Science.gov

Sample records for energy light ions

  1. Angular distributions of sputtered atoms for low-energy heavy ions, medium ions and light ions

    NASA Astrophysics Data System (ADS)

    Yamamura, Yasunori; Mizuno, Yoshiyuki; Kimura, Hidetoshi

    1986-03-01

    The angular distributions of sputtered atoms for the near-threshold sputtering of heavy ions, medium ions, and light ions have been investigated by a few-collision model and the ACAT computer simulation code. For heavy-ion sputtering the preferential angle of sputtered atoms is about 50° which is measured from the surface normal, while in the case of the near-threshold light-ion sputtering the preferential angles are nearly equal to the surface normal and do not depend on angle of incidence. It is found that the agreement between the ACAT preferential angles and theoretical values due to a few-collision model is very good.

  2. A New Formula for Energy Spectrum of Sputtered Atoms Due to Low-Energy Light Ions

    NASA Astrophysics Data System (ADS)

    Kenmotsu, Takahiro; Yamamura, Yasunori; Ono, Tadayoshi; Kawamura, Takaichi

    A new formula has been derived to describe the energy spectrum of sputtered atoms from a target material bombarded by light ions. We assume that sputtered atoms bombarded by low-energy light ions are mainly primary knock-on atoms which are created by large-angle backscattered light ions. The escape processes of recoil atoms are estimated on the basis of the Falcone-Sigmund model. The new formula has the dependence on the incident energy of a projectile. We have compared the new formula with simulation results calculated with ACAT code for a Fe target material bombarded by 50eV, 100eV and 500eV D+ ions. Good agreements are found for 50eV and 100eV D+ ions.

  3. Threshold energies of light-ion sputtering and heavy-ion sputtering as a function of angle of incidence

    NASA Astrophysics Data System (ADS)

    Yamamura, Y.

    1984-03-01

    The angular dependence of threshold energies has been investigated for light-ion sputtering and heavy-ion sputtering, and simple expressions for the angular dependences of threshold energies are derived for these two cases. For not-too-large angles of incidence, the threshold energy of heavy-ion sputtering is a decreasing function of the angle of incidence because of the anisotropy of the velocity distribution of recoil atoms, while the threshold energy of light-ion sputtering shows a weak angular dependence. For grazing angles of incidence, the threshold energies of these two cases are increasing functions of the angle of incidence because of surface scattering. In order to examine these theoretical angular dependences of threshold energies, the computer simulations have been performed using the ACAT code. It is found that in the near-threshold regime the angular dependences of sputtering yield by heavy ions are much different from those by light ions.

  4. Generating High-Brightness Light Ion Beams for Inertial Fusion Energy

    SciTech Connect

    Adams, R.G.; Bailey, J.E.; Cuneno, M.E.; Desjarlais, M.P.; Filuk, A.B.; Hanson, D.L.; Johnson, D.J.; Mehlohorn, T.A.; Menge, P.R.; Olson, C.L.; Pointon, T.D. Slutz, S.A.; Vesey, R.A.; Welch, D.R.; Wenger, D.F.

    1998-10-22

    Light ion beams may be the best option for an Inertial Fusion Energy (IFE) driver from the standpoint of ei%ciency, standoff, rep-rate operation and cost. This approach uses high-energy-density pulsed power to efficiently accelerate ions in one or two stages at fields of 0.5 to 1.0 GV/m to produce a medium energy (30 MeV), high-current (1 MA) beam of light ions, such as lithium. Ion beams provide the ability for medium distance transport (4 m) of the ions to the target, and standofl of the driver from high- yield implosions. Rep-rate operation of' high current ion sources has ako been demonstrated for industrial applications and couId be applied to IFE. Although (hese factors make light ions the best Iong-teml pulsed- power approach to IFE, light-ion research is being suspended this year in favor of a Z-pinch-driven approach which has the best opport lnity to most-rapidly achieve the U.S. Department of Energy sponsor's goal of high-yield fusion. This paper will summarize the status and most recent results of the light-ion beam program at Sandia National Laboratories (SNL), and document the prospects of light ions for future IFE driver development.

  5. Vanishing Electronic Energy Loss of Very Slow Light Ions in Insulators with Large Band Gaps

    SciTech Connect

    Markin, S. N.; Primetzhofer, D.; Bauer, P.

    2009-09-11

    Electronic energy loss of light ions in nanometer films of materials with large band gaps has been studied for very low velocities. For LiF, a threshold velocity is observed at 0.1 a.u. (250 eV/u), below which the ions move without transferring energy to the electronic system. For KCl, a lower (extrapolated) threshold velocity is found, identical for H and He ions. For SiO{sub 2}, no clear velocity threshold is observed for He particles. For protons and deuterons, electronic stopping is found to perfectly fulfill velocity scaling, as expected for binary ion-electron interaction.

  6. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    SciTech Connect

    Prost, L. R.

    2016-02-17

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  7. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  8. Hypertriton and light nuclei production at Lambda-production subthreshold energy in heavy-ion collisions

    SciTech Connect

    Zhang, S.; Zu, Z.; Chen, J.H., Ma, Y.G., Cai, X-Z, Ma, G.L., Zhong, C.

    2011-08-01

    High-energy heavy-ion collisions produce abundant hyperons and nucleons. A dynamical coalescence model coupled with the ART model is employed to study the production probabilities of light clusters, deuteron (d), triton (t), helion ({sup 3}He), and hypertriton ({sub {Lambda}}{sup 3}H) at subthreshold energy of Aproduction ({approx} 1 GeV per nucleon). We study the dependence on the reaction system size of the coalescence penalty factor per additional nucleon and entropy per nucleon. The Strangeness Population Factor (S{sub 3} = {sup 3}{sub {Lambda}}H/({sup 3}He x {Lambda}/p)) shows an extra suppression of hypertriton comparing to light clusters of the same mass number. This model predicts a hypertriton production cross-section of a few {mu}b in {sup 36}Ar+{sup 36}Ar, {sup 40}Ca+{sup 40}Ca and {sup 56}Ni+{sup 56}Ni in 1 A GeV reactions. The production rate is as high as a few hypertritons per million collisions, which shows that the fixed-target heavy-ion collisions at CSR (Lanzhou/China) at {Lambda} subthreshold energy are suitable for breaking new ground in hypernuclear physics.

  9. Neutron Transport Models and Methods for HZETRN and Coupling to Low Energy Light Ion Transport

    NASA Technical Reports Server (NTRS)

    Blattnig, S.R.; Slaba, T.C.; Heinbockel, J.H.

    2008-01-01

    Exposure estimates inside space vehicles, surface habitats, and high altitude aircraft exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETCHEDS and FLUKA, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light ion (A<4) transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.

  10. Defect engineering in GaAs using high energy light ion irradiation: Role of electronic energy loss

    SciTech Connect

    Kabiraj, D.; Ghosh, Subhasis

    2011-02-01

    We report on the application of high energy light ions (Li and O) irradiation for modification of defects, in particular, for annihilation of point defects using electronic energy loss in GaAs to minimize the defects produced by nuclear collisions. The high resolution x-ray diffraction and micro-Raman spectroscopy have been used to monitor that no lattice damage or amorphization take place due to irradiating ions. The effects of irradiation on defects and their energy levels have been studied using thermally stimulated current spectroscopy. It has been observed that till an optimum irradiation fluence of 10{sup 13} ions/cm{sup 2} there is annihilation of native defects but further increase in irradiation fluence results in accumulation of defects, which scales with the nuclear energy loss process, indicating that the rate of defects produced by the binary collision process exceeds rate of defect annihilation. Defect annihilation due to electronic energy loss has been discussed on the basis of breaking of bonds and enhanced diffusivity of ionized native defects.

  11. The light ion trough.

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.

    1972-01-01

    A distinct feature of the ion composition results from the OGO-2, 4 and 6 satellites is the light ion trough, wherein the mid-latitude concentrations of H+ and He+ decrease sharply with latitude. In contrast to the 'main trough' in electron density observed primarily as a nightside phenomenon, the light ion trough persists during both day and night. For daytime winter hemisphere conditions and for all seasons during night, the mid-latitude light ion concentration decrease is a pronounced feature. In the dayside summer and equinox hemispheres, the rate of light ion decrease with latitude is comparatively gradual, and the trough boundary is less well defined, particularly for quiet magnetic conditions. In response to magnetic storms, the light ion trough minimum moves equatorward, and deepens, consistent with earlier evidence of the contraction of the plasmasphere in response to storm time enhancements in magnetospheric plasma convection.

  12. An extended formula for the energy spectrum of sputtered atoms from a material irradiated by light ions

    NASA Astrophysics Data System (ADS)

    Ono, T.; Aoki, Y.; Kawamura, T.; Kenmotsu, T.; Yamamura, Y.

    2005-03-01

    We extend a formula proposed by Kenmotsu et al. (hereafter Paper I), which fits with the energy spectrum of atoms sputtered from a heavy material hit by low-energy light ions (H +, D +, T +, He +) by taking into account an inelastic energy loss neglected in Paper I. We assume that primary knock-on atoms produced by ions backscattered at large angles do not lose energy while penetrating the material up to the surface, instead of the energy-loss model used in Paper I. The extended formula is expressed in terms of a normalized energy-distribution function and is compared with the data calculated with the ACAT code for 50 eV, 100 eV and 1 keV D + ions impinging on a Fe target. Our formula fits well with the data in a wide range of incident energy.

  13. Complete Fusion and Break-up Fusion Reactions in Light Ion Interactions at Low Energies

    SciTech Connect

    Cerutti, F.; Ferrari, A.; Gadioli, E.; Mairani, A.; Foertsch, S. V.; Buthelezi, E. Z.; Fujita, H.; Neveling, R.; Smit, F. D.; Dlamini, J.; Cowley, A. A.; Connell, S. H.

    2007-10-26

    Experimental spectra of intermediate mass fragments (IMFs) produced in the interaction of two {sup 12}C ions at incident energy of 200 MeV and their reproduction by a binary fragmentation model and the Boltzmann Master Equation theory as implemented into the Monte Carlo transport and interaction code FLUKA are shown.

  14. Particle and light fragment emission in peripheral heavy ion collisions at Fermi energies

    SciTech Connect

    Piantelli, S.; Maurenzig, P. R.; Olmi, A.; Bardelli, L.; Bartoli, A.; Bini, M.; Casini, G.; Coppi, C.; Mangiarotti, A.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Taccetti, N.; Vanzi, E.

    2006-09-15

    A systematic investigation of the average multiplicities of light charged particles and intermediate mass fragments emitted in peripheral and semiperipheral collisions is presented as a function of the beam energy, violence of the collision, and mass of the system. The data have been collected with the FIASCO setup in the reactions {sup 93}Nb+{sup 93}Nb at (17,23,30,38)A MeV and {sup 116}Sn+{sup 116}Sn at (30,38)A MeV. The midvelocity emission has been separated from the emission of the projectile-like fragment. This last component appears to be compatible with an evaporation from an equilibrated source at normal density, as described by the statistical code GEMINI at the appropriate excitation energy. On the contrary, the midvelocity emission presents remarkable differences in both the dependence of the multiplicities on the energy deposited in the midvelocity region and the isotopic composition of the emitted light charged particles.

  15. Modifications of EL2 related stable and metastable defects in semi-insulating GaAs by high energy light ion irradiation

    NASA Astrophysics Data System (ADS)

    Kabiraj, D.; Ghosh, S.

    2005-10-01

    We report the effect of high energy light ion irradiation on the defect energy levels related to the stable and metastable states of EL2 in undoped semi-insulating GaAs. GaAs samples have been irradiated at different fluences with 50 MeV Li ions. The energy of the irradiated ions is chosen in such a way that the range of the ions is more than the sample thickness. So the implantation of the irradiated ions and the formation of the extended defects at the end of the range could be avoided. The modification of the existing native point defects and the formation of new point defects under irradiation have been studied by photocurrent and thermally stimulated current spectroscopic measurements under the photoexcitation of both sub-band gap and above band gap lights.

  16. Mapping of light elements with the ANSTO high energy heavy ion microprobe

    NASA Astrophysics Data System (ADS)

    Siegele, Rainer; Cohen, David D.

    2000-03-01

    7.62 MeV He was used to study the distribution of a wide range of elements in mineral sands. At this energy both He induced X-ray emission and a high energy resonance in oxygen can be applied simultaneously. The two techniques were used to study the distribution of elements ranging from sulfur to zirconium as well as oxygen.

  17. Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts.

    PubMed

    Liu, Min; Qiu, Xiaoqing; Miyauchi, Masahiro; Hashimoto, Kazuhito

    2013-07-10

    Photocatalytic reaction rate (R) is determined by the multiplication of light absorption capability (α) and quantum efficiency (QE); however, these two parameters generally have trade-off relations. Thus, increasing α without decreasing QE remains a challenging issue for developing efficient photocatalysts with high R. Herein, using Fe(III) ions grafted Fe(III) doped TiO2 as a model system, we present a novel method for developing visible-light photocatalysts with efficient R, utilizing the concept of energy level matching between surface-grafted Fe(III) ions as co-catalysts and bulk-doped Fe(III) ions as visible-light absorbers. Photogenerated electrons in the doped Fe(III) states under visible-light efficiently transfer to the surface grafted Fe(III) ions co-catalysts, as the doped Fe(III) ions in bulk produced energy levels below the conduction band of TiO2, which match well with the potential of Fe(3+)/Fe(2+) redox couple in the surface grafted Fe(III) ions. Electrons in the surface grafted Fe(III) ions efficiently cause multielectron reduction of adsorbed oxygen molecules to achieve high QE value. Consequently, the present Fe(III)-FexTi1-xO2 nanocomposites exhibited the highest visible-light R among the previously reported photocatalysts for decomposition of gaseous organic compounds. The high R can proceed even under commercial white-light emission diode irradiation and is very stable for long-term use, making it practically useful. Further, this efficient method could be applied in other wide-band gap semiconductors, including ZnO or SrTiO3, and may be potentially applicable for other photocatalysis systems, such as water splitting, CO2 reduction, NOx removal, and dye decomposition. Thus, this method represents a strategic approach to develop new visible-light active photocatalysts for practical uses.

  18. SU-E-T-334: Track Structure Simulations of Charged Particles at Low and Intermediate Energies: Cross Sections Needs for Light and Heavy Ions

    SciTech Connect

    Dingfelder, M

    2014-06-01

    Purpose/Methods: Monte Carlo (MC) track structure simulations follow the primary as well as all produced secondary particles in an event-by-event manner, from starting or ejection energy down to total stopping. They provide useful information on physics and chemistry of the biological response to radiation. They depend on reliable interaction cross sections and transport models of the considered radiation quality with biologically relevant materials. Most transport models focus on sufficiently fast and bare (i.e., fully ionized) ions and cross sections calculated within the (relativistic) first Born or Bethe approximations. These theories consider the projectile as a point particle and rely on proton cross sections and simple charge-scaling methods; they neglect the atomic nature of the ion and break down at low and intermediate ion energies. Heavier ions are used in particle therapy and slow to intermediate and low energies in the biologically interesting Bragg peak. Lighter and slower fragment ions, including alpha particles, protons, and neutrons are also produced in nuclear and break up reactions of charged particles. Secondary neutrons also produce recoil protons and ions, mainly in the intermediate energy range. Results/Conclusion: This work reviews existing models for track structure simulations and cross section calculations for light and heavy ions focusing on the low and intermediate energy range. It also presents new and updated aspects on cross section calculations and simulation techniques for ions and discusses the need for new models, calculations, and experimental data.

  19. The ANSTO high energy heavy ion microprobe

    NASA Astrophysics Data System (ADS)

    Siegele, Rainer; Cohen, David D.; Dytlewski, Nick

    1999-10-01

    Recently the construction of the ANSTO High Energy Heavy Ion Microprobe (HIMP) at the 10 MV ANTARES tandem accelerator has been completed. The high energy heavy ion microprobe focuses not only light ions at energies of 2-3 MeV, but is also capable of focusing heavy ions at high energies with ME/ q2 values up to 150 MeV amu and greater. First performance tests and results are reported here.

  20. Heavy ion physics in the intermediate energy range with light nuclei

    NASA Astrophysics Data System (ADS)

    Larochelle, Yves

    1997-04-01

    Projectile fragmentation can be studied in a wide range of excitation energy despite the fact that the projectile cannot undergo violent collisions to avoid losing its identity. The quality of the source determination allows precise analysis of the decay modes of those hot nuclei formed mainly in peripheral collisions. Results from projectile fragmentation of various system will be presented. Binary processes are dominant in the most peripheral collisions. That dominance persists even for the whole domain of impact parameter and at increasing bombarding energies (Y. Larochelle et al., Phys. Lett. B 352 (1995) 8 and ref. therein). In such a study on the 35Cl - 12C system, for the first time (L. Beaulieu et al., Phys. Rev. Let. 77 (1996) 462) a careful selection of the binary events allowed a direct measurement of the total dissipated energy. Besides that strong binary character, experimental evidence has been presented for the formation of a neck-like structure responsible in part for IMF emission in the Fermi energy domain (Y. Larochelle et al., preprint TASCC-P-96-30, submitted to Phys. Rev. C), from reactions of the 35Cl projectile on two targets: 12C and 197Au. Various dynamical approaches will be discussed in that analysis (X. Qian et al., accepted in Nucl. Phys. A), leading to hypotheses to explain the origin of the neck-like structure.

  1. Modeling Proton- and Light Ion-Induced Reactions at Low Energies in the MARS15 Code

    SciTech Connect

    Rakhno, I. L.; Mokhov, N. V.; Gudima, K. K.

    2015-04-25

    An implementation of both ALICE code and TENDL evaluated nuclear data library in order to describe nuclear reactions induced by low-energy projectiles in the Monte Carlo code MARS15 is presented. Comparisons between results of modeling and experimental data on reaction cross sections and secondary particle distributions are shown.

  2. Transport of Light Ions in Matter

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Tai, H.; Shinn, J. L.; Chun, S. Y.; Tripathi, R. K.; Sihver, L.

    1998-01-01

    A recent set of light ion experiments are analyzed using the Green's function method of solving the Boltzmann equation for ions of high charge and energy (the GRNTRN transport code) and the NUCFRG2 fragmentation database generator code. Although the NUCFRG2 code reasonably represents the fragmentation of heavy ions, the effects of light ion fragmentation requires a more detailed nuclear model including shell structure and short range correlations appearing as tightly bound clusters in the light ion nucleus. The most recent NTJCFRG2 code is augmented with a quasielastic alpha knockout model and semiempirical adjustments (up to 30 percent in charge removal) in the fragmentation process allowing reasonable agreement with the experiments to be obtained. A final resolution of the appropriate cross sections must await the full development of a coupled channel reaction model in which shell structure and clustering can be accurately evaluated.

  3. Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping

    PubMed Central

    Friedland, W.; Schmitt, E.; Kundrát, P.; Dingfelder, M.; Baiocco, G.; Barbieri, S.; Ottolenghi, A.

    2017-01-01

    Track structures and resulting DNA damage in human cells have been simulated for hydrogen, helium, carbon, nitrogen, oxygen and neon ions with 0.25–256 MeV/u energy. The needed ion interaction cross sections have been scaled from those of hydrogen; Barkas scaling formula has been refined, extending its applicability down to about 10 keV/u, and validated against established stopping power data. Linear energy transfer (LET) has been scored from energy deposits in a cell nucleus; for very low-energy ions, it has been defined locally within thin slabs. The simulations show that protons and helium ions induce more DNA damage than heavier ions do at the same LET. With increasing LET, less DNA strand breaks are formed per unit dose, but due to their clustering the yields of double-strand breaks (DSB) increase, up to saturation around 300 keV/μm. Also individual DSB tend to cluster; DSB clusters peak around 500 keV/μm, while DSB multiplicities per cluster steadily increase with LET. Remarkably similar to patterns known from cell survival studies, LET-dependencies with pronounced maxima around 100–200 keV/μm occur on nanometre scale for sites that contain one or more DSB, and on micrometre scale for megabasepair-sized DNA fragments. PMID:28345622

  4. Progress toward fusion with light ions

    SciTech Connect

    1980-01-01

    New results in target design, beam generation and transport, and pulse power technology have led to a program shift stressing light ion-driven inertial confinement fusion. According to present estimates, a gain ten fusion pellet will require at least one megajoule and approx. 100 TW power input. Progress in ion sources has resulted in beam power density of approx. 1 TW/cm/sup 2/, a factor of ten increase over the last year, and cylindrical implosion experiments have been performed. Other experiments have demonstrated the ability to transport ion and electron beams with high efficiency and have confirmed numerical predictions on the properties of beam transport channels converging at a target. These developments together with improvements in pulse power technology allow us to project that the 72 beam, 100 TW Particle Beam Fusion Accelerator, PBFA-II will attain target output energy equal to stored energy in the accelerator.

  5. Light ion concentrations in Jupiter's inner magnetosphere

    NASA Technical Reports Server (NTRS)

    Tokar, R. L.; Gurnett, D. A.; Shaw, R. R.; Bagenal, F.

    1982-01-01

    The light ion distribution in the inner Jovian magnetosphere is investigated using whistler dispersion measurements from the Voyager 1 plasma wave instrument and heavy ion plasma concentrations from the plasma instrument. Two models are developed for the light ion concentration over 14 L shells between L = 5.2 and 6.2, one giving a constant concentration along the field line and the other corresponding to an exponential density distribution. Due to heavy ion concentrations near the equator that are typically an order of magnitude larger than the light ion concentration, results obtained are mainly relevant to the light ion concentration outside of the torus. Light ion concentration near the equator ranges from about 1-10% of the heavy ion concentration, while outside the torus the light ions are the dominant species.

  6. A study of light ion accelerators for cancer treatment

    SciTech Connect

    Prelec, K.

    1997-07-01

    This review addresses several issues, such as possible advantages of light ion therapy compared to protons and conventional radiation, the complexity of such a system and its possible adaptation to a hospital environment, and the question of cost-effectiveness compared to other modalities for cancer treatment or to other life saving procedures. Characteristics and effects of different types of radiation on cells and organisms will be briefly described; this will include conventional radiation, protons and light ions. The status of proton and light ion cancer therapy will then be described, with more emphasis on the latter; on the basis of existing experience the criteria for the use of light ions will be listed and areas of possible medical applications suggested. Requirements and parameters of ion beams for cancer treatment will then be defined, including ion species, energy and intensity, as well as parameters of the beam when delivered to the target (scanning, time structure, energy spread). Possible accelerator designs for light ions will be considered, including linear accelerators, cyclotrons and synchrotrons and their basic features given; this will be followed by a review of existing and planned facilities for light ions. On the basis of these considerations a tentative design for a dedicated light ion facility will be suggested, a facility that would be hospital based, satisfying the clinical requirements, simple to operate and reliable, concluding with its cost-effectiveness in comparison with other modalities for treatment of cancer.

  7. Principles of light energy management

    NASA Technical Reports Server (NTRS)

    Davis, N.

    1994-01-01

    Six methods used to minimize excess energy effects associated with lighting systems for plant growth chambers are reviewed in this report. The energy associated with wall transmission and chamber operating equipment and the experimental requirements, such as fresh air and internal equipment, are not considered here. Only the energy associated with providing and removing the energy for lighting is considered.

  8. Tuning of the optical properties of In-rich In{sub x}Ga{sub 1−x}N (x=0.82−0.49) alloys by light-ion irradiation at low energy

    SciTech Connect

    De Luca, Marta; Polimeni, Antonio; Capizzi, Mario; Pettinari, Giorgio; Ciatto, Gianluca; Fonda, Emiliano; Amidani, Lucia; Boscherini, Federico; Knübel, Andreas; Cimalla, Volker; Ambacher, Oliver; Giubertoni, Damiano; Bersani, Massimo

    2013-12-04

    The effects of low-energy irradiation by light ions (H and He) on the properties of In-rich In{sub x}Ga{sub 1−x}N alloys are investigated by optical and structural techniques. H-irradiation gives rise to a remarkable blue-shift of light emission and absorption edge energies. X-ray absorption measurements and first-principle calculations address the microscopic origin of these effects.

  9. Radio frequency sustained ion energy

    DOEpatents

    Jassby, Daniel L.; Hooke, William M.

    1977-01-01

    Electromagnetic (E.M.) energy injection method and apparatus for producing and sustaining suprathermal ordered ions in a neutral, two-ion-species, toroidal, bulk equilibrium plasma. More particularly, the ions are produced and sustained in an ordered suprathermal state of existence above the average energy and velocity of the bulk equilibrium plasma by resonant rf energy injection in resonance with the natural frequency of one of the ion species. In one embodiment, the electromagnetic energy is injected to clamp the energy and velocity of one of the ion species so that the ion energy is increased, sustained, prolonged and continued in a suprathermal ordered state of existence containing appreciable stored energy that counteracts the slowing down effects of the bulk equilibrium plasma drag. Thus, selective deuteron absorption may be used for ion-tail creation by radio-frequency excitation alone. Also, the rf can be used to increase the fusion output of a two-component neutral injected plasma by selective heating of the injected deuterons.

  10. Energy saver for industrial lighting

    NASA Technical Reports Server (NTRS)

    Arline, J.; Lapalme, J.; Warren, C.

    1980-01-01

    Electronic controller switches lights on or off in response to amount of sunlight available. Is application in offices and industrial installations where electrical energy is wasted by using artificial light in sunlit areas. Device utilizes electronic monitor that varies artificial lighting according to amount of sunlight in given area.

  11. High-intensity sources for light ions

    SciTech Connect

    Leung, K.N.

    1995-10-01

    The use of the multicusp plasma generator as a source of light ions is described. By employing radio-frequency induction discharge, the performance of the multicusp source is greatly improved, both in lifetime and in high brightness H{sup +} and H{sup {minus}} beam production. A new technique for generating multiply-charged ions in this type of ion source is also presented.

  12. Emittance improvement of the electron cyclotron resonance high intensity light ion source proton beam by gas injection in the low energy beam transport

    NASA Astrophysics Data System (ADS)

    Beauvais, P.-Y.; Ferdinand, R.; Gobin, R.; Lagniel, J. M.; Leroy, P.-A.; Celona, L.; Ciavola, G.; Gammino, S.; Pottin, B.; Sherman, J.

    2000-03-01

    SILHI is the ECR high intensity light ion source studied in France at C.E.A. Saclay. This is the source for the injector of the high intensity proton injector prototype developed by a CNRS-IN2P3 collaboration. 80 mA at 95 keV beams with a rms normalized r-r' emittance lower than 0.3 π mm mrad and a proton fraction better than 85% are currently produced. Recently, it has been found that the injection in the low energy beam transport of a buffer gas had a strong effect on the emittance measured 1 m downstream of the focusing solenoid. By adding several gases (H2, N2, Ar, Kr), improvements as great as a factor of 3 have been observed. The emittance has been measured by means of an r-r' emittance measurement unit equipped with a sampling hole and a wire profile monitor, both moving across the beam. Simultaneously, the space charge compensation factor is measured using a four-grid analyzer unit. In this article all results of these experiments are presented and discussed. A first explanation of the emittance reduction phenomenon and possible consequences on the injector operation is given.

  13. Lighting and energy in perspective

    SciTech Connect

    Fisher, W.S.

    1982-06-01

    Lighting has been used far too often as a symbol of energy use. As a result, much of the public is under the impression that lighting is one of the biggest energy users. In this paper the very opposite is proven. By pie diagrams it is seen that lighting uses only 5% of the nation's energy. Mandates to reduce lighting in the event of an oil emergency may be counterproductive as a result. Reductions would be better sought in transportation use (51%) and space heating. In a survey of Portland families, car use was 56%, lighting only 2%. It was also determined that ''Dad, Mom, and the kids'' use far more energy than all the stores, offices, schools, hotels, motels, and hospitals in the country.

  14. Overview of Light-Ion Beam Therapy

    SciTech Connect

    Chu, William T.

    2006-03-16

    In 1930, Ernest Orlando Lawrence at the University of California at Berkeley invented the cyclotron. One of his students, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early cyclotrons, accelerating protons to 80 keV using less than 1 kV on a semi-circular accelerating electrode, now called the ''dee''. Soon after, Lawrence constructed the first two-dee 27-Inch (69-cm) Cyclotron, which produced protons and deuterons of 4.8 MeV. In 1939, Lawrence constructed the 60-Inch (150-cm) Cyclotron, which accelerated deuterons to 19 MeV. Just before WWII, Lawrence designed a 184-inch cyclotron, but the war prevented the building of this machine. Immediately after the war ended, the Veksler-McMillan principle of phase stability was put forward, which enabled the transformation of conventional cyclotrons to successful synchrocyclotrons. When completed, the 184-Inch Synchrocyclotron produced 340-MeV protons. Following it, more modern synchrocyclotrons were built around the globe, and the synchrocyclotrons in Berkeley and Uppsala, together with the Harvard cyclotron, would perform pioneering work in treatment of human cancer using accelerated hadrons (protons and light ions). When the 184-Inch Synchrocyclotron was built, Lawrence asked Robert Wilson, one of his former graduate students, to look into the shielding requirements for of the new accelerator. Wilson soon realized that the 184-Inch would produce a copious number of protons and other light ions that had enough energy to penetrate human body, and could be used for treatment of deep-seated diseases. Realizing the advantages of delivering a larger dose in the Bragg peak when placed inside deep-seated tumors, he published in a medical journal a seminal paper on the rationale to use accelerated protons and light ions for treatment of human cancer. The precise dose localization provided by protons and light ions means lower doses to normal tissues adjacent to the treatment volume

  15. The new Sandia light ion microbeam

    NASA Astrophysics Data System (ADS)

    Vizkelethy, G.; Doyle, B. L.; McDaniel, F. L.

    2012-02-01

    The Ion Beam Laboratory of Sandia National Laboratories (SNL) was recently relocated into a brand new building. The 6 MV High Voltage Engineering (HVE) tandem accelerator (hosting the heavy ion microbeam and several analytical beam lines) and the 350 kV HVE implanter with a nanobeam were moved to the new building. There were several new pieces of equipment acquired associated with the move, among them a new high brightness 3 MV Pelletron accelerator, a high resolution light ion microbeam, a nanoimplanter, and a transmission electron microscope (TEM) connected to the tandem accelerator. In this paper this new facility will be described, and initial results of the new microbeam will be presented.

  16. Bright, Light and Energy Efficient.

    ERIC Educational Resources Information Center

    American School and University, 1981

    1981-01-01

    The new Sharon Elementary School in Newburgh (Indiana) has a three-fuel plan that will allow selection of the most economical energy source for each heating season with an energy-efficient lighting system that includes skylights. (Author/MLF)

  17. Ion energy analyzer for measurement of ion turbulent transport

    NASA Astrophysics Data System (ADS)

    Sokolov, V.; Sen, A. K.

    2012-10-01

    For local measurement of radial ion thermal transport, we developed a novel time-resolved gridded ion energy analyzer. The turbulent thermal flux is obtained by correlating fluctuations of ion temperature, plasma density and plasma velocity. The simultaneous measurement of the ion current fluctuations from an ion energy analyzer tilde I_{IEA} (t) and the fluctuation of ion saturation current from a conventional Langmuir probe tilde I_{LP} (t) allow us to determine local fluctuations of ion temperature tilde T_i (t). To reduce the effect of plasma potential fluctuations in the energy analyzer measurements, we use special a compensative circuit loop.

  18. Extension of the BRYNTRN code to monoenergetic light ion beams

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Badavi, Francis F.

    1994-01-01

    A monoenergetic version of the BRYNTRN transport code is extended to beam transport of light ions (H-2, H-3, He-3, and He-4) in shielding materials (thick targets). The redistribution of energy in nuclear reactions is included in transport solutions that use nuclear fragmentation models. We also consider an equilibrium target-fragment spectrum for nuclei with mass number greater than four to include target fragmentation effects in the linear energy transfer (LET) spectrum. Illustrative results for water and aluminum shielding, including energy and LET spectra, are discussed for high-energy beams of H-2 and He-4.

  19. Optical cavity integrated surface ion trap for enhanced light collection

    NASA Astrophysics Data System (ADS)

    Benito, Francisco M.

    Ion trap systems allow the faithful storage and manipulation of qubits encoded in the energy levels of the ions, and can be interfaced with photonic qubits that can be transmitted to connect remote quantum systems. Single photons transmitted from two remote sites, each entangled with one quantum memory, can be used to entangle distant quantum memories by interfering on a beam splitter. Efficient remote entanglement generation relies upon efficient light collection from single ions into a single mode fiber. This can be realized by integrating an ion trap with an optical cavity and employing the Purcell effect for enhancing the light collection. Remote entanglement can be used as a resource for a quantum repeater for provably secure long-distance communication or as a method for communicating within a distributed quantum information processor. We present the integration of a 1 mm optical cavity with a micro-fabricated surface ion trap. The plano-concave cavity is oriented normal to the chip surface where the planar mirror is attached underneath the trap chip. The cavity is locked using a 780 nm laser which is stabilized to Rubidium and shifted to match the 369 nm Doppler transition in Ytterbium. The linear ion trap allows ions to be shuttled in and out of the cavity mode. The Purcell enhancement of spontaneous emission into the cavity mode would then allow efficient collection of the emitted photons, enabling faster remote entanglement generation.

  20. Energy Efficiency Through Lighting Upgrades

    SciTech Connect

    Berst, Kara; Howeth, Maria

    2013-02-26

    Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year's average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

  1. Energy Star Lighting Verification Program

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-09-30

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and results of Cycle Seven of PEARL program during the period of April 2006 to September 2006, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC continued receiving the CFL samples purchased by sponsors and finished performing the sphere testing for all CFL models at 100 hours of life. After that LRC aged the CFL samples to 1000 hours of life, and then performed sphere testing for all CFL models at 1000 hours of life. Then the CFLs were placed on the test rack to be aged to 40% of their rated life. Rapid Cycle Stress Test was also performed for all models using different sets of CFL samples.

  2. Energy Star Lighting Verification Program

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2007-03-31

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and results of Cycle Seven and Cycle Eight of PEARL program during the period of October 2006 to March 2007, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC finished performing the sphere testing for all CFL models in Cycle Seven at 40% of their rated life. LRC also performed re-test of Rapid Cycle Stress Test, under the request of DOE, for five CFL models that failed the Rapid Cycle Stress Test in Cycle Seven. From January 2007 to March 2007, LRC coordinated the procuring efforts for the CFL models that were selected for Cycle Eight.

  3. Ultraviolet-light-emitting AlN:Gd thin-film electroluminescence device using an energy transfer from Gd3+ ions to N2 molecules

    NASA Astrophysics Data System (ADS)

    Toyama, Toshihiko; Ota, Jun; Adachi, Daisuke; Niioka, Yasumasa; Lee, Dong-Hun; Okamoto, Hiroaki

    2009-04-01

    An ultraviolet (UV)-light-emitting AlN:Gd thin-film electroluminescence device (TFELD) was demonstrated for application to flat-panel lighting. AlN:Gd thin films were deposited by rf magnetron sputtering at 200 °C and applied to an ac-voltage-driven TFELD with a double-insulating structure as an emission layer. UV-light emission was observed over a threshold voltage of 270 V for a 5 kHz sinusoidal ac voltage. Electroluminescence (EL) spectra were compared with photoluminescence and cathodoluminescence spectra of AlN:Gd originating from Gd3+ P6j→S87/2 transitions and with an emission spectrum of the second positive system (C3Πu→B3Πg) of N2 molecules. As a result, an energy transfer from Gd3+ P6j→S87/2 to N2 C3Πu→B3Πg is discussed as a likely mechanism for the UV EL. Finally, a preliminary result, associated with the conversion from UV light into blue-green light via a phosphor, is demonstrated for the color tunability of the TFELD.

  4. Ionization, excitation, and electron transfer in MeV-energy collisions between light nuclei and C{sup 5+}(1s) ions studied with a Sturmian basis

    SciTech Connect

    Winter, Thomas G.

    2004-04-01

    Cross sections have been determined for direct excitation, ionization, and electron transfer in collisions between H, He, Li, and Be nuclei and C{sup 5+}(1s) target ions at nuclear energies 1-24 MeV/nucleon, extending earlier work [Phys. Rev. A 56, 2903 (1997)] to higher energies. Coupled Sturmian pseudostates of principal quantum number at least up to 30 have been included for each angular momentum s, p, d, and f centered on the C nucleus, as well as a 1s state centered on the projectile. Detailed basis-convergence studies have been carried out. Cross sections have been compared with the corresponding Born results, and scaling rules have also been examined.

  5. Role of Ions in the Regulation of Light-Harvesting

    PubMed Central

    Kaňa, Radek; Govindjee

    2016-01-01

    Regulation of photosynthetic light harvesting in the thylakoids is one of the major key factors affecting the efficiency of photosynthesis. Thylakoid membrane is negatively charged and influences both the structure and the function of the primarily photosynthetic reactions through its electrical double layer (EDL). Further, there is a heterogeneous organization of soluble ions (K+, Mg2+, Cl−) attached to the thylakoid membrane that, together with fixed charges (negatively charged amino acids, lipids), provides an electrical field. The EDL is affected by the valence of the ions and interferes with the regulation of “state transitions,” protein interactions, and excitation energy “spillover” from Photosystem II to Photosystem I. These effects are reflected in changes in the intensity of chlorophyll a fluorescence, which is also a measure of photoprotective non-photochemical quenching (NPQ) of the excited state of chlorophyll a. A triggering of NPQ proceeds via lumen acidification that is coupled to the export of positive counter-ions (Mg2+, K+) to the stroma or/and negative ions (e.g., Cl−) into the lumen. The effect of protons and anions in the lumen and of the cations (Mg2+, K+) in the stroma are, thus, functionally tightly interconnected. In this review, we discuss the consequences of the model of EDL, proposed by Barber (1980b) Biochim Biophys Acta 594:253–308) in light of light-harvesting regulation. Further, we explain differences between electrostatic screening and neutralization, and we emphasize the opposite effect of monovalent (K+) and divalent (Mg2+) ions on light-harvesting and on “screening” of the negative charges on the thylakoid membrane; this effect needs to be incorporated in all future models of photosynthetic regulation by ion channels and transporters. PMID:28018387

  6. Light ion velocities in the polar ionosphere

    NASA Technical Reports Server (NTRS)

    Murphy, J. A.; Heelis, R. A.

    1981-01-01

    High-speed flow of light ions along magnetic field lines is not simply a consequence of those field lines having an open topology. It is pointed out that the magnitude of the H(+) flow velocity in the polar wind is not predicted by theoretical models, but rather is imposed as a boundary condition. Thermal diffusion, the electron temperature profile, and a diverging magnetic field can be shown to have important effects on the H(+) flow velocity, which need not be supersonic even when the pressure at large distances from the earth is low.

  7. Nanostructured light-absorbing crystalline CuIn(1-x)GaxSe2 thin films grown through high flux, low energy ion irradiation

    NASA Astrophysics Data System (ADS)

    Hall, Allen J.; Hebert, Damon; Shah, Amish B.; Bettge, Martin; Rockett, Angus A.

    2013-10-01

    A hybrid effusion/sputtering vacuum system was modified with an inductively coupled plasma (ICP) coil enabling ion assisted physical vapor deposition of CuIn1-xGaxSe2 thin films on GaAs single crystals and stainless steel foils. With <80 W rf power to the ICP coil at 620-740 °C, film morphologies were unchanged compared to those grown without the ICP. At low temperature (600-670 °C) and high rf power (80-400 W), a light absorbing nanostructured highly anisotropic platelet morphology was produced with surface planes dominated by {112}T facets. At 80-400 W rf power and 640-740 °C, both interconnected void and small platelet morphologies were observed while at >270 W and above >715 °C nanostructured pillars with large inter-pillar voids were produced. The latter appeared black and exhibited a strong {112}T texture with interpillar twist angles of ±8°. Application of a negative dc bias of 0-50 V to the film during growth was not found to alter the film morphology or stoichiometry. The results are interpreted as resulting from the plasma causing strong etching favoring formation of {112}T planes and preferential nucleation of new grains, balanced against conventional thermal diffusion and normal growth mechanisms at higher temperatures. The absence of effects due to applied substrate bias suggests that physical sputtering or ion bombardment effects were minimal. The nanostructured platelet and pillar films were found to exhibit less than one percent reflectivity at angles up to 75° from the surface normal.

  8. Guide to Energy-Efficient Lighting

    SciTech Connect

    2010-10-01

    A fact sheet from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy: Lighting accounts for about 15% of an average home’s electricity use, so it pays to make energy-efficient choices.

  9. Lighting Energy Management for Colleges and Universities.

    ERIC Educational Resources Information Center

    National Lighting Bureau, Washington, DC.

    Colleges and universities probably rely on more types of lighting than do other facilities. This booklet is intended to help administrators achieve the goal of lighting energy management--gaining maximum benefit from illumination systems while minimizing energy waste. The development of a lighting energy management plan requires knowledge of the…

  10. A Variable Energy CW Compact Accelerator for Ion Cancer Therapy

    SciTech Connect

    Johnstone, Carol J.; Taylor, J.; Edgecock, R.; Schulte, R.

    2016-03-10

    Cancer is the second-largest cause of death in the U.S. and approximately two-thirds of all cancer patients will receive radiation therapy with the majority of the radiation treatments performed using x-rays produced by electron linacs. Charged particle beam radiation therapy, both protons and light ions, however, offers advantageous physical-dose distributions over conventional photon radiotherapy, and, for particles heavier than protons, a significant biological advantage. Despite recognition of potential advantages, there is almost no research activity in this field in the U.S. due to the lack of clinical accelerator facilities offering light ion therapy in the States. In January, 2013, a joint DOE/NCI workshop was convened to address the challenges of light ion therapy [1], inviting more than 60 experts from diverse fields related to radiation therapy. This paper reports on the conclusions of the workshop, then translates the clinical requirements into accelerat or and beam-delivery technical specifications. A comparison of available or feasible accelerator technologies is compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in nonscaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.

  11. Molecular ion sources for low energy semiconductor ion implantation (invited)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  12. Molecular ion sources for low energy semiconductor ion implantation (invited).

    PubMed

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described.

  13. Neutral beamline with improved ion energy recovery

    DOEpatents

    Dagenhart, William K.; Haselton, Halsey H.; Stirling, William L.; Whealton, John H.

    1984-01-01

    A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.

  14. Neutral beamline with improved ion energy recovery

    DOEpatents

    Kim, Jinchoon

    1984-01-01

    A neutral beamline employing direct energy recovery of unneutralized residual ions is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell, and thus improves the overall neutral beamline efficiency. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beam direction in the neutral izer exit region. The ions which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be loosely coupled. As a result, the fractional energy ions exiting the cell are reflected onto and collected at an interior wall of the neutralizer formed by the modified end geometry, and thus do not detract from the energy recovery efficiency of full energy ions exiting the cell. Electrons within the neutralizer are prevented from exiting the neutralizer end opening by the action of crossed fields drift (ExB) and are terminated to a collector collar around the downstream opening of the neutralizer. The correct combination of the extended neutralizer end structure and the magnet region is designed so as to maximize the exit of full energy ions and to contain the fractional energy ions.

