Zhen-jiang; Liu, Yu-fang
2011-06-01
Fourteen conformers of 3-amino-1-propanol as the minima on the potential energy surface are examined at the MP2/6-311++G** level. Their relative energies calculated at B3LYP, MP3 and MP4 levels of theory indicated that two most stable conformers display the intramolecular OH···N hydrogen bonds. The vertical ionization energies of these conformers calculated with ab initio electron propagator theory in the P3/aug-cc-pVTZ approximation are in agreement with experimental data from photoelectron spectroscopy. Natural bond orbital analyses were used to explain the differences of IEs of the highest occupied molecular ortibal of conformers. Combined with statistical mechanics principles, conformational distributions at various temperatures are obtained and the temperature dependence of photoelectron spectra is interpreted.
Atomic Data and Spectral Line Intensities for Ne III
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Thomas, R. J.; Landi, E.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ne III. The configurations used are 2s(sup 2) 2p(sup 4),2s2p(sup 5),2s(sup 2) 2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 57 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 5, 10, 15, 20, and 25 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of logT,(K)=5.0, corresponding to maximum abundance of Ne III. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted Ne III line intensities are compared with SERTS rocket measurements of a solar active region and of a laboratory EUV light source.
Innovative Approach for Developing Spacecraft Interior Acoustic Requirement Allocation
NASA Technical Reports Server (NTRS)
Chu, S. Reynold; Dandaroy, Indranil; Allen, Christopher S.
2016-01-01
The Orion Multi-Purpose Crew Vehicle (MPCV) is an American spacecraft for carrying four astronauts during deep space missions. This paper describes an innovative application of Power Injection Method (PIM) for allocating Orion cabin continuous noise Sound Pressure Level (SPL) limits to the sound power level (PWL) limits of major noise sources in the Environmental Control and Life Support System (ECLSS) during all mission phases. PIM is simulated using both Statistical Energy Analysis (SEA) and Hybrid Statistical Energy Analysis-Finite Element (SEA-FE) models of the Orion MPCV to obtain the transfer matrix from the PWL of the noise sources to the acoustic energies of the receivers, i.e., the cavities associated with the cabin habitable volume. The goal of the allocation strategy is to control the total energy of cabin habitable volume for maintaining the required SPL limits. Simulations are used to demonstrate that applying the allocated PWLs to the noise sources in the models indeed reproduces the SPL limits in the habitable volume. The effects of Noise Control Treatment (NCT) on allocated noise source PWLs are investigated. The measurement of source PWLs of involved fan and pump development units are also discussed as it is related to some case-specific details of the allocation strategy discussed here.
Deformation effect on spectral statistics of nuclei
NASA Astrophysics Data System (ADS)
Sabri, H.; Jalili Majarshin, A.
2018-02-01
In this study, we tried to get significant relations between the spectral statistics of atomic nuclei and their different degrees of deformations. To this aim, the empirical energy levels of 109 even-even nuclei in the 22 ≤ A ≤ 196 mass region are classified as their experimental and calculated quadrupole, octupole, hexadecapole and hexacontatetrapole deformations values and analyzed by random matrix theory. Our results show an obvious relation between the regularity of nuclei and strong quadrupole, hexadecapole and hexacontatetrapole deformations and but for nuclei that their octupole deformations are nonzero, we have observed a GOE-like statistics.
NASA Astrophysics Data System (ADS)
Zhang, Biyao; Liu, Xiangnan; Liu, Meiling; Wang, Dongmin
2017-04-01
This paper addresses the assessment and interpretation of the canopy-air temperature difference (Tc-Ta) distribution as an indicator for discriminating between heavy metal stress levels. Tc-Ta distribution is simulated by coupling the energy balance equation with modified leaf angle distribution. Statistical indices including average value (AVG), standard deviation (SD), median, and span of Tc-Ta in the field of view of a digital thermal imager are calculated to describe Tc-Ta distribution quantitatively and, consequently, became the stress indicators. In the application, two grains of rice growing sites under "mild" and "severe" stress level were selected as study areas. A total of 96 thermal images obtained from the field measurements in the three growth stages were used for a separate application of a theoretical variation of Tc-Ta distribution. The results demonstrated that the statistical indices calculated from both simulated and measured data exhibited an upward trend as the stress level becomes serious because heavy metal stress would only raise a portion of the leaves in the canopy. Meteorological factors could barely affect the sensitivity of the statistical indices with the exception of the wind speed. Among the statistical indices, AVG and SD were demonstrated to be better indicators for stress levels discrimination.
Analysis of the effect of numbers of aircraft operations on community annoyance
NASA Technical Reports Server (NTRS)
Connor, W. K.; Patterson, H. P.
1976-01-01
The general validity of the equivalent-energy concept as applied to community annoyance to aircraft noise has been recently questioned by investigators using a peak-dBA concept. Using data previously gathered around nine U.S. airports, empirical tests of both concepts are presented. Results show that annoyance response follows neither concept, that annoyance increases steadily with energy-mean level for constant daily operations and with numbers of operations up to 100-199 per day (then decreases for higher numbers), and that the behavior of certain response descriptors is dependent upon the statistical distributions of numbers and levels.
ERIC Educational Resources Information Center
Coyle, Daniel
1979-01-01
Lists and annotates recurrent federal publications that contain basic statistical data on pollution levels and controls, natural resources and wildlife conservation, water resources supply and development, weather and ocean conditions, federal aid programs, and the environmental impact of energy development. It also lists continuing bibliographies…
Exploring efficacy of residential energy efficiency programs in Florida
NASA Astrophysics Data System (ADS)
Taylor, Nicholas Wade
Electric utilities, government agencies, and private interests in the U.S. have committed and continue to invest substantial resources in the pursuit of energy efficiency and conservation through demand-side management (DSM) programs. Program investments, and the demand for impact evaluations that accompany them, are projected to grow in coming years due to increased pressure from state-level energy regulation, costs and challenges of building additional production capacity, fuel costs and potential carbon or renewable energy regulation. This dissertation provides detailed analyses of ex-post energy savings from energy efficiency programs in three key sectors of residential buildings: new, single-family, detached homes; retrofits to existing single-family, detached homes; and retrofits to existing multifamily housing units. Each of the energy efficiency programs analyzed resulted in statistically significant energy savings at the full program group level, yet savings for individual participants and participant subgroups were highly variable. Even though savings estimates were statistically greater than zero, those energy savings did not always meet expectations. Results also show that high variability in energy savings among participant groups or subgroups can negatively impact overall program performance and can undermine marketing efforts for future participation. Design, implementation, and continued support of conservation programs based solely on deemed or projected savings is inherently counter to the pursuit of meaningful energy conservation and reductions in greenhouse gas emissions. To fully understand and optimize program impacts, consistent and robust measurement and verification protocols must be instituted in the design phase and maintained over time. Furthermore, marketing for program participation must target those who have the greatest opportunity for savings. In most utility territories it is not possible to gain access to the type of large scale datasets that would facilitate robust program analysis. Along with measuring and optimizing energy conservation programs, utilities should provide public access to historical consumption data. Open access to data, program optimization, consistent measurement and verification and transparency in reported savings are essential to reducing energy use and its associated environmental impacts.
Power flow as a complement to statistical energy analysis and finite element analysis
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1987-01-01
Present methods of analysis of the structural response and the structure-borne transmission of vibrational energy use either finite element (FE) techniques or statistical energy analysis (SEA) methods. The FE methods are a very useful tool at low frequencies where the number of resonances involved in the analysis is rather small. On the other hand SEA methods can predict with acceptable accuracy the response and energy transmission between coupled structures at relatively high frequencies where the structural modal density is high and a statistical approach is the appropriate solution. In the mid-frequency range, a relatively large number of resonances exist which make finite element method too costly. On the other hand SEA methods can only predict an average level form. In this mid-frequency range a possible alternative is to use power flow techniques, where the input and flow of vibrational energy to excited and coupled structural components can be expressed in terms of input and transfer mobilities. This power flow technique can be extended from low to high frequencies and this can be integrated with established FE models at low frequencies and SEA models at high frequencies to form a verification of the method. This method of structural analysis using power flo and mobility methods, and its integration with SEA and FE analysis is applied to the case of two thin beams joined together at right angles.
Statistical analysis of excitation energies in actinide and rare-earth nuclei
NASA Astrophysics Data System (ADS)
Levon, A. I.; Magner, A. G.; Radionov, S. V.
2018-04-01
Statistical analysis of distributions of the collective states in actinide and rare-earth nuclei is performed in terms of the nearest-neighbor spacing distribution (NNSD). Several approximations, such as the linear approach to the level repulsion density and that suggested by Brody to the NNSDs were applied for the analysis. We found an intermediate character of the experimental spectra between the order and the chaos for a number of rare-earth and actinide nuclei. The spectra are closer to the Wigner distribution for energies limited by 3 MeV, and to the Poisson distribution for data including higher excitation energies and higher spins. The latter result is in agreement with the theoretical calculations. These features are confirmed by the cumulative distributions, where the Wigner contribution dominates at smaller spacings while the Poisson one is more important at larger spacings, and our linear approach improves the comparison with experimental data at all desired spacings.
Locke, Glenn L.
2008-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, Office of Civilian Radioactive Waste Management, collected, compiled, and summarized hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data were collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data collected from January through December 2005 are provided for ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert. Ground-water level, discharge, and withdrawal data collected by other agencies, or as part of other programs, are provided. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for 1992-2005 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements; maximum, minimum, and median water-level altitudes; and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At seven boreholes in Jackass Flats, median water levels for 2005 were slightly higher (0.4-2.7 feet) than the median water levels for 1992-93.
The Purine Bias of Coding Sequences is Determined by Physicochemical Constraints on Proteins.
Ponce de Leon, Miguel; de Miranda, Antonio Basilio; Alvarez-Valin, Fernando; Carels, Nicolas
2014-01-01
For this report, we analyzed protein secondary structures in relation to the statistics of three nucleotide codon positions. The purpose of this investigation was to find which properties of the ribosome, tRNA or protein level, could explain the purine bias (Rrr) as it is observed in coding DNA. We found that the Rrr pattern is the consequence of a regularity (the codon structure) resulting from physicochemical constraints on proteins and thermodynamic constraints on ribosomal machinery. The physicochemical constraints on proteins mainly come from the hydropathy and molecular weight (MW) of secondary structures as well as the energy cost of amino acid synthesis. These constraints appear through a network of statistical correlations, such as (i) the cost of amino acid synthesis, which is in favor of a higher level of guanine in the first codon position, (ii) the constructive contribution of hydropathy alternation in proteins, (iii) the spatial organization of secondary structure in proteins according to solvent accessibility, (iv) the spatial organization of secondary structure according to amino acid hydropathy, (v) the statistical correlation of MW with protein secondary structures and their overall hydropathy, (vi) the statistical correlation of thymine in the second codon position with hydropathy and the energy cost of amino acid synthesis, and (vii) the statistical correlation of adenine in the second codon position with amino acid complexity and the MW of secondary protein structures. Amino acid physicochemical properties and functional constraints on proteins constitute a code that is translated into a purine bias within the coding DNA via tRNAs. In that sense, the Rrr pattern within coding DNA is the effect of information transfer on nucleotide composition from protein to DNA by selection according to the codon positions. Thus, coding DNA structure and ribosomal machinery co-evolved to minimize the energy cost of protein coding given the functional constraints on proteins.
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wilson, John W.
1996-01-01
The angular momentum independent statistical decay model is often applied using a Monte-Carlo simulation to describe the decay of prefragment nuclei in heavy ion reactions. This paper presents an analytical approach to the decay problem of nuclei with mass number less than 60, which is important for galactic cosmic ray (GCR) studies. This decay problem of nuclei with mass number less than 60 incorporates well-known levels of the lightest nuclei (A less than 11) to improve convergence and accuracy. A sensitivity study of the model level density function is used to determine the impact on mass and charge distributions in nuclear fragmentation. This angular momentum independent statistical decay model also describes the momentum and energy distribution of emitted particles (n, p, d, t, h, and a) from a prefragment nucleus.
Real-Time SCADA Cyber Protection Using Compression Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyle G. Roybal; Gordon H Rueff
2013-11-01
The Department of Energy’s Office of Electricity Delivery and Energy Reliability (DOE-OE) has a critical mission to secure the energy infrastructure from cyber attack. Through DOE-OE’s Cybersecurity for Energy Delivery Systems (CEDS) program, the Idaho National Laboratory (INL) has developed a method to detect malicious traffic on Supervisory, Control, and Data Acquisition (SCADA) network using a data compression technique. SCADA network traffic is often repetitive with only minor differences between packets. Research performed at the INL showed that SCADA network traffic has traits desirable for using compression analysis to identify abnormal network traffic. An open source implementation of a Lempel-Ziv-Welchmore » (LZW) lossless data compression algorithm was used to compress and analyze surrogate SCADA traffic. Infected SCADA traffic was found to have statistically significant differences in compression when compared against normal SCADA traffic at the packet level. The initial analyses and results are clearly able to identify malicious network traffic from normal traffic at the packet level with a very high confidence level across multiple ports and traffic streams. Statistical differentiation between infected and normal traffic level was possible using a modified data compression technique at the 99% probability level for all data analyzed. However, the conditions tested were rather limited in scope and need to be expanded into more realistic simulations of hacking events using techniques and approaches that are better representative of a real-world attack on a SCADA system. Nonetheless, the use of compression techniques to identify malicious traffic on SCADA networks in real time appears to have significant merit for infrastructure protection.« less
A Handbook of Sound and Vibration Parameters
1978-09-18
fixed in space. (Reference 1.) no motion atay node Static Divergence: (See Divergence.) Statistical Energy Analysis (SEA): Statistical energy analysis is...parameters of the circuits come from statistics of the vibrational characteristics of the structure. Statistical energy analysis is uniquely successful
77 FR 21756 - Agency Information Collection Extension
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
... Norris at U.S. Energy Information Administration, Office of Petroleum and Biofuels Statistics, U.S... 1995. Weekly petroleum and biofuels supply surveys (Forms EIA-800, 802, 803, 804, 805, and 809) are used to gather data on petroleum refinery operations, blending, biofuels production, inventory levels...
Nuclear level densities of 64 , 66 Zn from neutron evaporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.
Double differential cross sections of neutrons from d+ 63,65Cu reactions have been measured at deuteron energies of 6 and 7.5 MeV. The cross sections measured at backward angles have been compared to theoretical calculations in the framework of the statistical Hauser-Feshbach model. Three different level density models were tested: the Fermi-gas model, the Gilbert-Cameron model, and the microscopic approach through the Hartree-Fock-Bogoliubov method (HFBM). The calculations using the Gilbert-Cameron model are in best agreement with our experimental data. Level densities of the residual nuclei 64Zn and 66Zn have been obtained from statistical neutron evaporation spectra. In conclusion, the angle-integrated crossmore » sections have been analyzed with the exciton model of nuclear reaction.« less
Nuclear level densities of 64 , 66 Zn from neutron evaporation
Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; ...
2013-12-26
Double differential cross sections of neutrons from d+ 63,65Cu reactions have been measured at deuteron energies of 6 and 7.5 MeV. The cross sections measured at backward angles have been compared to theoretical calculations in the framework of the statistical Hauser-Feshbach model. Three different level density models were tested: the Fermi-gas model, the Gilbert-Cameron model, and the microscopic approach through the Hartree-Fock-Bogoliubov method (HFBM). The calculations using the Gilbert-Cameron model are in best agreement with our experimental data. Level densities of the residual nuclei 64Zn and 66Zn have been obtained from statistical neutron evaporation spectra. In conclusion, the angle-integrated crossmore » sections have been analyzed with the exciton model of nuclear reaction.« less
EIA's Role in Energy Data Collection, With Some Notes on Water Data
NASA Astrophysics Data System (ADS)
Leckey, T. J.
2017-12-01
The U.S. Energy Information Administration (EIA) is the statistical and analytical agency within the U.S. Department of Energy. EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding of energy and its interaction with the economy and the environment. EIA conducts a comprehensive data collection program that covers the full spectrum of energy sources, end uses, and energy flows. This presentation will describe EIA's authority to collect energy data, report on the range of energy areas currently collected by EIA, discuss some areas where energy information and water issues intersect, and describe the relatively few areas where EIA does collect a small amount of water data. The presentation will conclude with some thoughts about necessary components for effective collection of water data at the federal level.
NASA Astrophysics Data System (ADS)
Pathak, Maharshi
City administrators and real-estate developers have been setting up rather aggressive energy efficiency targets. This, in turn, has led the building science research groups across the globe to focus on urban scale building performance studies and level of abstraction associated with the simulations of the same. The increasing maturity of the stakeholders towards energy efficiency and creating comfortable working environment has led researchers to develop methodologies and tools for addressing the policy driven interventions whether it's urban level energy systems, buildings' operational optimization or retrofit guidelines. Typically, these large-scale simulations are carried out by grouping buildings based on their design similarities i.e. standardization of the buildings. Such an approach does not necessarily lead to potential working inputs which can make decision-making effective. To address this, a novel approach is proposed in the present study. The principle objective of this study is to propose, to define and evaluate the methodology to utilize machine learning algorithms in defining representative building archetypes for the Stock-level Building Energy Modeling (SBEM) which are based on operational parameter database. The study uses "Phoenix- climate" based CBECS-2012 survey microdata for analysis and validation. Using the database, parameter correlations are studied to understand the relation between input parameters and the energy performance. Contrary to precedence, the study establishes that the energy performance is better explained by the non-linear models. The non-linear behavior is explained by advanced learning algorithms. Based on these algorithms, the buildings at study are grouped into meaningful clusters. The cluster "mediod" (statistically the centroid, meaning building that can be represented as the centroid of the cluster) are established statistically to identify the level of abstraction that is acceptable for the whole building energy simulations and post that the retrofit decision-making. Further, the methodology is validated by conducting Monte-Carlo simulations on 13 key input simulation parameters. The sensitivity analysis of these 13 parameters is utilized to identify the optimum retrofits. From the sample analysis, the envelope parameters are found to be more sensitive towards the EUI of the building and thus retrofit packages should also be directed to maximize the energy usage reduction.
Commercial Building Tenant Energy Usage Aggregation and Privacy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.
A growing number of building owners are benchmarking their building energy use. This requires the building owner to acquire monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer energy use data (CEUD) as a way to give building owners whole-building energy usage data while protecting customer privacy. Meter profile aggregation adds a layer of protection that decreases the risk of revealing CEUD as the number of meters aggregated increases. The report statistically characterizesmore » the similarity between individual energy usage patterns and whole-building totals at various levels of meter aggregation.« less
Menezes, Tarciana Nobre de; Marucci, Maria de Fátima Nunes
2012-01-01
Describe the total energy value and percentage contribution of calories from macronutrients in the diet of elderly individuals living in Fortaleza/CE. This is a population-based, cross-sectional domiciliary study, which included 458 elderly individuals (66.6% women). The variables evaluated were total energy value (TEV) and the percentage contribution of calories from proteins, carbohydrates, and lipids. The results are shown as mean, standard deviation, and percentile distribution (P5, P10, P25, P50, P75, P90, P95). The Student's t-test and analysis of variance (one-way ANOVA) with LSD post-hoc tests were used to determine the statistical significance of means between two groups and among three or more groups, respectively. When comparing the mean values of TEV among categories of socioeconomic and demographic variables, statistically significant differences were found between women for ethnicity, years of schooling and socioeconomic level. Among men, differences were found for years of schooling and socioeconomic level. The mean energy value of men's diet was significantly higher than that of women (1475.8 kcal and 1236.4 kcal, respectively). The mean values of calorie percentage contribution from proteins, carbohydrates, and lipids were similar between men and women. The elderly of this study showed significant differences in mean values of TEV between sexes and between the categories years of schooling and socioeconomic level. Women also showed significant differences between the ethnic categories. The mean relative contribution of macronutrients in TEV was similar between genders and age groups.
NASA Astrophysics Data System (ADS)
Koner, Debasish; Barrios, Lizandra; González-Lezana, Tomás; Panda, Aditya N.
2016-01-01
Initial state selected dynamics of the Ne + NeH+(v0 = 0, j0 = 0) → NeH+ + Ne reaction is investigated by quantum and statistical quantum mechanical (SQM) methods on the ground electronic state. The three-body ab initio energies on a set of suitably chosen grid points have been computed at CCSD(T)/aug-cc-PVQZ level and analytically fitted. The fitting of the diatomic potentials, computed at the same level of theory, is performed by spline interpolation. A collinear [NeHNe]+ structure lying 0.72 eV below the Ne + NeH+ asymptote is found to be the most stable geometry for this system. Energies of low lying vibrational states have been computed for this stable complex. Reaction probabilities obtained from quantum calculations exhibit dense oscillatory structures, particularly in the low energy region and these get partially washed out in the integral cross section results. SQM predictions are devoid of oscillatory structures and remain close to 0.5 after the rise at the threshold thus giving a crude average description of the quantum probabilities. Statistical cross sections and rate constants are nevertheless in sufficiently good agreement with the quantum results to suggest an important role of a complex-forming dynamics for the title reaction.
APPLICATION OF STATISTICAL ENERGY ANALYSIS TO VIBRATIONS OF MULTI-PANEL STRUCTURES.
cylindrical shell are compared with predictions obtained from statistical energy analysis . Generally good agreement is observed. The flow of mechanical...the coefficients of proportionality between power flow and average modal energy difference, which one must know in order to apply statistical energy analysis . No
A pedagogical derivation of the matrix element method in particle physics data analysis
NASA Astrophysics Data System (ADS)
Sumowidagdo, Suharyo
2018-03-01
The matrix element method provides a direct connection between the underlying theory of particle physics processes and detector-level physical observables. I am presenting a pedagogically-oriented derivation of the matrix element method, drawing from elementary concepts in probability theory, statistics, and the process of experimental measurements. The level of treatment should be suitable for beginning research student in phenomenology and experimental high energy physics.
Associations between state-level soda taxes and adolescent body mass index.
Powell, Lisa M; Chriqui, Jamie; Chaloupka, Frank J
2009-09-01
Soft drink consumption has been linked with higher energy intake, obesity, and poorer health. Fiscal pricing policies such as soda taxes may lower soda consumption and, in turn, reduce weight among U.S. adolescents. This study used multivariate linear regression analyses to examine the associations between state-level grocery store and vending machine soda taxes and adolescent body mass index (BMI). We used repeated cross-sections of individual-level data on adolescents drawn from the Monitoring the Future surveys combined with state-level tax data and local area contextual measures for the years 1997 through 2006. The results showed no statistically significant associations between state-level soda taxes and adolescent BMI. Only a weak economic and statistically significant effect was found between vending machine soda tax rates and BMI among teens at risk for overweight. Current state-level tax rates are not found to be significantly associated with adolescent weight outcomes. It is likely that taxes would need to be raised substantially to detect significant associations between taxes and adolescent weight.
Measuring information-based energy and temperature of literary texts
NASA Astrophysics Data System (ADS)
Chang, Mei-Chu; Yang, Albert C.-C.; Eugene Stanley, H.; Peng, C.-K.
2017-02-01
We apply a statistical method, information-based energy, to quantify informative symbolic sequences. To apply this method to literary texts, it is assumed that different words with different occurrence frequencies are at different energy levels, and that the energy-occurrence frequency distribution obeys a Boltzmann distribution. The temperature within the Boltzmann distribution can be an indicator for the author's writing capacity as the repertory of thoughts. The relative temperature of a text is obtained by comparing the energy-occurrence frequency distributions of words collected from one text versus from all texts of the same author. Combining the relative temperature with the Shannon entropy as the text complexity, the information-based energy of the text is defined and can be viewed as a quantitative evaluation of an author's writing performance. We demonstrate the method by analyzing two authors, Shakespeare in English and Jin Yong in Chinese, and find that their well-known works are associated with higher information-based energies. This method can be used to measure the creativity level of a writer's work in linguistics, and can also quantify symbolic sequences in different systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U.; Wenning, Thomas J.; Guo, Wei
In the United States, manufacturing facilities account for about 32% of total domestic energy consumption in 2014. Robust energy tracking methodologies are critical to understanding energy performance in manufacturing facilities. Due to its simplicity and intuitiveness, the classic energy intensity method (i.e. the ratio of total energy use over total production) is the most widely adopted. However, the classic energy intensity method does not take into account the variation of other relevant parameters (i.e. product type, feed stock type, weather, etc.). Furthermore, the energy intensity method assumes that the facilities’ base energy consumption (energy use at zero production) is zero,more » which rarely holds true. Therefore, it is commonly recommended to utilize regression models rather than the energy intensity approach for tracking improvements at the facility level. Unfortunately, many energy managers have difficulties understanding why regression models are statistically better than utilizing the classic energy intensity method. While anecdotes and qualitative information may convince some, many have major reservations about the accuracy of regression models and whether it is worth the time and effort to gather data and build quality regression models. This paper will explain why regression models are theoretically and quantitatively more accurate for tracking energy performance improvements. Based on the analysis of data from 114 manufacturing plants over 12 years, this paper will present quantitative results on the importance of utilizing regression models over the energy intensity methodology. This paper will also document scenarios where regression models do not have significant relevance over the energy intensity method.« less
Statistical mechanics and thermodynamic limit of self-gravitating fermions in D dimensions.
Chavanis, Pierre-Henri
2004-06-01
We discuss the statistical mechanics of a system of self-gravitating fermions in a space of dimension D. We plot the caloric curves of the self-gravitating Fermi gas giving the temperature as a function of energy and investigate the nature of phase transitions as a function of the dimension of space. We consider stable states (global entropy maxima) as well as metastable states (local entropy maxima). We show that for D> or =4, there exists a critical temperature (for sufficiently large systems) and a critical energy below which the system cannot be found in statistical equilibrium. Therefore, for D> or =4, quantum mechanics cannot stabilize matter against gravitational collapse. This is similar to a result found by Ehrenfest (1917) at the atomic level for Coulomb forces. This makes the dimension D=3 of our Universe very particular with possible implications regarding the anthropic principle. Our study joins a long tradition of scientific and philosophical papers that examined how the dimension of space affects the laws of physics.
Gorobets, Yu I; Gorobets, O Yu
2015-01-01
The statistical model is proposed in this paper for description of orientation of trajectories of unicellular diamagnetic organisms in a magnetic field. The statistical parameter such as the effective energy is calculated on basis of this model. The resulting effective energy is the statistical characteristics of trajectories of diamagnetic microorganisms in a magnetic field connected with their metabolism. The statistical model is applicable for the case when the energy of the thermal motion of bacteria is negligible in comparison with their energy in a magnetic field and the bacteria manifest the significant "active random movement", i.e. there is the randomizing motion of the bacteria of non thermal nature, for example, movement of bacteria by means of flagellum. The energy of the randomizing active self-motion of bacteria is characterized by the new statistical parameter for biological objects. The parameter replaces the energy of the randomizing thermal motion in calculation of the statistical distribution. Copyright © 2014 Elsevier Ltd. All rights reserved.
The impact of maternal- and neonatal-associated factors on human milk's macronutrients and energy.
Dritsakou, Kalliopi; Liosis, Georgios; Valsami, Georgia; Polychronopoulos, Evangelos; Skouroliakou, Maria
2017-06-01
To test the impact of specific maternal- and neonatal-associated factors on human milk's macronutrients and energy. This study was conducted with the use of a human milk analyzer (HMA, MIRIS, Uppsala, Sweden). Six hundred and thirty samples of raw milk and 95 samples of donor pasteurized milk were delivered from a total of 305 mothers. A significant inverse correlation of fat, protein and energy content with gestational age and birth weight was established. Fat and energy were lower in colostrum, increased in transitional milk and decreased on the 30th day's mature milk compared to transitional. The rate of protein decline from colostrum to mature milk was lower in premature deliveries compared to that of full-terms, resulting in greater contents of protein in preterm mature milk. The upmost amounts of carbohydrates were found in mature milk of preterm deliveries. A positive correlation was found between maternal age and fat contents. In women with higher post-pregnancy BMI levels greater analogies of fat and energy were presented. In women suffering diet-controlled gestational diabetes (GD), lower protein and higher fat and energy levels were found. Prematurity, maternal age, diet-controlled GD and high post-pregnancy BMI levels were found to impose statistical significant effect on milk's macronutrients and energy.
Economic Impacts of Wind Turbine Development in U.S. Counties
DOE Office of Scientific and Technical Information (OSTI.GOV)
J., Brown; B., Hoen; E., Lantz
2011-07-25
The objective is to address the research question using post-project construction, county-level data, and econometric evaluation methods. Wind energy is expanding rapidly in the United States: Over the last 4 years, wind power has contributed approximately 35 percent of all new electric power capacity. Wind power plants are often developed in rural areas where local economic development impacts from the installation are projected, including land lease and property tax payments and employment growth during plant construction and operation. Wind energy represented 2.3 percent of the U.S. electricity supply in 2010, but studies show that penetrations of at least 20 percentmore » are feasible. Several studies have used input-output models to predict direct, indirect, and induced economic development impacts. These analyses have often been completed prior to project construction. Available studies have not yet investigated the economic development impacts of wind development at the county level using post-construction econometric evaluation methods. Analysis of county-level impacts is limited. However, previous county-level analyses have estimated operation-period employment at 0.2 to 0.6 jobs per megawatt (MW) of power installed and earnings at $9,000/MW to $50,000/MW. We find statistically significant evidence of positive impacts of wind development on county-level per capita income from the OLS and spatial lag models when they are applied to the full set of wind and non-wind counties. The total impact on annual per capita income of wind turbine development (measured in MW per capita) in the spatial lag model was $21,604 per MW. This estimate is within the range of values estimated in the literature using input-output models. OLS results for the wind-only counties and matched samples are similar in magnitude, but are not statistically significant at the 10-percent level. We find a statistically significant impact of wind development on employment in the OLS analysis for wind counties only, but not in the other models. Our estimates of employment impacts are not precise enough to assess the validity of employment impacts from input-output models applied in advance of wind energy project construction. The analysis provides empirical evidence of positive income effects at the county level from cumulative wind turbine development, consistent with the range of impacts estimated using input-output models. Employment impacts are less clear.« less
La Camera, Richard J.; Locke, Glenn L.; Habte, Aron M.; Darnell, Jon G.
2006-01-01
The U.S. Geological Survey, in support of the U.S. Department of Energy, Office of Repository Development, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, both ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January through December 2004. Also tabulated are ground-water levels, discharges, and withdrawals collected by other agencies (or collected as part of other programs) and data revised from those previously published at monitoring sites. Historical data on water levels, discharges, and withdrawals are presented graphically to indicate variations through time. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for the period 1992-2004 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At six boreholes in Jackass Flats, median water levels for 2004 were slightly higher (0.3-2.7 feet) than their median water levels for 1992-93. At one borehole in Jackass Flats, median water level for 2004 equaled the median water level for 1992-93.
Ichikawa, Kota; Tanino, Ryuzaburo; Wakaki, Moriaki
2006-12-20
Although various lasers are available, few of them are applicable in liposculpture. Laser interaction with fat tissue has not also been well documented. The aim of our study was to gather basic data on laser absorption in fat tissue and to analyze the relationship between laser energy and lipolysis for development of a more effective laser system. The transmittance rate in human fat specimens was measured by a spectrophotometer to determine the optimum wavelength. The absorption coefficient was used to evaluate laser absorption at a wavelength of 1064 nm. Areas of heat degeneration and evaporation were measured by scanning electron microscopy. The relation between laser energy and the areas was analyzed statistically among low-power and high-power groups and controls. Energy dispersion at the fiber tip was investigated and analyzed statistically using the far field pattern. A graph of the absorption rate at wavelengths from 400 to 2400 nm showed a peak near 1700 nm and increases at wavelengths over 2000 nm. The formula gave as an absorption coefficient of 0.4 cm(-1), and involvement of the photo-acoustic effect and non-linear effect with short-pulse and high-peak energy was suggested. Findings of tissue evaporation, destruction, heat coagulation, and rupture of cell membrane were more frequently seen in irradiated specimens than in controls in scanning electron microscopy. The destroyed area in the low-power irradiated groups was significantly larger than that of controls in the statistical analysis. The affected area in the high-power irradiated groups was significantly larger than that of low-power specimens. Energy was concentrated at the tip with laser coherency. Energy at the oblique-cut tip was statistically lower than that at the normal tip, revealing that durability and maintenance of the fiber tip is essential to maintain energy levels in clinical practice. This study is the first to demonstrate the histologic and photonic relationship of energy absorption and lipolysis using a pulsed Nd:YAG laser. The results will be useful for research and development of a more effective laser system for liposculpture.
Electric Power Monthly, August 1990. [Glossary included
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-11-29
The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.
Developing Energy Literacy in US Middle-Level Students Using the Geospatial Curriculum Approach
NASA Astrophysics Data System (ADS)
Bodzin, Alec M.; Fu, Qiong; Peffer, Tamara E.; Kulo, Violet
2013-06-01
This quantitative study examined the effectiveness of a geospatial curriculum approach to promote energy literacy in an urban school district and examined factors that may account for energy content knowledge achievement. An energy literacy measure was administered to 1,044 eighth-grade students (ages 13-15) in an urban school district in Pennsylvania, USA. One group of students received instruction with a geospatial curriculum approach (geospatial technologies (GT)) and another group of students received 'business as usual' (BAU) curriculum instruction. For the GT students, findings revealed statistically significant gains from pretest to posttest (p < 0.001) on knowledge of energy resource acquisition, energy generation, storage and transport, and energy consumption and conservation. The GT students had year-end energy content knowledge scores significantly higher than those who learned with the BAU curriculum (p < 0.001; effect size being large). A multiple regression found that prior energy content knowledge was the only significant predictor to the year-end energy content knowledge achievement for the GT students (p < 0.001). The findings support that the implementation of a geospatial curriculum approach that employs learning activities that focus on the spatial nature of energy resources can improve the energy literacy of urban middle-level education students.
Menzerath-Altmann Law: Statistical Mechanical Interpretation as Applied to a Linguistic Organization
NASA Astrophysics Data System (ADS)
Eroglu, Sertac
2014-10-01
The distribution behavior described by the empirical Menzerath-Altmann law is frequently encountered during the self-organization of linguistic and non-linguistic natural organizations at various structural levels. This study presents a statistical mechanical derivation of the law based on the analogy between the classical particles of a statistical mechanical organization and the distinct words of a textual organization. The derived model, a transformed (generalized) form of the Menzerath-Altmann model, was termed as the statistical mechanical Menzerath-Altmann model. The derived model allows interpreting the model parameters in terms of physical concepts. We also propose that many organizations presenting the Menzerath-Altmann law behavior, whether linguistic or not, can be methodically examined by the transformed distribution model through the properly defined structure-dependent parameter and the energy associated states.
Time Exceedances for High Intensity Solar Proton Fluxes
NASA Technical Reports Server (NTRS)
Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adam, James H., Jr.; Dietrich, William F.
2011-01-01
A model is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.
Periods of High Intensity Solar Proton Flux
NASA Technical Reports Server (NTRS)
Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adams, James H.; Dietrich, William F.
2012-01-01
Analysis is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.
The effect of lactational mastitis on the macronutrient content of breast milk.
Say, Birgul; Dizdar, Evrim Alyamaç; Degirmencioglu, Halil; Uras, Nurdan; Sari, Fatma Nur; Oguz, Suna; Canpolat, Fuat Emre
2016-07-01
Mastitis in lactating mothers reduces milk production and alters the cellular composition of milk. Changes occurring in the mammary gland during the inflammatory response are believed to increase the permeability of the blood-milk barrier. This study examined the effect of mastitis during lactation on the macronutrient content of breast milk. The study was conducted at Zekai Tahir Burak Maternity Teaching Hospital. Transitional breast milk samples were obtained from term lactating mothers with or without mastitis. Milk protein, fat, carbohydrate, and energy levels were measured using a mid-infrared human milk analyzer. The study recruited 30 term lactating mothers: 15 mothers diagnosed with mastitis and 15 healthy mothers. The characteristics of the mothers in both groups were similar. Fat, carbohydrate, and energy levels were statistically lower in the milk samples of mothers with mastitis compared with the mothers without mastitis. Lactational mastitis was associated with lower breast milk fat, carbohydrate, and energy levels. The local inflammatory response induced by cytokines and increased blood-milk barrier permeability might account for the changes in the fat, carbohydrate, and energy levels of human milk. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schroeder, C. B.; Fawley, W. M.; Esarey, E.
2003-07-01
We investigate the statistical properties (e.g., shot-to-shot power fluctuations) of the radiation from a high-gain free-electron laser (FEL) operating in the nonlinear regime. We consider the case of an FEL amplifier reaching saturation whose shot-to-shot fluctuations in input radiation power follow a gamma distribution. We analyze the corresponding output power fluctuations at and beyond saturation, including beam energy spread effects, and find that there are well-characterized values of undulator length for which the fluctuations reach a minimum.
Muon Simulation at the Daya Bay SIte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mengyun, Guan; Jun, Cao; Changgen, Yang
2006-05-23
With a pretty good-resolution mountain profile, we simulated the underground muon background at the Daya Bay site. To get the sea-level muon flux parameterization, a modification to the standard Gaisser's formula was introduced according to the world muon data. MUSIC code was used to transport muon through the mountain rock. To deploy the simulation, first we generate a statistic sample of sea-level muon events according to the sea-level muon flux distribution formula; then calculate the slant depth of muon passing through the mountain using an interpolation method based on the digitized data of the mountain; finally transport muons through rockmore » to get underground muon sample, from which we can get results of muon flux, mean energy, energy distribution and angular distribution.« less
Cui, Wenchao; Wang, Yi; Lei, Tao; Fan, Yangyu; Feng, Yan
2013-01-01
This paper presents a variational level set method for simultaneous segmentation and bias field estimation of medical images with intensity inhomogeneity. In our model, the statistics of image intensities belonging to each different tissue in local regions are characterized by Gaussian distributions with different means and variances. According to maximum a posteriori probability (MAP) and Bayes' rule, we first derive a local objective function for image intensities in a neighborhood around each pixel. Then this local objective function is integrated with respect to the neighborhood center over the entire image domain to give a global criterion. In level set framework, this global criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, image segmentation and bias field estimation are simultaneously achieved via a level set evolution process. Experimental results for synthetic and real images show desirable performances of our method.
Reduction of the ionization energy for 1s-electrons in dense aluminum plasmas
NASA Astrophysics Data System (ADS)
Lin, C.; Reinholz, H.; Röpke, G.
2017-02-01
The properties of a bound multi-electron system immersed in a plasma environment are strongly modified by the surrounding plasma. In particular, the modification of the ionization energy is described by the electronic self-energy within the framework of the quantum statistical theory. We present the energy shift of the eigenstates and the lowering of the continuum edge of free electrons in a plasma. The reduction of the ionization potential is determined by their difference. This ionization potential depression for the 1s-levels in dense aluminum plasmas is calculated. Comparisons with other theories and the experimental data are shown for aluminum plasma at solid density 2.7 g/cm3.
Energy consumption and CO2 emissions in Tibet and its cities in 2014
NASA Astrophysics Data System (ADS)
Shan, Yuli; Zheng, Heran; Guan, Dabo; Li, Chongmao; Mi, Zhifu; Meng, Jing; Schroeder, Heike; Ma, Jibo; Ma, Zhuguo
2017-08-01
Because of its low level of energy consumption and the small scale of its industrial development, the Tibet Autonomous Region has historically been excluded from China's reported energy statistics, including those regarding CO2 emissions. In this paper, we estimate Tibet's energy consumption using limited online documents, and we calculate the 2014 energy-related and process-related CO2 emissions of Tibet and its seven prefecture-level administrative divisions for the first time. Our results show that 5.52 million tons of CO2 were emitted in Tibet in 2014; 33% of these emissions are associated with cement production. Tibet's emissions per capita amounted to 1.74 tons in 2014, which is substantially lower than the national average, although Tibet's emission intensity is relatively high at 0.60 tons per thousand yuan in 2014. Among Tibet's seven prefecture-level administrative divisions, Lhasa City and Shannan Region are the two largest CO2 contributors and have the highest per capita emissions and emission intensities. The Nagqu and Nyingchi regions emit little CO2 due to their farming/pasturing-dominated economies. This quantitative measure of Tibet's regional CO2 emissions provides solid data support for Tibet's actions on climate change and emission reductions.
Molecular-Level Simulations of the Turbulent Taylor-Green Flow
NASA Astrophysics Data System (ADS)
Gallis, M. A.; Bitter, N. P.; Koehler, T. P.; Plimpton, S. J.; Torczynski, J. R.; Papadakis, G.
2017-11-01
The Direct Simulation Monte Carlo (DSMC) method, a statistical, molecular-level technique that provides accurate solutions to the Boltzmann equation, is applied to the turbulent Taylor-Green vortex flow. The goal of this work is to investigate whether DSMC can accurately simulate energy decay in a turbulent flow. If so, then simulating turbulent flows at the molecular level can provide new insights because the energy decay can be examined in detail from molecular to macroscopic length scales, thereby directly linking molecular relaxation processes to macroscopic transport processes. The DSMC simulations are performed on half a million cores of Sequoia, the 17 Pflop platform at Lawrence Livermore National Laboratory, and the kinetic-energy dissipation rate and the energy spectrum are computed directly from the molecular velocities. The DSMC simulations are found to reproduce the Kolmogorov -5/3 law and to agree with corresponding Navier-Stokes simulations obtained using a spectral method. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
The Assessment of Climatological Impacts on Agricultural Production and Residential Energy Demand
NASA Astrophysics Data System (ADS)
Cooter, Ellen Jean
The assessment of climatological impacts on selected economic activities is presented as a multi-step, inter -disciplinary problem. The assessment process which is addressed explicitly in this report focuses on (1) user identification, (2) direct impact model selection, (3) methodological development, (4) product development and (5) product communication. Two user groups of major economic importance were selected for study; agriculture and gas utilities. The broad agricultural sector is further defined as U.S.A. corn production. The general category of utilities is narrowed to Oklahoma residential gas heating demand. The CERES physiological growth model was selected as the process model for corn production. The statistical analysis for corn production suggests that (1) although this is a statistically complex model, it can yield useful impact information, (2) as a result of output distributional biases, traditional statistical techniques are not adequate analytical tools, (3) the model yield distribution as a whole is probably non-Gausian, particularly in the tails and (4) there appears to be identifiable weekly patterns of forecasted yields throughout the growing season. Agricultural quantities developed include point yield impact estimates and distributional characteristics, geographic corn weather distributions, return period estimates, decision making criteria (confidence limits) and time series of indices. These products were communicated in economic terms through the use of a Bayesian decision example and an econometric model. The NBSLD energy load model was selected to represent residential gas heating consumption. A cursory statistical analysis suggests relationships among weather variables across the Oklahoma study sites. No linear trend in "technology -free" modeled energy demand or input weather variables which would correspond to that contained in observed state -level residential energy use was detected. It is suggested that this trend is largely the result of non-weather factors such as population and home usage patterns rather than regional climate change. Year-to-year changes in modeled residential heating demand on the order of 10('6) Btu's per household were determined and later related to state -level components of the Oklahoma economy. Products developed include the definition of regional forecast areas, likelihood estimates of extreme seasonal conditions and an energy/climate index. This information is communicated in economic terms through an input/output model which is used to estimate changes in Gross State Product and Household income attributable to weather variability.
Rigorous Statistical Bounds in Uncertainty Quantification for One-Layer Turbulent Geophysical Flows
NASA Astrophysics Data System (ADS)
Qi, Di; Majda, Andrew J.
2018-04-01
Statistical bounds controlling the total fluctuations in mean and variance about a basic steady-state solution are developed for the truncated barotropic flow over topography. Statistical ensemble prediction is an important topic in weather and climate research. Here, the evolution of an ensemble of trajectories is considered using statistical instability analysis and is compared and contrasted with the classical deterministic instability for the growth of perturbations in one pointwise trajectory. The maximum growth of the total statistics in fluctuations is derived relying on the statistical conservation principle of the pseudo-energy. The saturation bound of the statistical mean fluctuation and variance in the unstable regimes with non-positive-definite pseudo-energy is achieved by linking with a class of stable reference states and minimizing the stable statistical energy. Two cases with dependence on initial statistical uncertainty and on external forcing and dissipation are compared and unified under a consistent statistical stability framework. The flow structures and statistical stability bounds are illustrated and verified by numerical simulations among a wide range of dynamical regimes, where subtle transient statistical instability exists in general with positive short-time exponential growth in the covariance even when the pseudo-energy is positive-definite. Among the various scenarios in this paper, there exist strong forward and backward energy exchanges between different scales which are estimated by the rigorous statistical bounds.
Random number generators tested on quantum Monte Carlo simulations.
Hongo, Kenta; Maezono, Ryo; Miura, Kenichi
2010-08-01
We have tested and compared several (pseudo) random number generators (RNGs) applied to a practical application, ground state energy calculations of molecules using variational and diffusion Monte Carlo metheds. A new multiple recursive generator with 8th-order recursion (MRG8) and the Mersenne twister generator (MT19937) are tested and compared with the RANLUX generator with five luxury levels (RANLUX-[0-4]). Both MRG8 and MT19937 are proven to give the same total energy as that evaluated with RANLUX-4 (highest luxury level) within the statistical error bars with less computational cost to generate the sequence. We also tested the notorious implementation of linear congruential generator (LCG), RANDU, for comparison. (c) 2010 Wiley Periodicals, Inc.
Circuit model for single-energy-level trap centers in FETs
NASA Astrophysics Data System (ADS)
Albahrani, Sayed Ali; Parker, Anthony; Heimlich, Michael
2016-12-01
A circuit implementation of a single-energy-level trap center in an FET is presented. When included in transistor models it explains the temperature-potential-dependent time constants seen in the circuit manifestations of charge trapping, being gate lag and drain overshoot. The implementation is suitable for both time-domain and harmonic-balance simulations. The proposed model is based on the Shockley-Read-Hall (SRH) statistics of the trapping process. The results of isothermal pulse measurements performed on a GaN HEMT are presented. These measurement allow characterizing charge trapping in isolation from the effect of self-heating. These results are used to obtain the parameters of the proposed model.
Wu, Johnny C; Gardner, David P; Ozer, Stuart; Gutell, Robin R; Ren, Pengyu
2009-08-28
The accurate prediction of the secondary and tertiary structure of an RNA with different folding algorithms is dependent on several factors, including the energy functions. However, an RNA higher-order structure cannot be predicted accurately from its sequence based on a limited set of energy parameters. The inter- and intramolecular forces between this RNA and other small molecules and macromolecules, in addition to other factors in the cell such as pH, ionic strength, and temperature, influence the complex dynamics associated with transition of a single stranded RNA to its secondary and tertiary structure. Since all of the factors that affect the formation of an RNAs 3D structure cannot be determined experimentally, statistically derived potential energy has been used in the prediction of protein structure. In the current work, we evaluate the statistical free energy of various secondary structure motifs, including base-pair stacks, hairpin loops, and internal loops, using their statistical frequency obtained from the comparative analysis of more than 50,000 RNA sequences stored in the RNA Comparative Analysis Database (rCAD) at the Comparative RNA Web (CRW) Site. Statistical energy was computed from the structural statistics for several datasets. While the statistical energy for a base-pair stack correlates with experimentally derived free energy values, suggesting a Boltzmann-like distribution, variation is observed between different molecules and their location on the phylogenetic tree of life. Our statistical energy values calculated for several structural elements were utilized in the Mfold RNA-folding algorithm. The combined statistical energy values for base-pair stacks, hairpins and internal loop flanks result in a significant improvement in the accuracy of secondary structure prediction; the hairpin flanks contribute the most.
Systematic Studies of Cosmic-Ray Anisotropy and Energy Spectrum with IceCube and IceTop
NASA Astrophysics Data System (ADS)
McNally, Frank
Anisotropy in the cosmic-ray arrival direction distribution has been well documented over a large energy range, but its origin remains largely a mystery. In the TeV to PeV energy range, the galactic magnetic field thoroughly scatters cosmic rays, but anisotropy at the part-per-mille level and smaller persists, potentially carrying information about nearby cosmic-ray accelerators and the galactic magnetic field. The IceCube Neutrino Observatory was the first detector to observe anisotropy at these energies in the Southern sky. This work uses 318 billion cosmic-ray induced muon events, collected between May 2009 and May 2015 from both the in-ice component of IceCube as well as the surface component, IceTop. The observed global anisotropy features large regions of relative excess and deficit, with amplitudes on the order of 10-3. While a decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments, higher-multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100TeV, a change in the topology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5PeV, the highest energies currently accessible to IceCube with sufficient event statistics. No time dependence of the large- and small-scale structures is observed in the six-year period covered by this analysis within statistical and systematic uncertainties. Analysis of the energy spectrum and composition in the PeV energy range as a function of sky position is performed with IceTop data over a five-year period using a likelihood-based reconstruction. Both the energy spectrum and the composition distribution are found to be consistent with a single source population over declination bands. This work represents an early attempt at understanding the anisotropy through the study of the spectrum and composition. The high-statistics data set reveals more details on the properties of the anisotropy, potentially able to shed light on the various physical processes responsible for the complex angular structure and energy evolution.
76 FR 9696 - Equipment Price Forecasting in Energy Conservation Standards Analysis
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-22
... for particular efficiency design options, an empirical experience curve fit to the available data may be used to forecast future costs of such design option technologies. If a statistical evaluation indicates a low level of confidence in estimates of the design option cost trend, this method should not be...
Fission dynamics with microscopic level densities
NASA Astrophysics Data System (ADS)
Randrup, Jørgen; Ward, Daniel; Carlsson, Gillis; Døssing, Thomas; Möller, Peter; Åberg, Sven
2018-03-01
Working within the Langevin framework of nuclear shape dynamics, we study the dependence of the evolution on the degree of excitation. As the excitation energy of the fissioning system is increased, the pairing correlations and the shell effects diminish and the effective potential-energy surface becomes ever more liquid-drop like. This feature can be included in the treatment in a formally well-founded manner by using the local level densities as a basis for the shape evolution. This is particularly easy to understand and implement in the Metropolis treatment where the evolution is simulated by means of a random walk on the five-dimensional lattice of shapes for which the potential energy has been tabulated. Because the individual steps between two neighboring lattice sites are decided on the basis of the ratio of the statistical weights, what is needed is the ratio of the local level densities for those shapes, evaluated at the associated local excitation energies. For this purpose, we adapt a recently developed combinatorial method for calculating level densities which employs the same single-particle levels as those that were used for the calculation of the pairing and shell contributions to the macroscopic-microscopic deformation-energy surface. For each nucleus under consideration, the level density (for a fixed total angular momentum) is calculated microscopically for each of the over five million shapes given in the three-quadratic-surface parametrization. This novel treatment, which introduces no new parameters, is illustrated for the fission fragment mass distributions for selected uranium and plutonium cases.
Study of angular momentum variation due to entrance channel effect in heavy ion fusion reactions
NASA Astrophysics Data System (ADS)
Kumar, Ajay
2014-05-01
A systematic investigation of the properties of hot nuclei may be studied by detecting the evaporated particles. These emissions reflect the behavior of the nucleus at various stages of the deexcitation cascade. When the nucleus is formed by the collision of a heavy nucleus with a light particle, the statistical model has done a good job of predicting the distribution of evaporated particles when reasonable choices were made for the level densities and yrast lines. Comparison to more specific measurements could, of course, provide a more severe test of the model and enable one to identify the deviations from the statistical model as the signature of other effects not included in the model. Some papers have claimed that experimental evaporation spectra from heavy-ion fusion reactions at higher excitation energies and angular momenta are no longer consistent with the predictions of the standard statistical model. In order to confirm this prediction we have employed two systems, a mass-symmetric (31P+45Sc) and a mass-asymmetric channel (12C+64Zn), leading to the same compound nucleus 76Kr* at the excitation energy of 75 MeV. Neutron energy spectra of the asymmetric system (12C+64Zn) at different angles are well described by the statistical model predictions using the normal value of the level density parameter a = A/8 MeV-1. However, in the case of the symmetric system (31P+45Sc), the statistical model interpretation of the data requires the change in the value of a = A/10 MeV-1. The delayed evolution of the compound system in case of the symmetric 31P+45Sc system may lead to the formation of a temperature equilibrated dinuclear complex, which may be responsible for the neutron emission at higher temperature, while the protons and alpha particles are evaporated after neutron emission when the system is sufficiently cooled down and the higher g-values do not contribute in the formation of the compound nucleus for the symmetric entrance channel in case of charged particle emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koner, Debasish; Panda, Aditya N., E-mail: adi07@iitg.ernet.in; Barrios, Lizandra
2016-01-21
Initial state selected dynamics of the Ne + NeH{sup +}(v{sub 0} = 0, j{sub 0} = 0) → NeH{sup +} + Ne reaction is investigated by quantum and statistical quantum mechanical (SQM) methods on the ground electronic state. The three-body ab initio energies on a set of suitably chosen grid points have been computed at CCSD(T)/aug-cc-PVQZ level and analytically fitted. The fitting of the diatomic potentials, computed at the same level of theory, is performed by spline interpolation. A collinear [NeHNe]{sup +} structure lying 0.72 eV below the Ne + NeH{sup +} asymptote is found to be the most stablemore » geometry for this system. Energies of low lying vibrational states have been computed for this stable complex. Reaction probabilities obtained from quantum calculations exhibit dense oscillatory structures, particularly in the low energy region and these get partially washed out in the integral cross section results. SQM predictions are devoid of oscillatory structures and remain close to 0.5 after the rise at the threshold thus giving a crude average description of the quantum probabilities. Statistical cross sections and rate constants are nevertheless in sufficiently good agreement with the quantum results to suggest an important role of a complex-forming dynamics for the title reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Ke; Fujii, Toshihiro; Linden, Tim
2014-10-20
The Telescope Array (TA) has observed a statistically significant excess in cosmic rays with energies above 57 EeV in a region of approximately 1150 deg{sup 2} centered on coordinates R.A. = 146.7, decl. = 43.2. We note that the location of this excess correlates with 2 of the 28 extraterrestrial neutrinos recently observed by IceCube. The overlap between the two IceCube neutrinos and the TA excess is statistically significant at the 2σ level. Furthermore, the spectrum and intensity of the IceCube neutrinos is consistent with a single source which would also produce the TA excess. Finally, we discuss possible sourcemore » classes with the correct characteristics to explain the cosmic-ray and neutrino fluxes with a single source.« less
NASA Astrophysics Data System (ADS)
Giacalone, Valarie A.