  15. LIGHT - from laser ion acceleration to future applications

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Light Collaboration

    2013-10-01

    Creation of high intensity multi-MeV ion bunches by high power lasers became a reliable tool during the last 15 years. The laser plasma source provides for TV/m accelerating field gradients and initially sub-ps bunch lengths. However, the large envelope divergence and the continuous exponential energy spectrum are substential drawbacks for many possible applications. To face this problem, the LIGHT collaboration was founded (Laser Ion Generation, Handling and Transport). The collaboration consists of several university groups and research centers, namely TU Darmstadt, JWGU Frankfurt, HI Jena, HZDR Dresden and GSI Darmstadt. The central goal is building a test beamline for merging laser ion acceleration with conventional accelerator infrastructure at the GSI facility. In the latest experiments, low divergent proton bunches with a central energy of up to 10 MeV and containing >109 particles could be provided at up to 2.2 m behind the plasma source, using a pulsed solenoid. In a next step, a radiofrequency cavity will be added to the beamline for phase rotation of these bunches, giving access to sub-ns bunch lengths and reaching highest intensities. An overview of the LIGHT objectives and the recent experimental results will be given. This work was supported by HIC4FAIR.

  16. Light ion components of the galactic cosmic rays: Nuclear interactions and transport theory

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Badhwar, G. D.; Dubey, R. R.

    1996-01-01

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy induced reactions. In the primary GCR, He-4 is the most abundant nucleus after H-1. However, there are also a substantial fluxes of H-2 and He-3. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragementation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  17. The LILIA (laser induced light ions acceleration) experiment at LNF

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Anania, M. P.; Caresana, M.; Cirrone, G. A. P.; De Martinis, C.; Delle Side, D.; Fazzi, A.; Gatti, G.; Giove, D.; Giulietti, D.; Gizzi, L. A.; Labate, L.; Londrillo, P.; Maggiore, M.; Nassisi, V.; Sinigardi, S.; Tramontana, A.; Schillaci, F.; Scuderi, V.; Turchetti, G.; Varoli, V.; Velardi, L.

    2014-07-01

    Laser-matter interaction at relativistic intensities opens up new research fields in the particle acceleration and related secondary sources, with immediate applications in medical diagnostics, biophysics, material science, inertial confinement fusion, up to laboratory astrophysics. In particular laser-driven ion acceleration is very promising for hadron therapy once the ion energy will attain a few hundred MeV. The limited value of the energy up to now obtained for the accelerated ions is the drawback of such innovative technique to the real applications. LILIA (laser induced light ions acceleration) is an experiment now running at LNF (Frascati) with the goal of producing a real proton beam able to be driven for significant distances (50-75 cm) away from the interaction point and which will act as a source for further accelerating structure. In this paper the description of the experimental setup, the preliminary results of solid target irradiation and start to end simulation for a post-accelerated beam up to 60 MeV are given.

  18. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    SciTech Connect

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  19. Formation of amorphous silicon by light ion damage

    SciTech Connect

    Shih, Y.C.

    1985-12-01

    Amorphization by implantation of boron ions (which is the lightest element generally used in I.C. fabrication processes) has been systematically studied for various temperatures, various voltages and various dose rates. Based on theoretical considerations and experimental results, a new amorphization model for light and intermediate mass ion damage is proposed consisting of two stages. The role of interstitial type point defects or clusters in amorphization is emphasized. Due to the higher mobility of interstitials out-diffusion to the surface particularly during amorphization with low energy can be significant. From a review of the idealized amorphous structure, diinterstitial-divacancy pairs are suggested to be the embryos of amorphous zones formed during room temperature implantation. The stacking fault loops found in specimens implanted with boron at room temperature are considered to be the origin of secondary defects formed during annealing.

  20. High-bay Lighting Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple high-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: 1000 Watt to 750 Watt High-pressure Sodium lighting retrofit, 400 Watt to 360 Watt High Pressure Sodium lighting retrofit, High Intensity Discharge to T5 lighting retrofit, High Intensity Discharge to T8 lighting retrofit, and Daylighting. This tool calculates energy savings, demand reduction, cost savings, building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  1. Low-bay Lighting Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple low-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Low-wattage T8 lighting retrofit, T12 to T8 lighting retrofit, LED Exit signs retrofit, Occupancy sensors, Screw-in lighting retrofit, and central lighting controls. This tool calculates energy savings, demand reduction, cooling load reduction, heating load increases, cost savings, building life cycle costs including: Simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  2. MCNPX Extension for Using Light Ion Evaluated Nuclear Data Library.

    SciTech Connect

    PATRICK,; SAUVAN,

    2013-05-23

    Version 00 US DOE 10CFR810 Jurisdiction. MCUNED is an MCNPX extension that handles a light ion evaluated nuclear data library. Using MCUNED, all MCNPX simulations involving transport of light ion could be solved using evaluated libraries instead of MCNPX built-in models.

  3. Mean excitation energies for molecular ions

    NASA Astrophysics Data System (ADS)

    Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens; Sabin, John R.

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  4. Medium energy heavy ion operations at RHIC

    SciTech Connect

    Drees, K.A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blackler, I.M.C.; Blaskiewicz, M.; Brown, K.A.; Brennan, M.; Bruno, D.; Butler, J.; Carlson, C.; Connolly, R.; D'Ottavio, T.; Fischer, W.; Fu, W.; Gassner, D.; Harvey, M.; Hayes, T.; Huang, H.; Hulsart, R.; Ingrassia, P.; Kling, N.; Lafky, M.; Laster, J.; Lee, R.C.; Litvinenko, V.; Luo, Y.; MacKay, W.W.; Marr, G.; Mapes. M.; Marusic, A.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Naylor, C.; Nemesure, S.; Pilat, F.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Sampson, P.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Shrey, T.; Smith, K.S.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; van Kuik, B.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n. The medium energy AuAu run covered two beam energies, both above the RHIC injection energy of 9.8 GeV but well below the standard store energy of 100 GeV (see table 1). The low energy and full energy runs with heavy ions in FY10 are summarized in [1] and [2]. Stochastic Cooling ([3]) was only used for 100 GeV beams and not used in the medium energy run. The efficiency of the transition from 100 GeV operation to 31.2 GeV and then to 19.5 GeV was remarkable. Setup took 32 h and 19 h respectively for the two energy settings. The time in store, defined to be the percentage of time RHIC provides beams in physics conditions versus calendar time, was approximately 52% for the entire FY10 heavy ion run. In both medium energy runs it was well above this average, 68% for 31.5 GeV and 82% for 19.5 GeV. For both energies RHIC was filled with 111 bunches with 1.2 10{sup 9} and 1.3 10{sup 9} ions per bunch respectively.

  5. Theory of laser acceleration of light-ion beams from interaction of ultrahigh-intensity lasers with layered targets.

    PubMed

    Albright, B J; Yin, L; Hegelich, B M; Bowers, Kevin J; Kwan, T J T; Fernández, J C

    2006-09-15

    Experiments at the LANL Trident facility demonstrated the production of monoenergetic ion beams from the interaction of an ultraintense laser with a target comprising a heavy ion substrate and thin layer of light ions. An analytic model is obtained that predicts how the mean energy and quality of monoenergetic ion beams and the energy of substrate ions vary with substrate material and light-ion layer composition and thickness. Dimensionless parameters controlling the dynamics are derived and the model is validated with particle-in-cell simulations and experimental data.

  6. Light ion mass spectrometer for space-plasma investigations

    NASA Technical Reports Server (NTRS)

    Reasoner, D. L.; Chappell, C. R.; Fields, S. A.; Lewter, W. J.

    1982-01-01

    Direct satellite measurements and ground-based techniques have given a comprehensive view of the density distribution of the cold plasma population in the earth's magnetosphere. There were, however, no direct measurements of the low-energy plasma mass composition, temperature, density, pitch-angle distribution, or plasma flow velocity. A description is presented of the evolution and development of an instrument, the Light Ion Mass Spectrometer (LIMS), designed to make these low-energy plasma measurements. The instrument was developed for flight on the spacecraft SCA-THA, a satellite to study satellite charging at high altitudes. This satellite, whose primary mission was to study spacecraft-plasma interactions and electrostatic charging, was launched into a near-geosynchronous orbit. The design requirements regarding the instrument are discussed, and attention is given to the calibration procedures, the flight configuration, and some examples of flight data.

  7. Sputtering Threshold Energies of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Mantenieks, Maris A.

    1999-01-01

    Sputter erosion in ion thrusters has been measured in lifetests at discharge voltages as low as 25 V. Thruster operation at this discharge voltage results in component erosion rates sufficiently low to satisfy most mission requirements. It has been recognized that most of the internal sputtering in ion thrusters is done by doubly charged ions. Knowledge of the sputtering threshold voltage of a xenon molybdenum system would be beneficial in understanding the sputtering process as well as making more accurate calculations of the sputtering rates of ion thruster components. Sputtering threshold energies calculated from various formulations found in the literature results in values ranging from 28 to 200 eV. It is evident that some of these formulations cannot be relied upon to provide sputtering thresholds with any degree of accuracy. This paper re-examines the threshold energies measurements made in the early sixties by Askerov and Sena, and Stuart and Wehner. The threshold voltages as derived by Askerov and au have been reevaluated by using a different extrapolation method of sputter yields at low ion energies. The resulting threshold energies are in general similar to those measured by Stuart and Wehner. An empirical relationship is derived,for mercury and xenon ions for the ratio of the sputtering threshold energy to the sublimation energy as a function of the ratio of target to ion atomic mass.

  8. Time, Light Speed and Space Energy

    NASA Astrophysics Data System (ADS)

    Yang, Penglin

    2008-10-01

    This paper presents a formula that describe the relation with time and the space energy which resolves the key of Lorentz transformation how the time changes in different frames of reference. As the result, it is natural that the light speed is not constant. However, from the formula, in the same space--same space energy, the light speeds in different frames of reference are same. From this, it is easy to explain some facts, for example, light defraction; black holes attract light (it is not attracting, it is defraction); light curving nearby the sun; the temperature of sun surface is higher than inside, etc.)

  9. Downtown Detroit Energy Efficient Street Lighting

    SciTech Connect

    Goodwin, Malik

    2013-11-29

    Reliable public lighting remains a critically important and valuable public service in Detroit, Michigan. The Downtown Detroit Energy Efficiency Lighting Program (the, “Program”) was designed and implemented to bring the latest advancements in lighting technology, energy efficiency, public safety and reliability to Detroit’s Central Business District, and the Program accomplished those goals successfully. Downtown’s nighttime atmosphere has been upgraded as a result of the installation of over 1000 new LED roadway lighting fixtures that were installed as part of the Program. The reliability of the lighting system has also improved.

  10. Molecular ion sources for low energy semiconductor ion implantation (invited)

    SciTech Connect

    Hershcovitch, A.; Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu.; Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Dugin, S.; Alexeyenko, O.

    2016-02-15

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.

  11. New Light on Dark Energy

    NASA Astrophysics Data System (ADS)

    2008-01-01

    observations show that the temperature changes with radius are much steeper than predicted by the currently favoured models, indicating that most of the near-infrared emission emerges from hot material located very close to the star, that is, within one or two times the Earth-Sun distance (1-2 AU). This also implies that dust cannot exist so close to the star, since the strong energy radiated by the star heats and ultimately destroys the dust grains. ESO PR Photo 03/08 ESO PR Photo 03b/08 The Region Around MWC 147 "We have performed detailed numerical simulations to understand these observations and reached the conclusion that we observe not only the outer dust disc, but also measure strong emission from a hot inner gaseous disc. This suggests that the disc is not a passive one, simply reprocessing the light from the star," explained Kraus. "Instead, the disc is active, and we see the material, which is just transported from the outer disc parts towards the forming star." ESO PR Photo 03/08 ESO PR Photo 03c/08 Close-up on MWC 147 The best-fit model is that of a disc extending out to 100 AU, with the star increasing in mass at a rate of seven millionths of a solar mass per year. "Our study demonstrates the power of ESO's VLTI to probe the inner structure of discs around young stars and to reveal how stars reach their final mass," said Stefan Kraus. More Information The authors report their results in a paper in the Astrophysical Journal ("Detection of an inner gaseous component in a Herbig Be star accretion disk: Near- and mid-infrared spectro-interferometry and radiative transfer modeling of MWC 147", by Stefan Kraus, Thomas Preibisch, Keichii Ohnaka").

  12. Shaping laser accelerated ions for future applications - The LIGHT collaboration

    NASA Astrophysics Data System (ADS)

    Busold, S.; Almomani, A.; Bagnoud, V.; Barth, W.; Bedacht, S.; Blažević, A.; Boine-Frankenheim, O.; Brabetz, C.; Burris-Mog, T.; Cowan, T. E.; Deppert, O.; Droba, M.; Eickhoff, H.; Eisenbarth, U.; Harres, K.; Hoffmeister, G.; Hofmann, I.; Jaeckel, O.; Jaeger, R.; Joost, M.; Kraft, S.; Kroll, F.; Kaluza, M.; Kester, O.; Lecz, Z.; Merz, T.; Nürnberg, F.; Al-Omari, H.; Orzhekhovskaya, A.; Paulus, G.; Polz, J.; Ratzinger, U.; Roth, M.; Schaumann, G.; Schmidt, P.; Schramm, U.; Schreiber, G.; Schumacher, D.; Stoehlker, T.; Tauschwitz, A.; Vinzenz, W.; Wagner, F.; Yaramyshev, S.; Zielbauer, B.

    2014-03-01

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies.

  13. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  14. Light thoughts on dark energy

    SciTech Connect

    Linder, Eric V.

    2004-04-01

    The physical process leading to the acceleration of the expansion of the universe is unknown. It may involve new high energy physics or extensions to gravitation. Calling this generically dark energy, we examine the consistencies and relations between these two approaches, showing that an effective equation of state function w(z) is broadly useful in describing the properties of the dark energy. A variety of cosmological observations can provide important information on the dynamics of dark energy and the future looks bright for constraining dark energy, though both the measurements and the interpretation will be challenging. We also discuss a more direct relation between the spacetime geometry and acceleration, via ''geometric dark energy'' from the Ricci scalar, and superacceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.

  15. Low energy ion distribution around the Moon

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Yokota, S.; Tanaka, T.; Asamura, K.; Nishino, M. N.; Yamamoto, T.; Tsunakawa, H.

    2009-04-01

    More than a year has passed since MAP-PACE onboard KAGUYA (SELENE) started continuous observation of the low energy charged particles around the Moon from 100km-altitude polar orbit. MAP (MAgnetic field and Plasma experiment) was developed for the comprehensive measurement of the magnetic field and three-dimensional plasma around the Moon. MAP consists of MAP-LMAG (Lunar MAGnetometer) and MAP-PACE (Plasma energy Angle and Composition Experiment). MAP-PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). Since each sensor has hemispherical field of view, two electron sensors and two ion sensors that are installed on the spacecraft panels opposite to each other can make full 3-dimensional measurements of low energy electrons and ions. One of the ion sensors IMA is an energy mass spectrometer. IMA measures mass identified ion energy spectra that have never been obtained at 100km altitude around the Moon. Low energy charged particles around the Moon were vigorously observed by Moon orbiting satellites and plasma instrumentation placed on the lunar surface in 1960s and 1970s. Though there were some satellites that explored the Moon afterwards, most of them were dedicated to the global mapping of the lunar surface. There has been almost no new information about the low energy charged particles around the Moon except the low energy electron measurement by Lunar Prospector, the lunar wake plasma data obtained by WIND during its Moon fly-by, and reports on remote detection of the lunar ions, lunar electrons and ULF waves generated by electron beams around the lunar wake. The newly observed data show characteristic ion distributions around the Moon. Besides the solar wind, MAP-PACE-IMA discovered four clearly distinguishable ion distributions: 1) Solar wind ions reflected/scattered at the lunar surface, 2) Solar wind ions reflected by magnetic anomalies on the lunar surface, 3) Ions that are

  16. Energy efficient lighting and communications

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Kavehrad, M.; Deng, P.

    2012-01-01

    As Light-Emitting Diode (LED)'s increasingly displace incandescent lighting over the next few years, general applications of Visible Light Communication (VLC) technology are expected to include wireless internet access, vehicle-to-vehicle communications, broadcast from LED signage, and machine-to-machine communications. An objective in this paper is to reveal the influence of system parameters on the power distribution and communication quality, in a general plural sources VLC system. It is demonstrated that sources' Half-Power Angles (HPA), receivers' Field-Of Views (FOV), sources layout and the power distribution among sources are significant impact factors. Based on our findings, we developed a method to adaptively change working status of each LED respectively according to users' locations. The program minimizes total power emitted while simultaneously ensuring sufficient light intensity and communication quality for each user. The paper also compares Orthogonal Frequency-Division Multiplexing (OFDM) and On-Off Keying (OOK) signals performance in indoor optical wireless communications. The simulation is carried out for different locations where different impulse response distortions are experienced. OFDM seems a better choice than prevalent OOK for indoor VLC due to its high resistance to multi-path effect and delay spread. However, the peak-to-average power limitations of the method must be investigated for lighting LEDs.

  17. Measurements of low energy auroral ions

    NASA Astrophysics Data System (ADS)

    Urban, A.

    1981-12-01

    Ion measurements in the energy range 0.1-30 keV observed during the 'Substorm Phenomena' and 'Porcupine' campaigns are summarized. Acceleration of the ions by an electrostatic field aligned parallel to the magnetic field is identified and found to be accompanied by intense electron precipitation. On the other hand, deceleration of the ions is observed in other field-aligned current sheets which are indicated by the electron and magnetic field measurements. Temporal successive monoenergetic ion variations suggest energy dispersion and a location of the source region at 9 earth radii. What is more, ion fluxes higher than those of the electrons are measured at pitch angles parallel to the magnetic field. It is noted that each of the examples was observed during different flights.

  18. Embodied Energy and Off-Grid Lighting

    SciTech Connect

    Alstone, Peter; Mills, Evan; Jacobson, Arne

    2011-01-25

    The greenhouse gas (GHG) emissions from fuel-based lighting are substantial given the paltry levels of lighting service provided to users, leading to a great opportunity for GHG mitigation byencouraging the switch from fuel-based to rechargeable LED lighting. However, as with most new energy technology, switching to efficient lighting requires an up-front investment of energy(and GHGs) embedded in the manufacture of replacement components. We studied a population of off-grid lighting users in 2008-2009 in Kenya who were given the opportunity to adopt LEDlighting. Based on their use patterns with the LED lights and the levels of kerosene offset we observed, we found that the embodied energy of the LED lamp was"paid for" in only one month for grid charged products and two months for solar charged products. Furthermore, the energyreturn-on investment-ratio (energy produced or offset over the product's service life divided by energy embedded) for off-grid LED lighting ranges from 12 to 24, which is on par with on-gridsolar and large-scale wind energy. We also found that the energy embodied in the manufacture of a typical hurricane lantern is about one-half to one-sixth of that embodied in the particular LEDlights that we evaluated, indicating that the energy payback time would be moderately faster if LEDs ultimately displace the production of kerosene lanterns. As LED products improve, weanticipate longer service lives and more successful displacement of kerosene lighting, both of which will speed the already rapid recovery of embodied energy in these products. Our studyprovides a detailed appendix with embodied energy values for a variety of components used to construct off-grid LED lighting, which can be used to analyze other products.

  19. Conversion of radiant light energy in photobioreactors

    SciTech Connect

    Cornet, J.F.; Dussap, C.G.; Gros, J.B. . Lab. de Genie Chimique Biologique)

    1994-06-01

    The conversion of radiant light energy into chemical affinity by microorganisms in photobioreactors is examined. The kinetics of entropy production in the system is theoretically established from entropy and energy balances for the material and photonic phases in the reactor. A negative chemical affinity term compensated for by a radiant energy term at a higher level of energy characterizes photosynthetic organisms. The local volumetric rate of radiant light energy absorbed, which appears in the dissipation function as an irreversible term, is calculated for monodimensional approximations providing analytical solutions and for general tridimensional equations requiring the solution of a new numerical algorithm. Solutions for the blue-green alga Spirulina platensis cultivated in photoreactors with different geometries and light energy inputs are compared. Thermodynamic efficiency of the photosynthesis is calculated. The highest value of 15% found for low radiant energy absorption rates corresponds to a maximum quantum yield in the reactor.

  20. Beamed neutron emission driven by laser accelerated light ions

    NASA Astrophysics Data System (ADS)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ˜ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  1. Berkeley Accelerator Space Effects (BASE) Light Ion FacilityUpgrade

    SciTech Connect

    Johnson, Michael B.; McMahan, Margaret A.; Gimpel, Thomas L.; Tiffany, William S.

    2006-07-07

    The BASE Light Ion Facility upgrades have been completed. All proton beams are now delivered to Cave 4A. New control software, a larger diameter beam window, and improved quality assurance measures have been added.

  2. Procedure to Measure Indoor Lighting Energy Performance

    SciTech Connect

    Deru, M.; Blair, N.; Torcellini, P.

    2005-10-01

    This document provides standard definitions of performance metrics and methods to determine them for the energy performance of building interior lighting systems. It can be used for existing buildings and for proposed buildings. The primary users for whom these documents are intended are building energy analysts and technicians who design, install, and operate data acquisition systems, and who analyze and report building energy performance data. Typical results from the use of this procedure are the monthly and annual energy used for lighting, energy savings from occupancy or daylighting controls, and the percent of the total building energy use that is used by the lighting system. The document is not specifically intended for retrofit applications. However, it does complement Measurement and Verification protocols that do not provide detailed performance metrics or measurement procedures.

  3. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  4. Spectroscopic study of a light-driven chloride ion pump from marine bacteria.

    PubMed

    Inoue, Keiichi; Koua, Faisal Hammad Mekky; Kato, Yoshitaka; Abe-Yoshizumi, Rei; Kandori, Hideki

    2014-09-25

    Thousands of light-driven proton-pumping rhodopsins have been found in marine microbes, and a light-driven sodium-ion pumping rhodopsin was recently discovered, which utilizes sunlight for the energy source of the cell. Similarly, a light-driven chloride-ion pump has been found from marine bacteria, and three eubacterial light-driven pumps possess the DTE (proton pump), NDQ (sodium-ion pump), and NTQ (chloride-ion pump) motifs corresponding to the D85, T89, and D96 positions in bacteriorhodopsin (BR). The corresponding motif of the known haloarchaeal chloride-ion pump, halorhodopsin (HR), is TSA, which is entirely different from the NTQ motif of a eubacterial chloride-ion pump. It is thus intriguing to compare the molecular mechanism of these two chloride-ion pumps. Here we report the spectroscopic study of Fulvimarina rhodopsin (FR), a eubacterial light-driven chloride-ion pump from marine bacterium. FR binds a chloride-ion near the retinal chromophore and chloride-ion binding causes a spectral blue-shift. FR predominantly possesses an all-trans retinal, which is responsible for the light-driven chloride-ion pump. Upon light absorption, the red-shifted K intermediate is formed, followed by the appearance of the L and O intermediates. When the M intermediate does not form, this indicates that the Schiff base remains in the protonated state during the photocycle. These molecular mechanisms are common in HR, and a common mechanism for chloride-ion pumping by evolutionarily distant proteins suggests the importance of the electric quadrupole in the Schiff base region and their changes through hydrogen-bonding alterations. One noticeable difference between FR and HR is the uptake of chloride-ion from the extracellular surface. While the uptake occurs upon decay of the O intermediate in HR, chloride-ion uptake accompanies the rise of the O intermediate in FR. This suggests the presence of a second chloride-ion binding site near the extracellular surface of FR, which is

  5. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments

    PubMed Central

    Armbruster, Ute; Carrillo, L. Ruby; Venema, Kees; Pavlovic, Lazar; Schmidtmann, Elisabeth; Kornfeld, Ari; Jahns, Peter; Berry, Joseph A.; Kramer, David M.; Jonikas, Martin C.

    2014-01-01

    Many photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana K+ efflux antiporter (KEA3) is critical for high photosynthetic efficiency under fluctuating light. On a shift from dark to low light, or high to low light, kea3 mutants show prolonged dissipation of absorbed light energy as heat. KEA3 localizes to the thylakoid membrane, and allows proton efflux from the thylakoid lumen by proton/potassium antiport. KEA3’s activity accelerates the downregulation of pH-dependent energy dissipation after transitions to low light, leading to faster recovery of high photosystem II quantum efficiency and increased CO2 assimilation. Our results reveal a mechanism that increases the efficiency of photosynthesis under fluctuating light. PMID:25451040

  6. Ion-ion interaction and energy transfer of 4+ transuranium ions in cerium tetrafluoride

    SciTech Connect

    Liu, G.K.; Beitz, J.V.

    1990-01-01

    Dynamics of excited 5f electron states of the transuranium ions Cm{sup 4+} and Bk{sup 4+} in CeF{sub 4} are compared. Based on time- and wavelength-resolved laser-induced fluorescence, excitation energy transfer processes have been probed. Depending on concentration and electronic energy level structure of the studied 4+ transuranium ion, the dominant energy transfer mechanisms were identified as cross relaxation, exciton-exciton annihilation, and trapping. Energy transfer rates derived from the fitting of the observed fluorescence decays to theoretical models, based on electric multipolar ion-ion interactions, are contrasted with prior studies of 4f states of 3+ lanthanide and 3d states of transition metal ions. 16 refs., 1 tab.

  7. Asymmetric Functional Conversion of Eubacterial Light-driven Ion Pumps.

    PubMed

    Inoue, Keiichi; Nomura, Yurika; Kandori, Hideki

    2016-05-06

    In addition to the well-known light-driven outward proton pumps, novel ion-pumping rhodopsins functioning as outward Na(+) and inward Cl(-) pumps have been recently found in eubacteria. They convert light energy into transmembrane electrochemical potential difference, similar to the prototypical archaeal H(+) pump bacteriorhodopsin (BR) and Cl(-) pump halorhodopsin (HR). The H(+), Na(+), and Cl(-) pumps possess the conserved respective DTE, NDQ, and NTQ motifs in the helix C, which likely serve as their functional determinants. To verify this hypothesis, we attempted functional interconversion between selected pumps from each category by mutagenesis. Introduction of the proton-pumping motif resulted in successful Na(+) → H(+) functional conversion. Introduction of the respective characteristic motifs with several additional mutations leads to successful Na(+) → Cl(-) and Cl(-) → H(+) functional conversions, whereas remaining conversions (H(+) → Na(+), H(+) → Cl(-), Cl(-) → Na(+)) were unsuccessful when mutagenesis of 4-6 residues was used. Phylogenetic analysis suggests that a H(+) pump is the common ancestor of all of these rhodopsins, from which Cl(-) pumps emerged followed by Na(+) pumps. We propose that successful functional conversions of these ion pumps are achieved exclusively when mutagenesis reverses the evolutionary amino acid sequence changes. Dependence of the observed functional conversions on the direction of evolution strongly suggests that the essential structural mechanism of an ancestral function is retained even after the gain of a new function during natural evolution, which can be evoked by a few mutations. By contrast, the gain of a new function needs accumulation of multiple mutations, which may not be easily reproduced by limited mutagenesis in vitro.

  8. Development of a Fast Ion Energy Analyzer

    NASA Astrophysics Data System (ADS)

    Young, W. C.; Bellan, P. M.

    2003-10-01

    In an effort to measure the ion energy spectra of short duration plasmas, two different analyzers are being compared for usability on short time scales. A traditional energy analyzer, the retarding field energy analyzer (RFEA), is being compared to a design using an electric field to deflect ions onto multiple collectors. The use of multiple collectors allows for simultaneous measurement of several energies overcoming the major limitation of the RFEA is measuring only a single energy per plasma shot. The tradeoff is that the energy resolution of the new design is limited by the number of collectors. These methods are being tested on both a single energy electron gun and also on a spheromak with a plasma duration of 20-30 μs and ion temperature of 20 eV. Both designs have been demonstrated to work under simplified conditions using an electron gun. Currently the RFEA is being tested on the spheromak and efforts are being made to increase the resolution and lower the noise of the new analyzer.

  9. Energy loss of helium ions in zinc

    SciTech Connect

    Lantschner, G.H.; Eckardt, J.C.; Lifschitz, A.F.; Arista, N.R.; Araujo, L.L.; Duarte, P.F.; Santos, J.H.R. dos; Behar, M.; Dias, J.F.; Grande, P.L.; Montanari, C.C.; Miraglia, J.E.

    2004-06-01

    The energy loss of helium ions in zinc has been measured in the energy range from 37.5 to 1750 keV/amu using the transmission technique and the Rutherford backscattering method. In addition, calculations using the extended Friedel sum rule, the unitary convolution approximation, and the local plasma approximation have been performed. The contributions of the inner-shell and valence electrons to the total energy loss are separately evaluated. The measurements and calculations are in good agreement over an extended range of energies, and both of them yield stopping values higher than those provided by SRIM 2003.

  10. Light energy conservation processes in Halobacterium halobium cells

    NASA Technical Reports Server (NTRS)

    Bogomolni, R. A.

    1977-01-01

    Proton pumping driven by light or by respiration generates an electrochemical potential difference across the membrane in Halobacterium halobium. The pH changes induced by light or by respiration in cell suspensions are complicated by proton flows associated with the functioning of the cellular energy transducers. A proton-per-ATP ratio of about 3 is calculated from simultaneous measurements of phosphorylation and the proton inflow. This value is compatible with the chemiosmotic coupling hypothesis. The time course of the light-induced changes in membrane potential indicates that light-driven pumping increases a dark pre-existing potential of about 130 mV only by a small amount (20 to 30 mV). The complex kinetic features of the membrane potential changes do not closely follow those of the pH changes, which suggests that flows of ions other than protons are involved. A qualitative model consistent with the available data is presented.

  11. Low energy ion-molecule reactions

    SciTech Connect

    Farrar, J.M.

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  12. High-energy ion generation in interaction. of short laser pulse with high-density plasma

    NASA Astrophysics Data System (ADS)

    Sentoku, Y.; Bychenkov, V. Y.; Flippo, K.; Maksimchuk, A.; Mima, K.; Mourou, G.; Sheng, Z. M.; Umstadter, D.

    2002-03-01

    Multi-MeV ion production from the interaction of a short laser pulse with a high-density plasma, accompanied by an underdense preplasma, has been studied with a particle-in-cell simulation and good agreement is found with experiment. The mechanism primarily responsible for the acceleration of ions is identified. Comparison with experiments sheds light on the ion-energy dependence on laser intensity, preplasma scale length, and relative ion energies for a multi-species plasma. Two regimes of maximum ion-energy dependence on laser intensity, I, have been identified: subrelativistic, ∝I; and relativistic, ∝. Simulations show that the energy of the accelerated ions versus the preplasma scale length increases linearly and then saturates. In contrast, the ion energy decreases with the thickness of the solid-density plasma.

  13. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclay.

    PubMed

    Delferrière, O; Gobin, R; Harrault, F; Nyckees, S; Sauce, Y; Tuske, O

    2012-02-01

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  14. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclaya)

    NASA Astrophysics Data System (ADS)

    Delferrière, O.; Gobin, R.; Harrault, F.; Nyckees, S.; Sauce, Y.; Tuske, O.

    2012-02-01

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  15. Quantum energy teleportation with trapped ions

    SciTech Connect

    Hotta, Masahiro

    2009-10-15

    We analyze a protocol of quantum energy teleportation that transports energy from the left edge of a linear ion crystal to the right edge by local operations and classical communication at a speed considerably greater than the speed of a phonon in the crystal. A probe qubit is strongly coupled with phonon fluctuation in the ground state for a short time and it is projectively measured in order to obtain information about this phonon fluctuation. During the measurement process, phonons are excited by the time-dependent measurement interaction and the energy of the excited phonons must be infused from outside the system. The obtained information is transferred to the right edge of the crystal through a classical channel. Even though the phonons excited at the left edge do not arrive at the right edge at the same time as when the information arrives at the right edge, we are able to soon extract energy from the ions at the right edge by using the transferred information. Because the intermediate ions of the crystal are not excited during the execution of the protocol, energy is transmitted in the energy-transfer channel without heat generation.

  16. Light-ion-induced multifragmentation: The ISiS project

    NASA Astrophysics Data System (ADS)

    Viola, V. E.; Kwiatkowski, K.; Beaulieu, L.; Bracken, D. S.; Breuer, H.; Brzychczyk, J.; de Souza, R. T.; Ginger, D. S.; Hsi, W.-C.; Korteling, R. G.; Lefort, T.; Lynch, W. G.; Morley, K. B.; Legrain, R.; Pienkowski, L.; Pollacco, E. C.; Renshaw, E.; Ruangma, A.; Tsang, M. B.; Volant, C.; Wang, G.; Yennello, S. J.; Yoder, N. R.

    2006-11-01

    An extensive study of GeV light-ion-induced multifragmentation and its possible interpretation in terms of a nuclear liquid-gas phase transition has been performed with the Indiana Silicon Sphere (ISiS) 4π detector array. Measurements were performed with 5-15 GeV/ c p, pbar, and π- beams incident on 197Au and 2-5 GeV 3He incident on natAg and 197Au targets. Both the reaction dynamics and the subsequent decay of the heavy residues have been explored. The data provide evidence for a dramatic change in the reaction observables near an excitation energy of E*/A=4-5 MeV/residue nucleon. In this region, fragment multiplicities and energy spectra indicate emission from an expanded/dilute source on a very short time scale (20-50 fm/ c). These properties, along with caloric curve and scaling-law behavior, yield a pattern that is consistent with a nuclear liquid-gas phase transition.

  17. Energy efficient lighting for the biological clock

    NASA Astrophysics Data System (ADS)

    Lang, Dieter

    2011-03-01

    Unexpectedly the existence of a formerly unknown type of photoreceptor in the human eye has been proven about 10 years ago. Primarily sensitive in the blue spectral range it is responsible for transducing light signals directly into the brain, controlling essential biological functions like setting of the circadian clock or daytime activation. Recent scientific research has enabled beneficial applications. The paradigms for good lighting design are shifting and standardization activities have been started to build up a sound base for description and application of biologically effective lighting. Latest improvements of LED technology are now allowing realizeation of advanced lighting solutions based on SSL. Optimization of biological effects is possible while demands on good vision are maintained. As biologically effective lighting is addressing a second system besides vision in the human body a measure beyond lumen per watt is required for a proper description of energy efficiency.

  18. Light-induced modification of plant plasma membrane ion transport.

    PubMed

    Marten, I; Deeken, R; Hedrich, R; Roelfsema, M R G

    2010-09-01

    Light is not only the driving force for electron and ion transport in the thylakoid membrane, but also regulates ion transport in various other membranes of plant cells. Light-dependent changes in ion transport at the plasma membrane and associated membrane potential changes have been studied intensively over the last century. These studies, with various species and cell types, revealed that apart from regulation by chloroplasts, plasma membrane transport can be controlled by phytochromes, phototropins or channel rhodopsins. In this review, we compare light-dependent plasma membrane responses of unicellular algae (Eremosphaera and Chlamydomonas), with those of a multicellular alga (Chara), liverworts (Conocephalum), mosses (Physcomitrella) and several angiosperm cell types. Light-dependent plasma membrane responses of Eremosphaera and Chara are characterised by the dominant role of K(+) channels during membrane potential changes. In most other species, the Ca(2+)-dependent activation of plasma membrane anion channels represents a general light-triggered event. Cell type-specific responses are likely to have evolved by modification of this general response or through the development of additional light-dependent signalling pathways. Future research to elucidate these light-activated signalling chains is likely to benefit from the recent identification of S-type anion channel genes and proteins capable of regulating these channels.

  19. Light energy dissipation under water stress conditions

    SciTech Connect

    Stuhlfauth, T.; Scheuermann, R.; Fock, H.P. )

    1990-04-01

    Using {sup 14}CO{sub 2} gas exchange and metabolite analyses, stomatal as well as total internal CO{sub 2} uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to {minus}2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO{sub 2} exchange was drastically reduced, whereas the total CO{sub 2} uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO{sub 2}. This CO{sub 2}-recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO{sub 2} recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations.

  20. Ion channels and the transduction of light signals

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Studies of biological light-sensing mechanisms are revealing important roles for ion channels. Photosensory transduction in plants is no exception. In this article, the evidence that ion channels perform such signal-transducing functions in the complex array of mechanisms that bring about plant photomorphogenesis will be reviewed and discussed. The examples selected for discussion range from light-gradient detection in unicellular algae to the photocontrol of stem growth in Arabidopsis. Also included is some discussion of the technical aspects of studies that combine electrophysiology and photobiology.

  1. Making More Light with Less Energy

    SciTech Connect

    Kuritzky, Leah; Jewell, Jason

    2013-07-18

    Representing the Center for Energy Efficient Materials (CEEM), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of the CEEM is to discover and develop materials that control the interactions among light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.

  2. Case Study: Energy Reduction through Lighting Improvement

    EPA Pesticide Factsheets

    The Captain James A. Lovell Federal Health Care Center in North Chicago, Illinois, reduced its energy consumption by 15 percent in one year.One key project was replacing fluorescent lighting in many areas of campus with more efficient LED bulbs.

  3. Light ion production for a future radiobiological facility at CERN: preliminary studies.

    PubMed

    Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Röhrich, Jörg; Scrivens, Richard

    2014-02-01

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.

  4. Light ion production for a future radiobiological facility at CERN: Preliminary studies

    SciTech Connect

    Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Scrivens, Richard; Röhrich, Jörg

    2014-02-15

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.

  5. Pionic fusion in light-ion systems

    NASA Astrophysics Data System (ADS)

    Joulaeizadeh, L.; Gašparić, I.; Amir-Ahmadi, H. R.; Bacelar, J.; Čaplar, R.; Eslami-Kalantari, M.; Kalantar-Nayestanaki, N.; Löhner, H.; Mardanpour, H.; Messchendorp, J. G.; Moeini, H.; Ramazani-Moghaddam-Arani, A.; Shende, S. V.; Stephan, E.

    2011-01-01

    The role of pions in the nuclear interaction has been studied in pionic fusion experiments using the AGOR accelerator facility at KVI. Pionic fusion is a highly coherent process in which two nuclei fuse to a united nucleus and the available centre-of-mass (C.M.) energy is emitted through the pion channel. The examined reactions were 4He(3He, π0)7Be and 6Li(4He, π0)10B* and both reactions were performed at C.M. energies about 10 MeV above the coherent pion production threshold. Here, the experimental results for the 6Li(4He, π0)10B* reaction will be presented and discussed. In order to provide sensitivity to the full dynamics and relevant processes involved in the pionic fusion reaction, almost the full angular distribution of neutral pions has been determined. In a phenomenological analysis, the contributions of Legendre polynomials to reproduce the behaviour of the angular distribution have been studied. The results of this analysis confirm the importance of the clustering correlations for the 6Li(4He, π0)10B* reaction. The mass dependence of the pionic fusion reaction is in agreement with the results of the existing models extrapolated to this reaction.

  6. Towards Laser Cooling Trapped Ions with Telecom Light

    NASA Astrophysics Data System (ADS)

    Dungan, Kristina; Becker, Patrick; Donoghue, Liz; Liu, Jackie; Olmschenk, Steven

    2015-05-01

    Quantum information has many potential applications in communication, atomic clocks, and the precision measurement of fundamental constants. Trapped ions are excellent candidates for applications in quantum information because of their isolation from external perturbations, and the precise control afforded by laser cooling and manipulation of the quantum state. For many applications in quantum communication, it would be advantageous to interface ions with telecom light. We present progress towards laser cooling and trapping of doubly-ionized lanthanum, which should require only infrared, telecom-compatible light. Additionally, we present progress on optimization of a second-harmonic generation cavity for laser cooling and trapping barium ions, for future sympathetic cooling experiments. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  7. Energy-conservation opportunities in lighting

    SciTech Connect

    1981-04-01

    Technologies and techniques which can be employed by your existing personnel - without the need for consultants - to reduce your lighting costs by as much as 70% are discussed. Four basic steps to reduce energy costs and improve the effectiveness of the lighting system discussed are: get acquainted with some of the basic terminology and energy efficient lamps and fixtures which are on the market; conduct a survey of the building to determine where and how much energy and money can be saved in the process; implement the simple, low-cost or no-cost measures immediately; and calculate the payback period for capital investment modifications, and implement those which make economic sense. Case studies are used to illustrate the recommendations. (MCW)

  8. High energy H- ion transport and stripping

    SciTech Connect

    Chou, W.; /Fermilab

    2005-05-01

    During the Proton Driver design study based on an 8 GeV superconducting RF H{sup -} linac, a major concern is the feasibility of transport and injection of high energy H{sup -} ions because the energy of H{sup -} beam would be an order of magnitude higher than the existing ones. This paper will focus on two key technical issues: (1) stripping losses during transport (including stripping by blackbody radiation, magnetic field and residual gases); (2) stripping efficiency of carbon foil during injection.

  9. Desorption of cluster ions from solid Ne by low-energy ion impact.

    PubMed

    Tachibana, T; Fukai, K; Koizumi, T; Hirayama, T

    2010-12-01

    We investigated Ne(+) ions and Ne(n)(+) (n = 2-20) cluster ions desorbed from the surface of solid Ne by 1.0 keV Ar(+) ion impact. Kinetic energy analysis shows a considerably narrower energy distribution for Ne(n)(+) (n ≥ 3) ions than for Ne(n)(+) (n = 1, 2) ions. The dependence of ion yields on Ne film thickness indicates that cluster ions (n ≥ 3) are desorbed only from relatively thick films. We conclude that desorbed ions grow into large cluster ions during the outflow of deep bulk atoms to the vacuum.

  10. Low Energy Ion-Molecule Reactions

    SciTech Connect

    James M. Farrar

    2004-05-01

    This objective of this project is to study the dynamics of the interactions of low energy ions important in combustion with small molecules in the gas phase and with liquid hydrocarbon surfaces. The first of these topics is a long-standing project in our laboratory devoted to probing the key features of potential energy surfaces that control chemical reactivity. The project provides detailed information on the utilization of specific forms of incident energy, the role of preferred reagent geometries, and the disposal of total reaction energy into product degrees of freedom. We employ crossed molecular beam methods under single collision conditions, at collision energies from below one eV to several eV, to probe potential surfaces over a broad range of distances and interaction energies. These studies allow us to test and validate dynamical models describing chemical reactivity. Measurements of energy and angular distributions of the reaction products with vibrational state resolution provide the key data for these studies. We employ the crossed beam low energy mass spectrometry methods that we have developed over the last several years.

  11. Light ion flow in the nightside ionosphere of Venus

    NASA Astrophysics Data System (ADS)

    Hartle, R. E.; Grebowsky, J. M.

    1993-04-01

    The flow characteristics of the light ions H(+) and He(+) have been studied in the midnight region of the ionosphere of Venus. Measurements of ion composition, electron and ion temperatures and magnetic fields by instruments onboard the Pioneer Venus Orbiter have been used in rite electron and ion equations of conservation of mass and momentum to derive the vertical flow velocities of H(+) and He(+). When average height profiles of the measured quantities were used, H(+) was found to flow upward, accelerating to speeds of almost 1 km/s at the ion-exobase. In a similar fashion, He(+) was found to flow downward into the neutral atmosphere where it is readily quenched by charge transfer reactions. The polarization electric field played an important role in forcing H(+) upward, but did not contribute enough to the He(+) force balance to produce upward flow. At the ion-exobase, the outward electric polarization force on H(+) was shown to be five times the gravitational force. Using an analogy with the terrestrial ion-exosphere, H(+) was inferred to flow upward into the ionotail of Venus and accelerate to escape speeds. A planet averaged escape flux of 1.4 x 10 exp 7/sq cm/s was calculated, which is comparable to hydrogen loss rates estimated by other investigators.

  12. Near-infrared to near-infrared upconverting NaYF4:Yb3+,Tm3+ nanoparticles-aptamer-Au nanorods light resonance energy transfer system for the detection of mercuric(II) ions in solution.

    PubMed

    Chen, Hong-Qi; Yuan, Fei; Wang, Shao-Zhen; Xu, Juan; Zhang, Yi-Yan; Wang, Lun

    2013-04-21

    A new luminescence resonant energy transfer (LRET) system has been designed that utilizes near-infrared (NIR)-to-NIR upconversion lanthanide nanophosphors (UCNPs) as the donor, and Au nanorods (Au NRs) as the acceptor. The UCNPs were excited by a near-infrared (980 nm) wavelength and also emitted at a near-infrared wavelength (804 nm) using an inexpensive infrared continuous wave laser diode. The Au NRs showed a high absorption band around 806 nm, which provided large spectral overlap between the donor and the acceptor. Hg(2+) ions were added to an aqueous solution containing the UCNPs and Au NRs that were modified with a Hg(2+) aptamer. Then, a sandwich-type LRET system was developed for the detection of Hg(2+) ions that had high sensitivity and selectivity in the NIR region. The method was successfully applied to the sensing of Hg(2+) ions in water and human serum samples.

  13. Interaction between Low Energy Ions and the Complicated Organism

    NASA Astrophysics Data System (ADS)

    Yu, Zeng-liang

    1999-12-01

    Low energy ions exist widely in natural world, but people pay a little attention on the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy ions and the complicated organism. The discovery of bioeffect induced by ion implantation has, however, opened a new branch in the field of ion beam application in life sciences. This paper reports recent advances in research on the role of low energy ions in chemical synthesis of the biomolecules and application in genetic modification.

  14. Ion acceleration to cosmic ray energies

    NASA Technical Reports Server (NTRS)

    Lee, Martin A.

    1990-01-01

    The acceleration and transport environment of the outer heliosphere is described schematically. Acceleration occurs where the divergence of the solar-wind flow is negative, that is at shocks, and where second-order Fermi acceleration is possible in the solar-wind turbulence. Acceleration at the solar-wind termination shock is presented by reviewing the spherically-symmetric calculation of Webb et al. (1985). Reacceleration of galactic cosmic rays at the termination shock is not expected to be important in modifying the cosmic ray spectrum, but acceleration of ions injected at the shock up to energies not greater than 300 MeV/charge is expected to occur and to create the anomalous cosmic ray component. Acceleration of energetic particles by solar wind turbulence is expected to play almost no role in the outer heliosphere. The one exception is the energization of interstellar pickup ions beyond the threshold for acceleration at the quasi-perpendicular termination shock.

  15. Investigations of biomimetic light energy harvesting pigments

    SciTech Connect

    Van Patten, P.G.; Donohoe, R.J.; Lindsey, J.S.; Bocian, D.F.

    1998-12-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Nature uses chlorophyll and other porphyrinic pigments to capture and transfer light energy as a preliminary step in photosynthesis. The design of synthetic assemblies of light harvesting and energy directing pigments has been explored through synthesis and characterization of porphyrin oligomers. In this project, pigment electronic and vibrational structures have been explored by electrochemistry and dynamic and static optical measurements. Transient absorption data reveal energy transfer between pigments with lifetimes on the order of 20--200 picoseconds, while Raman data reveal that the basic porphyrin core structure is unperturbed relative to the individual monomer units. These two findings, along with an extensive series of experiments on the oxidized oligomers, reveal that coupling between the pigments is fundamentally weak, but sufficient to allow facile energy transfer as the predominant excited state process. Modeling of the expected quantum yields for energy transfer within a variety of arrays was accomplished, thereby providing a tool to guide synthetic goals.

  16. A semi-analytical radiobiological model may assist treatment planning in light ion radiotherapy.

    PubMed

    Kundrát, Pavel

    2007-12-07

    A semi-analytical model of light ions' Bragg peaks is presented and used in conjunction with a detailed probabilistic radiobiological module to predict the biological effectiveness of light ion irradiation for hadrontherapy applications. The physical Bragg peak model is based on energy-loss calculations with the SRIM code and phenomenological formulae for the energy-loss straggling. Effects of nuclear reactions are accounted for on the level of reducing the number of primary particles only. Reaction products are not followed at all and their contribution to dose deposition is neglected. Beam widening due to multiple scattering and calculations of spread-out Bragg peaks are briefly discussed. With this simple physical model, integral depth-dose distributions are calculated for protons, carbon, oxygen and neon ions. A good agreement with published experimental data is observed for protons and lower energy ions (with ranges in water up to approximately 15 cm), while less satisfactory results are obtained for higher energy ions due to the increased role of nuclear reaction products, neglected in this model. A detailed probabilistic radiobiological module is used to complement the simple physical model and to estimate biological effectiveness along the penetration depth of Bragg peak irradiation. Excellent agreement is found between model predictions and experimental data for carbon beams, indicating potential applications of the present scheme in treatment planning in light ion hadrontherapy. Due to the semi-analytical character of the model, leading to high computational speed, applications are foreseen in particular in the fully biological optimization of multiple irradiation fields and intensity-modulated beams.

  17. Measurement of Ion Energy Distribution in Magnetized ICP using Multi-channel Ion Energy Analyzer

    NASA Astrophysics Data System (ADS)

    Lee, Woohyun; Kim, Hyuk; Kim, Jiwon; Cheong, Hee Woon; Koo, Il Gyo; Lee, Soojin; Seong, Hyo-Seong; Whang, Ki-Woong

    2013-09-01

    In plasma etch processes, the flux and energy of ions incident on the substrate are the important parameters that control the etch profile and the etch rate. In this regard, retarding field Ion Energy Analyzer (IEA) has been developed and applied to plasma etch. As the size of wafer and etch chamber increase, simultaneous measurement at multi points in radial and poloidal direction becomes important. For this purpose, Plasma lab in Seoul National University and SEMES jointly developed an IEA that can measure the ion energy distributions at five positions in 6-inch wafer at the same time. The IEA is composed of 4 mesh grids (floating, electron repelling, discriminator, secondary electron retarding) and one metal layer (Ion collector). We used a remote controllable voltage source and DAC to supply the stepwise wave form to discriminator voltage source. We used the developed IEA to measure the radial and polodial uniformity of energy distribution of ions incident on the substrate with the change of bias power, gas pressure and bias power frequency. This was supported by SEMES cooperative research project.

  18. Measuring Light Air Ions in a Speleotherapeutic Cave

    NASA Astrophysics Data System (ADS)

    Roubal, Z.; Bartušek, K.; Szabó, Z.; Drexler, P.; Überhuberová, J.

    2017-02-01

    The paper deals with a methodology proposed for measuring the concentration of air ions in the environment of speleotherapeutic caves, and with the implementation of the AK-UTEE-v2 ionmeter. Speleotherapy, in the context of its general definition, is the medical therapy that utilizes the climate of selected caves to treat patients with health problems such as asthma. These spaces are characterized by the presence of high air humidity and they make extreme demands on the execution of the measuring device, the Gerdien tube (GT in the following) in particular, and on the amplifier electronics. The result is an automated measuring system using a GT with low-volume air flow, enabling long-term measuring of air ion concentration and determination of spectral ion characteristics. Interesting from the instrumentation viewpoint are the GT design, active shielding, and execution of the electrometric amplifier. A specific method for the calculation of spectral ion characteristics and the mode of automatic calibration were proposed and a procedure of automatic measurement in the absence of attendants was set up. The measuring system is designed for studying and long-term monitoring of the concentration of light negative ions in dependence on climatic conditions and on the mobility of ions occurring in the cave.

  19. Radiation-Pressure Acceleration of Ion Beams from Nanofoil Targets: The Leaky Light-Sail Regime

    SciTech Connect

    Qiao, B.; Zepf, M.; Borghesi, M.; Dromey, B.; Geissler, M.; Karmakar, A.; Gibbon, P.

    2010-10-08

    A new ion radiation-pressure acceleration regime, the 'leaky light sail', is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10{sup 19} W/cm{sup 2}. 100 MeV proton beams are obtained by increasing the intensities to 2x10{sup 20} W/cm{sup 2}.

  20. Radiation-pressure acceleration of ion beams from nanofoil targets: the leaky light-sail regime.

    PubMed

    Qiao, B; Zepf, M; Borghesi, M; Dromey, B; Geissler, M; Karmakar, A; Gibbon, P

    2010-10-08

    A new ion radiation-pressure acceleration regime, the "leaky light sail," is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10¹⁹  W/cm². 100 MeV proton beams are obtained by increasing the intensities to 2 × 10²⁰  W/cm².

  1. Inhomogeneous Magnetic Field Geometry Light Ion Helicon Plasma Source

    NASA Astrophysics Data System (ADS)

    Mori, Yoshitaka; Nakashima, Hideki; Goulding, R. H.; Carter Baity, M. D., Jr.; Sparks, D. O.; Barber, G. C.; White, K. F.; Jaeger, E. F.; Chang-Díaz, F. R.; Squire, J. P.

    2002-11-01

    Helicon plasma source is a well-known high-density plasma source for many applications including plasma processing and fusion. However, most helicon research has been focused on a uniform static magnetic field and relatively heavy ions. Light ion helicon operation is more sensitive to magnetic field strength and geometry than heavy ions. The axially inhomogeneous Mini-Radio Frequency Test Facility (Mini-RFTF) has a capability for controlling static magnetic fields then is applicative for light ion source plasma operation. Inhomogeneous static magnetic field geometry also can procedure a high velocity to plasma exhaust when combined with ICRF heating enabling the possibility of use in plasma propulsion. In this poster, we will show how the source has been optimized for a hydrogen operation and a specific plasma propulsion concept: The Variable Specific Impulse Magnetoplasma Rocket (VASIMR). Measurements of the rf magnetic fields and profile of plasma parameters for several magnetic field strengths and geometries will be discussed. Comparisons with a RF modeling code EMIR3 also will be reported here.

  2. FURTHER EXPERIMENTS ON THE ABSORPTION OF IONS BY PLANTS, INCLUDING OBSERVATIONS ON THE EFFECT OF LIGHT

    PubMed Central

    Hoagland, D. R.; Davis, A. R.

    1923-01-01

    1. The conditions of illumination were found to exert a very significant influence on absorption of ions from dilute solution by Nitella. These conditions were also found to influence the penetration of Br and NO3 into the cell sap. 2. It is concluded that absorption of ions by plants from dilute solutions involves energy exchanges, with light as the ultimate source of the energy. It is suggested that the absorption is intimately related to growth and metabolism. 3. One ion may affect the removal from solution or penetration into the cell sap of another ion present in the same solution, even in solutions of extremely low concentration. It is probable that all three types of relations may exist—anion to anion, cation to cation, and anion to cation. 4. The sulfate and phosphate ions exerted far less influence on the absorption of nitrate than did chlorine and bromine ions. It is suggested as a possibility that sulfate does not penetrate readily to those surfaces at which chlorine, bromine, nitrate, and other ions may become effective. PMID:19872049

  3. Study on the growth and the photosynthetic characteristics of low energy C(+) ion implantation on peanut.

    PubMed

    Han, Yuguo; Xu, Lei; Yang, Peiling; Ren, Shumei

    2013-01-01

    Employing the Nonghua 5 peanut as experimental material, the effects of low energy C(+) ion implantation on caulis height, root length, dry weight, photosynthetic characteristics and leaf water use efficiency (WUE) of Peanut Ml Generation were studied. Four fluences were observed in the experiment. The results showed that ion implantation harmed the peanut seeds because caulis height, root length and dry weight all were lower in the treatments than in CK, and the harm was aggravated with the increase of ion fluence. Both Pn and Tr show a saddle-shape curve due to midday depression of photosynthesis. Low fluence of low energy C(+) ion implantation could increase the diurnal average Pn of peanut. The diurnal variation of Tr did not change as significantly as Pn. The light saturation point (LSP) was restrained by the ions. After low energy C(+) ion implantation, WUE was enhanced. When the fluence increased to a certain level, the WUE began to decrease.

  4. Electron-temperature requirements for neutralized inertial-confinement-fusion light-ion beams

    SciTech Connect

    Lemons, D.S.

    1981-01-01

    Because of their large self-space-charge fields, light ion beam drivers of energy and power sufficient to achieve inertial confinement fusion (ICF) cannot be focused on a small fuel pellet unless neutralized. Even if initially neutralized with comoving electrons, these beams will not stay neutralized and focus during propagation through a vacuum chamber unless the initial thermal energy of the neutralizing electrons is sufficiently small. In this paper we discuss the effects which contribute to the effective initial temperature of the neutralizing electrons, including compressional shock heating. We also employ a simple heuristic model to construct envelope equations which govern axial as well as radial beam compression and use them to predict the largest initial electron temperature consistent with the required beam compression. This temperature for typical light ion beam systems is about ten eV - a temperature which may be possible to achieve.

  5. Effective implantation of light emitting centers by plasma immersion ion implantation and focused ion beam methods into nanosized diamond

    NASA Astrophysics Data System (ADS)

    Himics, L.; Tóth, S.; Veres, M.; Tóth, A.; Koós, M.

    2015-02-01

    Two different implantation techniques, plasma immersion ion implantation and focused ion beam, were used to introduce nitrogen ions into detonation nanodiamond crystals with the aim to create nitrogen-vacancy related optically active centers of light emission in near UV region. Previously samples were subjected to a defect creation process by helium irradiation in both cases. Heat treatments at different temperatures (750 °C, 450 °C) were applied in order to initiate the formation of nitrogen-vacancy related complex centers and to decrease the sp2 carbon content formed under different treatments. As a result, a relatively narrow and intensive emission band with fine structure at 2.98, 2.83 and 2.71 eV photon energies was observed in the light emission spectrum. It was assigned to the N3 complex defect center. The formation of this defect center can be expected by taking into account the relatively high dose of implanted nitrogen ions and the overlapped depth distribution of vacancies and nitrogen. The calculated depth profiles distribution for both implanted nitrogen and helium by SRIM simulation support this expectation.

  6. State-selective charge transfer cross sections for light ion impact of atomic hydrogen

    SciTech Connect

    Schultz, D. R.; Stancil, Phillip C.; Havener, C. C.

    2015-01-01

    Owing to the utility of diagnosing plasma properties such as impurity concentration and spatial distribution, and plasma temperature and rotation, by detection of photon emission following capture of electrons from atomic hydrogen to excited states of multiply charged ions, new calculations of state-selective charge transfer involving light ions have been carried out using the atomic orbital close-coupling and the classical trajectory Monte Carlo methods. By comparing these with results of other approaches applicable in a lower impact energy regime, and by benchmarking them using key experimental data, knowledge of the cross sections can be made available across the range parameters needed by fusion plasma diagnostics.

  7. RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab

    SciTech Connect

    Rimmer, Robert A; Hannon, Fay E; Guo, Jiquan; Huang, Shichun; Huang, Yulu; Wang, Haipeng; Wang, S

    2015-09-01

    JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high-current storage rings with many bunches. We present the high-level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reduce the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources.

  8. Production of High Energy Ions Near an Ion Thruster Discharge Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Mikellides, I. G.; Goebel, D. M.; Jameson, K. K.; Wirz, R.; Polk, James E.

    2006-01-01

    Several researchers have measured ions leaving ion thruster discharge chambers with energies far greater than measured discharge chamber potentials. Presented in this paper is a new mechanism for the generation of high energy ions and a comparison with measured ion spectra. The source of high energy ions has been a puzzle because they not only have energies in excess of measured steady state potentials, but as reported by Goebel et. al. [1], their flux is independent of the amplitude of time dependent plasma fluctuations. The mechanism relies on the charge exchange neutralization of xenon ions accelerated radially into the potential trough in front of the discharge cathode. Previous researchers [2] have identified the importance of charge exchange in this region as a mechanism for protecting discharge cathode surfaces from ion bombardment. This paper is the first to identify how charge exchange in this region can lead to ion energy enhancement.

  9. Fe ion-implanted TiO2 thin film for efficient visible-light photocatalysis

    NASA Astrophysics Data System (ADS)

    Impellizzeri, G.; Scuderi, V.; Romano, L.; Sberna, P. M.; Arcadipane, E.; Sanz, R.; Scuderi, M.; Nicotra, G.; Bayle, M.; Carles, R.; Simone, F.; Privitera, V.

    2014-11-01

    This work shows the application of metal ion-implantation to realize an efficient second-generation TiO2 photocatalyst. High fluence Fe+ ions were implanted into thin TiO2 films and subsequently annealed up to 550 °C. The ion-implantation process modified the TiO2 pure film, locally lowering its band-gap energy from 3.2 eV to 1.6-1.9 eV, making the material sensitive to visible light. The measured optical band-gap of 1.6-1.9 eV was associated with the presence of effective energy levels in the energy band structure of the titanium dioxide, due to implantation-induced defects. An accurate structural characterization was performed by Rutherford backscattering spectrometry, transmission electron microscopy, Raman spectroscopy, X-ray diffraction, and UV/VIS spectroscopy. The synthesized materials revealed a remarkable photocatalytic efficiency in the degradation of organic compounds in water under visible light irradiation, without the help of any thermal treatments. The photocatalytic activity has been correlated with the amount of defects induced by the ion-implantation process, clarifying the operative physical mechanism. These results can be fruitfully applied for environmental applications of TiO2.

  10. Energy Recovery Linacs for Light Source Applications

    SciTech Connect

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  11. ENERGY SOURCES AND LIGHT CURVES OF MACRONOVAE

    SciTech Connect

    Kisaka, Shota; Ioka, Kunihito; Takami, Hajime E-mail: takami@post.kek.jp

    2015-04-01

    A macronova (kilonova) was discovered with a short gamma-ray burst, GRB 130603B, which is widely believed to be powered by the radioactivity of r-process elements synthesized in the ejecta of a neutron star (NS)–binary merger. As an alternative, we propose that macronovae are energized by the central engine, i.e., a black hole or NS, and the injected energy is emitted after the adiabatic expansion of ejecta. This engine model is motivated by extended emission of short GRBs. In order to compare the theoretical models with observations, we develop analytical formulae for the light curves of macronovae. The engine model allows a wider parameter range, especially smaller ejecta mass, and a better fit to observations than the r-process model. Future observations of electromagnetic counterparts of gravitational waves should distinguish energy sources and constrain the activity of the central engine and the r-process nucleosynthesis.

  12. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  13. Ranges and profiles of distribution of low-energy ions channeling in metal and semiconductor single crystals

    NASA Astrophysics Data System (ADS)

    Umarov, F. F.; Rasulov, A. M.; Khaidarov, A. K.

    2003-07-01

    In the present work peculiarities of trajectories and energy losses, ranges and profiles of distribution of low-energy different-mass ions channeling in thin single crystals of metals and semiconductors have been thoroughly studied by computer simulation in binary collision approximation. The character of oscillations of channeled-ion trajectories depending on their energies, aiming points from the axis of a channel, kind of interaction potential, crystal lattice type and temperature has been determined. It has been found that, in the case of light ions even at low energy, the main contribution to energy loss is made by inelastic energy losses, whereas for heavy ions, already at E < 10 keV elastic energy losses exceed inelastic ones. Profiles of the distribution of channeled ions have been calculated depending on crystal lattice type, kind of ions and their energy.

  14. Light and heavy ion beam analysis of thin biological sections

    NASA Astrophysics Data System (ADS)

    Lee, Joonsup; Siegele, Rainer; Pastuovic, Zeljko; Hackett, Mark J.; Hunt, Nicholas H.; Grau, Georges E.; Cohen, David D.; Lay, Peter A.

    2013-07-01

    increased ion beam damage, the necessity of very high ion energies resulting in higher neutron fields.

  15. Analysis of the theory of high energy ion transport

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1977-01-01

    Procedures for the approximation of the transport of high-energy ions are discussed on the basis of available data on ion nuclear reactions. A straightahead approximation appears appropriate for space applications. The assumption that the secondary-ion-fragment velocity is equal to that of the fragmenting nucleus is inferior to straightahead theory but is of sufficient accuracy if the primary ions display a broad energy spectrum. An iterative scheme for the solution of the inhomogenous integral transport equations holds promise for practical calculation. A model calculation shows that multiple charged ion fragments penetrate to greater depths in comparison with the free path of a primary heavy ion.

  16. Magnetized retarding field energy analyzer measuring the particle flux and ion energy distribution of both positive and negative ions.

    PubMed

    Rafalskyi, Dmytro; Dudin, Stanislav; Aanesland, Ane

    2015-05-01

    This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier created in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV.

  17. Magnetized retarding field energy analyzer measuring the particle flux and ion energy distribution of both positive and negative ions

    SciTech Connect

    Rafalskyi, Dmytro; Aanesland, Ane; Dudin, Stanislav

    2015-05-15

    This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier created in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV.

  18. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  19. Critical Role of Energy Transfer Between Terbium Ions for Suppression of Back Energy Transfer in Nonanuclear Terbium Clusters.

    PubMed

    Omagari, Shun; Nakanishi, Takayuki; Kitagawa, Yuichi; Seki, Tomohiro; Fushimi, Koji; Ito, Hajime; Meijerink, Andries; Hasegawa, Yasuchika

    2016-11-15

    Lanthanide (Ln(III)) complexes form an important class of highly efficient luminescent materials showing characteristic line emission after efficient light absorption by the surrounding ligands. The efficiency is however lowered by back energy transfer from Ln(III) ion to the ligands, especially at higher temperatures. Here we report a new strategy to reduce back energy transfer losses. Nonanuclear lanthanide clusters containing terbium and gadolinium ions, TbnGd9-n clusters ([TbnGd9-n(μ-OH)10(butylsalicylate)16](+)NO3(-), n = 0, 1, 2, 5, 8, 9), were synthesized to investigate the effect of energy transfer between Tb(III) ions on back energy transfer. The photophysical properties of TbnGd9-n clusters were studied by steady-state and time-resolved spectroscopic techniques and revealed a longer emission lifetime with increasing number of Tb(III) ions in TbnGd9-n clusters. A kinetic analysis of temperature dependence of the emission lifetime show that the energy transfer between Tb(III) ions competes with back energy transfer. The experimental results are in agreement with a theoretical rate equation model that confirms the role of energy transfer between Tb(III) ions in reducing back energy transfer losses. The results provide a new strategy in molecular design for improving the luminescence efficiency in lanthanide complexes which is important for potential applications as luminescent materials.

  20. Critical Role of Energy Transfer Between Terbium Ions for Suppression of Back Energy Transfer in Nonanuclear Terbium Clusters

    PubMed Central

    Omagari, Shun; Nakanishi, Takayuki; Kitagawa, Yuichi; Seki, Tomohiro; Fushimi, Koji; Ito, Hajime; Meijerink, Andries; Hasegawa, Yasuchika

    2016-01-01

    Lanthanide (Ln(III)) complexes form an important class of highly efficient luminescent materials showing characteristic line emission after efficient light absorption by the surrounding ligands. The efficiency is however lowered by back energy transfer from Ln(III) ion to the ligands, especially at higher temperatures. Here we report a new strategy to reduce back energy transfer losses. Nonanuclear lanthanide clusters containing terbium and gadolinium ions, TbnGd9−n clusters ([TbnGd9−n(μ-OH)10(butylsalicylate)16]+NO3−, n = 0, 1, 2, 5, 8, 9), were synthesized to investigate the effect of energy transfer between Tb(III) ions on back energy transfer. The photophysical properties of TbnGd9−n clusters were studied by steady-state and time-resolved spectroscopic techniques and revealed a longer emission lifetime with increasing number of Tb(III) ions in TbnGd9−n clusters. A kinetic analysis of temperature dependence of the emission lifetime show that the energy transfer between Tb(III) ions competes with back energy transfer. The experimental results are in agreement with a theoretical rate equation model that confirms the role of energy transfer between Tb(III) ions in reducing back energy transfer losses. The results provide a new strategy in molecular design for improving the luminescence efficiency in lanthanide complexes which is important for potential applications as luminescent materials. PMID:27845407

  1. Critical Role of Energy Transfer Between Terbium Ions for Suppression of Back Energy Transfer in Nonanuclear Terbium Clusters

    NASA Astrophysics Data System (ADS)

    Omagari, Shun; Nakanishi, Takayuki; Kitagawa, Yuichi; Seki, Tomohiro; Fushimi, Koji; Ito, Hajime; Meijerink, Andries; Hasegawa, Yasuchika

    2016-11-01

    Lanthanide (Ln(III)) complexes form an important class of highly efficient luminescent materials showing characteristic line emission after efficient light absorption by the surrounding ligands. The efficiency is however lowered by back energy transfer from Ln(III) ion to the ligands, especially at higher temperatures. Here we report a new strategy to reduce back energy transfer losses. Nonanuclear lanthanide clusters containing terbium and gadolinium ions, TbnGd9‑n clusters ([TbnGd9‑n(μ-OH)10(butylsalicylate)16]+NO3‑, n = 0, 1, 2, 5, 8, 9), were synthesized to investigate the effect of energy transfer between Tb(III) ions on back energy transfer. The photophysical properties of TbnGd9‑n clusters were studied by steady-state and time-resolved spectroscopic techniques and revealed a longer emission lifetime with increasing number of Tb(III) ions in TbnGd9‑n clusters. A kinetic analysis of temperature dependence of the emission lifetime show that the energy transfer between Tb(III) ions competes with back energy transfer. The experimental results are in agreement with a theoretical rate equation model that confirms the role of energy transfer between Tb(III) ions in reducing back energy transfer losses. The results provide a new strategy in molecular design for improving the luminescence efficiency in lanthanide complexes which is important for potential applications as luminescent materials.

  2. Mutant of a Light-Driven Sodium Ion Pump Can Transport Cesium Ions.

    PubMed

    Konno, Masae; Kato, Yoshitaka; Kato, Hideaki E; Inoue, Keiichi; Nureki, Osamu; Kandori, Hideki

    2016-01-07

    Krokinobacter eikastus rhodopsin 2 (KR2) is a light-driven Na(+) pump found in marine bacterium. KR2 pumps Li(+) and Na(+), but it becomes an H(+) pump in the presence of K(+), Rb(+), and Cs(+). Site-directed mutagenesis of the cytoplasmic surface successfully converted KR2 into a light-driven K(+) pump, suggesting that ion selectivity is determined at the cytoplasmic surface. Here we extended this research and successfully created a light-driven Cs(+) pump. KR2 N61L/G263F pumps Cs(+) as well as other monovalent cations in the presence of a protonophore. Ion-transport activities correlated with the additive volume of the residues at 61 and 263. The result suggests that an ion-selectivity filter is affected by these two residues and functions by strict exclusion of K(+) and larger cations in the wild type (N61/G263). In contrast, introduction of large residues possibly destroys local structures of the ion-selectivity filter, leading to the permeation of K(+) (P61/W263) and Cs(+) (L61/F263).

  3. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  4. Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance.

    PubMed

    Lórenz-Fonfría, Víctor A; Bamann, Christian; Resler, Tom; Schlesinger, Ramona; Bamberg, Ernst; Heberle, Joachim

    2015-10-27

    The discovery of channelrhodopsins introduced a new class of light-gated ion channels, which when genetically encoded in host cells resulted in the development of optogenetics. Channelrhodopsin-2 from Chlamydomonas reinhardtii, CrChR2, is the most widely used optogenetic tool in neuroscience. To explore the connection between the gating mechanism and the influx and efflux of water molecules in CrChR2, we have integrated light-induced time-resolved infrared spectroscopy and electrophysiology. Cross-correlation analysis revealed that ion conductance tallies with peptide backbone amide I vibrational changes at 1,665(-) and 1,648(+) cm(-1). These two bands report on the hydration of transmembrane α-helices as concluded from vibrational coupling experiments. Lifetime distribution analysis shows that water influx proceeded in two temporally separated steps with time constants of 10 μs (30%) and 200 μs (70%), the latter phase concurrent with the start of ion conductance. Water efflux and the cessation of the ion conductance are synchronized as well, with a time constant of 10 ms. The temporal correlation between ion conductance and hydration of helices holds for fast (E123T) and slow (D156E) variants of CrChR2, strengthening its functional significance.

  5. Anomalous absorption of laser light on ion acoustic fluctuations

    NASA Astrophysics Data System (ADS)

    Rozmus, Wojciech; Bychenkov, Valery Yu.

    2016-10-01

    Theory of laser light absorption due to ion acoustic turbulence (IAT) is discussed in high Z plasmas where ion acoustic waves are weakly damped. Our theory applies to the whole density range from underdense to critical density plasmas. It includes an absorption rate for the resonance anomalous absorption due to linear conversion of electromagnetic waves into electron plasma oscillations by the IAT near the critical density in addition to the absorption coefficient due to enhanced effective electron collisionality. IAT is driven by large electron heat flux through the return current instability. Stationary spectra of IAT are given by weak plasma turbulence theory and applied in description of the anomalous absorption in the inertial confinement fusion plasmas at the gold walls of a hohlraum. This absorption is anisotropic in nature due to IAT angular anisotropy and differs for p- and s-polarization of the laser radiation. Possible experiments which could identify the resonance anomalous absorption in a laser heated plasma are discussed.

  6. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  7. Fabrication and demonstration of high energy density lithium ion microbatteries

    NASA Astrophysics Data System (ADS)

    Sun, Ke

    density on a limited footprint area. In chapter 4, Li-ion batteries based on the LiMn2O4-TiP 2O7 couple are manufactured on flexible paper substrates; where the use of light-weight paper substrates significantly increase the gravimetric energy density of this electrode couple as compared to traditional metal current collectors. In chapter 5, a novel nanowire growth mechanism will be explored to grow interdigitated metal oxide nanowire micro battery electrodes. The growth kinetics of this mechanism is systematically studied to understand how to optimize the growth process to produce electrodes with improved electrochemical properties.

  8. NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT

    SciTech Connect

    Alok Srivastava; Anant Setlur

    2003-04-01

    This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color

  9. Neutral beamline with improved ion-energy recovery

    SciTech Connect

    Dagenhart, W.K.; Haselton, H.H.; Stirling, W.L.; Whealton, J.H.

    1981-04-13

    A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.

  10. Quantitative low-energy ion beam characterization by beam profiling and imaging via scintillation screens

    NASA Astrophysics Data System (ADS)

    Germer, S.; Pietag, F.; Polak, J.; Arnold, T.

    2016-11-01

    This study presents the imaging and characterization of low-current ion beams in the neutralized state monitored via single crystal YAG:Ce (Y3Al5O12) scintillators. To validate the presented beam diagnostic tool, Faraday cup measurements and test etchings were performed. Argon ions with a typical energy of 1.0 keV were emitted from an inductively coupled radio-frequency (13.56 MHz) ion beam source with total currents of some mA. Different beam properties, such as, lateral ion current density, beam divergence angle, and current density in pulsed ion beams have been studied to obtain information about the spatial beam profile and the material removal rate distribution. We observed excellent imaging properties with the scintillation screen and achieved a detailed characterization of the neutralized ion beam. A strong correlation between the scintillator light output, the ion current density, and the material removal rate could be observed.

  11. Divergence measurement of light ion beams using ultracompact ion pinhole cameras on PBFA II (abstract)

    SciTech Connect

    Haill, T.; Johnson, D.; Bailey, J.; Leeper, R.; Hebron, D.; Stygar, W. )

    1992-10-01

    Ion beam divergence reduction will increase the power density deliverable to an ICF target and is one step towards demonstrating a credible path to target ignition. Measurement of the divergence is made with an ultracompact ion pinhole camera (UC-IPC). The UC-IPC is mounted in the PBFA II diode near the ion source at a 10{degree} angle to compensate for beam bending in the diode's applied magnetic field. The beam is transported through an entrance pinhole and down an entrance tube to a gold scattering foil. The beam is scattered 90{degree} through a second pinhole to CR39 film where the ion track count is recorded. This paper will describe the results of off-axis ion beam divergence measurements using the UC-IPC. Together with other diagnostics, the UC-IPC provides information about beam species and charge state, about particle energy and about divergence of the beam. This paper will also describe UC-IPC simulation using PICDIAG, a 2D code that models the ion transport and diagnostic response of experiments on Sandia's PBFA II accelerator. This work supported by the U. S. Department of Energy Contract No. DE-AC04-76DP00789.

  12. Light-controlled ion channels formed by amphiphilic small molecules regulate ion conduction via cis-trans photoisomerization.

    PubMed

    Liu, Tao; Bao, Chunyan; Wang, Haiyan; Lin, Yao; Jia, Huijuan; Zhu, Linyong

    2013-11-11

    Light-regulated ion channel-transport across lipid bilayers was realized using structurally simple azobenzene-based amphiphilic small molecules. UV or visible irradiation triggers molecular photoisomerization, which induces structural and membrane affinity changes in self-assembled channels, thus resulting in light-regulated ion transmembrane transport.

  13. Low-Energy Sputtering Studies of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    Sputtering of boron nitride with xenon ions was investigated using secondary ion (SIMS) and secondary neutral (SNMS) mass spectrometry. The ions generated from the ion gun were incident on the target at an angle of 50' with respect to the surface'normal. The energy of ions ranged from 100 eV to 3 keV. A flood electron gun was used to neutralize the positive charge build-up on the target surface. The intensities of sputtered neutral and charged particles, including single atoms, molecules, and clusters, were measured as a function of ion energy. Positive SIMS spectra were dominated by the two boron isotopes whereas BN- and B- were the two major constituents of the negative SIMS spectra. Nitrogen could be detected only in the SNMS spectra. The intensity-energy curves of the sputtered particles were similar in shape. The knees in P-SIMS and SNMS intensity-energy curves appear at around I keV which is significantly higher that 100 to 200 eV energy range at which knees appear in the sputtering of medium and heavy elements by ions of argon and xenon. This difference in the position of the sputter yield knee between boron nitride and heavier targets is due to the reduced ion energy differences. The isotopic composition of secondary ions of boron were measured by bombarding boron nitride with xenon ions at energies ranging from 100 eV to 1.5 keV using a quadrupole mass spectrometer. An ion gun was used to generate the ion beam. A flood electron gun was used to neutralize the positive charge buildup on the target surface. The secondary ion flux was found to be enriched in heavy isotopes at lower incident ion energies. The heavy isotope enrichment was observed to decrease with increasing primary ion energy. Beyond 350 eV, light isotopes were sputtered preferentially with the enrichment increasing to an asymptotic value of 1.27 at 1.5 keV. The trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy

  14. Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries.

    PubMed

    Paolella, Andrea; Faure, Cyril; Bertoni, Giovanni; Marras, Sergio; Guerfi, Abdelbast; Darwiche, Ali; Hovington, Pierre; Commarieu, Basile; Wang, Zhuoran; Prato, Mirko; Colombo, Massimo; Monaco, Simone; Zhu, Wen; Feng, Zimin; Vijh, Ashok; George, Chandramohan; Demopoulos, George P; Armand, Michel; Zaghib, Karim

    2017-04-10

    Recently, intensive efforts are dedicated to convert and store the solar energy in a single device. Herein, dye-synthesized solar cell technology is combined with lithium-ion materials to investigate light-assisted battery charging. In particular we report the direct photo-oxidation of lithium iron phosphate nanocrystals in the presence of a dye as a hybrid photo-cathode in a two-electrode system, with lithium metal as anode and lithium hexafluorophosphate in carbonate-based electrolyte; a configuration corresponding to lithium ion battery charging. Dye-sensitization generates electron-hole pairs with the holes aiding the delithiation of lithium iron phosphate at the cathode and electrons utilized in the formation of a solid electrolyte interface at the anode via oxygen reduction. Lithium iron phosphate acts effectively as a reversible redox agent for the regeneration of the dye. Our findings provide possibilities in advancing the design principles for photo-rechargeable lithium ion batteries.

  15. Free Energy Wells and Barriers to Ion Transport Across Membranes

    NASA Astrophysics Data System (ADS)

    Rempe, Susan

    2014-03-01

    The flow of ions across cellular membranes is essential to many biological processes. Ion transport is also important in synthetic materials used as battery electrolytes. Transport often involves specific ions and fast conduction. To achieve those properties, ion conduction pathways must solvate specific ions by just the ``right amount.'' The right amount of solvation avoids ion traps due to deep free energy wells, and avoids ion block due to high free energy barriers. Ion channel proteins in cellular membranes demonstrate this subtle balance in solvation of specific ions. Using ab initio molecular simulations, we have interrogated the link between binding site structure and ion solvation free energies in biological ion binding sites. Our results emphasize the surprisingly important role of the environment that surrounds ion-binding sites for fast transport of specific ions. We acknowledge support from Sandia's LDRD program. Sandia National Labs is a multi-program laboratory operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the US DOE's NNSA under contract DE-AC04-94AL85000.

  16. Light stable isotope analysis of meteorites by ion microprobe

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.

    1994-01-01

    The main goal was to develop the necessary secondary ion mass spectrometer (SIMS) techniques to use a Cameca ims-4f ion microprobe to measure light stable isotope ratios (H, C, O and S) in situ and in non-conducting mineral phases. The intended application of these techniques was the analysis of meteorite samples, although the techniques that have been developed are equally applicable to the investigation of terrestrial samples. The first year established techniques for the analysis of O isotope ratios (delta O-18 and delta O-17) in conducting mineral phases and the measurement of S isotope ratios (delta S-34) in a variety of sulphide phases. In addition, a technique was developed to measure delta S-34 values in sulphates, which are insulators. Other research undertaken in the first year resulted in SIMS techniques for the measurement of wide variety of trace elements in carbonate minerals, with the aim of understanding the nature of alteration fluids in carbonaceous chondrites. In the second year we developed techniques for analyzing O isotope ratios in nonconducting mineral phases. These methods are potentially applicable to the measurement of other light stable isotopes such as H, C and S in insulators. Also, we have further explored the analytical techniques used for the analysis of S isotopes in sulphides by analyzing troilite in a number of L and H ordinary chondrites. This was done to see if there was any systematic differences with petrological type.

  17. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B; Zhang, Y

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  18. Nanostructured light-absorbing crystalline CuIn{sub (1–x)}Ga{sub x}Se{sub 2} thin films grown through high flux, low energy ion irradiation

    SciTech Connect

    Hall, Allen J.; Hebert, Damon; Rockett, Angus A.; Shah, Amish B.; Bettge, Martin

    2013-10-21

    A hybrid effusion/sputtering vacuum system was modified with an inductively coupled plasma (ICP) coil enabling ion assisted physical vapor deposition of CuIn{sub 1−x}Ga{sub x}Se{sub 2} thin films on GaAs single crystals and stainless steel foils. With <80 W rf power to the ICP coil at 620–740 °C, film morphologies were unchanged compared to those grown without the ICP. At low temperature (600–670 °C) and high rf power (80–400 W), a light absorbing nanostructured highly anisotropic platelet morphology was produced with surface planes dominated by (112){sub T} facets. At 80–400 W rf power and 640–740 °C, both interconnected void and small platelet morphologies were observed while at >270 W and above >715 °C nanostructured pillars with large inter-pillar voids were produced. The latter appeared black and exhibited a strong (112){sub T} texture with interpillar twist angles of ±8°. Application of a negative dc bias of 0–50 V to the film during growth was not found to alter the film morphology or stoichiometry. The results are interpreted as resulting from the plasma causing strong etching favoring formation of (112){sub T} planes and preferential nucleation of new grains, balanced against conventional thermal diffusion and normal growth mechanisms at higher temperatures. The absence of effects due to applied substrate bias suggests that physical sputtering or ion bombardment effects were minimal. The nanostructured platelet and pillar films were found to exhibit less than one percent reflectivity at angles up to 75° from the surface normal.

  19. The Role of High-Energy Ion-Atom/Molecule Collisions in Radiotherapy

    NASA Astrophysics Data System (ADS)

    Belkić, Dževad

    2014-12-01

    The need for ions in radiotherapy stems from the most favorable localization of the largest energy deposition, precisely at the tumor site with small energy losses away from the target. Such a dose conformity to the target is due to heavy masses of ions that scatter predominantly in the forward direction and lose maximal energy mainly near the end of their path in the vicinity of the Bragg peak. The heavy masses of nuclei preclude noticeable multiple scattering of the primary ion beam. This occurrence is responsible for only about 30% of ion efficiency in killing tumor cells. However, ionization of targets by fast ions yields electrons that might be of sufficient energy to produce further radiation damage. These δ-electrons, alongside radicals produced by ion-water collisions, can accomplish the remaining 70% of tumor cell eradication. Electrons achieve this chiefly through multiple scattering due to their small mass. Therefore, energy depositions by both heavy (nuclei) and light (electrons) particles as well as highly reactive radicals need to be simultaneously transported in Monte Carlo simulations. This threefold transport of particles is yet to be developed for the existing Monte Carlo codes. Critical to accomplishing this key goal is the availability of accurate cross section databases. To this end, the leading continuum distorted wave methodologies are poised to play a pivotal role in predicting energy losses of ions in tissue as discussed in this work.

  20. Ion momentum and energy transfer rates for charge exchange collisions

    NASA Technical Reports Server (NTRS)

    Horwitz, J.; Banks, P. M.

    1973-01-01

    The rates of momentum and energy transfer have been obtained for charge exchange collisions between ion and neutral gases having arbitrary Maxwellian temperatures and bulk transport velocities. The results are directly applicable to the F-region of the ionosphere where 0+ - 0 charge is the dominant mechanism affecting ion momentum and energy transfer.

  1. Calculation of the energy levels of lithium-like ions

    NASA Astrophysics Data System (ADS)

    Nadykto, B. A.

    An attempt is made to develop a straightforward and sufficiently accurate method for calculating the energies of complex ion states. The method is based on Bohr's computational model and Sommerfeld's model in relativistic form (for circular orbits only). The method proposed here makes it possible to calculate excited ion states having different atomic and quantum numbers. A similar method can be used for calculating the energies of ion states with the number of electrons exceeding three.

  2. DNA Fragmentation in mammalian cells exposed to various light ions

    NASA Astrophysics Data System (ADS)

    Belli, M.; Cherubini, R.; Dalla Vecchia, M.; Dini, V.; Esposito, G.; Moschini, G.; Sapora, O.; Signoretti, C.; Simone, G.; Sorrentino, E.; Tabocchini, M. A.

    Elucidation of how effects of densely ionizing radiation at cellular level are linked to DNA damage is fundamental for a better understanding of the mechanisms leading to genomic damage (especially chromosome aberrations) and developing biophysical models to predict space radiation effects. We have investigated the DNA fragmentation patterns induced in Chinese hamster V79 cells by 31 keV/μm protons, 123 keV/μm helium-4 ions and γ-rays in the size range 0.023-5.7 Mbp, using calibrated Pulsed Field Gel Electrophoresis (PFGE). The frequency distributions of fragments induced by the charged particles were shifted towards smaller sizes with respct to that induced by comparable doses of γ-rays. The DSB yields, evaluated from the fragments induced in the size range studied, were higher for protons and helium ions than for γ-rays by a factor of about 1.9 and 1.2, respectively. However, these ratios do not adequately reflect the RBE observed on the same cells for inactivation and mutation induced by these beams. This is a further indication for the lack of correlation between the effects exerted at cellular level and the initial yield of DSB. The dependence on radiation quality of the fragmentation pattern suggests that it may have a role in damage reparability. We have analyzed these patterns with a "random breakage" model generalized in order to consider the initial non-random distribution of the DNA molecules. Our results suggest that a random breakage mechanism can describe with a reasonable approximation the DNA fragmentation induced by γ-rays, while the approximation is not so good for light ions, likely due to the interplay between ion tracks and chromatin organization at the loop level.