The purpose of this study was to examine the effects of an academic service learning project on ninth-grade students' science achievement and attitudes. A quasi-experimental, pretest-posttest design was used with four classes of one teacher in a rural school. The treatment was an Energy Fair service project. Two treatment classes that were chosen by random assignment (n = 58) were compared to two control classes (n = 64), who performed an alternative assignment. The Energy Fair was conducted for the elementary school students and on a limited basis for fellow students (peers). The academic effect was measured by a teacher-designed end-of-unit ecology test, with a subset of the questions on energy use. Psychological effects were measured by a self-esteem questionnaire, which measured both self-esteem and the satisfaction felt about one's self-esteem. Social effects were measured by three semantic differentials, one each for "adults," "peers," and "elementary students." The teacher was interviewed regarding her observations about the project. Written reflections from both the treatment and control groups were coded and analyzed. Pretest results were divided into thirds of high, medium, and low for all variables to search for the possibility of an attribute-treatment interaction. Analysis of covariance was used to reduce the possibility of pretest bias, to test for significant effects, and to test for a level by treatment interaction. Although the posttest means favored the experimental group, no statistically significant difference was found for academic results. No significant effect was found for either of the psychological measures. No change was found for the social results regarding "adults." A statistically significant effect was found for social results in the categories of "elementary students" and "peers." No statistically significant level by treatment interaction was found. Further research on the effects of academic service learning projects is needed at the middle school level, in all disciplines, and containing service of a longer duration and intensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravlev, B. V., E-mail: zhurav@ippe.ru; Lychagin, A. A.; Titarenko, N. N.
The spectra of neutrons from the (p, n) reactions on {sup 47}Ti, {sup 48}Ti, {sup 49}Ti, {sup 53}Cr, and {sup 54}Cr nuclei were measured in the proton-energy range 7-11 MeV. The measurements were performed with the aid of a fast-neutron spectrometer by the time-of-flight method over the base of the EGP-15 tandem accelerator of the Institute for Physics and Power Engineering (IPPE, Obninsk). Owing to a high resolution and a high stability of the time-of-flight spectrometer used, low-lying discrete levels could be identified reliably along with a continuum section of neutron spectra. An analysis of measured data was performed withinmore » the statistical equilibrium and preequilibrium models of nuclear reactions. The relevant calculations were performed by using the exact formalism of Hauser-Feshbach statistical theory supplemented with the generalized model of a superfluid nucleus, the back-shifted Fermi gas model, and the Gilbert-Cameron composite formula for the nuclear level density. The nuclear level densities for {sup 47}V, {sup 48}V, {sup 49}V, {sup 53}Mn, and {sup 54}Mn were determined along with their energy dependences and model parameters. The results are discussed together with available experimental data and recommendations of model systematics.« less
Locke, G.L.
2001-01-01
The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 34 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1999. Data collected prior to 1999 are graphically presented and data collected by other agencies (or as part of other Geological Survey programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-99. At two water-supply wells median water levels for calendar year 1999 were unchanged from their respective baseline periods. At a nearby observation well, the 1999 median water level was slightly lower (0.1 foot) than its baseline period. At the remaining four wells in Jackass Flats, median water levels for 1999 were slightly higher (0.2 foot to 1.6 feet) than for their respective baseline periods.
Quantum chaos: an introduction via chains of interacting spins-1/2
NASA Astrophysics Data System (ADS)
Gubin, Aviva; Santos, Lea
2012-02-01
We discuss aspects of quantum chaos by focusing on spectral statistical properties and structures of eigenstates of quantum many-body systems. Quantum systems whose classical counterparts are chaotic have properties that differ from those of quantum systems whose classical counterparts are regular. One of the main signatures of what became known as quantum chaos is a spectrum showing repulsion of the energy levels. We show how level repulsion may develop in one-dimensional systems of interacting spins-1/2 which are devoid of random elements and involve only two-body interactions. We present a simple recipe to unfold the spectrum and emphasize the importance of taking into account the symmetries of the system. In addition to the statistics of eigenvalues, we analyze also how the structure of the eigenstates may indicate chaos. This is done by computing quantities that measure the level of delocalization of the eigenstates.
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.
2011-01-01
Comet Enflow is a commercially available, high frequency vibroacoustic analysis software founded on Energy Finite Element Analysis (EFEA) and Energy Boundary Element Analysis (EBEA). Energy Finite Element Analysis (EFEA) was validated on a floor-equipped composite cylinder by comparing EFEA vibroacoustic response predictions with Statistical Energy Analysis (SEA) and experimental results. Statistical Energy Analysis (SEA) predictions were made using the commercial software program VA One 2009 from ESI Group. The frequency region of interest for this study covers the one-third octave bands with center frequencies from 100 Hz to 4000 Hz.
Level set method for image segmentation based on moment competition
NASA Astrophysics Data System (ADS)
Min, Hai; Wang, Xiao-Feng; Huang, De-Shuang; Jin, Jing; Wang, Hong-Zhi; Li, Hai
2015-05-01
We propose a level set method for image segmentation which introduces the moment competition and weakly supervised information into the energy functional construction. Different from the region-based level set methods which use force competition, the moment competition is adopted to drive the contour evolution. Here, a so-called three-point labeling scheme is proposed to manually label three independent points (weakly supervised information) on the image. Then the intensity differences between the three points and the unlabeled pixels are used to construct the force arms for each image pixel. The corresponding force is generated from the global statistical information of a region-based method and weighted by the force arm. As a result, the moment can be constructed and incorporated into the energy functional to drive the evolving contour to approach the object boundary. In our method, the force arm can take full advantage of the three-point labeling scheme to constrain the moment competition. Additionally, the global statistical information and weakly supervised information are successfully integrated, which makes the proposed method more robust than traditional methods for initial contour placement and parameter setting. Experimental results with performance analysis also show the superiority of the proposed method on segmenting different types of complicated images, such as noisy images, three-phase images, images with intensity inhomogeneity, and texture images.
NASA Astrophysics Data System (ADS)
Larsen, A. C.; Guttormsen, M.; Blasi, N.; Bracco, A.; Camera, F.; Crespo Campo, L.; Eriksen, T. K.; Görgen, A.; Hagen, T. W.; Ingeberg, V. W.; Kheswa, B. V.; Leoni, S.; E Midtbø, J.; Million, B.; Nyhus, H. T.; Renstrøm, T.; Rose, S. J.; E Ruud, I.; Siem, S.; Tornyi, T. G.; Tveten, G. M.; Voinov, A. V.; Wiedeking, M.; Zeiser, F.
2017-06-01
Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter-Thomas fluctuations, there is no indication of any significant excitation energy dependence in the γ-ray strength function, in support of the generalized Brink-Axel hypothesis.
Westenburg, C.L.; La Camera, R. J.
1996-01-01
The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1994. Data collected prior to 1994 are graphically presented and data collected by other agencies (or as part of other programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-94.
Density Functionals of Chemical Bonding
Putz, Mihai V.
2008-01-01
The behavior of electrons in general many-electronic systems throughout the density functionals of energy is reviewed. The basic physico-chemical concepts of density functional theory are employed to highlight the energy role in chemical structure while its extended influence in electronic localization function helps in chemical bonding understanding. In this context the energy functionals accompanied by electronic localization functions may provide a comprehensive description of the global-local levels electronic structures in general and of chemical bonds in special. Becke-Edgecombe and author’s Markovian electronic localization functions are discussed at atomic, molecular and solid state levels. Then, the analytical survey of the main workable kinetic, exchange, and correlation density functionals within local and gradient density approximations is undertaken. The hierarchy of various energy functionals is formulated by employing both the parabolic and statistical correlation degree of them with the electronegativity and chemical hardness indices by means of quantitative structure-property relationship (QSPR) analysis for basic atomic and molecular systems. PMID:19325846
The Shock and Vibration Digest, Volume 17, Number 8
1985-08-01
ate, transmit, and radiate audible sound. dures are based on acoustic power flow, statistical energy analysis (SEA), and modal methods [22-283. A...modified partition area. features of the acoustic field. I.--1 85-1642 Statistical Energy Analysis , Structural Reso- nances, and Beam Networks BUILDING...energy methods, Structural resonance L.J. Lee Heriot-Watt Univ., Chambers St., Edinburgh The statistical energy analysis method is EHI 1HX, Scotland
Shock and Vibration Symposium (59th) Held in Albuquerque, New Mexico on 18-20 October 1988. Volume 1
1988-10-01
Partial contents: The Quest for Omega = sq root(K/M) -- Notes on the development of vibration analysis; An overview of Statistical Energy analysis ; Its...and inplane vibration transmission in statistical energy analysis ; Vibroacoustic response using the finite element method and statistical energy analysis ; Helium
Particle distributions in approximately 10(14) 10(16) eV air shower cores at sea level
NASA Technical Reports Server (NTRS)
Hodson, A. L.; Ash, A. G.; Bull, R. M.
1985-01-01
Experimental evidence is reported for fixed distances (0, 1.0, 2.5 and 4.0 m) from the shower centers and for core flattening. The cores become flatter, on average, as the shower size (primary energy) increases. With improved statistics on 4192 cores, the previous results are exactly confirmed.
Simulating Metabolism with Statistical Thermodynamics
Cannon, William R.
2014-01-01
New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed. PMID:25089525
Simulating metabolism with statistical thermodynamics.
Cannon, William R
2014-01-01
New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed.
Cosmic shear measurements with Dark Energy Survey Science Verification data
Becker, M. R.
2016-07-06
Here, we present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark Energy Survey Science Verification data. We demonstrate that our results are robust to the choice of shear measurement pipeline, either ngmix or im3shape, and robust to the choice of two-point statistic, including both real and Fourier-space statistics. Our results pass a suite of null tests including tests for B-mode contamination and direct tests for any dependence of the two-point functions on a set of 16 observing conditions and galaxy properties, such as seeing, airmass, galaxy color, galaxy magnitude, etc. We use a large suite of simulationsmore » to compute the covariance matrix of the cosmic shear measurements and assign statistical significance to our null tests. We find that our covariance matrix is consistent with the halo model prediction, indicating that it has the appropriate level of halo sample variance. We also compare the same jackknife procedure applied to the data and the simulations in order to search for additional sources of noise not captured by the simulations. We find no statistically significant extra sources of noise in the data. The overall detection significance with tomography for our highest source density catalog is 9.7σ. Cosmological constraints from the measurements in this work are presented in a companion paper.« less
Locke, Glenn L.
2001-01-01
The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 34 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1998. Data collected prior to 1998 are graphically presented and data collected by other agencies (or as part of other Geolgical Survey programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-98. At two water-supply wells and a nearby observation well, median water levels for calendar year 1998 were slightly lower (0.2 to 0.3 foot) than for their respective baseline periods. At the remaining four wells in Jackass Flats, median water levels for 1998 were unchanged at two wells and slightly higher (0.4 and 1.4 foot) at two wells than those for their respective baseline periods.
Bistafa, Carlos; Kitamura, Yukichi; Martins-Costa, Marilia T C; Nagaoka, Masataka; Ruiz-López, Manuel F
2018-06-12
We describe a method to locate stationary points in the free-energy hypersurface of complex molecular systems using high-level correlated ab initio potentials. In this work, we assume a combined QM/MM description of the system although generalization to full ab initio potentials or other theoretical schemes is straightforward. The free-energy gradient (FEG) is obtained as the mean force acting on relevant nuclei using a dual level strategy. First, a statistical simulation is carried out using an appropriate, low-level quantum mechanical force-field. Free-energy perturbation (FEP) theory is then used to obtain the free-energy derivatives for the target, high-level quantum mechanical force-field. We show that this composite FEG-FEP approach is able to reproduce the results of a standard free-energy minimization procedure with high accuracy, while simultaneously allowing for a drastic reduction of both computational and wall-clock time. The method has been applied to study the structure of the water molecule in liquid water at the QCISD/aug-cc-pVTZ level of theory, using the sampling from QM/MM molecular dynamics simulations at the B3LYP/6-311+G(d,p) level. The obtained values for the geometrical parameters and for the dipole moment of the water molecule are within the experimental error, and they also display an excellent agreement when compared to other theoretical estimations. The developed methodology represents therefore an important step toward the accurate determination of the mechanism, kinetics, and thermodynamic properties of processes in solution, in enzymes, and in other disordered chemical systems using state-of-the-art ab initio potentials.
Statistical turbulence theory and turbulence phenomenology
NASA Technical Reports Server (NTRS)
Herring, J. R.
1973-01-01
The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.
NASA Astrophysics Data System (ADS)
McFarland, Michael Duane
The purpose of this investigation is to measure the spatial, spectral and statistical properties of the high (/omega/ ~/ ω pe) and low (/omega/ ~/ ωpi) frequency electrostatic fluctuations in an unmagnetized, statistically stable, beam-driven, strongly turbulent plasma and compare the results to theoretical predictions. In addition the scattering of the electron beam in both angle and energy is measured and compared to theory. This study is motivated by the recent advances in statistical theories of strong Langmuir turbulence and the glaring lack of confirmatory experimental data. With the advent of modern computers and electronics, enormous data sets are now routinely digitize and subjected to sophisticated statistical and spectral analysis. These methods, along with traditional procedures and an innovative technique known as a 'conditional trigger', are used to extract ensemble averages from the turbulent system for comparison with the theoretical models. It is found that the high-frequency fluctuations consist of low-level wave activity /langle W/rangle/ ~/ 10-2 - 103 punctuated by semi-periodic, intense, spiky field events /langle W/rangle/ ~/ 1, where /langle W/rangle is the normalized intensity. The low- level wave activity has a spectral spread Δ k/k/ ~/ /Delta/omega//omega/ ~ 30%, dispersion relation v beam/ ~/ /omega/k, and correlation length lc/ /approx/ 3λES, where λES is the electrostatic wavelength, and shows evidence of low-intensity parametric decay products. The intense field events, on the other hand, show little correlation for l/ >/ λES, have a full-width-at-half-maximum of 1 f/ < 40/ λ D, where λ D is the Debye length, and are non-propagating. The statistical properties of the fluctuations compares well with the predictions of the two-component model of strong Langmuir turbulence. In addition, freely traveling waves, 'free modes', are observed to be produced by the localized wave structures for the first time. The peak of the low frequency fluctuations is found to scale inversely with the average time between collapse events. The magnitude of the low-frequency fluctuations Δ n/n is compared to the two-component model of strong Langmuir turbulence. It is found that
NASA Technical Reports Server (NTRS)
Baily, N. A.
1973-01-01
The radiological implications of statistical variations in energy deposition by ionizing radiation were investigated in the conduct of the following experiments: (1) study of the production of secondary particles generated by the passage of the primary radiation through bone and muscle; (2) the study of the ratio of nonreparable to reparable damage in DNA as a function of different energy deposition patterns generated by X rays versus heavy fast charged particles; (3) the use of electronic radiography systems for direct fluoroscopic tomography and for the synthesis of multiple planes and; (4) the determination of the characteristics of systems response to split fields having different contrast levels, and of minimum detectable contrast levels between the halves under realistic clinical situations.
Little Green Lies: Dissecting the Hype of Renewables
2011-05-11
Sources: 2009 BP Statistical Energy Analysis , US Energy Information Administration Per Capita Energy Use (Kg Oil Equivalent) World 1,819 USA 7,766...Equivalent BUILDING STRONG® Energy Trends Sources: 2006 BP Statistical Energy Analysis Oil 37% Nuclear 6o/o Coal 25% Gas 23o/o Biomass 4% Hydro 3% Wind
Effects of quantum coherence on work statistics
NASA Astrophysics Data System (ADS)
Xu, Bao-Ming; Zou, Jian; Guo, Li-Sha; Kong, Xiang-Mu
2018-05-01
In the conventional two-point measurement scheme of quantum thermodynamics, quantum coherence is destroyed by the first measurement. But as we know the coherence really plays an important role in the quantum thermodynamics process, and how to describe the work statistics for a quantum coherent process is still an open question. In this paper, we use the full counting statistics method to investigate the effects of quantum coherence on work statistics. First, we give a general discussion and show that for a quantum coherent process, work statistics is very different from that of the two-point measurement scheme, specifically the average work is increased or decreased and the work fluctuation can be decreased by quantum coherence, which strongly depends on the relative phase, the energy level structure, and the external protocol. Then, we concretely consider a quenched one-dimensional transverse Ising model and show that quantum coherence has a more significant influence on work statistics in the ferromagnetism regime compared with that in the paramagnetism regime, so that due to the presence of quantum coherence the work statistics can exhibit the critical phenomenon even at high temperature.
Many-body formalism for fermions: The partition function
NASA Astrophysics Data System (ADS)
Watson, D. K.
2017-09-01
The partition function, a fundamental tenet in statistical thermodynamics, contains in principle all thermodynamic information about a system. It encapsulates both microscopic information through the quantum energy levels and statistical information from the partitioning of the particles among the available energy levels. For identical particles, this statistical accounting is complicated by the symmetry requirements of the allowed quantum states. In particular, for Fermi systems, the enforcement of the Pauli principle is typically a numerically demanding task, responsible for much of the cost of the calculations. The interplay of these three elements—the structure of the many-body spectrum, the statistical partitioning of the N particles among the available levels, and the enforcement of the Pauli principle—drives the behavior of mesoscopic and macroscopic Fermi systems. In this paper, we develop an approach for the determination of the partition function, a numerically difficult task, for systems of strongly interacting identical fermions and apply it to a model system of harmonically confined, harmonically interacting fermions. This approach uses a recently introduced many-body method that is an extension of the symmetry-invariant perturbation method (SPT) originally developed for bosons. It uses group theory and graphical techniques to avoid the heavy computational demands of conventional many-body methods which typically scale exponentially with the number of particles. The SPT application of the Pauli principle is trivial to implement since it is done "on paper" by imposing restrictions on the normal-mode quantum numbers at first order in the perturbation. The method is applied through first order and represents an extension of the SPT method to excited states. Our method of determining the partition function and various thermodynamic quantities is accurate and efficient and has the potential to yield interesting insight into the role played by the Pauli principle and the influence of large degeneracies on the emergence of the thermodynamic behavior of large-N systems.
Schweiner, Frank; Laturner, Jeanine; Main, Jörg; Wunner, Günter
2017-11-01
Until now only for specific crossovers between Poissonian statistics (P), the statistics of a Gaussian orthogonal ensemble (GOE), or the statistics of a Gaussian unitary ensemble (GUE) have analytical formulas for the level spacing distribution function been derived within random matrix theory. We investigate arbitrary crossovers in the triangle between all three statistics. To this aim we propose an according formula for the level spacing distribution function depending on two parameters. Comparing the behavior of our formula for the special cases of P→GUE, P→GOE, and GOE→GUE with the results from random matrix theory, we prove that these crossovers are described reasonably. Recent investigations by F. Schweiner et al. [Phys. Rev. E 95, 062205 (2017)2470-004510.1103/PhysRevE.95.062205] have shown that the Hamiltonian of magnetoexcitons in cubic semiconductors can exhibit all three statistics in dependence on the system parameters. Evaluating the numerical results for magnetoexcitons in dependence on the excitation energy and on a parameter connected with the cubic valence band structure and comparing the results with the formula proposed allows us to distinguish between regular and chaotic behavior as well as between existent or broken antiunitary symmetries. Increasing one of the two parameters, transitions between different crossovers, e.g., from the P→GOE to the P→GUE crossover, are observed and discussed.
Vibration Transmission through Rolling Element Bearings in Geared Rotor Systems
1990-11-01
147 4.8 Concluding Remarks ........................................................... 153 V STATISTICAL ENERGY ANALYSIS ............................................ 155...and dynamic finite element techniques are used to develop the discrete vibration models while statistical energy analysis method is used for the broad...bearing system studies, geared rotor system studies, and statistical energy analysis . Each chapter is self sufficient since it is written in a
NASA Astrophysics Data System (ADS)
Kus, Melike; Akan, Perihan; Aydinalp Koksal, Merih; Gullu, Gulen
2017-11-01
Energy demand of Turkey has been showing a remarkable increase in the last two decades due to rapid increase in population and changes in consumption trends. In parallel to the increase in energy demand, the CO2 emissions in Turkey are also increasing dramatically due to high usage of fossil fuels. CO2 emissions from the residential sector covers almost one fourth of the total sectoral emissions. In this study, CO2 emissions from the residential sector are estimated, and the factors affecting the emission levels are determined for the residential sector in Ankara, Turkey. In this study, detailed surveys are conducted to more than 400 households in Ankara. Using the information gathered from the surveys, the CO2 emissions associated with energy consumption of the households are calculated using the methodology outlined at IPCC. The statistical analyses are carried out using household income, dwelling characteristics, and household economic and demographic data to determine the factors causing the variation in emission levels among the households. The results of the study present that the main factors impacting the amount of total energy consumption and associated CO2 emissions are household income, dwelling construction year, age, education level of the household, and net footage of the dwelling.
NASA Astrophysics Data System (ADS)
Jiao, Yi; Duan, Zhe
2017-01-01
In a diffraction-limited storage ring, half integer resonances can have strong effects on the beam dynamics, associated with the large detuning terms from the strong focusing and strong sextupoles as required for an ultralow emittance. In this study, the limitation of half integer resonances on the available momentum acceptance (MA) was statistically analyzed based on one design of the High Energy Photon Source (HEPS). It was found that the probability of MA reduction due to crossing of half integer resonances is closely correlated with the level of beta beats at the nominal tunes, but independent of the error sources. The analysis indicated that for the presented HEPS lattice design, the rms amplitude of beta beats should be kept below 1.5% horizontally and 2.5% vertically to reach a small MA reduction probability of about 1%.
Time irreversibility and multifractality of power along single particle trajectories in turbulence
NASA Astrophysics Data System (ADS)
Cencini, Massimo; Biferale, Luca; Boffetta, Guido; De Pietro, Massimo
2017-10-01
The irreversible turbulent energy cascade epitomizes strongly nonequilibrium systems. At the level of single fluid particles, time irreversibility is revealed by the asymmetry of the rate of kinetic energy change, the Lagrangian power, whose moments display a power-law dependence on the Reynolds number, as recently shown by Xu et al. [H. Xu et al., Proc. Natl. Acad. Sci. USA 111, 7558 (2014), 10.1073/pnas.1321682111]. Here Lagrangian power statistics are rationalized within the multifractal model of turbulence, whose predictions are shown to agree with numerical and empirical data. Multifractal predictions are also tested, for very large Reynolds numbers, in dynamical models of the turbulent cascade, obtaining remarkably good agreement for statistical quantities insensitive to the asymmetry and, remarkably, deviations for those probing the asymmetry. These findings raise fundamental questions concerning time irreversibility in the infinite-Reynolds-number limit of the Navier-Stokes equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
This 13th edition presents the Energy Information Administration`s historical energy statistics. For most series, statistics are given for every year from 1949 through 1994; thus, this report is well-suited to long-term trend analyses. It covers all major energy activities, including consumption, production, trade, stocks, and prices for all major energy commodities, including fossil fuels and electricity. Statistics on renewable energy sources are also included: this year, for the first time, usage of renewables by other consumers as well as by electric utilities is included. Also new is a two-part, comprehensive presentation of data on petroleum products supplied by sector formore » 1949 through 1994. Data from electric utilities and nonutilities are integrated as ``electric power industry`` data; nonutility power gross generation are presented for the first time. One section presents international statistics (for more detail see EIA`s International Energy Annual).« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Metropolitan Statistical Areas/Consolidated Metropolitan Statistical Areas With 1980 Populations of 250,000 or more A Appendix A to Subpart A of Part 490 Energy..., Subpt. A, App. A Appendix A to Subpart A of Part 490—Metropolitan Statistical Areas/Consolidated...
Mansfield, E; McPherson, R; Koski, K G
1999-11-01
Healthy, young men were studied to determine the relationship of energy and nutrient intake and physical activity to concentrations of plasma lipoprotein and cholesteryl ester transfer protein. A cross-sectional study compared active and sedentary male subjects (17 to 35 years old) with no personal or family history of coronary heart disease. Participants kept 20-day food and activity journals. Individual intakes of energy, protein, carbohydrate, fat, saturated fat, monounsaturated fatty acids, polyunsaturated fatty acids, dietary fiber, and alcohol were evaluated. Measurements of blood lipids (total cholesterol and triglycerides, high- and low-density lipoprotein cholesterol); apolipoproteins; cholesteryl ester transfer protein; anthropometric variables (body mass index, waist-to-hip ratio, percentage of body fat); and aerobic capacity were taken during fall and spring data collection periods. SUBJECT SELECTION: Subjects were selected on the basis of normal blood lipid levels, absence of underlying disease, and willingness to comply with their current level of physical activity for the duration of the study. Minimal sample size for statistical power was 12 men per group: 12 of 15 subjects who exercised and 13 of 15 subjects who were sedentary completed all phases of the study. Statistical analyses consisted of 2-way analysis of variance (activity level and season). Pearson product moment correlations and multiple regression analyses were conducted to assess whether energy and nutrient intakes, physical activity status, and/or anthropometric variables predicted plasma concentrations of lipids and apolipoproteins. Lower waist-to-hip ratio, and not specifically activity level, was associated with higher levels of high-density lipoprotein cholesterol (HDL-C) and lower levels of low-density lipoprotein cholesterol (LDL-C). Dietary intake of saturated and monounsaturated fats and alcohol predicted changes in some apolipoprotein and lipoprotein levels. Use of waist-to-hip ratio in the primary prevention of coronary heart disease is a simple and cost-effective measure to predict development of abnormal lipoprotein profiles in young men. Specific dietary recommendations include adoption of a heart-healthy diet with emphasis on monounsaturated fatty acids (10% to 12% of energy or one third of total fat intake) and the suggestion that small amounts of alcohol (< 3 drinks per week) may, indeed, be beneficial. Because alcohol and waist-to-hip ratio were both important predictors of LDL-C level, even in active young men, the consumption of low levels of alcohol may be beneficial only if waist-to-hip ratio is maintained within the healthful range by achieving an appropriate balance of physical activity and macronutrient intake.
NASA Astrophysics Data System (ADS)
Diez, S.; Rein, S.; Roth, T.; Glunz, S. W.
2007-02-01
Temperature- and injection-dependent lifetime spectroscopy (TIDLS) as a method to characterize point defects in silicon with several energy levels is demonstrated. An intentionally cobalt-contaminated p-type wafer was investigated by means of lifetime measurements performed at different temperatures up to 151°C. Two defect energy levels were required to model the lifetime curves on basis of the Shockley-Read-Hall statistics. The detailed analysis is based on the determination of the recently introduced defect parameter solution surface (DPSS) in order to extract the underlying defect parameters. A unique solution has been found for a deep defect level located in the upper band gap half with an energy depth of EC-Et=0.38±0.01eV, with a corresponding ratio of capture cross sections k =σn/σp=0.16 within the interval of uncertainty of 0.06-0.69. Additionally, a deep donor level in the lower band gap half known from the literature could be assigned to a second energy level within the DPSS analysis at Et-EV=0.41±0.02eV with a corresponding ratio of capture cross sections k =σn/σp=16±3. An investigation of the temperature dependence of the capture cross section for electrons suggests that the underlying recombination process of the defect in the lower band gap half is driven by a two stage cascade capture with an activation energy of ΔE =52±2meV. These results show that TIDLS in combination with DPSS analysis is a powerful method to characterize even multiple defect levels that are affecting carrier recombination lifetime in parallel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, A. C.; Guttormsen, M.; Blasi, N.
Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr 3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter–Thomas fluctuations, there is no indication of any significant excitation energy dependencemore » in the γ-ray strength function, which is in support of the generalized Brink–Axel hypothesis.« less
Larsen, A. C.; Guttormsen, M.; Blasi, N.; ...
2017-04-24
Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr 3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter–Thomas fluctuations, there is no indication of any significant excitation energy dependencemore » in the γ-ray strength function, which is in support of the generalized Brink–Axel hypothesis.« less
The Shock and Vibration Bulletin. Part 2. Invited Papers, Structural Dynamics
1974-08-01
VIKING LANDER DYNAMICS 41 Mr. Joseph C. Pohlen, Martin Marietta Aerospace, Denver, Colorado Structural Dynamics PERFORMANCE OF STATISTICAL ENERGY ANALYSIS 47...aerospace structures. Analytical prediction of these environments is beyond the current scope of classical modal techniques. Statistical energy analysis methods...have been developed that circumvent the difficulties of high-frequency nodal analysis. These statistical energy analysis methods are evaluated
The Shock and Vibration Digest. Volume 16, Number 1
1984-01-01
investigation of the measure- ment of frequency band average loss factors of structural components for use in the statistical energy analysis method of...stiffness. Matrix methods Key Words: Finite element technique. Statistical energy analysis . Experimental techniques. Framed structures, Com- puter...programs In order to further understand the practical application of the statistical energy analysis , a two section plate-like frame structure is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Cathy
2014-04-30
This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements inmore » wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.« less
Statistical Analysis of Large-Scale Structure of Universe
NASA Astrophysics Data System (ADS)
Tugay, A. V.
While galaxy cluster catalogs were compiled many decades ago, other structural elements of cosmic web are detected at definite level only in the newest works. For example, extragalactic filaments were described by velocity field and SDSS galaxy distribution during the last years. Large-scale structure of the Universe could be also mapped in the future using ATHENA observations in X-rays and SKA in radio band. Until detailed observations are not available for the most volume of Universe, some integral statistical parameters can be used for its description. Such methods as galaxy correlation function, power spectrum, statistical moments and peak statistics are commonly used with this aim. The parameters of power spectrum and other statistics are important for constraining the models of dark matter, dark energy, inflation and brane cosmology. In the present work we describe the growth of large-scale density fluctuations in one- and three-dimensional case with Fourier harmonics of hydrodynamical parameters. In result we get power-law relation for the matter power spectrum.
1990-03-01
equation of the statistical energy analysis (SEA) using the procedure indicated in equation (13) [8, 9]. Similarly, one may state the quantities (. (X-)) and...CONGRESS ON ACOUSTICS, July 24-31 1986, Toronto, Canada, Paper D6-1. 5. CUSCHIERI, J.M., Power flow as a compliment to statistical energy analysis and...34Random response of identical one-dimensional subsystems", Journal of Sound and Vibration, 1980, Vol. 70, p. 343-353. 8. LYON, R.H., Statistical Energy Analysis of
A Hierarchical Approach to Fracture Mechanics
NASA Technical Reports Server (NTRS)
Saether, Erik; Taasan, Shlomo
2004-01-01
Recent research conducted under NASA LaRC's Creativity and Innovation Program has led to the development of an initial approach for a hierarchical fracture mechanics. This methodology unites failure mechanisms occurring at different length scales and provides a framework for a physics-based theory of fracture. At the nanoscale, parametric molecular dynamic simulations are used to compute the energy associated with atomic level failure mechanisms. This information is used in a mesoscale percolation model of defect coalescence to obtain statistics of fracture paths and energies through Monte Carlo simulations. The mathematical structure of predicted crack paths is described using concepts of fractal geometry. The non-integer fractal dimension relates geometric and energy measures between meso- and macroscales. For illustration, a fractal-based continuum strain energy release rate is derived for inter- and transgranular fracture in polycrystalline metals.
A Complete Set of Radiative and Auger Rates for K-vacancy States in Fe XVIII-Fe-XXV
NASA Technical Reports Server (NTRS)
Palmeri, P.; Mendoza, C.; Kallman, T. R.; Bautista, M. A.
2003-01-01
A complete set of level energies, wavelengths, A-values, and total and partial Auger rates have been computed for transitions involving the K-vacancy states within the n = 2 complex of Fe XVIII-Fe XXV. Three different standard numerical packages are used for this purpose, namel y AUTOSTRUCTURE, the Breit-Pauli R-matrix suite (BPRM) and HFR, which allow reliable estimates of the physical effects involved and of the accuracy of the resulting data sets. The Breit interaction is taken i nto account because its contributions to the small A-values and partial Auger rates cannot be neglected with increasing electron occupancy. Semiempirical adjustments can also lead to large differences in both the radiative and Auger decay data of strongly mixed levels. Several experimental level energies and wavelengths are questioned, and significant discrepancies are found with previously computed decay rates th at are attributed to numerical problems. The statistical accuracy of the present level energies and wavelengths is ranked at +/-3 eV and +/ -2 mA, respectively, and that for A-values and partial Auger rates greater than lO(exp 13)/s at better than 20%.
OSO 8 observational limits to the acoustic coronal heating mechanism
NASA Technical Reports Server (NTRS)
Bruner, E. C., Jr.
1981-01-01
An improved analysis of time-resolved line profiles of the C IV resonance line at 1548 A has been used to test the acoustic wave hypothesis of solar coronal heating. It is shown that the observed motions and brightness fluctuations are consistent with the existence of acoustic waves. Specific account is taken of the effect of photon statistics on the observed velocities, and a test is devised to determine whether the motions represent propagating or evanescent waves. It is found that on the average about as much energy is carried upward as downward such that the net acoustic flux density is statistically consistent with zero. The statistical uncertainty in this null result is three orders of magnitue lower than the flux level needed to heat the corona.
ERIC Educational Resources Information Center
Library of Congress, Washington, DC. Congressional Research Service.
This handbook contains a comprehensive selection of United States and foreign energy statistics in the form of graphs and tables. The data are classified according to resources, production, consumption and demand, energy and gross national product, and research and development. Statistics on energy sources such as coal, oil, gas, nuclear energy,…
Experimental Quiet Sprocket Design and Noise Reduction in Tracked Vehicles
1981-04-01
Track and Suspension Noise Reduction Statistical Energy Analysis Mechanical Impedance Measurement Finite Element Modal Analysis\\Noise Sources 2...shape and idler attachment are different. These differen- ces were investigated using the concepts of statistical energy analysis for hull generated noise...element r,’calculated from Statistical Energy Analysis . Such an approach will be valid within reasonable limits for frequencies of about 200 Hz and
The Shock and Vibration Digest. Volume 16, Number 3
1984-03-01
Fluid-induced Statistical Energy Analysis Method excitation, Wind tunnel testing V.R. Miller and L.L. Faulkner Flight Dynamics Lab., Air Force...84475 wall by the statistical energy analysis (SEA) method. The fuselage structure is represented as a series of curved, iso- Probabilistic Fracture...heavy are demonstrated in three-dimensional form. floor, a statistical energy analysis (SEA) model is presented. Only structural systems (i.e., no
Compendium of Methods for Applying Measured Data to Vibration and Acoustic Problems
1985-10-01
statistical energy analysis , finite element models, transfer function...Procedures for the Modal Analysis Method .............................................. 8-22 8.4 Summary of the Procedures for the Statistical Energy Analysis Method... statistical energy analysis . 8-1 • o + . . i... "_+,A" L + "+..• •+A ’! i, + +.+ +• o.+ -ore -+. • -..- , .%..% ". • 2 -".-2- ;.-.’, . o . It is helpful
Martin, Daniel R; Matyushov, Dmitry V
2012-08-30
We show that electrostatic fluctuations of the protein-water interface are globally non-Gaussian. The electrostatic component of the optical transition energy (energy gap) in a hydrated green fluorescent protein is studied here by classical molecular dynamics simulations. The distribution of the energy gap displays a high excess in the breadth of electrostatic fluctuations over the prediction of the Gaussian statistics. The energy gap dynamics include a nanosecond component. When simulations are repeated with frozen protein motions, the statistics shifts to the expectations of linear response and the slow dynamics disappear. We therefore suggest that both the non-Gaussian statistics and the nanosecond dynamics originate largely from global, low-frequency motions of the protein coupled to the interfacial water. The non-Gaussian statistics can be experimentally verified from the temperature dependence of the first two spectral moments measured at constant-volume conditions. Simulations at different temperatures are consistent with other indicators of the non-Gaussian statistics. In particular, the high-temperature part of the energy gap variance (second spectral moment) scales linearly with temperature and extrapolates to zero at a temperature characteristic of the protein glass transition. This result, violating the classical limit of the fluctuation-dissipation theorem, leads to a non-Boltzmann statistics of the energy gap and corresponding non-Arrhenius kinetics of radiationless electronic transitions, empirically described by the Vogel-Fulcher-Tammann law.
Evidence for Breakdown of Vibrational Motion in ^110Cd
NASA Astrophysics Data System (ADS)
Bangay, Jack; Garrett, Paul; Bianco, Laura; Leach, Kyle; Finlay, Paul; Green, Katie; Phillips, Andrew; Rand, Evan; Svensson, Carl; Sumithrarachchi, Chandana; Wong, James
2009-10-01
^110Cd has long been considered an excellent example of a vibrational nucleus. However, recent work with other even-even Cadmium isotopes show a breakdown of vibrational motion at the 2 and 3-phonon level, suggesting the need for more precise measurements on ^110Cd. The structure of ^110Cd is studied with the (n,n^'γ) reaction performed at the University of Kentucky, as well as with the high statistics β-decay of ^110In performed at the TRIUMF-ISAC facility using the 8π spectrometer. Excitation funcions and angular distributions from the (n,n^'γ) reaction provide us with spectroscopic information on the level scheme, including level lifetimes and spins. This data is complemented by the γγ coincidences measured in the ^110In β-decay that allows the observation of, or stringent limit on, weak, low-energy branches between levels at high excitation energy. Details of the analysis to date, including candidates for the full octupole-quadrupole coupled quintuplet, will be presented.
Predicting Energy Performance of a Net-Zero Energy Building: A Statistical Approach
Kneifel, Joshua; Webb, David
2016-01-01
Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid climate zone, and compares these estimates to the results from already existing EnergyPlus whole building energy simulations. This regression model exhibits agreement with EnergyPlus predictive trends in energy production and net consumption, but differs greatly in energy consumption. The model can be used as a framework for alternative and more complex models based on the experimental data collected from the NZERTF. PMID:27956756
Predicting Energy Performance of a Net-Zero Energy Building: A Statistical Approach.
Kneifel, Joshua; Webb, David
2016-09-01
Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid climate zone, and compares these estimates to the results from already existing EnergyPlus whole building energy simulations. This regression model exhibits agreement with EnergyPlus predictive trends in energy production and net consumption, but differs greatly in energy consumption. The model can be used as a framework for alternative and more complex models based on the experimental data collected from the NZERTF.
Monthly energy review, August 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. The MER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. 37 figs., 73 tabs.
Tabacchi, Garden; Filippi, Anna Rita; Breda, João; Censi, Laura; Amodio, Emanuele; Napoli, Giuseppe; Bianco, Antonino; Jemni, Monèm; Firenze, Alberto; Mammina, Caterina
2015-01-01
A new web-based food frequency questionnaire (the ASSO-FFQ) was developed within the ASSO Project funded by the Italian Ministry of Health. The aim of the present study is to assess the validity of the ASSO-FFQ at food groups, energy, and nutrients level. The validation study compared the ASSO-FFQ against a weighted food record (WFR) measuring foods, beverages and supplements intake, compiled during the week following the ASSO-FFQ administration. Ninety-two subjects aged 14-17, recruited from secondary schools in Palermo (Italy), completed the ASSO-FFQ and WFR. The intake of 24 food groups, energy, and 52 nutrients were taken as main outcomes. Tests for paired observations, Spearman and Pearson's correlation coefficients (cc), kappa statistics and classification in quintiles, Bland-Altman plots and multiple regressions, on untransformed and transformed data were used for the statistical analysis. High cc (≥0.40) were found for soft drinks, milk, tea/coffee, vegetables, and lactose; fair energy-adjusted cc (0.25-0.40) for water, alcoholic drinks, breakfast cereals, fishery products, savory food, fruit juice, eggs, and 19 nutrients. The subjects classified in the same or adjacent quintile for food groups ranged from 40% (alcoholic drinks) to 100% (dried fruit); for energy and nutrients from 43% (phosphorus, thiamin, niacin) to 77% (lactose). Mean differences were not significant for water, soft drinks, meat, sweets, animal fats, milk and white bread, and vitamin B12 and folate. Limits of Agreement were broad for all food groups and nutrients. School, gender, alcohol consumption and between meals mainly affected most food groups' intake differences. Gender stratification showed females had increased Pearson's cc for energy and 28 nutrients, such as almost all fats, carbohydrates, vitamins and minerals. The ASSO-FFQ could be applied in epidemiological studies for the assessment of dietary consumption in adolescents to adequately rank food, energy and nutrient intakes at a group level.
Albuquerque, Fabiana Cristina Alves; Bueno, Nassib Bezerra; Clemente, Ana Paula Grotti; Ferriolli, Eduardo; Florêncio, Telma Maria Menezes Toledo; Hoffman, Daniel; Sawaya, Ana Lydia
2015-01-01
Perinatal undernutrition may lead to important metabolic adaptations in adult life, short stature being the most visible. The present study aimed to evaluate the association between stature and total energy expenditure of low-income women. Women aged 19-45 years from low-income communities in Maceió-AL were recruited. A sample of 67 volunteers was selected and divided into either short stature (≤ 152.4 cm; n = 34) or non-short stature (≥ 158.7 cm; n = 33) group. Data on socioeconomic status, anthropometric variables, and hormonal profiles was collected. Total energy expenditure and body composition were assessed by the doubly labeled water technique with multiple points over 14 days. In addition, physical activity levels were measured with triaxial accelerometers and dietary intake data were collected using three 24-hour food records. The mean subject age was 30.94 years. Women of short stature had lower body weight and lean body mass compared to non-short women, but there were no differences in thyroid hormone concentrations or daily energy intake between the two groups. Short-stature women showed lower total energy expenditure (P = 0.01) and a significantly higher physical activity level (P = 0.01) compared to non-short women. However, the difference in total energy expenditure was no longer significant after statistical adjustment for age, lean body mass, and triiodothyronine concentrations. Women with short stature present the same energy intake, but lower total energy expenditure than non-short women, even with a higher physical activity level, which suggests that they are more prone to weight gain.
Frequency-resolved Monte Carlo.
López Carreño, Juan Camilo; Del Valle, Elena; Laussy, Fabrice P
2018-05-03
We adapt the Quantum Monte Carlo method to the cascaded formalism of quantum optics, allowing us to simulate the emission of photons of known energy. Statistical processing of the photon clicks thus collected agrees with the theory of frequency-resolved photon correlations, extending the range of applications based on correlations of photons of prescribed energy, in particular those of a photon-counting character. We apply the technique to autocorrelations of photon streams from a two-level system under coherent and incoherent pumping, including the Mollow triplet regime where we demonstrate the direct manifestation of leapfrog processes in producing an increased rate of two-photon emission events.
NASA Astrophysics Data System (ADS)
Lu, Nianduan; Li, Ling; Sun, Pengxiao; Banerjee, Writam; Liu, Ming
2014-09-01
A unified physical model for Seebeck coefficient was presented based on the multiple-trapping and release theory for amorphous oxide semiconductor thin-film transistors. According to the proposed model, the Seebeck coefficient is attributed to the Fermi-Dirac statistics combined with the energy dependent trap density of states and the gate-voltage dependence of the quasi-Fermi level. The simulation results show that the gate voltage, energy disorder, and temperature dependent Seebeck coefficient can be well described. The calculation also shows a good agreement with the experimental data in amorphous In-Ga-Zn-O thin-film transistor.
Energy Statistics : A Supplement to the Summary of National Transportation Statistics
DOT National Transportation Integrated Search
1973-09-01
This annual report is a compendium of selected time-series data describing the transportation, production, processing, and consumption of energy. The report is divided into three main sections. The first, entitled Energy Transport, contains such item...
Energy Statistics : A Supplement to the Summary of Transportation Statistics
DOT National Transportation Integrated Search
1974-08-01
This annual report is a compendium of selected time-series data describing the transportation, production, processing, and consumption of energy. The report is divided into three main sections. The first, entitled Energy Transport, contains such item...
Sung, Young-Hoon; Yurgelun-Todd, Deborah A.; Kondo, Douglas G.; Shi, Xian-Feng; Lundberg, Kelly J.; Hellem, Tracy L.; Huber, Rebekah S.; McGlade, Erin C.; Jeong, Eun-Kee; Renshaw, Perry F.
2015-01-01
Background A high prevalence of tobacco smoking has been observed in methamphetamine users, but there have been no in vivo brain neurochemistry studies addressing gender effects of tobacco smoking in methamphetamine users. Methamphetamine addiction is associated with increased risk of depression and anxiety in females. There is increasing evidence that selective analogues of nicotine, a principal active component of tobacco smoking, may improve depression and cognitive performance in animals and humans. Objectives To investigate the effects of tobacco smoking and gender on brain phosphocreatine (PCr) levels, a marker of brain energy metabolism reported to be reduced in methamphetamine-dependent subjects. Methods Thirty female and twenty-seven male methamphetamine-dependent subjects were evaluated with phosphorus-31 magnetic resonance spectroscopy (31P-MRS) to measure PCr levels within the pregenual anterior cingulate, which has been implicated in methamphetamine neurotoxicity. Results Analysis of covariance revealed that there were statistically significant slope (PCr versus lifetime amount of tobacco smoking) differences between female and male methamphetamine-dependent subjects (p=0.03). In females, there was also a statistically significant interaction between lifetime amounts of tobacco smoking and methamphetamine in regard to PCr levels (p=0.01), which suggests that tobacco smoking may have a more significant positive impact on brain PCr levels in heavy, as opposed to light to moderate, methamphetamine-dependent females. Conclusion These results indicate that tobacco smoking has gender-specific effects in terms of increased anterior cingulate high energy PCr levels in methamphetamine-dependent subjects. Cigarette smoking in methamphetamine-dependent women, particularly those with heavy methamphetamine use, may have a potentially protective effect upon neuronal metabolism. PMID:25871447
Marin, Daniele; Ramirez-Giraldo, Juan Carlos; Gupta, Sonia; Fu, Wanyi; Stinnett, Sandra S; Mileto, Achille; Bellini, Davide; Patel, Bhavik; Samei, Ehsan; Nelson, Rendon C
2016-06-01
The purpose of this study is to investigate whether the reduction in noise using a second-generation monoenergetic algorithm can improve the conspicuity of hypervascular liver tumors on dual-energy CT (DECT) images of the liver. An anthropomorphic liver phantom in three body sizes and iodine-containing inserts simulating hypervascular lesions was imaged with DECT and single-energy CT at various energy levels (80-140 kV). In addition, a retrospective clinical study was performed in 31 patients with 66 hypervascular liver tumors who underwent DECT during the late hepatic arterial phase. Datasets at energy levels ranging from 40 to 80 keV were reconstructed using first- and second-generation monoenergetic algorithms. Noise, tumor-to-liver contrast-to-noise ratio (CNR), and CNR with a noise constraint (CNRNC) set with a maximum noise increase of 50% were calculated and compared among the different reconstructed datasets. The maximum CNR for the second-generation monoenergetic algorithm, which was attained at 40 keV in both phantom and clinical datasets, was statistically significantly higher than the maximum CNR for the first-generation monoenergetic algorithm (p < 0.001) or single-energy CT acquisitions across a wide range of kilovoltage values. With the second-generation monoenergetic algorithm, the optimal CNRNC occurred at 55 keV, corresponding to lower energy levels compared with first-generation algorithm (predominantly at 70 keV). Patient body size did not substantially affect the selection of the optimal energy level to attain maximal CNR and CNRNC using the second-generation monoenergetic algorithm. A noise-optimized second-generation monoenergetic algorithm significantly improves the conspicuity of hypervascular liver tumors.
NASA Astrophysics Data System (ADS)
Egiyan, H.; Langheinrich, J.; Gothe, R. W.; Graham, L.; Holtrop, M.; Lu, H.; Mattione, P.; Mutchler, G.; Park, K.; Smith, E. S.; Stepanyan, S.; Zhao, Z. W.; Adhikari, K. P.; Aghasyan, M.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Bookwalter, C.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Contalbrigo, M.; D'Angelo, A.; Daniel, A.; Dashyan, N.; de Vita, R.; de Sanctis, E.; Deur, A.; Dey, B.; Dickson, R.; Djalali, C.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Heddle, D.; Hicks, K.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jo, H. S.; Joo, K.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Livingston, K.; MacGregor, I. J. D.; Mao, Y.; Mayer, M.; McKinnon, B.; Mokeev, V.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niculescu, G.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L.; Paremuzyan, R.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Phelps, E.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Stepanyan, S. S.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tedeschi, D. J.; Ungaro, M.; Voutier, E.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhao, B.
2012-01-01
We searched for the Φ--(1860) pentaquark in the photoproduction process off the deuteron in the Ξ-π--decay channel using CLAS. The invariant-mass spectrum of the Ξ-π- system does not indicate any statistically significant enhancement near the reported mass M=1.860 GeV. The statistical analysis of the sideband-subtracted mass spectrum yields a 90%-confidence-level upper limit of 0.7 nb for the photoproduction cross section of Φ--(1860) with a consecutive decay into Ξ-π- in the photon-energy range 4.5GeV
The Shock and Vibration Digest. Volume 15. Number 1
1983-01-01
acoustics The books are arranged to engineer is statistical energy analysis (SEA). This show the wealth of information that exists and the concept is...is also used for vibrating systems in pie nonlinear elements. However, for systems with a which statistical energy analysis and power flow continuous... statistical energy analysis to analyze the random nonlinear algebraic equations can be difficult. response of two identical subsystems coupled at an end
Research of Extension of the Life Cycle of Helicopter Rotor Blade in Hungary
2003-02-01
Radiography (DXR), and (iii) Vibration Diagnostics (VD) with Statistical Energy Analysis (SEA) were semi- simultaneously applied [1]. The used three...2.2. Vibration Diagnostics (VD)) Parallel to the NDT measurements the Statistical Energy Analysis (SEA) as a vibration diagnostical tool were...noises were analysed with a dual-channel real time frequency analyser (BK2035). In addition to the Statistical Energy Analysis measurement a small
The Shock and Vibration Digest, Volume 14, Number 2, February 1982
1982-02-01
figurations. 75 4J DUCTS 82-424 (Also see No. 346) Coupling Lou Factors for Statistical Energy Analysis of Sound Transnission at Rectangular...waves, Sound waves, Wave props- tures by means of statistical energy analysis (SEA) coupling gation loss factors for the structure-borne sound...multilayered panels are discussed. Statistical energy analysis (SEA) has proved to be a promising Experimental results of stiffened panels, damping tape
Optimal Regulation of Structural Systems with Uncertain Parameters.
1981-02-02
been addressed, in part, by Statistical Energy Analysis . Moti- vated by a concern with high frequency vibration and acoustical- structural...Parameter Systems," AFOSR-TR-79-0753 (May, 1979). 25. R. H. Lyon, Statistical Energy Analysis of Dynamical Systems: Theory and Applications, (M.I.T...Press, Cambridge, Mass., 1975). 26. E. E. Ungar, " Statistical Energy Analysis of Vibrating Systems," Trans. ASME, J. Eng. Ind. 89, 626 (1967). 139 27
The Shock and Vibration Digest. Volume 14, Number 8
1982-08-01
generating interest in averaged transfer functions. Broadband transfer functions are derived using the methods of statistical energy analysis (SEA...Accelerometer, Endevco Corp., San Juan Capis- trano,CA(1982). 7. Lyon, R.H., Statistical Energy Analysis of Dy- namical Systems, MIT Press, Cambridge, MA...A fairly new technique known as statistical energy analysis , or SEA, [35-44] has been useful for many problems of noise transmission. The difficulty
The Shock and Vibration Digest. Volume 14, Number 12
1982-12-01
to evaluate the uses of statistical energy analysis for determining sound transmission performance. Coupling loss factors were mea- sured and compared...measurements for the artificial (Also see No. 2623) cracks in mild-steel test pieces. 82-2676 Ihprovement of the Method of Statistical Energy Analysis for...eters, using a large number of free-response time histories In the application of the statistical energy analysis theory simultaneously in one analysis
Level-crossing statistics of the horizontal wind speed in the planetary surface boundary layer
NASA Astrophysics Data System (ADS)
Edwards, Paul J.; Hurst, Robert B.
2001-09-01
The probability density of the times for which the horizontal wind remains above or below a given threshold speed is of some interest in the fields of renewable energy generation and pollutant dispersal. However there appear to be no analytic or conceptual models which account for the observed power law form of the distribution of these episode lengths over a range of over three decades, from a few tens of seconds to a day or more. We reanalyze high resolution wind data and demonstrate the fractal character of the point process generated by the wind speed level crossings. We simulate the fluctuating wind speed by a Markov process which approximates the characteristics of the real (non-Markovian) wind and successfully generates a power law distribution of episode lengths. However, fundamental questions concerning the physical basis for this behavior and the connection between the properties of a continuous-time stochastic process and the fractal statistics of the point process generated by its level crossings remain unanswered.
NASA Astrophysics Data System (ADS)
Inglese, Alessandro; Lindroos, Jeanette; Vahlman, Henri; Savin, Hele
2016-09-01
The presence of copper contamination is known to cause strong light-induced degradation (Cu-LID) in silicon. In this paper, we parametrize the recombination activity of light-activated copper defects in terms of Shockley—Read—Hall recombination statistics through injection- and temperature dependent lifetime spectroscopy (TDLS) performed on deliberately contaminated float zone silicon wafers. We obtain an accurate fit of the experimental data via two non-interacting energy levels, i.e., a deep recombination center featuring an energy level at Ec-Et=0.48 -0.62 eV with a moderate donor-like capture asymmetry ( k =1.7 -2.6 ) and an additional shallow energy state located at Ec-Et=0.1 -0.2 eV , which mostly affects the carrier lifetime only at high-injection conditions. Besides confirming these defect parameters, TDLS measurements also indicate a power-law temperature dependence of the capture cross sections associated with the deep energy state. Eventually, we compare these results with the available literature data, and we find that the formation of copper precipitates is the probable root cause behind Cu-LID.
Bridging the Gap Between Stationary Homogeneous Isotropic Turbulence and Quantum Mechanics
NASA Astrophysics Data System (ADS)
Sohrab, Siavash
A statistical theory of stationary isotropic turbulence is presented with eddies possessing Gaussian velocity distribution, Maxwell-Boltzmann speed distribution in harmony with perceptions of Heisenberg, and Planck energy distribution in harmony with perceptions of Chandrasekhar and in agreement with experimental observations of Van Atta and Chen. Defining the action S = - mΦ in terms of velocity potential of atomic motion, scale-invariant Schrödinger equation is derivedfrom invariant Bernoulli equation. Thus, the gap between the problems of turbulence and quantum mechanics is closed through connections between Cauchy-Euler-Bernoulli equations of hydrodynamics, Hamilton-Jacobi equation of classical mechanics, and finally Schrödinger equation of quantum mechanics. Transitions of particle (molecular cluster cji) from a small rapidly-oscillating eddy ej (high-energy level-j) to a large slowly-oscillating eddy ei (low energy-level-i) leads to emission of a sub-particle (molecule mji) that carries away the excess energy ɛji = h (νj -νi) in harmony with Bohr theory of atomic spectra. ∖ ∖ NASA Grant No. NAG3-1863.
NASA Technical Reports Server (NTRS)
Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.
1985-01-01
Detection of air showers with primary energies above 10 to the 19th power eV with sufficient statistics is extremely important in an astrophysical aspect related to the Greisen cut off and the origin of such high energy cosmic rays. Recently, a method is proposed to observe such giant air showers by measuring the arrival time distributions of air-shower particles at large core distances with a mini array. Experiments to measure the arrival time distributions of muons were started in 1981 and those of electrons in early 1983 in the Akeno air-shower array (930 gcm cm squared atmospheric depth, 900m above sea level). During the time of observation, the detection area of the Akeno array was expanded from 1 sq km to sq km in 1982 and to 20 sq km in 1984. Now the arrival time distribution of electrons and muons can be measured for showers with primary energies above 1019eV at large core distances.
NASA Astrophysics Data System (ADS)
Chang, Xiaoyen Y.; Sewell, Thomas D.; Raff, Lionel M.; Thompson, Donald L.
1992-11-01
The possibility of utilizing different types of power spectra obtained from classical trajectories as a diagnostic tool to identify the presence of nonstatistical dynamics is explored by using the unimolecular bond-fission reactions of 1,2-difluoroethane and the 2-chloroethyl radical as test cases. In previous studies, the reaction rates for these systems were calculated by using a variational transition-state theory and classical trajectory methods. A comparison of the results showed that 1,2-difluoroethane is a nonstatistical system, while the 2-chloroethyl radical behaves statistically. Power spectra for these two systems have been generated under various conditions. The characteristics of these spectra are as follows: (1) The spectra for the 2-chloroethyl radical are always broader and more coupled to other modes than is the case for 1,2-difluoroethane. This is true even at very low levels of excitation. (2) When an internal energy near or above the dissociation threshold is initially partitioned into a local C-H stretching mode, the power spectra for 1,2-difluoroethane broaden somewhat, but discrete and somewhat isolated bands are still clearly evident. In contrast, the analogous power spectra for the 2-chloroethyl radical exhibit a near complete absence of isolated bands. The general appearance of the spectrum suggests a very high level of mode-to-mode coupling, large intramolecular vibrational energy redistribution (IVR) rates, and global statistical behavior. (3) The appearance of the power spectrum for the 2-chloroethyl radical is unaltered regardless of whether the initial C-H excitation is in the CH2 or the CH2Cl group. This result also suggests statistical behavior. These results are interpreted to mean that power spectra may be used as a diagnostic tool to assess the statistical character of a system. The presence of a diffuse spectrum exhibiting a nearly complete loss of isolated structures indicates that the dissociation dynamics of the molecule will be well described by statistical theories. If, however, the power spectrum maintains its discrete, isolated character, as is the case for 1,2-difluoroethane, the opposite conclusion is suggested. Since power spectra are very easily computed, this diagnostic method may prove to be useful.
Perspective: chemical dynamics simulations of non-statistical reaction dynamics
Ma, Xinyou; Hase, William L.
2017-01-01
Non-statistical chemical dynamics are exemplified by disagreements with the transition state (TS), RRKM and phase space theories of chemical kinetics and dynamics. The intrinsic reaction coordinate (IRC) is often used for the former two theories, and non-statistical dynamics arising from non-IRC dynamics are often important. In this perspective, non-statistical dynamics are discussed for chemical reactions, with results primarily obtained from chemical dynamics simulations and to a lesser extent from experiment. The non-statistical dynamical properties discussed are: post-TS dynamics, including potential energy surface bifurcations, product energy partitioning in unimolecular dissociation and avoiding exit-channel potential energy minima; non-RRKM unimolecular decomposition; non-IRC dynamics; direct mechanisms for bimolecular reactions with pre- and/or post-reaction potential energy minima; non-TS theory barrier recrossings; and roaming dynamics. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320906
Observation of e+e-→ηJ/ψ at center-of-mass energy s=4.009GeV
NASA Astrophysics Data System (ADS)
Ablikim, M.; Achasov, M. N.; Ambrose, D. J.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Ban, Y.; Becker, J.; Bennett, J. V.; Bertani, M.; Bian, J. M.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; Ding, W. M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Fava, L.; Feldbauer, F.; Feng, C. Q.; Ferroli, R. B.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Han, Y. L.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Kuehn, W.; Lai, W.; Lange, J. S.; Li, C. H.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, K.; Li, Lei; Li, Q. J.; Li, S. L.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, X. T.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H.; Liu, H. B.; Liu, H. H.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K. Y.; Liu, Kai; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. Y.; Ma, Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Morales, C. Morales; Motzko, C.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nicholson, C.; Nikolaev, I. B.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Park, J. W.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Prencipe, E.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schaefer, B. D.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, W. M.; Song, X. Y.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Toth, D.; Ullrich, M.; Varner, G. S.; Wang, B.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, Q. J.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Weidenkaff, P.; Wen, Q. G.; Wen, S. P.; Werner, M.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, S. X.; Wu, W.; Wu, Z.; Xia, L. G.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Q. J.; Xu, X. P.; Xu, Z. R.; Xue, F.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yu, S. P.; Yuan, C. Z.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, S. H.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. S.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, J. W.; Zhao, K. X.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zhong, B.; Zhong, J.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. C.; Zhu, Y. M.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.
2012-10-01
Using a 478pb-1 data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider storage ring at a center-of-mass energy of s=4.009GeV, the production of e+e-→ηJ/ψ is observed for the first time with a statistical significance of greater than 10σ. The Born cross section is measured to be (32.1±2.8±1.3)pb, where the first error is statistical and the second systematic. Assuming the ηJ/ψ signal is from a hadronic transition of the ψ(4040), the fractional transition rate is determined to be B(ψ(4040)→ηJ/ψ)=(5.2±0.5±0.2±0.5)×10-3, where the first, second, and third errors are statistical, systematic, and the uncertainty from the ψ(4040) resonant parameters, respectively. The production of e+e-→π0J/ψ is searched for, but no significant signal is observed, and B(ψ(4040)→π0J/ψ)<2.8×10-4 is obtained at the 90% confidence level.
Probability of brittle failure
NASA Technical Reports Server (NTRS)
Kim, A.; Bosnyak, C. P.; Chudnovsky, A.
1991-01-01
A methodology was developed for collecting statistically representative data for crack initiation and arrest from small number of test specimens. An epoxy (based on bisphenol A diglycidyl ether and polyglycol extended diglycyl ether and cured with diethylene triamine) is selected as a model material. A compact tension specimen with displacement controlled loading is used to observe multiple crack initiation and arrests. The energy release rate at crack initiation is significantly higher than that at a crack arrest, as has been observed elsewhere. The difference between these energy release rates is found to depend on specimen size (scale effect), and is quantitatively related to the fracture surface morphology. The scale effect, similar to that in statistical strength theory, is usually attributed to the statistics of defects which control the fracture process. Triangular shaped ripples (deltoids) are formed on the fracture surface during the slow subcritical crack growth, prior to the smooth mirror-like surface characteristic of fast cracks. The deltoids are complementary on the two crack faces which excludes any inelastic deformation from consideration. Presence of defects is also suggested by the observed scale effect. However, there are no defects at the deltoid apexes detectable down to the 0.1 micron level.
NASA Astrophysics Data System (ADS)
Liang, Jing; Yu, Jian-xing; Yu, Yang; Lam, W.; Zhao, Yi-yu; Duan, Jing-hui
2016-06-01
Energy transfer ratio is the basic-factor affecting the level of pipe damage during the impact between dropped object and submarine pipe. For the purpose of studying energy transfer and damage mechanism of submarine pipe impacted by dropped objects, series of experiments are designed and carried out. The effective yield strength is deduced to make the quasi-static analysis more reliable, and the normal distribution of energy transfer ratio caused by lateral impact on pipes is presented by statistic analysis of experimental results based on the effective yield strength, which provides experimental and theoretical basis for the risk analysis of submarine pipe system impacted by dropped objects. Failure strains of pipe material are confirmed by comparing experimental results with finite element simulation. In addition, impact contact area and impact time are proved to be the major influence factors of energy transfer by sensitivity analysis of the finite element simulation.
Linking energy behaviour, attitude and habits with environmental predisposition and knowledge
NASA Astrophysics Data System (ADS)
Pothitou, Mary; Varga, Liz; Kolios, Athanasios J.; Gu, Sai
2017-04-01
The purpose of this paper is to present and discuss the findings of an empirical study that compares individuals' environmental predisposition and knowledge with their energy behaviour, attitude and habits. Additionally, the study attempts to correlate education level and household income with the above variables. The statistical analysis reveals significant correlations between environmental predisposition and knowledge and elements of individuals' energy attitudes, habits and behaviour. An unanticipated outcome from the principal component analysis was that household income, and to a lesser extent gender, is associated with energy-saving habits and behaviours. On further investigation, household income was found to be correlated with knowledge of greenhouse gas emissions and the number of laptops and electric showers owned per household. The study sample comprises 68 employees of an educational institution, which was selected as the first phase of research aiming to compare energy-saving behaviour at home and in the workplace.
Serum apelin levels in patients with thyroid dysfunction
Gürel, Ali; Doğantekin, Akif; Özkan, Yusuf; Aydın, Süleyman
2015-01-01
Adipocytes are not only for energy storage, but are also functionally active cells, producing biologically active peptides called adipocytokines. Adipocytokines control nutrition, thermogenesis, immunity, thyroid and reproductive hormones, and neuroendocrine functions. One of the most important new members of this family is apelin. In patients with thyroid dysfunctions, there are usually changes in weight, thermogenesis and adipose tissue lipolysis. Here, we investigated the serum apelin levels in different thyroid hormone states. Our study group consisted of the following patients: 32 thyrotoxicosis, 32 subclinical hyperthyroidism, 31 hypothyroidism, 34 subclinical hypothyroidism and 31 healthy control cases. In addition to routine blood tests, serum free T3 (FT3), free T4 (FT4), TSH and apelin levels were measured, and the body mass index (BMI) was recorded. In terms of the demographic characteristics, age and BMI, there was no statistically significant difference between the groups (P>0.05). The mean serum apelin levels of the groups were as follows: thyrotoxicosis group, 4.6±1.9 ng/ml; subclinical hyperthyroidism group, 3.7±1.9 ng/ml; hypothyroid group, 4.8±2.5 ng/ml; subclinical hypothyroidism group, 4.3±2.2 ng/mL; and control group, 3.4±1.4 ng/ml, respectively. There was no statistically significant difference in terms of the mean apelin levels between the groups (P>0.05). The hypothyroid group had the highest and the control group had the lowest mean apelin levels. As a result, the apelin levels were higher in both the patients with hypothyroidism and hyperthyroidism, in comparison with the normal population, but without statistical significance. PMID:26629164
Yamamoto, Takeshi
2008-12-28
Conventional quantum chemical solvation theories are based on the mean-field embedding approximation. That is, the electronic wavefunction is calculated in the presence of the mean field of the environment. In this paper a direct quantum mechanical/molecular mechanical (QM/MM) analog of such a mean-field theory is formulated based on variational and perturbative frameworks. In the variational framework, an appropriate QM/MM free energy functional is defined and is minimized in terms of the trial wavefunction that best approximates the true QM wavefunction in a statistically averaged sense. Analytical free energy gradient is obtained, which takes the form of the gradient of effective QM energy calculated in the averaged MM potential. In the perturbative framework, the above variational procedure is shown to be equivalent to the first-order expansion of the QM energy (in the exact free energy expression) about the self-consistent reference field. This helps understand the relation between the variational procedure and the exact QM/MM free energy as well as existing QM/MM theories. Based on this, several ways are discussed for evaluating non-mean-field effects (i.e., statistical fluctuations of the QM wavefunction) that are neglected in the mean-field calculation. As an illustration, the method is applied to an S(N)2 Menshutkin reaction in water, NH(3)+CH(3)Cl-->NH(3)CH(3) (+)+Cl(-), for which free energy profiles are obtained at the Hartree-Fock, MP2, B3LYP, and BHHLYP levels by integrating the free energy gradient. Non-mean-field effects are evaluated to be <0.5 kcal/mol using a Gaussian fluctuation model for the environment, which suggests that those effects are rather small for the present reaction in water.
Atomic Data and Spectral Line Intensities for CA XVII
NASA Technical Reports Server (NTRS)
Bhatia, A.K.; Landi, E.
2007-01-01
Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ca XVII. The configurations used are 2s(sup 2), 2s2p, 2p(sup 2), 2l3l', 214l' and 2s5l', with l = s,p and l' = s,p, d giving rise to 92 fine-structure levels in intermediate coupling. Collision strengths are calculated at seven incident energies (15, 30, 75, 112.5, 150, 187.5 and 225 Ry) for the transitions within the three lowest configurations corresponding to the 10 lowest energy levels, and five incident energies (75, 112.5, 150, 187.5 and 225 Ry) for transitions between the lowest five levels and the n = 3,4,5 configurations. Calculations have been carried out using the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, and R-Matrix results for the 2s2, 2s2p, 2p2 configurations available in the literature, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8)-10(exp 14)/cu cm at an electron temperature of log Te(K)=6.7, corresponding to the maximum abundance of Ca XVII. Spectral line intensities are calculated, and their diagnostic relevance L; discussed. This dataset will be made available in the next version of the CHIANTI database.
Statistical analysis of the calibration procedure for personnel radiation measurement instruments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, W.J.; Bengston, S.J.; Kalbeitzer, F.L.
1980-11-01
Thermoluminescent analyzer (TLA) calibration procedures were used to estimate personnel radiation exposure levels at the Idaho National Engineering Laboratory (INEL). A statistical analysis is presented herein based on data collected over a six month period in 1979 on four TLA's located in the Department of Energy (DOE) Radiological and Environmental Sciences Laboratory at the INEL. The data were collected according to the day-to-day procedure in effect at that time. Both gamma and beta radiation models are developed. Observed TLA readings of thermoluminescent dosimeters are correlated with known radiation levels. This correlation is then used to predict unknown radiation doses frommore » future analyzer readings of personnel thermoluminescent dosimeters. The statistical techniques applied in this analysis include weighted linear regression, estimation of systematic and random error variances, prediction interval estimation using Scheffe's theory of calibration, the estimation of the ratio of the means of two normal bivariate distributed random variables and their corresponding confidence limits according to Kendall and Stuart, tests of normality, experimental design, a comparison between instruments, and quality control.« less
Gómez-Carrasco, Susana; González-Sánchez, Lola; Aguado, Alfredo; Sanz-Sanz, Cristina; Zanchet, Alexandre; Roncero, Octavio
2012-09-07
In this work we present a dynamically biased statistical model to describe the evolution of the title reaction from statistical to a more direct mechanism, using quasi-classical trajectories (QCT). The method is based on the one previously proposed by Park and Light [J. Chem. Phys. 126, 044305 (2007)]. A recent global potential energy surface is used here to calculate the capture probabilities, instead of the long-range ion-induced dipole interactions. The dynamical constraints are introduced by considering a scrambling matrix which depends on energy and determine the probability of the identity/hop/exchange mechanisms. These probabilities are calculated using QCT. It is found that the high zero-point energy of the fragments is transferred to the rest of the degrees of freedom, what shortens the lifetime of H(5)(+) complexes and, as a consequence, the exchange mechanism is produced with lower proportion. The zero-point energy (ZPE) is not properly described in quasi-classical trajectory calculations and an approximation is done in which the initial ZPE of the reactants is reduced in QCT calculations to obtain a new ZPE-biased scrambling matrix. This reduction of the ZPE is explained by the need of correcting the pure classical level number of the H(5)(+) complex, as done in classical simulations of unimolecular processes and to get equivalent quantum and classical rate constants using Rice-Ramsperger-Kassel-Marcus theory. This matrix allows to obtain a ratio of hop/exchange mechanisms, α(T), in rather good agreement with recent experimental results by Crabtree et al. [J. Chem. Phys. 134, 194311 (2011)] at room temperature. At lower temperatures, however, the present simulations predict too high ratios because the biased scrambling matrix is not statistical enough. This demonstrates the importance of applying quantum methods to simulate this reaction at the low temperatures of astrophysical interest.
NASA Astrophysics Data System (ADS)
Gómez-Carrasco, Susana; González-Sánchez, Lola; Aguado, Alfredo; Sanz-Sanz, Cristina; Zanchet, Alexandre; Roncero, Octavio
2012-09-01
In this work we present a dynamically biased statistical model to describe the evolution of the title reaction from statistical to a more direct mechanism, using quasi-classical trajectories (QCT). The method is based on the one previously proposed by Park and Light [J. Chem. Phys. 126, 044305 (2007), 10.1063/1.2430711]. A recent global potential energy surface is used here to calculate the capture probabilities, instead of the long-range ion-induced dipole interactions. The dynamical constraints are introduced by considering a scrambling matrix which depends on energy and determine the probability of the identity/hop/exchange mechanisms. These probabilities are calculated using QCT. It is found that the high zero-point energy of the fragments is transferred to the rest of the degrees of freedom, what shortens the lifetime of H_5^+ complexes and, as a consequence, the exchange mechanism is produced with lower proportion. The zero-point energy (ZPE) is not properly described in quasi-classical trajectory calculations and an approximation is done in which the initial ZPE of the reactants is reduced in QCT calculations to obtain a new ZPE-biased scrambling matrix. This reduction of the ZPE is explained by the need of correcting the pure classical level number of the H_5^+ complex, as done in classical simulations of unimolecular processes and to get equivalent quantum and classical rate constants using Rice-Ramsperger-Kassel-Marcus theory. This matrix allows to obtain a ratio of hop/exchange mechanisms, α(T), in rather good agreement with recent experimental results by Crabtree et al. [J. Chem. Phys. 134, 194311 (2011), 10.1063/1.3587246] at room temperature. At lower temperatures, however, the present simulations predict too high ratios because the biased scrambling matrix is not statistical enough. This demonstrates the importance of applying quantum methods to simulate this reaction at the low temperatures of astrophysical interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
This report, Housing Characteristics 1993, presents statistics about the energy-related characteristics of US households. These data were collected in the 1993 Residential Energy Consumption Survey (RECS) -- the ninth in a series of nationwide energy consumption surveys conducted since 1978 by the Energy Information Administration of the US Department of Energy. Over 7 thousand households were surveyed, representing 97 million households nationwide. A second report, to be released in late 1995, will present statistics on residential energy consumption and expenditures.
Robust Fixed-Structure Control
1994-10-30
Deterministic Foundation for Statistical Energy Analysis ," J. Sound Vibr., to appear. 1.96 D. S. Bernstein and S. P. Bhat, "Lyapunov Stability, Semistability...S. Bernstein, "Power Flow, Energy Balance, and Statistical Energy Analysis for Large Scale, Interconnected Systems," Proc. Amer. Contr. Conf., pp
1975-07-01
Statistical Energy Analysis MAJOR ASSUMPTIONS AND LIMITATIONS . Simply supported panel it contidarad to ba vibrating freely in a mode consisting of e...Shells: Statistical Energy Analysis . Modal Coupling and Nonresonant Transmission. Univ Houston, Dept Mech Eng Tech Report 21 (Aug 1970); also J...Oscillators. J. Acoust. Soc. Am., Vol. 34, No. 5 (May 1962). 14. Ungar, E.E., Fundamentals of Statistical Energy Analysis of Vibrating Systems, Tech
A Mechanical Power Flow Capability for the Finite Element Code NASTRAN
1989-07-01
perimental methods. statistical energy analysis , the finite element method, and a finite element analog-,y using heat conduction equations. Experimental...weights and inertias of the transducers attached to an experimental structure may produce accuracy problems. Statistical energy analysis (SEA) is a...405-422 (1987). 8. Lyon, R.L., Statistical Energy Analysis of Dynamical Sistems, The M.I.T. Press, (1975). 9. Mickol, J.D., and R.J. Bernhard, "An
The Shock and Vibration Digest. Volume 13, Number 12
1981-12-01
Resulting Unsteady Forces and Flow Phenomenon. Part III 26 BOOK REVIEWS STATISTICAL ENERGY ANALYSIS Chapter IV considers the problems of estimating J OF...stress, acceleration, modes. Statistical energy analysis (SEA), which is and pressure; estimations of the average system expressed in terms of random...by F.C. Nelson, SVD, 13 (8), pp 30-31 (Aug 1981) Lyons, R.H., Statistical Energy Analysis of Dynamic Systems, MIT Press, Cambridge, MA; Revieed by H
NAUSEA and the Principle of Supplementarity of Damping and Isolation in Noise Control.
1980-02-01
New approaches and uses of the statistical energy analysis (NAUSEA) have been considered and developed in recent months. The advances were made...possible in that the requirement, in the olde statistical energy analysis , that the dynamic systems be highly reverberant and the couplings between the...analytical consideration in terms of the statistical energy analysis (SEA). A brief discussion and simple examples that relate to these recent advances
Development of Composite Materials with High Passive Damping Properties
2006-05-15
frequency response function analysis. Sound transmission through sandwich panels was studied using the statistical energy analysis (SEA). Modal density...2.2.3 Finite element models 14 2.2.4 Statistical energy analysis method 15 CHAPTER 3 ANALYSIS OF DAMPING IN SANDWICH MATERIALS. 24 3.1 Equation of...sheets and the core. 2.2.4 Statistical energy analysis method Finite element models are generally only efficient for problems at low and middle frequencies
McDonald, Cody L; Kramer, Patricia A; Morgan, Sara J; Halsne, Elizabeth G; Cheever, Sarah M; Hafner, Brian J
2018-05-01
Energy storing feet are unable to reduce the energy required for normal locomotion among people with transtibial amputation. Crossover feet, which incorporate aspects of energy storing and running specific feet, are designed to maximize energy return while providing stability for everyday activities. Do crossover prosthetic feet reduce the energy expenditure of walking across a range of speeds, when compared with energy storing feet among people with transtibial amputation due to non-dysvascular causes? A randomized within-subject study was conducted with a volunteer sample of twenty-seven adults with unilateral transtibial amputation due to non-dysvascular causes. Participants were fit with two prostheses. One had an energy storing foot (Össur Variflex) and the other a crossover foot (Össur Cheetah Xplore). Other components, including sockets, suspension, and interface were standardized. Energy expenditure was measured with a portable respirometer (Cosmed K4b2) while participants walked on a treadmill at self-selected slow, comfortable, and fast speeds with each prosthesis. Gross oxygen consumption rates (VO 2 ml/min) were compared between foot conditions. Energy storing feet were used as the baseline condition because they are used by most people with a lower limb prosthesis. Analyses were performed to identify people who may benefit from transition to crossover feet. On average, participants had lower oxygen consumption in the crossover foot condition compared to the energy storing foot condition at each self-selected walking speed, but this difference was not statistically significant. Participants with farther six-minute walk test distances, higher daily step counts, and higher Medicare Functional Classification Levels at baseline were more likely to use less energy in the crossover foot. Crossover feet may be most beneficial for people with higher activity levels and physical fitness. Further research is needed to examine the effect of crossover feet on energy expenditure during high-level activities. Copyright © 2018 Elsevier B.V. All rights reserved.
What's on the menu? A review of the energy and nutritional content of US chain restaurant menus.
Wu, Helen W; Sturm, Roland
2013-01-01
The present study aimed to (i) describe the availability of nutrition information in major chain restaurants, (ii) document the energy and nutrient levels of menu items, (iii) evaluate relationships with restaurant characteristics, menu labelling and trans fat laws, and nutrition information accessibility, and (iv) compare energy and nutrient levels against industry-sponsored and government-issued nutrition criteria. Descriptive statistics and multivariate regression analysis of the energy, total fat, saturated fat, trans fat, sodium, carbohydrate and protein levels of 29 531 regular and 1392 children's menu items [corrected]. Energy and nutrition information provided on restaurant websites or upon request, and secondary databases on restaurant characteristics. The top 400 US chain restaurants by sales, based on the 2009 list of the Restaurants & Institutions magazine. Complete nutrition information was reported for 245 (61 %) restaurants. Appetizers had more energy, fat and sodium than all other item types. Children's menu specialty beverages had more fat, saturated fat and carbohydrates than comparable regular menu beverages. The majority of main entrées fell below one-third of the US Department of Agriculture's estimated daily energy needs, but as few as 3 % were also within limits for sodium, fat and saturated fat. Main entrées had significantly more energy, fat and saturated fat in family-style restaurants than in fast-food restaurants. Restaurants that made nutrition information easily accessible on websites had significantly lower energy, fat and sodium contents across menu offerings than those providing information only upon request. The paper provides a comprehensive view of chain restaurant menu nutrition prior to nationwide labelling laws. It offers baseline data to evaluate how restaurants respond after laws are implemented.
The dynamics of financial stability in complex networks
NASA Astrophysics Data System (ADS)
da Cruz, J. P.; Lind, P. G.
2012-08-01
We address the problem of banking system resilience by applying off-equilibrium statistical physics to a system of particles, representing the economic agents, modelled according to the theoretical foundation of the current banking regulation, the so called Merton-Vasicek model. Economic agents are attracted to each other to exchange `economic energy', forming a network of trades. When the capital level of one economic agent drops below a minimum, the economic agent becomes insolvent. The insolvency of one single economic agent affects the economic energy of all its neighbours which thus become susceptible to insolvency, being able to trigger a chain of insolvencies (avalanche). We show that the distribution of avalanche sizes follows a power-law whose exponent depends on the minimum capital level. Furthermore, we present evidence that under an increase in the minimum capital level, large crashes will be avoided only if one assumes that agents will accept a drop in business levels, while keeping their trading attitudes and policies unchanged. The alternative assumption, that agents will try to restore their business levels, may lead to the unexpected consequence that large crises occur with higher probability.
NASA Astrophysics Data System (ADS)
Sapteka, A. A. N. G.; Narottama, A. A. N. M.; Winarta, A.; Amerta Yasa, K.; Priambodo, P. S.; Putra, N.
2018-01-01
Solar energy utilized with solar panel is a renewable energy that needs to be studied further. The site nearest to the equator, it is not surprising, receives the highest solar energy. In this paper, a modelling of electrical characteristics of 150-Watt peak solar panels using Boltzmann sigmoid function under various temperature and irradiance is reported. Current, voltage, temperature and irradiance data in Denpasar, a city located at just south of equator, was collected. Solar power meter is used to measure irradiance level, meanwhile digital thermometer is used to measure temperature of front and back panels. Short circuit current and open circuit voltage data was also collected at different temperature and irradiance level. Statistically, the electrical characteristics of 150-Watt peak solar panel can be modelled using Boltzmann sigmoid function with good fit. Therefore, it can be concluded that Boltzmann sigmoid function might be used to determine current and voltage characteristics of 150-Watt peak solar panel under various temperature and irradiance.
Zhao, Liqin; Winklhofer, Sebastian; Yang, Zhenghan; Wang, Keyang; He, Wen
2016-03-01
The aim of this article was to study the influence of different adaptive statistical iterative reconstruction (ASIR) percentages on the image quality of dual-energy computed tomography (DECT) portal venography in portal hypertension patients. DECT scans of 40 patients with cirrhosis (mean age, 56 years) at the portal venous phase were retrospectively analyzed. Monochromatic images at 60 and 70 keV were reconstructed with four ASIR percentages: 0%, 30%, 50%, and 70%. Computed tomography (CT) numbers of the portal veins (PVs), liver parenchyma, and subcutaneous fat tissue in the abdomen were measured. The standard deviation from the region of interest of the liver parenchyma was interpreted as the objective image noise (IN). The contrast-noise ratio (CNR) between PV and liver parenchyma was calculated. The diagnostic acceptability (DA) and sharpness of PV margins were obtained using a 5-point score. The IN, CNR, DA, and sharpness of PV were compared among the eight groups with different keV + ASIR level combinations. The IN, CNR, DA, and sharpness of PV of different keV + ASIR groups were all statistically different (P < 0.05). In the eight groups, the best and worst CNR were obtained in the 60 keV + 70% ASIR and 70 keV + 0% ASIR (filtered back-projection [FBP]) combination, respectively, whereas the largest and smallest objective IN were obtained in the 60 keV + 0% ASIR (FBP) and 70 keV + 70% combination. The highest DA and sharpness values of PV were obtained at 50% ASIR for 60 keV. An optimal ASIR percentage (50%) combined with an appropriate monochromatic energy level (60 keV) provides the highest DA in portal venography imaging, whereas for the higher monochromatic energy (70 keV) images, 30% ASIR provides the highest image quality, with less IN than 60 keV with 50% ASIR. Copyright © 2015 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiferlein, Katherine E.
1998-07-01
The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 1997. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is in keeping with responsibilities given to the Energy Information Administration (EIA) in Public Law 95–91 (Department of Energy Organization Act), which states, in part, in Section 205(a)(2) that: “The Administrator shall be responsiblemore » for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.« less
NASA Astrophysics Data System (ADS)
Baryshev, Yu. V.; Paturel, G.
2001-05-01
We use data on the local 3-dimensional galaxy distribution for studying the statistics of the detection rates of gravitational waves (GW) coming from supernova explosions. We consider both tensor and scalar gravitational waves which are possible in a wide range of relativistic and quantum gravity theories. We show that statistics of GW events as a function of sidereal time can be used for distinction between scalar and tensor gravitational waves because of the anisotropy of spatial galaxy distribution. For calculation of the expected amplitudes of GW signals we use the values of the released GW energy, frequency and duration of GW pulse which are consistent with existing scenarios of SN core collapse. The amplitudes of the signals produced by Virgo and the Great Attractor clusters of galaxies is expressed as a function of the sidereal time for resonant bar detectors operating now (IGEC) and for forthcoming laser interferometric detectors (VIRGO). Then, we calculate the expected number of GW events as a function of sidereal time produced by all the galaxies within 100 Mpc. In the case of axisymmetric rotational core collapse which radiates a GW energy of 10-9Msunc2, only the closest explosions can be detected. However, in the case of nonaxisymmetric supernova explosion, due to such phenomena as centrifugal hangup, bar and lump formation, the GW radiation could be as strong as that from a coalescing neutron-star binary. For radiated GW energy higher than 10-6Msunc2 and sensitivity of detectors at the level h ~ 10-23 it is possible to detect Virgo cluster and Great Attractor, and hence to use the statistics of GW events for testing gravity theories.
A pedagogical approach to the Boltzmann factor through experiments and simulations
NASA Astrophysics Data System (ADS)
Battaglia, O. R.; Bonura, A.; Sperandeo-Mineo, R. M.
2009-09-01
The Boltzmann factor is the basis of a huge amount of thermodynamic and statistical physics, both classical and quantum. It governs the behaviour of all systems in nature that are exchanging energy with their environment. To understand why the expression has this specific form involves a deep mathematical analysis, whose flow of logic is hard to see and is not at the level of high school or college students' preparation. We here present some experiments and simulations aimed at directly deriving its mathematical expression and illustrating the fundamental concepts on which it is grounded. Experiments use easily available apparatuses, and simulations are developed in the Net-Logo environment that, besides having a user-friendly interface, allows an easy interaction with the algorithm. The approach supplies pedagogical support for the introduction of the Boltzmann factor at the undergraduate level to students without a background in statistical mechanics.
Statistical gamma-ray decay studies at iThemba LABS
NASA Astrophysics Data System (ADS)
Wiedeking, M.; Bernstein, L. A.; Bleuel, D. L.; Brits, C. P.; Sowazi, K.; Görgen, A.; Goldblum, B. L.; Guttormsen, M.; Kheswa, B. V.; Larsen, A. C.; Majola, S. N. T.; Malatji, K. L.; Negi, D.; Nogwanya, T.; Siem, S.; Zikhali, B. R.
2017-09-01
A program to study the γ-ray decay from the region of high-level density has been established at iThemba LABS, where a high-resolution gamma-ray detector array is used in conjunction with silicon particle-telescopes. Results from two recent projects are presented: 1) The 74Ge(α,α'γ) reaction was used to investigate the Pygmy Dipole Resonance. The results were compared to (γ,γ') data and indicate that the dipole states split into mixed isospin and relatively pure isovector excitations. 2) Data from the 95Mo(d,p) reaction were used to develop a novel method for the determination of spins for low-lying discrete levels utilizing statistical γ-ray decay in the vicinity of the neutron separation energy. These results provide insight into the competition of (γ,n) and (γ,γ') reactions and highlights the need to correct for angular momentum barrier effects.
NASA Astrophysics Data System (ADS)
Grabsch, Aurélien; Majumdar, Satya N.; Texier, Christophe
2017-06-01
Invariant ensembles of random matrices are characterized by the distribution of their eigenvalues \\{λ _1,\\ldots ,λ _N\\}. We study the distribution of truncated linear statistics of the form \\tilde{L}=\\sum _{i=1}^p f(λ _i) with p
The Shock and Vibration Digest. Volume 15, Number 7
1983-07-01
systems noise -- for tant analytical tool, the statistical energy analysis example, from a specific metal, chain driven, con- method, has been the subject...34Experimental Determination of Vibration Parameters Re- ~~~quired in the Statistical Energy Analysis Meth- .,i. 31. Dubowsky, S. and Morris, T.L., "An...34Coupling Loss Factors for 55. Upton, R., "Sound Intensity -. A Powerful New Statistical Energy Analysis of Sound Trans- Measurement Tool," S/V, Sound
Shock and Vibration Symposium (59th) Held in Albuquerque, New Mexico on 18-20 October 1988. Volume 3
1988-10-01
N. F. Rieger Statistical Energy Analysis : An Overview of Its Development and Engineering Applications J. E. Manning DATA BASES DOE/DOD Environmental...Vibroacoustic Response Using the Finite Element Method and Statistical Energy Analysis F. L. Gloyna Study of Helium Effect on Spacecraft Random Vibration...Analysis S. A. Wilkerson vi DYNAMIC ANALYSIS Modeling of Vibration Transmission in a Damped Beam Structure Using Statistical Energy Analysis S. S
2000-04-10
interest. These include Statistical Energy Analysis (SEA), fuzzy structure theory, and approaches combining modal analysis and SEA. Non-determinism...34 arising with increasing frequency. This has led to Statistical Energy Analysis , in which a system is modelled as a collection of coupled subsystems...22. IUTAM Symposium on Statistical Energy Analysis . 1999 Ed. F.J. Fahy and W.G. Price. Kluwer Academic Publishing. • 23. R.S. Langley and P
2009-02-01
range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The corresponding...frequency range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The...predictions. The averaging process is consistent with the averaging done in statistical energy analysis for stochastic systems. The FEM will always
THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES.
Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil
2016-10-01
In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.
THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES
Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil
2016-01-01
In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors. PMID:28042512
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amenomori, M.; Bi, X. J.; Ding, L. K.
2008-05-10
We present an updated all-particle energy spectrum of primary cosmic rays in a wide range from 10{sup 14} to 10{sup 17} eV using 5.5 x 10{sup 7} events collected from 2000 November through 2004 October by the Tibet-III air-shower array located 4300 m above sea level (an atmospheric depth of 606 g cm{sup -2}). The size spectrum exhibits a sharp knee at a corresponding primary energy around 4 PeV. This work uses increased statistics and new simulation calculations for the analysis. We discuss our extensive Monte Carlo calculations and the model dependencies involved in the final result, assuming interaction modelsmore » QGSJET01c and SIBYLL2.1, and heavy dominant (HD) and proton dominant (PD) primary composition models. Pure proton and pure iron primary models are also examined as extreme cases. A detector simulation was also performed to improve our accuracy in determining the size of the air showers and the energy of the primary particle. We confirmed that the all-particle energy spectra obtained under various plausible model parameters are not significantly different from each other, which was the expected result given the characteristics of the experiment at high altitude, where the air showers of the primary energy around the knee reach near-maximum development, with their features dominated by electromagnetic components, leading to a weak dependence on the interaction model or the primary mass. This is the highest statistical and the best systematics-controlled measurement covering the widest energy range around the knee energy region.« less
NASA Astrophysics Data System (ADS)
MAGIC Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colak, S. M.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Inada, T.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.
2017-09-01
Spontaneous breaking of Lorentz symmetry at energies on the order of the Planck energy or lower is predicted by many quantum gravity theories, implying non-trivial dispersion relations for the photon in vacuum. Consequently, gamma-rays of different energies, emitted simultaneously from astrophysical sources, could accumulate measurable differences in their time of flight until they reach the Earth. Such tests have been carried out in the past using fast variations of gamma-ray flux from pulsars, and more recently from active galactic nuclei and gamma-ray bursts. We present new constraints studying the gamma-ray emission of the galactic Crab Pulsar, recently observed up to TeV energies by the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) collaboration. A profile likelihood analysis of pulsar events reconstructed for energies above 400 GeV finds no significant variation in arrival time as their energy increases. Ninety-five percent CL limits are obtained on the effective Lorentz invariance violating energy scale at the level of {E}{{QG}1}> 5.5× {10}17 {GeV} (4.5× {10}17 {GeV}) for a linear, and {E}{{QG}2}> 5.9× {10}10 {GeV} (5.3× {10}10 {GeV}) for a quadratic scenario, for the subluminal and the superluminal cases, respectively. A substantial part of this study is dedicated to calibration of the test statistic, with respect to bias and coverage properties. Moreover, the limits take into account systematic uncertainties, which are found to worsen the statistical limits by about 36%-42%. Our constraints would have been much more stringent if the intrinsic pulse shape of the pulsar between 200 GeV and 400 GeV was understood in sufficient detail and allowed inclusion of events well below 400 GeV.
Cross-Section Measurements via the Activation Technique at the Cologne Clover Counting Setup
NASA Astrophysics Data System (ADS)
Heim, Felix; Mayer, Jan; Netterdon, Lars; Scholz, Philipp; Zilges, Andreas
The activation technique is a widely used method for the determination of cross-section values for charged-particle induced reactions at astrophysically relevant energies. Since network calculations of nucleosynthesis processes often depend on reaction rates calculated in the scope of the Hauser-Feshbach statistical model, these cross-sections can be used to improve the nuclear-physics input-parameters like optical-model potentials (OMP), γ-ray strength functions, and nuclear level densities. In order to extend the available experimental database, the 108Cd(α, n)111Sn reaction cross section was investigated at ten energies between 10.2 and 13.5 MeV. As this reaction at these energies is almost only sensitive on the α-decay width, the results were compared to statistical model calculations using different models for the α-OMP. The irradiation as well as the consecutive γ-ray counting were performed at the Institute for Nuclear Physics of the University of Cologne using the 10 MV FN-Tandem accelerator and the Cologne Clover Counting Setup. This setup consists of two clover- type high purity germanium (HPGe) detectors in a close face-to-face geometry to cover a solid angle of almost 4π.
Many-body localization of bosons in optical lattices
NASA Astrophysics Data System (ADS)
Sierant, Piotr; Zakrzewski, Jakub
2018-04-01
Many-body localization for a system of bosons trapped in a one-dimensional lattice is discussed. Two models that may be realized for cold atoms in optical lattices are considered. The model with a random on-site potential is compared with previously introduced random interactions model. While the origin and character of the disorder in both systems is different they show interesting similar properties. In particular, many-body localization appears for a sufficiently large disorder as verified by a time evolution of initial density wave states as well as using statistical properties of energy levels for small system sizes. Starting with different initial states, we observe that the localization properties are energy-dependent which reveals an inverted many-body localization edge in both systems (that finding is also verified by statistical analysis of energy spectrum). Moreover, we consider computationally challenging regime of transition between many body localized and extended phases where we observe a characteristic algebraic decay of density correlations which may be attributed to subdiffusion (and Griffiths-like regions) in the studied systems. Ergodicity breaking in the disordered Bose–Hubbard models is compared with the slowing-down of the time evolution of the clean system at large interactions.
A summary of transition probabilities for atomic absorption lines formed in low-density clouds
NASA Technical Reports Server (NTRS)
Morton, D. C.; Smith, W. H.
1973-01-01
A table of wavelengths, statistical weights, and excitation energies is given for 944 atomic spectral lines in 221 multiplets whose lower energy levels lie below 0.275 eV. Oscillator strengths were adopted for 635 lines in 155 multiplets from the available experimental and theoretical determinations. Radiation damping constants also were derived for most of these lines. This table contains the lines most likely to be observed in absorption in interstellar clouds, circumstellar shells, and the clouds in the direction of quasars where neither the particle density nor the radiation density is high enough to populate the higher levels. All ions of all elements from hydrogen to zinc are included which have resonance lines longward of 912 A, although a number of weaker lines of neutrals and first ions have been omitted.
Zaslavsky, Oleg; Cochrane, Barbara B; Herting, Jerald R; Thompson, Hilaire J; Woods, Nancy F; Lacroix, Andrea
2014-02-01
Despite the variety of available analytic methods, longitudinal research in nursing has been dominated by use of a variable-centered analytic approach. The purpose of this article is to present the utility of person-centered methodology using a large cohort of American women 65 and older enrolled in the Women's Health Initiative Clinical Trial (N = 19,891). Four distinct trajectories of energy/fatigue scores were identified. Levels of fatigue were closely linked to age, socio-demographic factors, comorbidities, health behaviors, and poor sleep quality. These findings were consistent regardless of the methodological framework. Finally, we demonstrated that energy/fatigue levels predicted future hospitalization in non-disabled elderly. Person-centered methods provide unique opportunities to explore and statistically model the effects of longitudinal heterogeneity within a population. © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiferlein, Katherine E.
The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 2000. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the Energy Information Administration under Section 205(a)(2), which states: “The Administrator shall bemore » responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.« less
The statistical analysis of energy release in small-scale coronal structures
NASA Astrophysics Data System (ADS)
Ulyanov, Artyom; Kuzin, Sergey; Bogachev, Sergey
We present the results of statistical analysis of impulsive flare-like brightenings, which numerously occur in the quiet regions of solar corona. For our study, we utilized high-cadence observations performed with two EUV-telescopes - TESIS/Coronas-Photon and AIA/SDO. In total, we processed 6 sequences of images, registered throughout the period between 2009 and 2013, covering the rising phase of the 24th solar cycle. Based on high-speed DEM estimation method, we developed a new technique to evaluate the main parameters of detected events (geometrical sizes, duration, temperature and thermal energy). We then obtained the statistical distributions of these parameters and examined their variations depending on the level of solar activity. The results imply that near the minimum of the solar cycle the energy release in quiet corona is mainly provided by small-scale events (nanoflares), whereas larger events (microflares) prevail on the peak of activity. Furthermore, we investigated the coronal conditions that had specified the formation and triggering of registered flares. By means of photospheric magnetograms obtained with MDI/SoHO and HMI/SDO instruments, we examined the topology of local magnetic fields at different stages: the pre-flare phase, the peak of intensity and the ending phase. To do so, we introduced a number of topological parameters including the total magnetic flux, the distance between magnetic sources and their mutual arrangement. The found correlation between the change of these parameters and the formation of flares may offer an important tool for application of flare forecasting.
Global, Regional, and National Fossil-Fuel CO2 Emissions, 1751 - 2008 (Version 2011)
Boden, Thomas A. [CDIAC, Oak Ridge National Laboratory; Marland, G. [CDIAC, Oak Ridge National Laboratory; Andres, Robert J. [CDIAC, Oak Ridge National Laboratory
2011-01-01
Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2010), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2010) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).
Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2010) (V. 2013)
Boden, Thomas A. [CDIAC, Oak Ridge National Laboratory; Andres, Robert J. [CDIAC, Oak Ridge National Laboratory; Marland, G.
2013-01-01
Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2013), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2012) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).
Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2014) (V. 2017)
Boden, T. A. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Andres, R. J. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, NC (USA)
2017-01-01
Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2017), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2017) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).
Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2013) (V. 2016)
Boden, T. A. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Andres, R. J. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, NC (USA)
2016-01-01
Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2016), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2016) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).
Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2011) (V. 2015)
Boden, T. A. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Andres, R. J. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University Boone, NC (USA)
2015-01-01
Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2014), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2014) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).
Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2009) (V. 2012)
Boden, Thomas A. [CDIAC, Oak Ridge National Laboratory; Andres, Robert J. [Oak Ridge National Laboratory; Marland, G. [Research Institute for Environment, Energy and Economics, Appalachian State University
2012-01-01
Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2012), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2011) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).
Global, Regional, and National Fossil-Fuel CO2 Emissions, 1751 - 2007 (Version 2010)
Boden, Thomas A. [CDIAC, Oak Ridge National Laboratory; Marland, G. [CDIAC, Oak Ridge National Laboratory; Andres, Robert J. [CDIAC, Oak Ridge National Laboratory
2010-01-01
Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2009), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2009) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).
Global, Regional, and National Fossil-Fuel CO2 Emissions, 1751 - 2006 (published 2009)
Boden, Thomas A. [CDIAC, Oak Ridge National Laboratory; Marland, G. [CDIAC, Oak Ridge National Laboratory; Andres, Robert J. [CDIAC, Oak Ridge National Laboratory
2009-01-01
Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). Further details on the contents and processing of the historical energy statistics are provided in Andres et al. (1999). The 1950 to present CO2 emission estimates are derived primarily from energy statistics published by the United Nations (2008), using the methods of Marland and Rotty (1984). The energy statistics were compiled primarily from annual questionnaires distributed by the U.N. Statistical Office and supplemented by official national statistical publications. As stated in the introduction of the Statistical Yearbook, "in a few cases, official sources are supplemented by other sources and estimates, where these have been subjected to professional scrutiny and debate and are consistent with other independent sources." Data from the U.S. Department of Interior's Geological Survey (USGS 2008) were used to estimate CO2 emitted during cement production. Values for emissions from gas flaring were derived primarily from U.N. data but were supplemented with data from the U.S. Department of Energy's Energy Information Administration (1994), Rotty (1974), and data provided by G. Marland. Greater details about these methods are provided in Marland and Rotty (1984), Boden et al. (1995), and Andres et al. (1999).
Commercial and Multifamily Building Tenant Energy Usage Aggregation and Privacy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, Olga V.; Pulsipher, Trenton C.; Wang, Na
2014-11-17
In a number of cities and states, building owners are required to disclose and/or benchmark their building energy use. This requires the building owner to possess monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer data as a way to give building owners the whole-building energy usage data while protecting customer privacy. However, no utilities or regulators appear to have conducted a concerted statistical, cybersecurity, and privacy analysis to justify the level ofmore » aggregation selected. Therefore, the Tennant Data Aggregation Task was established to help utilities address these issues and provide recommendations as well as a theoretical justification of the aggregation threshold. This study is focused on the use case of submitting data for ENERGY STAR Portfolio Manager (ESPM), but it also looks at other potential use cases for monthly energy consumption data.« less
Skylab study of water quality. [Kansas
NASA Technical Reports Server (NTRS)
Yarger, H. L. (Principal Investigator); Mccauley, J. R.
1975-01-01
The author has identified the following significant results. Apparent reflectance levels in the Skylab S190A and S192 bands, from one pass over three Kansas reservoirs, exhibit good statistical correlation with suspended solids. Band ratios appear to yield the best results. The concentration of suspended solids, mostly inorganic sediment, has the most effect on the reflected energy. Dissolved solids concentrations up to 200 ppm were not detectable by the Skylab sensors.
Public acceptance of nuclear power among Malaysian students
NASA Astrophysics Data System (ADS)
Muhamad Pauzi, Anas; Saad, Juniza Md; Arif Abu Bakar, Asyraf; Hannan Damahuri, Abdul; Syukri, Nur Syamim Mohd
2018-01-01
Malaysian government’s aim to include nuclear energy for electricity generation has triggered various reactions from all especially the public. The objective of this study is to have a better understanding on the knowledge, sources of information of nuclear power and sources of energy chosen by Malaysian in 20 years’ time. Besides that, we want to examine the level of acceptance and perception of Malaysian towards nuclear energy and we want to identify the correlation between public perceptions with the acceptance towards nuclear power in Malaysia, and also to study the differences between perception and acceptance of nuclear power with gender and educational level. For this research methodology, the research questions are given orally or through paper-pencil and also social networking site such as Facebook or through electronic media application such as WhatsApp and Google docs. The data were analysed using a SPSS version 22.0 (Statistical Package for the Social Sciences). Results showed that more than 50% of the respondents have the knowledge of nuclear energy. A part of from that, only 39 % are confident government can afford to build NPP in Malaysia and 41 % disagree nuclear energy is the best option for future energy. From analysis using SPSS 22 we estimate negative perception will give a negative acceptance in term of support towards the use of nuclear energy in power generation in Malaysia. There are also slight correlation that the higher the level of education of Malaysian, the more negative the perception of Malaysian in accepting nuclear energy as source of power in Malaysia. Therefore in shaping a positive acceptance of NPP in Malaysia, the authorities need to educate the people with the knowledge of nuclear in order to overcome the negative perception towards nuclear power.