  3. HELIX: The High Energy Light Isotope Experiment

    NASA Astrophysics Data System (ADS)

    Musser, Jim

    This is the lead proposal for a new suborbital program, HELIX (High-Energy Light Isotope eXperiment), designed to make measurements of the isotopic composition of light cosmic-ray nuclei from ~200 MeV/nuc to ~10 GeV/nuc. Past measurements of this kind have provided profound insights into the nature and origin of cosmic rays, revealing, for instance, information on acceleration and confinement time scales, and exposing some conspicuous discrepancies between solar and cosmic-ray abundances. The most detailed information currently available comes from the ACE/CRIS mission, but is restricted to energies below a few 100 MeV/nuc. HELIX aims at extending this energy range by over an order of magnitude, where, in most cases, no measurements of any kind exist, and where relativistic time dilation affects the apparent lifetime of radioactive clock nuclei. The HELIX measurements will provide essential information for understanding the propagation history of cosmic rays in the galaxy. This is crucial for properly interpreting several intriguing anomalies reported in recent cosmic-ray measurements, pertaining to the energy spectra of protons, helium, and heavier nuclei, and to the anomalous rise in the positron fraction at higher energy. HELIX employs a high-precision magnet spectrometer to provide measurements which are not achievable by any current or planned instrument. The superconducting magnet originally used for the HEAT payload in five successful high-altitude flights will be combined with state-of-the-art detectors to measure the charge, time-of-flight, magnetic rigidity, and velocity of cosmic-ray particles with high precision. The instrumentation includes plastic scintillators, silicon-strip detectors repurposed from Fermilab's CDF detector, a high-performance gas drift chamber, and a ring-imaging Cherenkov counter employing aerogel radiators and silicon photomultipliers. To reduce cost and technical risk, the HELIX program will be structured in two stages. The first

  4. Rechargeable dual-metal-ion batteries for advanced energy storage.

    PubMed

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  5. Symmetry Energy Effects on Low Energy Dissipative Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Rizzo, C.; Baran, V.; Colonna, M.; Di Toro, M.; Odsuren, M.

    2011-02-01

    We investigate the reaction path followed by Heavy Ion Collisions with exotic nuclear beams at low energies. We focus on the interplay between reaction mechanisms, fusion vs. break-up (fast-fission, deep-inelastic), that in exotic systems is expected to be influenced by the symmetry energy term at densities around the normal value. The method described here, based on the event by event evolution of phase space quadrupole collective modes, will nicely allow to extract the fusion probability at relatively early times, when the transport results are reliable. Fusion probabilities for reactions induced by 132Sn on 64,58Ni targets at 10 AMeV are evaluated. We obtain larger fusion cross sections for the more n-rich composite system, and, for a given reaction, with a soft symmetry term above saturation. A collective charge equilibration mechanism (the Dynamical Dipole Resonance, DDR) is revealed in both fusion and break-up events, depending on the stiffness of the symmetry term just below saturation. Finally we investigate the effect of the mass asymmetry in the entrance channel for systems with the same overall isospin content and similar initial charge asymmetry. As expected we find reduced fusion probabilities for the more mass symmetric case, while the DDR strength appears not much affected. This is a nice confirmation of the prompt nature of such collective isovector mode.

  6. The measured energy savings from two lighting control strategies

    SciTech Connect

    Rubinstein, F.M.; Karayel, M.

    1984-09-01

    The energy-saving benefits of two lighting control strategies--scheduling and daylighting--were investigated at demonstration sites in two large commercial buildings. A continuously dimmable lighting control system was installed at the Pacific Gas and Electric Company Building in San Francisco, and an on/off switching system was installed at the World Trade Center in New York City. By automatically scheduling the operation of the lighting systems to conform with occupancy patterns, lighting energy consumption was reduced 10-40 percent. Several scheduling techniques were investigated, and the influence of switching the zone size on energy savings was examined. Using photoelectrically controlled lighting systems, which switch or dim lighting in accordance with available daylight, the energy consumed for lighting in daylit areas was reduced to 25-35 percent. The influence of clear and overcast conditions on the energy savings associated with daylight-linked controls is discussed.

  7. Cherenkov light detection as a velocity selector for uranium fission products at intermediate energies

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Enomoto, A.; Kouno, J.; Yamaki, S.; Matsunaga, S.; Suzaki, F.; Suzuki, T.; Abe, Y.; Nagae, D.; Okada, S.; Ozawa, A.; Saito, Y.; Sawahata, K.; Kitagawa, A.; Sato, S.

    2014-12-01

    The in-flight particle separation capability of intermediate-energy radioactive ion (RI) beams produced at a fragment separator can be improved with the Cherenkov light detection technique. The cone angle of Cherenkov light emission varies as a function of beam velocity. This can be exploited as a velocity selector for secondary beams. Using heavy ion beams available at the HIMAC synchrotron facility, the Cherenkov light angular distribution was measured for several thin radiators with high refractive indices (n = 1.9 2.1). A velocity resolution of 10-3 was achieved for a 56Fe beam with an energy of 500 MeV/nucleon. Combined with the conventional rigidity selection technique coupled with energy-loss analysis, the present method will enable the efficient selection of an exotic species from huge amounts of various nuclides, such as uranium fission products at the BigRIPS fragment separator located at the RI Beam Factory.

  8. Energy partitioning of gaseous ions in an electric field.

    NASA Technical Reports Server (NTRS)

    Hahn, H.-S.; Mason, E. A.

    1973-01-01

    The partitioning of ion energy among thermal energy, drift energy, and random-field energy is studied by solution of the Boltzmann equation. An expansion in powers of the square of the electric field strength is obtained by Kihara's method. Numerical calculations for several ion-neutral force laws show that Wannier's constant mean-free-time model gives a reasonable first approximation. The formal extension to multicomponent mixtures is also given. The matrix elements obtained are tabulated, and can be used to study the field dependence of other moments of the ion-distribution function.

  9. Energy-efficient lighting system for television

    DOEpatents

    Cawthorne, Duane C.

    1987-07-21

    A light control system for a television camera comprises an artificial light control system which is cooperative with an iris control system. This artificial light control system adjusts the power to lamps illuminating the camera viewing area to provide only sufficient artificial illumination necessary to provide a sufficient video signal when the camera iris is substantially open.

  10. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Prakrajang, K.; Thongkumkoon, P.; Suwannakachorn, D.; Yu, L. D.

    2013-07-01

    Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells.

  11. Recent Ion Energy Distribution Observations on MST RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Clark, Jerry; Titus, J. B.; Mezonlin, E. D.; Johnson, J. A., III; Almagri, A. F.; Andeson, J. A.

    2015-11-01

    Ion energy distribution and temperature measurements have been made on the Madison Symmetric Torus (MST) using the Florida A&M University compact neutral particle analyzer (CNPA). The CNPA is a low energy (0.34-5.2 keV), high energy resolution (25 channels) neutral particle analyzer, with a radial view on MST. Recently, a retarding potential system was built to allow CNPA measurements to ensemble a complete ion energy distribution with high-energy resolution, providing insight into the dynamics of the bulk and fast ion populations. Recent work has also been done to improve the analysis techniques used to infer the ion temperature measurements, allowing us to understand temperature dynamics better during global magnetic reconnection events. Work supported in part by grants to FAMU and to UW from NSF and from Fusion Energy Sciences at DOE.

  12. Ion energy distribution near a plasma meniscus for multielement focused ion beams

    SciTech Connect

    Mathew, Jose V.; Bhattacharjee, Sudeep

    2009-05-01

    The axial ion energy spread near a plasma meniscus for multielement focused ion beams is investigated experimentally in atomic and molecular gaseous plasmas of krypton, argon, and hydrogen by tailoring the magnetic field in the region. In the case of magnetic end plugging, the ion energy spread reduces by approx50% near the meniscus as compared to the bulk plasma, thereby facilitating beam focusing. A quadrupole filter can be used to control the mean energy of the ions. Comparison with standard Maxwellian and Druyvesteyn distributions with the same mean energy indicates that the ion energy distribution in the meniscus is deficient in the population of low and high energy tail ions, resulting in a Gaussian-like profile with a spread of approx4 and approx5 eV for krypton and argon ions, respectively. By carefully tuning the wave power, plasma collisionality, and the magnetic field in the meniscus, the spread can be made lower than that of liquid metal ion sources, for extracting focused ion beams of other elements with adequate current density, for research and applications in nanosystems

  13. Independent-particle models for light negative atomic ions

    NASA Technical Reports Server (NTRS)

    Ganas, P. S.; Talman, J. D.; Green, A. E. S.

    1980-01-01

    For the purposes of astrophysical, aeronomical, and laboratory application, a precise independent-particle model for electrons in negative atomic ions of the second and third period is discussed. The optimum-potential model (OPM) of Talman et al. (1979) is first used to generate numerical potentials for eight of these ions. Results for total energies and electron affinities are found to be very close to Hartree-Fock solutions. However, the OPM and HF electron affinities both depart significantly from experimental affinities. For this reason, two analytic potentials are developed whose inner energy levels are very close to the OPM and HF levels but whose last electron eigenvalues are adjusted precisely with the magnitudes of experimental affinities. These models are: (1) a four-parameter analytic characterization of the OPM potential and (2) a two-parameter potential model of the Green, Sellin, Zachor type. The system O(-) or e-O, which is important in upper atmospheric physics is examined in some detail.

  14. Investigation on target normal sheath acceleration through measurements of ions energy distribution

    SciTech Connect

    Tudisco, S. Cirrone, G. A. P.; Mascali, D.; Schillaci, F.; Altana, C.; Lanzalone, G.; Muoio, A.; Brandi, F.; Cristoforetti, G.; Ferrara, P.; Fulgentini, L.; Koester, P.; Labate, L.; Gizzi, L. A.; and others

    2016-02-15

    An experimental campaign aiming at investigating the ion acceleration mechanisms through laser-matter interaction in femtosecond domain has been carried out at the Intense Laser Irradiation Laboratory facility with a laser intensity of up to 2 × 10{sup 19} W/cm{sup 2}. A Thomson parabola spectrometer was used to obtain the spectra of the ions of the different species accelerated. Here, we show the energy spectra of light-ions and we discuss their dependence on structural characteristics of the target and the role of surface and target bulk in the acceleration process.

  15. Distribution of Micronuclei in Human Fibroblasts across the Bragg Curve of Light and Heavy Ions

    NASA Technical Reports Server (NTRS)

    Hada, M.; Lacy, S.; Gridley, D. S.; Rusek, A.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    The space environment consists of energetic particles of varying mass and energy, and understanding the :biological Bragg curve" is essential in optimizing shielding effectiveness against space radiation induced biological impacts. The "biological Bragg curve" is dependent on the energy and the type of the primary particle, and may vary for different biological endpoints. Previously, we studied the induction of micronuclei (MN) across the Bragg curve of energetic Fe and Si ions, and observed no increased yield of MN at the location of the Bragg peak. However, the ratio of mono- to bi-nucleated cells, which indicates inhibition of cell progression, was found higher at the Bragg peak location in comparison to the plateau region of the Bragg curve. Here, we report the induction of MN in normal human fibroblast cells across the Bragg curve of incident protons generated at Loma Linda University. Similar to Si and Fe ions, the ratio of mono- to bi-nucleated cells showed a clear spike as the protons reached the Bragg peak. Unlike the two heavy ions, however, the MN yield also increased at the Bragg peak location. These results confirm the hypothesis that severely damaged cells at the Bragg peak of heavy, but not light ions are more likely to go through reproductive death and not be evaluated for micronuclei.

  16. Light-Activated Ion Channels for Remote Control of Neural Activity

    PubMed Central

    Chambers, James J.; Kramer, Richard H.

    2009-01-01

    Light-activated ion channels provide a new opportunity to precisely and remotely control neuronal activity for experimental applications in neurobiology. In the past few years, several strategies have arisen that allow light to control ion channels and therefore neuronal function. Light-based triggers for ion channel control include caged compounds, which release active neurotransmitters when photolyzed with light, and natural photoreceptive proteins, which can be expressed exogenously in neurons. More recently, a third type of light trigger has been introduced: a photoisomerizable tethered ligand that directly controls ion channel activity in a light-dependent manner. Beyond the experimental applications for light-gated ion channels, there may be clinical applications in which these light-sensitive ion channels could prove advantageous over traditional methods. Electrodes for neural stimulation to control disease symptoms are invasive and often difficult to reposition between cells in tissue. Stimulation by chemical agents is difficult to constrain to individual cells and has limited temporal accuracy in tissue due to diffusional limitations. In contrast, ion channels that can be directly activated with light allow control with unparalleled spatial and temporal precision. The goal of this chapter is to describe light-regulated ion channels and how they have been tailored to control different aspects of neural activity, and how to use these channels to manipulate and better understand development, function, and plasticity of neurons and neural circuits. PMID:19195553

  17. Secondary batteries with multivalent ions for energy storage.

    PubMed

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-09-14

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation "beyond-lithium" battery chemistry is one feasible solution for such goals. Here we discover new "multivalent ion" battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni(2+), Zn(2+), Mg(2+), Ca(2+), Ba(2+), or La(3+) ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni(2+) ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni(2+) ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg(-1), close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times).

  18. Low energy spread ion source with a coaxial magnetic filter

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette

    2000-01-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as ion projection lithography (IPL) and radioactive ion beam production. The addition of a radially extending magnetic filter consisting of a pair of permanent magnets to the multicusp source reduces the energy spread considerably due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. A coaxial multicusp ion source designed to further reduce the energy spread utilizes a cylindrical magnetic filter to achieve a more uniform axial plasma potential distribution. The coaxial magnetic filter divides the source chamber into an outer annular discharge region in which the plasma is produced and a coaxial inner ion extraction region into which the ions radially diffuse but from which ionizing electrons are excluded. The energy spread in the coaxial source has been measured to be 0.6 eV. Unlike other ion sources, the coaxial source has the capability of adjusting the radial plasma potential distribution and therefore the transverse ion temperature (or beam emittance).

  19. Narrow Resonances in Light Heavy-Ion Collisions: Formation and Decay

    SciTech Connect

    Haas, F.; Courtin, S.; Lebhertz, D.; Salsac, M.-D.

    2009-03-04

    Resonances in light heavy-ion collisions have been observed in systems with a small number of open channels. Very narrow resonances have been reported in the {sup 24}Mg+{sup 24}Mg and {sup 12}C+{sup 12}C cases for which the results of recent experiments on their decay modes will be presented. Special emphasis will be given to the {sup 12}C+{sup 12}C reaction where weak absorption allows the observation of resonant and refractive effects over a large bombarding energy range. The nature of recently observed sub-coulomb resonances will also be raised.

  20. High energy heavy ions: techniques and applications

    SciTech Connect

    Alonso, J.R.

    1985-04-01

    Pioneering work at the Bevalac has given significant insight into the field of relativistic heavy ions, both in the development of techniques for acceleration and delivery of these beams as well as in many novel areas of applications. This paper will outline our experiences at the Bevalac; ion sources, low velocity acceleration, matching to the synchrotron booster, and beam delivery. Applications discussed will include the observation of new effects in central nuclear collisions, production of beams of exotic short-lived (down to 1 ..mu..sec) isotopes through peripheral nuclear collisions, atomic physics with hydrogen-like uranium ions, effects of heavy ''cosmic rays'' on satellite equipment, and an ongoing cancer radiotherapy program with heavy ions. 39 refs., 6 figs., 1 tab.

  1. Relativistic Tennis with Photons: Frequency Up-Shifting, Light Intensification and Ion Acceleration with Flying Mirrors

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Koga, J. K.; Pirozhkov, A. S.; Rosanov, N. N.; Zhidkov, A. G.

    2011-01-04

    We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency change due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.

  2. A low energy ion source for electron capture spectroscopy.

    PubMed

    Tusche, C; Kirschner, J

    2014-06-01

    We report on the design of an ion source for the production of single and double charged Helium ions with kinetic energies in the range from 300 eV down to 5 eV. The construction is based on a commercial sputter ion gun equipped with a Wien-filter for mass/charge separation. Retardation of the ions from the ionizer potential (2 keV) takes place completely within the lens system of the sputter gun, without modification of original parts. For 15 eV He(+) ions, the design allows for beam currents up to 30 nA, limited by the space charge repulsion in the beam. For He(2 +) operation, we obtain a beam current of 320 pA at 30 eV, and 46 pA at 5 eV beam energy, respectively. In addition, operating parameters can be optimized for a significant contribution of metastable He*(+) (2s) ions.

  3. Dependence of Ion Energy on PTFE Surface Modification Effect by Nitrogen Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Nakayama, Akihiko; Iwao, Toru; Yumoto, Motoshige

    PTFE (Poly-tetra-fluoro-ethylene) has superior characteristic. But, it has low adhesion force. In order to improve adhesion force, we have studied on surface modification of PTFE by using discharge under high E/n (E:electric field, n:particle density) condition in nitrogen. From the results, it was deduced that ion energy around 40 eV is effective for polar groups introduction. In addition, treated surface unevenness did not increase compared with the untreated one. Then, we performed nitrogen ion irradiation by changing ion energy. From the results, it is shown that low ion energy is effective for polar groups introduction. It is also shown that high energy ion suppresses surface roughness. Thus, we measured surface energy and composition of samples irradiated by high and low energy ions. When ion with 30 eV was irradiated for 5 minute and following it ion with 1060 eV was irradiated for 10 second, many polar groups were introduced and surface unevenness was kept at the untreatment level. From the results by XPS (X-ray Photoelectron Spectroscopy) analysis and FT-IR (Fourier transform Infrared Spectroscopy) analysis by using the ATR (Attenuated Total Reflection) method, it was confirmed that polar groups of oxygen component and cross-linked structure via nitrogen or carbon was introduced at the surface.

  4. Cutter Energy Efficient Lighting: Cost Study Report

    DTIC Science & Technology

    2012-05-01

    when at port. These circumstances usually result when the facility does not have the capacity to deliver the amount of power needed by the Cutter...systems, information technologies, air conditioning and heating , galley appliances, and lighting are heavy consumers of electrical power . Additionally...vibration, impact, electrical interference, illumination, and wet/ harsh environmental conditions . (2) Marine grade lighting is corrosion resistant and

  5. Energy distributions of sputtered copper neutrals and ions

    NASA Technical Reports Server (NTRS)

    Lundquist, T. R.

    1978-01-01

    Direct quantitative analysis of surfaces by secondary ion mass spectrometry will depend on an understanding of the yield ratio of ions to neutrals. This ratio as a function of the energy of the sputtered particles has been obtained for a clean polycrystalline copper surface sputtered by 1000-3000 eV Ar(+). The energy distributions of both neutral and ionized copper were measured with a retarding potential analyzer using potential modulation differentiation and signal averaging. The maximum for both distributions is identical and occurs near 2.5 eV. The energy distributions of neutrals is more sharply peaked than that of the ions, presumably as a consequence of more efficient nutralization of slow escaping ions by the mobile electrons of copper. The ion-neutral ratio is compared with results from various ionization models.

  6. Ion energy distributions in silane-hydrogen plasmas

    SciTech Connect

    Hamers, E.A.G.; Sark, W.G.J.H.M. van; Bezemer, J.; Weg, W.F. van der; Goedheer, W.J.

    1996-12-31

    For the first time ion energy distributions (IED) of different ions from silane-hydrogen (SiH{sub 4}-H{sub 2}) RF plasmas are presented, i.e., the distributions of SiH{sub 3}{sup +}, SiH{sub 2}{sup +} and Si{sub 2}H{sub 4}{sup +}. The energy distributions of SiH{sub 3}{sup +} and SiH{sub 2}{sup +} ions show peaks, which are caused by a charge exchange process in the sheath. A method is presented by which the net charge density in the sheath is determined from the plasma potential and the energy positions of the charge exchange peaks. Knowing the net charge density in the sheath and the plasma potential, the sheath thickness can be determined and an estimation of the absolute ion fluxes can be made. The flux of ions can, at maximum, account for 10% of the observed deposition rate.

  7. Variable-Energy Ion Beams For Modification Of Surfaces

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara; Hecht, Michael H.; Orient, Otto J.

    1989-01-01

    Beam of low-energy negative oxygen ions used to grow layer of silicon dioxide on silicon. Beam unique both in purity, contains no molecular oxygen or other charged species, and in low energy, which is insufficient to damage silicon by physically displacing atoms. Low-energy growth accomplished with help of ion-beam apparatus. Directs electrons into crosswise stream of gas, generating stream of negative ions. Pair of charged plates separates ions from accompanying electrons and diverts ion beam to target - silicon substrate. Diameter of beam at target 0.5 to 0.75 cm. Promises useful device to study oxidation of semiconductors and, in certain applications, to replace conventional oxidation processes.

  8. Negative ions as a source of low energy neutral beams

    SciTech Connect

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  9. Dynamic MC simulation of low-energy ion implantation

    NASA Astrophysics Data System (ADS)

    Yamamura, Y.

    1999-06-01

    In order to investigate the ion fluence effect in the depth profiles of the dynamic Monte Carlo code, ACAT-DIFFUSE, is applied to the calculation of depth profiles due to low-energy B ion implantation, where 1 and 5 keV B ions are implanted into an amorphized silicon target. As the ion fluence increases, the dopant B atoms are accumulated in solids and the target must be considered as a two-component material composed of the original target atoms and trapped implanted ions. This results in the radiation-induced-diffusion and the self-sputtering of trapped implanted ions. It is found that the peak locations of the dopant B depth profiles at 1 keV B ion bombardment shifted to the surface due to radiation-induced diffusion as ion increased and we observe the near-the-surface enhancement in the dopant B depth profiles due to 5 keV B ion bombardment. The self-sputtering also becomes important with increasing ion fluence. The retention ratios of the implanted B atoms are about 0.89 and 0.94 for 1 and 5 keV B ions, respectively, at 3.0 × 10 13 B ions/cm 2.

  10. Secondary batteries with multivalent ions for energy storage

    NASA Astrophysics Data System (ADS)

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-09-01

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation “beyond-lithium” battery chemistry is one feasible solution for such goals. Here we discover new “multivalent ion” battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni2+, Zn2+, Mg2+, Ca2+, Ba2+, or La3+ ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni2+ ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni2+ ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg-1, close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times).

  11. Secondary batteries with multivalent ions for energy storage

    PubMed Central

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-01-01

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation “beyond-lithium” battery chemistry is one feasible solution for such goals. Here we discover new “multivalent ion” battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni2+, Zn2+, Mg2+, Ca2+, Ba2+, or La3+ ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni2+ ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni2+ ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg−1, close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times). PMID:26365600

  12. Interior LED Lighting Technology. Navy Energy Technology Validation (Techval) Program

    DTIC Science & Technology

    2015-09-01

    lamps. What is the Technology? An LED is a semiconductor- diode that emits light when power is applied. A driver is used, much as a ballast, to...Approved for public release: distribution unlimited TDS-NAVFAC EXWC-PW-1601 Sep 2015 Interior LED Lighting Technology Navy Energy...NAVFAC EXWC) to determine the potential energy savings for Interior LED lighting technology in office environments. NAVAFAC EXWC concluded that

  13. UV emissions from low energy artificial light sources.

    PubMed

    Fenton, Leona; Moseley, Harry

    2014-01-01

    Energy efficient light sources have been introduced across Europe and many other countries world wide. The most common of these is the Compact Fluorescent Lamp (CFL), which has been shown to emit ultraviolet (UV) radiation. Light Emitting Diodes (LEDs) are an alternative technology that has minimal UV emissions. This brief review summarises the different energy efficient light sources available on the market and compares the UV levels and the subsequent effects on the skin of normal individuals and those who suffer from photodermatoses.

  14. Study on the interactional behaviour of transition metal ions with myoglobin: A detailed calorimetric, spectroscopic and light scattering analysis

    NASA Astrophysics Data System (ADS)

    Kaur, Amandeep; Banipal, Parampaul K.; Banipal, Tarlok S.

    2017-03-01

    The energetics and the impact on the conformation of heme containing protein myoglobin (Mb) due to the binding of three transition metal ions (Zn2 +, Ni2 +, and Mn2 +) have been investigated using isothermal titration calorimetry (ITC), dynamic light scattering (DLS), UV-vis, and circular dichroism (CD) spectroscopy under physiological conditions. The binding affinity of the order of 104 M- 1 has been observed for all metal ions from calorimetry as well as from absorption spectroscopy. The binding of these metal ions with Mb is a spontaneous process that exposes the hydrophobic groups away from the protein core as exhibited by the negative Gibbs free energy change (ΔG) and positive heat capacity change (ΔCp) values. Both light scattering and CD results demonstrates that the binding of Zn2 + and Mn2 + ions with Mb results in the folding whereas Ni2 + ion results in the unfolding of the protein. No direct interactions among the transition metal ions and heme moiety of Mb has been observed from absorption study. The results of these studies reveals that Mn2 + ion influences the biological functions of Mb to a larger extent in spite of its lowest affinity followed by Zn2 + and Ni2 + ions.

  15. Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration.

    PubMed

    Yuan, Haifeng; Debroye, Elke; Janssen, Kris; Naiki, Hiroyuki; Steuwe, Christian; Lu, Gang; Moris, Michèle; Orgiu, Emanuele; Uji-I, Hiroshi; De Schryver, Frans; Samorì, Paolo; Hofkens, Johan; Roeffaers, Maarten

    2016-02-04

    Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques.

  16. Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration

    PubMed Central

    2016-01-01

    Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques. PMID:26804213

  17. Living Lightly: Energy Conservation in Housing.

    ERIC Educational Resources Information Center

    Bender, Tom

    This publication contains a series of papers which promote the concepts of energy conservation and offer safe and convenient ways of handling all aspects of our lives affected by energy without having to depend in any way on fossil fuels or nuclear power. These changes, which can be brought about in homes and in energy flows affected by the…

  18. Energy loss of ions implanted in MOS dielectric films

    NASA Astrophysics Data System (ADS)

    Shyam, Radhey

    Energy loss measurements of ions in the low kinetic energy regime have been made on as-grown SiO2(170-190nm) targets. Singly charged Na + ions with kinetic energies of 2-5 keV and highly charged ions Ar +Q (Q=4, 8 and 11) with a kinetic energy of 1 keV were used. Excitations produced by the ion energy loss in the oxides were captured by encapsulating the irradiated oxide under a top metallic contact. The resulting Metal-Oxide-Semiconductor (MOS) devices were probed with Capacitance-Voltage (C V) measurements and extracted the flatband voltages from the C-V curves. The C-V results for singly charged ion experiments reveal that the changes in the flatband voltage and slope for implanted devices relative to the pristine devices can be used to delineate effects due to implanted ions only and ion induced damage. The data shows that the flatband voltage shifts and C-V slope changes are energy dependent. The observed changes in flatband voltage which are greater than those predicted by calculations scaled for the ion dose and implantation range (SRIM). These results, however, are consistent with a columnar recombination model, where electron-hole pairs are created due to the energy deposited by the implanted ions within the oxide. The remaining holes left after recombination losses are diffused through the oxide at the room temperature and remain present as trapped charges. Comparison of the data with the total number of the holes generated gives a fractional yield of 0.0124 which is of the same order as prior published high energy irradiation experiments. Additionally, the interface trap density, extracted from high and low frequency C-V measurements is observed to increase by one order of magnitude over our incident beam energy. These results confirm that dose- and kinetic energy -dependent effects can be recorded for singly charged ion irradiation on oxides using this method. Highly charged ion results also confirm that dose as well as and charge-dependent effects can

  19. Measurement of parallel ion energy distribution function in PISCES plasma

    SciTech Connect

    Tynan, G.R.; Goebel, D.M.; Conn, R.W.

    1987-08-01

    The PISCES facility is used to conduct controlled plasma-surface interaction experiments. Plasma parameters typical of those found in the edge plasmas of major fusion confinement experiments are produced. In this work, the energy distribution of the ion flux incident on a material surface is measured using a gridded energy analyzer in place of a material sample. The full width at half maximum energy distribution of the ion flux is found to vary from 10 eV to 30 eV both hydrogen and deuterium plasmas. Helium plasmas have a much lower FWHM energy spread than hydrogen and deuterium plasmas. The FWHM ion energy spread is found to be linearly related to the electron temperature. The most probable ion energy is found to be linearly related to the bias applied to the energy analyzer. Other plasma parameters have a weak influence upon the energy distribution of the ion flux. Two possible physical mechanisms for producing the observed results are introduced and suggestions for further work are made. The impact of the reported measurements on the materials experiments conducted in the PISCES facility are discussed and recommendations for future experiments are made. 11 refs., 13 figs.

  20. A compact, versatile low-energy electron beam ion source

    SciTech Connect

    Zschornack, G.; König, J.; Schmidt, M.; Thorn, A.

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  1. A compact, versatile low-energy electron beam ion source.

    PubMed

    Zschornack, G; König, J; Schmidt, M; Thorn, A

    2014-02-01

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  2. Super high energy heavy ion collisions

    SciTech Connect

    Geist, W.M.

    1987-12-01

    Basic theoretical ideas on a phase transition to a plasma of free quarks and gluons in heavy ion collisions are outlined. First results from experiments with oxygen beams at 14.5 GeV/c/N (BNL), 60 and 200 GeV/c/N (CERN) are discussed. 30 refs., 9 figs.

  3. The Design of a Large Booster Ring for the Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect

    Edward Nissen, Todd Satogata, Yuhong Zhang

    2012-07-01

    In this paper, we present the current design of the large booster ring for the Medium energy Electron-Ion Collider at Jefferson Lab. The booster ring takes 3 GeV protons or ions of equivalent rigidity from a pre-booster ring, and accelerates them to 20 GeV for protons or equivalent energy for light to heavy ions before sending them to the ion collider ring. The present design calls for a figure-8 shape of the ring for superior preservation of ion polarization. The ring is made of warm magnets and shares a tunnel with the two collider rings. Acceleration is achieved by warm RF systems. The linear optics has been designed with the transition energy above the highest beam energy in the ring so crossing of transition energy will be avoided. Preliminary beam dynamics studies including chromaticity compensation are presented in this paper.

  4. Upgrade of the facility EXOTIC for the in-flight production of light Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Mazzocco, M.; Torresi, D.; Strano, E.; Boiano, A.; Boiano, C.; Costa, L.; Glodariu, T.; Guglielmetti, A.; La Commara, M.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Soramel, F.; Stroe, L.

    2013-12-01

    The facility EXOTIC for the in-flight production of light weakly-bound Radioactive Ion Beams (RIBs) has been operating at INFN-LNL since 2004. RIBs are produced via two-body reactions induced by high intensity heavy-ion beams impinging on light gas targets and selected by means of a 30°-dipole bending magnet and a 1-m long Wien filter. The facility has been recently upgraded (i) by developing a cryogenic gas target, (ii) by replacing the power supplies of the middle lenses of the two quadrupole triplets, (iii) by installing two y-steerers and (iv) by placing two Parallel Plate Avalanche Counters upstream the secondary target to provide an event-by-event reconstruction of the position hit on the target. So far, RIBs of 7Be, 8B and 17F in the energy range 3-5 MeV/u have been produced with intensities about 3 × 105, 1.6 × 103 and 105 pps, respectively. Possible light RIBs (up to Z = 10) deliverable by the facility EXOTIC are also reviewed.

  5. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.

    PubMed

    Wang, Byung-Yong; Yoo, Tae-Hee; Song, Yong-Won; Lim, Dae-Soon; Oh, Young-Jei

    2013-05-22

    Direct printing techniques that utilize nanoparticles to mitigate environmental pollution and reduce the processing time of the routing and formation of electrodes have received much attention lately. In particular, copper (Cu) nanoink using Cu nanoparticles offers high conductivity and can be prepared at low cost. However, it is difficult to produce homogeneous nanoparticles and ensure good dispersion within the ink. Moreover, Cu particles require a sintering process over an extended time at a high temperature due to high melting temperature of Cu. During this process, the nanoparticles oxidize quickly in air. To address these problems, the authors developed a Cu ion ink that is free of Cu particles or any other impurities. It consequently does not require separate dispersion stability. In addition, the developed ink is environmentally friendly and can be sintered even at low temperatures. The Cu ion ink was sintered on a flexible substrate using intense pulsed light (IPL), which facilitates large-area, high-speed calcination at room temperature and at atmospheric pressures. As the applied light energy increases, the Cu2O phase diminishes, leaving only the Cu phase. This is attributed to the influence of formic acid (HCOOH) on the Cu ion ink. Only the Cu phase was observed above 40 J cm(-2). The Cu-patterned film after sintering showed outstanding electrical resistivity in a range of 3.21-5.27 μΩ·cm at an IPL energy of 40-60 J cm(-2). A spiral-type micropattern with a line width of 160 μm on a PI substrate was formed without line bulges or coffee ring effects. The electrical resistivity was 5.27 μΩ·cm at an energy level of 40.6 J cm(-2).

  6. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, William K.; Stirling, William L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  7. Model for Cumulative Solar Heavy Ion Energy and LET Spectra

    NASA Technical Reports Server (NTRS)

    Xapsos, Mike; Barth, Janet; Stauffer, Craig; Jordan, Tom; Mewaldt, Richard

    2007-01-01

    A probabilistic model of cumulative solar heavy ion energy and lineary energy transfer (LET) spectra is developed for spacecraft design applications. Spectra are given as a function of confidence level, mission time period during solar maximum and shielding thickness. It is shown that long-term solar heavy ion fluxes exceed galactic cosmic ray fluxes during solar maximum for shielding levels of interest. Cumulative solar heavy ion fluences should therefore be accounted for in single event effects rate calculations and in the planning of space missions.

  8. Low energy sputtering of cobalt by cesium ions

    NASA Technical Reports Server (NTRS)

    Handoo, A.; Ray, Pradosh K.

    1989-01-01

    An experimental facility to investigate low energy (less than 500 eV) sputtering of metal surfaces with ions produced by an ion gun is described. Results are reported on the sputtering yield of cobalt by cesium ions in the 100 to 500 eV energy range at a pressure of 1 times 10(exp -6) Torr. The target was electroplated on a copper substrate. The sputtered atoms were collected on a cobalt foil surrounding the target. Co-57 was used as a tracer to determine the sputtering yield.

  9. Light ion transfer reactions with the HELIOS spectrometer

    SciTech Connect

    Back, B. B.; Collaboration: HELIOS Collaboration

    2012-10-20

    Light-ion induced transfer and inelastic scattering reactions on stable or long-lived targets have been used extensively to study the structure of nuclei near the line of {beta}-stability, and much of the detailed information on the single-particle structure of nuclei has been derived from such studies. Recently, however, a substantial expansion of the range of isotopes, for which this nuclear structure information can be obtained, has presented itself by using radioactive beams in inverse kinematics reactions. Such beams are now available at a number of facilities around the world, including the in-flight production method and CARIBU facility at ATLAS. The HELIOS spectrometer, which has been used since August 2008 at ATLAS, circumvents many of the problems associated with inverse kinematics. In this talk I will discuss the principle of the spectrometer as well as some of main physics results that have been obtained to date in nuclei ranging from {sup 13}B to {sup 137}Xe using both stable and radioactive beams.

  10. Light ion irradiation for unfavorable soft tissue sarcoma

    SciTech Connect

    Linstadt, D.; Castro, J.R.; Phillips, T.L.; Petti, P.L.; Collier, J.M.; Daftari, I.; Schoethaler, R.; Rayner, A.

    1990-09-01

    Between 1978 and 1989, 32 patients with unfavorable soft tissue sarcoma underwent light ion (helium, neon) irradiation with curative intent at Lawrence Berkeley Laboratory. The tumors were located in the trunk in 22 patients and head and neck in 10. Macroscopic tumor was present in 22 at the time of irradiation. Two patients had tumors apparently induced by previous therapeutic irradiation. Follow-up times for surviving patients ranged from 4 to 121 months (median 27 months). The overall 3-year actuarial local control rate was 62%; the corresponding survival rate was 50%. The 3-year actuarial control rate for patients irradiated with macroscopic tumors was 48%, while none of the patients with microscopic disease developed local recurrence (100%). The corresponding 3-year actuarial survival rates were 40% (macroscopic) and 78% (microscopic). Patients with retroperitoneal sarcoma did notably well; the local control rate and survival rate were 64% and 62%, respectively. Complications were acceptable; there were no radiation related deaths, while two patients (6%) required operations to correct significant radiation-related injuries. These results appear promising compared to those achieved by low -LET irradiation, and suggest that this technique merits further investigation.

  11. Radial Distribution of Electron Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.

    1998-01-01

    The average track model describes the response of physical and biological systems using radial dose distribution as the key physical descriptor. We report on an extension of this model to describe the average distribution of electron spectra as a function of radial distance from an ion. We present calculations of these spectra for ions of identical linear energy transfer (LET), but dissimilar charge and velocity to evaluate the differences in electron spectra from these ions. To illustrate the usefulness of the radial electron spectra for describing effects that are not described by electron dose, we consider the evaluation of the indirect events in microdosimetric distributions for ions. We show that folding our average electron spectra model with experimentally determined frequency distributions for photons or electrons provides a good representation of radial event spectra from high-energy ions in 0.5-2 micrometer sites.

  12. Retarding field energy analyser ion current calibration and transmission

    NASA Astrophysics Data System (ADS)

    Denieffe, K.; Mahony, C. M. O.; Maguire, P. D.; Gahan, D.; Hopkins, M. B.

    2011-02-01

    Accurate measurement of ion current density and ion energy distributions (IEDs) is often critical for plasma processes in both industrial and research settings. Retarding field energy analysers (RFEAs) have been used to measure IEDs because they are considered accurate, relatively simple and cost effective. However, their usage for critical measurement of ion current density is less common due to difficulties in estimating the proportion of incident ion current reaching the current collector through the RFEA retarding grids. In this paper an RFEA has been calibrated to measure ion current density from an ion beam at pressures ranging from 0.5 to 50.0 mTorr. A unique method is presented where the currents generated at each of the retarding grids and the RFEA upper face are measured separately, allowing the reduction in ion current to be monitored and accounted for at each stage of ion transit to the collector. From these I-V measurements a physical model is described. Subsequently, a mathematical description is extracted which includes parameters to account for grid transmissions, upper face secondary electron emission and collisionality. Pressure-dependent calibration factors can be calculated from least mean square best fits of the collector current to the model allowing quantitative measurement of ion current density.

  13. Ion-Molecule Reaction Studies at Low Energies

    NASA Astrophysics Data System (ADS)

    Dheandhanoo, Seksan

    A variable temperature drift tube-mass spectrometer apparatus has been used to determine the forward rate coefficients for the association reactions of NO('+) ions with N(,2) and CO(,2), O(,2)('+) with N(,2), N('+) and N(,2)('+) with N(,2), and CH(,5)('+) and C(,2)H(,5)('+) with CH(,4) as a function of gas temperature. The measured rate coefficients were fitted to power laws of the form k(,+) = C(T/300)(' -x), where the exponents ranged from 2.0 to 4.3, i.e. a strong temperature dependence was observed in most of these three-body (clustering) reactions. The equilibrium constants K = k(,+)/k(,-) for the association reactions of CH(,5)('+) and C(,2)H(,5)('+) with CH(,4) were also measured as a function of gas temperature, allowing the reverse rate coefficients k(,-) for these two reactions to be determined. In a second set of measurements, rate coefficients for several two-body ion-molecule reactions involving hydrocarbons have been determined at thermal energies and above using a selected ion drift tube-mass spectrometer apparatus. The results indicate that the product yields of several of the fast ion-molecule reactions depend on ion energy (temperature), even though the total rate coefficients are independent of energy. The oxidation reaction of the metal ion Zr('+) has been found to be a fast reaction and the rate coefficient has been found to be independent of ion energy.

  14. Nb2O5 Nanostructure Evolution on Nb Surfaces via Low-Energy He(+) Ion Irradiation.

    PubMed

    Novakowski, Theodore Joseph; Tripathi, Jitendra Kumar; Hassanein, Ahmed

    2016-12-21

    We propose low-energy, broad-beam He(+) ion irradiation as a novel processing technique for the generation of Nb2O5 surface nanostructures due to its relative simplicity and scalability in a commercial setting. Since there have been relatively few studies involving the interaction of high-fluence, low-energy He(+) ion irradiation and Nb (or its oxidized states), this systematic study explores both effects of fluence and sample temperature during irradiation on resulting surface morphology. Detailed normal and cross-sectional scanning electron microscopy (SEM) studies reveal subsurface He bubble formation and elucidate potential driving mechanisms for nanostructure evolution. A combination of specular optical reflectivity and X-ray photoelectron spectroscopy (XPS) is also used to gain additional information on roughness and stoichiometry of irradiated surfaces. Our investigations show significant surface modification for all tested irradiation conditions; the resulting surface structure size and geometry have a strong dependence on both sample temperature during irradiation and total ion fluence. Optical reflectivity measurements on irradiated surfaces demonstrate increased surface roughening with increasing ion fluence, and XPS shows higher oxidation levels for samples irradiated at lower temperatures, suggesting larger surface roughness and porosity. Overall, it was found that low-energy He(+) ion irradiation is an efficient processing technique for nanostructure formation, and surface structures are highly tunable by adjusting ion fluence and Nb2O5 sample temperature during irradiation. These findings may have excellent potential applications for solar energy conversion through improved efficiency due to effective light absorption.

  15. White light interferometry for quantitative surface characterization in ion sputtering experiments.

    SciTech Connect

    Baryshev, S. V.; Zinovev, A. V.; Tripa, C. E.; Erck, R. A.; Veryovkin, I. V.

    2012-07-01

    White light interferometry (WLI) can be used to obtain surface morphology information on dimensional scale of millimeters with lateral resolution as good as {approx}1 {micro}m and depth resolution down to 1 nm. By performing true three-dimensional imaging of sample surfaces, the WLI technique enables accurate quantitative characterization of the geometry of surface features and compares favorably to scanning electron and atomic force microscopies by avoiding some of their drawbacks. In this paper, results of using the WLI imaging technique to characterize the products of ion sputtering experiments are reported. With a few figures, several example applications of the WLI method are illustrated when used for (i) sputtering yield measurements and time-to-depth conversion, (ii) optimizing ion beam current density profiles, the shapes of sputtered craters, and multiple ion beam superposition and (iii) quantitative characterization of surfaces processed with ions. In particular, for sputter depth profiling experiments of {sup 25}Mg, {sup 44}Ca and {sup 53}Cr ion implants in Si (implantation energy of 1 keV per nucleon), the depth calibration of the measured depth profile curves determined by the WLI method appeared to be self-consistent with TRIM simulations for such projectile-matrix systems. In addition, high depth resolution of the WLI method is demonstrated for a case of a Genesis solar wind Si collector surface processed by gas cluster ion beam: a 12.5 nm layer was removed from the processed surface, while the transition length between the processed and untreated areas was 150 {micro}m.

  16. Ion energy distribution near a plasma meniscus with beam extraction for multi element focused ion beams

    SciTech Connect

    Mathew, Jose V.; Paul, Samit; Bhattacharjee, Sudeep

    2010-05-15

    An earlier study of the axial ion energy distribution in the extraction region (plasma meniscus) of a compact microwave plasma ion source showed that the axial ion energy spread near the meniscus is small ({approx}5 eV) and comparable to that of a liquid metal ion source, making it a promising candidate for focused ion beam (FIB) applications [J. V. Mathew and S. Bhattacharjee, J. Appl. Phys. 105, 96101 (2009)]. In the present work we have investigated the radial ion energy distribution (IED) under the influence of beam extraction. Initially a single Einzel lens system has been used for beam extraction with potentials up to -6 kV for obtaining parallel beams. In situ measurements of IED with extraction voltages upto -5 kV indicates that beam extraction has a weak influence on the energy spread ({+-}0.5 eV) which is of significance from the point of view of FIB applications. It is found that by reducing the geometrical acceptance angle at the ion energy analyzer probe, close to unidirectional distribution can be obtained with a spread that is smaller by at least 1 eV.