Teaching ``The Physics of Energy'' at MIT
NASA Astrophysics Data System (ADS)
Jaffe, Robert
2009-05-01
New physics courses on energy are popping up at colleges and universities across the country. Many require little or no previous physics background, aiming to introduce a broad audience to this complex and critical problem, often augmenting the scientific message with economic and policy discussions. Others are advanced courses, focussing on highly specialized subjects like solar voltaics, nuclear physics, or thermal fluids, for example. About two years ago Washington Taylor and I undertook to develop a course on the ``Physics of Energy'' open to all MIT students who had taken MIT's common core of university level calculus, physics, and chemistry. By avoiding higher level prerequisites, we aimed to attract and make the subject relevant to students in the life sciences, economics, etc. --- as well as physical scientists and engineers --- who want to approach energy issues in a sophisticated and analytical fashion, exploiting their background in calculus, mechanics, and E & M, but without having to take advanced courses in thermodynamics, quantum mechanics, or nuclear physics beforehand. Our object was to interweave teaching the fundamental physics principles at the foundations of energy science with the applications of those principles to energy systems. We envisioned a course that would present the basics of statistical, quantum, and fluid mechanics at a fairly sophisticated level and apply those concepts to the study of energy sources, conversion, transport, losses, storage, conservation, and end use. In the end we developed almost all of the material for the course from scratch. The course debuted this past fall. I will describe what we learned and what general lessons our experience might have for others who contemplate teaching energy physics broadly to a technically sophisticated audience.
Pfeifle, Mark; Ma, Yong-Tao; Jasper, Ahren W; Harding, Lawrence B; Hase, William L; Klippenstein, Stephen J
2018-05-07
Ozonolysis produces chemically activated carbonyl oxides (Criegee intermediates, CIs) that are either stabilized or decompose directly. This branching has an important impact on atmospheric chemistry. Prior theoretical studies have employed statistical models for energy partitioning to the CI arising from dissociation of the initially formed primary ozonide (POZ). Here, we used direct dynamics simulations to explore this partitioning for decomposition of c-C 2 H 4 O 3 , the POZ in ethylene ozonolysis. A priori estimates for the overall stabilization probability were then obtained by coupling the direct dynamics results with master equation simulations. Trajectories were initiated at the concerted cycloreversion transition state, as well as the second transition state of a stepwise dissociation pathway, both leading to a CI (H 2 COO) and formaldehyde (H 2 CO). The resulting CI energy distributions were incorporated in master equation simulations of CI decomposition to obtain channel-specific stabilized CI (sCI) yields. Master equation simulations of POZ formation and decomposition, based on new high-level electronic structure calculations, were used to predict yields for the different POZ decomposition channels. A non-negligible contribution of stepwise POZ dissociation was found, and new mechanistic aspects of this pathway were elucidated. By combining the trajectory-based channel-specific sCI yields with the channel branching fractions, an overall sCI yield of (48 ± 5)% was obtained. Non-statistical energy release was shown to measurably affect sCI formation, with statistical models predicting significantly lower overall sCI yields (∼30%). Within the range of experimental literature values (35%-54%), our trajectory-based calculations favor those clustered at the upper end of the spectrum.
NASA Astrophysics Data System (ADS)
Pfeifle, Mark; Ma, Yong-Tao; Jasper, Ahren W.; Harding, Lawrence B.; Hase, William L.; Klippenstein, Stephen J.
2018-05-01
Ozonolysis produces chemically activated carbonyl oxides (Criegee intermediates, CIs) that are either stabilized or decompose directly. This branching has an important impact on atmospheric chemistry. Prior theoretical studies have employed statistical models for energy partitioning to the CI arising from dissociation of the initially formed primary ozonide (POZ). Here, we used direct dynamics simulations to explore this partitioning for decomposition of c-C2H4O3, the POZ in ethylene ozonolysis. A priori estimates for the overall stabilization probability were then obtained by coupling the direct dynamics results with master equation simulations. Trajectories were initiated at the concerted cycloreversion transition state, as well as the second transition state of a stepwise dissociation pathway, both leading to a CI (H2COO) and formaldehyde (H2CO). The resulting CI energy distributions were incorporated in master equation simulations of CI decomposition to obtain channel-specific stabilized CI (sCI) yields. Master equation simulations of POZ formation and decomposition, based on new high-level electronic structure calculations, were used to predict yields for the different POZ decomposition channels. A non-negligible contribution of stepwise POZ dissociation was found, and new mechanistic aspects of this pathway were elucidated. By combining the trajectory-based channel-specific sCI yields with the channel branching fractions, an overall sCI yield of (48 ± 5)% was obtained. Non-statistical energy release was shown to measurably affect sCI formation, with statistical models predicting significantly lower overall sCI yields (˜30%). Within the range of experimental literature values (35%-54%), our trajectory-based calculations favor those clustered at the upper end of the spectrum.
Experimental and Computational Analysis of Modes in a Partially Constrained Plate
2004-03-01
way to quantify a structure. One technique utilizing an energy method is the Statistical Energy Analysis (SEA). The SEA process involves regarding...B.R. Mace. “ Statistical Energy Analysis of Two Edge- Coupled Rectangular Plates: Ensemble Averages,” Journal of Sound and Vibration, 193(4): 793-822
A Complete Set of Radiative and Auger Rates for K-vacancy States in Fe XVIII-Fe XXV
NASA Technical Reports Server (NTRS)
Palmeri, P.; Mendoza, C.; Kallman, T. R.; Bautista, M. A.
2002-01-01
A complete set of level energies, wavelengths, A-values, and total and partial Auger rates have been computed for transitions involving the K-vacancy states within the n = 2 complex of Fe XVIII-Fe XXV. Three different standard numerical packages are used for this purpose, namely AUTOSTRUCTURE, the Breit-Pauli R-matrix suite (BPRM) and HFR, which allow reliable estimates of the physical effects involved and of the accuracy of the resulting data sets. It is found that the Breit interaction must be always taken into account as the contributions to the small A-values and partial Auger rates does not decrease with electron occupancy. Semi-empirical adjustments can also lead to large differences in both the radiative and Auger decay data of strongly mixed levels. Several experimental energy levels and wavelengths are questioned, and significant discrepancies are found with previously computed decay rates that are attributed to numerical problems. The statistical accuracy of the present level energies and wavelengths is ranked at plus or minus 3 eV and plus or minus 2 mAngstroms, respectively, whereas that for A-values and partial Auger rates greater than 10(exp 13) per second is estimated at better than 20%.
A Survey of Probabilistic Methods for Dynamical Systems with Uncertain Parameters.
1986-05-01
J., "An Approach to the Theoretical Background of Statistical Energy Analysis Applied to Structural Vibration," Journ. Acoust. Soc. Amer., Vol. 69...1973, Sect. 8.3. 80. Lyon, R.H., " Statistical Energy Analysis of Dynamical Systems," M.I.T. Press, 1975. e) Late References added in Proofreading !! 81...Dowell, E.H., and Kubota, Y., "Asymptotic Modal Analysis and ’~ y C-" -165- Statistical Energy Analysis of Dynamical Systems," Journ. Appi. - Mech
1987-08-01
HVAC duct hanger system over an extensive frequency range. The finite element, component mode synthesis, and statistical energy analysis methods are...800-5,000 Hz) analysis was conducted with Statistical Energy Analysis (SEA) coupled with a closed-form harmonic beam analysis program. These...resonances may be obtained by using a finer frequency increment. Statistical Energy Analysis The basic assumption used in SEA analysis is that within each band
1989-03-01
statistical energy analysis , the finite clement method, and the power flow method. Experimental solutions are the most common in the literature. The authors of...to the added weights and inertias of the transducers attached to an experimental structure. Statistical energy analysis (SEA) is a computational method...Analysis and Diagnosis," Journal of Sound and Vibration, Vol. 115, No. 3, pp. 405-422 (1987). 8. Lyon, R.L., Statistical Energy Analysis of Dynamical Systems
Egiyan, H.; Langheinrich, J.; Gothe, R. W.; ...
2012-01-30
We searched for the Φ⁻⁻(1860) pentaquark in the photoproduction process off the deuteron in the Ξ⁻π⁻-decay channel using CLAS. The invariant-mass spectrum of the Ξ⁻π⁻ system does not indicate any statistically significant enhancement near the reported mass M=1.860 GeV. The statistical analysis of the sideband-subtracted mass spectrum yields a 90%-confidence-level upper limit of 0.7 nb for the photoproduction cross section of Φ⁻⁻(1860) with a consecutive decay intoΞ⁻π⁻ in the photon-energy range 4.5GeVγ<5.5GeV.
Economic, demographic and social factors of energy demand in Mexican households, 2008-2014
NASA Astrophysics Data System (ADS)
Perez Pena, Rafael
This research project focuses on estimating the effect of economic, demographic, and social factors in residential energy demand in Mexico from 2008 to 2014. Therefore, it estimates demand equations for electricity, natural gas, liquefied petroleum gas (LPG), coal and natural gas using Mexican household data from 2008 to 2014. It also applies accessibility theory and it estimates energy access indicators using different specifications of demand for LPG in 2014. Sprawl measures, gravity model, and central place theory are the accessibility theory supporting the energy access indicators. Results suggest the greater the household income, the population size, the educational level of the householder, the energy access, and the lower the energy price and the household size, the greater the demand for energy in Mexico from 2008 to 2014. The greater the education, the lower the demand for firewood and coal. LPG and firewood have a monopolistically competitive market structure. Energy access indicators informed by accessibility theory are statistically significant and show the expected sign when applied to LPG in Mexican household in 2014.
Development of a performance-based industrial energy efficiency indicator for corn refining plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, G. A.; Decision and Information Sciences; USEPA
2006-07-31
Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. Thismore » report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abreu, P.; /Lisbon, IST; Aglietta, M.
2011-11-01
We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60{sup o}, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the {approx} 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shownmore » to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for. In this work, we have identified and quantified a systematic uncertainty affecting the energy determination of cosmic rays detected by the surface detector array of the Pierre Auger Observatory. This systematic uncertainty, induced by the influence of the geomagnetic field on the shower development, has a strength which depends on both the zenith and the azimuthal angles. Consequently, we have shown that it induces distortions of the estimated cosmic ray event rate at a given energy at the percent level in both the azimuthal and the declination distributions, the latter of which mimics an almost dipolar pattern. We have also shown that the induced distortions are already at the level of the statistical uncertainties for a number of events N {approx_equal} 32 000 (we note that the full Auger surface detector array collects about 6500 events per year with energies above 3 EeV). Accounting for these effects is thus essential with regard to the correct interpretation of large scale anisotropy measurements taking explicitly profit from the declination distribution.« less
Incorporating Experience Curves in Appliance Standards Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbesi, Karina; Chan, Peter; Greenblatt, Jeffery
2011-10-31
The technical analyses in support of U.S. energy conservation standards for residential appliances and commercial equipment have typically assumed that manufacturing costs and retail prices remain constant during the projected 30-year analysis period. There is, however, considerable evidence that this assumption does not reflect real market prices. Costs and prices generally fall in relation to cumulative production, a phenomenon known as experience and modeled by a fairly robust empirical experience curve. Using price data from the Bureau of Labor Statistics, and shipment data obtained as part of the standards analysis process, we present U.S. experience curves for room air conditioners,more » clothes dryers, central air conditioners, furnaces, and refrigerators and freezers. These allow us to develop more representative appliance price projections than the assumption-based approach of constant prices. These experience curves were incorporated into recent energy conservation standards for these products. The impact on the national modeling can be significant, often increasing the net present value of potential standard levels in the analysis. In some cases a previously cost-negative potential standard level demonstrates a benefit when incorporating experience. These results imply that past energy conservation standards analyses may have undervalued the economic benefits of potential standard levels.« less
An Automated Energy Detection Algorithm Based on Morphological and Statistical Processing Techniques
2018-01-09
ARL-TR-8272 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological and...is no longer needed. Do not return it to the originator. ARL-TR-8272 ● JAN 2018 US Army Research Laboratory An Automated Energy ...4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological and Statistical Processing Techniques 5a. CONTRACT NUMBER
IUTAM Symposium on Statistical Energy Analysis, 8-11 July 1997, Programme
1997-01-01
distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum200 words) This was the first international scientific gathering devoted...energy flow, continuum dynamics, vibrational energy, statistical energy analysis (SEA) 15. NUMBER OF PAGES 16. PRICE CODE INSECURITY... correlation v=V(ɘ ’• • determination of the correlation n^, =11^, (<?). When harmonic motion and time-average are considered, the following I
Mapping quadrupole collectivity in the Cd isotopes: The breakdown of harmonic vibrational motion
NASA Astrophysics Data System (ADS)
Garrett, P. E.; Green, K. L.; Bangay, J.; Varela, A. Diaz; Sumithrarachchi, C. S.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D. S.; Bianco, L.; Colosimo, S.; Cross, D. S.; Demand, G. A.; Finlay, P.; Garnsworthy, A. B.; Grinyer, G. F.; Hackman, G.; Kulp, W. D.; Leach, K. G.; Morton, A. C.; Orce, J. N.; Pearson, C. J.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Triambak, S.; Wong, J.; Wood, J. L.; Yates, S. W.
2011-10-01
The stable Cd isotopes have long been used as paradigms for spherical vibrational motion. Extensive investigations with in-beam γ spectroscopy have resulted in very-well-established level schemes, including many lifetimes or lifetime limits. A programme has been initiated to complement these studies with very-high-statistics β decay using the 8π spectrometer at the TRIUMF radioactive beam facility. The decays of 112In and 112Ag have been studied with an emphasis on the observation of, or the placement of stringent limits on, low-energy branches between potential multi-phonon levels. A lack of suitable 0+ or 2+ three-phonon candidates has been revealed. Further, the sum of the B(E2) strength from spin 0+ and 2+ states up to 3 MeV in excitation energy to the assigned two-phonon levels falls far short of the harmonic-vibrational expectations. This lack of strength points to the failing of collective models based on vibrational phonon structures.
Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.
2008-01-01
Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.
From creation and annihilation operators to statistics
NASA Astrophysics Data System (ADS)
Hoyuelos, M.
2018-01-01
A procedure to derive the partition function of non-interacting particles with exotic or intermediate statistics is presented. The partition function is directly related to the associated creation and annihilation operators that obey some specific commutation or anti-commutation relations. The cases of Gentile statistics, quons, Polychronakos statistics, and ewkons are considered. Ewkons statistics was recently derived from the assumption of free diffusion in energy space (Hoyuelos and Sisterna, 2016); an ideal gas of ewkons has negative pressure, a feature that makes them suitable for the description of dark energy.
A comparison of sports and energy drinks--Physiochemical properties and enamel dissolution.
Jain, Poonam; Hall-May, Emily; Golabek, Kristi; Agustin, Ma Zenia
2012-01-01
The consumption of sports and energy drinks by children and adolescents has increased at an alarming rate in recent years. It is essential for dental professionals to be informed about the physiochemical properties of these drinks and their effects on enamel. The present study measured the fluoride levels, pH, and titratable acidity of multiple popular, commercially available brands of sports and energy drinks. Enamel dissolution was measured as weight loss using an in vitro multiple exposure model consisting of repeated short exposures to these drinks, alternating with exposure to artificial saliva. The relationship between enamel dissolution and fluoride levels, pH, and titratable acidity was also examined. There was a statistically significant difference between the fluoride levels (p = 0.034) and pH (p = 0.04) of the sports and energy drinks studied. The titratable acidity of energy drinks (11.78) was found to be significantly higher than that of sports drinks (3.58) (p < 0.001). Five of the energy drinks (Red Bull Sugar Free, Monster Assault, Von Dutch, Rockstar, and 5-Hour Energy) were found to have the highest titratable acidity values among the brands studied. Enamel weight loss after exposure to energy drinks was significantly higher than it was after exposure to sports drinks. The effect of titratable acidity on enamel weight loss was found to vary inversely with the pH of the drinks. The findings indicated that energy drinks have significantly higher titratable acidity and enamel dissolution associated with them than sports drinks. Enamel weight loss after exposure to energy drinks was more than two times higher than it was after exposure to sports drinks. Titratable acidity is a significant predictor of enamel dissolution, and its effect on enamel weight loss varies inversely with the pH of the drink. The data from the current study can be used to educate patients about the differences between sports and energy drinks and the effects of these drinks on tooth enamel.
Electric power quarterly, July--September 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-19
The Electric Power Quarterly (EPQ) is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA). The EPQ is designed to provide energy decisionmakers with accurate and timely generation and fuel cost and quality information on a plant-by-plant basis. This publication is designed for applications by electric utilities, fuel suppliers, consumers, educational institutions, and government in recognition of the importance of energy planning. The EPQ presents monthly summaries of electric utility statistics at the national, Census division, state, company, and plant levels on the following subjects: quantity of fuel; cost of fuel;more » quality of fuel; net generation; fuel consumption, and fuel stocks. In addition, the EPQ presents a quarterly summary of reported major disturbances and unusual occurrences. 1 fig., 15 tabs.« less
Benchmarking algorithms for the solution of Collisional Radiative Model (CRM) equations.
NASA Astrophysics Data System (ADS)
Klapisch, Marcel; Busquet, Michel
2007-11-01
Elements used in ICF target designs can have many charge states in the same plasma conditions, each charge state having numerous energy levels. When LTE conditions are not met, one has to solve CRM equations for the populations of energy levels, which are necessary for opacities/emissivities, Z* etc. In case of sparse spectra, or when configuration interaction is important (open d or f shells), statistical methods[1] are insufficient. For these cases one must resort to a detailed level CRM rate generator[2]. The equations to be solved may involve tens of thousands of levels. The system is by nature ill conditioned. We show that some classical methods do not converge. Improvements of the latter will be compared with new algorithms[3] with respect to performance, robustness, and accuracy. [1] A Bar-Shalom, J Oreg, and M Klapisch, J. Q. S. R. T.,65, 43 (2000). [2] M Klapisch, M Busquet and A. Bar-Shalom, Proceedings of APIP'07, AIP series (to be published). [3] M Klapisch and M Busquet, High Ener. Density Phys. 3,143 (2007)
A potential-energy scaling model to simulate the initial stages of thin-film growth
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.; Outlaw, R. A.; Walker, G. H.
1983-01-01
A solid on solid (SOS) Monte Carlo computer simulation employing a potential energy scaling technique was used to model the initial stages of thin film growth. The model monitors variations in the vertical interaction potential that occur due to the arrival or departure of selected adatoms or impurities at all sites in the 400 sq. ft. array. Boltzmann ordered statistics are used to simulate fluctuations in vibrational energy at each site in the array, and the resulting site energy is compared with threshold levels of possible atomic events. In addition to adsorption, desorption, and surface migration, adatom incorporation and diffusion of a substrate atom to the surface are also included. The lateral interaction of nearest, second nearest, and third nearest neighbors is also considered. A series of computer experiments are conducted to illustrate the behavior of the model.
Environmental and Energy Aspects of Construction Industry and Green Buildings
NASA Astrophysics Data System (ADS)
Kauskale, L.; Geipele, I.; Zeltins, N.; Lecis, I.
2017-04-01
Green building is an important component of sustainable real estate market development, and one of the reasons is that the construction industry consumes a high amount of resources. Energy consumption of construction industry results in greenhouse gas emissions, so green buildings, energy systems, building technologies and other aspects play an important role in sustainable development of real estate market, construction and environmental development. The aim of the research is to analyse environmental aspects of sustainable real estate market development, focusing on importance of green buildings at the industry level and related energy aspects. Literature review, historical, statistical data analysis and logical access methods have been used in the research. The conducted research resulted in high environmental rationale and importance of environment-friendly buildings, and there are many green building benefits during the building life cycle. Future research direction is environmental information process and its models.
Advanced statistical energy analysis
NASA Astrophysics Data System (ADS)
Heron, K. H.
1994-09-01
A high-frequency theory (advanced statistical energy analysis (ASEA)) is developed which takes account of the mechanism of tunnelling and uses a ray theory approach to track the power flowing around a plate or a beam network and then uses statistical energy analysis (SEA) to take care of any residual power. ASEA divides the energy of each sub-system into energy that is freely available for transfer to other sub-systems and energy that is fixed within the sub-systems that are physically separate and can be interpreted as a series of mathematical models, the first of which is identical to standard SEA and subsequent higher order models are convergent on an accurate prediction. Using a structural assembly of six rods as an example, ASEA is shown to converge onto the exact results while SEA is shown to overpredict by up to 60 dB.
Molecular dynamics studies of the thermal decomposition of 2,3-diazabicyclo(2.2.1)hept-2-ene
NASA Astrophysics Data System (ADS)
Sorescu, Dan C.; Thompson, Donald L.; Raff, Lionel M.
1995-05-01
The reaction dynamics of the thermal gas-phase decomposition of 2,3-diazabicyclo (2.2.1)hept-2-ene-exo, exo-5,6-d2 have been investigated using classical trajectory methods on a semiempirical potential-energy surface. The global potential is written as a superposition of different reaction channel potentials containing bond stretching, bending and torsional terms, connected by parametrized switching functions. Reaction channels for stepwise and concerted cleavage of the two C-N bonds of the reactant have both been considered in construction of the potential. The geometries of 2,3-diazabicyclo(2.2.1)hept-2-ene, the diazenyl biradical and of the transition state corresponding to breaking of the remaining C-N bond of diazenyl biradical have been determined at the second order Möller-Plesset perturbation theory (MP2/6-31G*) and at Hartree-Fock (HF/6-31G*) levels, respectively. The bond dissociation energies have been estimated using the available thermochemical data and previously reported results for bicyclo(2.1.0)pentane [J. Chem. Phys. 101, 3729 (1994)]. The equilibrium geometries predicted by the semiempirical potential for reactants and products, the barrier height for thermal nitrogen extrusion from 2,3-diazabicyclo(2.2.1)hept-2-ene and the fundamental vibrational frequencies are in good to excellent agreement with the measured or ab initio calculated values. Using a projection method of the instantaneous Cartesian velocities onto the normal mode vectors and classical trajectory calculations, the dissociation dynamics of 2,3-diazabicyclo(2.2.1)hept-2-ene-exo, exo-5,6-d2 are investigated at several excitation energies in the range 60-175 kcal/mol. The results show the following: (1) The thermal reaction takes place with a preference for inversion of configuration in the reaction products, the exo-labeled bicyclo(2.1.0) pentane being the major product. The exo/endo ratio of bicyclo(2.1.0) pentane isomers is found to vary between 1.8-2.2 for the energy range considered. (2) For random energization of the vibrational modes, the energy dependence of the rate coefficients can be described by a RRK expression. (3) The significant broadening and overlapping of the power spectral bands, together with the disappearance of characteristic features in the power spectra of the internal coordinates calculated at different energies, indicate high intramolecular vibrational redistribution rates and global statistical behavior. (4) The energy partitioning among products shows that the internal energy is preferentially distributed into the vibrational degrees of freedom in BCP, while N2 is formed with small amounts of rotational and vibrational energies. Overall, the distribution of energy among the product degrees of freedom follows statistical predictions in the internal energy range investigated. (5) Stepwise dissociation of the C-N bonds is the predominant mechanism which characterizes the N2 elimination from the parent molecule. (6) Although statistical theories of reaction rates, such as Rice-Ramsperger-Kassel-Marcus (RRKM) theory, are unable to predict the product exo/endo ratio, this is not a result of the breakdown of the statistical assumption inherent in these theories, but rather to the fact that statistical theory does not address mechanistic questions related to post transition-state events. Although the results show that there is a near microcanonical distribution of energy in the 1,3-cyclopentanediyl radical, the system does not have sufficient time to explore all of the energetically accessible configuration space prior to the closure of the 1-3 bridgehead bond. The result is a nonstatistical exo/endo product ratio that deviates from the statistically expected result of unity.
Dotto, G L; Pinto, L A A; Hachicha, M A; Knani, S
2015-03-15
In this work, statistical physics treatment was employed to study the adsorption of food dyes onto chitosan films, in order to obtain new physicochemical interpretations at molecular level. Experimental equilibrium curves were obtained for the adsorption of four dyes (FD&C red 2, FD&C yellow 5, FD&C blue 2, Acid Red 51) at different temperatures (298, 313 and 328 K). A statistical physics formula was used to interpret these curves, and the parameters such as, number of adsorbed dye molecules per site (n), anchorage number (n'), receptor sites density (NM), adsorbed quantity at saturation (N asat), steric hindrance (τ), concentration at half saturation (c1/2) and molar adsorption energy (ΔE(a)) were estimated. The relation of the above mentioned parameters with the chemical structure of the dyes and temperature was evaluated and interpreted. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Intensity, Directionality, and Statistics of Underwater Noise From Melting Icebergs
NASA Astrophysics Data System (ADS)
Glowacki, Oskar; Deane, Grant B.; Moskalik, Mateusz
2018-05-01
Freshwater fluxes from melting icebergs and glaciers are important contributors to both sea level rise and anomalies of seawater salinity in polar regions. However, the hazards encountered close to icebergs and glaciers make it difficult to quantify their melt rates directly, motivating the development of cryoacoustics as a remote sensing technique. Recent studies have shown a qualitative link between ice melting and the accompanying underwater noise, but the properties of this signal remain poorly understood. Here we examine the intensity, directionality, and temporal statistics of the underwater noise radiated by melting icebergs in Hornsund Fjord, Svalbard, using a three-element acoustic array. We present the first estimate of noise energy per unit area associated with iceberg melt and demonstrate its qualitative dependence on exposure to surface current. Finally, we show that the analysis of noise directionality and statistics makes it possible to distinguish iceberg melt from the glacier terminus melt.
Micro-Pulse Lidar Signals: Uncertainty Analysis
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Campbell, James R.; Starr, David OC. (Technical Monitor)
2002-01-01
Micro-pulse lidar (MPL) systems are small, autonomous, eye-safe lidars used for continuous observations of the vertical distribution of cloud and aerosol layers. Since the construction of the first MPL in 1993, procedures have been developed to correct for various instrument effects present in MPL signals. The primary instrument effects include afterpulse, laser-detector cross-talk, and overlap, poor near-range (less than 6 km) focusing. The accurate correction of both afterpulse and overlap effects are required to study both clouds and aerosols. Furthermore, the outgoing energy of the laser pulses and the statistical uncertainty of the MPL detector must also be correctly determined in order to assess the accuracy of MPL observations. The uncertainties associated with the afterpulse, overlap, pulse energy, detector noise, and all remaining quantities affecting measured MPL signals, are determined in this study. The uncertainties are propagated through the entire MPL correction process to give a net uncertainty on the final corrected MPL signal. The results show that in the near range, the overlap uncertainty dominates. At altitudes above the overlap region, the dominant source of uncertainty is caused by uncertainty in the pulse energy. However, if the laser energy is low, then during mid-day, high solar background levels can significantly reduce the signal-to-noise of the detector. In such a case, the statistical uncertainty of the detector count rate becomes dominant at altitudes above the overlap region.
Evaluation of clinical utility of BTC-2000 for measuring soft tissue fibrosis.
Davis, Aileen M; Gerrand, Craig; Griffin, Anthony; O'Sullivan, Brian; Hill, Richard P; Wunder, Jay S; Abudu, Adesegun; Bell, Robert S
2004-09-01
To evaluate whether mechanical tissue parameters, specifically laxity (in millimeters) and energy absorption (millimeters of mercury multiplied by millimeters) as measured by the BTC-2000, could discriminate levels of fibrosis severity among patients treated for extremity soft tissue sarcoma by surgery alone; preoperative radiotherapy (RT) and surgery; and surgery followed by postoperative RT. A total of 41 patients were treated for extremity soft tissue sarcoma by surgery alone (n = 11); preoperative RT (50 Gy in 2-Gy daily fractions) and surgery (n = 15); and surgery followed by postoperative RT (66 Gy in 2-Gy daily fractions; n = 15). Serial fibrosis measurements were evaluated at equal intervals from the midpoint of the surgical incision along the length of the incision. On the basis of the average of these measurements, differences among the three groups were analyzed using analysis of variance. Pair-wise statistically significant differences were found among the three treatment groups for both laxity and energy absorption as determined by the average of all measurements. The treatment difference remained statistically significant even after adjusting for differences based on the untreated contralateral limb and anatomic site (p <0.001 and p = 0.002 for laxity and energy absorption, respectively). The biomechanical tissue parameters of laxity and energy absorption discriminated fibrosis severity in patients treated with different RT doses. The BTC-2000 may provide a useful quantitative measure of soft tissue fibrosis.
A pilot study of laser energy transmission through bone and gingiva.
Ng, Doreen Y; Chan, Ambrose K; Dalci, Oyku; Petocz, Peter; Papadopoulou, Alexandra K; Darendeliler, M Ali
2018-06-20
The use of low-level laser therapy is growing in the field of dentistry especially in orthodontics to speed up tooth movement and in implantology to aid osseointegration. In these dental applications, the laser energy needs to penetrate through the periodontium to the target site to stimulate photobiomodulation. The percentage of energy loss when laser is transmitted through the periodontium has not been previously studied. With the use of an 808-nanometer diode laser, the aim was to investigate the percentage loss of laser energy when transmitted through the periodontium to the extraction socket. The percentage energy loss of an 808-nm diode laser through the periodontium was measured in 27 tooth sockets by using a specifically designed photodiode ammeter. For each millimeter of increased bone thickness there was 6.81% reduction in laser energy (95% confidence interval, 5.02% to 8.60%). The gingival thickness had no statistically significant effect on energy penetration. Energy penetration depends markedly on bone thickness and is independent of gingival thickness. To the best of the authors' knowledge, this study is one of the first to investigate laser penetration through the periodontium. Evidence from this study showed that laser energy penetration through the periodontium is markedly affected by bone thickness but less so by gingival thickness. Clinicians need to be aware of the biological factors that could affect laser energy penetration to the target site and adjust their laser dosages accordingly. These findings may guide dental practitioners in selecting the appropriate laser dosage parameters for low-level laser therapy. Copyright © 2018 American Dental Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zink, Frank Edward
The detection and classification of pulmonary nodules is of great interest in chest radiography. Nodules are often indicative of primary cancer, and their detection is particularly important in asymptomatic patients. The ability to classify nodules as calcified or non-calcified is important because calcification is a positive indicator that the nodule is benign. Dual-energy methods offer the potential to improve both the detection and classification of nodules by allowing the formation of material-selective images. Tissue-selective images can improve detection by virtue of the elimination of obscuring rib structure. Bone -selective images are essentially calcium images, allowing classification of the nodule. A dual-energy technique is introduced which uses a computed radiography system to acquire dual-energy chest radiographs in a single-exposure. All aspects of the dual-energy technique are described, with particular emphasis on scatter-correction, beam-hardening correction, and noise-reduction algorithms. The adaptive noise-reduction algorithm employed improves material-selective signal-to-noise ratio by up to a factor of seven with minimal sacrifice in selectivity. A clinical comparison study is described, undertaken to compare the dual-energy technique to conventional chest radiography for the tasks of nodule detection and classification. Observer performance data were collected using the Free Response Observer Characteristic (FROC) method and the bi-normal Alternative FROC (AFROC) performance model. Results of the comparison study, analyzed using two common multiple observer statistical models, showed that the dual-energy technique was superior to conventional chest radiography for detection of nodules at a statistically significant level (p < .05). Discussion of the comparison study emphasizes the unique combination of data collection and analysis techniques employed, as well as the limitations of comparison techniques in the larger context of technology assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, B. M.; Ballance, C. P.; Schippers, S.
2016-02-22
Experimental and theoretical results are reported for single-photon single ionization of W 2+ and W 3+ tungsten ions. Experiments were performed at the photon-ion merged-beam setup of the Advanced Light Source in Berkeley. Absolute cross sections and detailed energy scans were measured over an energy range 20-90 eV at a bandwidth of 100 meV. Broad peak features with widths typically around 5 eV have been observed with almost no narrow resonances present in the investigated energy range. Theoretical results were obtained from a Dirac-Coulomb R-matrix approach. The calculations were carried out for the lowest-energy terms of the investigated tungsten ionsmore » with levels 5s 25p 65d 4 5D J J = 0, 1, 2, 3, 4 for W 2+ and 5s 25p 65d 3 4F J' J ' = 3/2, 5/2, 7/2, 9/2 for W 3+. Assuming a statistically weighted distribution of ions in the initial ground-term levels there is good agreement of theory and experiment for W 3+ ions. However, for W 2+ ions at higher energies there is a factor of approximately two difference between experimental and theoretical cross sections.« less
α -induced reactions on 115In: Cross section measurements and statistical model analysis
NASA Astrophysics Data System (ADS)
Kiss, G. G.; Szücs, T.; Mohr, P.; Török, Zs.; Huszánk, R.; Gyürky, Gy.; Fülöp, Zs.
2018-05-01
Background: α -nucleus optical potentials are basic ingredients of statistical model calculations used in nucleosynthesis simulations. While the nucleon+nucleus optical potential is fairly well known, for the α +nucleus optical potential several different parameter sets exist and large deviations, reaching sometimes even an order of magnitude, are found between the cross section predictions calculated using different parameter sets. Purpose: A measurement of the radiative α -capture and the α -induced reaction cross sections on the nucleus 115In at low energies allows a stringent test of statistical model predictions. Since experimental data are scarce in this mass region, this measurement can be an important input to test the global applicability of α +nucleus optical model potentials and further ingredients of the statistical model. Methods: The reaction cross sections were measured by means of the activation method. The produced activities were determined by off-line detection of the γ rays and characteristic x rays emitted during the electron capture decay of the produced Sb isotopes. The 115In(α ,γ )119Sb and 115In(α ,n )Sb118m reaction cross sections were measured between Ec .m .=8.83 and 15.58 MeV, and the 115In(α ,n )Sb118g reaction was studied between Ec .m .=11.10 and 15.58 MeV. The theoretical analysis was performed within the statistical model. Results: The simultaneous measurement of the (α ,γ ) and (α ,n ) cross sections allowed us to determine a best-fit combination of all parameters for the statistical model. The α +nucleus optical potential is identified as the most important input for the statistical model. The best fit is obtained for the new Atomki-V1 potential, and good reproduction of the experimental data is also achieved for the first version of the Demetriou potentials and the simple McFadden-Satchler potential. The nucleon optical potential, the γ -ray strength function, and the level density parametrization are also constrained by the data although there is no unique best-fit combination. Conclusions: The best-fit calculations allow us to extrapolate the low-energy (α ,γ ) cross section of 115In to the astrophysical Gamow window with reasonable uncertainties. However, still further improvements of the α -nucleus potential are required for a global description of elastic (α ,α ) scattering and α -induced reactions in a wide range of masses and energies.
Energy-level repulsion by spin-orbit coupling in two-dimensional Rydberg excitons
NASA Astrophysics Data System (ADS)
Stephanovich, V. A.; Sherman, E. Ya.; Zinner, N. T.; Marchukov, O. V.
2018-05-01
We study the effects of Rashba spin-orbit coupling on two-dimensional Rydberg exciton systems. Using analytical and numerical arguments we demonstrate that this coupling considerably modifies the wave functions and leads to a level repulsion that results in a deviation from the Poissonian statistics of the adjacent level distance distribution. This signifies the crossover to nonintegrability of the system and hints at the possibility of quantum chaos emerging. Such behavior strongly differs from the classical realization, where spin-orbit coupling produces highly entangled, chaotic electron trajectories in an exciton. We also calculate the oscillator strengths and show that randomization appears in the transitions between states with different total momenta.
Lack of Day/Night variation in fibroblast growth factor 21 levels in young healthy men.
Foo, J-P; Aronis, K N; Chamberland, J P; Mantzoros, C S
2015-06-01
Fibroblast growth factor (FGF) 21 is an endocrine factor with an emerging role as a metabolic regulator. We previously reported the presence of a significant day/night variation of FGF-21 in energy-replete, healthy female subjects. However the day/night patterns of secretion in male subjects remain to be fully elucidated. To elucidate day/night pattern of FGF-21 levels in male subjects in the energy-replete state, its relationship to FFA and to investigate whether a sexual dimorphism exists in FGF-21 physiology. Eight healthy lean male subjects were studied for up to 5 days while on an isocaloric diet. Blood samples were obtained for measurement of FGF-21 and free fatty acids (FFA) hourly from 0800 AM on day 4 till 0800AM on day 5. FGF-21 did not exhibit any statistically significant day/night variation pattern of circulating FGF-21 levels during the isocaloric fed state in male subjects. FGF-21 levels in male subjects are closely cross-correlated with FFA levels, similar to female subjects. A sexual dimorphism exists in FGF-21 physiology; that as opposed to female subjects, no significant day/night variation exists in FGF-21 rhythm in male subjects in the energy-replete state. Circulating pattern of FGF-21, similar to the female subjects, was highly cross-correlated to the FFA levels in the male subjects, signifying that the sexual dimorphism in FGF-21 physiology may be related to the differing lipid metabolism in both the genders.
NASA Astrophysics Data System (ADS)
Mayes, R.; Lyford, M. E.; Myers, J. D.
2009-12-01
The Quantitative Reasoning in STEM (QR STEM) project is a state level Mathematics and Science Partnership Project (MSP) with a focus on the mathematics and statistics that underlies the understanding of complex global scientific issues. This session is a companion session to the QR STEM: The Science presentation. The focus of this session is the quantitative reasoning aspects of the project. As students move from understandings that range from local to global in perspective on issues of energy and environment, there is a significant increase in the need for mathematical and statistical conceptual understanding. These understandings must be accessible to the students within the scientific context, requiring the special understandings that are endemic within quantitative reasoning. The QR STEM project brings together interdisciplinary teams of higher education faculty and middle/high school teachers to explore complex problems in energy and environment. The disciplines include life sciences, physics, chemistry, earth science, statistics, and mathematics. These interdisciplinary teams develop open ended performance tasks to implement in the classroom, based on scientific concepts that underpin energy and environment. Quantitative reasoning is broken down into three components: Quantitative Literacy, Quantitative Interpretation, and Quantitative Modeling. Quantitative Literacy is composed of arithmetic concepts such as proportional reasoning, numeracy, and descriptive statistics. Quantitative Interpretation includes algebraic and geometric concepts that underlie the ability to interpret a model of natural phenomena which is provided for the student. This model may be a table, graph, or equation from which the student is to make predictions or identify trends, or from which they would use statistics to explore correlations or patterns in data. Quantitative modeling is the ability to develop the model from data, including the ability to test hypothesis using statistical procedures. We use the term model very broadly, so it includes visual models such as box models, as well as best fit equation models and hypothesis testing. One of the powerful outcomes of the project is the conversation which takes place between science teachers and mathematics teachers. First they realize that though they are teaching concepts that cross their disciplines, the barrier of scientific language within their subjects restricts students from applying the concepts across subjects. Second the mathematics teachers discover the context of science as a means of providing real world situations that engage students in the utility of mathematics as a tool for solving problems. Third the science teachers discover the barrier to understanding science that is presented by poor quantitative reasoning ability. Finally the students are engaged in exploring energy and environment in a manner which exposes the importance of seeing a problem from multiple interdisciplinary perspectives. The outcome is a democratic citizen capable of making informed decisions, and perhaps a future scientist.
NASA Astrophysics Data System (ADS)
Kariniotakis, G.; Anemos Team
2003-04-01
Objectives: Accurate forecasting of the wind energy production up to two days ahead is recognized as a major contribution for reliable large-scale wind power integration. Especially, in a liberalized electricity market, prediction tools enhance the position of wind energy compared to other forms of dispatchable generation. ANEMOS, is a new 3.5 years R&D project supported by the European Commission, that resembles research organizations and end-users with an important experience on the domain. The project aims to develop advanced forecasting models that will substantially outperform current methods. Emphasis is given to situations like complex terrain, extreme weather conditions, as well as to offshore prediction for which no specific tools currently exist. The prediction models will be implemented in a software platform and installed for online operation at onshore and offshore wind farms by the end-users participating in the project. Approach: The paper presents the methodology of the project. Initially, the prediction requirements are identified according to the profiles of the end-users. The project develops prediction models based on both a physical and an alternative statistical approach. Research on physical models gives emphasis to techniques for use in complex terrain and the development of prediction tools based on CFD techniques, advanced model output statistics or high-resolution meteorological information. Statistical models (i.e. based on artificial intelligence) are developed for downscaling, power curve representation, upscaling for prediction at regional or national level, etc. A benchmarking process is set-up to evaluate the performance of the developed models and to compare them with existing ones using a number of case studies. The synergy between statistical and physical approaches is examined to identify promising areas for further improvement of forecasting accuracy. Appropriate physical and statistical prediction models are also developed for offshore wind farms taking into account advances in marine meteorology (interaction between wind and waves, coastal effects). The benefits from the use of satellite radar images for modeling local weather patterns are investigated. A next generation forecasting software, ANEMOS, will be developed to integrate the various models. The tool is enhanced by advanced Information Communication Technology (ICT) functionality and can operate both in stand alone, or remote mode, or be interfaced with standard Energy or Distribution Management Systems (EMS/DMS) systems. Contribution: The project provides an advanced technology for wind resource forecasting applicable in a large scale: at a single wind farm, regional or national level and for both interconnected and island systems. A major milestone is the on-line operation of the developed software by the participating utilities for onshore and offshore wind farms and the demonstration of the economic benefits. The outcome of the ANEMOS project will help consistently the increase of wind integration in two levels; in an operational level due to better management of wind farms, but also, it will contribute to increasing the installed capacity of wind farms. This is because accurate prediction of the resource reduces the risk of wind farm developers, who are then more willing to undertake new wind farm installations especially in a liberalized electricity market environment.
Routing to preserve energy in wireless networks
NASA Astrophysics Data System (ADS)
Block, Frederick J., IV
Many applications for wireless radio networks require that some or all radios in the network rely on batteries as energy sources. In many cases, battery replacement is infeasible, expensive, or impossible. Communication protocols for such networks should be designed to preserve limited energy supplies. Because the choice of a route to a traffic sink influences how often radios must transmit and receive, poor route selection can quickly deplete the batteries of certain nodes. Previous work has shown that a network's lifetime can be extended by assigning higher routing costs to nodes with little remaining energy and nodes that must use high transmitter power to reach neighbor radios. Although using remaining energy levels in routing metrics can increase network lifetime, in practice, there may be significant error in a node's estimate of its battery level. The effect of battery level uncertainty on routing is examined. Routing metrics are presented that are designed to explicitly account for uncertainty in remaining energy. Simulation results using several statistical models for this uncertainty show that the proposed metrics perform well. In addition to knowledge of current battery levels, estimates of how quickly radios are consuming energy may be helpful in extending network lifetime. We present a family of routing metrics that incorporate a radio's rate of energy consumption. Simulation results show that the proposed family of metrics performs well under a variety of traffic models and network topologies. Route selection can also be complicated by time-varying link conditions. Radios may be subject to interference from other nearby communication systems, hostile jammers, and other, non-communication sources of noise. A route that first appears to have only a small cost may later require much greater energy expenditure when transmitting packets. Frequent route selection can help radios avoid using links with interference, but additional routing control messages increase energy consumption. We investigate the effects of time-varying interference on the lifetime of ad hoc networks. It is shown that there is a tradeoff between packet delay and node lifetime. We show that it is possible to design the system to perform well under a wide variety of channel conditions.
Neutron resonance parameters of 6830Zn+n and statistical distributions of level spacings and widths
NASA Astrophysics Data System (ADS)
Garg, J. B.; Tikku, V. K.; Harvey, J. A.; Halperin, J.; Macklin, R. L.
1982-04-01
Discrete values of the parameters (E0, gΓn, Jπ, Γγ, etc.) of the resonances in the reaction 6830Zn + n have been determined from total cross section measurements from a few keV to 380 keV with a nominal resolution of 0.07 ns/m for the highest energy and from capture cross section measurements up to 130 keV using the pulsed neutron time-of-flight technique with a neutron burst width of 5 ns. The cross section data were analyzed to determine the parameters of the resonances using R-matrix multilevel codes. These results have provided values of average quantities as follows: S0=(2.01+/-0.34), S1=(0.56+/-0.05), S2=(0.2+/-0.1) in units of 10-4, D0=(5.56+/-0.43) keV and D1=(1.63+/-0.14) keV. From these measurements we have also determined the following average radiation widths: (Γ¯γ)l=0=(302+/-60) meV and (Γ¯γ)l=1=(157 +/-7) meV. The investigation of the statistical properties of neutron reduced widths and level spacings showed excellent agreement of the data with the Porter-Thomas distribution for s- and p-wave neutron widths and with the Dyson-Mehta Δ3 statistic and the Wigner distribution for the s-wave level spacing distribution. In addition, a correlation coefficient of ρ=0.50+/-0.10 between Γ0n and Γγ has been observed for s-wave resonances. The value of <σnγ> at (30+/-10) keV is 19.2 mb. NUCLEAR REACTIONS 3068Zn(n,n), 3068Zn(n,γ), E=few keV to 380, 130 keV, respectively. Measured total and capture cross sections versus neutron energy, deduced resonance parameters, E0, Jπ, gΓn, Γγ, S0, S1, S2, D0, D1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkubo, Makio
2009-08-15
In s-wave neutron resonances of {sup 40}Ca at E{sub n}{<=}2.5 MeV, S{sub n}/E{sub n} for many levels is found to be of the form 17(n/m) where n, m are small integers. Statistical tests show small probabilities for the observed dispositions of many levels at E{sub n}=(j/k)(1/70)G (j, k; small integers). To meet the requirement of time periodicity of the compound nucleus at resonance, a breathing model is developed, where the excitation energies E{sub x} are written as a sum of inverse integers; E{sub x}=S{sub n}+E{sub n}=G{sigma}(1/k) (k: integer). In {sup 40}Ca+n, the separation energy S{sub n}=8362 keV is written asmore » S{sub n}=(17/70)G=(1/7+1/10)G, where G=34.4 MeV. G is almost equal to the Fermi energy of the nucleus. It is suggested that two oscillators of energy (1/7)G and (1/10)G are excited in {sup 40}Ca by neutron incidence, in which the recurrence energy (1/70)G is resonant with neutrons of energies at (j/k)(1/70)G, forming a simple compound nucleus.« less
Using heart rate to predict energy expenditure in large domestic dogs.
Gerth, N; Ruoß, C; Dobenecker, B; Reese, S; Starck, J M
2016-06-01
The aim of this study was to establish heart rate as a measure of energy expenditure in large active kennel dogs (28 ± 3 kg bw). Therefore, the heart rate (HR)-oxygen consumption (V˙O2) relationship was analysed in Foxhound-Boxer-Ingelheim-Labrador cross-breds (FBI dogs) at rest and graded levels of exercise on a treadmill up to 60-65% of maximal aerobic capacity. To test for effects of training, HR and V˙O2 were measured in female dogs, before and after a training period, and after an adjacent training pause to test for reversibility of potential effects. Least squares regression was applied to describe the relationship between HR and V˙O2. The applied training had no statistically significant effect on the HR-V˙O2 regression. A general regression line from all data collected was prepared to establish a general predictive equation for energy expenditure from HR in FBI dogs. The regression equation established in this study enables fast estimation of energy requirement for running activity. The equation is valid for large dogs weighing around 30 kg that run at ground level up to 15 km/h with a heart rate maximum of 190 bpm irrespective of the training level. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
Atomic Data and Spectral Line Intensities for NI XVII
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Landi, E.
2011-01-01
Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XVII. We include in the calculations the 23 lowest configurations, corresponding to 159 fine-structure levels: 3l3l', 3l4l0'' , and 3s5l0''' , with l,l' = s,p,d, l'' = s,p,d, f, and l''' = s,p,d. Collision strengths are calculated at five incident energies for all transitions at varying energies above the threshold of each transition. One additional energy, very close to the threshold of each transition, has also been included. Calculations have been carried out using the Flexible Atomic Code in the distorted wave approximation. Additional calculations have been performed with the University College London suite of codes for comparison. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8) - 10(exp 14) / cubic cm and at an electron temperature of logT(sub e)e(K) = 6.5, corresponding to the maximum abundance of Ni XVII. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database
Characterization of pi-Conjugated Polymers for Transistor and Photovoltaic Applications
NASA Astrophysics Data System (ADS)
Paulsen, Bryan D.
pi-Conjugated polymers represent a unique class of optoelectronic materials. Being polymers, they are solution processable and inherently "soft" materials. This makes them attractive candidates for the production of roll-to-roll printed electronic devices on flexible substrates. The optical and electronic properties of pi-conjugated polymers are synthetically tunable allowing material sets to be tailored to specific applications. Two of the most heavily researched applications are the thin film transistor, the building block of electronic circuits, and the bulk heterojunction solar cell, which holds great potential as a renewable energy source. Key to developing commercially feasible pi-conjugated polymer devices is a thorough understanding of the electronic structure and charge transport behavior of these materials in relationship with polymer structure. Here this structure property relationship has been investigated through electrical and electrochemical means in concert with a variety of other characterization techniques and device test beds. The tunability of polymer optical band gap and frontier molecular orbital energy level was investigated in systems of vinyl incorporating statistical copolymers. Energy levels and band gaps are crucial parameters in developing efficient photovoltaic devices, with control of these parameters being highly desirable. Additionally, charge transport and density of electronic states were investigated in pi-conjugated polymers at extremely high electrochemically induced charge density. Finally, the effects of molecular weight on pi-conjugated polymer optical properties, energy levels, charge transport, morphology, and photovoltaic device performance was examined.
Atomistic study of two-level systems in amorphous silica
NASA Astrophysics Data System (ADS)
Damart, T.; Rodney, D.
2018-01-01
Internal friction is analyzed in an atomic-scale model of amorphous silica. The potential energy landscape of more than 100 glasses is explored to identify a sample of about 700 two-level systems (TLSs). We discuss the properties of TLSs, particularly their energy asymmetry and barrier as well as their deformation potential, computed as longitudinal and transverse averages of the full deformation potential tensors. The discrete sampling is used to predict dissipation in the classical regime. Comparison with experimental data shows a better agreement with poorly relaxed thin films than well relaxed vitreous silica, as expected from the large quench rates used to produce numerical glasses. The TLSs are categorized in three types that are shown to affect dissipation in different temperature ranges. The sampling is also used to discuss critically the usual approximations employed in the literature to represent the statistical properties of TLSs.
Networking—a statistical physics perspective
NASA Astrophysics Data System (ADS)
Yeung, Chi Ho; Saad, David
2013-03-01
Networking encompasses a variety of tasks related to the communication of information on networks; it has a substantial economic and societal impact on a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption requires new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with nonlinear large-scale systems. This review aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiferlein, Katherine E.
The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 2002. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the Energy Information Administration (EIA) under Section 205(a)(2), which states: “The Administrator shallmore » be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications. Related Publication: Readers of the AER may also be interested in EIA’s Monthly Energy Review, which presents monthly updates of many of the data in the AER. Contact our National Energy Information Center for more information.« less
Statistical issues in searches for new phenomena in High Energy Physics
NASA Astrophysics Data System (ADS)
Lyons, Louis; Wardle, Nicholas
2018-03-01
Many analyses of data in High Energy Physics are concerned with searches for New Physics. We review the statistical issues that arise in such searches, and then illustrate these using the specific example of the recent successful search for the Higgs boson, produced in collisions between high energy protons at CERN’s Large Hadron Collider.
Search for Ultra-High-Energy Neutrinos with AMANDA-II
NASA Astrophysics Data System (ADS)
Ackermann, M.; Adams, J.; Ahrens, J.; Andeen, K.; Auffenberg, J.; Bai, X.; Baret, B.; Barwick, S. W.; Bay, R.; Beattie, K.; Becka, T.; Becker, J. K.; Becker, K.-H.; Beimforde, M.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bouchta, A.; Braun, J.; Burgess, T.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cowen, D. F.; D'Agostino, M. V.; Davour, A.; Day, C. T.; De Clercq, C.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hardtke, D.; Hardtke, R.; Hasegawa, Y.; Hauschildt, T.; Heise, J.; Helbing, K.; Hellwig, M.; Herquet, P.; Hill, G. C.; Hodges, J.; Hoffman, K. D.; Hommez, B.; Hoshina, K.; Hubert, D.; Hughey, B.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hundertmark, S.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kawai, H.; Kelley, J. L.; Kiryluk, J.; Kislat, F.; Kitamura, N.; Klein, S. R.; Klepser, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Lauer, R.; Leich, H.; Leier, D.; Liubarsky, I.; Lundberg, J.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McCauley, T.; McParland, C. P.; Meagher, K.; Meli, A.; Messarius, T.; Mészáros, P.; Miyamoto, H.; Montaruli, T.; Morey, A.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Olivas, A.; Ono, M.; Patton, S.; Pérez de los Heros, C.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Pretz, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Razzaque, S.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Robbins, S.; Robbins, W. J.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schultz, O.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, A. J.; Song, C.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Sumner, T. J.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Thollander, L.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; Viscomi, V.; Vogt, C.; Voigt, B.; Wagner, W.; Walck, C.; Waldmann, H.; Waldenmaier, T.; Walter, M.; Wang, Y.-R.; Wendt, C.; Wiebusch, C. H.; Wiedemann, C.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zornoza, J. D.; IceCube Collaboration
2008-03-01
A search for diffuse neutrinos with energies in excess of 105 GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 107 GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra-high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrino flux of E2Φ90% CL < 2.7 × 10-7 GeV cm-2 s-1 sr-1 valid over the energy range of 2 × 105 to 109 GeV. A number of models that predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level.
Tabacchi, Garden; Filippi, Anna Rita; Breda, João; Censi, Laura; Amodio, Emanuele; Napoli, Giuseppe; Bianco, Antonino; Jemni, Monèm; Firenze, Alberto; Mammina, Caterina
2015-01-01
Background A new web-based food frequency questionnaire (the ASSO–FFQ) was developed within the ASSO Project funded by the Italian Ministry of Health. Objective The aim of the present study is to assess the validity of the ASSO–FFQ at food groups, energy, and nutrients level. Design and subjects The validation study compared the ASSO–FFQ against a weighted food record (WFR) measuring foods, beverages and supplements intake, compiled during the week following the ASSO–FFQ administration. Ninety-two subjects aged 14–17, recruited from secondary schools in Palermo (Italy), completed the ASSO–FFQ and WFR. The intake of 24 food groups, energy, and 52 nutrients were taken as main outcomes. Tests for paired observations, Spearman and Pearson’s correlation coefficients (cc), kappa statistics and classification in quintiles, Bland–Altman plots and multiple regressions, on untransformed and transformed data were used for the statistical analysis. Results High cc (≥0.40) were found for soft drinks, milk, tea/coffee, vegetables, and lactose; fair energy-adjusted cc (0.25–0.40) for water, alcoholic drinks, breakfast cereals, fishery products, savory food, fruit juice, eggs, and 19 nutrients. The subjects classified in the same or adjacent quintile for food groups ranged from 40% (alcoholic drinks) to 100% (dried fruit); for energy and nutrients from 43% (phosphorus, thiamin, niacin) to 77% (lactose). Mean differences were not significant for water, soft drinks, meat, sweets, animal fats, milk and white bread, and vitamin B12 and folate. Limits of Agreement were broad for all food groups and nutrients. School, gender, alcohol consumption and between meals mainly affected most food groups’ intake differences. Gender stratification showed females had increased Pearson’s cc for energy and 28 nutrients, such as almost all fats, carbohydrates, vitamins and minerals. Conclusions The ASSO–FFQ could be applied in epidemiological studies for the assessment of dietary consumption in adolescents to adequately rank food, energy and nutrient intakes at a group level. PMID:25882537
NASA Astrophysics Data System (ADS)
Sun, Rui; Park, Kyoyeon; de Jong, Wibe A.; Lischka, Hans; Windus, Theresa L.; Hase, William L.
2012-07-01
Electronic structure calculations and direct chemical dynamics simulations are used to study the formation and decomposition of dioxetane on its ground state singlet potential energy surface. The stationary points for 1O2 + C2H4, the singlet .O-O-CH2-CH2. biradical, the transition state (TS) connecting this biradical with dioxetane, and the two transition states and gauche .O-CH2-CH2-O. biradical connecting dioxetane with the formaldehyde product molecules are investigated at different levels of electronic structure theory including UB3LYP, UMP2, MRMP2, and CASSCF and a range of basis sets. The UB3LYP/6-31G* method was found to give representative energies for the reactive system and was used as a model for the simulations. UB3LYP/6-31G* direct dynamics trajectories were initiated at the TS connecting the .O-O-CH2-CH2. biradical and dioxetane by sampling the TS's vibrational energy levels, and rotational and reaction coordinate energies, with Boltzmann distributions at 300, 1000, and 1500 K. This corresponds to the transition state theory model for trajectories that pass the TS. The trajectories were directed randomly towards both the biradical and dioxetane. A small fraction of the trajectories directed towards the biradical recrossed the TS and formed dioxetane. The remainder formed 1O2 + C2H4 and of these ˜ 40% went directly from the TS to 1O2 + C2H4 without getting trapped and forming an intermediate in the .O-O-CH2-CH2. biradical potential energy minimum, a non-statistical result. The dioxetane molecules which are formed dissociate to two formaldehyde molecules with a rate constant two orders of magnitude smaller than that predicted by Rice-Ramsperger-Kassel-Marcus theory. The reaction dynamics from dioxetane to the formaldehyde molecules do not follow the intrinsic reaction coordinate or involve trapping in the gauche .O-CH2-CH2-O. biradical potential energy minimum. Important non-statistical dynamics are exhibited for this reactive system.
2011-10-14
landscapes. It is motivated by statistical learning arguments and unifies the tasks of biasing the molecular dynamics to escape free energy wells and...statistical learning arguments and unifies the tasks of biasing the molecular dynamics to escape free energy wells and estimating the free energy...experimentally, to characterize global changes as well as investigate relative stabilities. In most applications, a brute- force computation based on
Development of an automated energy audit protocol for office buildings
NASA Astrophysics Data System (ADS)
Deb, Chirag
This study aims to enhance the building energy audit process, and bring about reduction in time and cost requirements in the conduction of a full physical audit. For this, a total of 5 Energy Service Companies in Singapore have collaborated and provided energy audit reports for 62 office buildings. Several statistical techniques are adopted to analyse these reports. These techniques comprise cluster analysis and development of prediction models to predict energy savings for buildings. The cluster analysis shows that there are 3 clusters of buildings experiencing different levels of energy savings. To understand the effect of building variables on the change in EUI, a robust iterative process for selecting the appropriate variables is developed. The results show that the 4 variables of GFA, non-air-conditioning energy consumption, average chiller plant efficiency and installed capacity of chillers should be taken for clustering. This analysis is extended to the development of prediction models using linear regression and artificial neural networks (ANN). An exhaustive variable selection algorithm is developed to select the input variables for the two energy saving prediction models. The results show that the ANN prediction model can predict the energy saving potential of a given building with an accuracy of +/-14.8%.
SU-E-T-96: Energy Dependence of the New GafChromic- EBT3 Film's Dose Response-Curve.
Chiu-Tsao, S; Massillon-Jl, G; Domingo-Muñoz, I; Chan, M
2012-06-01
To study and compare the dose response curves of the new GafChromic EBT3 film for megavoltage and kilovoltage x-ray beams, with different spatial resolution. Two sets of EBT3 films (lot#A101711-02) were exposed to each x-ray beam (6MV, 15MV and 50kV) at 8 dose values (50-3200cGy). The megavoltage beams were calibrated per AAPM TG-51 protocol while the kilovoltage beam was calibrated following the TG-61 using an ionization chamber calibrated at NIST. Each film piece was scanned three consecutive times in the center of Epson 10000XL flatbed scanner in transmission mode, landscape orientation, 48-bit color at two separate spatial resolutions of 75 and 300 dpi. The data were analyzed using ImageJ and, for each scanned image, a region of interest (ROI) of 2×2cm 2 at the field center was selected to obtain the mean pixel value with its standard deviation in the ROI. For each energy, dose value and spatial resolution, the average netOD and its associated uncertainty were determined. The Student's t-test was performed to evaluate the statistical differences between the netOD/dose values of the three energy modalities, with different color channels and spatial resolutions. The dose response curves for the three energy modalities were compared in three color channels with 75 and 300dpi. Weak energy dependence was found. For doses above 100cGy, no statistical differences were observed between 6 and 15MV beams, regardless of spatial resolution. However, statistical differences were observed between 50kV and the megavoltage beams. The degree of energy dependence (from MV to 50kV) was found to be function of color channel, dose level and spatial resolution. The dose response curves for GafChromic EBT3 films were found to be weakly dependent on the energy of the photon beams from 6MV to 50kV. The degree of energy dependence varies with color channel, dose and spatial resolution. GafChromic EBT3 films were supplied by Ashland Corp. This work was partially supported by DGAPA-UNAM grant IN102610 and Conacyt Mexico grant 127409. © 2012 American Association of Physicists in Medicine.
Steel, Brent S; Pierce, John C; Warner, Rebecca L; Lovrich, Nicholas P
2015-03-01
The 2013 Pacific Coast Action Plan on Climate and Energy signed by the Governors of California, Oregon, and Washington and the Premier of British Columbia launched a broadly announced public commitment to reduce greenhouse gas emissions through multiple strategies. Those strategies include the development and increased use of renewable energy sources. The initiative recognized that citizens are both a central component in abating greenhouse gas emissions with regard to their energy use behaviors, and are important participants in the public policymaking process at both state and local levels of government. The study reported here examines whether either support or opposition to state government leadership in the development of alternative energy technologies can be explained by environmental values as measured by the New Ecological Paradigm (NEP). The research results are based on mail surveys of randomly selected households conducted throughout Oregon and Washington in late 2009 and early 2010. Findings suggest that younger and more highly educated respondents are significantly more likely than older and less educated respondents to either support or strongly support government policies to promote bioenergy, wind, geothermal, and solar energy. Those respondents with higher NEP scores are also more supportive of government promotion of wind, geothermal, and solar technologies than are those with lower NEP scores. Support for wave energy does not show a statistical correlation with environmental values, maybe a reflection of this technology's nascent level of development. The paper concludes with a consideration of the implications of these findings for environmental management.
NASA Astrophysics Data System (ADS)
Steel, Brent S.; Pierce, John C.; Warner, Rebecca L.; Lovrich, Nicholas P.
2015-03-01
The 2013 Pacific Coast Action Plan on Climate and Energy signed by the Governors of California, Oregon, and Washington and the Premier of British Columbia launched a broadly announced public commitment to reduce greenhouse gas emissions through multiple strategies. Those strategies include the development and increased use of renewable energy sources. The initiative recognized that citizens are both a central component in abating greenhouse gas emissions with regard to their energy use behaviors, and are important participants in the public policymaking process at both state and local levels of government. The study reported here examines whether either support or opposition to state government leadership in the development of alternative energy technologies can be explained by environmental values as measured by the New Ecological Paradigm (NEP). The research results are based on mail surveys of randomly selected households conducted throughout Oregon and Washington in late 2009 and early 2010. Findings suggest that younger and more highly educated respondents are significantly more likely than older and less educated respondents to either support or strongly support government policies to promote bioenergy, wind, geothermal, and solar energy. Those respondents with higher NEP scores are also more supportive of government promotion of wind, geothermal, and solar technologies than are those with lower NEP scores. Support for wave energy does not show a statistical correlation with environmental values, maybe a reflection of this technology's nascent level of development. The paper concludes with a consideration of the implications of these findings for environmental management.
Kim, Youngwoo; Hong, Byung Woo; Kim, Seung Ja; Kim, Jong Hyo
2014-07-01
A major challenge when distinguishing glandular tissues on mammograms, especially for area-based estimations, lies in determining a boundary on a hazy transition zone from adipose to glandular tissues. This stems from the nature of mammography, which is a projection of superimposed tissues consisting of different structures. In this paper, the authors present a novel segmentation scheme which incorporates the learned prior knowledge of experts into a level set framework for fully automated mammographic density estimations. The authors modeled the learned knowledge as a population-based tissue probability map (PTPM) that was designed to capture the classification of experts' visual systems. The PTPM was constructed using an image database of a selected population consisting of 297 cases. Three mammogram experts extracted regions for dense and fatty tissues on digital mammograms, which was an independent subset used to create a tissue probability map for each ROI based on its local statistics. This tissue class probability was taken as a prior in the Bayesian formulation and was incorporated into a level set framework as an additional term to control the evolution and followed the energy surface designed to reflect experts' knowledge as well as the regional statistics inside and outside of the evolving contour. A subset of 100 digital mammograms, which was not used in constructing the PTPM, was used to validate the performance. The energy was minimized when the initial contour reached the boundary of the dense and fatty tissues, as defined by experts. The correlation coefficient between mammographic density measurements made by experts and measurements by the proposed method was 0.93, while that with the conventional level set was 0.47. The proposed method showed a marked improvement over the conventional level set method in terms of accuracy and reliability. This result suggests that the proposed method successfully incorporated the learned knowledge of the experts' visual systems and has potential to be used as an automated and quantitative tool for estimations of mammographic breast density levels.
Texture metric that predicts target detection performance
NASA Astrophysics Data System (ADS)
Culpepper, Joanne B.
2015-12-01
Two texture metrics based on gray level co-occurrence error (GLCE) are used to predict probability of detection and mean search time. The two texture metrics are local clutter metrics and are based on the statistics of GLCE probability distributions. The degree of correlation between various clutter metrics and the target detection performance of the nine military vehicles in complex natural scenes found in the Search_2 dataset are presented. Comparison is also made between four other common clutter metrics found in the literature: root sum of squares, Doyle, statistical variance, and target structure similarity. The experimental results show that the GLCE energy metric is a better predictor of target detection performance when searching for targets in natural scenes than the other clutter metrics studied.
Statistical errors in molecular dynamics averages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiferl, S.K.; Wallace, D.C.
1985-11-15
A molecular dynamics calculation produces a time-dependent fluctuating signal whose average is a thermodynamic quantity of interest. The average of the kinetic energy, for example, is proportional to the temperature. A procedure is described for determining when the molecular dynamics system is in equilibrium with respect to a given variable, according to the condition that the mean and the bandwidth of the signal should be sensibly constant in time. Confidence limits for the mean are obtained from an analysis of a finite length of the equilibrium signal. The role of serial correlation in this analysis is discussed. The occurence ofmore » unstable behavior in molecular dynamics data is noted, and a statistical test for a level shift is described.« less
Gamma-widths, lifetimes and fluctuations in the nuclear quasi-continuum
NASA Astrophysics Data System (ADS)
Guttormsen, M.; Larsen, A. C.; Midtbø, J. E.; Crespo Campo, L.; Görgen, A.; Ingeberg, V. W.; Renstrøm, T.; Siem, S.; Tveten, G. M.; Zeiser, F.; Kirsch, L. E.
2018-05-01
Statistical γ-decay from highly excited states is determined by the nuclear level density (NLD) and the γ-ray strength function (γSF). These average quantities have been measured for several nuclei using the Oslo method. For the first time, we exploit the NLD and γSF to evaluate the γ-width in the energy region below the neutron binding energy, often called the quasi-continuum region. The lifetimes of states in the quasi-continuum are important benchmarks for a theoretical description of nuclear structure and dynamics at high temperature. The lifetimes may also have impact on reaction rates for the rapid neutron-capture process, now demonstrated to take place in neutron star mergers.
NASA Astrophysics Data System (ADS)
Klementich, Eloisa Y.
2011-12-01
Purpose. The purpose of this research was to identify whether a relationship exists between state energy-efficiency policy and innovation in the State of California and to shed light on the impact that energy-efficiency policy can have on supporting statewide economic development goals. Theoretical Framework. The theoretical framework drew from foundations in neoclassical economic theory, technology change theory, and new growth theory. Together these theories formed the basis to describe the impacts caused by the innovations within the market economy. Under this framework, policy-generated innovations are viewed to be translated into efficiency and productivity that propel economic benefits. Methodological Considerations. This study examined various economic indices and efficiency attainment indices affecting four home appliances regulated under Title 20's energy-efficiency standard established by the California Energy Commission, Warren Alquist Act. The multiple regression analysis performed provided an understanding of the relationship between the products regulated, the regulation standard, and the policy as it relates to energy-efficiency regulation. Findings. There is enough evidence to show that strategies embedded in the Warren Alquist Act, Title 20 do drive innovation. Three of the four product categories tested showed statistical significance in the policy standard resulting in an industry efficiency improvement. Conclusively, the consumption of electricity per capita in California has positively diverged over a 35-year period from national trends, even though California had mirrored the nation in income and family size during the same period, the only clear case of divergence is the state's action toward a different energy policy. Conclusions and Recommendations. California's regulations propelled manufacturers to reach higher efficiency levels not otherwise pursued by market forces. The California effort included alliances all working together to make the change financially feasible as well as increasing efficiency levels. The success of the policy is based on the attainment of regulation standards, economic growth within the energy-efficiency industry, and energy-efficiency business savings. The key to the policy was its ability to "level the playing field" for manufacturers who could then choose the technology and design that best fit their products and compliance levels while at the same time lowering the cost of production.
NASA Astrophysics Data System (ADS)
Porter, Wayne Eliot
Arizona has an abundant solar resource and technologically mature systems are available to capture it, but solar energy systems are still considered to be an innovative technology. Adoption rates for solar and wind energy systems rise and fall with the political tides, and are relatively low in most rural areas in Arizona. This thesis tests the hypothesis that a consumer profile developed to characterize the adopters of renewable energy technology (RET) systems in rural Arizona is the same as the profile of other area residents who performed renovations, upgrades or additions to their homes. Residents of Santa Cruz and Cochise Counties who had obtained building permits to either install a solar or wind energy system or to perform a substantial renovation or upgrade to their home were surveyed to gather demographic, psychographic and behavioristic data. The data from 133 survey responses (76 from RET adopters and 57 from non-adopters) provided insights about their decisions regarding whether or not to adopt a RET system. The results, which are statistically significant at the 99% level of confidence, indicate that RET adopters had smaller households, were older and had higher education levels and greater income levels than the non-adopters. The research also provides answers to three related questions: First, are the energy conservation habits of RET adopters the same as those of non-adopters? Second, what were the sources of information consulted and the most important factors that motivated the decision to purchase a solar or wind energy system? And finally, are any of the factors which influenced the decision to live in a rural area in southeastern Arizona related to the decision to purchase a renewable energy system? The answers are provided, along with a series of recommendations that are designed to inform marketers and other promoters of RETs about how to utilize these results to help achieve their goals.
NASA Astrophysics Data System (ADS)
Black, Joshua A.; Knowles, Peter J.
2018-06-01
The performance of quasi-variational coupled-cluster (QV) theory applied to the calculation of activation and reaction energies has been investigated. A statistical analysis of results obtained for six different sets of reactions has been carried out, and the results have been compared to those from standard single-reference methods. In general, the QV methods lead to increased activation energies and larger absolute reaction energies compared to those obtained with traditional coupled-cluster theory.
Atomic Data and Spectral Line Intensities for Ca IX
NASA Technical Reports Server (NTRS)
Landi, E.; Bhatia, A. K.
2012-01-01
Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ca IX. We include in the calculations the 33 lowest configurations in the n = 3, 4, 5 complexes, corresponding to 283 fine structure levels in the 3l3l ', 3l4l'' and 3l4l''' configurations, where l,l' = s, p, d, l '' = s, p, d, f and l''' = s, p, d, f, g. Collision strengths are calculated at five incident energies for all transitions: 5.8, 13.6, 24.2, 38.6 and 57.9 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.0055 Ry and 0.23 Ry depending on the levels involved. Calculations have been carried out using the Flexible Atomic Code and the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates calculated in the present work, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14)/cubic cm range and at an electron temperature of log T(sub e)(K)=5.8, corresponding to the maximum abundance of Ca IX. Spectral line intensities are calculated, and their diagnostic relevance is discussed.
Statistical physics inspired energy-efficient coded-modulation for optical communications.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2012-04-15
Because Shannon's entropy can be obtained by Stirling's approximation of thermodynamics entropy, the statistical physics energy minimization methods are directly applicable to the signal constellation design. We demonstrate that statistical physics inspired energy-efficient (EE) signal constellation designs, in combination with large-girth low-density parity-check (LDPC) codes, significantly outperform conventional LDPC-coded polarization-division multiplexed quadrature amplitude modulation schemes. We also describe an EE signal constellation design algorithm. Finally, we propose the discrete-time implementation of D-dimensional transceiver and corresponding EE polarization-division multiplexed system. © 2012 Optical Society of America
Fuel oil and kerosene sales 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-08-01
The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil andmore » Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.« less
Billon, Alexis; Foy, Cédric; Picaut, Judicaël; Valeau, Vincent; Sakout, Anas
2008-06-01
In this paper, a modification of the diffusion model for room acoustics is proposed to account for sound transmission between two rooms, a source room and an adjacent room, which are coupled through a partition wall. A system of two diffusion equations, one for each room, together with a set of two boundary conditions, one for the partition wall and one for the other walls of a room, is obtained and numerically solved. The modified diffusion model is validated by numerical comparisons with the statistical theory for several coupled-room configurations by varying the coupling area surface, the absorption coefficient of each room, and the volume of the adjacent room. An experimental comparison is also carried out for two coupled classrooms. The modified diffusion model results agree very well with both the statistical theory and the experimental data. The diffusion model can then be used as an alternative to the statistical theory, especially when the statistical theory is not applicable, that is, when the reverberant sound field is not diffuse. Moreover, the diffusion model allows the prediction of the spatial distribution of sound energy within each coupled room, while the statistical theory gives only one sound level for each room.
Reply to "Comment on `Third law of thermodynamics as a key test of generalized entropies' "
NASA Astrophysics Data System (ADS)
Bento, E. P.; Viswanathan, G. M.; da Luz, M. G. E.; Silva, R.
2015-07-01
In Bento et al. [Phys. Rev. E 91, 039901 (2015), 10.1103/PhysRevE.91.039901] we develop a method to verify if an arbitrary generalized statistics does or does not obey the third law of thermodynamics. As examples, we address two important formulations, Kaniadakis and Tsallis. In their Comment on the paper, Bagci and Oikonomou suggest that our examination of the Tsallis statistics is valid only for q ≥1 , using arguments like there is no distribution maximizing the Tsallis entropy for the interval q <0 (in which the third law is not verified) compatible with the problem energy expression. In this Reply, we first (and most importantly) show that the Comment misses the point. In our original work we have considered the now already standard construction of the Tsallis statistics. So, if indeed such statistics lacks a maximization principle (a fact irrelevant in our protocol), this is an inherent feature of the statistics itself and not a problem with our analysis. Second, some arguments used by Bagci and Oikonomou (for 0
18Ne Excited States Two-Proton Decay
NASA Astrophysics Data System (ADS)
de Napoli, M.; Rapisarda, E.; Raciti, G.; Cardella, G.; Amorini, F.; Giacoppo, F.; Sfienti, C.
2008-04-01
Two-proton radioactivity studies have been performed on excited states of 18Ne produced by 20Ne fragmentation at the FRS of the Laboratori Nazionali del Sud and excited via Coulomb excitation on a 209Pb target. The 18Ne levels decay has been studied by complete kinematical reconstruction. In spite of the low statistic, the energy and angular correlations of the emitted proton pairs indicate the presence of 2He emission toghether with the democratic decay.
The calculation of neutron capture gamma-ray yields for space shielding applications
NASA Technical Reports Server (NTRS)
Yost, K. J.
1972-01-01
The application of nuclear models to the calculation of neutron capture and inelastic scattering gamma yields is discussed. The gamma ray cascade model describes the cascade process in terms of parameters which either: (1) embody statistical assumptions regarding electric and magnetic multipole transition strengths, level densities, and spin and parity distributions or (2) are fixed by experiment such as measured energies, spin and parity values, and transition probabilities for low lying states.
Acoustic fill factors for a 120 inch diameter fairing
NASA Technical Reports Server (NTRS)
Lee, Y. Albert
1992-01-01
Data from the acoustic test of a 120-inch diameter payload fairing were collected and an analysis of acoustic fill factors were performed. Correction factors for obtaining a weighted spatial average of the interior sound pressure level (SPL) were derived based on this database and a normalized 200-inch diameter fairing database. The weighted fill factors were determined and compared with statistical energy analysis (VAPEPS code) derived fill factors. The comparison is found to be reasonable.
A dose-response model for the conventional phototherapy of the newborn.
Osaku, Nelson Ossamu; Lopes, Heitor Silvério
2006-06-01
Jaundice of the newborn is a common problem as a consequence of the rapid increment of blood bilirubin in the first days of live. In most cases, it is considered a physiological transient situation, but unmanaged hyperbilirubinemia can lead to death or serious injuries for the survivors. For decades, phototherapy has been used as the main method for prevention and treatment of hyperbilirubinaemia of the newborn. This work aims at finding a predictive model for the decrement of blood bilirubin for patients submitted to conventional phototherapy. Data from the phototherapy of 90 term newborns were collected and used in a multiple regression method. A rigorous statistical analysis was done in order to guarantee a correct and valid model. The obtained model was able to explain 78% of the variation of the dependent variable. We show that it is possible to predict the total serum bilirubin of the patient under conventional phototherapy by knowing its birth weight, bilirubin level at the beginning of treatment and the radiant energy density (dose). Besides, it is possible to infer the time necessary for a given decrement of bilirubin, under approximately constant irradiance. Statistical analysis of the obtained model shows that it is valid for several ranges of birth weight, initial bilirubin level, and radiant energy density. It is expected that the proposed model can be useful in the clinical management of hyperbilirubinemia of the newborn.
Modeling of Yb3+/Er3+-codoped microring resonators
NASA Astrophysics Data System (ADS)
Vallés, Juan A.; Gălătuş, Ramona
2015-03-01
The performance of a highly Yb3+/Er3+-codoped phosphate glass add-drop microring resonator is numerically analyzed. The model assumes resonant behaviour of both pump and signal powers and the dependences of pump intensity build-up inside the microring resonator and of the signal transfer functions to the device through and drop ports are evaluated. Detailed equations for the evolution of the rare-earth ions levels population densities and the propagation of the optical powers inside the microring resonator are included in the model. Moreover, due to the high dopant concentrations considered, the microscopic statistical formalism based on the statistical average of the excitation probability of the Er3+ ion in a microscopic level has been used to describe energy-transfer inter-atomic mechanisms. Realistic parameters and working conditions are used for the calculations. Requirements to achieve amplification and laser oscillation within these devices are obtainable as a function of rare earth ions concentration and coupling losses.
Microdosimetry of the full slowing down of protons using Monte Carlo track structure simulations.
Liamsuwan, T; Uehara, S; Nikjoo, H
2015-09-01
The article investigates two approaches in microdosimetric calculations based on Monte Carlo track structure (MCTS) simulations of a 160-MeV proton beam. In the first approach, microdosimetric parameters of the proton beam were obtained using the weighted sum of proton energy distributions and microdosimetric parameters of proton track segments (TSMs). In the second approach, phase spaces of energy depositions obtained using MCTS simulations in the full slowing down (FSD) mode were used for the microdosimetric calculations. Targets of interest were water cylinders of 2.3-100 nm in diameters and heights. Frequency-averaged lineal energies ([Formula: see text]) obtained using both approaches agreed within the statistical uncertainties. Discrepancies beyond this level were observed for dose-averaged lineal energies ([Formula: see text]) towards the Bragg peak region due to the small number of proton energies used in the TSM approach and different energy deposition patterns in the TSM and FSD of protons. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Shaikh, Muhammad Mujtaba; Memon, Abdul Jabbar; Hussain, Manzoor
2016-09-01
In this article, we describe details of the data used in the research paper "Confidence bounds for energy conservation in electric motors: An economical solution using statistical techniques" [1]. The data presented in this paper is intended to show benefits of high efficiency electric motors over the standard efficiency motors of similar rating in the industrial sector of Pakistan. We explain how the data was collected and then processed by means of formulas to show cost effectiveness of energy efficient motors in terms of three important parameters: annual energy saving, cost saving and payback periods. This data can be further used to construct confidence bounds for the parameters using statistical techniques as described in [1].
SEARCH FOR GAMMA RAY BURSTS WITH THE ARGO-YBJ DETECTOR IN SCALER MODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aielli, G.; Camarri, P.; Bacci, C.
2009-07-10
We report on the search for gamma ray bursts (GRBs) in the energy range 1-100 GeV in coincidence with the prompt emission detected by satellites using the Astrophysical Radiation with Ground-based Observatory at YangBaJing (ARGO-YBJ) air shower detector. Thanks to its mountain location (Yangbajing, Tibet, People's Republic of China, 4300 m above sea level), active surface ({approx}6700 m{sup 2} of Resistive Plate Chambers), and large field of view ({approx}2 sr, limited only by the atmospheric absorption), the ARGO-YBJ air shower detector is particularly suitable for the detection of unpredictable and short duration events such as GRBs. The search is carriedmore » out using the 'single particle technique', i.e., counting all the particles hitting the detector without measurement of the energy and arrival direction of the primary gamma rays. Between 2004 December 17 and 2009 April 7, 81 GRBs detected by satellites occurred within the field of view of ARGO-YBJ (zenith angle {theta} {<=} 45 deg.). It was possible to examine 62 of these for >1 GeV counterpart in the ARGO-YBJ data finding no statistically significant emission. With a lack of detected spectra in this energy range fluence upper limits are profitable, especially when the redshift is known and the correction for the extragalactic absorption can be considered. The obtained fluence upper limits reach values as low as 10{sup -5} erg cm{sup -2} in the 1-100 GeV energy region. Besides this individual search for a higher energy counterpart, a statistical study of the stack of all the GRBs both in time and in phase was made, looking for a common feature in the GRB high-energy emission. No significant signal has been detected.« less
Communication Dynamics of Blog Networks
NASA Astrophysics Data System (ADS)
Goldberg, Mark; Kelley, Stephen; Magdon-Ismail, Malik; Mertsalov, Konstantin; Wallace, William (Al)
We study the communication dynamics of Blog networks, focusing on the Russian section of LiveJournal as a case study. Communication (blogger-to-blogger links) in such online communication networks is very dynamic: over 60% of the links in the network are new from one week to the next, though the set of bloggers remains approximately constant. Two fundamental questions are: (i) what models adequately describe such dynamic communication behavior; and (ii) how does one detect the phase transitions, i.e. the changes that go beyond the standard high-level dynamics? We approach these questions through the notion of stable statistics. We give strong experimental evidence to the fact that, despite the extreme amount of communication dynamics, several aggregate statistics are remarkably stable. We use stable statistics to test our models of communication dynamics postulating that any good model should produce values for these statistics which are both stable and close to the observed ones. Stable statistics can also be used to identify phase transitions, since any change in a normally stable statistic indicates a substantial change in the nature of the communication dynamics. We describe models of the communication dynamics in large social networks based on the principle of locality of communication: a node's communication energy is spent mostly within its own "social area," the locality of the node.
NASA Astrophysics Data System (ADS)
Moritzer, E.; Leister, C.
2014-05-01
The industrial use of atmospheric pressure plasmas in the plastics processing industry has increased significantly in recent years. Users of this treatment process have the possibility to influence the target values (e.g. bond strength or surface energy) with the help of kinematic and electrical parameters. Until now, systematic procedures have been used with which the parameters can be adapted to the process or product requirements but only by very time-consuming methods. For this reason, the relationship between influencing values and target values will be examined based on the example of a pretreatment in the bonding process with the help of statistical experimental design. Because of the large number of parameters involved, the analysis is restricted to the kinematic and electrical parameters. In the experimental tests, the following factors are taken as parameters: gap between nozzle and substrate, treatment velocity (kinematic data), voltage and duty cycle (electrical data). The statistical evaluation shows significant relationships between the parameters and surface energy in the case of polypropylene. An increase in the voltage and duty cycle increases the polar proportion of the surface energy, while a larger gap and higher velocity leads to lower energy levels. The bond strength of the overlapping bond is also significantly influenced by the voltage, velocity and gap. The direction of their effects is identical with those of the surface energy. In addition to the kinematic influences of the motion of an atmospheric pressure plasma jet, it is therefore especially important that the parameters for the plasma production are taken into account when designing the pretreatment processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moritzer, E., E-mail: elmar.moritzer@ktp.upb.de; Leister, C., E-mail: elmar.moritzer@ktp.upb.de
The industrial use of atmospheric pressure plasmas in the plastics processing industry has increased significantly in recent years. Users of this treatment process have the possibility to influence the target values (e.g. bond strength or surface energy) with the help of kinematic and electrical parameters. Until now, systematic procedures have been used with which the parameters can be adapted to the process or product requirements but only by very time-consuming methods. For this reason, the relationship between influencing values and target values will be examined based on the example of a pretreatment in the bonding process with the help ofmore » statistical experimental design. Because of the large number of parameters involved, the analysis is restricted to the kinematic and electrical parameters. In the experimental tests, the following factors are taken as parameters: gap between nozzle and substrate, treatment velocity (kinematic data), voltage and duty cycle (electrical data). The statistical evaluation shows significant relationships between the parameters and surface energy in the case of polypropylene. An increase in the voltage and duty cycle increases the polar proportion of the surface energy, while a larger gap and higher velocity leads to lower energy levels. The bond strength of the overlapping bond is also significantly influenced by the voltage, velocity and gap. The direction of their effects is identical with those of the surface energy. In addition to the kinematic influences of the motion of an atmospheric pressure plasma jet, it is therefore especially important that the parameters for the plasma production are taken into account when designing the pretreatment processes.« less
Chamberlin, Ralph V; Davis, Bryce F
2013-10-01
Disordered systems show deviations from the standard Debye theory of specific heat at low temperatures. These deviations are often attributed to two-level systems of uncertain origin. We find that a source of excess specific heat comes from correlations between quanta of energy if excitations are localized on an intermediate length scale. We use simulations of a simplified Creutz model for a system of Ising-like spins coupled to a thermal bath of Einstein-like oscillators. One feature of this model is that energy is quantized in both the system and its bath, ensuring conservation of energy at every step. Another feature is that the exact entropies of both the system and its bath are known at every step, so that their temperatures can be determined independently. We find that there is a mismatch in canonical temperature between the system and its bath. In addition to the usual finite-size effects in the Bose-Einstein and Fermi-Dirac distributions, if excitations in the heat bath are localized on an intermediate length scale, this mismatch is independent of system size up to at least 10(6) particles. We use a model for correlations between quanta of energy to adjust the statistical distributions and yield a thermodynamically consistent temperature. The model includes a chemical potential for units of energy, as is often used for other types of particles that are quantized and conserved. Experimental evidence for this model comes from its ability to characterize the excess specific heat of imperfect crystals at low temperatures.
Tomczewski, Andrzej
2014-01-01
The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.
2014-01-01
The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level. PMID:25215326
NASA Astrophysics Data System (ADS)
Maulida, N. I.; Firman, H.; Rusyati, L.
2017-02-01
The aims of this study are: (1) to investigate the level of students’ critical thinking skill on living things and environmental sustainability theme for each Inch’ critical thinking elements and overall, (2) to investigate the level of students’ critical thinking skill on living things characteristic, biodiversity, energy resources, ecosystem, environmental pollution, and global warming topics. The research was conducted due to the important of critical thinking measurement to get the current skill description as the basic consideration for further critical thinking skill improvement in lower secondary science. The research method used was descriptive. 331 seventh grade students taken from five lower secondary schools in Cirebon were tested to get the critical thinking skill data by using Science Virtual Test as the instrument. Generally, the mean scores on eight Inch’ critical thinking elements and overall score from descriptive statistic reveals a moderate attainments level. Students’ critical thinking skill on biodiversity, energy resources, ecosystem, environmental pollution, and global warming topics are in moderate level. While students’ critical thinking skill on living things characteristic is identified as high level. Students’ experience in thinking critically during science learning process and the characteristic of the topic are emerged as the reason behind the students’ critical thinking skill level on certain science topic.
Energy-Based Metrics for Arthroscopic Skills Assessment.
Poursartip, Behnaz; LeBel, Marie-Eve; McCracken, Laura C; Escoto, Abelardo; Patel, Rajni V; Naish, Michael D; Trejos, Ana Luisa
2017-08-05
Minimally invasive skills assessment methods are essential in developing efficient surgical simulators and implementing consistent skills evaluation. Although numerous methods have been investigated in the literature, there is still a need to further improve the accuracy of surgical skills assessment. Energy expenditure can be an indication of motor skills proficiency. The goals of this study are to develop objective metrics based on energy expenditure, normalize these metrics, and investigate classifying trainees using these metrics. To this end, different forms of energy consisting of mechanical energy and work were considered and their values were divided by the related value of an ideal performance to develop normalized metrics. These metrics were used as inputs for various machine learning algorithms including support vector machines (SVM) and neural networks (NNs) for classification. The accuracy of the combination of the normalized energy-based metrics with these classifiers was evaluated through a leave-one-subject-out cross-validation. The proposed method was validated using 26 subjects at two experience levels (novices and experts) in three arthroscopic tasks. The results showed that there are statistically significant differences between novices and experts for almost all of the normalized energy-based metrics. The accuracy of classification using SVM and NN methods was between 70% and 95% for the various tasks. The results show that the normalized energy-based metrics and their combination with SVM and NN classifiers are capable of providing accurate classification of trainees. The assessment method proposed in this study can enhance surgical training by providing appropriate feedback to trainees about their level of expertise and can be used in the evaluation of proficiency.
Energy Statistics : A Supplement to the Summary of National Transportation Statistics
DOT National Transportation Integrated Search
1976-08-01
This report is a compendium of selected time-series data describing the transportation, production, processing, and consumption of energy. It contains such items as the revenues and expenses of oil pipeline companies, number and capacities of U.S. ta...
Energy Statistics : A Supplement to the Summary of National Transportation Statistics
DOT National Transportation Integrated Search
1975-08-01
This report is a compendium of selected time-series data describing the transportation, production, processing, and consumption of energy. It discusses such items as the revenues and expenses of oil pipeline companies, number and capacities of U.S. t...
Influence of insulin on glucose metabolism and energy expenditure in septic patients
Rusavy, Zdenek; Sramek, Vladimir; Lacigova, Silvie; Novak, Ivan; Tesinsky, Pavel; Macdonald, Ian A
2004-01-01
Introduction It is recognized that administration of insulin with glucose decreases catabolic response in sepsis. The aim of the present study was to compare the effects of two levels of insulinaemia on glucose metabolism and energy expenditure in septic patients and volunteers. Methods Glucose uptake, oxidation and storage, and energy expenditure were measured, using indirect calorimetry, in 20 stable septic patients and 10 volunteers in a two-step hyperinsulinaemic (serum insulin levels 250 and 1250 mIU/l), euglycaemic (blood glucose concentration 5 mmol/l) clamp. Differences between steps of the clamp (from serum insulin 1250 to 250 mIU/l) for all parameters were calculated for each individual, and compared between septic patients and volunteers using the Wilcoxon nonpaired test. Results Differences in glucose uptake and storage were significantly less in septic patients. The differences in glucose oxidation between the groups were not statistically significant. Baseline energy expenditure was significantly higher in septic patients, and there was no significant increase in either step of the clamp in this group; when comparing the two groups, the differences between steps were significantly greater in volunteers. Conclusion A hyperdynamic state of sepsis leads to a decrease in glucose uptake and storage in comparison with healthy volunteers. An increase in insulinaemia leads to an increase in all parameters of glucose metabolism, but the increases in glucose uptake and storage are significantly lower in septic patients. A high level of insulinaemia in sepsis increases glucose uptake and oxidation significantly, but not energy expenditure, in comparison with volunteers. PMID:15312220
Statistical physics approach to earthquake occurrence and forecasting
NASA Astrophysics Data System (ADS)
de Arcangelis, Lucilla; Godano, Cataldo; Grasso, Jean Robert; Lippiello, Eugenio
2016-04-01
There is striking evidence that the dynamics of the Earth crust is controlled by a wide variety of mutually dependent mechanisms acting at different spatial and temporal scales. The interplay of these mechanisms produces instabilities in the stress field, leading to abrupt energy releases, i.e., earthquakes. As a consequence, the evolution towards instability before a single event is very difficult to monitor. On the other hand, collective behavior in stress transfer and relaxation within the Earth crust leads to emergent properties described by stable phenomenological laws for a population of many earthquakes in size, time and space domains. This observation has stimulated a statistical mechanics approach to earthquake occurrence, applying ideas and methods as scaling laws, universality, fractal dimension, renormalization group, to characterize the physics of earthquakes. In this review we first present a description of the phenomenological laws of earthquake occurrence which represent the frame of reference for a variety of statistical mechanical models, ranging from the spring-block to more complex fault models. Next, we discuss the problem of seismic forecasting in the general framework of stochastic processes, where seismic occurrence can be described as a branching process implementing space-time-energy correlations between earthquakes. In this context we show how correlations originate from dynamical scaling relations between time and energy, able to account for universality and provide a unifying description for the phenomenological power laws. Then we discuss how branching models can be implemented to forecast the temporal evolution of the earthquake occurrence probability and allow to discriminate among different physical mechanisms responsible for earthquake triggering. In particular, the forecasting problem will be presented in a rigorous mathematical framework, discussing the relevance of the processes acting at different temporal scales for different levels of prediction. In this review we also briefly discuss how the statistical mechanics approach can be applied to non-tectonic earthquakes and to other natural stochastic processes, such as volcanic eruptions and solar flares.
Equilibrium statistical-thermal models in high-energy physics
NASA Astrophysics Data System (ADS)
Tawfik, Abdel Nasser
2014-05-01
We review some recent highlights from the applications of statistical-thermal models to different experimental measurements and lattice QCD thermodynamics that have been made during the last decade. We start with a short review of the historical milestones on the path of constructing statistical-thermal models for heavy-ion physics. We discovered that Heinz Koppe formulated in 1948, an almost complete recipe for the statistical-thermal models. In 1950, Enrico Fermi generalized this statistical approach, in which he started with a general cross-section formula and inserted into it, the simplifying assumptions about the matrix element of the interaction process that likely reflects many features of the high-energy reactions dominated by density in the phase space of final states. In 1964, Hagedorn systematically analyzed the high-energy phenomena using all tools of statistical physics and introduced the concept of limiting temperature based on the statistical bootstrap model. It turns to be quite often that many-particle systems can be studied with the help of statistical-thermal methods. The analysis of yield multiplicities in high-energy collisions gives an overwhelming evidence for the chemical equilibrium in the final state. The strange particles might be an exception, as they are suppressed at lower beam energies. However, their relative yields fulfill statistical equilibrium, as well. We review the equilibrium statistical-thermal models for particle production, fluctuations and collective flow in heavy-ion experiments. We also review their reproduction of the lattice QCD thermodynamics at vanishing and finite chemical potential. During the last decade, five conditions have been suggested to describe the universal behavior of the chemical freeze-out parameters. The higher order moments of multiplicity have been discussed. They offer deep insights about particle production and to critical fluctuations. Therefore, we use them to describe the freeze-out parameters and suggest the location of the QCD critical endpoint. Various extensions have been proposed in order to take into consideration the possible deviations of the ideal hadron gas. We highlight various types of interactions, dissipative properties and location-dependences (spatial rapidity). Furthermore, we review three models combining hadronic with partonic phases; quasi-particle model, linear sigma model with Polyakov potentials and compressible bag model.
NASA Astrophysics Data System (ADS)
Turki, Imen; Laignel, Benoit; Kakeh, Nabil; Chevalier, Laetitia; Costa, Stephane
2015-04-01
This research is carried out in the framework of the program Surface Water and Ocean Topography (SWOT) which is a partnership between NASA and CNES. Here, a new hybrid model is implemented for filling gaps and forecasting the hourly sea level variability by combining classical harmonic analyses to high statistical methods to reproduce the deterministic and stochastic processes, respectively. After simulating the mean trend sea level and astronomical tides, the nontidal residual surges are investigated using an autoregressive moving average (ARMA) methods by two ways: (1) applying a purely statistical approach and (2) introducing the SLP in ARMA as a main physical process driving the residual sea level. The new hybrid model is applied to the western Atlantic sea and the eastern English Channel. Using ARMA model and considering the SLP, results show that the hourly sea level observations of gauges with are well reproduced with a root mean square error (RMSE) ranging between 4.5 and 7 cm for 1 to 30 days of gaps and an explained variance more than 80 %. For larger gaps of months, the RMSE reaches 9 cm. The negative and the positive extreme values of sea levels are also well reproduced with a mean explained variance between 70 and 85 %. The statistical behavior of 1-year modeled residual components shows good agreements with observations. The frequency analysis using the discrete wavelet transform illustrate strong correlations between observed and modeled energy spectrum and the bands of variability. Accordingly, the proposed model presents a coherent, simple, and easy tool to estimate the total sea level at timescales from days to months. The ARMA model seems to be more promising for filling gaps and estimating the sea level at larger scales of years by introducing more physical processes driving its stochastic variability.
The Shock and Vibration Digest. Volume 13. Number 7
1981-07-01
Richards, ISVR, University of Southampton Presidential Address "A Structural Dynamicist Looks at Statistical Energy Analysis " Professor B.L...excitation and for random and sine sweep mechanical excitation. Test data were used to assess prediction methods, in particular a statistical energy analysis method
Maintaining homeostasis by decision-making.
Korn, Christoph W; Bach, Dominik R
2015-05-01
Living organisms need to maintain energetic homeostasis. For many species, this implies taking actions with delayed consequences. For example, humans may have to decide between foraging for high-calorie but hard-to-get, and low-calorie but easy-to-get food, under threat of starvation. Homeostatic principles prescribe decisions that maximize the probability of sustaining appropriate energy levels across the entire foraging trajectory. Here, predictions from biological principles contrast with predictions from economic decision-making models based on maximizing the utility of the endpoint outcome of a choice. To empirically arbitrate between the predictions of biological and economic models for individual human decision-making, we devised a virtual foraging task in which players chose repeatedly between two foraging environments, lost energy by the passage of time, and gained energy probabilistically according to the statistics of the environment they chose. Reaching zero energy was framed as starvation. We used the mathematics of random walks to derive endpoint outcome distributions of the choices. This also furnished equivalent lotteries, presented in a purely economic, casino-like frame, in which starvation corresponded to winning nothing. Bayesian model comparison showed that--in both the foraging and the casino frames--participants' choices depended jointly on the probability of starvation and the expected endpoint value of the outcome, but could not be explained by economic models based on combinations of statistical moments or on rank-dependent utility. This implies that under precisely defined constraints biological principles are better suited to explain human decision-making than economic models based on endpoint utility maximization.
Maintaining Homeostasis by Decision-Making
Korn, Christoph W.; Bach, Dominik R.
2015-01-01
Living organisms need to maintain energetic homeostasis. For many species, this implies taking actions with delayed consequences. For example, humans may have to decide between foraging for high-calorie but hard-to-get, and low-calorie but easy-to-get food, under threat of starvation. Homeostatic principles prescribe decisions that maximize the probability of sustaining appropriate energy levels across the entire foraging trajectory. Here, predictions from biological principles contrast with predictions from economic decision-making models based on maximizing the utility of the endpoint outcome of a choice. To empirically arbitrate between the predictions of biological and economic models for individual human decision-making, we devised a virtual foraging task in which players chose repeatedly between two foraging environments, lost energy by the passage of time, and gained energy probabilistically according to the statistics of the environment they chose. Reaching zero energy was framed as starvation. We used the mathematics of random walks to derive endpoint outcome distributions of the choices. This also furnished equivalent lotteries, presented in a purely economic, casino-like frame, in which starvation corresponded to winning nothing. Bayesian model comparison showed that—in both the foraging and the casino frames—participants’ choices depended jointly on the probability of starvation and the expected endpoint value of the outcome, but could not be explained by economic models based on combinations of statistical moments or on rank-dependent utility. This implies that under precisely defined constraints biological principles are better suited to explain human decision-making than economic models based on endpoint utility maximization. PMID:26024504
Müller, Alexander; Akin-Olugbade, Yemi; Deveci, Serkan; Donohue, John F; Tal, Raanan; Kobylarz, Keith A; Palese, Michael; Mulhall, John P
2008-03-01
Only minimal literature exists on consequences of shock wave therapy (SWT) on erectile function in treatment of Peyronie's disease (PD). This study was undertaken to define SWT impact at varied energy/dose levels at different time points on functional and structural changes in erectile tissue. In 45 rats 2000 shock waves (sw) at 2 BAR were applied to the penis weekly sorted by one, two, and three sessions (high-dose/energy level, HD-1, HD-2, HD-3). Each group was followed for 1, 7, or 28 d before measuring intracavernosal pressure (ICP) and mean arterial pressure (MAP). Fifteen control animals (C1, C7, C28) underwent anesthesia alone. Another 15 animals were exposed to three SWT sessions applying 1000 sw at 1 BAR and analyzed identically (low-dose/energy level, LD-3-1, -7, -28). Terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling assay was used to define the apoptotic index (AI) and Masson's trichrome (MT) staining was prepared to evaluate smooth muscle-to-collagen ratios. ICP/MAP ratios for all C groups displayed a mean of 64%. All SWT groups demonstrated significantly reduced ICP/MAP ratios compared to their corresponding C groups (p<0.05). The LD-3 groups showed a trend toward improved ICP/MAP ratios. LD-3-28 demonstrated significant recovery compared to HD-3-28 (55+/-8% vs. 41+/-10%, p=0.004), but remained reduced compared to C28 (63+/-5%, p=0.03). No statistical differences were seen for MT staining in SWT groups compared to C (p>0.05). AIs for the LD-3 groups were significantly lower compared to the HD-3 groups (p<0.001), but all AIs were significantly increased compared to C groups (p<0.01). Overall, at both energy/dose levels, SWT resulted in a time- and treatment-dependent reduction of ICP/MAP ratios, which might be mediated partly through apoptosis and collagenization of corporal smooth muscle.
Guo, Daoyan; Chen, Hong; Long, Ruyin
2016-01-01
In the increasingly competitive environment, top managers' background characteristics are undoubtedly vital factors for company performance. This study examines whether the performance of Chinese listed companies in the energy industry differs with respect to top managers' background characteristics and explores the exact distribution interval of top managers' background characteristics when company performance reaches the highest level. The initial sample was collected from the CSMAR database (2005-2014) for listed companies in the energy industry. After removing the outlier and missing data, the final number of observations was determined as 780. Descriptive statistics were used to investigate the present distribution of top managers' background characteristics, factor analysis was used to determine the dimensions of company performance, and one-way ANOVA was used to analyze the differences in company performance and its dimensions with respect to top managers' background characteristics. The findings show that both the age and length of service of top managers present an increasing trend over the years of the study period, whereas the educational level shows no significant changes. The performance of listed companies has three dimensions: profit performance, growth performance, and operating performance. Companies behave differently with regard to their top managers' background characteristics; when the top manager is 40-45 years old, with a doctoral degree and above, and in the 2nd-3rd year of his service period, his company will achieve a higher level of performance. This study contributes to the growing literature on company performance in the Chinese energy industry by demonstrating the differences in the performance of Chinese listed companies in the energy industry with regard to top managers' background characteristics, and reaching conclusions on the optimum distribution interval of top managers' background characteristics when company performance reaches the highest level. This study also provides a valuable reference for organizational reform and performance enhancement, which are urgent problems for the Chinese energy industry.
Threshold collision-induced dissociation and theoretical study of protonated azobenzene
NASA Astrophysics Data System (ADS)
Rezaee, Mohammadreza; McNary, Christopher P.; Armentrout, P. B.
2017-10-01
Protonated azobenzene (AB), H+(C6H5N2C6H5), has been studied using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer. Product channels observed are C6H5N2+ + C6H6 and C6H5+ + N2 + C6H6. The experimental kinetic energy-dependent cross sections were analyzed using a statistical model that accounts for internal and kinetic energy distributions of the reactants, multiple collisions, and kinetic shifts. From this analysis, the activation energy barrier height of 2.02 ± 0.11 eV for benzene loss is measured. To identify the transition states (TSs) and intermediates (IMs) for these dissociations, relaxed potential energy surface (PES) scans were performed at the B3LYP/aug-cc-pVTZ level of theory. The PES indicates that there is a substantial activation energy along the dissociation reaction coordinate that is the rate-limiting step for benzene loss and at some levels of theory, for subsequent N2 loss as well. Relative energies of the reactant, TSs, IMs, and products were calculated at B3LYP, wB97XD, M06, PBEPBE, and MP2(full) levels of theory using both 6-311++G(2d,2p) and aug-cc-pVTZ basis sets. Comparison of the experimental results with theoretical values from various computational methods indicates how well these theoretical methods can predict thermochemical properties. In addition to these density functional theory and MP2 methods, several high accuracy multi-level calculations such as CBS-QB3, G3, G3MP2, G3B3MP2, G4, and G4MP2 were performed to determine the thermochemical properties of AB including the proton affinity and gas-phase basicity, and to compare the performance of different theoretical methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faby, Sebastian; Maier, Joscha; Sawall, Stefan
2016-07-15
Purpose: To introduce and evaluate an increment matrix approach (IMA) describing the signal statistics of energy-selective photon counting detectors including spatial–spectral correlations between energy bins of neighboring detector pixels. The importance of the occurring correlations for image-based material decomposition is studied. Methods: An IMA describing the counter increase patterns in a photon counting detector is proposed. This IMA has the potential to decrease the number of required random numbers compared to Monte Carlo simulations by pursuing an approach based on convolutions. To validate and demonstrate the IMA, an approximate semirealistic detector model is provided, simulating a photon counting detector inmore » a simplified manner, e.g., by neglecting count rate-dependent effects. In this way, the spatial–spectral correlations on the detector level are obtained and fed into the IMA. The importance of these correlations in reconstructed energy bin images and the corresponding detector performance in image-based material decomposition is evaluated using a statistically optimal decomposition algorithm. Results: The results of IMA together with the semirealistic detector model were compared to other models and measurements using the spectral response and the energy bin sensitivity, finding a good agreement. Correlations between the different reconstructed energy bin images could be observed, and turned out to be of weak nature. These correlations were found to be not relevant in image-based material decomposition. An even simpler simulation procedure based on the energy bin sensitivity was tested instead and yielded similar results for the image-based material decomposition task, as long as the fact that one incident photon can increase multiple counters across neighboring detector pixels is taken into account. Conclusions: The IMA is computationally efficient as it required about 10{sup 2} random numbers per ray incident on a detector pixel instead of an estimated 10{sup 8} random numbers per ray as Monte Carlo approaches would need. The spatial–spectral correlations as described by IMA are not important for the studied image-based material decomposition task. Respecting the absolute photon counts and thus the multiple counter increases by a single x-ray photon, the same material decomposition performance could be obtained with a simpler detector description using the energy bin sensitivity.« less
A comparative study of energy balance among housewives of Ludhiana city.