  17. Non-contact pumping of light emitters via non-radiative energy transfer

    DOEpatents

    Klimov, Victor I.; Achermann, Marc

    2010-01-05

    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  18. Relationship between wave energy and free energy from pickup ions in the Comet Halley environment

    NASA Technical Reports Server (NTRS)

    Huddleston, D. E.; Johnstone, A. D.

    1992-01-01

    The free energy available from the implanted heavy ion population at Comet Halley is calculated by assuming that the initial unstable velocity space ring distribution of the ions evolves toward a bispherical shell. Ultimately this free energy adds to the turbulence in the solar wind. Upstream and downstream free energies are obtained separately for the conditions observed along the Giotto spacecraft trajectory. The results indicate that the waves are mostly upstream propagating in the solar wind frame. The total free energy density always exceeds the measured wave energy density because, as expected in the nonlinear process of ion scattering, the available energy is not all immediately released. An estimate of the amount which has been released can be obtained from the measured oxygen ion distributions and again it exceeds that observed. The theoretical analysis is extended to calculate the k spectrum of the cometary-ion-generated turbulence.

  19. Light emission of a polyfluorene derivative containing complexed europium ions.

    PubMed

    Turchetti, Denis Augusto; Nolasco, Mariela Martins; Szczerbowski, Daiane; Carlos, Luís Dias; Akcelrud, Leni Campos

    2015-10-21

    The photophysical properties of a new alternating copolymer containing fluorene, terpyridine, and complexed sites with trivalent europium (Eu(3+)) ions (LaPPS66Eu) were investigated, using the non-complexed backbone (LaPPS66) and a low molecular weight compound of similar chemical structure of the ligand/Eu(3+) site (LaPPS66M) as a model compound. The analogous gadolinium complex (LaPPS66Gd) was also synthesized to determine the triplet state of the complex. (1)H and (13)C nuclear magnetic resonance (NMR) analysis, Fourier transform infrared (FT-IR) spectroscopy, inductively coupled plasma optical emission spectroscopy (ICP-OES), elemental analyses, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) characterized the chemical structure and thermal properties of the synthesized materials. A level of Eu(3+) insertion of 37% (molar basis) in the polymer backbone was achieved. The photoluminescence studies were performed in the solid state showing the occurrence of polymer-to-Eu(3+) energy transfer brought about by the spectral overlap between the absorption spectra of the Eu(3+) complex and the emission of the polymer backbone. A detailed theoretical photoluminescence study performed using time-dependent DFT (TD-DFT) calculations and the recently developed LUMPAC luminescence package is also presented. The high accuracy of the theoretical calculations was achieved on comparison with the experimental values. Aiming at a deeper level of understanding of the photoluminescence process, the ligand-to-Eu(3+) intramolecular energy transfer and back-transfer rates were predicted. The complexed materials showed a dominant pathway involving the energy transfer between the triplet of the dbm (dibenzoylmethane) ligand and the (5)D1 and (5)D0 Eu(3+) levels.

  20. Energy Integrated Lighting-Heating-Cooling System.

    ERIC Educational Resources Information Center

    Meckler, Gershon; And Others

    1964-01-01

    Energy balance problems in the design of office buildings are analyzed. Through the use of integrated systems utilizing dual purpose products, a controlled environment with minimum expenditure of energy, equipment and space can be provided. Contents include--(1) office building occupancy loads, (2) office building heating load analysis, (3) office…

  1. Basic Energy Conservation and Management Part 1: Looking at Lighting

    ERIC Educational Resources Information Center

    Krueger, Glenn

    2012-01-01

    Reducing school district energy expenditures has become a universal goal. However, school board members, superintendents, and directors of buildings and grounds are often unaware of the many options available to conserve energy. School energy conservation used to be relatively simple: turn off the lights and turn down the heat in the winter and…

  2. Energy transfer between Eu3+ ions in calcium diborate glasses

    NASA Astrophysics Data System (ADS)

    Lavín, V.; Martín, I. R.; Rodríguez-Mendoza, U. R.; Rodríguez, V. D.

    1999-11-01

    The evolution of the 5D0icons/Journals/Common/to" ALT="to" ALIGN="TOP"/> 7F0 emission of Eu3+ ions in calcium diborate glasses has been analysed using time resolved fluorescence line narrowing measurements in order to give a complete view of the energy transfer processes between these ions. At low concentration (2.5 mol% of Eu2O3) and exciting within the high energy side of the inhomogeneous 7F0icons/Journals/Common/to" ALT="to" ALIGN="TOP"/> 5D0 absorption band, the luminescence spectrum mainly consists of a narrow resonant peak that repeats the exciting profile, indicating that the migration processes between Eu3+ ions within the 5D0 level is not important. However, at higher concentrations (5 to 11.5 mol% of Eu2O3) the luminescence spectrum contains not only a narrow emission but also a broad band due to ions excited by energy transfer (background fluorescence), which for long times well reproduces the inhomogeneous profile. The temporal evolution of the narrow band fluorescence and the shape of the background fluorescence have been analysed using a previously proposed model. The purpose is to understand the dynamics involved in the energy transfer processes caused by the interaction between Eu3+ ions and the implications in their luminescence. A very good agreement with the experimental results is found taking into account an energy dependent quadrupole-quadrupole (S = 10) non-radiative energy transfer process assisted by a phonon from Eu3+ ions at high crystal field sites to ions at low crystal field sites. The temperature dependence of the energy transfer processes is analysed in the range from 13 to 60 K.

  3. Electronic stopping power data of heavy ions in polymeric foils in the ion energy domain of LSS theory

    NASA Astrophysics Data System (ADS)

    Dib, A.; Ammi, H.; Hedibel, M.; Guesmia, A.; Mammeri, S.; Msimanga, M.; Pineda-Vargas, C. A.

    2015-11-01

    A continuous energy loss measurements of 63Cu, 28Si, 27Al, 24Mg, 19F, 16O and 12C ions over an energy range of (0.06-0.65) MeV/nucleon through thin polymeric foils (Mylar, Polypropylene and Formvar) were carried out by time of flight spectrometry. The deduced experimental stopping data have been used in order to assess our proposed semi empirical formula. The proposed approach based on the Firsov and Lindhard-Scharff stopping power models is provided for well describing-the electronic stopping power of heavy ions (3 ⩽ Z < 100) in various solids targets at low energy range. The ζe factor, which was approximated to be ∼Z11/6 , involved in Lindhard, Scharff and Schiott (LSS) formula has been suitably modified in the light of the available experimental stopping power data. The calculated stopping power values after incorporating, effective charge Z1∗ of moving heavy ions with low velocities (v ⩽v0Z12/3) and modified ζe in LSS formula, have been found to be in close agreement with measured values in various solids targets. A reason of energy loss measurements is to obtain data that help to assess our understanding of the stopping power theories. For this, the obtained results are compared with, LSS calculations, MSTAR and SRIM-2013 predictions code.

  4. Collisional Cooling of Light Ions by Cotrapped Heavy Atoms.

    PubMed

    Dutta, Sourav; Sawant, Rahul; Rangwala, S A

    2017-03-17

    We experimentally demonstrate cooling of trapped ions by collisions with cotrapped, higher-mass neutral atoms. It is shown that the lighter ^{39}K^{+} ions, created by ionizing ^{39}K atoms in a magneto-optical trap (MOT), when trapped in an ion trap and subsequently allowed to cool by collisions with ultracold, heavier ^{85}Rb atoms in a MOT, exhibit a longer trap lifetime than without the localized ^{85}Rb MOT atoms. A similar cooling of trapped ^{85}Rb^{+} ions by ultracold ^{133}Cs atoms in a MOT is also demonstrated in a different experimental configuration to validate this mechanism of ion cooling by localized and centered ultracold neutral atoms. Our results suggest that the cooling of ions by localized cold atoms holds for any mass ratio, thereby enabling studies on a wider class of atom-ion systems irrespective of their masses.

  5. Internal energy and fragmentation of ions produced in electrospray sources.

    PubMed

    Gabelica, Valérie; De Pauw, Edwin

    2005-01-01

    This review addresses the determination of the internal energy of ions produced by electrospray ionization (ESI) sources, and the influence of the internal energy on analyte fragmentation. A control of the analyte internal energy is crucial for several applications of electrospray mass spectrometry, like structural studies, construction of reproducible and exportable spectral libraries, analysis of non-covalent complexes. Sections II and III summarize the Electrospray mechanisms and source design considerations which are relevant to the problem of internal energy, and Section IV gives an overview of the inter-relationships between ion internal energy, reaction time scale, and analyte fragmentation. In these three sections we tried to make the most important theoretical elements understandable by all ESI users, and their understanding requires a minimal background in physical chemistry. We then present the different approaches used to experimentally determine the ion internal energy, as well as various attempts in modeling the internal energy uptake in electrospray sources. Finally, a tentative comparison between electrospray and other ionization sources is made. As the reader will see, although many reports appeared on the subject, the knowledge in the field of internal energy of ions produced by soft ionization sources is still scarce, because of the complexity of the system, and this is what makes this area of research so interesting. The last section presents some perspectives for future research.

  6. Conversion of infrared light into usable energy

    NASA Astrophysics Data System (ADS)

    St. John, Thomas C.; Marinelli, Zachary J.; Kaczmar, Justin M.; Given, Robert P.; Wenger, Kyle S.; Utter, Brian C.; Scarel, Giovanna

    2016-09-01

    Light-matter interaction involving photons with large period τ of 3 fs (10-15 s) and above, i.e. infrared (IR) to microand radio-waves, displays interesting properties so far mostly unexplored. These photons indeed can produce voltages after activating charges or currents. For example, in the literature it is demonstrated that animals and plants neural system (which is similar to a system consisting of capacitors in series) can be stimulated by IR photons. Additionally, radio waves can activate currents in antennas. However, a systematic investigation of the voltages and currents produced, of the charge density changes, and of the number of photons involved is missing. Here we initiate the investigation of the voltages produced by a capacitor-type device. We shine broadband IR light in the middle IR region (MIR) at a power of 25 mW onto capacitors with capacitance C from 30 to 300 pF. We observe that the voltage produced increases with decreasing C while developing negligible temperature changes. Further increases can be obtained by increasing τ and, modestly, by deviating from normal incidence the angle of incidence θ between the IR light and the illuminated plate of the capacitor. Specifically, here we compare τ in the MIR and far IR (FIR) regions, and θ from 0° (normal incidence) to 45°. The effects of the power of the light will be explored in the near future. These results suggest that it is possible to harvest and transform IR, micro- and radio-waves into usable and sustainable electricity.

  7. Effects of Photon Absorption in High Energy Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Winchell, Joshua; Somanathan, Sidharth; Fries, Ranier

    2014-09-01

    Photons are an important probe of the hot and dense nuclear matter created in high-energy collisions of nuclei at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Since the mean free path of photons is larger than the size of the fireball of nuclear matter, final state interactions of photons are usually neglected. In light of recent tension between theoretical calculations and data from RHIC and LHC, we study the effect of reabsorption of photons on elliptic flow v2 and on the nuclear modification factor RAA. We consider photons emitted in primary hard collisions and thermal photons from quark-gluon plasma and hot hadron gas. We use the jet-quenching code PPM to simulate the propagation of those photons in a fireball of quark-gluon plasma and hot hadron gas created by collisions of heavy nuclei. For the absorption cross-sections we consider three different approaches: (a) Compton and pair production processes calculated by us in a static approximation, (b) the photon damping rates calculated by Thoma (1995), and (c) absorption rates derived from a recent photon calculation by van Hees et al.

  8. Building a Road from Light to Energy

    SciTech Connect

    Li, Anton; Bilby, David; Barito, Adam; Vyletel, Brenda

    2013-07-18

    Representing the Center for Solar and Thermal Energy Conversion (CSTEC), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of the Center for Solar and Thermal Energy Conversion (CSTEC) is to design and to synthesize new materials for high efficiency photovoltaic (PV) and thermoelectric (TE) devices, predicated on new fundamental insights into equilibrium and non-equilibrium processes, including quantum phenomena, that occur in materials over various spatial and temporal scales.

  9. Comparison between single- and dual-electrode ion source systems for low-energy ion transport

    SciTech Connect

    Vasquez, M. Jr.; Tokumura, S.; Kasuya, T.; Maeno, S.; Wada, M.

    2012-11-06

    Extraction of ions with energies below 100 eV has been demonstrated using a hot-cathode multi-cusp ion source equipped with extraction electrodes made of thin wires. Two electrode geometries, a single-electrode system, and a dual-electrode system were built and tested. The single-electrode configuration showed high ion beam current densities at shorter distances from the electrode but exhibited rapid attenuation as the distance from the electrode increased. Beam angular spread measurements showed similar beam divergence for both electrode configurations at low plasma densities. At high plasma densities and low extraction potentials, the single-electrode system showed the angular spread twice as large as that of the dual-electrode system. Energy distribution analyses showed a broader energy spread for ion beams extracted from a single-electrode set-up.

  10. Estimation of Nitrogen Ion Energy in Sterilization Technology by Plasma Based Ion Implantation

    NASA Astrophysics Data System (ADS)

    Kondou, Youhei; Nakashima, Takeru; Tanaka, Takeshi; Takagi, Toshinori; Watanabe, Satoshi; Ohkura, Kensaku; Shibahara, Kentaro; Yokoyama, Shin

    Plasma based ion implantation (PBII) with negative voltage pulses to the test specimen has been applied to the sterilization process as a technique suitable for three-dimensional work pieces. Pulsed high negative voltage (5 μs pulse width, 300 pulses/s, -800 V to -15 kV) was applied to the electrode in this process at a gas pressure of 2.4 Pa of N2. We found that the PBII process, in which N2 gas self-ignitted plasma generated by only pulsed voltages is used, reduces the number of active Bacillus pumilus cell. The number of bacteria survivors was reduced by 10-5 x with 5 min exposure. Since the ion energy is the most important processing parameter, a simple method to estimate the nitrogen ion energy from distribution of nitrogen atoms in Si implanted by PBII was developed. The implanted ion energy is discussed from the SIMS in depth profiles.

  11. Ion drift in a magnetic field under the combined action of LID and light pressure

    SciTech Connect

    Parkhomenko, A I

    2002-06-30

    The effect of magnetic field on the ion drift in a weakly ionised gas under the combined action of light-induced drift (LID) and light pressure is theoretically investigated. It is shown that the imposition of an external magnetic field may give rise to a velocity component of light-induced ion drift orthogonal to the direction of radiation propagation. The effect of light pressure in sufficiently strong magnetic fields is found to prevail over the LID effect, while the reverse is true for weak magnetic fields. The dependence of the ion drift velocity on the frequency detuning drastically changes in the magnetic field when ions experience the Lorenz force. It is predicted that the projection of the ion drift velocity on the direction of radiation propagation should change its sign with increasing magnetic field, and an anomalous LID can be observed. (laser applications and other topics in quantum electronics)

  12. Stimulated Scattering of Light from Ion Acoustic Waves in Collisional Multi-species Plasma.

    NASA Astrophysics Data System (ADS)

    Berger, Richard; Valeo, Ernest

    2003-10-01

    The dispersion properties of ion acoustic waves (IAW) are sensitive to the strength of ion-ion collisions,especially in multi-species plasma in which the different species have differing charge-to-mass ratios(Bychenkov et al., PRE 51, 1400 (1995)). Here, we consider the modification of the frequency and damping of the fast and slow acoustic modes in a plasma composed of light (low Z) and heavy (high Z) ions. In the fluid limit, kλ_lh <<1, the friction between the two species causes the damping whereas, in the collisionless limit, Landau damping of the light ions provides the dissipation. Collisions between light and heavy ions also affect the nonlinear response(P. W. Rambo, S. C. Wilks, and W. L. Kruer, Phys. Rev. Lett. 79), 83 (1997).. We examine the effects of collisions on the linear evolution of ion waves driven by the ponderomotive force of two light waves within the context of linear parametric instability theory. The simulation of the nonlinear evolution is done with a δ f model that evolves the background(E. J. Valeo and S. Brunner, Bull. Am. Phys. Soc. 46), QP1.137 (2001)., and includes the effects of collisions of light on heavy ions within the Lorentz model. The calculated effect of a small number of high Z ions on SBS in low Z plasmas will be compared with recent experimental results(Suter et al.,private communication). l

  13. Inverse Energy Dispersion of Energetic Ions Observed in the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Lee, S. H.; Sibeck, D. G.; Hwang, K.-J.; Wang, Y.; Silveira, M. V. D.; Fok, M.-C.; Mauk, B. H.; Cohen, I. J.; Ruohoniemi, J. M.; Kitamura, N.; Burch, J. L.; Giles, B. L.; Torbert, R. B.; Russell, C. T.; Lester, M.

    2016-01-01

    We present a case study of energetic ions observed by the Energetic Particle Detector (EPD) on the Magnetospheric Multiscale spacecraft in the magnetosheath just outside the subsolar magnetopause that occurred at 1000 UT on 8 December 2015. As the magnetopause receded inward, the EPD observed a burst of energetic (approximately 50-1000 keV) proton, helium, and oxygen ions that exhibited an inverse dispersion, with the lowest energy ions appearing first. The prolonged interval of fast antisunward flow observed in the magnetosheath and transient increases in the H components of global ground magnetograms demonstrate that the burst appeared at a time when the magnetosphere was rapidly compressed. We attribute the inverse energy dispersion to the leakage along reconnected magnetic field lines of betatron-accelerated energetic ions in the magnetosheath, and a burst of reconnection has an extent of about 1.5 R(sub E) using combined Super Dual Auroral Radar Network radar and EPD observations.

  14. Theoretical predictions for ionization cross sections of DNA nucleobases impacted by light ions.

    PubMed

    Champion, C; Lekadir, H; Galassi, M E; Fojón, O; Rivarola, R D; Hanssen, J

    2010-10-21

    Induction of DNA double strand breaks after irradiation is considered of prime importance for producing radio-induced cellular death or injury. However, up to now ion-induced collisions on DNA bases remain essentially experimentally approached and a theoretical model for cross section calculation is still lacking. Under these conditions, we here propose a quantum mechanical description of the ionization process induced by light bare ions on DNA bases. Theoretical predictions in terms of differential and total cross sections for proton, α-particle and bare ion carbon beams impacting on adenine, cytosine, thymine and guanine bases are then reported in the 10 keV amu(-1)-10 MeV amu(-1) energy range. The calculations are performed within the first-order Born approximation (FBA) with biological targets described at the restricted Hartree-Fock level with geometry optimization. Comparisons to recent theoretical data for collisions between protons and cytosine point out huge discrepancies in terms of differential as well as total cross sections whereas very good agreement is shown with our previous classical predictions, especially at high impact energies (E(i) ≥ 100 keV amu(-1)). Finally, in comparison to the rare existing experimental data a systematic underestimation is observed in particular for adenine and thymine whereas a good agreement is reported for cytosine. Thus, further improvements appear as necessary, in particular by using higher order theories like the continuum-distorted-wave one in order to obtain a better understanding of the underlying physics involved in such ion-DNA reactions.

  15. A microsecond-pulsewidth, intense, light-ion beam accelerator

    SciTech Connect

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Greenly, J.B.; Waganaar, W.J.

    1993-07-01

    A relatively long-pulsewidth (0.1-1 {mu}s) intense ion beam accelerator has been built for materials processing applications. An applied-B{sub r}, magnetically-insulated extraction ion diode with dielectric flashover ion source is installed directly onto the output of a 1.2-MV, 300-kJ Marx generator. Initial operation of the accelerator at 0.4 MV indicates satisfactory performance without the need for additional pulse-shaping.

  16. Ion composition and energy distribution during 10 magnetic storms

    SciTech Connect

    Lennartsson, W.; Sharp, R.D.; Shelley, E.G.; Johnson, R.G.; Balsiger, H.

    1981-06-01

    Data from the plasma composition experiment on ISEE 1 were used to investigate the relative quantities and energy characteristics of H/sup +/, He/sup + +/, and O/sup +/ in the near-equatorial magnetosphere at R< or =15 R/sub E/ during magnetic storms, principally during the early main phase. The ions included in this study had energies in the range of 0.1< or =E/Q< or =17 keV/e. The number densities were characterized by a large to dominant fraction of terrestrial ions through this energy window. Terrestrial O/sup +/ ions were most clearly identified, but strong evidence for a significant contribution of terrestrial H/sup +/ ions was also found. On occasions, the O/sup +/ alone contributed 50% or more of the integral number density, as well as the energy density, over distances of several earth radii along the orbit. The largest fractions of O/sup +/ (< or approx. =75%) and He/sup +/ (< or =25%) were found at R<3 R/sub E/(L<5). In general, the He/sup +/ only represented a few percent, however. Small fractions of O/sup +/ (<10%) and He/sup +/ (<1%) were mostly found in the 0100--0600 LT sector, at R> or approx. = 7 R/sub E/. The He/sup + +/ was often obscured by background and rarely exceeded 2%, except in the 0100--0600 LT sector, at R> or approx. =7 R/sub E/, where it reached several percent relatively frequently, suggesting a larger solar wind component here. It is argued, based on certain signatures in the energy spectra, that solar wind ions may enter the inner magnetosphere through this region and thereby contribute a larger portion of the high-energy ring current population (50--100 keV). The data do not suggest, however, that the solar wind is always the dominant source of ions for the high-energy ring current.

  17. Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission

    NASA Astrophysics Data System (ADS)

    Chen, Daqin; Wang, Yuansheng; Yu, Yunlong; Huang, Ping; Weng, Fangyi

    2008-10-01

    Transparent SiO 2-Al 2O 3-NaF-YF 3 bulk nano-composites triply doped with Ho 3+, Tm 3+ and Yb 3+ were fabricated by melt-quenching and subsequent heating. X-ray diffraction and transmission electron microscopy measurements demonstrated the homogeneous precipitation of the β-YF 3 crystals with mean size of 20 nm among the glass matrix, and rare earth ions were found to partition into these nano-crystals. Under single 976 nm laser excitation, intense red, green and blue upconversion emissions were simultaneously observed owing to the successive energy transfer from Yb 3+ to Ho 3+ or Tm 3+. Various colors of luminescence, including bright perfect white light, can be easily tuned by adjusting the concentrations of the rare earth ions in the material. The overall energy efficiency of the white-light upconversion was estimated to be about 0.2%.

  18. The photodetachment cross-section and threshold energy of negative ions in carbon dioxide

    NASA Technical Reports Server (NTRS)

    Helmy, E. M.; Woo, S. B.

    1974-01-01

    Threshold energy and sunlight photodetachment measurements on negative carbon dioxide ions, using a 2.5 kw light pressure xenon lamp, show that: (1) Electron affinity of CO3(+) is larger than 2.7 e.V. and that an isomeric form of CO3(+) is likely an error; (2) The photodetachment cross section of CO3(-) will roughly be like a step function across the range of 4250 to 2500A, having its threshold energy at 4250A; (3) Sunlight photodetachment rate for CO3(-) is probably much smaller than elsewhere reported; and (4) The probability of having photodetached electrons re-attach to form negative ions is less than 1%. Mass identifying drift tube tests confirm that the slower ion is CO3(-), formed through the O(-) + 2CO2 yields CO3(-) + CO2 reaction.

  19. Controlled removal of ceramic surfaces with combination of ions implantation and ultrasonic energy

    DOEpatents

    Boatner, Lynn A.; Rankin, Janet; Thevenard, Paul; Romana, Laurence J.

    1995-01-01

    A method for tailoring or patterning the surface of ceramic articles is provided by implanting ions to predetermined depth into the ceramic material at a selected surface location with the ions being implanted at a fluence and energy adequate to damage the lattice structure of the ceramic material for bi-axially straining near-surface regions of the ceramic material to the predetermined depth. The resulting metastable near-surface regions of the ceramic material are then contacted with energy pulses from collapsing, ultrasonically-generated cavitation bubbles in a liquid medium for removing to a selected depth the ion-damaged near-surface regions containing the bi-axially strained lattice structure from the ceramic body. Additional patterning of the selected surface location on the ceramic body is provided by implanting a high fluence of high-energy, relatively-light ions at selected surface sites for relaxing the bi-axial strain in the near-surface regions defined by these sites and thereby preventing the removal of such ion-implanted sites by the energy pulses from the collapsing ultrasonic cavitation bubbles.

  20. Progress on the design of the polarized Medium-energy Electron Ion Collider at JLAB

    SciTech Connect

    Lin, F.; Bogacz, A.; Brindza, P.; Camsonne, A.; Daly, E.; Derbenev, Ya. S.; Douglas, D.; Ent, R.; Gaskell, D.; Geng, R.; Grames, J.; Guo, J.; Harwood, L.; Hutton, A.; Jordan, K.; Kimber, A.; Krafft, G.; Li, R.; Michalski, T.; Morozov, V. S.; Nadel-Turonski, P.; /Jefferson Lab /Argonne /DESY /Moscow , Inst. Phys. Tech., Dolgoprydny /Dubna, JINR /Northern Illinois U. /Old Doominion U. /Novosibirsk, GOO Zaryad /SLAC /Texas A-M

    2015-07-14

    The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design.

  1. Light Increases Energy Transfer Efficiency in a Boreal Stream

    PubMed Central

    Lesutienė, Jūratė; Gorokhova, Elena; Stankevičienė, Daiva; Bergman, Eva; Greenberg, Larry

    2014-01-01

    Periphyton communities of a boreal stream were exposed to different light and nutrient levels to estimate energy transfer efficiency from primary to secondary producers using labeling with inorganic 13C. In a one-day field experiment, periphyton grown in fast-flow conditions and dominated by opportunistic green algae were exposed to light levels corresponding to sub-saturating (forest shade) and saturating (open stream section) irradiances, and to N and P nutrient additions. In a two-week laboratory experiment, periphyton grown in low-flow conditions and dominated by slowly growing diatoms were incubated under two sub-saturating light and nutrient enrichment levels as well as grazed and non-grazed conditions. Light had significant positive effect on 13C uptake by periphyton. In the field experiment, P addition had a positive effect on 13C uptake but only at sub-saturating light levels, whereas in the laboratory experiment nutrient additions had no effect on the periphyton biomass, 13C uptake, biovolume and community composition. In the laboratory experiment, the grazer (caddisfly) effect on periphyton biomass specific 13C uptake and nutrient content was much stronger than the effects of light and nutrients. In particular, grazers significantly reduced periphyton biomass and increased biomass specific 13C uptake and C:nutrient ratios. The energy transfer efficiency, estimated as a ratio between 13C uptake by caddisfly and periphyton, was positively affected by light conditions, whereas the nutrient effect was not significant. We suggest that the observed effects on energy transfer were related to the increased diet contribution of highly palatable green algae, stimulated by higher light levels. Also, high heterotrophic microbial activity under low light levels would facilitate energy loss through respiration and decrease overall trophic transfer efficiency. These findings suggest that even a small increase in light intensity could result in community-wide effects on

  2. Light increases energy transfer efficiency in a boreal stream.

    PubMed

    Lesutienė, Jūratė; Gorokhova, Elena; Stankevičienė, Daiva; Bergman, Eva; Greenberg, Larry

    2014-01-01

    Periphyton communities of a boreal stream were exposed to different light and nutrient levels to estimate energy transfer efficiency from primary to secondary producers using labeling with inorganic (13)C. In a one-day field experiment, periphyton grown in fast-flow conditions and dominated by opportunistic green algae were exposed to light levels corresponding to sub-saturating (forest shade) and saturating (open stream section) irradiances, and to N and P nutrient additions. In a two-week laboratory experiment, periphyton grown in low-flow conditions and dominated by slowly growing diatoms were incubated under two sub-saturating light and nutrient enrichment levels as well as grazed and non-grazed conditions. Light had significant positive effect on (13)C uptake by periphyton. In the field experiment, P addition had a positive effect on (13)C uptake but only at sub-saturating light levels, whereas in the laboratory experiment nutrient additions had no effect on the periphyton biomass, (13)C uptake, biovolume and community composition. In the laboratory experiment, the grazer (caddisfly) effect on periphyton biomass specific (13)C uptake and nutrient content was much stronger than the effects of light and nutrients. In particular, grazers significantly reduced periphyton biomass and increased biomass specific (13)C uptake and C:nutrient ratios. The energy transfer efficiency, estimated as a ratio between (13)C uptake by caddisfly and periphyton, was positively affected by light conditions, whereas the nutrient effect was not significant. We suggest that the observed effects on energy transfer were related to the increased diet contribution of highly palatable green algae, stimulated by higher light levels. Also, high heterotrophic microbial activity under low light levels would facilitate energy loss through respiration and decrease overall trophic transfer efficiency. These findings suggest that even a small increase in light intensity could result in community

  3. Range and Energy Straggling in Ion Beam Transport

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tai, Hsiang

    2000-01-01

    A first-order approximation to the range and energy straggling of ion beams is given as a normal distribution for which the standard deviation is estimated from the fluctuations in energy loss events. The standard deviation is calculated by assuming scattering from free electrons with a long range cutoff parameter that depends on the mean excitation energy of the medium. The present formalism is derived by extrapolating Payne's formalism to low energy by systematic energy scaling and to greater depths of penetration by a second-order perturbation. Limited comparisons are made with experimental data.

  4. Energy loss of coasting gold ions and deuterons in RHIC.

    SciTech Connect

    Abreu,N.; Blaskiewicz, M.; Brown, K.A.; Butler, J.J.; FischW; Harvey, M.; Tepikian, S.

    2008-06-23

    The total energy loss of coasting gold ion beams was measured at RHIC at two energies, corresponding to a gamma of 75.2 and 107.4. We describe the experiment and observations and compare the measured total energy loss with expectations from ionization losses at the residual gas, the energy loss due to impedance and synchrotron radiation. We find that the measured energy losses are below what is expected from free space synchrotron radiation. We believe that this shows evidence for suppression of synchrotron radiation which is cut off at long wavelength by the presence of the conducting beam pipe.

  5. Bremsstrahlung spectra from atoms and ions at low relativistic energies

    NASA Astrophysics Data System (ADS)

    Avdonina, N. B.; Pratt, R. H.

    1999-09-01

    Analytic expressions for bremsstrahlung spectra from neutral atoms and ions, including the polarizational bremsstrahlung contribution in a stripped atom approximation, are developed for electron scattering at energies of 10-2000 keV. A modified Elwert factor and a simple higher Born correction are used for the Coulomb spectrum, with ordinary bremsstrahlung screening effects in ions and atoms adequately characterized in the non-relativistic Born approximation. In parallel with the development of this analytic description, new numerical results are obtained for ordinary bremsstrahlung from ions and from bare nuclei, appreciably extending the available data set which can be used to study dependences on element, ionicity, energy and the fraction of incident energy radiated. The accuracy of predictions with the analytic expressions is then determined by comparison with the full numerical relativistic partial-wave results for ordinary bremsstrahlung and with non-relativistic numerical results in the Born approximation or in partial waves for the polarizational amplitude.

  6. Dissociation of energy-selected 1,1-dimethylhydrazine ions.

    PubMed

    Gengeliczki, Zsolt; Borkar, Sampada N; Sztáray, Bálint

    2010-05-27

    The unimolecular dissociation of 1,1-dimethylhydrazine ions was studied by threshold photoelectron photoion coincidence spectroscopy (TPEPICO). Time-of-flight distributions and breakdown curves were recorded in the photon energy range of 9.5-10.4 eV. The 0 K appearance energies of the fragment ions were extracted by modeling the experimental data with rigid activated complex (RAC-) RRKM theory. It was found that the data could be well-reproduced with a single TS for each dissociation channel if two different H-loss channels were assumed, one corresponding to a C-H and the other to a N-H bond dissociation. Once the appearance energies were established, heats of formation of the fragment ions could be derived. The heat of formation of the neutral molecule was computed by applying composite ab initio methods (G3, CBS-APNO, W1U) on a series of isodesmic reactions between methyl hydrazines and methyl amines.

  7. Effects of a dielectric material in an ion source on the ion beam current density and ion beam energy

    SciTech Connect

    Fujiwara, Y. Sakakita, H.; Nakamiya, A.; Hirano, Y.; Kiyama, S.

    2016-02-15

    To understand a strong focusing phenomenon that occurs in a low-energy hydrogen ion beam, the electron temperature, the electron density, and the space potential in an ion source with cusped magnetic fields are measured before and after the transition to the focusing state using an electrostatic probe. The experimental results show that no significant changes are observed before or after the transition. However, we found unique phenomena that are characterized by the position of the electrostatic probe in the ion source chamber. Specifically, the extracted ion beam current density and energy are obviously enhanced in the case where the electrostatic probe, which is covered by a dielectric material, is placed close to an acceleration electrode.

  8. Heating of ions to superthermal energies in the topside ionosphere by electrostatic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Ungstrup, E.; Klumpar, D. M.; Heikkila, W. J.

    1979-01-01

    The soft particle spectrometer on the Isis 2 spacecraft occasionally observes fluxes of ions moving upward out of the ionosphere in the vicinity of the auroral oval. These ion fluxes are characterized by a sharp pitch angle distribution usually peaked at an angle somewhat greater than 90 deg, indicative of particles heated to a large transverse temperature in a narrow range below the spacecraft. The observations are interpreted in terms of electrostatic ion cyclotron waves, which heat the ions to superthermal energies transverse to the earth's magnetic field. When the transverse energy increases, the repulsive force of the earth's magnetic field, proportional to the particle magnetic moment, repels the particles away from the earth.

  9. Fe ion-implanted TiO{sub 2} thin film for efficient visible-light photocatalysis

    SciTech Connect

    Impellizzeri, G. Scuderi, V.; Sanz, R.; Privitera, V.; Romano, L.; Sberna, P. M.; Arcadipane, E.; Scuderi, M.; Nicotra, G.; Bayle, M.; Carles, R.; Simone, F.

    2014-11-07

    This work shows the application of metal ion-implantation to realize an efficient second-generation TiO{sub 2} photocatalyst. High fluence Fe{sup +} ions were implanted into thin TiO{sub 2} films and subsequently annealed up to 550 °C. The ion-implantation process modified the TiO{sub 2} pure film, locally lowering its band-gap energy from 3.2 eV to 1.6–1.9 eV, making the material sensitive to visible light. The measured optical band-gap of 1.6–1.9 eV was associated with the presence of effective energy levels in the energy band structure of the titanium dioxide, due to implantation-induced defects. An accurate structural characterization was performed by Rutherford backscattering spectrometry, transmission electron microscopy, Raman spectroscopy, X-ray diffraction, and UV/VIS spectroscopy. The synthesized materials revealed a remarkable photocatalytic efficiency in the degradation of organic compounds in water under visible light irradiation, without the help of any thermal treatments. The photocatalytic activity has been correlated with the amount of defects induced by the ion-implantation process, clarifying the operative physical mechanism. These results can be fruitfully applied for environmental applications of TiO{sub 2}.

  10. Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission

    SciTech Connect

    Chen Daqin; Wang Yuansheng Yu Yunlong; Huang Ping; Weng Fangyi

    2008-10-15

    Transparent SiO{sub 2}-Al{sub 2}O{sub 3}-NaF-YF{sub 3} bulk nano-composites triply doped with Ho{sup 3+}, Tm{sup 3+} and Yb{sup 3+} were fabricated by melt-quenching and subsequent heating. X-ray diffraction and transmission electron microscopy measurements demonstrated the homogeneous precipitation of the {beta}-YF{sub 3} crystals with mean size of 20 nm among the glass matrix, and rare earth ions were found to partition into these nano-crystals. Under single 976 nm laser excitation, intense red, green and blue upconversion emissions were simultaneously observed owing to the successive energy transfer from Yb{sup 3+} to Ho{sup 3+} or Tm{sup 3+}. Various colors of luminescence, including bright perfect white light, can be easily tuned by adjusting the concentrations of the rare earth ions in the material. The overall energy efficiency of the white-light upconversion was estimated to be about 0.2%. - Graphical abstract: Under single 976 nm laser excitation, intense red, green and blue upconversion emissions were simultaneously observed owing to the successive energy transfer from Yb{sup 3+} to Ho{sup 3+} or Tm{sup 3+}. Various colors of luminescence, including bright perfect white light with CIE-X=0.351 and CIE-Y=0.306, can be easily tuned by adjusting the concentrations of the rare earth ions in the transparent oxyfluoride glass ceramics.

  11. Low energy ion beam assisted growth of metal multilayers

    NASA Astrophysics Data System (ADS)

    Quan, Junjie

    Vapor deposited metal multilayers have attracted a great deal of interest in recent years because they offer extraordinary strength, hardness, heat resistance, and unexpected new properties like high reflectivity and spin-dependent conductivity. The giant magnetoresistance effects discovered in Fe/Cr artificial superstructures in 1988 stimulated a large number of studies on the electronic transport properties of spintronic materials because of their important applications in highly sensitive magnetic sensors, nonvolatile random access memories, and the data storage industry in general. Magnetic multilayers allow exploitation of unique micromagnetic, magnetooptic, and magnetoelectronic phenomena that cannot be realized using conventional materials. For example, if ferromagnetic layers (such as CoFe) with a thicknesses of 5-7 nm are separated by a non-magnetic spacer (such as Cu or AlOx) of an appropriate thickness (1-3 nm), they can exhibit large changes in their electrical resistance when a magnetic field is applied. These changes are caused mainly by spin-dependent conduction electron scattering at magnetic multilayer interfaces. Many experimental and theoretical works have sought to promote a basic understanding of the effect of atomic structure in thin film multilayers upon spin dependent transport. It has been found that interfacial imperfections, such as interfacial roughness and interlayer mixing, dramatically reduce the properties exploited for spintronic applications. A combination of computer modeling and experiments has been used to discover more effective ways to control the interfacial structures of metal multilayers. Earlier atomic simulations had indicated that it is very important to control adatom energy during deposition in order to improve interface properties. Based on these ideas, this dissertation has investigated the effects of low energy ion assistance during metal multilayer deposition. Using molecular dynamics modeling, the effects of ion

  12. Influence of planar oscillations on scattered ion energy distributions in transmission ion channeling

    NASA Astrophysics Data System (ADS)

    Bailes, A. A.; Seiberling, L. E.

    1999-06-01

    Utilizing the transmission ion channeling technique and a Monte Carlo simulation of the channeling of He ions in Si, we have been able to determine surface structure by comparing experimental to simulated scattered ion energy distributions. In analyzing data for {110} beam incidence, we have found that planar oscillations persist well past 2000 Å in our Monte Carlo simulations. These oscillations yield no benefit to this method of data analysis but can make analysis more difficult by the requirement for more accurate Si thickness determination.

  13. Microsecond pulse width, intense, light-ion beam accelerator

    NASA Astrophysics Data System (ADS)

    Rej, D. J.; Bartsch, R. R.; Davis, H. A.; Faehl, R. J.; Greenly, J. B.; Waganaar, W. J.

    1993-10-01

    A relatively long-pulse width (0.1-1 μs) intense ion beam accelerator has been built for materials processing applications. An applied Br, magnetically insulated extraction ion diode with dielectric flashover ion source is installed directly onto the output of a 1.2 MV, 300-kJ Marx generator. The diode is designed with the aid of multidimensional particle-in-cell simulations. Initial operation of the accelerator at 0.4 MV indicates satisfactory performance without the need for additional pulse shaping. The effect of a plasma opening switch on diode behavior is considered.

  14. Ion-induced folding of the hammerhead ribozyme: a fluorescence resonance energy transfer study.

    PubMed Central

    Bassi, G S; Murchie, A I; Walter, F; Clegg, R M; Lilley, D M

    1997-01-01

    The ion-induced folding transitions of the hammerhead ribozyme have been analysed by fluorescence resonance energy transfer. The hammerhead ribozyme may be regarded as a special example of a three-way RNA junction, the global structure of which has been studied by comparing the distances (as energy transfer efficiencies) between the ends of pairs of labelled arms for the three possible end-to-end vectors as a function of magnesium ion concentration. The data support two sequential ion-dependent transitions, which can be interpreted in the light of the crystal structures of the hammerhead ribozyme. The first transition corresponds to the formation of a coaxial stacking between helices II and III; the data can be fully explained by a model in which the transition is induced by a single magnesium ion which binds with an apparent association constant of 8000-10 000 M-1. The second structural transition corresponds to the formation of the catalytic domain of the ribozyme, induced by a single magnesium ion with an apparent association constant of approximately 1100 M-1. The hammerhead ribozyme provides a well-defined example of ion-dependent folding in RNA. PMID:9405376

  15. Inferring mixture Gibbs free energies from static light scattering data

    NASA Astrophysics Data System (ADS)

    Ross, David; Wahle, Christopher; Thurston, George

    We describe a light scattering partial differential equation for the free energy of mixing that applies to connected, isotropic ternary and quaternary liquid composition domains, including restricted domains which may not touch all binary axes. For restricted domains, contrasting light scattering efficiency patterns obtained at different wavelengths can correspond to the same underlying free energy, and supplement the available information. We discuss well-posed problems for this fully nonlinear, degenerate elliptic partial differential equation. Using Monte Carlo simulations, we provide estimates of the overall system measurement time and sample spacing needed to determine the free energy to a desired degree of accuracy, and indicate how measurement time depends on instrument throughput. These methods provide a way to use static light scattering to measure, directly, mixing free energies of many systems that contain liquid domains. Supported by NIH EY018249.

  16. Stimulation of Growth and Ion Uptake in Bean Leaves by Red and Blue Light 1

    PubMed Central

    Blum, Dale E.; Elzenga, J. Theo M.; Linnemeyer, Paul A.; Van Volkenburgh, Elizabeth

    1992-01-01

    Red and blue light both stimulate growth and ion accumulation in bean (Phaseolus vulgaris L.) leaves, and previous studies showed that the growth response is mediated by phytochrome and a blue-light receptor. Results of this study confirm that there is an additional photosynthetic contribution from the growing cells that supports ion uptake and growth. Disc expansion in the light was enhanced by exogenous K+ and Rb+, but was not specific for anions. Light increased K+ accumulation and the rate of 86Rb+ uptake by discs, over darkness, with no effect of light quality. The photosynthetic inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, inhibited light-driven 86Rb+ uptake by 75%. Light quality caused differences in short-term kinetics of growth and acidification of the leaf surface. At comparable fluence rates (50 μmol m−2 s−1), continuous exposure to blue light increased the growth rate 3-fold after a 2-min lag, whereas red light caused a smaller growth response after a lag of 12 min. In contrast, the acidification of the leaf surface normally associated with growth was stimulated 3-fold by red light but only slightly (1.3-fold) by blue light. This result shows that, in addition to acidification caused by red light, a second mechanism specifically stimulated by blue light is normally functioning in light-driven leaf growth. PMID:16653225

  17. Energy spectra of He + ions penetrating thick biological targets

    NASA Astrophysics Data System (ADS)

    Xia, Yueyuan; Tan, Chunyu; Mu, Yuguang; Wang, Ruijin; Zhang, Jianhua; Liu, Xiangdong; Liu, Jitian; Yu, Zhengliang

    1999-05-01

    Energy spectra of 500 keV-1MeV He + ion penetrating 50 μ m- 100 μ m thick seed coat of maize, fruit peel of grape and of tomato, are measured. The results indicate that these thick biological targets, as seen by the penetrating ions, are inhomogeneous, and there are open paths, along which the incident ions can penetrate the targets easily. While most of the incident ions are stopped in the targets, some of the penetrating ions only lose a small fraction of their initial incident energy. The penetration energy spectra show a pure electronic stopping feature. Transmission electron microscope (TEM) micrographs taken from these samples with thickness of 30 μ m indicate that 150 keV electron beam from the TEM can penetrate the thick samples to give very good images with clear contrast. The electronic structures of β-1,4 glucosan molecular chains, which is deemed as the most important constituent of the cell walls of seed coats and peels of fruits, are calculated to show the possible open-path directions which exist in biological samples.