Kaur, N; Mann, S K; Sidhu, P; Sangha, J K
1997-01-01
Energy gap is the main nutritional factor which affects work efficiency in all age groups. The low intake of food results in impaired working efficiency and a low level of vitality. Energy balance was evaluated among 30 healthy, nonpregnant, nonlactating housewives aged 29-40 years drawn from the campus of Punjab Agricultural University and its surrounding areas. The women's mean overall energy intake was 1777 +or- 31 kcal/day, 87% of the ICMR (1990) recommended allowances. Total energy expenditure was measured using a computer-based Nutriguide program of Song et al., Caltrac, FAO/WHO/UNU (1985) equations based upon body weight, and an ICMR (1990) prediction equation also based upon body weight. Statistical analysis identified a significant difference in the energy expenditure measured by all 4 methods except between the FAO/WHO/UNU and ICMR prediction equations. The overall energy balance was maximum and positive according to Caltrac at 4.5 kcal/day. The energy expenditure measured by the Nutriguide, FAO/WHO/UNU, and ICMR methods was significantly correlated to weight. Energy intake was significantly and highly correlated to energy balance in all of the 4 methods. While the subjects were overweight when compared with Life Insurance Corporation of India (1965) Standards, the women's body mass index of 23.11 kg/sq.m was within the normal range.
Quantifying the Energy Landscape Statistics in Proteins - a Relaxation Mode Analysis
NASA Astrophysics Data System (ADS)
Cai, Zhikun; Zhang, Yang
Energy landscape, the hypersurface in the configurational space, has been a useful concept in describing complex processes that occur over a very long time scale, such as the multistep slow relaxations of supercooled liquids and folding of polypeptide chains into structured proteins. Despite extensive simulation studies, its experimental characterization still remains a challenge. To address this challenge, we developed a relaxation mode analysis (RMA) for liquids under a framework analogous to the normal mode analysis for solids. Using RMA, important statistics of the activation barriers of the energy landscape becomes accessible from experimentally measurable two-point correlation functions, e.g. using quasi-elastic and inelastic scattering experiments. We observed a prominent coarsening effect of the energy landscape. The results were further confirmed by direct sampling of the energy landscape using a metadynamics-like adaptive autonomous basin climbing computation. We first demonstrate RMA in a supercooled liquid when dynamical cooperativity emerges in the landscape-influenced regime. Then we show this framework reveals encouraging energy landscape statistics when applied to proteins.
ERIC Educational Resources Information Center
Pincherle, L.; Rice-Evans, P.
1977-01-01
Discusses statistics concerning world energy requirements and supplies of different types of fuels. Also discusses the storage and transmission of energy and pollution problems related to energy utilization. (MLH)
Gopinathan, Nirmal Raj; Sen, Ramesh Kumar; Behera, Prateek; Aggarwal, Sameer; Khandelwal, Niranjan; Sen, Mitali
2016-01-01
The level of awareness about osteoporosis in postmenopausal women who are the common sufferers. This study aims to evaluate the level of awareness in postmenopausal women using the Osteoporosis Health Belief Scale (OHBS). Osteoporosis has emerged as a common health problem in geriatric population. A proactive role needs to be played for preventing its consequences. Before initiating any preventive measures, an evaluation of awareness level of the target population is necessary. The questionnaire-based study design was used for this study. A questionnaire (OHBS)-based study in 100 postmenopausal women in Chandigarh was conducted. The bone mineral density (BMD) was measured in each case by dual energy X-ray absorptiometry. Height, weight, and body mass index (BMI) of the participants were noted. Statistical analysis was conducted to evaluate any correlation between the various components of the OHBS and the BMD. No statistically significant difference was noted in the seven component parameters of OHBS among the normal, osteopenic, and osteoporotic women suggesting that the health belief regarding susceptibility is not much different between the three groups of the study population. A statistically significant difference between the mean BMI of normal and osteoporotic population was noted. The results show that there is a great deficit in the awareness level of postmenopausal Indian women regarding osteoporosis. Most of the women were unaware of the condition and the means to prevent it. The study emphasizes that health care professionals have lot of ground to cover to decrease the incidence of osteoporosis and its associated health problem.
Fung, Christina; McIsaac, Jessie-Lee D; Kuhle, Stefan; Kirk, Sara F L; Veugelers, Paul J
2013-12-01
The objective of this study is to assess population-level trends in children's dietary intake and weight status before and after the implementation of a provincial school nutrition policy in the province of Nova Scotia, Canada. Self-reported dietary behavior and nutrient intake and measured body mass index were collected as part of a population-level study with grade 5 students in 2003 (n=5215) and 2011 (5508), prior to and following implementation of the policy. We applied random effects regression methods to assess the effect of the policy on dietary and health outcomes. In 2011, students reported consuming more milk products, while there was no difference in mean consumption of vegetables and fruits in adjusted models. Adjusted regression analysis revealed a statistically significant decrease in sugar-sweetened beverage consumption. Despite significant temporal decreases in dietary energy intake and increases in diet quality, prevalence rates of overweight and obesity continued to increase. This population-level intervention research suggests a positive influence of school nutrition policies on diet quality, energy intake and healthy beverage consumption, and that more action beyond schools is needed to curb the increases in the prevalence of childhood obesity. © 2013.
Structure, Stabilities, Thermodynamic Properties, and IR Spectra of Acetylene Clusters (C2H2)n=2-5.
Karthikeyan, S; Lee, Han Myoung; Kim, Kwang S
2010-10-12
There are no clear conclusions over the structures of the acetylene clusters. In this regard, we have carried out high-level calculations for acetylene clusters (C2H2)2-5 using dispersion-corrected density functional theory (DFT-D), Møller-Plesset second-order perturbation theory (MP2); and coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)] at the complete basis set limit. The lowest energy structure of the acetylene dimer has a T-shaped structure of C2v symmetry, but it is nearly isoenergetic to the displaced stacked structure of C2h symmetry. We find that the structure shows the quantum statistical distribution for configurations between the T-shaped and displaced stacked structures for which the average angle (|θ̃|) between two acetylene molecules would be 53-78°, close to the T-shaped structure. The trimer has a triangular structure of C3h symmetry. The tetramer has two lowest energy isomers of S4 and C2h symmetry in zero-point energy (ZPE)-uncorrected energy (ΔEe), but one lowest energy isomer of C2v symmetry in ZPE-corrected energy (ΔE0). For the pentamer, the global minimum structure is C1 symmetry with eight sets of T-type π-H interactions and a set of π-π interactions. Our high-level ab initio calculations are consistent with available experimental data.
Wind Power Electricity: The Bigger the Turbine, The Greener the Electricity?
2012-01-01
Wind energy is a fast-growing and promising renewable energy source. The investment costs of wind turbines have decreased over the years, making wind energy economically competitive to conventionally produced electricity. Size scaling in the form of a power law, experience curves and progress rates are used to estimate the cost development of ever-larger turbines. In life cycle assessment, scaling and progress rates are seldom applied to estimate the environmental impacts of wind energy. This study quantifies whether the trend toward larger turbines affects the environmental profile of the generated electricity. Previously published life cycle inventories were combined with an engineering-based scaling approach as well as European wind power statistics. The results showed that the larger the turbine is, the greener the electricity becomes. This effect was caused by pure size effects of the turbine (micro level) as well as learning and experience with the technology over time (macro level). The environmental progress rate was 86%, indicating that for every cumulative production doubling, the global warming potential per kWh was reduced by 14%. The parameters, hub height and rotor diameter were identified as Environmental Key Performance Indicators that can be used to estimate the environmental impacts for a generic turbine. PMID:22475003
Wind power electricity: the bigger the turbine, the greener the electricity?
Caduff, Marloes; Huijbregts, Mark A J; Althaus, Hans-Joerg; Koehler, Annette; Hellweg, Stefanie
2012-05-01
Wind energy is a fast-growing and promising renewable energy source. The investment costs of wind turbines have decreased over the years, making wind energy economically competitive to conventionally produced electricity. Size scaling in the form of a power law, experience curves and progress rates are used to estimate the cost development of ever-larger turbines. In life cycle assessment, scaling and progress rates are seldom applied to estimate the environmental impacts of wind energy. This study quantifies whether the trend toward larger turbines affects the environmental profile of the generated electricity. Previously published life cycle inventories were combined with an engineering-based scaling approach as well as European wind power statistics. The results showed that the larger the turbine is, the greener the electricity becomes. This effect was caused by pure size effects of the turbine (micro level) as well as learning and experience with the technology over time (macro level). The environmental progress rate was 86%, indicating that for every cumulative production doubling, the global warming potential per kWh was reduced by 14%. The parameters, hub height and rotor diameter were identified as Environmental Key Performance Indicators that can be used to estimate the environmental impacts for a generic turbine. © 2012 American Chemical Society
Solar Radiation Estimated Through Mesoscale Atmospheric Modeling over Northeast Brazil
NASA Astrophysics Data System (ADS)
de Menezes Neto, Otacilio Leandro; Costa, Alexandre Araújo; Ramalho, Fernando Pinto; de Maria, Paulo Henrique Santiago
2009-03-01
The use of renewable energy sources, like solar, wind and biomass is rapidly increasing in recent years, with solar radiation as a particularly abundant energy source over Northeast Brazil. A proper quantitative knowledge of the incoming solar radiation is of great importance for energy planning in Brazil, serving as basis for developing future projects of photovoltaic power plants and solar energy exploitation. This work presents a methodology for mapping the incoming solar radiation at ground level for Northeast Brazil, using a mesoscale atmospheric model (Regional Atmospheric Modeling System—RAMS), calibrated and validated using data from the network of automatic surface stations from the State Foundation for Meteorology and Water Resources from Ceará (Fundação Cearense de Meteorologia e Recursos Hídricos- FUNCEME). The results showed that the model exhibits systematic errors, overestimating surface radiation, but that, after the proper statistical corrections, using a relationship between the model-predicted cloud fraction, the ground-level observed solar radiation and the incoming solar radiation estimated at the top of the atmosphere, a correlation of 0.92 with a confidence interval of 13.5 W/m2 is found for monthly data. Using this methodology, we found an estimate for annual average incoming solar radiation over Ceará of 215 W/m2 (maximum in October: 260 W/m2).
Determination of apparent coupling factors for adhesive bonded acrylic plates using SEAL approach
NASA Astrophysics Data System (ADS)
Pankaj, Achuthan. C.; Shivaprasad, M. V.; Murigendrappa, S. M.
2018-04-01
Apparent coupling loss factors (CLF) and velocity responses has been computed for two lap joined adhesive bonded plates using finite element and experimental statistical energy analysis like approach. A finite element model of the plates has been created using ANSYS software. The statistical energy parameters have been computed using the velocity responses obtained from a harmonic forced excitation analysis. Experiments have been carried out for two different cases of adhesive bonded joints and the results have been compared with the apparent coupling factors and velocity responses obtained from finite element analysis. The results obtained from the studies signify the importance of modeling of adhesive bonded joints in computation of the apparent coupling factors and its further use in computation of energies and velocity responses using statistical energy analysis like approach.
Relationship between the start times of flares and CMEs to the time of potential radiation hazards
NASA Astrophysics Data System (ADS)
Kang, G.; Zheng, Y.; Kuznetsova, M. M.
2013-12-01
Solar flares, short-term outbursts of energy of the Sun, and coronal mass ejections (CME), massive bursts of solar matter, are two solar phenomena that are known to increase solar energetic particles in space. Increased solar energetic particles cause immense radiation that poses a serious threat to astronauts in space, radio communication signals, and passengers on high-latitude flights on the Earth. The relationship between the start times of flares and CMEs to the time of potential radiation hazards was investigated to determine how much warning time is available. Additionally, this project compared the difference between these relationships for four energy levels of solar energetic particles: proton flux exceeding 10 MeV, 30 MeV, 50 MeV and 100 MeV. This project gathered data of 22 recent SEP events between 2010 and 2012 and the parameters of associated CMEs and flares. Through the use of IDL (Interactive Data Language) programming, thorough analysis was conducted, including 2-sample t-tests and Kruskal-Wallis tests for 2 or more samples. The average lead time to warn humans of possible radiation hazard from the detection of a flare and a CME occurrence was found to be around 12 to 20 hours. The lead time was the greatest for the lowest energy level, though the differences in energy levels and that between the lead times for CME and flares were found to be statistically insignificant with p-values exceeding the alpha value of 0.20.
Two solar proton fluence models based on ground level enhancement observations
NASA Astrophysics Data System (ADS)
Raukunen, Osku; Vainio, Rami; Tylka, Allan J.; Dietrich, William F.; Jiggens, Piers; Heynderickx, Daniel; Dierckxsens, Mark; Crosby, Norma; Ganse, Urs; Siipola, Robert
2018-01-01
Solar energetic particles (SEPs) constitute an important component of the radiation environment in interplanetary space. Accurate modeling of SEP events is crucial for the mitigation of radiation hazards in spacecraft design. In this study we present two new statistical models of high energy solar proton fluences based on ground level enhancement (GLE) observations during solar cycles 19-24. As the basis of our modeling, we utilize a four parameter double power law function (known as the Band function) fits to integral GLE fluence spectra in rigidity. In the first model, the integral and differential fluences for protons with energies between 10 MeV and 1 GeV are calculated using the fits, and the distributions of the fluences at certain energies are modeled with an exponentially cut-off power law function. In the second model, we use a more advanced methodology: by investigating the distributions and relationships of the spectral fit parameters we find that they can be modeled as two independent and two dependent variables. Therefore, instead of modeling the fluences separately at different energies, we can model the shape of the fluence spectrum. We present examples of modeling results and show that the two methodologies agree well except for a short mission duration (1 year) at low confidence level. We also show that there is a reasonable agreement between our models and three well-known solar proton models (JPL, ESP and SEPEM), despite the differences in both the modeling methodologies and the data used to construct the models.
Statistical energy analysis computer program, user's guide
NASA Technical Reports Server (NTRS)
Trudell, R. W.; Yano, L. I.
1981-01-01
A high frequency random vibration analysis, (statistical energy analysis (SEA) method) is examined. The SEA method accomplishes high frequency prediction of arbitrary structural configurations. A general SEA computer program is described. A summary of SEA theory, example problems of SEA program application, and complete program listing are presented.
Numerical Analysis of Stochastic Dynamical Systems in the Medium-Frequency Range
2003-02-01
frequency vibration analysis such as the statistical energy analysis (SEA), the traditional modal analysis (well-suited for high and low: frequency...that the first few structural normal modes primarily constitute the total response. In the higher frequency range, the statistical energy analysis (SEA
Electric power quarterly, April-June 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-10-13
The EPQ presents monthly summaries of electric utility statistics at the national, divisional, state, company, and plant levels on the following subjects: quantity of fuel, cost of fuel, quality of fuel, net generation, fuel consumption, fuel stocks. In addition, the EPQ presents a quarterly summary of reported major disturbances and unusual occurrences. These data are collected on the Form IE-417R. Every electric utility engaged in the generation, transmission, or distribution of electric energy must file a report with DOE if it experiences a major power system emergency.
Electric power quarterly, July-September 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-01-22
The EPQ presents monthly summaries of electric utility statistics at the national, divisional, state, company, and plant levels on the following subjects: quantity of fuel, cost of fuel, quality of fuel, net generation, fuel consumption, fuel stocks. In addition, the EPQ presents a quarterly summary of reported major disturbances and unusual occurrences. These data are collected on the Form IE-417R. Every electric utility engaged in the generation, transmission, or distribution of electric energy must file a report with DOE if it experiences a major power system emergency.
Thermodynamics of Weakly Measured Quantum Systems.
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-26
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.
2012-05-01
fuel cells vs. DCFCs. PEMFC PAFC MCFC SOFC DCFC Electrolyte Polymer Phosphoric acid Molten car- bonate salt Ceramic Fused KNO3 Operating...air O2/air CO2/O2/air O2/air Humidified air Efficiency (Higher Heating Value [HHV]) 30–35% 40–50% 50–60% 45–55% 80% PEMFC : Proton Exchange... PEMFC proton-exchange membrane fuel cell SOFC solid oxide fuel cell SRI Statistical Research, Inc. TR technical report TRL technology readiness level
NASA Technical Reports Server (NTRS)
Avery, L. W.; Green, Sheldon
1989-01-01
Collisional excitation rates for C3H2, calculated using the coupled states approximation at temperatures of 10-30 K, are presented. C3H2 produces a number of spectral line pairs whose members are close together in frequency but arise from levels with different excitation energies. The rates are used in statistical equilibrium calculations to illustrate the excitation properties and density-dependent behavior of various C3H2 line ratios.
Understanding the Role of Electron-driven Processes in Atmospheric Behaviour
NASA Astrophysics Data System (ADS)
Brunger, M. J.; Campbell, L.; Jones, D. B.; Cartwright, D. C.
2004-12-01
Electron-impact excitation plays a major role in emission from aurora and a less significant but nonetheless crucial role in the dayglow and nightglow. For some molecules, such as N2, O2 and NO, electron-impact excitation can be followed by radiative cascade through many different sets of energy levels, producing emission with a large number of lines. We review the application of our statistical equilibrium program to predict this rich spectrum of radiation, and we compare results we have obtained against available independent measurements. In addition, we also review the calculation of energy transfer rates from electrons to N2, O2 and NO in the thermosphere. Energy transfer from electrons to neutral gases and ions is one of the dominant electron cooling processes in the ionosphere, and the role of vibrationally excited N2 and O2 in this is particularly significant. The importance of the energy dependence and magnitude of the electron-impact vibrational cross sections in the calculation of these rates is assessed.
Transient quantum fluctuation theorems and generalized measurements
NASA Astrophysics Data System (ADS)
Prasanna Venkatesh, B.; Watanabe, Gentaro; Talkner, Peter
2014-01-01
The transient quantum fluctuation theorems of Crooks and Jarzynski restrict and relate the statistics of work performed in forward and backward forcing protocols. So far, these theorems have been obtained under the assumption that the work is determined by two projective energy measurements, one at the end, and the other one at the beginning of each run of the protocol. We found that one can replace these two projective measurements only by special error-free generalized energy measurements with pairs of tailored, protocol-dependent post-measurement states that satisfy detailed balance-like relations. For other generalized measurements, the Crooks relation is typically not satisfied. For the validity of the Jarzynski equality, it is sufficient that the first energy measurements are error-free and the post-measurement states form a complete orthonormal set of elements in the Hilbert space of the considered system. Additionally, the effects of the second energy measurements must have unit trace. We illustrate our results by an example of a two-level system for different generalized measurements.
Transient quantum fluctuation theorems and generalized measurements
NASA Astrophysics Data System (ADS)
Prasanna Venkatesh, B.; Watanabe, Gentaro; Talkner, Peter
2014-05-01
The transient quantum fluctuation theorems of Crooks and Jarzynski restrict and relate the statistics of work performed in forward and backward forcing protocols. So far, these theorems have been obtained under the assumption that the work is determined by two projective energy measurements, one at the end, and the other one at the beginning of each run of the protocol.We found that one can replace these two projective measurements only by special error-free generalized energy measurements with pairs of tailored, protocol-dependent post-measurement states that satisfy detailed balance-like relations. For other generalized measurements, the Crooks relation is typically not satisfied. For the validity of the Jarzynski equality, it is sufficient that the first energy measurements are error-free and the post-measurement states form a complete orthonormal set of elements in the Hilbert space of the considered system. Additionally, the effects of the second energy measurements must have unit trace. We illustrate our results by an example of a two-level system for different generalized measurements.
Analysis on H Spectral Shape During the Early 2012 SEPs with the PAMELA Experiment
NASA Technical Reports Server (NTRS)
Martucci, Matteo; Boezio, M.; Bravar, U.; Carbone, R.; Christian, E. R.; De Nolfo, G. A.; Merge, M.; Mocchiutti, E.; Munini, R.; Ricci, M.;
2013-01-01
The satellite-borne PAMELA experiment has been continuously collecting data since 2006.This apparatus is designed to study charged particles in the cosmic radiation. The combination of a permanent magnet, a silicon strip tracker and a silicon-tungsten imaging calorimeter, and the redundancy of instrumentation allow very precise studies on the physics of cosmic rays in a wide energy range and with high statistics. This makes PAMELA a very suitable instrument for Solar Energetic Particle (SEP) observations. Not only does its pan the energy range between the ground-based neutron monitor data and the observations of SEPs from space,but PAMELA also carries out the first direct measurements of the composition for the highest energy SEP events, including those causing Ground Level Enhancements (GLEs).In particular, PAMELA has registered many SEP events during solar cycle 24,offering unique opportunities to address the question of high-energy SEP origin. A preliminary analysis on proton spectra behaviour during this event is presented in this work.
INTERFRAGMENTARY SURFACE AREA AS AN INDEX OF COMMINUTION SEVERITY IN CORTICAL BONE IMPACT
Beardsley, Christina L.; Anderson, Donald D.; Marsh, J. Lawrence; Brown, Thomas D.
2008-01-01
Summary A monotonic relationship is expected between energy absorption and fracture surface area generation for brittle solids, based on fracture mechanics principles. It was hypothesized that this relationship is demonstrable in bone, to the point that on a continuous scale, comminuted fractures created with specific levels of energy delivery could be discriminated from one another. Using bovine cortical bone segments in conjunction with digital image analysis of CT fracture data, the surface area freed by controlled impact fracture events was measured. The results demonstrated a statistically significant (p<0.0001) difference in measured de novo surface area between three specimen groups, over a range of input energies from 0.423 to 0.702 J/g. Local material properties were also incorporated into these measurements via CT Hounsfield intensities. This study confirms that comminution severity of bone fractures can indeed be measured on a continuous scale, based on energy absorption. This lays a foundation for similar assessments in human injuries. PMID:15885492
The photon gas formulation of thermal radiation
NASA Technical Reports Server (NTRS)
Ried, R. C., Jr.
1975-01-01
A statistical consideration of the energy, the linear momentum, and the angular momentum of the photons that make up a thermal radiation field was presented. A general nonequilibrium statistical thermodynamics approach toward a macroscopic description of thermal radiation transport was developed and then applied to the restricted equilibrium statistical thermostatics derivation of the energy, linear momentum, and intrinsic angular momentum equations for an isotropic photon gas. A brief treatment of a nonisotropic photon gas, as an example of the results produced by the nonequilibrium statistical thermodynamics approach, was given. The relativistic variation of temperature and the invariance of entropy were illustrated.
Transportation energy data book
DOT National Transportation Integrated Search
2009-01-01
The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and : published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of : Energy, Office of Energy Efficiency and Renewable Energy, Vehicl...
Intelligent electric vehicle charging: Rethinking the valley-fill
NASA Astrophysics Data System (ADS)
Valentine, Keenan; Temple, William G.; Zhang, K. Max
This study proposes an intelligent PEV charging scheme that significantly reduces power system cost while maintaining reliability compared to the widely discussed valley-fill method of aggregated charging in the early morning. This study considers optimal PEV integration into the New York Independent System Operator's (NYISO) day-ahead and real-time wholesale energy markets for 21 days in June, July, and August of 2006, a record-setting summer for peak load. NYISO market and load data is used to develop a statistical Locational Marginal Price (LMP) and wholesale energy cost model. This model considers the high cost of ramping generators at peak-load and the traditional cost of steady-state operation, resulting in a framework with two competing cost objectives. Results show that intelligent charging assigns roughly 80% of PEV load to valley hours to take advantage of low steady-state cost, while placing the remaining 20% equally at shoulder and peak hours to reduce ramping cost. Compared to unregulated PEV charging, intelligent charging reduces system cost by 5-16%; a 4-9% improvement over the flat valley-fill approach. Moreover, a Charge Flexibility Constraint (CFC), independent of market modeling, is constructed from a vehicle-at-home profile and the mixture of Level 1 and Level 2 charging infrastructure. The CFC is found to severely restrict the ability to charge vehicles during the morning load valley. This study further shows that adding more Level 2 chargers without regulating PEV charging will significantly increase wholesale energy cost. Utilizing the proposed intelligent PEV charging method, there is a noticeable reduction in system cost if the penetration of Level 2 chargers is increased from 70/30 to 50/50 (Level 1/Level 2). However, the system benefit is drastically diminished for higher penetrations of Level 2 chargers.
Statistical Mechanical Derivation of Jarzynski's Identity for Thermostated Non-Hamiltonian Dynamics
NASA Astrophysics Data System (ADS)
Cuendet, Michel A.
2006-03-01
The recent Jarzynski identity (JI) relates thermodynamic free energy differences to nonequilibrium work averages. Several proofs of the JI have been provided on the thermodynamic level. They rely on assumptions such as equivalence of ensembles in the thermodynamic limit or weakly coupled infinite heat baths. However, the JI is widely applied to NVT computer simulations involving finite numbers of particles, whose equations of motion are strongly coupled to a few extra degrees of freedom modeling a thermostat. In this case, the above assumptions are no longer valid. We propose a statistical mechanical approach to the JI solely based on the specific equations of motion, without any further assumption. We provide a detailed derivation for the non-Hamiltonian Nosé-Hoover dynamics, which is routinely used in computer simulations to produce canonical sampling.
Evaluation of neutron total and capture cross sections on 99Tc in the unresolved resonance region
NASA Astrophysics Data System (ADS)
Iwamoto, Nobuyuki; Katabuchi, Tatsuya
2017-09-01
Long-lived fission product Technetium-99 is one of the most important radioisotopes for nuclear transmutation. The reliable nuclear data are indispensable for a wide energy range up to a few MeV, in order to develop environmental load reducing technology. The statistical analyses of resolved resonances were performed by using the truncated Porter-Thomas distribution, coupled-channels optical model, nuclear level density model and Bayes' theorem on conditional probability. The total and capture cross sections were calculated by a nuclear reaction model code CCONE. The resulting cross sections have statistical consistency between the resolved and unresolved resonance regions. The evaluated capture data reproduce those recently measured at ANNRI of J-PARC/MLF above resolved resonance region up to 800 keV.
Bruna-Larenas, Tamara; Gómez-Jeria, Juan S
2012-01-01
We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31G(∗∗) levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.
Anderson, R.; Morrison, M.; Sinclair, K.; Strickland, D.; Davis, H.; Kendall, W.
1999-01-01
In the 1980s little was known about the potential environmental effects associated with large scale wind energy development. Although wind turbines have been used in farming and remote location applications throughout this country for centuries, impacts on birds resulting from these dispersed turbines had not been reported. Thus early wind energy developments were planned, permitted, constructed, and operated with little consideration for the potential effects on birds. In the ensuing years wind plant impacts on birds became a source of concern among a number of stakeholder groups. Based on the studies that have been done to date, significant levels of bird fatalities have been identified at only one major commercial wind energy development in the United States. Research on wind energy/bird interactions has spanned such a wide variety of protocols and vastly different levels of study effort that it is difficult to make comparisons among study findings. As a result there continues to be interest, confusion, and concern over wind energy development's potential impacts on birds. Some hypothesize that technology changes, such as less dense wind farms with larger, slower-moving turbines, will decrease the number of bird fatalities from wind turbines. Others hypothesize that, because the tip speed may be the same or faster, new turbines will not result in decreased bird fatalities but may actually increase bird impacts. Statistically significant data sets from scientifically rigorous studies will be required before either hypothesis can be tested.
Optically nonlinear energy transfer in light-harvesting dendrimers.
Andrews, David L; Bradshaw, David S
2004-08-01
Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems, organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Starting from a thorough treatment of the underlying theory based on the principles of molecular quantum electrodynamics, it is possible to identify and characterize several optically nonlinear mechanisms for directed energy transfer and energy pooling in multichromophore dendrimers. Such mechanisms fall into two classes: first, those where two-photon absorption by individual donors is followed by transfer of the net energy to an acceptor; second, those where the excitation of two electronically distinct but neighboring donor groups is followed by a collective migration of their energy to a suitable acceptor. Each transfer process is subject to minor dissipative losses. In this paper we describe in detail the balance of factors and the constraints that determines the favored mechanism, which include the excitation statistics, structure of the energy levels, laser coherence factors, chromophore selection rules and architecture, possibilities for the formation of delocalized excitons, spectral overlap, and the overall distribution of donors and acceptors. Furthermore, it transpires that quantum interference between different mechanisms can play an important role. Thus, as the relative importance of each mechanism determines the relevant nanophotonic characteristics, the results reported here afford the means for optimizing highly efficient light-harvesting dendrimer devices. (c) 2004 American Institute of Physics.
Optically nonlinear energy transfer in light-harvesting dendrimers
NASA Astrophysics Data System (ADS)
Andrews, David L.; Bradshaw, David S.
2004-08-01
Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems, organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Starting from a thorough treatment of the underlying theory based on the principles of molecular quantum electrodynamics, it is possible to identify and characterize several optically nonlinear mechanisms for directed energy transfer and energy pooling in multichromophore dendrimers. Such mechanisms fall into two classes: first, those where two-photon absorption by individual donors is followed by transfer of the net energy to an acceptor; second, those where the excitation of two electronically distinct but neighboring donor groups is followed by a collective migration of their energy to a suitable acceptor. Each transfer process is subject to minor dissipative losses. In this paper we describe in detail the balance of factors and the constraints that determines the favored mechanism, which include the excitation statistics, structure of the energy levels, laser coherence factors, chromophore selection rules and architecture, possibilities for the formation of delocalized excitons, spectral overlap, and the overall distribution of donors and acceptors. Furthermore, it transpires that quantum interference between different mechanisms can play an important role. Thus, as the relative importance of each mechanism determines the relevant nanophotonic characteristics, the results reported here afford the means for optimizing highly efficient light-harvesting dendrimer devices.
Active Structural Acoustic Control as an Approach to Acoustic Optimization of Lightweight Structures
2001-06-01
appropriate approach based on Statistical Energy Analysis (SEA) would facilitate investigations of the structural behavior at a high modal density. On the way...higher frequency investigations an approach based on the Statistical Energy Analysis (SEA) is recommended to describe the structural dynamic behavior
Shock and Vibration Symposium (59th) Held in Albuquerque, New Mexico on 18-20 October 1988. Volume 4
1988-12-01
program to support TOPEX spacecraft design, Statistical energy analysis modeling of nonstructural mass on lightweight equipment panels using VAPEPS...and Stress estimation and statistical energy analysis of the Magellan spacecraft solar array using VAPEPS; Dynamic measurement -- An automated
Impulse Response Operators for Structural Complexes
1990-05-12
systems of the complex. The statistical energy analysis (SEA) is one such a device [ 13, 14]. The rendering of SEA from equation (21) and/or (25) lies...Propagation.] 13. L. Cremer, M. Heckl, and E.E. Ungar 1973 Structure-Borne Sound (Springer Verlag). 14. R. H. Lyon 1975 Statistical Energy Analysis of
A statistical mechanics model for free-for-all airplane passenger boarding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steffen, Jason H.; /Fermilab
2008-08-01
I discuss a model for free-for-all passenger boarding which is employed by some discount air carriers. The model is based on the principles of statistical mechanics where each seat in the aircraft has an associated energy which reflects the preferences of travelers. As each passenger enters the airplane they select their seats using Boltzmann statistics, proceed to that location, load their luggage, sit down, and the partition function seen by remaining passengers is modified to reflect this fact. I discuss the various model parameters and make qualitative comparisons of this passenger boarding model with those that involve assigned seats. Themore » model can be used to predict the probability that certain seats will be occupied at different times during the boarding process. These results might provide a useful description of this boarding method. The model is a relatively unusual application of undergraduate level physics and describes a situation familiar to many students and faculty.« less
Test of the statistical model in {sup 96}Mo with the BaF{sub 2}{gamma} calorimeter DANCE array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheets, S. A.; Mitchell, G. E.; Agvaanluvsan, U.
2009-02-15
The {gamma}-ray cascades following the {sup 95}Mo(n,{gamma}){sup 96}Mo reaction were studied with the {gamma} calorimeter DANCE (Detector for Advanced Neutron Capture Experiments) consisting of 160 BaF{sub 2} scintillation detectors at the Los Alamos Neutron Science Center. The {gamma}-ray energy spectra for different multiplicities were measured for s- and p-wave resonances below 2 keV. The shapes of these spectra were found to be in very good agreement with simulations using the DICEBOX statistical model code. The relevant model parameters used for the level density and photon strength functions were identical with those that provided the best fit of the data frommore » a recent measurement of the thermal {sup 95}Mo(n,{gamma}){sup 96}Mo reaction with the two-step-cascade method. The reported results strongly suggest that the extreme statistical model works very well in the mass region near A=100.« less
Version 2.0 Visual Sample Plan (VSP): UXO Module Code Description and Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Richard O.; Wilson, John E.; O'Brien, Robert F.
2003-05-06
The Pacific Northwest National Laboratory (PNNL) is developing statistical methods for determining the amount of geophysical surveys conducted along transects (swaths) that are needed to achieve specified levels of confidence of finding target areas (TAs) of anomalous readings and possibly unexploded ordnance (UXO) at closed, transferring and transferred (CTT) Department of Defense (DoD) ranges and other sites. The statistical methods developed by PNNL have been coded into the UXO module of the Visual Sample Plan (VSP) software code that is being developed by PNNL with support from the DoD, the U.S. Department of Energy (DOE, and the U.S. Environmental Protectionmore » Agency (EPA). (The VSP software and VSP Users Guide (Hassig et al, 2002) may be downloaded from http://dqo.pnl.gov/vsp.) This report describes and documents the statistical methods developed and the calculations and verification testing that have been conducted to verify that VSPs implementation of these methods is correct and accurate.« less
Williams, Mobolaji
2018-01-01
The field of disordered systems in statistical physics provides many simple models in which the competing influences of thermal and nonthermal disorder lead to new phases and nontrivial thermal behavior of order parameters. In this paper, we add a model to the subject by considering a disordered system where the state space consists of various orderings of a list. As in spin glasses, the disorder of such "permutation glasses" arises from a parameter in the Hamiltonian being drawn from a distribution of possible values, thus allowing nominally "incorrect orderings" to have lower energies than "correct orderings" in the space of permutations. We analyze a Gaussian, uniform, and symmetric Bernoulli distribution of energy costs, and, by employing Jensen's inequality, derive a simple condition requiring the permutation glass to always transition to the correctly ordered state at a temperature lower than that of the nondisordered system, provided that this correctly ordered state is accessible. We in turn find that in order for the correctly ordered state to be accessible, the probability that an incorrectly ordered component is energetically favored must be less than the inverse of the number of components in the system. We show that all of these results are consistent with a replica symmetric ansatz of the system. We conclude by arguing that there is no distinct permutation glass phase for the simplest model considered here and by discussing how to extend the analysis to more complex Hamiltonians capable of novel phase behavior and replica symmetry breaking. Finally, we outline an apparent correspondence between the presented system and a discrete-energy-level fermion gas. In all, the investigation introduces a class of exactly soluble models into statistical mechanics and provides a fertile ground to investigate statistical models of disorder.
Sound transmission loss of composite sandwich panels
NASA Astrophysics Data System (ADS)
Zhou, Ran
Light composite sandwich panels are increasingly used in automobiles, ships and aircraft, because of the advantages they offer of high strength-to-weight ratios. However, the acoustical properties of these light and stiff structures can be less desirable than those of equivalent metal panels. These undesirable properties can lead to high interior noise levels. A number of researchers have studied the acoustical properties of honeycomb and foam sandwich panels. Not much work, however, has been carried out on foam-filled honeycomb sandwich panels. In this dissertation, governing equations for the forced vibration of asymmetric sandwich panels are developed. An analytical expression for modal densities of symmetric sandwich panels is derived from a sixth-order governing equation. A boundary element analysis model for the sound transmission loss of symmetric sandwich panels is proposed. Measurements of the modal density, total loss factor, radiation loss factor, and sound transmission loss of foam-filled honeycomb sandwich panels with different configurations and thicknesses are presented. Comparisons between the predicted sound transmission loss values obtained from wave impedance analysis, statistical energy analysis, boundary element analysis, and experimental values are presented. The wave impedance analysis model provides accurate predictions of sound transmission loss for the thin foam-filled honeycomb sandwich panels at frequencies above their first resonance frequencies. The predictions from the statistical energy analysis model are in better agreement with the experimental transmission loss values of the sandwich panels when the measured radiation loss factor values near coincidence are used instead of the theoretical values for single-layer panels. The proposed boundary element analysis model provides more accurate predictions of sound transmission loss for the thick foam-filled honeycomb sandwich panels than either the wave impedance analysis model or the statistical energy analysis model.
Effects of estradiol and FSH on leptin levels in women with suppressed pituitary.
Geber, Selmo; Brandão, Augusto H F; Sampaio, Marcos
2012-06-15
Female fertility depends on adequate nutrition and energy reserves, suggesting a correlation between the metabolic reserve and reproductive capacity. Leptin regulates body weight and energy homeostasis. The aim of this study was to investigate whether estradiol or FSH alone has a direct effect on the production of leptin. A total of 64 patients submitted to controlled ovarian hyperstimulation with recombinant FSH for assisted reproduction and 20 patients using estradiol valerate for endometrial preparation for oocyte donation treatment were included in the study. All patients used GnRH analogues before starting treatment to achieve pituitary suppression. Blood samples for hormonal measurements were collected before starting and after completing the respective treatments. Data were analyzed statistically by the chi-square test, Student's t-test and Pearson's correlation test. We observed an elevation of serum leptin levels secondary to the increase in estradiol, in the absence of influence of any other ovarian or pituitary hormone. The rising rate of leptin levels was higher in women treated with recombinant FSH, which also had higher levels of estradiol, than in those treated with estradiol valerate. This study demonstrates a correlation between serum levels of estradiol and leptin, suggesting that estradiol is an important regulator of leptin production and that its effects can be amplified by its association with FSH.
NASA Astrophysics Data System (ADS)
Kehres, Jan; Lyksborg, Mark; Olsen, Ulrik L.
2017-09-01
Energy dispersive X-ray diffraction (EDXRD) can be applied for identification of liquid threats in luggage scanning in security applications. To define the instrumental design, the framework for data reduction and analysis and test the performance of the threat detection in various scenarios, a flexible laboratory EDXRD test setup was build. A data set of overall 570 EDXRD spectra has been acquired for training and testing of threat identification algorithms. The EDXRD data was acquired with limited count statistics and at multiple detector angles and merged after correction and normalization. Initial testing of the threat detection algorithms with this data set indicate the feasibility of detection levels of > 95 % true positive with < 6 % false positive alarms.
Dark energy models through nonextensive Tsallis' statistics
NASA Astrophysics Data System (ADS)
Barboza, Edésio M.; Nunes, Rafael da C.; Abreu, Everton M. C.; Ananias Neto, Jorge
2015-10-01
The accelerated expansion of the Universe is one of the greatest challenges of modern physics. One candidate to explain this phenomenon is a new field called dark energy. In this work we have used the Tsallis nonextensive statistical formulation of the Friedmann equation to explore the Barboza-Alcaniz and Chevalier-Polarski-Linder parametric dark energy models and the Wang-Meng and Dalal vacuum decay models. After that, we have discussed the observational tests and the constraints concerning the Tsallis nonextensive parameter. Finally, we have described the dark energy physics through the role of the q-parameter.
2017-01-01
The Monthly Energy Review (MER) is the U.S. Energy Information Administration's primary report of recent energy statistics. Included are total energy production, consumption, and trade; energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international petroleum; carbon dioxide emissions; and data unit conversions.
Brandt, Adam R; Sun, Yuchi; Bharadwaj, Sharad; Livingston, David; Tan, Eugene; Gordon, Deborah
2015-01-01
Studies of the energy return on investment (EROI) for oil production generally rely on aggregated statistics for large regions or countries. In order to better understand the drivers of the energy productivity of oil production, we use a novel approach that applies a detailed field-level engineering model of oil and gas production to estimate energy requirements of drilling, producing, processing, and transporting crude oil. We examine 40 global oilfields, utilizing detailed data for each field from hundreds of technical and scientific data sources. Resulting net energy return (NER) ratios for studied oil fields range from ≈2 to ≈100 MJ crude oil produced per MJ of total fuels consumed. External energy return (EER) ratios, which compare energy produced to energy consumed from external sources, exceed 1000:1 for fields that are largely self-sufficient. The lowest energy returns are found to come from thermally-enhanced oil recovery technologies. Results are generally insensitive to reasonable ranges of assumptions explored in sensitivity analysis. Fields with very large associated gas production are sensitive to assumptions about surface fluids processing due to the shifts in energy consumed under different gas treatment configurations. This model does not currently include energy invested in building oilfield capital equipment (e.g., drilling rigs), nor does it include other indirect energy uses such as labor or services.
Brandt, Adam R.; Sun, Yuchi; Bharadwaj, Sharad; Livingston, David; Tan, Eugene; Gordon, Deborah
2015-01-01
Studies of the energy return on investment (EROI) for oil production generally rely on aggregated statistics for large regions or countries. In order to better understand the drivers of the energy productivity of oil production, we use a novel approach that applies a detailed field-level engineering model of oil and gas production to estimate energy requirements of drilling, producing, processing, and transporting crude oil. We examine 40 global oilfields, utilizing detailed data for each field from hundreds of technical and scientific data sources. Resulting net energy return (NER) ratios for studied oil fields range from ≈2 to ≈100 MJ crude oil produced per MJ of total fuels consumed. External energy return (EER) ratios, which compare energy produced to energy consumed from external sources, exceed 1000:1 for fields that are largely self-sufficient. The lowest energy returns are found to come from thermally-enhanced oil recovery technologies. Results are generally insensitive to reasonable ranges of assumptions explored in sensitivity analysis. Fields with very large associated gas production are sensitive to assumptions about surface fluids processing due to the shifts in energy consumed under different gas treatment configurations. This model does not currently include energy invested in building oilfield capital equipment (e.g., drilling rigs), nor does it include other indirect energy uses such as labor or services. PMID:26695068
Structures and Statistics of Citation Networks
2011-05-01
the citations among them. The papers are in the field of high- energy physics, and they were added to the online library between 1992-2003. Each paper... energy , physics:astrophysics, mathematics, computer science, statistics and many others. The value of the setSpec field can be any of these. However...the value of the categories field might contain multiple set names listed. For instance, a paper can primarily be considered as a high- energy physics
Statistical aspects of the Klein-Gordon oscillator in the frame work of GUP
NASA Astrophysics Data System (ADS)
Khosropour, B.
2018-01-01
Investigation in perturbative string theory and quantum gravity suggest that there is a measurable minimal length in nature. In this work, according to generalized uncertainty principle, we study the statistical characteristics of Klein-Gordon Oscillator (KLO). The modified energy spectrum of the KLO are obtained. The generalized thermodynamical quantities of the KLO such as partition function, mean energy and entropy are calculated by using the modified energy spectrum.
Solar Energetic Particle Spectra
NASA Astrophysics Data System (ADS)
Ryan, J. M.; Boezio, M.; Bravar, U.; Bruno, A.; Christian, E. R.; de Nolfo, G. A.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Sparvoli, R.; Stochaj, S.
2017-12-01
We report updated event-integrated spectra from several SEP events measured with PAMELA. The measurements were made from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high latitudes. Spectra have been assembled from these high-latitude measurements. The field of view of PAMELA is small and during the high-latitude passes it scans a wide range of asymptotic directions as the spacecraft orbits. Correcting for data gaps, solid angle effects and improved background corrections, we have compiled event-integrated intensity spectra for twenty-eight SEP events. Where statistics permit, the spectra exhibit power law shapes in energy with a high-energy exponential roll over. The events analyzed include two genuine ground level enhancements (GLE). In those cases the roll-over energy lies above the neutron monitor threshold ( 1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events, i.e., all roll over in an exponential fashion with rapidly decreasing intensity at high energies.
Search for Ultra-High-Energy Neutrinos with AMANDA-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Bernardini, E.; Adams, J.
2008-03-10
A search for diffuse neutrinos with energies in excess of 10{sup 5} GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 10{sup 7} GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra-high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrinomore » flux of E{sup 2}{phi}{sub 90%CL} < 2.7 x 10{sup -7} GeV cm{sup -2} s{sup -1} sr{sup -1} valid over the energy range of 2 x 10{sup 5} to 10{sup 9} GeV. A number of models that predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level.« less
Search for Ultra High-Energy Neutrinos with AMANDA-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
IceCube Collaboration; Klein, Spencer; Ackermann, M.
2007-11-19
A search for diffuse neutrinos with energies in excess of 10{sup 5} GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 10{sup 7} GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavormore » neutrino flux of E{sup 2} {Phi}{sub 90%CL} < 2.7 x 10{sup -7} GeV cm{sup -2}s{sup -1} sr{sup -1} valid over the energy range of 2 x 10{sup 5} GeV to 10{sup 9} GeV. A number of models which predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level.« less
System level modeling and component level control of fuel cells
NASA Astrophysics Data System (ADS)
Xue, Xingjian
This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the optimal design of tubular SOFC. With the system-level dynamic model as a basis, a framework for the robust, online monitoring of PEM fuel cell is developed in the dissertation. The monitoring scheme employs the Hotelling T2 based statistical scheme to handle the measurement noise and system uncertainties and identifies the fault conditions through a series of self-checking and conformal testing. A statistical sampling strategy is also utilized to improve the computation efficiency. Fuel/gas flow control is the fundamental operation for fuel cell energy systems. In the final part of the dissertation, a high-precision and robust tracking control scheme using piezoelectric actuator circuit with direct hysteresis compensation is developed. The key characteristic of the developed control algorithm includes the nonlinear continuous control action with the adaptive boundary layer strategy.
NASA Astrophysics Data System (ADS)
Kassem, M.; Soize, C.; Gagliardini, L.
2009-06-01
In this paper, an energy-density field approach applied to the vibroacoustic analysis of complex industrial structures in the low- and medium-frequency ranges is presented. This approach uses a statistical computational model. The analyzed system consists of an automotive vehicle structure coupled with its internal acoustic cavity. The objective of this paper is to make use of the statistical properties of the frequency response functions of the vibroacoustic system observed from previous experimental and numerical work. The frequency response functions are expressed in terms of a dimensionless matrix which is estimated using the proposed energy approach. Using this dimensionless matrix, a simplified vibroacoustic model is proposed.
Atomic Data and Spectral Line Intensities for Ni XV
NASA Technical Reports Server (NTRS)
Landi, E.; Bhatia, A. K.
2011-01-01
Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XV.Weinclude in the calculations the 9 lowest configurations, corresponding to 126 fine structure levels: 3s23p2, 3s3p3, 3s23p3d, 3p4, 3s3p23d, and 3s2 3p4l with l =, s, p, d, f. Collision strengths are calculated at five incident energies for all transitions: 7.8, 18.5, 33.5, 53.5, and 80.2 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.004 and 0.28 Ry depending on the levels involved. Calculations have been carried out using the Flexible Atomic Code and the distorted-wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates calculated in the present work, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14)/cu cm range and at an electron temperature of log T(sub e)(K) = 6.4, corresponding to the maximum abundance of Ni XV. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database.
The Past, Present, and Future of Statistical Cosmology
NASA Astrophysics Data System (ADS)
Hirata, Christopher M.
2016-01-01
We now have a standard paradigm for the evolution of the Universe and the distribution of matter on large scales. This model has many seemingly strange aspects: an inflationary period, during which quantum mechanical fluctuations set the initial conditions for the formation of galaxies and clusters; dark matter and dark energy, which make up most of the Universe, and yet have no established relation to the more familiar visible particles and fields; and -- if dark energy is a cosmological constant -- a future in which the Universe enters a permanent exponential expansion phase, with a limiting finite "temperature" and observable volume. Over the past 15 years, a diverse array of observations have continued to support the simplest version of this model at ever-improving levels of precision (although not without a few anomalies). I will describe this development from the perspective of one participant, with an emphasis on a subset of the observational probes -- the cosmic microwave background, galaxy surveys, and gravitational lensing. I will emphasize in particular the demands of tight control of systematic errors in both the observations and the theoretical predictions, and the impact this has had on the organization of research programs in cosmology.I will then turn to the the future of statistical cosmology. In the near term, a major goal in dark energy is to use new facilities to go beyond fitting a small number of parameters, and map out the full history of the expansion of the Universe and the growth of structures. I will describe some of these ambitious efforts to probe the effects of dark energy in the distant past, when it was a subdominant component of the cosmic energy budget. Finally, I will speculate on what cosmology as a field might look like in 25 years.
Irradiation planning for automated treatment of psoriasis with a high-power excimer laser
NASA Astrophysics Data System (ADS)
Klämpfl, Florian; Schmidt, Michael; Hagenah, Hinnerk; Görtler, Andreas; Wolfsgruber, Frank; Lampalzer, Ralf; Kaudewitz, Peter
2006-02-01
American and European statistics have shown that 1-2 per cent of the human population is affected by the skin disease psoriasis. Recent research reports promising treatment results when irradiating skin areas affected by psoriasis with high powered excimer lasers with a wavelength of 308 nm. In order to apply the necessary high energy dose without hurting healthy parts of the skin new approaches regarding the system technology must be considered. The aim of the current research project is the development of a sensor-based, automated laser treatment system for psoriasis. In this paper we present the algorithms used to cope with the diffculties of irradiating irregularly shaped areas on curved surfaces with a predefined energy level using a pulsed laser. Patients prefer the treatment to take as little time as possible. This also helps to reduce costs. Thus the distribution of laser pulses on the surface to achieve the given energy level on every point of the surface has to be calculated within a limited time frame. The remainder of the paper will describe in detail an efficient method to plan and optimize the laser pulse distribution. Towards the end, some first results will be presented.
Sapsis, Themistoklis P; Majda, Andrew J
2013-08-20
A framework for low-order predictive statistical modeling and uncertainty quantification in turbulent dynamical systems is developed here. These reduced-order, modified quasilinear Gaussian (ROMQG) algorithms apply to turbulent dynamical systems in which there is significant linear instability or linear nonnormal dynamics in the unperturbed system and energy-conserving nonlinear interactions that transfer energy from the unstable modes to the stable modes where dissipation occurs, resulting in a statistical steady state; such turbulent dynamical systems are ubiquitous in geophysical and engineering turbulence. The ROMQG method involves constructing a low-order, nonlinear, dynamical system for the mean and covariance statistics in the reduced subspace that has the unperturbed statistics as a stable fixed point and optimally incorporates the indirect effect of non-Gaussian third-order statistics for the unperturbed system in a systematic calibration stage. This calibration procedure is achieved through information involving only the mean and covariance statistics for the unperturbed equilibrium. The performance of the ROMQG algorithm is assessed on two stringent test cases: the 40-mode Lorenz 96 model mimicking midlatitude atmospheric turbulence and two-layer baroclinic models for high-latitude ocean turbulence with over 125,000 degrees of freedom. In the Lorenz 96 model, the ROMQG algorithm with just a single mode captures the transient response to random or deterministic forcing. For the baroclinic ocean turbulence models, the inexpensive ROMQG algorithm with 252 modes, less than 0.2% of the total, captures the nonlinear response of the energy, the heat flux, and even the one-dimensional energy and heat flux spectra.
STATISTICAL CHARACTERISTICS OF ELEMENTAL ABUNDANCE RATIOS: OBSERVATIONS FROM THE ACE SPACECRAFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, L.-L.; Zhang, H.
We statistically analyze the elemental galactic cosmic ray (GCR) composition measurements of elements 5 ≤ Z ≤ 28 within the energy range 30–500 MeV/nucleon from the CRIS instrument on board the ACE spacecraft in orbit about the L1 Lagrange point during the period from 1997 to 2014. Similarly to the last unusual solar minimum, the elevated elemental intensities of all heavy nuclei during the current weak solar maximum in 2014 are ∼40% higher than that of the previous solar maximum in 2002, which has been attributed to the weak modulation associated with low solar activity levels during the ongoing weakestmore » solar maximum since the dawn of space age. In addition, the abundance ratios of heavy nuclei with respect to elemental oxygen are generally independent of kinetic energy per nucleon in the energy region 60–200 MeV/nuc, in good agreement with previous experiments. Furthermore, the abundance ratios of most relatively abundant species, except carbon, exhibit considerable solar-cycle variation, which are obviously positively correlated with the sunspot numbers with about one-year time lag. We also find that the percentage variation of abundance ratios for most elements are approximately identical. These preliminary results provide valuable insights into the characteristics of elemental heavy nuclei composition and place new and significant constraints on future GCR heavy nuclei propagation and modulation models.« less
Statistical Relations for Yield Degradation in Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Woo, K. M.; Betti, R.; Patel, D.; Gopalaswamy, V.
2017-10-01
In inertial confinement fusion (ICF), the yield-over-clean (YOC) is a quantity commonly used to assess the performance of an implosion with respect to the degradation caused by asymmetries. The YOC also determines the Lawson parameter used to identify the onset of ignition and the level of alpha heating in ICF implosions. In this work, we show that the YOC is a unique function of the residual kinetic energy in the compressed shell (with respect to the 1-D case) regardless of the asymmetry spectrum. This result is derived using a simple model of the deceleration phase as well as through an extensive set of 3-D radiation-hydrodynamics simulations using the code DEC3D. The latter has been recently upgraded to include a 3-D spherical moving mesh, the HYPRE solver for 3-D radiation transport and piecewise-parabolic method for robust shock-capturing hydrodynamic simulations. DEC3D is used to build a synthetic single-mode database to study the behavior of yield degradation caused by Rayleigh-Taylor instabilities in the deceleration phase. The relation between YOC and residual kinetic energy is compared with the result in an adiabatic implosion model. The statistical expression of YOC is also applied to the ignition criterion in the presence of multidimensional nonuniformities. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu
2015-09-01
Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Empirical Low Energy Ion Flux Model for the Terrestrial Magnetosphere
NASA Technical Reports Server (NTRS)
Blackwell, William C.; Minow, Joseph I.; Diekmann, Anne M.
2007-01-01
This document includes a viewgraph presentation plus the full paper presented at the conference. The Living With a Star Ion Flux Model (IFM) is a radiation environment risk mitigation tool that provides magnetospheric ion flux values for varying geomagnetic disturbance levels in the geospace environment. IFM incorporates flux observations from the Polar and Geotail spacecraft in a single statistical flux model. IFM is an engineering environment model which predicts the proton flux not only in the magnetosphere, but also in the solar wind and magnetosheath phenomenological regions. This paper describes the ion flux databases that allows for IFM output to be correlated with the geomagnetic activity level, as represented by the Kp index.
Pedzikiewicz, J; Sobiech, K A
1995-01-01
Nine men were examined during a three-week training requiring much physical effort. They were given nutrient, "LIVEX", enriched with iron. Hematological parameters as well as concentration of erythrocyte ATP and 2,3-DPG were determined before and after the experiment. Hematological parameters were determined using standard methods while Boehringer's test (Germany) was used for determining ATP and 2,3-DPG. The level of reticular cells was statistically higher after the experiment, and the increase in ATP and 2,3-DPG concentration was insignificant. A positive adaptation of energy metabolism after exogenous iron administration during physical effort was discussed.
NASA Astrophysics Data System (ADS)
Golik, V. V.; Zemenkova, M. Yu; Seroshtanov, I. V.; Begalko, Z. V.
2018-05-01
The paper presents the results of the analysis of statistical indicators of energy and resource consumption in oil and gas transportation by the example of one of the regions of Russia. The article analyzes engineering characteristics of compressor station drives. Official statistical bulletins on the fuel and energy resources of the region in the pipeline oil and gas transportation system were used as the initial data.
2005-04-01
the radiography gauging. In addition to the Statistical Energy Analysis (SEA) measurement a small exciter table (BK4810) and impedance head (BK 8000... Statistical Energy Analysis ; 7th Conf. on Vehicle System Dynamics, Identification and Anomalies (VSDIA2000), 6-8 Nov. 2000 Budapest, Proc. pp. 491-493... Energy Analysis (SEA) and Ultrasound Test. (UT) were concurrently applied. These methods collect accessory information on the objects under inspection
Andersen, L Frost; Tomten, H; Haggarty, P; Løvø, A; Hustvedt, B-E
2003-02-01
The validation of dietary assessment methods is critical in the evaluation of the relation between dietary intake and health. The aim of this study was to assess the validity of a food frequency questionnaire by comparing energy intake with energy expenditure measured with the doubly labelled water method. Total energy expenditure was measured with the doubly labelled water (DLW) method during a 10 day period. Furthermore, the subjects filled in the food frequency questionnaire about 18-35 days after the DLW phase of the study was completed. Twenty-one healthy, non-pregnant females volunteered to participate in the study; only 17 subjects completed the study. The group energy intake was on average 10% lower than the energy expenditure, but the difference was not statistically significant. However, there was a wide range in reporting accuracy: seven subjects were identified as acceptable reporters, eight as under-reporters and two were identified as over-reporters. The width of the 95% confidence limits of agreement in a Bland and Altman plot for energy intake and energy expenditure varied from -5 to 3 MJ. The data showed that there was substantial variability in the accuracy of the food frequency questionnaire at the individual level. Furthermore, the results showed that the questionnaire was more accurate for groups than individuals.
Critical behavior in earthquake energy dissipation
NASA Astrophysics Data System (ADS)
Wanliss, James; Muñoz, Víctor; Pastén, Denisse; Toledo, Benjamín; Valdivia, Juan Alejandro
2017-09-01
We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29° S and 35.5° S, and longitudes 69.501° W and 73.944° W (in the Chilean central zone). Our work compares the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earthquake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probability distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such as major earthquakes, as opposed to smaller activations which contribute less significantly though they have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy dissipation mechanisms are essentially "scale-free", displaying statistical and dynamical self-similarity. Our results provide some evidence that earthquake radiated energy and directed percolation belong to a similar universality class.
Statistical analysis of early failures in electromigration
NASA Astrophysics Data System (ADS)
Gall, M.; Capasso, C.; Jawarani, D.; Hernandez, R.; Kawasaki, H.; Ho, P. S.
2001-07-01
The detection of early failures in electromigration (EM) and the complicated statistical nature of this important reliability phenomenon have been difficult issues to treat in the past. A satisfactory experimental approach for the detection and the statistical analysis of early failures has not yet been established. This is mainly due to the rare occurrence of early failures and difficulties in testing of large sample populations. Furthermore, experimental data on the EM behavior as a function of varying number of failure links are scarce. In this study, a technique utilizing large interconnect arrays in conjunction with the well-known Wheatstone Bridge is presented. Three types of structures with a varying number of Ti/TiN/Al(Cu)/TiN-based interconnects were used, starting from a small unit of five lines in parallel. A serial arrangement of this unit enabled testing of interconnect arrays encompassing 480 possible failure links. In addition, a Wheatstone Bridge-type wiring using four large arrays in each device enabled simultaneous testing of 1920 interconnects. In conjunction with a statistical deconvolution to the single interconnect level, the results indicate that the electromigration failure mechanism studied here follows perfect lognormal behavior down to the four sigma level. The statistical deconvolution procedure is described in detail. Over a temperature range from 155 to 200 °C, a total of more than 75 000 interconnects were tested. None of the samples have shown an indication of early, or alternate, failure mechanisms. The activation energy of the EM mechanism studied here, namely the Cu incubation time, was determined to be Q=1.08±0.05 eV. We surmise that interface diffusion of Cu along the Al(Cu) sidewalls and along the top and bottom refractory layers, coupled with grain boundary diffusion within the interconnects, constitutes the Cu incubation mechanism.
Superstatistical Energy Distributions of an Ion in an Ultracold Buffer Gas
NASA Astrophysics Data System (ADS)
Rouse, I.; Willitsch, S.
2017-04-01
An ion in a radio frequency ion trap interacting with a buffer gas of ultracold neutral atoms is a driven dynamical system which has been found to develop a nonthermal energy distribution with a power law tail. The exact analytical form of this distribution is unknown, but has often been represented empirically by q -exponential (Tsallis) functions. Based on the concepts of superstatistics, we introduce a framework for the statistical mechanics of an ion trapped in an rf field subject to collisions with a buffer gas. We derive analytic ion secular energy distributions from first principles both neglecting and including the effects of the thermal energy of the buffer gas. For a buffer gas with a finite temperature, we prove that Tsallis statistics emerges from the combination of a constant heating term and multiplicative energy fluctuations. We show that the resulting distributions essentially depend on experimentally controllable parameters paving the way for an accurate control of the statistical properties of ion-atom hybrid systems.
NASA Astrophysics Data System (ADS)
Valente, Pedro C.; da Silva, Carlos B.; Pinho, Fernando T.
2013-11-01
We report a numerical study of statistically steady and decaying turbulence of FENE-P fluids for varying polymer relaxation times ranging from the Kolmogorov dissipation time-scale to the eddy turnover time. The total turbulent kinetic energy dissipation is shown to increase with the polymer relaxation time in both steady and decaying turbulence, implying a ``drag increase.'' If the total power input in the statistically steady case is kept equal in the Newtonian and the viscoelastic simulations the increase in the turbulence-polymer energy transfer naturally lead to the previously reported depletion of the Newtonian, but not the overall, kinetic energy dissipation. The modifications to the nonlinear energy cascade with varying Deborah/Weissenberg numbers are quantified and their origins investigated. The authors acknowledge the financial support from Fundação para a Ciência e a Tecnologia under grant PTDC/EME-MFE/113589/2009.
Using Bayes' theorem for free energy calculations
NASA Astrophysics Data System (ADS)
Rogers, David M.
Statistical mechanics is fundamentally based on calculating the probabilities of molecular-scale events. Although Bayes' theorem has generally been recognized as providing key guiding principals for setup and analysis of statistical experiments [83], classical frequentist models still predominate in the world of computational experimentation. As a starting point for widespread application of Bayesian methods in statistical mechanics, we investigate the central quantity of free energies from this perspective. This dissertation thus reviews the basics of Bayes' view of probability theory, and the maximum entropy formulation of statistical mechanics before providing examples of its application to several advanced research areas. We first apply Bayes' theorem to a multinomial counting problem in order to determine inner shell and hard sphere solvation free energy components of Quasi-Chemical Theory [140]. We proceed to consider the general problem of free energy calculations from samples of interaction energy distributions. From there, we turn to spline-based estimation of the potential of mean force [142], and empirical modeling of observed dynamics using integrator matching. The results of this research are expected to advance the state of the art in coarse-graining methods, as they allow a systematic connection from high-resolution (atomic) to low-resolution (coarse) structure and dynamics. In total, our work on these problems constitutes a critical starting point for further application of Bayes' theorem in all areas of statistical mechanics. It is hoped that the understanding so gained will allow for improvements in comparisons between theory and experiment.
Face-iris multimodal biometric scheme based on feature level fusion
NASA Astrophysics Data System (ADS)
Huo, Guang; Liu, Yuanning; Zhu, Xiaodong; Dong, Hongxing; He, Fei
2015-11-01
Unlike score level fusion, feature level fusion demands all the features extracted from unimodal traits with high distinguishability, as well as homogeneity and compatibility, which is difficult to achieve. Therefore, most multimodal biometric research focuses on score level fusion, whereas few investigate feature level fusion. We propose a face-iris recognition method based on feature level fusion. We build a special two-dimensional-Gabor filter bank to extract local texture features from face and iris images, and then transform them by histogram statistics into an energy-orientation variance histogram feature with lower dimensions and higher distinguishability. Finally, through a fusion-recognition strategy based on principal components analysis and support vector machine (FRSPS), feature level fusion and one-to-n identification are accomplished. The experimental results demonstrate that this method can not only effectively extract face and iris features but also provide higher recognition accuracy. Compared with some state-of-the-art fusion methods, the proposed method has a significant performance advantage.
Long-term results from an urban CO2 monitoring network
NASA Astrophysics Data System (ADS)
Ehleringer, J.; Pataki, D. E.; Lai, C.; Schauer, A.
2009-12-01
High-precision atmospheric CO2 has been monitored in several locations through the Salt Lake Valley metropolitan region of northern Utah over the past nine years. Many parts of this semi-arid grassland have transitioned into dense urban forests, supported totally by extensive homeowner irrigation practices. Diurnal changes in fossil-fuel energy uses and photosynthesis-respiration processes have resulted in significant spatial and temporal variations in atmospheric CO2. Here we present an analysis of the long-term patterns and trends in midday and nighttime CO2 values for four sites: a midvalley residential neighborhood, a midvalley non-residential neighborhood, an undeveloped valley-edge area transitioning from agriculture, and a developed valley-edge neighborhood with mixed residential and commercial activities; the neighborhoods span an elevation gradient within the valley of ~100 m. Patterns in CO2 concentrations among neighborhoods were examined relative to each other and relative to the NOAA background station, a desert site in Wendover, Utah. Four specific analyses are considered. First, we present a statistical analysis of weekday versus weekend CO2 patterns in the winter, spring, summer, and fall seasons. Second, we present a statistical analysis of the influences of high-pressure systems on the elevation of atmospheric CO2 above background levels in the winter versus summer seasons. Third, we present an analysis of the nighttime CO2 values through the year, relating these patterns to observed changes in the carbon isotope ratios of atmospheric CO2. Lastly, we examine the rate of increase in midday urban CO2 over time relative to regional and global CO2 averages to determine if the amplification of urban energy use is statistically detectable from atmospheric trace gas measurements over the past decade. These results show two important patterns. First, there is a strong weekday-weekend effect of vehicle emissions in contrast to the temperature-dependent effect of home-heating emissions on diurnal/seasonal cycles. Second, there appears to be photosynthetic drawdown of atmospheric CO2 levels during the growing season, but at a cost of significant water expenditure. To the degree that atmospheric CO2 and particulate matter levels are correlated, these results have implications for both climate and health issues.
La Camera, Richard J.; Westenburg, Craig L.
1994-01-01
Tne U.S. Geological Survey. in support of the U.S. Department of Energy, Yucca Mountain Site- Characterization Project, collects, compiles, and summarizes water-resource data in the Yucca Mountain region. The data are collected to document the historical and current condition of ground-water resources, to detect and document changes in those resources through time, and to allow assessments of ground-water resources during investigations to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground- water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Fiat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies or as part of other programs are included to further indicate variations through time. A statistical summary of ground-water levels and median annual ground-water withdrawals in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of a11 water-level altitudes for selected baseline periods and for calendar year 1992. Data on ground-water quality are compared to established, proposed, or tentative primary and secondary drinking-water standards, and measures which exceeded those standards are listed for 18 sites. Detected organic compounds for which established, proposed, or tentative drinking-water standards exist also are listed.
Transportation energy data book
NASA Astrophysics Data System (ADS)
Davis, S. C.; Hu, P. S.
1991-01-01
The Transportation Energy Data Book: Edition 11 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes - highway, air, water, rail, pipeline - is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, Federal standards, fuel economies, and household data. Chapter 4 is a new addition to the data book series, containing information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 5, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.
Modulatory frequency of lasers in connection to laser beam therapeutic effect
NASA Astrophysics Data System (ADS)
Kucerova, Hana; Bartova, Jirina; Himmlova, Lucia; Dostalova, Tatjana; Mazanek, Jiri
1998-04-01
The subject of this work follows changes of the sIgA and albumin levels in the saliva of 48 patients treated after the extraction of their lower molars with either diode or He-Ne biostimulatory laser, using different modulatory frequencies (5 Hz, 292 Hz, 9000 Hz). The results were compared to the sIgA and albumin levels in the saliva of the control, i.e. not- treated group. For the tests radial immunodiffusion (RID) method was used (commercial RID kit of the Binding Site, Birmingham, Great Britain). Appropriately chosen laser beam modulatory frequency should influence the increase in the sIgA and albumin levels against the base level. In our study, this hypothesis was confirmed in the group treated with the frequency of 292 Hz and 9000 Hz (both diode GaAIAs, 670 nm, red, 20 mW, energy density 1.5 Jcm2) on albumin levels and 9000 Hz on sIgA levels. The changes of the levels of the watched markers versus the control group were at this frequencies (292 Hz and 9000 Hz) statistically significant. At the others used frequencies (5 Hz diode laser and 5 Hz He-Ne laser) the changes of the levels of the watched markers versus control group were statistically insignificant. The aim of this study was to contribute to the evaluation of specific modulatory frequencies (5 Hz, 292 Hz, 9000 Hz) for therapeutical use in a given pathological case of the oral cavity. We can conclude that using frequency 9000 Hz had best immunomodulatory effect.
Efficacy and safety of Chlorella supplementation in adults with chronic hepatitis C virus infection
Azocar, Jose; Diaz, Arley
2013-01-01
AIM: To evaluate the safety and efficacy of Chlorella in 18 patients chronically infected with hepatitis C virus (HCV) genotype 1. METHODS: Eighteen adults with chronic infection by HCV genotype 1 received daily oral supplementation of Chlorella for 12 wk. Changes in the RNA levels of HCV, as well as those of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were evaluated following this treatment period. Paired t tests were conducted to compare the means of the different variables at the beginning and end of the study. Side effects and quality of life aspects were also compared between weeks 0 and 12 of the study period. RESULTS: A majority 84.61% of the patients had a significant decrease in their ALT levels from week 0 to week 12. Evaluation of side effects showed that Chlorella was well tolerated. Quality of life assessment showed that 76.9 of the participants reported an improvement in their energy levels and 46.1% reported an improvement in their perception of general health. Although 69.23% also showed a decrease in their AST levels, this was not statistically significant. Most patients that exhibited an improvement in their ALT and AST levels also showed a tendency toward a decreased HCV viral load. The HCV RNA levels showed a decrease in 69.23% of the patients, which along with changes in AST/ALT ratios from week 0 to week 12, these results were not statistically significant. CONCLUSION: Chlorella supplementation was well tolerated in patients with chronic HCV and associated with a significant decrease in ALT liver enzyme levels. PMID:23467073
Fischer, S L; Watts, P B; Jensen, R L; Nelson, J
2004-12-01
The needs of physical activity can be seen through the lack of numbers participating in regular physical activity as well as the increase in prevalence of certain diseases such as Type II diabetes (especially in children), cardiovascular diseases, and some cancers. With the increase in preventable diseases that are caused in part by a sedentary lifestyle, a closer look needs to be taken into the role of family interaction as a means of increasing physical activity for both adults and children. Because of the many benefits of physical activity in relation to health, a family approach to achieving recommended levels of physical activity may be quite applicable. Forty volunteers were recruited from the community (20 subjects and 20 children). The volunteers played 2 games: soccer and nerfball. Data was collected over 10 minutes (5 min per game). Expired air analysis was used to calculate energy expenditure and metabolic equivalents (METs). Descriptive statistics were calculated along with a regression analysis to determine differences between the 2 games, and an ACOVA to determine any significant effects of age, child age, gender, and physical activity level on the results. For both games, average heart rate measured approximately 88%max; average METs measured approximately 6, average energy expenditure measured approximately 40 kcal. S: This study showed that adults can achieve recommended physical activity levels through these specific activities if sustained for approximately 20 min.
NASA Astrophysics Data System (ADS)
Deperas-Standylo, Joanna; Lee, Ryonfa; Nasonova, Elena; Ritter, Sylvia; Gudowska-Nowak, Ewa; Kac, M.; Smoluchowski, M.
Differences in the track structure of high LET (Linear Energy Transfer) particles are clearly visible on chromosomal level, in particular in the number of lesions produced by an ion traversal through a cell nucleus and in the distribution of aberrations among the cells. In the present study we focus on the effects of low energy C-and Cr-ions (<10 MeV/u) in comparison with high energy C-ions (90 MeV/u). For the experiments human lymphocytes were exposed to 9.5 MeV/u C-ions, 4.1 MeV/u Cr-ions or 90 MeV/u C-ions with LET values of 175 keV/µm, 3160 keV/µm and 29 keV/µm, respectively. Chromosome aberrations were measured at several post-irradiation sampling times (48, 60, 72 and 84h) in first cycle metaphases following Giemsa-staining. For 90 MeV/u C-ions, where the track radius is larger than the cell nucleus, the distribution of aberrations did not change significantly with sampling time and has been well described by Poisson statistics. In contrast, for low energy C-ions, where the track radius is smaller than the cell nucleus, distribution of aberration strongly deviates from uni-modal and displays two peaks representative for subpopulations of non-hit and hit cells, respectively. Following this pattern, also damage-dependent cell cycle delay was observed. At 48 h after irradiation a high number of undamaged and probably unhit cells was found to reach mitosis. This number of undamaged cells decreased further with sampling time, while the frequencies of cells carrying aberrations (1-11 per cell) were increasing. All distributions were found to conform a compound Poisson (Neyman-type A) statistics which allows estimating the average number of particle traversals through a cell nucleus and the average number of aberrations induced by one particle traversal. Similar response has also been observed at 48h after Cr-ion exposure. In this case, however, non-aberrant cells have been found to dominate in the population even at later sampling times and a low number of heavily damaged cells up to 24 aberrations have been detected. Accordingly, the distribution of aberrations in cells collected at >48 h could not be then described by a standard Neyman statistics. Obtained results suggest that most cells hit by more than one Cr-ion do not reach mitosis. This observation was confirmed by parallel measurements showing that Cr-ion exposure produces a high fraction of apoptotic cells.
An Analysis Methodology for the Gamma-ray Large Area Space Telescope
NASA Technical Reports Server (NTRS)
Morris, Robin D.; Cohen-Tanugi, Johann
2004-01-01
The Large Area Telescope (LAT) instrument on the Gamma Ray Large Area Space Telescope (GLAST) has been designed to detect high-energy gamma rays and determine their direction of incidence and energy. We propose a reconstruction algorithm based on recent advances in statistical methodology. This method, alternative to the standard event analysis inherited from high energy collider physics experiments, incorporates more accurately the physical processes occurring in the detector, and makes full use of the statistical information available. It could thus provide a better estimate of the direction and energy of the primary photon.
Solar Energetic Particle Studies with PAMELA
NASA Astrophysics Data System (ADS)
Christian, E. R.; Bravar, U.; de Nolfo, G. A.; Ryan, J. M.; Stochaj, S.
2011-12-01
Understanding the origin of the high-energy solar energetic particles (SEPs) is a challanging problem due to the limited information provided by ground-level enhancements (GLEs) and the large energy gap between GLEs and the low-energy in-situ SEPs. These challenges are addressed for the first time with observations from the The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument, successfully launched in 2006 and expected to remain operational until at least the beginning of 2012. PAMELA measures energetic particles in the same energy range as ground-based neutron monitors but also extends to lower energies covered by statistically precise in-situ observations. The near-polar orbit of PAMELA translates to low rigidity cutoffs and thus extends the sensitivity to low-energy particles as low as ~20 MeV. It thus bridges an important gap between low energy in-situ observations and ground-based Ground Level Enhancements (GLE) observations, making it possible to consider the relationship in origin of these two populations. Composition also plays a key role in determining SEP origin (low corona and chromosphere vs. the high corona and solar wind). PAMELA is sensitive for the first time to the composition of the high-energy component of SEPs, measuring the charge (up to Z=6) and atomic number of the detected particles, and identifying and measuring positrons and neutrons-an unprecedented array of data channels that we can bring to bear on the origin of high-energy SEPs. The presence of secondaries, such as neutrons and positrons, could indicate a low coronal origin of these particles. Velocity dispersion of different species and over a wide energy range can be used to determine energetic particle release times at the Sun. We present results for several recent solar flares, registering both proton and helium enhancements in PAMELA. Together with multi-wavelength imaging and in-situ observations of a variety of species, we discuss PAMELA results and possible interpretations for the origins of the high-energy component of SEPs.
Cetinkunar, Suleyman; Tokgoz, Serhat; Bilgin, Bulent Caglar; Erdem, Hasan; Aktimur, Recep; Can, Serpil; Erol, Huseyin Serkan; Isgoren, Atilla; Sozen, Selim; Polat, Yilmaz
2015-01-01
Aim: Silymarin from Silybum marianum was found to reduce liver injury. The aim of the present study was to investigate the effects of silymarin on hepatic regeneration in partially hepatectomized rats. Methods: Thirty Wistar-Albino rats were divided into 3 groups of 10 animals as sham, control and experimental groups. In the sham group (n=10) abdominal incision was closed after laparotomy. In the control group (n=10), the rats underwent 70% hepatectomy after laparotomy. In the experimental group (n=10) after partial 70% hepatectomy, silymarin (200 mg/kg/d) were given to rats for 10 days. Rats in three groups were sacrificed on 10 days. Aspartate (AST) and alanine transaminase (ALT), gamma glutamyl transferase (GGT), ALP, LDH and total bilirubin levels were measured using intracardiac blood samples. Tissue malondialdehyde (MDA) and tissue glutathion (GSH) and Superoxide dismutase (SOD) levels were measured. To reveal the increase in the mass of the remnant liver tissue in the control and experimental groups relative weight of the liver was calculated. Histopathological analysis of the liver was performed using a semi-quantitative scoring system. Results: A statistically significant difference among three groups was not shown for AST and ALT levels. A statistically significant difference was found between the groups as for total bilirubin and gamma glutamyl transferase levels. Increases in relative liver weights were seen with time in Groups 2 and 3. A statistically significant difference was not found for tissue malondialdehyde, Glutathion and Superoxide dismutase levels between hepatectomy and hepatectomy + silymarin groups. On liver tissue sections of the rats in the hepatectomy + silymarin group, increased regeneration and lipid peroxidation were observed accompanied by decreased antioxidant response. Conclusion: It has been observed that silymarin with many established functions such as antiproliferative, anti-inflammatory and energy antioxidant effects, does not contributed to proliferative regeneration of the liver-which has very important metabolic functions -after partial hepatectomy; instead it will decrease serum levels of transaminases. PMID:25932204
Proton Resonance Spectroscopy in CALCIUM-40.
NASA Astrophysics Data System (ADS)
Warthen, Barry Joseph
1987-09-01
The differential cross sections for the ^{39}K(p,p_{ rm o})^{39}K and ^{39}K(p,alpha_ {rm o})^{36}Ar reactions have been measured for E_{ rm p} = 1.90 to 4.02 MeV at laboratory angles theta = 90^ circ, 108^circ, 150^circ and 165^ circ. Data were taken with the Triangle Universities Nuclear Laboratory (TUNL) KN Van de Graaff accelerator and the associated high resolution system. The targets consisted of 1-2 mug/cm^2 of potassium carbonate (K_2CO _3), enriched to 99.97% ^{39}K, evaporated onto gold coated carbon backings. Excitation functions were measured in proton energy steps varying from 100 to 400 eV. The energy region studied corresponds to an excitation energy range in the ^{40}Ca nucleus of E_{rm x} = 10.2 to 12.3 MeV. A multi-level multi-channel R-matrix based computer code was used to fit the experimental excitation functions. Resonance parameters obtained include resonance energy, spin, parity, partial widths, and channel spin and orbital angular momentum mixing ratios. Of the 248 resonances observed in the proton channel, 148 were also observed in the alpha channel. A fit to the observed level density yielded a nuclear temperature of 1.5 MeV. The data were compared with predictions of statistical theories of energy levels for both level spacing and reduced width distributions. The alpha reduced widths agree with the Porter-Thomas distribution and suggest that only 5-10% of the states with alpha widths were not observed. The summed strength in each of the alpha channels represents a significant fraction of the Wigner limit for these channels. The proton channels, on the other hand, generally have much smaller fractions. The two proton s-wave strength functions are equal and thus show no evidence for spin-exchange forces in the nucleon-nucleus interaction.
Diestelkamp, Wiebke S; Krane, Carissa M; Pinnell, Margaret F
2011-05-20
Energy-based surgical scalpels are designed to efficiently transect and seal blood vessels using thermal energy to promote protein denaturation and coagulation. Assessment and design improvement of ultrasonic scalpel performance relies on both in vivo and ex vivo testing. The objective of this work was to design and implement a robust, experimental test matrix with randomization restrictions and predictive statistical power, which allowed for identification of those experimental variables that may affect the quality of the seal obtained ex vivo. The design of the experiment included three factors: temperature (two levels); the type of solution used to perfuse the artery during transection (three types); and artery type (two types) resulting in a total of twelve possible treatment combinations. Burst pressures of porcine carotid and renal arteries sealed ex vivo were assigned as the response variable. The experimental test matrix was designed and carried out as a split-plot experiment in order to assess the contributions of several variables and their interactions while accounting for randomization restrictions present in the experimental setup. The statistical software package SAS was utilized and PROC MIXED was used to account for the randomization restrictions in the split-plot design. The combination of temperature, solution, and vessel type had a statistically significant impact on seal quality. The design and implementation of a split-plot experimental test-matrix provided a mechanism for addressing the existing technical randomization restrictions of ex vivo ultrasonic scalpel performance testing, while preserving the ability to examine the potential effects of independent factors or variables. This method for generating the experimental design and the statistical analyses of the resulting data are adaptable to a wide variety of experimental problems involving large-scale tissue-based studies of medical or experimental device efficacy and performance.
Thuesen, Mathias Aaen; McGlashan, Julian; Sadolin, Cathrine
2017-09-01
This study aims to study the categorization Curbing from the pedagogical method Complete Vocal Technique as a reduced metallic mode compared with the full metallic modes Overdrive and Edge by means of audio perception, laryngostroboscopic imaging, acoustics, long-term average spectrum (LTAS), and electroglottography (EGG). Twenty singers were recorded singing sustained vowels in a restrained character known as Curbing. Two studies were performed: (1) laryngostroboscopic examination using a videonasoendoscopic camera system and the Laryngostrobe program; and (2) simultaneous recording of EGG and acoustic signals using Speech Studio. Images were analyzed based on consensus agreement. Statistical analysis of acoustic, LTAS, and EGG parameters was undertaken using Student paired t tests. The reduced metallic singing mode Curbing has an identifiable laryngeal gesture. Curbing has a more open setting than Overdrive and Edge, with high visibility of the vocal folds, and the false folds giving a rectangular appearance. LTAS showed statistically significant differences between Curbing and the full metallic modes, with less energy across all spectra, yielding a high second and a low third harmonic. Statistically significant differences were identified on Max Qx, Average Qx, Shimmer+, Shimmer-, Shimmer dB, normalized noise energy, cepstral peak prominence, harmonics-to-noise ratio, and mean sound pressure level (P ≤ 0.05). Curbing as a voice production strategy is statistically significantly different from Overdrive and Edge, and can be categorized based on audio perception. This study demonstrates consistently different laryngeal gestures between Curbing and Overdrive and Edge, with high corresponding differences in LTAS, EGG and acoustic measures. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Entropy in statistical energy analysis.
Le Bot, Alain
2009-03-01
In this paper, the second principle of thermodynamics is discussed in the framework of statistical energy analysis (SEA). It is shown that the "vibrational entropy" and the "vibrational temperature" of sub-systems only depend on the vibrational energy and the number of resonant modes. A SEA system can be described as a thermodynamic system slightly out of equilibrium. In steady-state condition, the entropy exchanged with exterior by sources and dissipation exactly balances the production of entropy by irreversible processes at interface between SEA sub-systems.
Entropy Growth in the Early Universe and Confirmation of Initial Big Bang Conditions
NASA Astrophysics Data System (ADS)
Beckwith, Andrew
2009-09-01
This paper shows how increased entropy values from an initially low big bang level can be measured experimentally by counting relic gravitons. Furthermore the physical mechanism of this entropy increase is explained via analogies with early-universe phase transitions. The role of Jack Ng's (2007, 2008a, 2008b) revised infinite quantum statistics in the physics of gravitational wave detection is acknowledged. Ng's infinite quantum statistics can be used to show that ΔS~ΔNgravitons is a startmg point to the increasing net universe cosmological entropy. Finally, in a nod to similarities AS ZPE analysis, it is important to note that the resulting ΔS~ΔNgravitons ≠ 1088, that in fact it is much lower, allowing for evaluating initial graviton production as an emergent field phenomena, which may be similar to how ZPE states can be used to extract energy from a vacuum if entropy is not maximized. The rapid increase in entropy so alluded to without near sudden increases to 1088 may be enough to allow successful modeling of relic graviton production for entropy in a manner similar to ZPE energy extraction from a vacuum state.
Asymptotic modal analysis and statistical energy analysis
NASA Technical Reports Server (NTRS)
Dowell, Earl H.
1988-01-01
Statistical Energy Analysis (SEA) is defined by considering the asymptotic limit of Classical Modal Analysis, an approach called Asymptotic Modal Analysis (AMA). The general approach is described for both structural and acoustical systems. The theoretical foundation is presented for structural systems, and experimental verification is presented for a structural plate responding to a random force. Work accomplished subsequent to the grant initiation focusses on the acoustic response of an interior cavity (i.e., an aircraft or spacecraft fuselage) with a portion of the wall vibrating in a large number of structural modes. First results were presented at the ASME Winter Annual Meeting in December, 1987, and accepted for publication in the Journal of Vibration, Acoustics, Stress and Reliability in Design. It is shown that asymptotically as the number of acoustic modes excited becomes large, the pressure level in the cavity becomes uniform except at the cavity boundaries. However, the mean square pressure at the cavity corner, edge and wall is, respectively, 8, 4, and 2 times the value in the cavity interior. Also it is shown that when the portion of the wall which is vibrating is near a cavity corner or edge, the response is significantly higher.
Statistical Hierarchy of Varying Speed of Light Cosmologies
NASA Astrophysics Data System (ADS)
Salzano, Vincenzo; Da¸browski, Mariusz P.
2017-12-01
Many varying speed of light (VSL) theories have been developed recently. Here we address the issue of their observational verification in a fully comprehensive way. By using the most updated cosmological probes, we test three different candidates for a VSL theory (Barrow & Magueijo, Avelino & Martins, and Moffat). We consider many different Ansätze for both the functional form of c(z) and the dark energy dynamics. We compare these results using a reliable statistical tool such as the Bayesian evidence. We find that the present cosmological data are perfectly compatible with any of these VSL scenarios, but for the Moffat model there is a higher Bayesian evidence ratio in favor of VSL rather than the c = constant ΛCDM scenario. Moreover, in such a scenario, the VSL signal can help to strengthen constraints on the spatial curvature (with indication toward an open universe), to clarify some properties of dark energy (exclusion of a cosmological constant at 2σ level), and is also falsifiable in the near future owing to peculiar issues that differentiate this model from the standard one. Finally, we apply an information prior and entropy prior in order to put physical constraints on the models, though still in favor Moffat’s proposal.
NASA Astrophysics Data System (ADS)
Müller, A.; Borovik, A.; Huber, K.; Schippers, S.; Fursa, D. V.; Bray, I.
2018-02-01
Fine details of the cross section for electron-impact ionization of metastable two-electron Li+(1 s 2 s S31) ions are scrutinized by both experiment and theory. Beyond direct knockoff ionization, indirect ionization mechanisms proceeding via formation of intermediate double-K-vacancy (hollow) states either in a Li+ ion or in a neutral lithium atom and subsequent emission of one or two electrons, respectively, can contribute to the net production of Li2 + ions. The partial cross sections for such contributions are less than 4% of the total single-ionization cross section. The characteristic steps, resonances, and interference phenomena in the indirect ionization contribution are measured with an experimental energy spread of less than 0.9 eV and with a statistical relative uncertainty of the order of 1.7%, requiring a level of statistical uncertainty in the total single-ionization cross section of better than 0.05%. The measurements are accompanied by convergent-close-coupling calculations performed on a fine energy grid. Theory and experiment are in remarkable agreement concerning the fine details of the ionization cross section. Comparison with previous R-matrix results is less favorable.
1987-07-01
of vibrational power flow had been considered by experiments in the area of statistical energy analysis (SEA)8, 9 using other measurement ipproaches...Constants in Statistical Energy Analysis of Structure," J. Acoust. Soc. Am. Vol. 52, No. 2, pp. 516-524 (1973) 9. Fahy, F. and R. Pierri, "Application of
Coupling strength assumption in statistical energy analysis
Lafont, T.; Totaro, N.
2017-01-01
This paper is a discussion of the hypothesis of weak coupling in statistical energy analysis (SEA). The examples of coupled oscillators and statistical ensembles of coupled plates excited by broadband random forces are discussed. In each case, a reference calculation is compared with the SEA calculation. First, it is shown that the main SEA relation, the coupling power proportionality, is always valid for two oscillators irrespective of the coupling strength. But the case of three subsystems, consisting of oscillators or ensembles of plates, indicates that the coupling power proportionality fails when the coupling is strong. Strong coupling leads to non-zero indirect coupling loss factors and, sometimes, even to a reversal of the energy flow direction from low to high vibrational temperature. PMID:28484335
An adaptive multi-feature segmentation model for infrared image
NASA Astrophysics Data System (ADS)
Zhang, Tingting; Han, Jin; Zhang, Yi; Bai, Lianfa
2016-04-01
Active contour models (ACM) have been extensively applied to image segmentation, conventional region-based active contour models only utilize global or local single feature information to minimize the energy functional to drive the contour evolution. Considering the limitations of original ACMs, an adaptive multi-feature segmentation model is proposed to handle infrared images with blurred boundaries and low contrast. In the proposed model, several essential local statistic features are introduced to construct a multi-feature signed pressure function (MFSPF). In addition, we draw upon the adaptive weight coefficient to modify the level set formulation, which is formed by integrating MFSPF with local statistic features and signed pressure function with global information. Experimental results demonstrate that the proposed method can make up for the inadequacy of the original method and get desirable results in segmenting infrared images.
Identification of structural damage using wavelet-based data classification
NASA Astrophysics Data System (ADS)
Koh, Bong-Hwan; Jeong, Min-Joong; Jung, Uk
2008-03-01
Predicted time-history responses from a finite-element (FE) model provide a baseline map where damage locations are clustered and classified by extracted damage-sensitive wavelet coefficients such as vertical energy threshold (VET) positions having large silhouette statistics. Likewise, the measured data from damaged structure are also decomposed and rearranged according to the most dominant positions of wavelet coefficients. Having projected the coefficients to the baseline map, the true localization of damage can be identified by investigating the level of closeness between the measurement and predictions. The statistical confidence of baseline map improves as the number of prediction cases increases. The simulation results of damage detection in a truss structure show that the approach proposed in this study can be successfully applied for locating structural damage even in the presence of a considerable amount of process and measurement noise.
NASA Astrophysics Data System (ADS)
Qian, Hong; Kjelstrup, Signe; Kolomeisky, Anatoly B.; Bedeaux, Dick
2016-04-01
Nonequilibrium thermodynamics (NET) investigates processes in systems out of global equilibrium. On a mesoscopic level, it provides a statistical dynamic description of various complex phenomena such as chemical reactions, ion transport, diffusion, thermochemical, thermomechanical and mechanochemical fluxes. In the present review, we introduce a mesoscopic stochastic formulation of NET by analyzing entropy production in several simple examples. The fundamental role of nonequilibrium steady-state cycle kinetics is emphasized. The statistical mechanics of Onsager’s reciprocal relations in this context is elucidated. Chemomechanical, thermomechanical, and enzyme-catalyzed thermochemical energy transduction processes are discussed. It is argued that mesoscopic stochastic NET in phase space provides a rigorous mathematical basis of fundamental concepts needed for understanding complex processes in chemistry, physics and biology. This theory is also relevant for nanoscale technological advances.
Irisin and Myostatin Levels in Patients with Graves' Disease.
Yalcin, Mehmet Muhittin; Akturk, Mujde; Tohma, Yusuf; Cerit, Ethem Turgay; Altinova, Alev Eroglu; Arslan, Emre; Yetkin, Ilhan; Toruner, Fusun Balos
2016-08-01
Skeletal muscle system, which is one of the primary targets for thyroid hormones, has an important role in energy metabolism. Some myokines such as irisin and myostatin have considerable effects on energy metabolism in addition to the musculoskeletal system. Our aim was to investigate circulating irisin and myostatin levels in patients with Graves' Disease (GD). This study included 41 patients with GD who were in overt hyperthyroid status and 44 healthy subjects. Serum irisin levels were higher in patients with hyperthyroidism than in control group (p = 0.003). However, there was no statistical difference in myostatin levels between groups (p = 0.21). Irisin levels were positively correlated with free triiodothyronine (FT3), free thyroxine (FT4), thyrotropin receptor antibody (TRAb) (p = 0.03, p = 0.02, p = 0.02, respectively) and negatively correlated with thyroid-stimulating hormone (TSH) (p = 0.006) in both groups. In multiple regression analysis, the presence of GD was the only significant factor associated with serum irisin levels (β = 0.29, p = 0.01). Myostatin levels were positively correlated with age, body mass index (BMI), FT4, HOMA-IR (p = 0.001, p = 0.04, p = 0.003, p = 0.03, respectively) and negatively correlated with TSH (p = 0.01). Multiple regression analysis also revealed that age and FT4 were the significant factors associated with circulating myostatin levels (β = 0.27, p = 0.02; β = 0.22, p = 0.04, respectively). Our results suggest that increased irisin levels might contribute to altered energy metabolism in hyperthyroidism. Further studies to determine whether myostatin is affected due to hyperthyroidism are needed. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.
Park, Jungkap; Saitou, Kazuhiro
2014-09-18
Multibody potentials accounting for cooperative effects of molecular interactions have shown better accuracy than typical pairwise potentials. The main challenge in the development of such potentials is to find relevant structural features that characterize the tightly folded proteins. Also, the side-chains of residues adopt several specific, staggered conformations, known as rotamers within protein structures. Different molecular conformations result in different dipole moments and induce charge reorientations. However, until now modeling of the rotameric state of residues had not been incorporated into the development of multibody potentials for modeling non-bonded interactions in protein structures. In this study, we develop a new multibody statistical potential which can account for the influence of rotameric states on the specificity of atomic interactions. In this potential, named "rotamer-dependent atomic statistical potential" (ROTAS), the interaction between two atoms is specified by not only the distance and relative orientation but also by two state parameters concerning the rotameric state of the residues to which the interacting atoms belong. It was clearly found that the rotameric state is correlated to the specificity of atomic interactions. Such rotamer-dependencies are not limited to specific type or certain range of interactions. The performance of ROTAS was tested using 13 sets of decoys and was compared to those of existing atomic-level statistical potentials which incorporate orientation-dependent energy terms. The results show that ROTAS performs better than other competing potentials not only in native structure recognition, but also in best model selection and correlation coefficients between energy and model quality. A new multibody statistical potential, ROTAS accounting for the influence of rotameric states on the specificity of atomic interactions was developed and tested on decoy sets. The results show that ROTAS has improved ability to recognize native structure from decoy models compared to other potentials. The effectiveness of ROTAS may provide insightful information for the development of many applications which require accurate side-chain modeling such as protein design, mutation analysis, and docking simulation.
Mingxing Zhu; Wanzhang Yang; Samuel, Oluwarotimi Williams; Yun Xiang; Jianping Huang; Haiqing Zou; Guanglin Li
2016-08-01
Pharyngeal phase is a central hub of swallowing in which food bolus pass through from the oral cavity to the esophageal. Proper understanding of the muscular activities in the pharyngeal phase is useful for assessing swallowing function and the occurrence of dysphagia in humans. In this study, high-density (HD) surface electromyography (sEMG) was used to study the muscular activities in the pharyngeal phase during swallowing tasks involving three healthy male subjects. The root mean square (RMS) of the HD sEMG data was computed by using a series of segmented windows as myoelectrical energy. And the RMS of each window covering all channels (16×5) formed a matrix. During the pharyngeal phase of swallowing, three of the matrixes were chosen and normalized to obtain the HD energy maps and the statistical parameter. The maps across different viscosity levels offered the energy distribution which showed the muscular activities of the left and right sides of the front neck muscles. In addition, the normalized average RMS (NARE) across different viscosity levels revealed a left-right significant correlation (r=0.868±0.629, p<;0.01) quantitatively, while it showed even stronger correlation when swallowing water. This pilot study suggests that HD sEMG would be a potential tool to evaluate muscular activities in pharyngeal phase during normal swallowing. Also, it might provide useful information for dysphagia diagnosis.
A statistical physics viewpoint on the dynamics of the bouncing ball
NASA Astrophysics Data System (ADS)
Chastaing, Jean-Yonnel; Géminard, Jean-Christophe; Bertin, Eric
2016-06-01
We compute, in a statistical physics perspective, the dynamics of a bouncing ball maintained in a chaotic regime thanks to collisions with a plate experiencing an aperiodic vibration. We analyze in details the energy exchanges between the bead and the vibrating plate, and show that the coupling between the bead and the plate can be modeled in terms of both a dissipative process and an injection mechanism by an energy reservoir. An analysis of the injection statistics in terms of fluctuation relation is also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippincott, W. H.; McKinsey, D. N.; Nikkel, J. A.
Using a single-phase liquid argon detector with a signal yield of 4.85 photoelectrons per keV of electronic-equivalent recoil energy (keVee), we measure the scintillation time dependence of both electronic and nuclear recoils in liquid argon down to 5 keVee. We develop two methods of pulse shape discrimination to distinguish between electronic and nuclear recoils. Using one of these methods, we measure a background- and statistics-limited level of electronic recoil contamination to be 7.6x10{sup -7} between 52 and 110 keV of nuclear recoil energy (keVr) for a nuclear recoil acceptance of 50% with no nuclear recoil-like events above 62 keVr. Finally,more » we develop a maximum likelihood method of pulse shape discrimination based on the measured scintillation time dependence.« less
Suggestion for the detection of TiO2 in interstellar medium
NASA Astrophysics Data System (ADS)
Kumar Sharma, Mohit; Sharma, Monika; Chandra, Suresh
2017-09-01
Since all the carbon in oxygen-rich stars is locked into carbon monoxide (CO), how the formation of dust takes place in their environment is a matter of great interest. Being a refractory species, the titanium dioxide (TiO2) is thought to play important role in the dust-condensation sequence. The TiO2 is detected in the environment of red supergiant VY Canis Majoris through sub-millimeter wavelengths. All these lines are between the levels lying at high energies for which large kinetic temperature in the region is required. Based on the detailed study of transfer of radiation, we propose for the identification of TiO2 through its transitions between low lying levels. Using spectroscopic data, we have calculated energies of 100 rotational levels of para-TiO2 (up to 82 cm^{-1}) and the Einstein A-coefficients for radiative transitions between the levels. These Einstein A-coefficients along with the scaled values of collisional rate coefficients, we have solved a set of 100 statistical equilibrium equations coupled with 436 equations of radiative transfer. We have found 9 transitions having anomalous absorption and 6 transitions showing emission features. These transitions may help in identification of TiO2 in a cosmic object.
NASA Astrophysics Data System (ADS)
Bouhaj, M.; von Estorff, O.; Peiffer, A.
2017-09-01
In the application of Statistical Energy Analysis "SEA" to complex assembled structures, a purely predictive model often exhibits errors. These errors are mainly due to a lack of accurate modelling of the power transmission mechanism described through the Coupling Loss Factors (CLF). Experimental SEA (ESEA) is practically used by the automotive and aerospace industry to verify and update the model or to derive the CLFs for use in an SEA predictive model when analytical estimates cannot be made. This work is particularly motivated by the lack of procedures that allow an estimate to be made of the variance and confidence intervals of the statistical quantities when using the ESEA technique. The aim of this paper is to introduce procedures enabling a statistical description of measured power input, vibration energies and the derived SEA parameters. Particular emphasis is placed on the identification of structural CLFs of complex built-up structures comparing different methods. By adopting a Stochastic Energy Model (SEM), the ensemble average in ESEA is also addressed. For this purpose, expressions are obtained to randomly perturb the energy matrix elements and generate individual samples for the Monte Carlo (MC) technique applied to derive the ensemble averaged CLF. From results of ESEA tests conducted on an aircraft fuselage section, the SEM approach provides a better performance of estimated CLFs compared to classical matrix inversion methods. The expected range of CLF values and the synthesized energy are used as quality criteria of the matrix inversion, allowing to assess critical SEA subsystems, which might require a more refined statistical description of the excitation and the response fields. Moreover, the impact of the variance of the normalized vibration energy on uncertainty of the derived CLFs is outlined.
Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H
2014-11-20
Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.
Benzy, V K; Jasmin, E A; Koshy, Rachel Cherian; Amal, Frank; Indiradevi, K P
2018-01-01
The advancement in medical research and intelligent modeling techniques has lead to the developments in anaesthesia management. The present study is targeted to estimate the depth of anaesthesia using cognitive signal processing and intelligent modeling techniques. The neurophysiological signal that reflects cognitive state of anaesthetic drugs is the electroencephalogram signal. The information available on electroencephalogram signals during anaesthesia are drawn by extracting relative wave energy features from the anaesthetic electroencephalogram signals. Discrete wavelet transform is used to decomposes the electroencephalogram signals into four levels and then relative wave energy is computed from approximate and detail coefficients of sub-band signals. Relative wave energy is extracted to find out the degree of importance of different electroencephalogram frequency bands associated with different anaesthetic phases awake, induction, maintenance and recovery. The Kruskal-Wallis statistical test is applied on the relative wave energy features to check the discriminating capability of relative wave energy features as awake, light anaesthesia, moderate anaesthesia and deep anaesthesia. A novel depth of anaesthesia index is generated by implementing a Adaptive neuro-fuzzy inference system based fuzzy c-means clustering algorithm which uses relative wave energy features as inputs. Finally, the generated depth of anaesthesia index is compared with a commercially available depth of anaesthesia monitor Bispectral index.
Analysis of surface sputtering on a quantum statistical basis
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.
1975-01-01
Surface sputtering is explained theoretically by means of a 3-body sputtering mechanism involving the ion and two surface atoms of the solid. By means of quantum-statistical mechanics, a formula for the sputtering ratio S(E) is derived from first principles. The theoretical sputtering rate S(E) was found experimentally to be proportional to the square of the difference between incident ion energy and the threshold energy for sputtering of surface atoms at low ion energies. Extrapolation of the theoretical sputtering formula to larger ion energies indicates that S(E) reaches a saturation value and finally decreases at high ion energies. The theoretical sputtering ratios S(E) for wolfram, tantalum, and molybdenum are compared with the corresponding experimental sputtering curves in the low energy region from threshold sputtering energy to 120 eV above the respective threshold energy. Theory and experiment are shown to be in good agreement.
Anxiety and Attitude of Graduate Students in On-Campus vs. Online Statistics Courses
ERIC Educational Resources Information Center
DeVaney, Thomas A.
2010-01-01
This study compared levels of statistics anxiety and attitude toward statistics for graduate students in on-campus and online statistics courses. The Survey of Attitudes Toward Statistics and three subscales of the Statistics Anxiety Rating Scale were administered at the beginning and end of graduate level educational statistic courses.…
Electric power quarterly, October-December 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-04-19
The EPQ presents monthly summaries of electric utility statistics at the national, divisional, state, company, and plant levels on the following subjects: quantity of fuel, cost of fuel, quality of fuel, net generation, fuel consumption, and fuel stocks. In addition, the EPQ presents a quarterly summary of reported major disturbances and unusual occurrences. These data are collected on the Form IE-417R. Every electric utility engaged in the generation, transmission, or distribution of electric energy must file a report with DOE if it experiences a major power system emergency.
QED theory of multiphoton transitions in atoms and ions
NASA Astrophysics Data System (ADS)
Zalialiutdinov, Timur A.; Solovyev, Dmitry A.; Labzowsky, Leonti N.; Plunien, Günter
2018-03-01
This review surveys the quantum theory of electromagnetic radiation for atomic systems. In particular, a review of current theoretical studies of multiphoton processes in one and two-electron atoms and highly charged ions is provided. Grounded on the quantum electrodynamics description the multiphoton transitions in presence of cascades, spin-statistic behaviour of equivalent photons and influence of external electric fields on multiphoton in atoms and anti-atoms are discussed. Finally, the nonresonant corrections which define the validity of the concept of the excited state energy levels are introduced.
Discrete disorder models for many-body localization
NASA Astrophysics Data System (ADS)
Janarek, Jakub; Delande, Dominique; Zakrzewski, Jakub
2018-04-01
Using exact diagonalization technique, we investigate the many-body localization phenomenon in the 1D Heisenberg chain comparing several disorder models. In particular we consider a family of discrete distributions of disorder strengths and compare the results with the standard uniform distribution. Both statistical properties of energy levels and the long time nonergodic behavior are discussed. The results for different discrete distributions are essentially identical to those obtained for the continuous distribution, provided the disorder strength is rescaled by the standard deviation of the random distribution. Only for the binary distribution significant deviations are observed.