  18. Heavy Ion Inertial Fusion Energy: Summaries of Program Elements

    SciTech Connect

    Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

    2011-02-28

    The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

  19. Formation of ions by high-energy photons

    SciTech Connect

    Drukarev, E. G.; Mikhailov, A. I.; Mikhailov, I. A.; Rakhimov, Kh. Yu.; Scheid, W.

    2007-03-15

    We calculate the electron energy spectrum of ionization by a high-energy photon, accompanied by creation of an e{sup -}e{sup +} pair. The total cross section of the process is also obtained. The asymptotics of the cross section does not depend on the photon energy. At the photon energies exceeding a certain value {omega}{sub 0} this appears to be the dominant mechanism of formation of the ions. The dependence of {omega}{sub 0} on the value of nuclear charge is obtained. Our results are consistent with experimental data.

  20. Ion collector design for an energy recovery test proposal with the negative ion source NIO1

    NASA Astrophysics Data System (ADS)

    Variale, V.; Cavenago, M.; Agostinetti, P.; Sonato, P.; Zanotto, L.

    2016-02-01

    Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D- beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D- and D+), so that an ion beam energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H- each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.

  1. Ion collector design for an energy recovery test proposal with the negative ion source NIO1

    SciTech Connect

    Variale, V.; Cavenago, M.; Agostinetti, P.; Sonato, P.; Zanotto, L.

    2016-02-15

    Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D{sup −} beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D{sup −} and D{sup +}), so that an ion beam energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H{sup −} each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.

  2. Ion collector design for an energy recovery test proposal with the negative ion source NIO1.

    PubMed

    Variale, V; Cavenago, M; Agostinetti, P; Sonato, P; Zanotto, L

    2016-02-01

    Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D(-) beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D(-) and D(+)), so that an ion beam energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H(-) each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.

  3. Modeling heavy ion ionization energy loss at low and intermediate energies

    SciTech Connect

    Rakhno, I.L.; /Fermilab

    2009-11-01

    The needs of contemporary accelerator and space projects led to significant efforts made to include description of heavy ion interactions with matter in general-purpose Monte Carlo codes. This paper deals with an updated model of heavy ion ionization energy loss developed previously for the MARS code. The model agrees well with experimental data for various projectiles and targets including super-heavy ions in low-Z media.

  4. Structure Change of PTFE by Low Energy Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Watari, Kunio; Iwao, Toru; Yumoto, Motoshige

    The authors irradiate low energy nitrogen ion (100eV) on PTFE (poly-tetra-fluoro-ethylene) for surface modification. However, PTFE cannot anticipate adhesive strength improvement because it is collapse type polymer and weariness of surface occurs by ion irradiation. We paid attention to cross-linked structure to solve this problem. By this study introduce below, PTFE was changed collapse type polymer into cross-linked type polymer by rising temperature above the glass transition in the case of ion irradiation. As a result, the formation of the CF3 combination was restrained and collapse phenomenon was prevented by ion irradiation above the glass transition. In addition, it was suggested that cross-linked structure is effective for adhesive strength improvement by convolution of C1s spectrum and density profile.

  5. ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE

    SciTech Connect

    Anders, Andre; Yushkov, Georgy Yu.; Baldwin, David A.

    2009-11-20

    The technical objective of the project was to develop an ultra-low-energy, high-intensity ion source (ULEHIIS) for materials processing in high-technology fields including semiconductors, micro-magnetics and optics/opto-electronics. In its primary application, this ion source can be incorporated into the 4Wave thin-film deposition technique called biased target ion-beam deposition (BTIBD), which is a deposition technique based on sputtering (without magnetic field, i.e., not the typical magnetron sputtering). It is a technological challenge because the laws of space charge limited current (Child-Langmuir) set strict limits of how much current can be extracted from a reservoir of ions, such as a suitable discharge plasma. The solution to the problem was an innovative dual-discharge system without the use of extraction grids.

  6. Low-energy light bulbs, computers, tablets and the blue light hazard.

    PubMed

    O'Hagan, J B; Khazova, M; Price, L L A

    2016-02-01

    The introduction of low energy lighting and the widespread use of computer and mobile technologies have changed the exposure of human eyes to light. Occasional claims that the light sources with emissions containing blue light may cause eye damage raise concerns in the media. The aim of the study was to determine if it was appropriate to issue advice on the public health concerns. A number of sources were assessed and the exposure conditions were compared with international exposure limits, and the exposure likely to be received from staring at a blue sky. None of the sources assessed approached the exposure limits, even for extended viewing times.

  7. Low-energy light bulbs, computers, tablets and the blue light hazard

    PubMed Central

    O'Hagan, J B; Khazova, M; Price, L L A

    2016-01-01

    The introduction of low energy lighting and the widespread use of computer and mobile technologies have changed the exposure of human eyes to light. Occasional claims that the light sources with emissions containing blue light may cause eye damage raise concerns in the media. The aim of the study was to determine if it was appropriate to issue advice on the public health concerns. A number of sources were assessed and the exposure conditions were compared with international exposure limits, and the exposure likely to be received from staring at a blue sky. None of the sources assessed approached the exposure limits, even for extended viewing times. PMID:26768920

  8. Solid-state lighting: an energy-economics perspective

    NASA Astrophysics Data System (ADS)

    Tsao, J. Y.; Saunders, H. D.; Creighton, J. R.; Coltrin, M. E.; Simmons, J. A.

    2010-09-01

    Artificial light has long been a significant factor contributing to the quality and productivity of human life. As a consequence, we are willing to use huge amounts of energy to produce it. Solid-state lighting (SSL) is an emerging technology that promises performance features and efficiencies well beyond those of traditional artificial lighting, accompanied by potentially massive shifts in (a) the consumption of light, (b) the human productivity and energy use associated with that consumption and (c) the semiconductor chip area inventory and turnover required to support that consumption. In this paper, we provide estimates of the baseline magnitudes of these shifts using simple extrapolations of past behaviour into the future. For past behaviour, we use recent studies of historical and contemporary consumption patterns analysed within a simple energy-economics framework (a Cobb-Douglas production function and profit maximization). For extrapolations into the future, we use recent reviews of believed-achievable long-term performance targets for SSL. We also discuss ways in which the actual magnitudes could differ from the baseline magnitudes of these shifts. These include: changes in human societal demand for light; possible demand for features beyond lumens; and guidelines and regulations aimed at economizing on consumption of light and associated energy.

  9. Particle emission in the light heavy-ion fusion reactions: 14N, 16,18O+ 12C

    NASA Astrophysics Data System (ADS)

    Carlin Filho, N.; Coimbra, M. M.; Acquadro, J. C.; Liguori Neto, R.; Szanto, E. M.; Farrelly-Pessoa, E.; Szanto de Toledo, A.

    1985-01-01

    From the energy spectra of light particles produced in light-heavy-ion-induced reactions, level densities of the final nuclei as well as the critical angular momenta for fusion may be obtained. The 14N, 16,18O+ 12C reactions were investigated in the energy range 30 MeVlight particles (p,d,t,3He,α) emitted in the process were obtained. Fits of the magnitude and shape of the spectra by means of statistical model calculations were used to extract final nuclei level densities. The shape of the spectra and the ratio σ(α)/σ(p) are shown to be sensitive to the fusion critical angular momentum (Jcr), offering an alternative method for the total fusion cross-section determination.

  10. Intense low-energy ion populations at low equatorial altitudes

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Frank, L. A.

    1984-01-01

    The ISEE 1 satellite trajectory often passed through the magnetospheric region during the time from November 1977 to April 1978. On every occasion, the medium energy particles instrument (MEPI) of the satellite recorded an intense ion population in a region corresponding to low equatorial altitudes. An intensity peak was observed in the lowest MEPI energy channel. A comparison of high bit rate MEPI data with simultaneous data from the LEPEDEA plasma instrument on Nov. 29, 1977 1930-2000 UT shows additional peaks in the ion population existing in the L of 2 to at least 4. In the present report, data characterizing these ion populations are presented, and implications are discussed in terms of source and loss mechanisms.

  11. Energy loss of heavy ions in a dense hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Dietrich, K.-G.; Hoffmann, D. H. H.; Wahl, H.; Haas, C. R.; Kunze, H.; Brandenburg, W.; Noll, R.

    1990-12-01

    The energy loss of heavy ions with an energy of 1.4 MeV/u in a hydrogen plasma has been measured. A 20 cm long z-pinch has been used as plasma target. Our data show a strong enhancement of the stopping power of the plasma compared to that of a cold gas with equal density. The results completely confirm the predictions of the standard stopping power model.

  12. Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries.

    PubMed

    Kalluri, Sujith; Yoon, Moonsu; Jo, Minki; Liu, Hua Kun; Dou, Shi Xue; Cho, Jaephil; Guo, Zaiping

    2017-03-02

    Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm(-2) ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable.

  13. Photon and dilepton production in high energy heavy ion collisions

    SciTech Connect

    Sakaguchi, Takao

    2015-05-07

    The recent results on direct photons and dileptons in high energy heavy ion collisions, obtained particularly at RHIC and LHC are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the physics learned from the results.

  14. ECR Based Low Energy Ion Beam Facility at VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Taki, G. S.; Chakraborty, D. K.; Ghosh, Subhash; Majhi, S.; Pal, Gautam; Mallik, C.; Bhandari, R. K.; Krishna, J. B. M.; Dey, K.; Sinha, A. K.

    2012-11-01

    A low energy heavy ion irradiation/implantation facility has been developed at VECC, Kolkata for materials science and atomic physics research, utilizing indigenously developed 6.4 GHz ECR ion source. The facility provides high charge state ion beams of N, O, Ne, Ar, S, Kr, Xe, Fe, Ti, Hf etc. up to a few micro amperes to an energy of 10 keV per charge state.The beam energy can be further enhanced by floating the target at a negative potential (up to 25 kV). The ion beam is focused to a spot of about 2 mm diameter on the target using a set of glaser lenses. A x-y scanner is used to scan the beam over a target area of 10 mm x 10 mm to obtain uniform implantation. The recently commissioned multi facility sample chamber has provision for mounting multiple samples on indigenously developed disposable beam viewers for insitu beam viewing during implantation. The ionization chamber of ECR source is mainly pumped by ECR plasma. An additional pumping speed has been provided through extraction hole and pumping slots to obtain low base pressure. In the ion source, base pressure of 1x10-7 Torr in injector stage and ~5x10-8 Torr in extraction chamber have been routinely obtained. The ultra-high vacuum multi facility experimental chamber is generally kept at ~ 1x10-7 Torr during implantation on the targets. This facility is a unique tool for studying fundamental and technologically important problems of materials science and atomic physics research. High ion flux available from this machine is suitable for generating high defect densities i.e. high value of displacement-per-atom (dpa). Recently this facility has been used for studies like "Tunability of dielectric constant of conducting polymer Polyaniline (PANI) by low energy Ar9+ irradiation" and "Fe10+ implantation in ZnO for synthesis of dilute magnetic semiconductor".

  15. Study of energy transfer mechanism from ZnO nanocrystals to Eu(3+) ions.

    PubMed

    Mangalam, Vivek; Pita, Kantisara; Couteau, Christophe

    2016-12-01

    In this work, we investigate the efficient energy transfer occurring between ZnO nanocrystals (ZnO-nc) and europium (Eu(3+)) ions embedded in a SiO2 matrix prepared using the sol-gel technique. We show that a strong red emission was observed at 614 nm when the ZnO-nc were excited using a continuous optical excitation at 325 nm. This emission is due to the radiative (5)D0 → (7)F2 de-excitation of the Eu(3+) ions and has been conclusively shown to be due to the energy transfer from the excited ZnO-nc to the Eu(3+) ions. The photoluminescence excitation spectra are also examined in this work to confirm the energy transfer from ZnO-nc to the Eu(3+) ions. Furthermore, we study various de-excitation processes from the excited ZnO-nc and their contribution to the energy transfer to Eu(3+) ions. We also report the optimum fabrication process for maximum red emission at 614 nm from the samples where we show a strong dependence on the annealing temperature and the Eu(3+) concentration in the sample. The maximum red emission is observed with 12 mol% Eu(3+) annealed at 450 °C. This work provides a better understanding of the energy transfer mechanism from ZnO-nc to Eu(3+) ions and is important for applications in photonics, especially for light emitting devices.

  16. [Energy saving and LED lamp lighting and human health].

    PubMed

    Deĭnego, V N; Kaptsov, V A

    2013-01-01

    The appearance of new sources of high-intensity with large proportion of blue light in the spectrum revealed new risks of their influence on the function of the eye and human health, especially for children and teenagers. There is an urgent need to reconsider the research methods of vision hygiene in conditions of energy-saving and LED bulbs lighting. On the basis of a systematic approach and knowledge of the newly discovered photosensitive receptors there was built hierarchical model of the interaction of "light environment - the eye - the system of formation of visual images - the hormonal system of the person - his psycho-physiological state." This approach allowed us to develop a range of risk for the negative impact of spectrum on the functions of the eye and human health, as well as to formulate the hygiene requirements for energy-efficient high-intensity light sources.

  17. Development of Lithium-ion Battery as Energy Storage for Mobile Power Sources Applications

    NASA Astrophysics Data System (ADS)

    Sulaiman, Mohd Ali; Hasan, Hasimah

    2009-09-01

    In view of the need to protect the global environment and save energy, there has been strong demand for the development of lithium-ion battery technology as a energy storage system, especially for Light Electric Vehicle (LEV) and electric vehicles (EV) applications. The R&D trend in the lithium-ion battery development is toward the high power and energy density, cheaper in price and high safety standard. In our laboratory, the research and development of lithium-ion battery technology was mainly focus to develop high power density performance of cathode material, which is focusing to the Li-metal-oxide system, LiMO2, where M=Co, Ni, Mn and its combination. The nano particle size material, which has irregular particle shape and high specific surface area was successfully synthesized by self propagating combustion technique. As a result the energy density and power density of the synthesized materials are significantly improved. In addition, we also developed variety of sizes of lithium-ion battery prototype, including (i) small size for electronic gadgets such as mobile phone and PDA applications, (ii) medium size for remote control toys and power tools applications and (iii) battery module for high power application such as electric bicycle and electric scooter applications. The detail performance of R&D in advanced materials and prototype development in AMREC, SIRIM Berhad will be discussed in this paper.

  18. Observations of Reflected Ions and Plasma Turbulence for Satellite Potentials Greater than the Ion Ram Energy

    NASA Technical Reports Server (NTRS)

    Wright, K. H., Jr.; Stone, N. H.; Sorensen, J.; Winningham, J. D.; Gurgiolo, C.

    1998-01-01

    During the TSS-1R mission, the behavior of the ions flowing from the forward hemisphere of the Tethered Satellite System (TSS) satellite was examined as the potential of the satellite was changed from below to above 5 V. The ram energy of the ambient atomic oxygen ions is approximately 5 eV. For satellite potentials less than 5 V, no ions were observed on the ram side of the satellite. When the satellite potential was raised greater than 5 V, ions were observed to be flowing from the forward region of the satellite. In the region sampled, the ion flux was a few percent of the ambient with energies of approximately 5 eV. The temperature of the out-flowing ions was observed to be enhanced, relative to the ambient ionosphere. The net current to the probe package became much more noisy for satellite potentials greater than 5 V as compared with satellite potentials less than 5 V, indicating a more disturbed plasma environment.

  19. Observations of Reflected Ions and Plasma Turbulence for Satellite Potentials Greater Than the Ion Ram Energy

    NASA Technical Reports Server (NTRS)

    Wright, K. H., Jr.; Stone, N. H.; Sorensen, J.; Winningham, J. D.; Gurgiolo, C.

    1997-01-01

    During the TSS-1R mission, the behavior of the ions flowing from the forward hemisphere of the Tethered Satellite System (TSS) satellite was examined as the potential on the satellite was changed from below to above 5 Volts. The ram energy of the ambient atomic oxygen ions is about 5 eV. For satellite potentials less than 5 V, no ions were observed on the ram side of the satellite. When the satellite potential was raised above 5 V, ions were observed to be flowing from the forward region of the satellite. In the region sampled, the ion flux was a few percent of the ambient with energies of about 5 eV. The temperature of the outflowing ions was observed to be enhanced, relative to the ambient ionosphere, and had a maximum in a plane containing the center of the satellite and normal to the geomagnetic field. The net current to the probe package became much more noisy for satellite potentials above 5 V as compared with satellite potentials below 5 V indicating a more disturbed plasma environment.

  20. High energy gain in three-dimensional simulations of light sail acceleration

    SciTech Connect

    Sgattoni, A.; Sinigardi, S.; Macchi, A.

    2014-08-25

    The dynamics of radiation pressure acceleration in the relativistic light sail regime are analysed by means of large scale, three-dimensional (3D) particle-in-cell simulations. Differently to other mechanisms, the 3D dynamics leads to faster and higher energy gain than in 1D or 2D geometry. This effect is caused by the local decrease of the target density due to transverse expansion leading to a “lighter sail.” However, the rarefaction of the target leads to an earlier transition to transparency limiting the energy gain. A transverse instability leads to a structured and inhomogeneous ion distribution.

  1. Lighting energy efficiency opportunities at Cheyenne Mountain Air Station

    SciTech Connect

    Molburg, J.C.; Rozo, A.J.; Sarles, J.K.; Haffenden, R.A.; Thimmapuram, P.R.; Cavallo, J.D.

    1996-06-01

    CMAS is an intensive user of electricity for lighting because of its size, lack of daylight, and 24-hour operating schedule. Argonne National Laboratory recently conducted a lighting energy conservation evaluation at CMAS. The evaluation included inspection and characterization of existing lighting systems, analysis of energy-efficient retrofit options, and investigation of the environmental effects that these lighting system retrofits could have when they are ready to be disposed of as waste. Argonne devised three retrofit options for the existing lighting systems at various buildings: (1) minimal retrofit--limited fixture replacement; (2) moderate retrofit--more extensive fixture replacement and limited application of motion detectors; and (3) advanced retrofit--fixture replacement, reduction in the number of lamps, expansion of task lighting, and more extensive application of motion detectors. Argonne used data on electricity consumption to analyze the economic and energy effects of these three retrofit options. It performed a cost analysis for each retrofit option in terms of payback. The analysis showed that lighting retrofits result in savings because they reduce electricity consumption, cooling load, and maintenance costs. The payback period for all retrofit options was found to be less than 2 years, with the payback period decreasing for more aggressive retrofits. These short payback periods derived largely from the intensive (24-hours-per-day) use of electric lighting at the facility. Maintenance savings accounted for more than half of the annual energy-related savings under the minimal and moderate retrofit options and slightly less than half of these savings under the advanced retrofit option. Even if maintenance savings were excluded, the payback periods would still be impressive: about 4.4 years for the minimal retrofit option and 2 years for the advanced option. The local and regional environmental impacts of the three retrofit options were minimal.

  2. Development of a low energy ion source for ROSINA ion mode calibration

    SciTech Connect

    Rubin, Martin; Altwegg, Kathrin; Jaeckel, Annette; Balsiger, Hans

    2006-10-15

    The European Rosetta mission on its way to comet 67P/Churyumov-Gerasimenko will remain for more than a year in the close vicinity (1 km) of the comet. The two ROSINA mass spectrometers on board Rosetta are designed to analyze the neutral and ionized volatile components of the cometary coma. However, the relative velocity between the comet and the spacecraft will be minimal and also the velocity of the outgassing particles is below 1 km/s. This combination leads to very low ion energies in the surrounding plasma of the comet, typically below 20 eV. Additionally, the spacecraft may charge up to a few volts in this environment. In order to simulate such plasma and to calibrate the mass spectrometers, a source for ions with very low energies had to be developed for the use in the laboratory together with the different gases expected at the comet. In this paper we present the design of this ion source and we discuss the physical parameters of the ion beam like sensitivity, energy distribution, and beam shape. Finally, we show the first ion measurements that have been performed together with one of the two mass spectrometers.

  3. Cryogenic helium as stopping medium for high-energy ions

    NASA Astrophysics Data System (ADS)

    Purushothaman, S.; Dendooven, P.; Moore, I.; Penttilä, H.; Ronkainen, J.; Saastamoinen, A.; Äystö, J.; Peräjärvi, K.; Takahashi, N.; Gloos, K.

    2008-10-01

    We have investigated the survival and transport efficiency of 219Rn ions emitted by a 223Ra source in high-density cryogenic helium gas, with ionisation of the gas induced by a proton beam. The combined efficiency of ion survival and transport by an applied electric field was measured as a function of ionisation rate density for electric fields up to 160 V/cm and for three temperature and density combinations: 77 K, 0.18 mg/cm3, 10 K, 0.18 mg/cm3 and 10 K, 0.54 mg/cm3. At low beam intensity or high electric field, an efficiency of 30 % is obtained, confirming earlier results. A sharp drop in efficiency is observed at a "threshold" ionisation rate density which increases with the square of the applied electric field. At 160 V/cm, the efficiency stays above 10% up to an ionisation rate density of 1012 ion-electron pairs/cm3/s. The observed behaviour is understood as the result of shielding of the applied field by the weak plasma created by the proton beam: it counteracts the effective transport of ions and electrons, leading to recombination between the two. We conclude that cryogenic helium gas at high-density and high electric field is a promising medium for the transformation of very high-energy ions into low-energy ones.

  4. Intracanopy lighting reduces electrical energy utilization by closed cowpea stands.

    PubMed

    Frantz, J M; Joly, R J; Mitchell, C A

    2001-01-01

    The high planting densities needed to grow edible biomass in sustainable space life support systems will create problems for planophile crops that form closed, self-shading canopies. The use of traditional overhead-lighting configurations will reduce the penetration of photosynthetically active radiation (PAR) into such canopies and will result in substantial shading of understory leaves. Intracanopy lighting, an irradiation approach that allows plants to grow around fixed arrays of low-intensity lamps, reduces overall energy expenditure for crop production by improving light distribution and interception throughout the canopy. Comparing different fluorescent lamp geometries within vegetative canopies of cowpea (Vigna unguiculata L. Walp) revealed great plasticity of leaf orientation to maximize absorption of PAR from lamps arrayed at various nontraditional angles. Varying the amount of photosynthetic energy available within canopies creates considerable potential to manipulate canopy productivity. Increasing lamp number 38% within cowpea canopies raised stand productivity 45%, reflecting the highly efficient interception and absorption of intracanopy PAR. However, combined above/within-canopy lighting did not increase overall PAR interception and vegetative yield, and productivity did not improve relative to the same input wattage of intracanopy lighting alone. Optimization of intracanopy lighting for crops to be used in future space life support systems will substantially reduce power and energy burdens for food-crop production.

  5. Fabrication of a TEM sample of ion-irradiated material using focused ion beam microprocessing and low-energy Ar ion milling.

    PubMed

    Jin, Hyung-Ha; Shin, Chansun; Kwon, Junhyun

    2010-01-01

    Cross-section-view TEM samples of ion-irradiated material are successfully fabricated using a focused ion beam (FIB) system and low-energy Ar ion milling. Ga ion-induced damages in FIB processing are reduced remarkably by the means of low-energy Ar ion milling. There are optimized ion milling conditions for the reduction and removal of the secondary artifacts such as defects and ripples. Incident angles and accelerated voltages are especially more important factors on the preservation of a clean surface far from secondary defects and surface roughing due to Ga and Ar ion bombardment.

  6. Large scale self energy calculations for ion-surface interactions

    NASA Astrophysics Data System (ADS)

    Kürpick, P.; Thumm, U.

    1996-03-01

    We present large scale non-perturbative self energy calculations for the interaction of an ion with a metal surface. Using both the simple jellium potential and more sophisticated ab initio potentials(P. J. Jennings, R. O. Jones and M. Weinert, Phys. Rev. B, 37), 6113 (1988)., we study the complex self energy matrix for various n-manifolds allowing for the calculation of diabatic and adiabatic non-perturbative level shifts and widths, and hybrid orbitals(P. Kürpick and U.Thumm, to be published.). Besides this self energy calculations a new adiabatic close--coupling calculation is being developed that will be applied to the interaction of ions in various charge states with metal surfaces.

  7. Ion energy distributions and densities in the plume of Enceladus

    NASA Astrophysics Data System (ADS)

    Sakai, Shotaro; Cravens, Thomas E.; Omidi, Nojan; Perry, Mark E.; Waite, J. Hunter

    2016-10-01

    Enceladus has a dynamic plume that is emitting gas, including water vapor, and dust. The gas is ionized by solar EUV radiation, charge exchange, and electron impact and extends throughout the inner magnetosphere of Saturn. The charge exchange collisions alter the plasma composition. Ice grains (dust) escape from the vicinity of Enceladus and form the E ring, including a portion that is negatively charged by the local plasma. The inner magnetosphere within 10 RS (Saturn radii) contains a complex mixture of plasma, neutral gas, and dust that links back to Enceladus. In this paper we investigate the energy distributions, ion species and densities of water group ions in the plume of Enceladus using test particle and Monte Carlo methods that include collisional processes such as charge exchange and ion-neutral chemical reactions. Ion observations from the Cassini Ion and Neutral Mass Spectrometer (INMS) for E07 are presented for the first time. We use the modeling results to interpret observations made by the Cassini Plasma Spectrometer (CAPS) and the INMS. The low energy ions, as observed by CAPS, appear to be affected by a vertical electric field (EZ=-10 μV/m) in the plume. The EZ field may be associated with the charged dust and/or the pressure gradient of plasma. The model results, along with the results of earlier models, show that H3O+ ions created by chemistry are predominant in the plume, which agrees with INMS and CAPS data, but the INMS count rate in the plume for the model is several times greater than the data, which we do not fully understand. This composition and the total ion count found in the plume agree with INMS and CAPS data. On the other hand, the Cassini Langmuir Probe measured a maximum plume ion density more than 30,000 cm-3, which is far larger than the maximum ion density from our model, 900 cm-3. The model results also demonstrate that most of the ions in the plume are from the external magnetospheric flow and are not generated by local

  8. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Delahaye, P.; Kutsaev, Sergey; Maunoury, L.

    2012-11-01

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a 252Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species 143Ba27+. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for 23Na7+ and 17.9% for 39K10+ were obtained injecting stable Na+ and K+ beams from a surface ionization source.

  9. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    SciTech Connect

    Vondrasek, R.; Kutsaev, Sergey; Delahaye, P.; Maunoury, L.

    2012-11-15

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a {sup 252}Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species {sup 143}Ba{sup 27+}. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for {sup 23}Na{sup 7+} and 17.9% for {sup 39}K{sup 10+} were obtained injecting stable Na{sup +} and K{sup +} beams from a surface ionization source.

  10. Ion composition and energy distribution during 10 magnetic storms

    NASA Astrophysics Data System (ADS)

    Lennartsson, W.; Sharp, R. D.; Shelley, E. G.; Johnson, R. G.; Balsiger, H.

    1981-06-01

    Data from the plasma composition experiment of ISEE 1 are used to investigate the relative quantities and energy characteristics of H(+), He(++), He(+), and O(+) ions in the near-equatorial magnetosphere during magnetic storm conditions. The ions in the study had energies between 0.1 and 17 keV/e and pitch angles between 45 and 135 deg. The data were obtained during 10 storms, for the most part at or immediately following the peak Dst, covering all major local time sectors and geocentric distances between 2 and 15 earth radii. The ion fluxes are averaged over the spacecraft spin angle and over time for periods ranging from about 20 min close to the earth to more than an hour in most distant regions. The inferred 'isotropic' number densities are characterized by a large to dominant fraction of terrestrial ions throughout the energy range covered. The data are found to be consistent with a terrestrial origin for all of the O(+), most of the He(+), and a large but varying fraction of the H(+), whereas the He(++) and part of the H(+) appear to be of solar wind origin.

  11. Ion composition and energy distribution during 10 magnetic storms

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.; Sharp, R. D.; Shelley, E. G.; Johnson, R. G.; Balsiger, H.

    1981-01-01

    Data from the plasma composition experiment of ISEE 1 are used to investigate the relative quantities and energy characteristics of H(+), He(++), He(+), and O(+) ions in the near-equatorial magnetosphere during magnetic storm conditions. The ions in the study had energies between 0.1 and 17 keV/e and pitch angles between 45 and 135 deg. The data were obtained during 10 storms, for the most part at or immediately following the peak Dst, covering all major local time sectors and geocentric distances between 2 and 15 earth radii. The ion fluxes are averaged over the spacecraft spin angle and over time for periods ranging from about 20 min close to the earth to more than an hour in most distant regions. The inferred 'isotropic' number densities are characterized by a large to dominant fraction of terrestrial ions throughout the energy range covered. The data are found to be consistent with a terrestrial origin for all of the O(+), most of the He(+), and a large but varying fraction of the H(+), whereas the He(++) and part of the H(+) appear to be of solar wind origin.

  12. High-energy ion processing of materials for improved hardcoatings

    SciTech Connect

    Williams, J.M.; Gorbatkin, S.M.; Rhoades, R.L.; Oliver, W.C.; Riester, L.; Tsui, T.Y.

    1994-02-01

    Research has been directed toward use of economically viable ion processing strategies for production and improvement of hardcoatings. Processing techniques were high-energy ion implantation and electron cyclotron resonance microwave plasma processing. Subject materials were boron suboxides, Ti-6Al-4V alloy, CoCrMo alloy (a Stellite{trademark}), and electroplated Cr. These materials may be regarded either as coatings themselves (which might be deposited by thermal spraying, plasma processing, etc.) or in some cases, as substrates whose surfaces can be improved. hardness and other properties in relation to process variables are reported.

  13. Feasibility of a 90° electric sector energy analyzer for low energy ion beam characterization

    NASA Astrophysics Data System (ADS)

    Mahinay, C. L. S.; Wada, M.; Ramos, H. J.

    2015-02-01

    A simple formula to calculate refocusing by locating the output slit at a specific distance away from the exit of 90° ion deflecting electric sector is given. Numerical analysis is also performed to calculate the ion beam trajectories for different values of the initial angular deviation of the beam. To validate the theory, a compact (90 mm × 5.5 mm × 32 mm) 90° sector ESA is fabricated which can fit through the inner diameter of a conflat 70 vacuum flange. Experimental results show that the dependence of resolution upon the distance between the sector exit and the Faraday cup agrees with the theory. The fabricated 90° sector electrostatic energy analyzer was then used to measure the space resolved ion energy distribution functions of an ion beam with the energy as low as 600 eV.

  14. Feasibility of a 90° electric sector energy analyzer for low energy ion beam characterization

    SciTech Connect

    Mahinay, C. L. S. Ramos, H. J.; Wada, M.

    2015-02-15

    A simple formula to calculate refocusing by locating the output slit at a specific distance away from the exit of 90° ion deflecting electric sector is given. Numerical analysis is also performed to calculate the ion beam trajectories for different values of the initial angular deviation of the beam. To validate the theory, a compact (90 mm × 5.5 mm × 32 mm) 90° sector ESA is fabricated which can fit through the inner diameter of a conflat 70 vacuum flange. Experimental results show that the dependence of resolution upon the distance between the sector exit and the Faraday cup agrees with the theory. The fabricated 90° sector electrostatic energy analyzer was then used to measure the space resolved ion energy distribution functions of an ion beam with the energy as low as 600 eV.

  15. Clean Energy Manufacturing Initiative Solid-State Lighting Video

    ScienceCinema

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2016-07-12

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  16. Clean Energy Manufacturing Initiative Solid-State Lighting

    SciTech Connect

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  17. Clean Energy Manufacturing Initiative Solid-State Lighting Video

    SciTech Connect

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  18. Controlling Light to Make the Most Energy From the Sun

    SciTech Connect

    Callahan, Dennis; Corcoran, Chris; Eisler, Carissa; Flowers, Cris; Goodman, Matt; Hofmann, Carrie; Sadtler, Bryce

    2013-07-18

    Representing the Light-Material Interactions in Energy Conversion (LMI), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of LMI to tailor the morphology, complex dielectric structure, and electronic properties of matter so as to sculpt the flow of sunlight and heat, enabling light conversion to electrical and chemical energy with unprecedented efficiency.

  19. Clean Energy Manufacturing Initiative Solid-State Lighting

    ScienceCinema

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2016-07-12

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  20. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions

    NASA Astrophysics Data System (ADS)

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs+ beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs+ ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.

  1. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions.

    PubMed

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs(+) beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs(+) ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.

  2. New Light on Dark Energy (LBNL Science at the Theater)

    ScienceCinema

    Linder, Eric; Ho, Shirly; Aldering, Greg; Fraiknoi, Andrew

    2016-07-12

    A panel of Lab scientists — including Eric Linder, Shirly Ho, and Greg Aldering — along with Andrew Fraiknoi, the Bay Area's most popular astronomy explainer, gathered at the Berkeley Repertory Theatre on Monday, April 25, 2011, for a discussion about "New Light on Dark Energy." Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe.

  3. New Light on Dark Energy (LBNL Science at the Theater)

    SciTech Connect

    Linder, Eric; Ho, Shirly; Aldering, Greg; Fraiknoi, Andrew

    2011-04-25

    A panel of Lab scientists — including Eric Linder, Shirly Ho, and Greg Aldering — along with Andrew Fraiknoi, the Bay Area's most popular astronomy explainer, gathered at the Berkeley Repertory Theatre on Monday, April 25, 2011, for a discussion about "New Light on Dark Energy." Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe.

  4. Simulating Intense Ion Beams for Inertial Fusion Energy

    SciTech Connect

    Friedman, A.

    2001-02-20

    The Heavy Ion Fusion (HIF) program's goal is the development of the body of knowledge needed for Inertial Fusion Energy (IFE) to realize its promise. The intense ion beams that will drive HIF targets are rzonneutral plasmas and exhibit collective, nonlinear dynamics which must be understood using the kinetic models of plasma physics. This beam physics is both rich and subtle: a wide range in spatial and temporal scales is involved, and effects associated with both instabilities and non-ideal processes must be understood. Ion beams have a ''long memory,'' and initialization of a beam at mid-system with an idealized particle distribution introduces uncertainties; thus, it will be crucial to develop, and to extensively use, an integrated and detailed ''source-to-target'' HIF beam simulation capability. We begin with an overview of major issues.

  5. Simulating Intense Ion Beams for Inertial Fusion Energy

    SciTech Connect

    Friedman, A

    2001-02-20

    The Heavy Ion Fusion (HIF) program's goal is the development of the body of knowledge needed for Inertial Fusion Energy (IFE) to realize its promise. The intense ion beams that will drive HIF targets are nonneutral plasmas and exhibit collective, nonlinear dynamics which must be understood using the kinetic models of plasma physics. This beam physics is both rich and subtle: a wide range in spatial and temporal scales is involved, and effects associated with both instabilities and non-ideal processes must be understood. Ion beams have a ''long memory'', and initialization of a beam at mid-system with an idealized particle distribution introduces uncertainties; thus, it will be crucial to develop, and to extensively use, an integrated and detailed ''source-to-target'' HIF beam simulation capability. We begin with an overview of major issues.

  6. Diagnostics for ion beam driven high energy density physics experiments.

    PubMed

    Bieniosek, F M; Henestroza, E; Lidia, S; Ni, P A

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K(+) beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  7. Visible Light Photocatalysis: The Development of Photocatalytic Radical Ion Cycloadditions

    PubMed Central

    Yoon, Tehshik P.

    2013-01-01

    Photochemistry has the potential to significantly impact multiple aspects of chemical synthesis, in part because photoinduced reactions can be used to construct molecular architectures that would otherwise be difficult to produce. Nevertheless, organic chemists have been slow to embrace photochemical synthesis because of technical complications associated with the use of ultraviolet light. Our laboratory has been part of an effort to design synthetically useful reactions that utilize visible light. This strategy enables the synthesis of a diverse range of organic structures by generation of a variety of reactive intermediates under exceptionally mild conditions. This Perspective article describes the reasoning that led to the conception of our first experiments in this area, the features of our reaction design that have been most powerful in the discovery of new processes, and a few of the possible future areas in which visible light photocatalysis might have a large impact. PMID:23691491

  8. Highly efficient generation of ultraintense high-energy ion beams using laser-induced cavity pressure acceleration

    SciTech Connect

    Badziak, J.; Jablonski, S.; Raczka, P.

    2012-08-20

    Results of particle-in-cell (PIC) simulations of fast ion generation in the recently proposed laser-induced cavity pressure acceleration (LICPA) scheme in which a picosecond circularly polarized laser pulse of intensity {approx}10{sup 21} W/cm{sup 2} irradiates a carbon target placed in a cavity are presented. It is shown that due to circulation of the laser pulse in the cavity, the laser-ions energy conversion efficiency in the LICPA scheme is more than twice as high as that for the conventional (without a cavity) radiation pressure acceleration scheme and a quasi-monoenergetic carbon ion beam of the mean ion energy {approx}0.5 GeV and the energy fluence {approx}0.5 GJ/cm{sup 2} is produced with the efficiency {approx}40%. The results of PIC simulations are found to be in fairly good agreement with the predictions of the generalized light-sail model.

  9. Characteristics of low energy ions in the Heavy Ions In Space (HIIS) experiment

    NASA Technical Reports Server (NTRS)

    Kleis, Thomas; Tylka, Allan J.; Boberg, Paul R.; Adams, James H., Jr.; Beahm, Lorraine P.

    1995-01-01

    We present preliminary data on heavy ions (Z greater than or equal to 10) detected in the topmost Lexan sheets of the track detector stacks of the Heavy Ions in space (HIIS) experiment (M0001) on LDEF. The energy interval covered by these observations varies with the element, with (for example) Ne observable at 18-100 MeV nuc and Fe at 45-200 MeV/nuc. All of the observed ions are at energies far below the geomagnetic cutoff for fully-ionized particles at the LDEF orbit. Above 50 MeV/nuc (where most of our observed particles are Fe), the ions arrive primarily from the direction of lowest geomagnetic cutoff. This suggests that these particles originate outside the magnetosphere from a source with a steeply-falling spectrum and may therefore be associated with solar energetic particle (SEP) events. Below 50 MeV/nuc, the distribution of arrival directions suggests that most of the observed heavy ions are trapped in the Earth's magnetic field. Preliminary analysis, however, shows that these trapped heavy ions have a very surprising composition: they include not only Ne and Ar, which are expected from the trapping of anomalous cosmic rays (ACR's), but also Mg and Si, which are not part of the anomalous component. Our preliminary analysis shows that trapped heavy ions at 12 less than or equal to Zeta less than or equal to 14 have a steeply-falling spectrum, similar to that reported by the Kiel experiment (exp 1,2,3) on LDEF (M0002) for trapped Ar and Fe at E less than 50 MeV/nuc. The trapped Mg, Si, and Fe may also be associated with SEP events, but the mechanism by which they have appeared to deep in the inner magnetosphere requires further theoretical investigation.

  10. Energy density of light quark jet using AdS/CFT

    NASA Astrophysics Data System (ADS)

    Morad, R.; Horowitz, W. A.

    2017-01-01

    We study the energy loss rate of light quarks via the AdS/CFT correspondence in both a static and an expanding plasma. Unlike heavy quarks, light quark energy loss in AdS/CFT is surprisingly dependent on both the string initial conditions and the very definition of the jet itself in the gravity theory. We aim to more closely match the string initial conditions to those expected from perturbative quantum chromodyanics (pQCD)-the theory known to describe the physics of high-momentum particles at early times in heavy ion collisions-by computing the energy-momentum tensor associated with the propagation of the classical string solution. The jet energy-momentum tensor in a strongly-coupled calculation can be found by a superposition of contributions from a collection of point particles whose paths approximate the evolution of the string world-sheet. My results show that some times after creation the pair of quark-anti quark, the energy density is not time dependent. This means that the corresponding jet does not lose energy and the associated nuclear modification factor would be one as expected. Also, the results reveal the virtuality dependency of energy density distribution over space. As expected, the energy of a more virtual jet is spread over wider angles.

  11. Performance Characterization of High Energy Commercial Lithium-ion Cells

    NASA Technical Reports Server (NTRS)

    Schneidegger, Brianne T.

    2010-01-01

    The NASA Glenn Research Center Electrochemistry Branch performed characterization of commercial lithium-ion cells to determine the cells' performance against Exploration Technology Development Program (ETDP) Key Performance Parameters (KPP). The goals of the ETDP Energy Storage Project require significant improvements in the specific energy of lithium-ion technology over the state-of-the-art. This work supports the high energy cell development for the Constellation customer Lunar Surface Systems (LSS). In support of these goals, testing was initiated in September 2009 with high energy cylindrical cells obtained from Panasonic and E-One Moli. Both manufacturers indicated the capability of their cells to deliver specific energy of at least 180 Wh/kg or higher. Testing is being performed at the NASA Glenn Research Center to evaluate the performance of these cells under temperature, rate, and cycling conditions relevant to the ETDP goals for high energy cells. The cell-level specific energy goal for high energy technology is 180 Wh/kg at a C/10 rate and 0 C. The threshold value is 165 Wh/kg. The goal is to operate for at least 2000 cycles at 100 percent DOD with greater than 80 percent capacity retention. The Panasonic NCR18650 cells were able to deliver nearly 200 Wh/kg at the aforementioned conditions. The E-One Moli ICR18650J cells also met the specific energy goal by delivering 183 Wh/kg. Though both cells met the goal for specific energy, this testing was only one portion of the testing required to determine the suitability of commercial cells for the ETDP. The cells must also meet goals for cycle life and safety. The results of this characterization are summarized in this report.

  12. Leveraging Lighting for Energy Savings: GSA Northwest/Artic Region

    SciTech Connect

    2016-01-01

    Case study describes how the Northwest/Arctic Region branch of the General Services Administration (GSA) improved safety and energy efficiency in its Fairbanks Federal Building parking garage used by federal employees, U.S. Marshals, and the District Court. A 74% savings was realized by replacing 220 high-pressure sodium fixtures with 220 light-emitting diode fixtures.

  13. Measurement of alpha particle energy using windowless electret ion chambers.

    PubMed

    Dua, S K; Kotrappa, P; Srivastava, R; Ebadian, M A; Stieff, L R

    2002-10-01

    Electret ion chambers are inexpensive, lightweight, robust, commercially available, passive, charge-integrating devices for accurate measurement of different ionizing radiations. In an earlier work a chamber of dimensions larger than the range of alpha particles having aluminized Mylar windows of different thickness was used for measurement of alpha radiation. Correlation between electret mid-point voltage, alpha particle energy, and response was developed and it was shown that this chamber could be used for estimating the effective energy of an unknown alpha source. In the present study, the electret ion chamber is used in the windowless mode so that the alpha particles dissipate their entire energy inside the volume, and the alpha particle energy is determined from the first principles. This requires that alpha disintegration rate be accurately known or measured by an alternate method. The measured energies were within 1 to 4% of the true values for different sources (230Th, 237Np, 239Pu, 241Am, and 224Cm). This method finds application in quantitative determination of alpha energy absorbed in thin membrane and, hence, the absorbed dose.

  14. Interaction of (12)C ions with the mouse retinal response to light.

    PubMed

    Carozzo, Simone; Ball, Sherry L; Narici, Livio; Schardt, Dieter; Sannita, Walter G

    2015-06-26

    Astronauts in orbit reported phosphenes varying in shape and orientation across the visual field; incidence was correlated with the radiation flux. Patients with skull tumors treated by (12)C ions and volunteers whose posterior portion of the eye was exposed to highly ionizing particles in early studies reported comparable percepts. An origin in radiation activating the visual system is suggested. Bursts (∼ 4 ms) of (12)C ions evoked electrophysiological mass responses comparable to those to light in the retina of anesthetized wild-type mice at threshold flux intensities consistent with the incidence observed in humans. The retinal response amplitude increased in mice with ion intensity to a maximum at ∼ 2000 ions/burst, to decline at higher intensities; the inverted-U relationship suggests complex effects on retinal structures. Here, we show that bursts of (12)C ions presented simultaneously to white light stimuli reduced the presynaptic mass response to light in the mouse retina, while increasing the postsynaptic retinal and cortical responses amplitude and the phase-locking to stimulus of cortical low frequency and gamma (∼ 25-45 Hz) responses. These findings suggest (12)C ions to interfere with, rather than mimicking the light action on photoreceptors; a parallel action on other retinal structures/mechanisms resulting in cortical activation is conceivable. Electrophysiological visual testing appears applicable to monitor the radiation effects and in designing countermeasures to prevent functional visual impairment during operations in space.

  15. LEICA - A low energy ion composition analyzer for the study of solar and magnetospheric heavy ions

    NASA Technical Reports Server (NTRS)

    Mason, Glenn M.; Hamilton, Douglas C.; Walpole, Peter H.; Heuerman, Karl F.; James, Tommy L.; Lennard, Michael H.; Mazur, Joseph E.

    1993-01-01

    The SAMPEX LEICA instrument is designed to measure about 0.5-5 MeV/nucleon solar and magnetospheric ions over the range from He to Ni. The instrument is a time-of-flight mass spectrometer which measures particle time-of-flight over an about 0.5 m path, and the residual energy deposited in an array of Si solid state detectors. Large area microchannel plates are used, resulting in a large geometrical factor for the instrument (0.6 sq cm sr) which is essential for accurate compositional measurements in small solar flares, and in studies of precipitating magnetospheric heavy ions.

  16. Sharpening of field emitter tips using high-energy ions

    DOEpatents

    Musket, Ronald G.

    1999-11-30

    A process for sharpening arrays of field emitter tips of field emission cathodes, such as found in field-emission, flat-panel video displays. The process uses sputtering by high-energy (more than 30 keV) ions incident along or near the longitudinal axis of the field emitter to sharpen the emitter with a taper from the tip or top of the emitter down to the shank of the emitter. The process is particularly applicable to sharpening tips of emitters having cylindrical or similar (e.g., pyramidal) symmetry. The process will sharpen tips down to radii of less than 12 nm with an included angle of about 20 degrees. Because the ions are incident along or near the longitudinal axis of each emitter, the tips of gated arrays can be sharpened by high-energy ion beams rastered over the arrays using standard ion implantation equipment. While the process is particularly applicable for sharpening of arrays of field emitters in field-emission flat-panel displays, it can be effectively utilized in the fabrication of other vacuum microelectronic devices that rely on field emission of electrons.

  17. Low energy electrons and swift ion track structure in PADC

    SciTech Connect

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-05-27

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particular incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.

  18. Low energy electrons and swift ion track structure in PADC

    NASA Astrophysics Data System (ADS)

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-10-01

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d'Ions Lourds Dans l'Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particular incident energies located on both sides of the Bragg-peak position. Finally, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.

  19. Low energy electrons and swift ion track structure in PADC

    DOE PAGES

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; ...

    2015-05-27

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particularmore » incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.« less

  20. Ion energy distributions in dual frequency RF plasmas

    NASA Astrophysics Data System (ADS)

    Hatton, Peter; Rees, John; Bort, Sam; Seymour, Dave

    2015-09-01

    For many surface-processing applications involving plasmas operated at RF frequencies it has been found helpful to combine two sources of power operating at different frequencies. By choosing suitable input powers at the two frequencies and varying the phase relationship set between the two inputs, the energy distributions (IEDs) for the ions arriving at the target surface can be optimised. There have been, however, only a limited number of published reports of measured or modelled distributions. In the present work IEDs for both positive and negative ions formed in plasmas in argon and nitrous oxide have been measured for mass-identified ions in two different reactors, one of which is a parallel-plate, capacitatively-coupled, system and the other is an inductively-coupled system. Typical data for 13.56 and 27.1 MHz inputs are presented for a range of phase relationships. The IEDs show clearly significant differences between the data for different species of ions which result in part from the ion-molecule collisions occurring, particularly in the plasma/surface sheath regions.

  1. Energy transfer and colour tunability in UV light induced Tm(3+)/Tb(3+)/Eu(3+): ZnB glasses generating white light emission.

    PubMed

    Naresh, V; Gupta, Kiran; Parthasaradhi Reddy, C; Ham, Byoung S

    2017-03-15

    A promising energy transfer (Tm(3+)→Tb(3+)→Eu(3+)) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm(3+)/Tb(3+)/Eu(3+) ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II)x-[O(-II)]y centres in the ZnB glass matrix. At 360nm (UV) excitation, triply doped Tm(3+)/Tb(3+)/Eu(3+): ZnB glasses simultaneously shown their characteristic emission bands in blue (454nm: (1)D2→(3)F4), green (547nm: (5)D4→(7)F5) and red (616nm: (5)D0→(7)F2) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb(3+) in ET from Tm(3+)→Eu(3+) was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb(3+), Eu(3+)) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening.

  2. Energy transfer and colour tunability in UV light induced Tm3 +/Tb3 +/Eu3 +: ZnB glasses generating white light emission

    NASA Astrophysics Data System (ADS)

    Naresh, V.; Gupta, Kiran; Parthasaradhi Reddy, C.; Ham, Byoung S.

    2017-03-01

    A promising energy transfer (Tm3 + → Tb3 + → Eu3 +) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm3 +/Tb3 +/Eu3 + ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II)x-[O(- II)]y centres in the ZnB glass matrix. At 360 nm (UV) excitation, triply doped Tm3 +/Tb3 +/Eu3 +: ZnB glasses simultaneously shown their characteristic emission bands in blue (454 nm: 1D2 → 3F4), green (547 nm: 5D4 → 7F5) and red (616 nm: 5D0 → 7F2) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb3 + in ET from Tm3 + → Eu3 + was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb3 +, Eu3 +) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening.

  3. Light energy allocation at PSII under field light conditions: how much energy is lost in NPQ-associated dissipation?

    PubMed

    Endo, Tsuyoshi; Uebayashi, Nozomu; Ishida, Satoshi; Ikeuchi, Masahiro; Sato, Fumihiko

    2014-08-01

    In the field, plants are exposed to fluctuating light, where photosynthesis occurs under conditions far from a steady state. Excess energy dissipation associated with energy quenching of chlorophyll fluorescence (qE) functions as an efficient photo-protection mechanism in photosystem II. PsbS is an important regulator of qE, especially for the induction phase of qE. Beside the regulatory energy dissipation, some part of energy is lost through relaxation of excited chlorophyll molecules. To date, several models to quantify energy loss through these dissipative pathways in PSII have been proposed. In this short review, we compare and evaluate these models for PSII energy allocation when they are applied to non-steady state photosynthesis. As a case study, an investigation on energy allocation to qE-associated dissipation at PSII under non-steady state photosynthesis using PsbS-deficient rice transformants is introduced. Diurnal and seasonal changes in PSII energy allocation in rice under natural light are also presented. Future perspective of studies on PSII energy allocation is discussed.

  4. Photochromic Electret: A New Tool for Light Energy Harvesting.

    PubMed

    Castagna, Rossella; Garbugli, Michele; Bianco, Andrea; Perissinotto, Stefano; Pariani, Giorgio; Bertarelli, Chiara; Lanzani, Guglielmo

    2012-01-05

    In this paper, a photochromic electret for light energy harvesting is proposed and discussed. Such electret directly converts the photon energy into electric energy thanks to a polarization modulation caused by the photochromic reaction, which leads to a change in dipole moment. Theoretical concepts on which the photochromic electret is based are considered with an estimation of the effectiveness as a function of material properties. Finally, an electret based on a photochromic diarylethene is shown with the photoelectric characterization as a proof of concept device.

  5. Multifragmentation around the transition energy in intermediate-energy heavy-ion collisions

    SciTech Connect

    Vinayak, Karan Singh; Kumar, Suneel

    2011-03-15

    Fragmentation of light charged particles is studied for various systems at different incident energies between 50 and 1000 MeV/nucleon. We analyze fragment production at the incident energies below, at, and above the transition energies using the isospin-dependent quantum molecular dynamics model. The trends observed for the fragment production and rapidity distributions depend upon the incident energy, size of the fragments, and composite mass of the reacting system, as well as on the impact parameter of the reaction. The free nucleons and light charged particles show continuous homogeneous changes, irrespective of the transition energies, indicating that there is no relation between the transition energy and production of the free as well as light charged particles.

  6. Optimal Energy Transfer in Light-Harvesting Systems.

    PubMed

    Chen, Lipeng; Shenai, Prathamesh; Zheng, Fulu; Somoza, Alejandro; Zhao, Yang

    2015-08-20

    Photosynthesis is one of the most essential biological processes in which specialized pigment-protein complexes absorb solar photons, and with a remarkably high efficiency, guide the photo-induced excitation energy toward the reaction center to subsequently trigger its conversion to chemical energy. In this work, we review the principles of optimal energy transfer in various natural and artificial light harvesting systems. We begin by presenting the guiding principles for optimizing the energy transfer efficiency in systems connected to dissipative environments, with particular attention paid to the potential role of quantum coherence in light harvesting systems. We will comment briefly on photo-protective mechanisms in natural systems that ensure optimal functionality under varying ambient conditions. For completeness, we will also present an overview of the charge separation and electron transfer pathways in reaction centers. Finally, recent theoretical and experimental progress on excitation energy transfer, charge separation, and charge transport in artificial light harvesting systems is delineated, with organic solar cells taken as prime examples.

  7. Mean excitation energies for ions in gases and plasmas

    NASA Astrophysics Data System (ADS)

    Garbet, Xavier; Deutsch, Claude; Maynard, Gilles

    1987-02-01

    A variational approach yields accurate upper and lower bounds for mean excitation energies and other related parameters describing the stopping of nonrelativistic point charges by isolated species and ions embedded in dense and hot matter of relevance to particle-driven inertial fusion. The resulting I compares nicely with previous ones by Hartree-Fock-Slater and with experimental data when available. An efficient pseudo-analytic formula based on the Thomas-Fermi method is obtained, together with a cubic spline interpolation variationally improved. It is shown that in high temperature plasmas (kBT≥10 eV) mean excitation energies are significantly smaller than their cold homologue.

  8. Ab Initio Calculations Of Light-Ion Reactions

    SciTech Connect

    Navratil, P; Quaglioni, S; Roth, R; Horiuchi, W

    2012-03-12

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of nuclear forces, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present one of such promising techniques capable of describing simultaneously both bound and scattering states in light nuclei. By combining the resonating-group method (RGM) with the ab initio no-core shell model (NCSM), we complement a microscopic cluster approach with the use of realistic interactions and a microscopic and consistent description of the clusters. We discuss applications to light nuclei scattering, radiative capture and fusion reactions.

  9. Plasma-based ion implantation sterilization technique and ion energy estimation

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Watanabe, S.; Shibahara, K.; Yokoyama, S.; Takagi, T.

    2005-07-01

    Plasma-based ion implantation (PBII) is applied as a sterilization technique for three-dimensional work pieces. In the sterilization process, a pulsed negative high voltage (5 μs pulse width, 300 pulses/s,-800 V to -13 kV) is applied to the electrode (workpiece) under N2 at a gas pressure of 2.4 Pa. The resultant self-ignited plasma is shown to successfully reduce the number of active Bacillus pumilus cells by 105 times after 5 min of processing. The nitrogen ion energy is estimated using a simple method based on secondary ion mass spectroscopy analysis of the vertical distribution of nitrogen in PBII-treated Si.

  10. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data

  11. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Three of PEARL program during the period of October 2002 to April 2003, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The products tested are 20 models of screw-based compact fluorescent lamps (CFL) of various types and various wattages made or marketed by 12 different manufacturers, and ten models of residential lighting fixtures from eight different manufacturers.

  12. Collision-energy resolved ion mobility characterization of isomeric mixtures.

    PubMed

    Pettit, Michael E; Harper, Brett; Brantley, Matthew R; Solouki, Touradj

    2015-10-21

    Existing instrumental resolving power limitations in ion mobility spectrometry (IMS) often restrict adequate characterization of unresolved or co-eluting chemical isomers. Recently, we introduced a novel chemometric deconvolution approach that utilized post-IM collision-induced dissociation (CID) mass spectrometry (MS) data to extract "pure" IM profiles and construct CID mass spectra of individual components from a mixture containing two IM-overlapped components [J. Am. Soc. Mass Spectrom., 2012, 23, 1873-1884]. In this manuscript we extend the capabilities of the IM-MS deconvolution methodology and demonstrate the utility of energy resolved IM deconvolution for successful characterization of ternary and quaternary isomer mixtures with overlapping IM profiles. Furthermore, we show that the success of IM-MS deconvolution is a collision-energy dependent process where different isomers can be identified at various ion fragmentation collision-energies. Details on how to identify a single collision-energy or suitable collision-energy ranges for successful characterization of isomer mixtures are discussed. To confirm the validity of the proposed approach, deconvoluted IM and MS spectra from IM overlapped analyte mixtures are compared to IM and MS data from individually run mixture components. Criteria for "successful" deconvolution of overlapping IM profiles and extraction of their corresponding pure mass spectra are discussed.

  13. Energy Integrated Design of Lighting, Heating, and Cooling Systems, and Its Effect on Building Energy Requirements.

    ERIC Educational Resources Information Center

    Meckler, Gershon

    Comments on the need for integrated design of lighting, heating, and cooling systems. In order to eliminate the penalty of refrigerating the lighting heat, minimize the building non-usable space, and optimize the total energy input, a "systems approach" is recommended. This system would employ heat-recovery techniques based on the ability of the…

  14. Evidence for ion heat flux in the light ion polar wind

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Moore, T. E.; Chappell, C. R.

    1985-01-01

    Cold flowing hydrogen and helium ions have been observed using the retarding ion mass spectrometer on board the Dynamics Explorer 1 spacecraft in the dayside magnetosphere at subauroral latitudes. The ions show a marked flux asymmetry with respect to the relative wind direction. The observed data are fitted by a model of drifting Maxwellian distributions perturbed by a first order-Spritzer-Haerm heat flux distribution function. It is shown that both ion species are supersonic just equatorward of the auroral zone at L = 14, and the shape of asymmetry and direction of the asymmetry are consistent with the presence of an upward heat flux. At L = 6, both species evolve smoothly into warmer subsonic upward flows with downward heat fluxes. In the case of subsonic flows the downward heat flux implies a significant heat source at higher altitudes. Spin curves of the spectrometer count rate versus the spin phase angle are provided.

  15. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  16. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Six of PEARL program during the period of October 2004 to April 2005, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameters tested for CFL models in Cycle Six are 1000-hour Lumen Maintenance, Lumen Maintenance at 40% Rated Life, and Interim Life Test, along with a series of parameters verified, such as ballast electrical parameters and Energy Star label.

  17. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle 6 and Reflector CFL In-situ Testing of PEARL program during the period of April 2005 to October 2005, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC performed testing for the fixture samples in Cycle 6 against Energy Star residential fixture specifications during this period of time. LRC subcontracted the Reflector CFL In-situ Testing to Luminaire Testing Laboratories located at Allentown PA, and supervised this test.

  18. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Four and Cycle Five of PEARL program during the period of October 2003 to April 2004, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameter tested for Cycle Four is lumen maintenance at 40% rated life, and parameters tested for Cycle Five are all parameters required in Energy Star specifications except lumen maintenance at 40% rated life.

  19. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Three and Cycle Four of PEARL program during the period of April 2003 to October 2003, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameter tested for Cycle three is lumen maintenance at 40% rated life, and parameters tested for Cycle Four are all parameters required in Energy Star specifications except lumen maintenance at 40% rated life.

  20. National Lighting Bureau Reports Dramatic Energy Savings Possible through Minor Lighting Modifications.

    ERIC Educational Resources Information Center

    College Store Journal, 1979

    1979-01-01

    Dramatic savings are possible by implementing minor modifications including: energy efficient light bulbs and tubes, ballasts, luminaires (fixtures), controls, operating practices, and revised maintenance. Many different changes can be made without affecting productivity, safety and security, visual comfort, aesthetic appeal, consumer discretion,…

  1. Ion flux, ion energy distribution and neutral density in an inductively coupled argon discharge

    NASA Astrophysics Data System (ADS)

    Chevolleau, T.; Fukarek, W.

    2000-11-01

    The dependence of ion flux, ion energy distribution and neutral density of a planar radiofrequency (RF) driven inductively coupled plasma source on pressure and power is analysed using a plasma monitor and a Faraday cup. The ion flux is about 7 mA cm-2 at 5 Pa and 300 W and increases as RF power and argon pressure increase. The ion energy distribution consists of a single peak with a full width at half maximum of 3 eV for a discharge power in the range from 50 to 300 W and for a pressure in the range from 0.5 to 5 Pa. This indicates that inductive coupling mainly drives the discharge while capacitive coupling between coil and plasma is weak. A significant decrease in Ar neutral density is observed when the plasma is ignited. The Ar depletion increases with increasing RF power and increasing Ar base pressure and reaches 30% at 5 Pa and 300 W. The contributions of the different mechanisms resulting in an Ar depletion are estimated and compared. The decrease in neutral density cannot be explained by the ionization of Ar atoms only but is significantly attributed to the heating of Ar atoms by collisions with energetic particles. The increase in neutral gas temperature is estimated and found to be in reasonable agreement with measurements of the gas temperature reported previously by other groups.

  2. Investigating the performance of an ion luminescence probe as a multichannel fast-ion energy spectrometer using pulse height analysis

    SciTech Connect

    Zurro, B.; Baciero, A.; Jimenez-Rey, D.; Rodriguez-Barquero, L.; Crespo, M. T.

    2012-10-15

    We investigate the capability of a fast-ion luminescent probe to operate as a pulse height ion energy analyzer. An existing high sensitivity system has been reconfigured as a single channel ion detector with an amplifier to give a bandwidth comparable to the phosphor response time. A digital pulse processing method has been developed to determine pulse heights from the detector signal so as to obtain time-resolved information on the ion energy distribution of the plasma ions lost to the wall of the TJ-II stellarator. Finally, the potential of this approach for magnetic confined fusion plasmas is evaluated by studying representative TJ-II discharges.

  3. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    SciTech Connect

    Tanaka, Koichi; Anders, André

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  4. High latitude field aligned light ion flows in the topside ionosphere deduced from ion composition and plasma temperatures

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Hoegy, W. R.; Chen, T. C.

    1993-01-01

    Using a comprehensive ionospheric data set comprised of all available ion composition and plasma temperature measurements from satellites, the vertical distributions of ion composition and plasma temperatures are defined from middle latitudes up into the polar cap for summer conditions for altitudes below about 1200 km. These data are sufficient to allow a numerical estimation of the latitudinal variation of the light ion outflows from within the plasmasphere to the polar wind regions. The altitude at which significant light ion outflow begins is found to be lower during solar minimum conditions than during solar maximum. The H(+) outward speeds are of the order of 1 km/s near 1100 km during solar maximum but attain several km/s speeds for solar minimum. He(+) shows a similar altitude development of flow but attains polar cap speeds much less than 1 km/s at altitudes below 1100 km, particularly under solar maximum conditions. Outward flows are also found in the topside F-region for noontime magnetic flux tubes within the plasmasphere.

  5. Energy loss straggling in collisions of fast finite-size ions with atoms

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2013-03-01

    The influence of ion size on straggling of energy losses by fast partially stripped ions is studied using the nonperturbative approach based on the eikonal approximation. It is shown that such a consideration of collisions of ions with complex atoms can lead to considerable corrections in calculating root-mean-square straggling of energy losses by fast ions compared to the results obtained for point ions. The root-mean-square straggling of energy losses are calculated for bromide and iodine ions in collisions with copper, silver, and aluminum atoms. It is shown that allowance for the size of the electron "coat" of an ion noticeably improves the agreement with experimental data.

  6. Energy loss straggling in collisions of fast finite-size ions with atoms

    SciTech Connect

    Makarov, D. N. Matveev, V. I.

    2013-03-15

    The influence of ion size on straggling of energy losses by fast partially stripped ions is studied using the nonperturbative approach based on the eikonal approximation. It is shown that such a consideration of collisions of ions with complex atoms can lead to considerable corrections in calculating root-mean-square straggling of energy losses by fast ions compared to the results obtained for point ions. The root-mean-square straggling of energy losses are calculated for bromide and iodine ions in collisions with copper, silver, and aluminum atoms. It is shown that allowance for the size of the electron 'coat' of an ion noticeably improves the agreement with experimental data.

  7. Two-color above-threshold ionization of atoms and ions in XUV Bessel beams and intense laser light

    NASA Astrophysics Data System (ADS)

    Seipt, D.; Müller, R. A.; Surzhykov, A.; Fritzsche, S.

    2016-11-01

    The two-color above-threshold ionization (ATI) of atoms and ions is investigated for a vortex Bessel beam in the presence of a strong near-infrared (NIR) light field. While the photoionization is caused by the photons from the weak but extreme ultraviolet (XUV) vortex Bessel beam, the energy and angular distribution of the photoelectrons and their sideband structure are affected by the plane-wave NIR field. We here explore the energy spectra and angular emission of the photoelectrons in such two-color fields as a function of the size and location of the target atoms with regard to the beam axis. In addition, analog to the circular dichroism in typical two-color ATI experiments with circularly polarized light, we define and discuss seven different dichroism signals for such vortex Bessel beams that arise from the various combinations of the orbital and spin angular momenta of the two light fields. For localized targets, it is found that these dichroism signals strongly depend on the size and position of the atoms relative to the beam. For macroscopically extended targets, in contrast, three of these dichroism signals tend to zero, while the other four just coincide with the standard circular dichroism, similar as for Bessel beams with a small opening angle. Detailed computations of the dichroism are performed and discussed for the 4 s valence-shell photoionization of Ca+ ions.

  8. Smart LED lighting for major reductions in power and energy use for plant lighting in space

    NASA Astrophysics Data System (ADS)

    Poulet, Lucie

    Launching or resupplying food, oxygen, and water into space for long-duration, crewed missions to distant destinations, such as Mars, is currently impossible. Bioregenerative life-support systems under development worldwide involving photoautotrophic organisms offer a solution to the food dilemma. However, using traditional Earth-based lighting methods, growth of food crops consumes copious energy, and since sunlight will not always be available at different space destinations, efficient electric lighting solutions are badly needed to reduce the Equivalent System Mass (ESM) of life-support infrastructure to be launched and transported to future space destinations with sustainable human habitats. The scope of the present study was to demonstrate that using LEDs coupled to plant detection, and optimizing spectral and irradiance parameters of LED light, the model crop lettuce (Lactuca sativa L. cv. Waldmann's Green) can be grown with significantly lower electrical energy for plant lighting than using traditional lighting sources. Initial experiments aimed at adapting and troubleshooting a first-generation "smart" plant-detection system coupled to LED arrays resulted in optimizing the detection process for plant position and size to the limits of its current design. Lettuce crops were grown hydroponically in a growth chamber, where temperature, relative humidity, and CO2 level are controlled. Optimal irradiance and red/blue ratio of LED lighting were determined for plant growth during both lag and exponential phases of crop growth. Under optimizing conditions, the efficiency of the automatic detection system was integrated with LED switching and compared to a system in which all LEDs were energized throughout a crop-production cycle. At the end of each cropping cycle, plant fresh and dry weights and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed. Preliminary results indicated that lettuce plants grown under

  9. A novel approach to microbial breeding--low-energy ion implantation.

    PubMed

    Gu, Shao-Bin; Li, Shi-Chang; Feng, Hui-Yun; Wu, Ying; Yu, Zeng-Liang

    2008-02-01

    Low-energy ions exist widely in the natural world. People had neglected the interaction between low-energy ions and material; it was even more out of the question to study the relation of low-energy ions and the complicated organism until the biological effects of low-energy ion implantation were discovered in 1989. Nowadays, the value of low-energy ion beam implantation, as a new breeding way, has drawn extensive attention of biologists and breeding experts. In this review, the understanding and utilization of microbial breeding by low-energy ion beam irradiation is summarized, including the characteristics of an ion beam bioengineering facility, present status of the technology of low-energy ions for microbial breeding, and new insights into microbial biotechnology.

  10. Energy dissipation of highly charged ions on Al oxide films.

    PubMed

    Lake, R E; Pomeroy, J M; Sosolik, C E

    2010-03-03

    Slow highly charged ions (HCIs) carry a large amount of potential energy that can be dissipated within femtoseconds upon interaction with a surface. HCI-insulator collisions result in high sputter yields and surface nanofeature creation due to strong coupling between the solid's electronic system and lattice. For HCIs interacting with Al oxide, combined experiments and theory indicate that defect mediated desorption can explain reasonably well preferential O atom removal and an observed threshold for sputtering due to potential energy. These studies have relied on measuring mass loss on the target substrate or probing craters left after desorption. Our approach is to extract highly charged ions onto the Al oxide barriers of metal-insulator-metal tunnel junctions and measure the increased conductance in a finished device after the irradiated interface is buried under the top metal layer. Such transport measurements constrain dynamic surface processes and provide large sets of statistics concerning the way individual HCI projectiles dissipate their potential energy. Results for Xe(q +) for q = 32, 40, 44 extracted onto Al oxide films are discussed in terms of postirradiation electrical device characteristics. Future work will elucidate the relationship between potential energy dissipation and tunneling phenomena through HCI modified oxides.

  11. Analyzing system safety in lithium-ion grid energy storage

    NASA Astrophysics Data System (ADS)

    Rosewater, David; Williams, Adam

    2015-12-01

    As grid energy storage systems become more complex, it grows more difficult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to fill the gaps recognized in PRA for designing complex systems and hence be more effective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. We conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.

  12. Er + medium energy ion implantation into lithium niobate

    NASA Astrophysics Data System (ADS)

    Svecova, B.; Nekvindova, P.; Mackova, A.; Oswald, J.; Vacik, J.; Grötzschel, R.; Spirkova, J.

    2009-05-01

    Erbium-doped lithium niobate (Er:LiNbO3) is a prospective photonics component, operating at 1.5 μm, which could find its use chiefly as an optical amplifier or waveguide laser. In this study, we have focused on the properties of the optically active Er:LiNbO3 layers, which are fabricated by medium energy ion implantation under various experimental conditions. Erbium ions were implanted at energies of 330 and 500 keV with fluences of 1.0 × 1015, 2.5 × 1015 and 1.0 × 1016 cm-2 into LiNbO3 single-crystalline cuts of various orientations. The as-implanted samples were annealed in air at 350 °C for 5 h. The depth distribution and diffusion profiles of the implanted Er were measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He+ ions. The projected range RP and projected range straggling ΔRP were calculated employing the SRIM code. The damage distribution and structural changes were described using the RBS/channelling method. Changes of the lithium concentration depth distribution were studied by Neutron Depth Profiling (NDP). The photoluminescence spectra of the samples were measured to determine whether the emission was in the desired region of 1.5 μm. The obtained data made it possible to reveal the relations between the structural changes of erbium-implanted lithium niobate and its luminescence properties important for photonics applications.

  13. Low energy ion distribution measurements in Madison Symmetric Torus plasmas

    SciTech Connect

    Titus, J. B. Mezonlin, E. D.; Johnson, J. A.

    2014-06-15

    Charge-exchange neutrals contain information about the contents of a plasma and can be detected as they escape confinement. The Florida A and M University compact neutral particle analyzer (CNPA), used to measure the contents of neutral particle flux, has been reconfigured, calibrated, and installed on the Madison Symmetric Torus (MST) for high temperature deuterium plasmas. The energy range of the CNPA has been extended to cover 0.34–5.2 keV through an upgrade of the 25 detection channels. The CNPA has been used on all types of MST plasmas at a rate of 20 kHz throughout the entire discharge (∼70 ms). Plasma parameter scans show that the ion distribution is most dependent on the plasma current. Magnetic reconnection events throughout these scans produce stronger poloidal electric fields, stronger global magnetic modes, and larger changes in magnetic energy all of which heavily influence the non-Maxwellian part of the ion distribution (the fast ion tail)

  14. Analyzing system safety in lithium-ion grid energy storage

    DOE PAGES

    Rosewater, David; Williams, Adam

    2015-10-08

    As grid energy storage systems become more complex, it grows more di cult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to ll the gaps recognized in PRA for designing complex systems and hence be more e ectivemore » or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. Lastly, we conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.« less

  15. Analyzing system safety in lithium-ion grid energy storage

    SciTech Connect

    Rosewater, David; Williams, Adam

    2015-10-08

    As grid energy storage systems become more complex, it grows more di cult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to ll the gaps recognized in PRA for designing complex systems and hence be more e ective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. Lastly, we conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.

  16. Optical-model abrasion cross sections for high-energy heavy ions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1981-01-01

    Within the context of eikonal scattering theory, a generalized optical model potential approximation to the nucleus-nucleus multiple scattering series is used in an abrasion-ablation collision model to predict abrasion cross sections for relativistic projectile heavy ions. Unlike the optical limit of Glauber theory, which cannot be used for very light nuclei, the abrasion formalism is valid for any projectile target combination at any incident kinetic energy for which eikonal scattering theory can be utilized. Results are compared with experimental results and predictions from Glauber theory.

  17. Damage production in GaAs and GaAsN induced by light and heavy ions

    SciTech Connect

    Bjoerkas, C.; Nordlund, K.; Arstila, K.; Keinonen, J.; Dhaka, V. D. S.; Pessa, M.

    2006-09-01

    Ion irradiation causes damage in semiconductor crystal structures and affects charge carrier dynamics. We have studied the damage production by high-energy (100 keV-10 MeV) H, He, Ne, and Ni ions in GaAs and GaAs{sub 90}N{sub 10} using molecular dynamics computer simulations. We find that the heavier Ne and Ni ions produce a larger fraction of damage in large clusters than H and He. These large clusters are either in the form of amorphous zones or (after room-temperature aging or high-temperature annealing) in the form of vacancy and antisite clusters. The total damage production in GaAs and GaAs{sub 90}N{sub 10} is found to be practically the same for all the ions. A clearly smaller fraction of the damage in GaAs{sub 90}N{sub 10} compared to GaAs is in large clusters, however. Our results indicate that experimentally observed differences in charge carrier lifetimes between light and heavy ion irradiations, and before and after annealing, can be understood in terms of the large defect clusters. An increasing amount of damage in large clusters decreases the carrier decay time.

  18. Unlimited energy gain in the laser-driven radiation pressure dominant acceleration of ions

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Echkina, E. Yu.; Inovenkov, I. N.; Pegoraro, F.; Korn, G.

    2010-06-15

    The energy of the ions accelerated by an intense electromagnetic wave in the radiation pressure dominated regime can be greatly enhanced by a transverse expansion of a thin target. The expansion decreases the number of accelerated ions in the irradiated region increasing the energy and the longitudinal velocity of the remaining ions. In the relativistic limit, the ions become phase locked with respect to the electromagnetic wave resulting in an unlimited ion energy gain. This effect and the use of optimal laser pulse shape provide a new approach for greatly enhancing the energy of laser accelerated ions.

  19. Binding energy levels of a slowly moving ion in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Hongwei; Li, Fuli

    2013-02-01

    The near field electric potential of a slowly moving ion in complex plasmas is studied. We find that the potential consists of the Debye-Hückel potential, the wake potential, and the potential associated with charge fluctuations. The binding energy levels of the ion are calculated by use of the Ritz variation method. The results show that the binding energy levels are related to the magnetic quantum number m. The binding energy levels are affected by speed of the ion and dust grain number density. In contract to isolated ion or static ion in plasmas, the binding energy levels of the ion are pushed up and even become unbounded.

  20. Effect of Low-Energy Ions on Plasma-Enhanced Deposition of Cubic Boron Nitride

    NASA Astrophysics Data System (ADS)

    Torigoe, M.; Fukui, S.; Teii, K.; Matsumoto, S.

    2015-09-01

    The effect of low-energy ions on deposition of cubic boron nitride (cBN) films in an inductively coupled plasma with the chemistry of fluorine is studied in terms of ion energy, ion flux, and ion to boron flux ratio onto the substrate. The ion energy and the ion to boron flux ratio are determined from the sheath potential and the ratio of incident ion flux to net deposited boron flux, respectively. For negative substrate biases where sp2-bonded BN phase only or no deposit is formed, both the ion energy and the ion to boron flux ratio are high. For positive substrate biases where cBN phase is formed, the ion energy and the ion to boron flux ratio are estimated in the range of a few eV to 35 eV and 100 to 130, respectively. The impact of negative ions is presumed to be negligible due to their low kinetic energy relative to the sheath potential over the substrate surface. The impact of positive ions with high ion to boron flux ratios is primarily responsible for reduction of the ion energy for cBN film deposition. Work supported in part by a Grant-in-Aid for Scientific Research (B), a Funding Program for Next Generation World-Leading Researchers, and an Industrial Technology Research Grant Program 2008.

  1. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-05-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure of Cycle 7 of PEARL program during the period of October 2005 to March 2006, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC administered the purchasing of CFL samples to test in Cycle 7, performed 100-hour seasoning for most of the CFL samples received by March 2006, and performed sphere testing for some of the CFL samples at 100 hours of life (initial measurement).

  2. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Five and Cycle Six of PEARL program during the period of April 2004 to October 2004, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameter tested for Cycle Five is lumen maintenance at 40% rated life, and parameters tested for Cycle Six are Efficacy, CCT, CRI, Power Factor, Start Time, Warm-up Time, and Rapid Cycle Stress Test for CFLs.

  3. Charge-transfer energy in closed-shell ion-atom interactions. [for H and Li ions in He

    NASA Technical Reports Server (NTRS)

    Alvarez-Rizzatti, M.; Mason, E. A.

    1975-01-01

    The importance of charge-transfer energy in the interactions between closed-shell ions and atoms is investigated. Ab initio calculations on H(plus)-He and Li(plus)-He are used as a guide for the construction of approximate methods for the estimation of the charge-transfer energy for more complicated systems. For many alkali ion-rate gas systems the charge-transfer energy is comparable to the induction energy in the region of the potential minimum, although for doubly charged alkaline-earth ions in rare gases the induction energy always dominates. Surprisingly, an empirical combination of repulsion energy plus asymptotic induction energy plus asymptotic dispersion energy seems to give a fair representation of the total interaction, especially if the repulsion energy is parameterized, despite the omission of any explicit charge-transfer contribution. More refined interaction models should consider the charge-transfer energy contribution.

  4. Full solar spectrum light driven thermocatalysis with extremely high efficiency on nanostructured Ce ion substituted OMS-2 catalyst for VOCs purification.

    PubMed

    Hou, Jingtao; Li, Yuanzhi; Mao, Mingyang; Yue, Yuanzheng; Greaves, G Neville; Zhao, Xiujian

    2015-02-14

    The nanostructured Ce ion substituted cryptomelane-type octahedral molecular sieve (OMS-2) catalyst exhibits strong absorption in the entire solar spectrum region. The Ce ion substituted OMS-2 catalyst can efficiently transform the absorbed solar energy to thermal energy, resulting in a considerable increase of temperature. By combining the efficient photothermal conversion and thermocatalytic activity of the Ce ion substituted OMS-2 catalyst, we carried out full solar spectrum, visible-infrared, and infrared light driven catalysis with extremely high efficiency. Under the irradiation of full solar spectrum, visible-infrared, and infrared light, the Ce ion substituted OMS-2 catalyst exhibits extremely high catalytic activity and excellent durability for the oxidation of volatile organic pollutants such as benzene, toluene, and acetone. Based on the experimental evidence, we propose a novel mechanism of solar light driven thermocatalysis for the Ce ion substituted OMS-2 catalyst. The reason why the Ce ion substituted OMS-2 catalyst exhibits much higher catalytic activity than pure OMS-2 and CeO2/OMS-2 nano composite under the full solar spectrum irradiation is discussed.

  5. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  6. Production of Intense Light Ion Beams from a Superpower Generator.

    DTIC Science & Technology

    1982-01-15

    Multi-site, gas- insulated switches connecting the transformers through the prepulse slab close on the leading edge of the high voltage pulse . There are...interfaces allow penetration of a "transit time isolator" cable shield through the water from the high- voltage vacuum cathode to the grounded outer shell... voltage and current diagnostics (VT and IT) are located at the flare in several azimuthal locations. On the vacuum side of this interface, the energy pulse

  7. Range parameters of slow gold ions implanted into light targets

    NASA Astrophysics Data System (ADS)

    Kuzmin, V.

    2009-08-01

    Interatomic potentials for Au-C, Au-B, Au-N and Au-Si systems, calculated with density-functional theory (DFT) methods, have been used to evaluate the range parameters of gold in B, Si, BN and SiC films at energies of about 10-400 keV. The potentials have been employed to describe scattering angles of a projectile and to calculate the nuclear stopping powers and the higher moments of the energy, transferred in single collisions. Utilizing these findings the range parameters have been obtained by the standard transport theory and by Monte-Carlo simulations. A velocity proportional electronic stopping was included into the consideration. The approach developed corresponds completely to the standard classical scheme of the calculation of range parameters. Good agreement between the computed range parameters and available experimental data allow us to conclude that correlation effects between the nuclear and electronic stopping can be neglected in the energy range in question. Moreover, it is proven for the first time that the model by Grande, et al. [P.L. Grande, F.C. Zawislak, D. Fink, M. Behar, Nucl. Instr. and Meth. B 61 (1991) 282], which relies on the importance of correlation effects, contains inherent contradictions.

  8. Polarized light ions and spectator nucleon tagging at EIC

    SciTech Connect

    Guzey, Vadim; Higinbotham, Dougas W.; Hyde, Charles; Nadel-Turonski, Pawel A.; Park, Kijun; Sargsian, Misak M.; Strikman, Mark; Weiss, Christian

    2014-10-01

    The neutron's deep-inelastic structure functions provide essential information for the flavor separation of the nucleon parton densities, the nucleon spin decomposition, and precision studies of QCD phenomena in the flavor-singlet and nonsinglet sectors. Traditional inclusive measurements on nuclear targets are limited by dilution from scattering on protons, Fermi motion and binding effects, final-state interactions, and nuclear shadowing at x ll 0.1. An Electron-Ion Collider (EIC) would enable next-generation measurements of neutron structure with polarized deuteron beams and detection of forward-moving spectator protons over a wide range of recoil momenta (0 < p(R) < several 100MeV in the nucleus rest frame). The free neutron structure functions could be obtained by extrapolating the measured recoil momentum distributions to the on-shell point. The method eliminates nuclear modifications and can be applied to polarized scattering, as well as to semi-inclusive and exclusive final states. We review the prospects for neutron structure measurements with spectator tagging at EIC, the status of R&D efforts, and the accelerator and detector requirements.

  9. CNAO--The Italian Centre for Light-Ion Therapy.

    PubMed

    Amaldi, Ugo

    2004-12-01

    In 1991 the author involved the Italian institute of nuclear physics (INFN) in R&D work in the field of hadrontherapy. In 1992 the TERA Foundation was created with the purpose of forming and employing people fully devoted to the design, promotion and construction of hadrontherapy centres in Italy and in Europe. The present contribution describes the main project of TERA, the CNAO (Centro Nazionale di Adroterapia Oncologica), and the status of its construction in Pavia. The Italian Centre is based on the optimised medical synchrotron designed in the framework of the "Proton Ion Medical Machine Study" (PIMMS) carried out at CERN from 1996 to 2000 with CERN, the Med-AUSTRO project, Oncology 2000 (Prague) and TERA as partners. In the following years TERA introduced modifications and improvements in the original PIMMS design producing what is now dubbed the PIMMS/TERA design. Since 2001 the construction of CNAO has been endorsed by the Italian government to the CNAO Foundation formed by five major hospitals, seated in Milan and Pave, and by TERA. Since 2003 INFN is an Institutional Participant. The site chosen at the beginning of 2003 (37,000 m2) is in the close vicinities of one of the five hospitals, the San Matteo University Hospital of Pave. The construction plan foresees the treatment of the first patient at the end of 2007.

  10. National voluntary laboratory accreditation program: Energy efficient lighting products. Handbook

    SciTech Connect

    Galowin, L.S.; Hall, W.; Rossiter, W.J.

    1994-07-01

    The purpose of this handbook is to set out procedures and technical requirements for the National Voluntary Laboratory Accreditation Program (NVLAP) accreditation of laboratories which perform test methods covered by the Energy Efficient Lighting (EEL) Products program. It complements and supplements the NVLAP programmatic procedures and general requirements found in NIST Handbook 150 (PB94-178225). The interpretive comments and additional requirements contained in this handbook make the general NVLAP criteria specifically applicable to the EEL program.

  11. Electron excited multiply charged argon ions studied by means of an energy resolved electron-ion coincidence technique

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Prajapati, Suman; Singh, Bhupendra; Singh, Bhartendu Kumar; Shanker, Rama

    2017-03-01

    Multiply charged argon ions produced from decay of L-shell hole states by impact of a continuous beam of 3.5 keV electrons are studied for the first time using an energy resolved electron-ion coincidence technique. The TOF spectra of argon ions are measured in coincidence with 18-energy selected electrons emitted in a wide energy range (126-242 eV). The coincidence measurement between the energy selected electrons and the correlated ions specifies the individual decay channel for various multiply charged ions. New experimental data are obtained and reported on the correlation probability for production of argon ions with charge states 1+ to 4+ as a function of ejected electrons in the considered energy range. The relative correlation probability of producing different charge state ions and corresponding physical processes involved in their production are presented and discussed. It has been found that the maximum probability for production of Ar2+ ions correlated to ejected Auger electrons in the energy range of 205-209 eV is 100%. No theoretical predictions are available to compare with these results. The present study shows further that not only the auto-ionization and normal Auger transitions but also several other decay processes including Coster-Kronig transitions followed by Auger cascades with a fraction of shake process play important role in producing ions with charge states 1+ to 4+.

  12. Plasma sheet motions inferred from medium-energy ion measurements

    SciTech Connect

    Andrews, M.K.; Keppler, E.; Daly, P.W.