Pulse pileup statistics for energy discriminating photon counting x-ray detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Adam S.; Harrison, Daniel; Lobastov, Vladimir
Purpose: Energy discriminating photon counting x-ray detectors can be subject to a wide range of flux rates if applied in clinical settings. Even when the incident rate is a small fraction of the detector's maximum periodic rate N{sub 0}, pulse pileup leads to count rate losses and spectral distortion. Although the deterministic effects can be corrected, the detrimental effect of pileup on image noise is not well understood and may limit the performance of photon counting systems. Therefore, the authors devise a method to determine the detector count statistics and imaging performance. Methods: The detector count statistics are derived analyticallymore » for an idealized pileup model with delta pulses of a nonparalyzable detector. These statistics are then used to compute the performance (e.g., contrast-to-noise ratio) for both single material and material decomposition contrast detection tasks via the Cramer-Rao lower bound (CRLB) as a function of the detector input count rate. With more realistic unipolar and bipolar pulse pileup models of a nonparalyzable detector, the imaging task performance is determined by Monte Carlo simulations and also approximated by a multinomial method based solely on the mean detected output spectrum. Photon counting performance at different count rates is compared with ideal energy integration, which is unaffected by count rate. Results: The authors found that an ideal photon counting detector with perfect energy resolution outperforms energy integration for our contrast detection tasks, but when the input count rate exceeds 20%N{sub 0}, many of these benefits disappear. The benefit with iodine contrast falls rapidly with increased count rate while water contrast is not as sensitive to count rates. The performance with a delta pulse model is overoptimistic when compared to the more realistic bipolar pulse model. The multinomial approximation predicts imaging performance very close to the prediction from Monte Carlo simulations. The monoenergetic image with maximum contrast-to-noise ratio from dual energy imaging with ideal photon counting is only slightly better than with dual kVp energy integration, and with a bipolar pulse model, energy integration outperforms photon counting for this particular metric because of the count rate losses. However, the material resolving capability of photon counting can be superior to energy integration with dual kVp even in the presence of pileup because of the energy information available to photon counting. Conclusions: A computationally efficient multinomial approximation of the count statistics that is based on the mean output spectrum can accurately predict imaging performance. This enables photon counting system designers to directly relate the effect of pileup to its impact on imaging statistics and how to best take advantage of the benefits of energy discriminating photon counting detectors, such as material separation with spectral imaging.« less
Dark Energy Survey Year 1 Results: Multi-Probe Methodology and Simulated Likelihood Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krause, E.; et al.
We present the methodology for and detail the implementation of the Dark Energy Survey (DES) 3x2pt DES Year 1 (Y1) analysis, which combines configuration-space two-point statistics from three different cosmological probes: cosmic shear, galaxy-galaxy lensing, and galaxy clustering, using data from the first year of DES observations. We have developed two independent modeling pipelines and describe the code validation process. We derive expressions for analytical real-space multi-probe covariances, and describe their validation with numerical simulations. We stress-test the inference pipelines in simulated likelihood analyses that vary 6-7 cosmology parameters plus 20 nuisance parameters and precisely resemble the analysis to be presented in the DES 3x2pt analysis paper, using a variety of simulated input data vectors with varying assumptions. We find that any disagreement between pipelines leads to changes in assigned likelihoodmore » $$\\Delta \\chi^2 \\le 0.045$$ with respect to the statistical error of the DES Y1 data vector. We also find that angular binning and survey mask do not impact our analytic covariance at a significant level. We determine lower bounds on scales used for analysis of galaxy clustering (8 Mpc$$~h^{-1}$$) and galaxy-galaxy lensing (12 Mpc$$~h^{-1}$$) such that the impact of modeling uncertainties in the non-linear regime is well below statistical errors, and show that our analysis choices are robust against a variety of systematics. These tests demonstrate that we have a robust analysis pipeline that yields unbiased cosmological parameter inferences for the flagship 3x2pt DES Y1 analysis. We emphasize that the level of independent code development and subsequent code comparison as demonstrated in this paper is necessary to produce credible constraints from increasingly complex multi-probe analyses of current data.« less
Jewell, Mark L; Baxter, Richard A; Cox, Sue Ellen; Donofrio, Lisa M; Dover, Jeffrey S; Glogau, Richard G; Kane, Michael A; Weiss, Robert A; Martin, Patrick; Schlessinger, Joel
2011-07-01
High-intensity focused ultrasound presents a noninvasive approach to body sculpting for nonobese patients. The purpose of this study was to evaluate the safety and effectiveness of a high-intensity focused ultrasound device for sculpting of the abdomen and flanks. Adults (aged 18 to 65 years) with subcutaneous abdominal fat greater than or equal to 2.5 cm thick who met screening criteria were randomized to receive high-intensity focused ultrasound treatment of the anterior abdomen and flanks at energy levels (a total of three passes each) of 47 J/cm (141 J/cm total), 59 J/cm (177 J/cm), or 0 J/cm (no energy applied, sham control). The primary endpoint was change from baseline waist circumference at the iliac crest level at posttreatment week 12. Subjective aesthetic assessments included the Global Aesthetic Improvement Scale and a patient satisfaction questionnaire. Safety assessments included adverse events, laboratory values, and physical examinations. For the primary endpoint, in the intent-to-treat population, statistical significance versus sham was achieved for the 59-J/cm (-2.44; p = 0.01) but not the 47-J/cm treatment group (-2.06 cm; p = 0.13). In a per-protocol population, statistical significance versus sham was achieved for both the 59-J/cm (-2.52 cm; p = 0.002) and the 47-J/cm treatment groups (-2.10 cm; p = 0.04). Investigator subjective measures of global aesthetic improvement and patient satisfaction also favored each active treatment versus sham. Adverse events included mild to moderate discomfort, bruising, and edema. Laboratory values and physical examinations were unremarkable. Treatment with this high-intensity focused ultrasound device reduced waist circumference and was generally well tolerated for noninvasive body sculpting. Reduction in waist circumference was statistically significant with both active treatments (per protocol). Therapeutic, II.(Figure is included in full-text article.).
Rondanelli, Mariangela; Opizzi, Annalisa; Perna, Simone; Faliva, Milena; Solerte, Sebastiano Bruno; Fioravanti, Marisa; Klersy, Catherine; Cava, Edda; Edda, Cava; Paolini, Maddalena; Maddalena, Paolini; Scavone, Luciano; Luciano, Scavone; Ceccarelli, Paola; Paola, Ceccarelli; Castellaneta, Emanuela; Emanuela, Castellaneta; Savina, Claudia; Claudia, Savina; Donini, Lorenzo Maria
2013-10-01
This randomized, double blind, placebo-controlled, 8 week trial assessed the efficacy on metabolic changes produced by a consumption of a combination of bioactive food ingredients (epigallocatechin gallate, capsaicins, piperine and L-carnitine) versus a placebo, as part of a therapeutic 'lifestyle change' diet, in 86 overweight subjects. Forty-one patients (2/14 F/M; age 43.7 ± 8.5; BMI 30.3 ± 3.5 kg/m(2)) were randomized to the supplemented group and 45 (29/16; age 40.7 ± 10.2; BMI 30.0 ± 2.7) to the control group. We observed that consumption of the dietary supplement was associated with a significantly greater decrease in insulin resistance, assessed by homostasis model assessment (p < 0.001), leptin/adiponectin ratio (p < 0.04), respiratory quotient (p < 0.008). LDL-cholesterol levels (p < 0.01). Moreover, statistically significant differences were recorded between the two groups in relation to urinary norepinephrine levels (p < 0.001). Leptin, ghrelin, C-reactive protein decreased and resting energy expenditure increased significantly in the supplemented group (p < 0.05, 0.03, 0.02 and 0,02 respectively), but not in the placebo group; adiponectin decreased significantly in the placebo group (0.001) but not in the supplemented group, although no statistical significance between the groups was elicited. BMI, fat mass (assessed by DXA) and vascular endothelial growth factor significantly decreased, whilst the resting energy expenditure/free fat mass significantly increased in both groups. In general, a greater change was recorded in the supplemented group compared to the placebo, although no statistically significant difference between the two groups was recorded. These results suggest that the combination of bioactive food ingredients studied might be useful for the treatment of obesity-related inflammatory metabolic dysfunctions.
Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector
NASA Astrophysics Data System (ADS)
Jeong, Meeyoung; Lee, Kyeong Beom; Kim, Kyeong Ja; Lee, Min-Kie; Han, Ju-Bong
2014-12-01
Odyssey, one of the NASA¡¯s Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of 40K, 232Th and 238U in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.
Energy efficient neural stimulation: coupling circuit design and membrane biophysics.
Foutz, Thomas J; Ackermann, D Michael; Kilgore, Kevin L; McIntyre, Cameron C
2012-01-01
The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.
White, John R; Padowski, Jeannie M; Zhong, Yili; Chen, Gang; Luo, Shaman; Lazarus, Philip; Layton, Matthew E; McPherson, Sterling
2016-01-01
There is a paucity of data describing the impact of type of beverage (coffee versus energy drink), different rates of consumption and different temperature of beverages on the pharmacokinetic disposition of caffeine. Additionally, there is concern that inordinately high levels of caffeine may result from the rapid consumption of cold energy drinks. The objective of this study was to compare the pharmacokinetics of caffeine under various drink temperature, rate of consumption and vehicle (coffee versus energy drink) conditions. Five caffeine (dose = 160 mg) conditions were evaluated in an open-label, group-randomized, crossover fashion. After the administration of each caffeine dose, 10 serial plasma samples were harvested. Caffeine concentration was measured via liquid chromatography-mass spectrometry (LC-MS), and those concentrations were assessed by non-compartmental pharmacokinetic analysis. The calculated mean pharmacokinetic parameters were analyzed statistically by one-way repeated measures analysis of variance (RM ANOVA). If differences were found, each group was compared to the other by all pair-wise multiple comparison. Twenty-four healthy subjects ranging in age from 18 to 30 completed the study. The mean caffeine concentration time profiles were similar with overlapping SDs at all measured time points. The ANOVA revealed significant differences in mean Cmax and Vd ss/F, but no pair-wise comparisons reached statistical significance. No other differences in pharmacokinetic parameters were found. The results of this study are consistent with previous caffeine pharmacokinetic studies and suggest that while rate of consumption, temperature of beverage and vehicle (coffee versus energy drink) may be associated with slightly different pharmacokinetic parameters, the overall impact of these variables is small. This study suggests that caffeine absorption and exposure from coffee and energy drink is similar irrespective of beverage temperature or rate of consumption.
White, John R.; Padowski, Jeannie M.; Zhong, Yili; Chen, Gang; Luo, Shaman; Lazarus, Philip; Layton, Matthew E.; McPherson, Sterling
2016-01-01
Abstract Context: There is a paucity of data describing the impact of type of beverage (coffee versus energy drink), different rates of consumption and different temperature of beverages on the pharmacokinetic disposition of caffeine. Additionally, there is concern that inordinately high levels of caffeine may result from the rapid consumption of cold energy drinks. Objective: The objective of this study was to compare the pharmacokinetics of caffeine under various drink temperature, rate of consumption and vehicle (coffee versus energy drink) conditions. Materials: Five caffeine (dose = 160 mg) conditions were evaluated in an open-label, group-randomized, crossover fashion. After the administration of each caffeine dose, 10 serial plasma samples were harvested. Caffeine concentration was measured via liquid chromatography–mass spectrometry (LC–MS), and those concentrations were assessed by non-compartmental pharmacokinetic analysis. The calculated mean pharmacokinetic parameters were analyzed statistically by one-way repeated measures analysis of variance (RM ANOVA). If differences were found, each group was compared to the other by all pair-wise multiple comparison. Results: Twenty-four healthy subjects ranging in age from 18 to 30 completed the study. The mean caffeine concentration time profiles were similar with overlapping SDs at all measured time points. The ANOVA revealed significant differences in mean C max and V d ss/F, but no pair-wise comparisons reached statistical significance. No other differences in pharmacokinetic parameters were found. Discussion: The results of this study are consistent with previous caffeine pharmacokinetic studies and suggest that while rate of consumption, temperature of beverage and vehicle (coffee versus energy drink) may be associated with slightly different pharmacokinetic parameters, the overall impact of these variables is small. Conclusion: This study suggests that caffeine absorption and exposure from coffee and energy drink is similar irrespective of beverage temperature or rate of consumption. PMID:27100333
Evaluation of surface topography of zirconia ceramic after Er:YAG laser etching.
Turp, Volkan; Akgungor, Gokhan; Sen, Deniz; Tuncelli, Betul
2014-10-01
The aim of this study is to evaluate the effect of Erbium: yttrium-aluminum-garnet (Er:YAG) laser with different pulse lengths on the surface roughness of zirconia ceramic and airborne particle abrasion. Er:YAG laser treatment is expected to be an alternative surface treatment method for zirconia ceramics; however, the parameters and success of the application are not clear. One hundred and forty zirconia discs (diameter, 10 mm; thickness, 1.2 mm) were prepared by a computer-aided design and computer-aided manufacturing (CAD/CAM) system according to the manufacturer's instructions. Specimens were divided into 14 groups (n=10). One group was left as polished control, one group was air-particle abraded with Al2O3 particles. For the laser treatment groups, laser irradiation was applied at three different pulse energy levels (100, 200, and 300 mJ) and for each energy level at four different pulse lengths; 50, 100, 300, and 600 μs. Surface roughness was evaluated with an optical profilometer and specimens were evaluated with scanning electron microscopy (SEM). Data was analyzed with one way ANOVA and Tukey multiple comparison tests (α=0.05). For the 100 and 200 mJ laser etching groups, 50 and 100 μs laser duration resulted in significantly higher surface roughness compared with air-particle abrasion (p<0.05). The difference among Ra values of 300 μs, 600 μs, and air-particle abrasion groups were not statistically significant (p>0.05). For the 300 mJ laser etching groups; there was no statistically significant difference among the Ra values of 50 μs, 100 μs, 300 μs, 600 μs, and air-particle abrasion groups (p>0.05). In order to increase surface roughness and promote better bonding to resin luting agents, Er:YAG laser etching may be an alternative to air-particle abrasion for zirconia ceramics. However, high levels of pulse energy and longer pulse length may have an adverse effect on micromechanical locking properties, because of a decrease in surface roughness.
Essays in applied microeconomics
NASA Astrophysics Data System (ADS)
Davis, Lucas William
2005-11-01
The first essay measures the impact of an outbreak of pediatric leukemia on local housing values. A model of residential location choice is used to describe conditions under which the gradient of the hedonic price function with respect to health risk is equal to household marginal willingness to pay to avoid pediatric leukemia risk. This equalizing differential is estimated using property-level sales records from a county in Nevada where residents have recently experienced a severe increase in pediatric leukemia. Housing values are compared before and after the increase with a nearby county acting as a control group. The results indicate that housing values decreased 15.6% during the period of maximum risk. Results are similar for alternative measures of risk and across houses of different sizes. With risk estimates derived using a Bayesian learning model the results imply a statistical value of pediatric leukemia of $5.6 million. The results from the paper provide some of the first market-based estimates of the value of health for children. The second essay evaluates the cost-effectiveness of public incentives that encourage households to purchase high-efficiency durable goods. The demand for durable goods and the demand for energy and other inputs are modeled jointly as the solution to a household production problem. The empirical analysis focuses on the case of clothes washers. The production technology and utilization decision are estimated using household-level data from field trials in which participants received front-loading clothes washers free of charge. The estimation strategy exploits this quasi-random replacement of washers to derive robust estimates of the utilization decision. The results indicate a price elasticity, -.06, that is statistically different from zero across specifications. The parameters from the utilization decision are used to estimate the purchase decision using data from the Consumer Expenditure Survey, 1994-2002. Households consider optimal utilization levels, purchase prices, water rates, energy rates and other factors when deciding which clothes washer to purchase. The complete model is used to simulate the effects of rebate programs and other policies on adoption patterns of clothes washers and household demand for water and energy.
Analysis of Carbon Policies for Electricity Networks with High Penetration of Green Generation
NASA Astrophysics Data System (ADS)
Feijoo, Felipe A.
In recent decades, climate change has become one of the most crucial challenges for humanity. Climate change has a direct correlation with global warming, caused mainly by the green house gas emissions (GHG). The Environmental Protection Agency in the U.S. (EPA) attributes carbon dioxide to account for approximately 82% of the GHG emissions. Unfortunately, the energy sector is the main producer of carbon dioxide, with China and the U.S. as the highest emitters. Therefore, there is a strong (positive) correlation between energy production, global warming, and climate change. Stringent carbon emissions reduction targets have been established in order to reduce the impacts of GHG. Achieving these emissions reduction goals will require implementation of policies like as cap-and-trade and carbon taxes, together with transformation of the electricity grid into a smarter system with high green energy penetration. However, the consideration of policies solely in view of carbon emissions reduction may adversely impact other market outcomes such as electricity prices and consumption. In this dissertation, a two-layer mathematical-statistical framework is presented, that serves to develop carbon policies to reduce emissions level while minimizing the negative impacts on other market outcomes. The bottom layer of the two layer model comprises a bi-level optimization problem. The top layer comprises a statistical model and a Pareto analysis. Two related but different problems are studied under this methodology. The first problem looks into the design of cap-and-trade policies for deregulated electricity markets that satisfy the interest of different market constituents. Via the second problem, it is demonstrated how the framework can be used to obtain levels of carbon emissions reduction while minimizing the negative impact on electricity demand and maximizing green penetration from microgrids. In the aforementioned studies, forecasts for electricity prices and production cost are considered. This, this dissertation also presents anew forecast model that can be easily integrated in the two-layer framework. It is demonstrated in this dissertation that the proposed framework can be utilized by policy-makers, power companies, consumers, and market regulators in developing emissions policy decisions, bidding strategies, market regulations, and electricity dispatch strategies.
Spezia, Riccardo; Martínez-Nuñez, Emilio; Vazquez, Saulo; Hase, William L
2017-04-28
In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces 'on the fly' has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.
2018-05-01
A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.
Multi-level emulation of complex climate model responses to boundary forcing data
NASA Astrophysics Data System (ADS)
Tran, Giang T.; Oliver, Kevin I. C.; Holden, Philip B.; Edwards, Neil R.; Sóbester, András; Challenor, Peter
2018-04-01
Climate model components involve both high-dimensional input and output fields. It is desirable to efficiently generate spatio-temporal outputs of these models for applications in integrated assessment modelling or to assess the statistical relationship between such sets of inputs and outputs, for example, uncertainty analysis. However, the need for efficiency often compromises the fidelity of output through the use of low complexity models. Here, we develop a technique which combines statistical emulation with a dimensionality reduction technique to emulate a wide range of outputs from an atmospheric general circulation model, PLASIM, as functions of the boundary forcing prescribed by the ocean component of a lower complexity climate model, GENIE-1. Although accurate and detailed spatial information on atmospheric variables such as precipitation and wind speed is well beyond the capability of GENIE-1's energy-moisture balance model of the atmosphere, this study demonstrates that the output of this model is useful in predicting PLASIM's spatio-temporal fields through multi-level emulation. Meaningful information from the fast model, GENIE-1 was extracted by utilising the correlation between variables of the same type in the two models and between variables of different types in PLASIM. We present here the construction and validation of several PLASIM variable emulators and discuss their potential use in developing a hybrid model with statistical components.
Classifiers utilized to enhance acoustic based sensors to identify round types of artillery/mortar
NASA Astrophysics Data System (ADS)
Grasing, David; Desai, Sachi; Morcos, Amir
2008-04-01
Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.
Artillery/mortar type classification based on detected acoustic transients
NASA Astrophysics Data System (ADS)
Morcos, Amir; Grasing, David; Desai, Sachi
2008-04-01
Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.
Artillery/mortar round type classification to increase system situational awareness
NASA Astrophysics Data System (ADS)
Desai, Sachi; Grasing, David; Morcos, Amir; Hohil, Myron
2008-04-01
Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.
Effects of estradiol and FSH on leptin levels in women with suppressed pituitary
2012-01-01
Background Female fertility depends on adequate nutrition and energy reserves, suggesting a correlation between the metabolic reserve and reproductive capacity. Leptin regulates body weight and energy homeostasis. The aim of this study was to investigate whether estradiol or FSH alone has a direct effect on the production of leptin. Methods A total of 64 patients submitted to controlled ovarian hyperstimulation with recombinant FSH for assisted reproduction and 20 patients using estradiol valerate for endometrial preparation for oocyte donation treatment were included in the study. All patients used GnRH analogues before starting treatment to achieve pituitary suppression. Blood samples for hormonal measurements were collected before starting and after completing the respective treatments. Data were analyzed statistically by the chi-square test, Student’s t-test and Pearson’s correlation test. Results We observed an elevation of serum leptin levels secondary to the increase in estradiol, in the absence of influence of any other ovarian or pituitary hormone. The rising rate of leptin levels was higher in women treated with recombinant FSH, which also had higher levels of estradiol, than in those treated with estradiol valerate. Conclusions This study demonstrates a correlation between serum levels of estradiol and leptin, suggesting that estradiol is an important regulator of leptin production and that its effects can be amplified by its association with FSH. PMID:22703959
Essays on consequences of economic integration
NASA Astrophysics Data System (ADS)
Chintrakarn, Pandej
2007-12-01
Economic integration is a term used to describe how different aspects between economies are integrated. As economic integration increases, the barriers of trade between markets diminishes. The most integrated economy today, between independent nations, is the European Union and its euro zone. This dissertation consists of three essays which examine consequences of economic integration. The debate over the environmental consequences of free trade is not only quite heated, but also entails significant policy ramifications. Recently, cross-sectional analysis at the country level has made use of exogenous determinants of trade to identify the causal effect of trade on the environment, finding moderate evidence of a beneficial impact of expanded trade on environmental quality. Given the stakes involved, the first essay revisits this finding using subnational data on 'trade' flows across US states and several measures of pollution. Not only does the analysis shed further light on the debate at the international level, but also addresses a heretofore unexamined question: Does greater inter-regional commerce at the subnational level harm the environment? The findings are striking, providing further evidence against a negative environmental impact of trade for the majority of measures analyzed. However, several sources of heterogeneity arise that are noteworthy. The second essay investigates the effect of the euro on trade among EMU members. Using various semi-nonparametric methods based on matching, the results suggest that the euro has a statistical and economic impact on trade. The results show that two countries sharing the euro currency trade somewhere between 9% and 14% more than other country-pairs. In addition, there is no evidence of trade diversion due to the euro. In one strand of research, analysts examine trends in and the determinants of energy usage and intensity. In a second strand, researchers analyze the impact of trade flows on environmental outcomes. Recently, Cole (2006) bridges this gap, analyzing the impact of trade intensity on energy usage utilizing panel data at the country level. Here, the third essay analyzes the impact of subnational trade flows across U.S. states on state-level energy usage and intensity, controlling for the endogeneity of trade flows. The findings indicate that an expansion of subnational trade at worst has no impact on state-level energy usage, and may actually reduce energy usage (contrary to Cole's country-level findings), although the impacts are not uniform across sectors.
Mapping the Energy Cascade in the North Atlantic Ocean: The Coarse-graining Approach
Aluie, Hussein; Hecht, Matthew; Vallis, Geoffrey K.
2017-11-14
A coarse-graining framework is implemented to analyze nonlinear processes, measure energy transfer rates and map out the energy pathways from simulated global ocean data. Traditional tools to measure the energy cascade from turbulence theory, such as spectral flux or spectral transfer rely on the assumption of statistical homogeneity, or at least a large separation between the scales of motion and the scales of statistical inhomogeneity. The coarse-graining framework allows for probing the fully nonlinear dynamics simultaneously in scale and in space, and is not restricted by those assumptions. This study describes how the framework can be applied to ocean flows.
Mapping the Energy Cascade in the North Atlantic Ocean: The Coarse-graining Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aluie, Hussein; Hecht, Matthew; Vallis, Geoffrey K.
A coarse-graining framework is implemented to analyze nonlinear processes, measure energy transfer rates and map out the energy pathways from simulated global ocean data. Traditional tools to measure the energy cascade from turbulence theory, such as spectral flux or spectral transfer rely on the assumption of statistical homogeneity, or at least a large separation between the scales of motion and the scales of statistical inhomogeneity. The coarse-graining framework allows for probing the fully nonlinear dynamics simultaneously in scale and in space, and is not restricted by those assumptions. This study describes how the framework can be applied to ocean flows.
Statistical hadronization with exclusive channels in e +e - annihilation
Ferroni, L.; Becattini, F.
2012-01-01
We present a systematic analysis of exclusive hadronic channels in e +e - collisions at centre-of-mass energies between 2.1 and 2.6 GeV within the statistical hadronization model. Because of the low multiplicities involved, calculations have been carried out in the full microcanonical ensemble, including conservation of energy-momentum, angular momentum, parity, isospin, and all relevant charges. We show that the data is in an overall good agreement with the model for an energy density of about 0.5 GeV/fm 3 and an extra strangeness suppression parameter γ S 0:7, essentially the same values found with fits to inclusive multiplicities at higher energy.
Solution influence on biomolecular equilibria - Nucleic acid base associations
NASA Technical Reports Server (NTRS)
Pohorille, A.; Pratt, L. R.; Burt, S. K.; Macelroy, R. D.
1984-01-01
Various attempts to construct an understanding of the influence of solution environment on biomolecular equilibria at the molecular level using computer simulation are discussed. First, the application of the formal statistical thermodynamic program for investigating biomolecular equilibria in solution is presented, addressing modeling and conceptual simplications such as perturbative methods, long-range interaction approximations, surface thermodynamics, and hydration shell. Then, Monte Carlo calculations on the associations of nucleic acid bases in both polar and nonpolar solvents such as water and carbon tetrachloride are carried out. The solvent contribution to the enthalpy of base association is positive (destabilizing) in both polar and nonpolar solvents while negative enthalpies for stacked complexes are obtained only when the solute-solute in vacuo energy is added to the total energy. The release upon association of solvent molecules from the first hydration layer around a solute to the bulk is accompanied by an increase in solute-solvent energy and decrease in solvent-solvent energy. The techniques presented are expectd to displace less molecular and more heuristic modeling of biomolecular equilibria in solution.
Low Energy Dissipation Nano Device Research
NASA Astrophysics Data System (ADS)
Yu, Jenny
2015-03-01
The development of research on energy dissipation has been rapid in energy efficient area. Nano-material power FET is operated as an RF power amplifier, the transport is ballistic, noise is limited and power dissipation is minimized. The goal is Green-save energy by developing the Graphene and carbon nantube microwave and high performance devices. Higher performing RF amplifiers can have multiple impacts on broadly field, for example communication equipment, (such as mobile phone and RADAR); higher power density and lower power dissipation will improve spectral efficiency which translates into higher system level bandwidth and capacity for communications equipment. Thus, fundamental studies of power handling capabilities of new RF (nano)technologies can have broad, sweeping impact. Because it is critical to maximizing the power handling ability of grephene and carbon nanotube FET, the initial task focuses on measuring and understanding the mechanism of electrical breakdown. We aim specifically to determine how the breakdown voltage in graphene and nanotubes is related to the source-drain spacing, electrode material and thickness, and substrate, and thus develop reliable statistics on the breakdown mechanism and probability.
Dynamics and Novel Mechanisms of SN2 Reactions on ab Initio Analytical Potential Energy Surfaces.
Szabó, István; Czakó, Gábor
2017-11-30
We describe a novel theoretical approach to the bimolecular nucleophilic substitution (S N 2) reactions that is based on analytical potential energy surfaces (PESs) obtained by fitting a few tens of thousands high-level ab initio energy points. These PESs allow computing millions of quasi-classical trajectories thereby providing unprecedented statistical accuracy for S N 2 reactions, as well as performing high-dimensional quantum dynamics computations. We developed full-dimensional ab initio PESs for the F - + CH 3 Y [Y = F, Cl, I] systems, which describe the direct and indirect, complex-forming Walden-inversion, the frontside attack, and the new double-inversion pathways as well as the proton-transfer channels. Reaction dynamics simulations on the new PESs revealed (a) a novel double-inversion S N 2 mechanism, (b) frontside complex formation, (c) the dynamics of proton transfer, (d) vibrational and rotational mode specificity, (e) mode-specific product vibrational distributions, (f) agreement between classical and quantum dynamics, (g) good agreement with measured scattering angle and product internal energy distributions, and (h) significant leaving group effect in accord with experiments.
NASA Astrophysics Data System (ADS)
Preston, L. A.
2017-12-01
Marine hydrokinetic (MHK) devices offer a clean, renewable alternative energy source for the future. Responsible utilization of MHK devices, however, requires that the effects of acoustic noise produced by these devices on marine life and marine-related human activities be well understood. Paracousti is a 3-D full waveform acoustic modeling suite that can accurately propagate MHK noise signals in the complex bathymetry found in the near-shore to open ocean environment and considers real properties of the seabed, water column, and air-surface interface. However, this is a deterministic simulation that assumes the environment and source are exactly known. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected noise levels within the marine environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. One method is to use Monte Carlo (MC) techniques where simulation results from a large number of deterministic solutions are aggregated to provide statistical properties of the output signal. However, MC methods can be computationally prohibitive since they can require tens of thousands or more simulations to build up an accurate representation of those statistical properties. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a small fraction of the computational cost of MC. We are developing a SPDE solver for the 3-D acoustic wave propagation problem called Paracousti-UQ to help regulators and operators assess the statistical properties of environmental noise produced by MHK devices. In this presentation, we present the SPDE method and compare statistical distributions of simulated acoustic signals in simple models to MC simulations to show the accuracy and efficiency of the SPDE method. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Secula, Marius Sebastian; Cretescu, Igor; Cagnon, Benoit; Manea, Liliana Rozemarie; Stan, Corneliu Sergiu; Breaban, Iuliana Gabriela
2013-07-10
The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC). In this study, a mathematical approach was conducted using a two-level fractional factorial design ( FFD ) for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m²), initial pH of aqueous dye solution (3 or 9), electrocoagulation time (20 or 180 min), GAC dose (0.1 or 0.5 g/L), support electrolyte (2 or 50 mM), initial dye concentration (0.05 or 0.25 g/L) and current type (Direct Current- DC or Alternative Pulsed Current- APC ). GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.
Secula, Marius Sebastian; Cretescu, Igor; Cagnon, Benoit; Manea, Liliana Rozemarie; Stan, Corneliu Sergiu; Breaban, Iuliana Gabriela
2013-01-01
The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC). In this study, a mathematical approach was conducted using a two-level fractional factorial design (FFD) for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m2), initial pH of aqueous dye solution (3 or 9), electrocoagulation time (20 or 180 min), GAC dose (0.1 or 0.5 g/L), support electrolyte (2 or 50 mM), initial dye concentration (0.05 or 0.25 g/L) and current type (Direct Current—DC or Alternative Pulsed Current—APC). GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method. PMID:28811405
A Method for Modeling Household Occupant Behavior to Simulate Residential Energy Consumption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brandon J; Starke, Michael R; Abdelaziz, Omar
2014-01-01
This paper presents a statistical method for modeling the behavior of household occupants to estimate residential energy consumption. Using data gathered by the U.S. Census Bureau in the American Time Use Survey (ATUS), actions carried out by survey respondents are categorized into ten distinct activities. These activities are defined to correspond to the major energy consuming loads commonly found within the residential sector. Next, time varying minute resolution Markov chain based statistical models of different occupant types are developed. Using these behavioral models, individual occupants are simulated to show how an occupant interacts with the major residential energy consuming loadsmore » throughout the day. From these simulations, the minimum number of occupants, and consequently the minimum number of multiple occupant households, needing to be simulated to produce a statistically accurate representation of aggregate residential behavior can be determined. Finally, future work will involve the use of these occupant models along side residential load models to produce a high-resolution energy consumption profile and estimate the potential for demand response from residential loads.« less
Atomic Data and Spectral Line Intensities for Ni XI
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Landi, E.
2010-01-01
Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ni XI. We include in the calculations the 10 lowest configurations, corresponding to 164 fine structure levels: 3s(sup 2)3p(sup 6), 3s(sup 2)3p(sup 5)3d, 3s(sup 2)3p(sup 4)3d(sup 2), 3s3p(sup 6)3d, 3s(sup 2)3p(sup 5)4l and 3s3p6 4l with l =.s, p, d. Collision strengths are calculated at five incident energies for all transitions: 7.1, 16.8, 30.2, 48.7 and 74.1 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.06 Ry and 0.25 Ry depending on the lower level. Calculations have been carried out using the Flexible Atomic Code and the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, combined with Close Coupling collision excitation rate coefficient available in the literature for the lowest 17 levels, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14) cu cm range and at an electron temperature of logT(sub c)(K)=6.1, corresponding to the maximum abundance of Ni XI. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database.
Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals
Tougaard, Jakob
2015-01-01
Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106–109 dB re. 1 μPa in the range 125–250 Hz, 1–2 dB above ambient noise levels (statistically significant). Outside the range 125–250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121–125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment. PMID:26148299
Lung imaging in rodents using dual energy micro-CT
NASA Astrophysics Data System (ADS)
Badea, C. T.; Guo, X.; Clark, D.; Johnston, S. M.; Marshall, C.; Piantadosi, C.
2012-03-01
Dual energy CT imaging is expected to play a major role in the diagnostic arena as it provides material decomposition on an elemental basis. The purpose of this work is to investigate the use of dual energy micro-CT for the estimation of vascular, tissue, and air fractions in rodent lungs using a post-reconstruction three-material decomposition method. We have tested our method using both simulations and experimental work. Using simulations, we have estimated the accuracy limits of the decomposition for realistic micro-CT noise levels. Next, we performed experiments involving ex vivo lung imaging in which intact lungs were carefully removed from the thorax, were injected with an iodine-based contrast agent and inflated with air at different volume levels. Finally, we performed in vivo imaging studies in (n=5) C57BL/6 mice using fast prospective respiratory gating in endinspiration and end-expiration for three different levels of positive end-expiratory pressure (PEEP). Prior to imaging, mice were injected with a liposomal blood pool contrast agent. The mean accuracy values were for Air (95.5%), Blood (96%), and Tissue (92.4%). The absolute accuracy in determining all fraction materials was 94.6%. The minimum difference that we could detect in material fractions was 15%. As expected, an increase in PEEP levels for the living mouse resulted in statistically significant increases in air fractions at end-expiration, but no significant changes in end-inspiration. Our method has applicability in preclinical pulmonary studies where various physiological changes can occur as a result of genetic changes, lung disease, or drug effects.
Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals.
Tougaard, Jakob
2015-01-01
Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106-109 dB re. 1 μPa in the range 125-250 Hz, 1-2 dB above ambient noise levels (statistically significant). Outside the range 125-250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121-125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CAP,JEROME S.
2000-08-24
Sandia has recently completed the flight certification test series for the Multi-Spectral Thermal Imaging satellite (MTI), which is a small satellite for which Sandia was the system integrator. A paper was presented at the 16th Aerospace Testing Seminar discussing plans for performing the structural dynamics certification program for that satellite. The testing philosophy was originally based on a combination of system level vibroacoustic tests and component level shock and vibration tests. However, the plans evolved to include computational analyses using both Finite Element Analysis and Statistical Energy Analysis techniques. This paper outlines the final certification process and discuss lessons learnedmore » including both things that went well and things that should/could have been done differently.« less
Interactive semiautomatic contour delineation using statistical conditional random fields framework.
Hu, Yu-Chi; Grossberg, Michael D; Wu, Abraham; Riaz, Nadeem; Perez, Carmen; Mageras, Gig S
2012-07-01
Contouring a normal anatomical structure during radiation treatment planning requires significant time and effort. The authors present a fast and accurate semiautomatic contour delineation method to reduce the time and effort required of expert users. Following an initial segmentation on one CT slice, the user marks the target organ and nontarget pixels with a few simple brush strokes. The algorithm calculates statistics from this information that, in turn, determines the parameters of an energy function containing both boundary and regional components. The method uses a conditional random field graphical model to define the energy function to be minimized for obtaining an estimated optimal segmentation, and a graph partition algorithm to efficiently solve the energy function minimization. Organ boundary statistics are estimated from the segmentation and propagated to subsequent images; regional statistics are estimated from the simple brush strokes that are either propagated or redrawn as needed on subsequent images. This greatly reduces the user input needed and speeds up segmentations. The proposed method can be further accelerated with graph-based interpolation of alternating slices in place of user-guided segmentation. CT images from phantom and patients were used to evaluate this method. The authors determined the sensitivity and specificity of organ segmentations using physician-drawn contours as ground truth, as well as the predicted-to-ground truth surface distances. Finally, three physicians evaluated the contours for subjective acceptability. Interobserver and intraobserver analysis was also performed and Bland-Altman plots were used to evaluate agreement. Liver and kidney segmentations in patient volumetric CT images show that boundary samples provided on a single CT slice can be reused through the entire 3D stack of images to obtain accurate segmentation. In liver, our method has better sensitivity and specificity (0.925 and 0.995) than region growing (0.897 and 0.995) and level set methods (0.912 and 0.985) as well as shorter mean predicted-to-ground truth distance (2.13 mm) compared to regional growing (4.58 mm) and level set methods (8.55 mm and 4.74 mm). Similar results are observed in kidney segmentation. Physician evaluation of ten liver cases showed that 83% of contours did not need any modification, while 6% of contours needed modifications as assessed by two or more evaluators. In interobserver and intraobserver analysis, Bland-Altman plots showed our method to have better repeatability than the manual method while the delineation time was 15% faster on average. Our method achieves high accuracy in liver and kidney segmentation and considerably reduces the time and labor required for contour delineation. Since it extracts purely statistical information from the samples interactively specified by expert users, the method avoids heuristic assumptions commonly used by other methods. In addition, the method can be expanded to 3D directly without modification because the underlying graphical framework and graph partition optimization method fit naturally with the image grid structure.
Free energy surfaces from nonequilibrium processes without work measurement
NASA Astrophysics Data System (ADS)
Adib, Artur B.
2006-04-01
Recent developments in statistical mechanics have allowed the estimation of equilibrium free energies from the statistics of work measurements during processes that drive the system out of equilibrium. Here a different class of processes is considered, wherein the system is prepared and released from a nonequilibrium state, and no external work is involved during its observation. For such "clamp-and-release" processes, a simple strategy for the estimation of equilibrium free energies is offered. The method is illustrated with numerical simulations and analyzed in the context of tethered single-molecule experiments.
NASA Technical Reports Server (NTRS)
1973-01-01
A statistical analysis of the availability of fossil fuels for energy and non-energy production is presented. The cumulative requirements for petroleum, natural gas, and coal are discussed. Alternate forms of energy are described and the advantages and limitations are analyzed. Emphasis is placed on solar energy availability and methods for conversion. The Federal energy research and development funding for energy sources is tabulated.
Improving single-molecule FRET measurements by confining molecules in nanopipettes
NASA Astrophysics Data System (ADS)
Vogelsang, J.; Doose, S.; Sauer, M.; Tinnefeld, P.
2007-07-01
In recent years Fluorescence Resonance Energy Transfer (FRET) has been widely used to determine distances, observe distance dynamics, and monitor molecular binding at the single-molecule level. A basic constraint of single-molecule FRET studies is the limited distance resolution owing to low photon statistics. We demonstrate that by confining molecules in nanopipettes (50-100 nm diameter) smFRET can be measured with improved photon statistics reducing the width of FRET proximity ratio distributions (PRD). This increase in distance resolution makes it possible to reveal subpopulations and dynamics in biomolecular complexes. Our data indicate that the width of PRD is not only determined by photon statistics (shot noise) and distance distributions between the chromophores but that photoinduced dark states of the acceptor also contribute to the PRD width. Furthermore, acceptor dark states such as triplet states influence the accuracy of determined mean FRET values. In this context, we present a strategy for the correction of the shift of the mean PR that is related to triplet induced blinking of the acceptor using reference FCS measurements.
NASA Astrophysics Data System (ADS)
Ben Torkia, Yosra; Ben Yahia, Manel; Khalfaoui, Mohamed; Al-Muhtaseb, Shaheen A.; Ben Lamine, Abdelmottaleb
2014-01-01
The adsorption energy distribution (AED) function of a commercial activated carbon (BDH-activated carbon) was investigated. For this purpose, the integral equation is derived by using a purely analytical statistical physics treatment. The description of the heterogeneity of the adsorbent is significantly clarified by defining the parameter N(E). This parameter represents the energetic density of the spatial density of the effectively occupied sites. To solve the integral equation, a numerical method was used based on an adequate algorithm. The Langmuir model was adopted as a local adsorption isotherm. This model is developed by using the grand canonical ensemble, which allows defining the physico-chemical parameters involved in the adsorption process. The AED function is estimated by a normal Gaussian function. This method is applied to the adsorption isotherms of nitrogen, methane and ethane at different temperatures. The development of the AED using a statistical physics treatment provides an explanation of the gas molecules behaviour during the adsorption process and gives new physical interpretations at microscopic levels.
Shen, Cimin; Xu, Jinsen; Zheng, Shuxia; Lin, Lijiao; Yang, Xiaomei; Liu, Chunlan
2016-02-01
To observe the effect of electroacupuncture(EA) at Zhongwan(CV 12) on the energy metabolism along the conception vessel(CV) in volunteers with yang-deficiency constitution,and to explore the relationship of electroacupuncture regulation and body constitution. Eighteen volunteers with mild constitution and 18 volunteers with yang-deficiency constitution were collected out of 200 students of Fujian University of TCM by body constitution questionnaire. Skin microcirculatory blood perfusion units (MBPU) at Danzhong (CV 17), Xiawan(CV 10) and Qihai(CV 6) of CV were measured by a laser Doppler flowmetry in the normal condition and after EA stimulation at Zhongwan(CV 12) for 20 min. (1)Before treatment, (1)MBPU values at Danzhong(CV 17), Xiawan(CV 10) and Qihai(CV 6) in the yang-deficiency constitution group were lower than those in the mild constitution group,but there was no statistical significance (both P>0. 05) except Danzhong(CV 17) (P<0. 01). (Z)As for the three acupoints in the mild constitution group, MBPU level of Danzhong(CV 17) was higher than that of Xiawan(CV 10) without statistical significance(P->0. 05),and MBPU values of Danzhong(CV 17) and Xiawan(CV 10) were higher than that of Qihai(CV 6) (both P<0. 01). (3About the three acupoints in the yang-deficiency constitution group, MBPU result of Danzhong(CV 17) was lower than the value of Xiawan(CV 10), but higher compared with Qihai(CV 6)(P<0. 05, P<0. 01). MBPU of Xiawan(CV 10) was higher than Qihai (CV 6) as well(P<0. 01). (2) MBPU values of Danzhong(CV 17), Xiawan(CV 10) and Qihai(CV 6) were increased apparently compared with those before treatment after EA stimulation at Zhongwan(CV 12) for 20 min in the two groups(all P<0. 01). (3) The rise rates of MBPU level about Danzhong(CV 17) and Qihai(CV 6) in the yang-deficiency constitution group were higher than those in the mild constitution group without statistical significance after EA at Zhongwan(CV 12) for 20 min(both P>0. 05). The energy metabolism in CV of volunteers with yang-deficiency constitution is declined, especially Danzhong(CV 17). EA can rise energy metabolism in CV of mild or yang-deficiency constitution volunteers through regulating MBPU along meridian.
Energy and Macronutrient Intakes and Food Sources in Preschool Children: Thai NHES IV.
Satheannoppakao, Warapone; Kasemsup, Rachada; Nontarak, Jiraluck; Kessomboon, Pattapong; Putwatana, Panwadee; Taneepanichskul, Surasak; Sangthong, Rassamee; Chariyalertsak, Suwat; Aekplakorn, Wichai
2015-10-01
Examine intakes of energy and macronutrients, and identify their food sources, in Thai preschool children. Data from the Thai National Health Examination Survey (NHES) IV were used. Mothers/caregivers were interviewed regarding their children's 24-hour-dietary intake. Dietary data were analyzed for energy and macronutrients, and their food sources were investigated. Due to skewed data, Mann-Whitney U test was used to compare energy and macronutrient intake between sexes and age groups. Among 256 preschool children, more than 90% had protein intakes higher than the recommended level. Only 12.7 to 29.0% met the recommended intake for energy. Amounts of carbohydrate and fat consumed varied from below to above the Dietary Reference Intake (DRI) recommendation. Intakes of carbohydrate in boys and fat in girls were statistically different between age groups (p < 0.05). Fifty to 60% of energy came from dairy products, grains and starchy products. The major carbohydrate contributors were grains and starchy products. Dairy products were the main source of protein. Important food sources of fat were dairy products for one- to three-year-old children and fat and oils for four- to five-year-old children. Thai preschool children have inappropriate intakes of energy and macronutrients. Dairy products and grains and/or starchy products were the main sources of energy, carbohydrate, and protein. Dietary fat sources varied by age group.
Investigation of energy transfer in terbium doped Y 2SiO5 phosphor particles
NASA Astrophysics Data System (ADS)
Salis, M.; Carbonaro, C. M.; Corpino, R.; Anedda, A.; Ricci, P. C.
2012-07-01
The kinetics of luminescence of sol-gel synthesized terbium doped Y 2SiO5 (YSO) phosphor particles is investigated in detail with reference to Tb concentration in the 0.001%-10% range. By increasing the dopant concentration, the luminescence profile changes from a blue to a green peaked emission spectrum because of the energy transfer among centers. The inter-center energy transfer mechanism is well accounted for by the Inokuti-Hirayama (IH) kinetic model which is based on a statistical average of inter-center distance dependent decay modes of the donor luminescence. The distribution of the decay modes is implemented from the Förster-Dexter resonance theory of energy transfer by assuming a rate constant for the energy transfer by multipolar interactions between donors and acceptors. However, the experimental results recorded in the low concentration limit show the presence of green emission contributions in the luminescence spectrum which cannot be related to the Tb concentration; for this reason an additional internal energy transfer mechanism, occurring among levels of the same center, is proposed to account for the recorded emission properties. Thus, a new and more exhaustive model which includes both the internal and external energy transfer processes is considered; the proposed model allows a better explanation of the spectroscopic features of Tb related centers in YSO crystals and discloses the critical concentration and the quantum yields of the different energy transfer mechanisms.
NASA Astrophysics Data System (ADS)
Cohen, D.; Michlmayr, G.; Or, D.
2012-04-01
Shearing of dense granular materials appears in many engineering and Earth sciences applications. Under a constant strain rate, the shearing stress at steady state oscillates with slow rises followed by rapid drops that are linked to the build up and failure of force chains. Experiments indicate that these drops display exponential statistics. Measurements of acoustic emissions during shearing indicates that the energy liberated by failure of these force chains has power-law statistics. Representing force chains as fibers, we use a stick-slip fiber bundle model to obtain analytical solutions of the statistical distribution of stress drops and failure energy. In the model, fibers stretch, fail, and regain strength during deformation. Fibers have Weibull-distributed threshold strengths with either quenched and annealed disorder. The shape of the distribution for drops and energy obtained from the model are similar to those measured during shearing experiments. This simple model may be useful to identify failure events linked to force chain failures. Future generalizations of the model that include different types of fiber failure may also allow identification of different types of granular failures that have distinct statistical acoustic emission signatures.
Differences in energy capacities between tennis players and runners.
Novak, Dario; Vucetić, Vlatko; Zugaj, Sanja
2013-05-01
The primary purpose of this study was to determine differences between elite athletes and tennis players in order to provide a clearer picture regarding the energy demands in modern tennis. Forty-eight (48) athletes and 24 tennis players from Croatian national leagues were compared in morphological and physiological parameters of an all-out incremental treadmill test with gas exchange measurements. Tennis players' HRmax (192.96+/-7.75 bpm) shows values that are most different to 400-meters sprinters (200.13+/-6.95 bpm). Maximum running speed of tennis players on the treadmill (vmax) is no different with the speed achieved by sprinters, while there are significant differences among other athletes. Values in running speed at anaerobic threshold (vAnT) show no statistically significant difference with the values for athlete sprinters and 400-m sprinters. Values of RvO2max for tennis players indicate significant similarities with athlete sprinters and 400-m sprinters while the values of RvO2AnT are nearly identical with the values for sprinters and show no statistically significant differences (p<0.05). The results indicate that values achieved by tennis players approximate most different those of the middle and long distance runners. This singles out the possible importance of the anaerobic capacity and the high level of sprint endurance in tennis players. Knowing these characteristics is the basis for planning and implementing training systems that will enable the increase and optimal usage of energy capacities of tennis players in possibly improving sports results.
Vainik, Uku; Konstabel, Kenn; Lätt, Evelin; Mäestu, Jarek; Purge, Priit; Jürimäe, Jaak
2016-10-01
Subjective energy intake (sEI) is often misreported, providing unreliable estimates of energy consumed. Therefore, relating sEI data to health outcomes is difficult. Recently, Börnhorst et al. compared various methods to correct sEI-based energy intake estimates. They criticised approaches that categorise participants as under-reporters, plausible reporters and over-reporters based on the sEI:total energy expenditure (TEE) ratio, and thereafter use these categories as statistical covariates or exclusion criteria. Instead, they recommended using external predictors of sEI misreporting as statistical covariates. We sought to confirm and extend these findings. Using a sample of 190 adolescent boys (mean age=14), we demonstrated that dual-energy X-ray absorptiometry-measured fat-free mass is strongly associated with objective energy intake data (onsite weighted breakfast), but the association with sEI (previous 3-d dietary interview) is weak. Comparing sEI with TEE revealed that sEI was mostly under-reported (74 %). Interestingly, statistically controlling for dietary reporting groups or restricting samples to plausible reporters created a stronger-than-expected association between fat-free mass and sEI. However, the association was an artifact caused by selection bias - that is, data re-sampling and simulations showed that these methods overestimated the effect size because fat-free mass was related to sEI both directly and indirectly via TEE. A more realistic association between sEI and fat-free mass was obtained when the model included common predictors of misreporting (e.g. BMI, restraint). To conclude, restricting sEI data only to plausible reporters can cause selection bias and inflated associations in later analyses. Therefore, we further support statistically correcting sEI data in nutritional analyses. The script for running simulations is provided.
Yin, Jian; Han, Zhengfeng; Guo, Baofeng; Guo, Han; Zhang, Tongtong; Zeng, Yanjun; Ren, Longxi
2015-07-01
To compare the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation. Goat spine specimen (GSS) was radiated using Nd:YAG laser and 980 nm diode laser and then divided into five groups based on the final energy--200, 400, 600, 800 and 1,000 J groups. The ablation quality of nucleus pulposus after radiation was recorded. The ablation quality of GSS was greater at higher radiation energies in both lasers. When compared at the same energy level, the ablation quality of GSS was greater in 980 nm diode laser than in 1,064 nm Nd:YAG laser. Statistical significance was observed in 200 and 400 J groups (P < 0.05) and in 600, 800 and 1,000 J groups (P < 0.01). Radiation with 980 nm diode laser showed better ablation ability than 1,064 nm Nd:YAG laser.
OWL: A scalable Monte Carlo simulation suite for finite-temperature study of materials
NASA Astrophysics Data System (ADS)
Li, Ying Wai; Yuk, Simuck F.; Cooper, Valentino R.; Eisenbach, Markus; Odbadrakh, Khorgolkhuu
The OWL suite is a simulation package for performing large-scale Monte Carlo simulations. Its object-oriented, modular design enables it to interface with various external packages for energy evaluations. It is therefore applicable to study the finite-temperature properties for a wide range of systems: from simple classical spin models to materials where the energy is evaluated by ab initio methods. This scheme not only allows for the study of thermodynamic properties based on first-principles statistical mechanics, it also provides a means for massive, multi-level parallelism to fully exploit the capacity of modern heterogeneous computer architectures. We will demonstrate how improved strong and weak scaling is achieved by employing novel, parallel and scalable Monte Carlo algorithms, as well as the applications of OWL to a few selected frontier materials research problems. This research was supported by the Office of Science of the Department of Energy under contract DE-AC05-00OR22725.
Uberseder, E.; Rogachev, G. V.; Goldberg, V. Z.; ...
2016-03-01
The level structure of the very neutron rich and unbound 9He nucleus has been the subject of significant experimental and theoretical study. Many recent works have claimed that the two lowest energy 9He states exist with spins J π=1/2 +and Jπ=1/2 -and widths on the order of 100–200 keV. These find-ings cannot be reconciled with our contemporary understanding of nuclear structure. Our present work is the first high-resolution study with low statistical uncertainty of the relevant excitation energy range in the 8He+n system, performed via a search for the T =5/2 isobaric analog states in 9Li populated through 8He+p elasticmore » scattering. Moreover, the present data show no indication of any narrow structures. Instead, we find evidence for a broad J π=1/2 +state in 9He located approximately 3 MeV above the neutron decay threshold.« less
NASA Astrophysics Data System (ADS)
Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iwai, E.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration
2014-05-01
New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ23. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×1020 protons on target, T2K has fit the energy-dependent νμ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin2(θ23) is 0.514-0.056+0.055 (0.511±0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm322=(2.51±0.10)×10-3 eV2/c4 (inverted hierarchy: Δm132=(2.48±0.10)×10-3 eV2/c4). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.