    1981-09-01

    Medium-energy ions (E>25 keV) measured by the ISEE 2 satellite are used to provide information on plasma sheet motions during expansions following substorms. We show that the upward speed of the plasma sheet edge measured locally is commonly approx.50 km/s, a value high in comparison with two-satellite measurements. It is thought that waves in the form of field-aligned corrugations of the sheet boundary may be responsible for the high speeds measured in some cases. The boundary between the lobe and plasma sheet intensity fluxes is about 2 R/sub g/ thick at the ion energies looked at, or 1000--3000 km. After the passage of the plasma sheet boundary, particle fluxes drifting downward toward the neutral sheet are often encountered. This is interpreted as an E x B drift, in which case the electric field is about 1 mV//m. This could imply high cross-tail potentials. At the outer boundary of the plasma sheet, it is found that the streaming ion layer recently reported by Moebius et al. (1980) and Spjeldvik and Fritz (unpublished manuscript, 1980) shows a peaked spectrum that softens as the plasma sheet is approached. The observation of a rising plasma sheet boundary, downward-drifting flux tubes, and the behavior of the streaming ion layer are consistent with the tailward motion of a source region together with a cross-tail electric field. The data can be interpreted to show that the source region when the plasma sheet 20 R/sub E/ downtail has expanded to about 6 R/sub E/ is approx.50 R/sub E/ down the tail.

  13. Energy Release, Acceleration, and Escape of Solar Energetic Ions

    NASA Astrophysics Data System (ADS)

    de Nolfo, G. A.; Ireland, J.; Ryan, J. M.; Young, C. A.

    2013-12-01

    Solar flares are prodigious producers of energetic particles, and thus a rich laboratory for studying particle acceleration. The acceleration occurs through the release of magnetic energy, a significant fraction of which can go into the acceleration of particles. Coronal mass ejections (CMEs) certainly produce shocks that both accelerate particles and provide a mechanism for escape into the interplanetary medium (IP). What is less well understood is whether accelerated particles produced from the flare reconnection process escape, and if so, how these same particles are related to solar energetic particles (SEPs) detected in-situ. Energetic electron SEPs have been shown to be correlated with Type III radio bursts, hard X-ray emission, and EUV jets, making a very strong case for the connection between acceleration at the flare and escape along open magnetic field lines. Because there has not been a clear signature of ion escape, as is the case with the Type III radio emission for electrons, sorting out the avenues of escape for accelerated flare ions and the possible origin of the impulsive SEPs continues to be a major challenge. The key to building a clear picture of particle escape relies on the ability to map signatures of escape such as EUV jets at the Sun and to follow the progression of these escape signatures as they evolve in time. Furthermore, nuclear γ-ray emissions provide critical context relating ion acceleration to that of escape. With the advent observations from Fermi as well as RHESSI and the Solar Dynamics Observatory (SDO), the challenge of ion escape from the Sun can now be addressed. We present a preliminary study of the relationship of EUV jets with nuclear γ-ray emission and Type III radio observations and discuss the implications for possible magnetic topologies that allow for ion escape from deep inside the corona to the interplanetary medium.

  14. A Photometric and Energy Assessment of a Novel Lighting System

    SciTech Connect

    Crawford, Doug; Gould, Carl; Packer, Michael; Rubinstein, Francis; Siminovitch, Michael

    1995-06-01

    This paper describes the results of a photometric and energy analysis that was conducted on a new light guide and sulfur lamp system recently installed at both the US Department of Energy's Forrestal building and the Smithsonian Institution's National Air and Space Museum. This system couples high lumen output, high efficiency sulfur lamps to hollow light guides lined with a reflective prismatic film. At the Forrestal building the system lights a large roadway and plaza area that lies beneath a section of the building. It has been designed to completely replace the grid of 280 mercury vapor lamps formerly used to illuminate the space. At the National Air and Space Museum a similar system illuminates Gallery 114, which houses the large rocket displays from the US Space program. This paper outlines the unique operational and design characteristics of this highly efficient distribution system and details the results of field studies that characterize the significant energy savings and increased illumination levels that have been achieved. The projected savings in maintenance costs, due to longer lamp life and a reduction of the total number of lamps, is also presented.

  15. Low Energy Sputtering Experiments for Ion Engine Lifetime Assessment

    NASA Technical Reports Server (NTRS)

    Duchemin Olivier B.; Polk, James E.

    1999-01-01

    The sputtering yield of molybdenum under xenon ion bombardment was measured using a Quartz Crystal Microbalance. The measurements were made for ion kinetic energies in the range 100-1keV on molybdenum films deposited by magnetron sputtering in conditions optimized to reproduce or approach bulk-like properties. SEM micrographs for different anode bias voltages during the deposition are compared, and four different methods were implemented to estimate the density of the molybdenum films. A careful discussion of the Quartz Crystal Microbalance is proposed and it is shown that this method can be used to measure mass changes that are distributed unevenly on the crystal electrode surface, if an analytical expression is known for the differential mass-sensitivity of the crystal and the erosion profile. Finally, results are presented that are in good agreement with previously published data, and it is concluded that this method holds the promise of enabling sputtering yield measurements at energies closer to the threshold energy in the very short term.

  16. Ab initio molecular dynamics calculations of ion hydration free energies.

    PubMed

    Leung, Kevin; Rempe, Susan B; von Lilienfeld, O Anatole

    2009-05-28

    We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or "lambda-path" technique to compute the intrinsic hydration free energies of Li(+), Cl(-), and Ag(+) ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential (phi) contributions, we obtain absolute AIMD hydration free energies (DeltaG(hyd)) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model phi predictions. The sums of Li(+)/Cl(-) and Ag(+)/Cl(-) AIMD DeltaG(hyd), which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag(+)+Ni(+)-->Ag+Ni(2+) in water. The predictions for this reaction suggest that existing estimates of DeltaG(hyd) for unstable radiolysis intermediates such as Ni(+) may need to be extensively revised.

  17. Low energy ions in the heavy ions in space (HIIS) experiment on LDEF.

    PubMed

    Kleis, T; Tylka, A J; Boberg, P R; Adams, J H; Beahm, L P

    1996-01-01

    We present data from the Lexan top stacks in the Heavy Ions In Space (HIIS) experiment which was flown for six years (April 1984-Jan 1990) onboard the LDEF spacecraft in 28.5 degrees orbit at about 476 km altitude. HIIS was built of passive (i.e. no timing resolution) plastic track detectors which collected particles continuously over the entire mission. In this paper we present data on low energy heavy ions (10 < or = Z, 20MeV/nuc < E < 200 MeV/nuc). These ions are far below the geomagnetic cutoff for fully ionized ions in the LDEF orbit even after taking into account the severe cutoff suppression caused by occasional large geomagnetic storms during the LDEF mission. Our preliminary results indicate an unusual elemental composition of trapped particles in the inner magnetosphere during the LDEF mission, including both trapped anomalous cosmic ray species (Ne, Ar) and other elements (such as Mg and Fe) which are not found in the anomalous component of cosmic rays. The origin of the non-anomalous species is not understood, but they may be associated with the solar energetic particle events and geomagnetic disturbances of 1989.

  18. Light induced suppression of sulfur in a cesium sputter ion source

    PubMed Central

    Martschini, Martin; Rohlén, Johan; Andersson, Pontus; Golser, Robin; Hanstorp, Dag; Lindahl, Anton O.; Priller, Alfred; Steier, Peter; Forstner, Oliver

    2012-01-01

    New techniques for suppression of atomic isobars in negative ion beams are of great interest for accelerator mass spectrometry (AMS). Especially small and medium-sized facilities can significantly extend their measurement capabilities to new interesting isotopes with a technique independent of terminal voltage. In a new approach, the effect of continuous wave laser light directed towards the cathode surface in a cesium sputter ion source of the Middleton type was studied. The laser light induced a significant change in oxygen, sulfur and chlorine negative ion production from a AgCl target. Approximately 100 mW of laser light reduced the sulfur to chlorine ratio by one order of magnitude. The effect was found to depend on laser power and ion source parameters but not on the laser wavelength. The time constant of the effect varied from a few seconds up to several minutes. Experiments were first performed at the ion beam facility GUNILLA at University of Gothenburg with macroscopic amounts of sulfur. The results were then reproduced at the VERA AMS facility with chemically cleaned AgCl targets containing ∼1 ppm sulfur. The physical explanation behind the effect is still unclear. Nevertheless, the technique has been successfully applied during a regular AMS measurement of 36Cl. PMID:23576897

  19. Light induced suppression of sulfur in a cesium sputter ion source.

    PubMed

    Martschini, Martin; Rohlén, Johan; Andersson, Pontus; Golser, Robin; Hanstorp, Dag; Lindahl, Anton O; Priller, Alfred; Steier, Peter; Forstner, Oliver

    2012-04-01

    New techniques for suppression of atomic isobars in negative ion beams are of great interest for accelerator mass spectrometry (AMS). Especially small and medium-sized facilities can significantly extend their measurement capabilities to new interesting isotopes with a technique independent of terminal voltage. In a new approach, the effect of continuous wave laser light directed towards the cathode surface in a cesium sputter ion source of the Middleton type was studied. The laser light induced a significant change in oxygen, sulfur and chlorine negative ion production from a AgCl target. Approximately 100 mW of laser light reduced the sulfur to chlorine ratio by one order of magnitude. The effect was found to depend on laser power and ion source parameters but not on the laser wavelength. The time constant of the effect varied from a few seconds up to several minutes. Experiments were first performed at the ion beam facility GUNILLA at University of Gothenburg with macroscopic amounts of sulfur. The results were then reproduced at the VERA AMS facility with chemically cleaned AgCl targets containing ∼1 ppm sulfur. The physical explanation behind the effect is still unclear. Nevertheless, the technique has been successfully applied during a regular AMS measurement of (36)Cl.

  20. Structural Mechanism for Light-driven Transport by a New Type of Chloride Ion Pump, Nonlabens marinus Rhodopsin-3.

    PubMed

    Hosaka, Toshiaki; Yoshizawa, Susumu; Nakajima, Yu; Ohsawa, Noboru; Hato, Masakatsu; DeLong, Edward F; Kogure, Kazuhiro; Yokoyama, Shigeyuki; Kimura-Someya, Tomomi; Iwasaki, Wataru; Shirouzu, Mikako

    2016-08-19

    The light-driven inward chloride ion-pumping rhodopsin Nonlabens marinus rhodopsin-3 (NM-R3), from a marine flavobacterium, belongs to a phylogenetic lineage distinct from the halorhodopsins known as archaeal inward chloride ion-pumping rhodopsins. NM-R3 and halorhodopsin have distinct motif sequences that are important for chloride ion binding and transport. In this study, we present the crystal structure of a new type of light-driven chloride ion pump, NM-R3, at 1.58 Å resolution. The structure revealed the chloride ion translocation pathway and showed that a single chloride ion resides near the Schiff base. The overall structure, chloride ion-binding site, and translocation pathway of NM-R3 are different from those of halorhodopsin. Unexpectedly, this NM-R3 structure is similar to the crystal structure of the light-driven outward sodium ion pump, Krokinobacter eikastus rhodopsin 2. Structural and mutational analyses of NM-R3 revealed that most of the important amino acid residues for chloride ion pumping exist in the ion influx region, located on the extracellular side of NM-R3. In contrast, on the opposite side, the cytoplasmic regions of K. eikastus rhodopsin 2 were reportedly important for sodium ion pumping. These results provide new insight into ion selection mechanisms in ion pumping rhodopsins, in which the ion influx regions of both the inward and outward pumps are important for their ion selectivities.

  1. Angular and energy distributions of fragment ions in dissociative double photoionization of acetylene molecules in the 31.9-50.0 eV photon energy range

    NASA Astrophysics Data System (ADS)

    Falcinelli, Stefano; Alagia, Michele; Farrar, James M.; Kalogerakis, Konstantinos S.; Pirani, Fernando; Richter, Robert; Schio, Luca; Stranges, Stefano; Rosi, Marzio; Vecchiocattivi, Franco

    2016-09-01

    The two-body dissociation reactions of the dication C2H2+2, initiated via double ionization of acetylene molecules by photons in the energy range 31.9-50.0 eV, have been studied by coupling photoelectron-photoion-photoion coincidence and ion imaging techniques. The angular distributions and kinetic energy of product ions, measured in the 31.9-50.0 eV energy range, exhibit significant differences for the three leading dissociation reactions with respect to a previous investigation carried out at a fixed energy of 39.0 eV, providing thus new information on the dynamical evolution of the system. The analysis of the results indicates that such dissociation reactions occur with a different mechanism. In particular, the symmetric dissociation in two CH+ ions is characterized by different dynamics, and the anisotropy of the angular distribution of ionic products increases with photon energy in a more pronounced way than the other two reactions. Moreover, the kinetic energy distribution of the symmetric dissociation reaction exhibits several components that change with photon energy. The new experimental findings cast light on the microscopic evolution of the system and can provide a laboratory reference for new theoretical calculations on specific features of the multidimensional potential energy surface, namely, the structure, energy and symmetry of dication states, the electronic state of dissociation products, energy barriers and their dependence on the geometry of the intermediate state.

  2. Fragmentation of light nuclei by intermediate energy photons

    NASA Astrophysics Data System (ADS)

    Turinge, A. A.; Lapik, A. M.; Mushkarenkov, A. N.; Nedorezov, V. G.; Rudnev, N. V.

    2017-01-01

    New data on the fragmentation of carbon nuclei by photons with energies from 800 to 1500 MeV, obtained in the collaboration GRAAL, are presented. These data include the yields of heavier fragments than nucleons. Comparison of new results with literature data, obtained with real and virtual photons in reactions with electrons and relativistic ions (Coulomb dissociation) is done using a general approach in frame of the Weizsäcker-Williams model. Possible reasons for the observed differences between them are discussed.

  3. Characteristics of low-energy ion beams extracted from a wire electrode geometry.

    PubMed

    Vasquez, M; Tokumura, S; Kasuya, T; Maeno, S; Wada, M

    2012-02-01

    Beams of argon ions with energies less than 50 eV were extracted from an ion source through a wire electrode extractor geometry. A retarding potential energy analyzer (RPEA) was constructed in order to characterize the extracted ion beams. The single aperture RPEA was used to determine the ion energy distribution function, the mean ion energy and the ion beam energy spread. The multi-cusp hot cathode ion source was capable of producing a low electron temperature gas discharge to form quiescent plasmas from which ion beam energy as low as 5 eV was realized. At 50 V extraction potential and 0.1 A discharge current, the ion beam current density was around 0.37 mA/cm(2) with an energy spread of 3.6 V or 6.5% of the mean ion energy. The maximum ion beam current density extracted from the source was 0.57 mA/cm(2) for a 50 eV ion beam and 1.78 mA/cm(2) for a 100 eV ion beam.

  4. Electrostatic energy analyzer measurements of low energy zirconium beam parameters in a plasma sputter-type negative ion source

    SciTech Connect

    Malapit, Giovanni M.; Mahinay, Christian Lorenz S.; Poral, Matthew D.; Ramos, Henry J.

    2012-02-15

    A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into the data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.

  5. Electrostatic energy analyzer measurements of low energy zirconium beam parameters in a plasma sputter-type negative ion source.

    PubMed

    Malapit, Giovanni M; Mahinay, Christian Lorenz S; Poral, Matthew D; Ramos, Henry J

    2012-02-01

    A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into the data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.

  6. Understanding ion transport in ion-containing polymers for energy applications

    NASA Astrophysics Data System (ADS)

    Choi, U. Hyeok

    A molecular-level understanding of dynamics in ion-containing polymers is of considerable interest for electromechanical transduction devices and electrochemical membranes. One example is the study of ion transport in ionomers which are polymers with one type of ion covalently bonded to the chain, allowing only the unattached counterions to move rapidly in response to an applied electric field. Since designing ionomers for facile ion transport is a great challenge, it is necessary to investigate structures, dynamics, and ionic interactions, giving rise to better understanding of the generation and transport processes of ionic carriers in ionomers. Therefore, the goal of this dissertation is to understand in detail the structure-property relations of single-ion conductors through morphological, electric, dielectric, and mechanical measurements. Polymerizable imidazolium-based ionic liquids and their polymers were characterized to study the effect of different pendent structures and different counterions on ionic conductivity, dielectric constant, and morphology. The larger counterions (Tf2N-) display higher ionic conductivity and mobility than the smaller counterions (PF6 - or BF4 -), owing to a lower glass transition temperature, as anticipated by ab initio calculations that show that the imidazolium cation is less prone to aggregation with Tf2N- counterions than with PF6 - or BF4 - counterions. This is also observed by rheological measurements, as the terminal relaxation time increases with decreasing size of counterions, attributed to the increase of ionic interactions. The diethyleneoxy units on the imidazlium cation afford higher mobility than the butyl or dodecyl terminal Nsubstituents, for both monomers and polymers, owing to a lower binding energy between the imidazolium cation and the counterions. All monomers and polymers studied exhibit two dipolar relaxations, assigned to the usual segmental motion (alpha ) associated with the glass transition and a

  7. Light-Driven Ca(2+) Ion Pump: How Does It Work?

    PubMed

    Lai, Cheng-Tsung; Zhang, Yu; Schatz, George C

    2015-12-10

    Work done by Bennett et al. [ Nature 2002 , 420 , 398 - 401 ] demonstrated that Ca(2+) ions can be actively transported through a lipid bilayer membrane by an artificial photosynthetic machine. However, details of the pump process, such as the oxidation state of the shuttle molecule and stoichiometry of the shuttle-ion complex, are not fully understood, which hinders the development of ion pumps of this type with higher efficiency. In this study, we combine all atom molecular dynamics simulations and quantum mechanics calculations to estimate the time scale of the shuttle-ion complex diffusion process and charge transfer step. We find that the process of shuttle-ion complex diffusion across the lipid bilayer membrane is the rate-limiting step, with a time scale of seconds to minutes. Other processes such as charge transfer between the redox reaction center and the shuttle molecule have picoseconds time scales. We also show that a shuttle-ion complex with 2:1 stoichiometry ratio has a lower energy barrier across the lipid membrane than other choices of complexes. The calculations show that the Ca(2+) ion is likely to be shuttled by a semiquinone type of shuttle molecule as this has the lowest free energy barrier across the lipid bilayer membrane, the fewest electrons transferred in the redox cycle, and it does not generate (or require) proton flow. Estimates of ion flow rates are consistent with measured values.

  8. Control of energy spread and dark current in proton and ion beams generated in high-contrast laser solid interactions.

    PubMed

    Dollar, F; Matsuoka, T; Petrov, G M; Thomas, A G R; Bulanov, S S; Chvykov, V; Davis, J; Kalinchenko, G; McGuffey, C; Willingale, L; Yanovsky, V; Maksimchuk, A; Krushelnick, K

    2011-08-05

    By using temporal pulse shaping of high-contrast, short pulse laser interactions with solid density targets at intensities of 2 × 10(21) W cm(-2) at a 45° incident angle, we show that it is possible to reproducibly generate quasimonoenergetic proton and ion energy spectra. The presence of a short pulse prepulse 33 ps prior to the main pulse produced proton spectra with an energy spread between 25% and 60% (ΔE/E) with energy of several MeV, with light ions becoming quasimonoenergetic for 50 nm targets. When the prepulse was removed, the energy spectra was broad. Numerical simulations suggest that expansion of the rear-side contaminant layer allowed for density conditions that prevented the protons from being screened from the sheath field, thus providing a low energy cutoff in the observed spectra normal to the target surface.

  9. Heavy ion mutagenesis: linear energy transfer effects and genetic linkage

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.; Gauny, S.; Criddle, K.; Vannais, D.; Ueno, A.; Kraemer, S.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    We have characterized a series of 69 independent mutants at the endogenous hprt locus of human TK6 lymphoblasts and over 200 independent S1-deficient mutants of the human x hamster hybrid cell line AL arising spontaneously or following low-fluence exposures to densely ionizing Fe ions (600 MeV/amu, linear energy transfer = 190 keV/microns). We find that large deletions are common. The entire hprt gene (> 44 kb) was missing in 19/39 Fe-induced mutants, while only 2/30 spontaneous mutants lost the entire hprt coding sequence. When the gene of interest (S1 locus = M1C1 gene) is located on a nonessential human chromosome 11, multilocus deletions of several million base pairs are observed frequently. The S1 mutation frequency is more than 50-fold greater than the frequency of hprt mutants in the same cells. Taken together, these results suggest that low-fluence exposures to Fe ions are often cytotoxic due to their ability to create multilocus deletions that may often include the loss of essential genes. In addition, the tumorigenic potential of these HZE heavy ions may be due to the high potential for loss of tumor suppressor genes. The relative insensitivity of the hprt locus to mutation is likely due to tight linkage to a gene that is required for viability.

  10. Observation of a power-law energy distribution in atom-ion hybrid system

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Akerman, Nitzan; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee

    2016-05-01

    Understanding atom-ion collision dynamics is at the heart of the growing field of ultra-cold atom-ion physics. The naive picture of a hot ion sympathetically-cooled by a cold atomic bath doesn't hold due to the time dependent potentials generated by the ion Paul trap. The energy scale of the atom-ion system is determined by a combination of the atomic bath temperature, the ion's excess micromotion (EMM) and the back action of the atom-ion attraction on the ion's position in the trap. However, it is the position dependent ion's inherent micromotion which acts as an amplifier for the ion's energy during random consecutive collisions. Due to this reason, the ion's energy distribution deviates from Maxwell-Boltzmann (MB) characterized by an exponential tail to one with power-law tail described by Tsallis q-exponential function. Here we report on the observation of a strong deviation from MB to Tsallis energy distribution of a trapped ion. In our experiment, a ground-state cooled 88 Sr+ ion is immersed in an ultra-cold cloud of 87 Rb atoms. The energy scale is determined by either EMM or solely due to the back action on the ion position during a collision with an atom in the trap. Energy distributions are obtained using narrow optical clock spectroscopy.

  11. Effects of light and copper ions on volatile aldehydes of milk and milk fractions

    SciTech Connect

    Jeno, W.; Bassette, R.; Crang, R.E.

    1988-09-01

    Raw, laboratory-pasteurized and plant-pasteurized homogenized milks were exposed to copper ions (5 ppm), to sunlight or fluorescent light and the effects determined on the composition of volatile aldehydes. The greatest change due to copper treatment was an increase in n-hexanal; acetaldehyde showed the least response in each of the sources of milk. The responses were similar from all three sources of milk with laboratory-pasteurized milk samples showing the greatest responses for each aldehyde analyzed. Similar milk samples exposed to sunlight also showed an increase in volatile aldehydes from all milk sources but with the greatest response being acetaldehyde and n-pentanal components. The milk fraction most susceptible to changes in the presence of light was neutralized whey, whereas resuspended cream was most susceptible to copper exposure. Overall, dialyzed whey appeared to be influenced more than other milk fractions by both light and copper ions.

  12. Energy and daylighting: A correlation between quality of light and energy consciousness

    SciTech Connect

    Krug, N.

    1997-12-31

    Energy and Daylighting, an advanced topics graduate/professional elective has been established to help the student develop a deeper understanding of Architectural Daylighting, Energy Conserving Design, and Material/Construction/Methods through direct application. After a brief survey of the principles and applications of current and developing attitudes and techniques in energy conservation and natural lighting strategies is conducted (in order to build upon previous courses), an extensive exercise follows which allows the student the opportunity for direct applications. Both computer modeling/analysis and physical modeling (light box simulation with photographic documentation) are employed to focus attention on the interrelationships between natural lighting and passive energy conserving design--all within the context of establishing environmental (interior) quality and (exterior) design direction. As a result, students broaden their understanding of natural light and energy conservation as design tools; the importance of environmental responsibility, both built and natural environments; and using computer analysis as a design tool. This presentation centers around the activities and results obtained from explorations into Energy and Daylighting. Discussion will highlight the course objectives, the methodology involved in the studies, specific requirements and means of evaluation, a slide show of befores and afters (results), and a retrospective look at the course`s value, as well as future directions and implications.

  13. Nanocavity formation processes in MgO( 1 0 0 ) by light ion (D, He, Li) and heavy ion (Kr, Cu, Au) implantation

    NASA Astrophysics Data System (ADS)

    van Veen, A.; van Huis, M. A.; Fedorov, A. V.; Schut, H.; Labohm, F.; Kooi, B. J.; De Hosson, J. Th. M.

    2002-05-01

    In studies on the controlled growth of metallic precipitates in MgO it is attempted to use nanometer size cavities as precursors for formation of metallic precipitates. In MgO nanocavities can easily be generated by light gas ion bombardment at room temperature with typically 30 keV ion energy to a dose of 10 16 cm -2, followed by annealing to 1300 K. It has been shown earlier by transmission electron microscopy (TEM) that the cavities (thickness 2-3 nm and length/width 5-10 nm) have a perfectly rectangular shape bounded by {1 0 0} faces. The majority of the gas has been released at this temperature and the cavities are stable until annealing at 1500 K. The depth location of the cavities and the implanted ions is monitored by positron beam analysis, neutron depth profiling, RBS/channeling and energy dispersive spectroscopy. The presence of metallic nanoprecipitates is detected by optical absorption measurements and by high-resolution XTEM. Surprisingly, all the metallic implants induce, in addition to metallic precipitates in a band at the mean ion range, small rectangular and cubic nanocavities. These are most clearly observed at a depth shallower than the precipitate band. In the case of gold the cavities are produced in close proximity to the crystal surface. The results indicate that in MgO vacancy clustering dominates over Frenkel-pair recombination. Results of molecular dynamics calculations will be used to discuss the observed defect recovery and clustering processes in MgO.

  14. Index of light ion inertial confinement fusion publications and presentations January 1989 through December 1993

    SciTech Connect

    Sweeney, M.A.

    1995-11-01

    This report lists publications and presentations that are related to inertial confinement fusion and were authored or coauthored by Sandians in the Pulsed Power Sciences Center from 1989 through 1993. The 661 publications and presentations are categorized into the following general topics: (1) reviews, (2) ion sources, (3) ion diodes, (4) plasma opening switches, (5) ion beam transport, (6) targets and deposition physics, (7) advanced driver and pulsed power technology development, (8) diagnostics, and (9) code development. Research in these areas is arranged by topic in chronological order, with the early efforts under each topic presented first. The work is also categorized alphabetically by first author. A list of acronyms, abbreviations, and definitions of use in understanding light ion inertial confinement fusion research is also included.

  15. Geant4 models for simulation of hadron/ion nuclear interactions at moderate and low energies.

    NASA Astrophysics Data System (ADS)

    Ivantchenko, Anton; Ivanchenko, Vladimir; Quesada, Jose-Manuel; Wright, Dennis

    The Geant4 toolkit is intended for Monte Carlo simulation of particle transport in media. It was initially designed for High Energy Physics purposes such as experiments at the Large Hadron Collider (LHC) at CERN. The toolkit offers a set of models allowing effective simulation of cosmic ray interactions with different materials. For moderate and low energy hadron/ion interactions with nuclei there are a number of competitive models: Binary and Bertini intra-nuclear cascade models, quantum molecular dynamic model (QMD), INCL/ABLA cascade model, and Chiral Invariant Phase Space Decay model (CHIPS). We report the status of these models for the recent version of Geant4 (release 9.3, December 2009). The Bertini cascade in-ternal cross sections were upgraded. The native Geant4 precompound and deexcitation models were used in the Binary cascade and QMD. They were significantly improved including emis-sion of light fragments, the Fermi break-up model, the General Evaporation Model (GEM), the multi-fragmentation model, and the fission model. Comparisons between model predictions and data for thin target experiments for neutron, proton, light ions, and isotope production are presented and discussed. The focus of these validations is concentrated on target materials important for space missions.

  16. Micro-hardness evaluation of a micro-hybrid composite resin light cured with halogen light, light-emitting diode and argon ion laser.

    PubMed

    Rode, Katia M; de Freitas, Patricia M; Lloret, Patricia R; Powell, Lynn G; Turbino, Miriam L

    2009-01-01

    This in vitro study aimed to determine whether the micro-hardness of a composite resin is modified by the light units or by the thickness of the increment. Composite resin disks were divided into 15 groups (n = 5), according to the factors under study: composite resin thickness (0 mm, 1 mm, 2 mm , 3 mm and 4 mm) and light units. The light activation was performed with halogen light (HL) (40 s, 500 mW/cm(2)), argon ion laser (AL) (30 s, 600 mW/cm(2)) or light-emitting diode (LED) (30 s, 400 mW/cm(2)). Vickers micro-hardness tests were performed after 1 week and were carried out on the top surface (0 mm-control) and at different depths of the samples. Analysis of variance (ANOVA) and Tukey tests (P < or = 0.05) revealed no statistically significant difference among the light units for the groups of 0 mm and 1 mm thickness. At 2 mm depth, the AL was not statistically different from the HL, but the latter showed higher micro-hardness values than the LED. In groups with 3 mm and 4 mm thickness, the HL also showed higher micro-hardness values than the groups activated by the AL and the LED. Only the HL presented satisfactory polymerization with 3 mm of thickness. With a 4 mm increment no light unit was able to promote satisfactory polymerization.

  17. Energy spectra of ions from impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Richardson, I. G.; Wenzel, K.-P.

    1992-01-01

    A study of the energy spectra of ions from impulsive solar flares in the 0.1-100 MeV region is reported. Most of the events studied are dominated by He and these He spectra show a persistent steepening or break above about 10 MeV resulting in an increase in the power-law spectral indices from about 2 to about 3.5 or more. Spectra of H, He-3, O, and Fe have spectral indices that are consistent with a value of about 3.5 above about 2 MeV/amu. One event, dominated by protons, shows a clear maximum in the spectrum near 1 MeV. If the rollover in the spectrum below 1 MeV is interpreted as a consequence of matter traversal in the solar atmosphere, then the source of the acceleration would lie only about 800 km above the photosphere, well below the corona. Alternative interpretations are that trapping in the acceleration region directly causes a peak in the resulting ion spectrum or that low-energy particles encounter significant additional scattering during transport from the flare.

  18. Formation of surface nanostructures on rutile (TiO2): comparative study of low-energy cluster ion and high-energy monoatomic ion impact

    NASA Astrophysics Data System (ADS)

    Popok, V. N.; Jensen, J.; Vučković, S.; Mackova, A.; Trautmann, C.

    2009-10-01

    The formation of nanostructures on rutile (TiO2) surfaces formed after the implantation of kiloelectronvolt-energy Ar_n^+ cluster ions and megaelectronvolt- to gigaelectronvolt-energy multiply charged heavy ions (Iq+, Taq+ and Uq+) is studied. Despite the differences in stopping and energy transfer mechanisms between the kiloelectronvolt-energy cluster ions and megaelectronvolt-energy monoatomic ions, their impacts lead to a similar type of surface damage, namely craters. For the cluster ion implantation the craters are caused by the multiple-collision effect (dominated by nuclear stopping) and the high density of energy and momentum transferred to the target, while for the case of megaelectronvolt multiply charged ions the craters are probably formed due to the Coulomb explosion and fast energy transfer caused by the electronic stopping. At ion energies in the gigaelectronvolt range, nanosize protrusions, so-called hillocks, are observed on the surface. It is suggested that electronic stopping leads to the formation of continuous tracks and the transferred energy is high enough to melt the material along the whole projectile path. Elastic rebound of the tension between the molten and solid state phases leads to liquid flow, expansion and quenching of the melt, thus forming the hillocks. Atomic force microscopy measurements carried out under different environmental conditions (temperature and atmosphere) suggest that the damaged material at the nanosize impact spots has very different water affinity properties (higher hydrophilicity or water adsorption) compared with the non-irradiated rutile surface.

  19. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus

    NASA Astrophysics Data System (ADS)

    Mohammadnejad, M.; Pestehe, S. J.; Mohammadi, M. A.

    2013-07-01

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy.

  20. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus.

    PubMed

    Mohammadnejad, M; Pestehe, S J; Mohammadi, M A

    2013-07-01

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy.

  1. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus

    SciTech Connect

    Mohammadnejad, M.; Pestehe, S. J.; Mohammadi, M. A.

    2013-07-15

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy.

  2. Extraction design and low energy beam transport optimization of space charge dominated multispecies ion beam sources

    NASA Astrophysics Data System (ADS)

    Delferrière, O.; De Menezes, D.

    2004-05-01

    In all accelerator projects, the low energy part of the accelerator has to be carefully optimized to match the beam characteristic requirements of the higher energy parts. Since 1994 with the beginning of the Injector of Protons for High Intensity (IPHI) project and Source of Light Ions with High Intensities (SILHI) electron cyclotron resonance (ECR) ion source development at CEA/Saclay, we are using a set of two-dimensional (2D) codes for extraction system optimization (AXCEL, OPERA-2D) and beam transport (MULTIPART). The 95 keV SILHI extraction system optimization has largely increased the extracted current, and improved the beam line transmission. From these good results, a 130 mA D+ extraction system for the International Fusion Material Irradiation Facility project has been designed in the same way as SILHI one. We are also now involved in the SPIRAL 2 project for the building of a 40 keV D+ ECR ion source, continuously tunable from 0.1 to 5 mA, for which a special four-electrode extraction system has been studied. In this article we will describe the 2D design process and present the different extraction geometries and beam characteristics. Simulation results of SILHI H+ beam emittance will be compared with experimental measurements.

  3. Ultrafast energy relaxation in single light-harvesting complexes

    PubMed Central

    Malý, Pavel; Gruber, J. Michael; Cogdell, Richard J.; Mančal, Tomáš; van Grondelle, Rienk

    2016-01-01

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub–100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump–probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations. PMID:26903650

  4. How the Energy Independence and Security Act of 2007 Affects Light Bulbs

    EPA Pesticide Factsheets

    Inefficient light bulbs are being phased out under the New Light Bulb Law. It does not sweepingly ban incandescent bulbs, just those not energy efficient (with some exemptions). It also includes many provisions not pertaining to lighting.

  5. Membrane systems for energy efficient separation of light gases

    SciTech Connect

    Devlin, D.J.; Archuleta, T.; Barbero, R.

    1997-04-01

    Ethylene and propylene are two of the largest commodity chemicals in the United States and are major building blocks for the petrochemicals industry. These olefins are separated currently by cryogenic distillation which demands extremely low temperatures and high pressures. Over 75 billion pounds of ethylene and propylene are distilled annually in the US at an estimated energy requirement of 400 trillion BTU`s. Non-domestic olefin producers are rapidly constructing state-of-the-art plants. These energy-efficient plants are competing with an aging United States olefins industry in which 75% of the olefins producers are practicing technology that is over twenty years old. New separation opportunities are therefore needed to continually reduce energy consumption and remain competitive. Amoco has been a leader in incorporating new separation technology into its olefins facilities and has been aggressively pursuing non-cryogenic alternatives to light gas separations. The largest area for energy reduction is the cryogenic isolation of the product hydrocarbons from the reaction by-products, methane and hydrogen. This separation requires temperatures as low as {minus}150{degrees}F and pressures exceeding 450 psig. This CRADA will focus on developing a capillary condensation process to separate olefinic mixtures from light gas byproducts at temperatures that approach ambient conditions and at pressures less than 250 psig; this technology breakthrough will result in substantial energy savings. The key technical hurdle in the development of this novel separation concept is the precise control of the pore structure of membrane materials. These materials must contain specially-shaped channels in the 20-40A range to provide the driving force necessary to remove the condensed hydrocarbon products. In this project, Amoco is the technology end-user and provides the commercialization opportunity and engineering support.

  6. Heavy-ion reactions at energies near the Coulomb barrier

    SciTech Connect

    Satchler, G.R.

    1991-01-01

    The title covers a very broad area of both experimental and theoretical studies. The common characteristic of heavy-ion collisions at these energies, compared to what is usually seen at higher energies, is the important interplay between different reaction channels or internal degrees of freedom. The couplings between the various channels can result in important multistep contributions to a given channel. These often have to be treated explicitly, for example by solving the appropriate set of coupled equations. In contrast, at higher energies the effects of these couplings frequently can be represented in a simple, average way, as is done when one introduces an imaginary part to the optical potential for elastic scattering. At first, it might be thought that the possible importance of multistep transitions would be a strong disadvantage of working at these energies. However, although the analysis of the data becomes more complicate, the study of these terms and their interferences can be a rich source of information. In particular, it can tell us, indirectly, something about transitions between two excited states. Overviews of some of these phenomena have been presented elsewhere; here I have selected two topics as representative. Even then I cannot go into much detail, so perhaps this paper is best regarded as providing some references as the stating point for a literature search

  7. Modeling coherent excitation energy transfer in photosynthetic light harvesting systems

    NASA Astrophysics Data System (ADS)

    Huo, Pengfei

    2011-12-01

    Recent non-linear spectroscopy experiments suggest the excitation energy transfer in some biological light harvesting systems initially occurs coherently. Treating such processes brings significant challenge for conventional theoretical tools that usually involve different approximations. In this dissertation, the recently developed Iterative Linearized Density Matrix (ILDM) propagation scheme, which is non-perturbative and non-Markovian is extended to study coherent excitation energy transfer in various light harvesting complexes. It is demonstrated that the ILDM approach can successfully describe the coherent beating of the site populations on model systems and gives quantitative agreement with both experimental results and the results of other theoretical methods have been developed recently to going beyond the usual approximations, thus providing a new reliable theoretical tool to study this phenomenon. This approach is used to investigate the excited energy transfer dynamics in various experimentally studied bacteria light harvesting complexes, such as Fenna-Matthews-Olsen (FMO) complex, Phycocyanin 645 (PC645). In these model calculations, quantitative agreement is found between computed de-coherence times and quantum beating pattens observed in the non-linear spectroscopy. As a result of these studies, it is concluded that the stochastic resonance behavior is important in determining the optimal throughput. To begin addressing possible mechanics for observed long de-coherence time, various models which include correlation between site energy fluctuations as well as correlation between site energy and inter-site coupling are developed. The influence of both types of correlation on the coherence and transfer rate is explored using with a two state system-bath hamiltonian parametrized to model the reaction center of Rhodobacter sphaeroides bacteria. To overcome the disadvantages of a fully reduced approach or a full propagation method, a brownian dynamics

  8. Enhanced ion beam energy by relativistic transparency in laser-driven shock ion acceleration

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Hur, Min Sup

    2015-11-01

    We investigated the effects of relativistic transparency (RT) on electrostatic shock ion acceleration. Penetrating portion of the laser pulse directly heats up the electrons to a very high temperature in backside of the target, resulting in a condition of high shock velocity. The reflected portion of the pulse can yield a fast hole boring and density compression in near-critical density plasma to satisfy the electrostatic shock condition; 1.5 ions up to velocity ~2vsh. In 1D PIC simulation, we have clearly observed RT-based shock acceleration which generates significantly higher ion beam energy in comparison to that in a purely opaque plasma. In multi-dimensional systems, various instabilities should be considered such as Weibel-like instability, which causes filamentation during the laser penetration. From series of comparisons of linearly polarized and circularly polarized pulses for the RT-based shock, we observed the circularly polarized pulse is usually more advantageous in reducing the instability, possibly leading to better RT-based shock acceleration. The Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT and Future Planning (Grant number NRF- 2013R1A1A2006353).

  9. Modeling Planetary Atmospheric Energy Deposition By Energetic Ions

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu

    2016-07-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which

  10. Terascale simulations for heavy ion inertial fusion energy

    SciTech Connect

    Friedman, A; Cohen, R H; Grote, D P; Sharp, W M; Celata, C M; Lee, E P; Vay, J-L; Davidson, R C; Kaganovich, I; Lee, W W; Qin, H; Welch, D R; Haber, I; Kishek, R A

    2000-06-08

    The intense ion beams in a heavy ion Inertial Fusion Energy (IFE) driver and fusion chamber are non-neutral plasmas whose dynamics are largely dominated by space charge. We propose to develop a ''source-to-target'' Heavy Ion Fusion (HIF) beam simulation capability: a description of the kinetic behavior of this complex, nonlinear system which is both integrated and detailed. We will apply this new capability to further our understanding of key scientific issues in the physics of ion beams for IFE. The simulations will entail self-consistent field descriptions that require interprocessor communication, but are scalable and will run efficiently on terascale architectures. This new capability will be based on the integration of three types of simulations, each requiring terascale computing: (1) simulations of acceleration and confinement of the space-charge-dominated ion beams through the driver (accelerator, pulse compression line, and final focusing system) which accurately describe their dynamics, including emittance growth (phase-space dilution) effects; these are particle-in-cell (PIC) models; (2) electromagnetic (EM) and magnetoinductive (Darwin) simulations which describe the beam and the fusion chamber environment, including multibeam, neutralization, stripping, beam and plasma ionization processes, and return current effects; and (3) highly detailed simulations (6f, multispecies PIC, continuum Vlasov), which can examine electron effects and collective modes in the driver and chamber, and can study halo generation with excellent statistics, to ensure that these effects do not disrupt the focusability of the beams. The code development will involve: (i) adaptation of existing codes to run efficiently on multi-SMP computers that use a hybrid of shared and distributed memory; (ii) development of new and improved numerical algorithms, e.g., averaging techniques that will afford larger timesteps; and (iii) incorporation of improved physics models (e.g., for self

  11. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  12. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  13. Correlating ion energies and CF2 surface production during fluorocarbon plasma processing of silicon

    NASA Astrophysics Data System (ADS)

    Martin, Ina T.; Zhou, Jie; Fisher, Ellen R.

    2006-07-01

    Ion energy distribution (IED) measurements are reported for ions in the plasma molecular beam source of the imaging of radicals interacting with surfaces (IRIS) apparatus. The IEDs and relative intensities of nascent ions in C3F8 and C4F8 plasma molecular beams were measured using a Hiden PSM003 mass spectrometer mounted on the IRIS main chamber. The IEDs are complex and multimodal, with mean ion energies ranging from 29to92eV. Integrated IEDs provided relative ion intensities as a function of applied rf power and source pressure. Generally, higher applied rf powers and lower source pressures resulted in increased ion intensities and mean ion energies. Most significantly, a comparison to CF2 surface interaction measurements previously made in our laboratories reveals that mean ion energies are directly and linearly correlated to CF2 surface production in these systems.

  14. Energy measurement of cosmic-ray ions with the TRD of the AMS-02 experiment

    NASA Astrophysics Data System (ADS)

    Obermeier, Andreas

    Since May 2011 the AMS-02 experiment is installed on the ISS and is observing cosmic radiation. It consists of several state-of-the-art sub-detectors, which redundantly measure charge and energy of traversing particles. Due to the long exposure time of AMS-02 of many years the measurement of cosmic-ray energy spectra is mainly limited not by statistics, but by detector response. The measurement of momentum for protons and ions, for example, is limited by the spatial resolution and magnetic field strength of the silicon tracker. The maximum detectable rigidity (MDR, rigidity is momentum per charge) for protons is about 2 TV, for Helium below 4 TV (E<2.1 TeV/amu). In this contribution we investigate the possibility to extend the range of the energy measurement for heavy nuclei (Z>1) with the transition radiation detector (TRD). The main purpose of the TRD of AMS-02 is the discrimination between light particles (electrons and positrons) and heavy particles (like protons), and was thus designed as a threshold detector. The response function of the TRD, however, shows a steep increase in signal from the level of ionisation at a Lorentz factor gamma of about 500 to gamma≈ 5000, where the transition radiation signal saturates. The increase of the signal over this energy range may be used to measure the Lorentz factor for very high energy cosmic-ray nuclei, e.g. for helium nuclei between about 500 GeV/amu and 5 TeV/amu, well beyond the limits of the silicon tracker. From the response curve and the signal fluctuations in the TRD we derive the energy resolution of the TRD and compare it to the resolution of the silicon tracker. The TRD may outperform the tracker at high energies for ions heavier than protons. Another important application of this work is an independent determination of the MDR of the silicon tracker, which confirms earlier results.

  15. Control of light propagation by optical indexmodulation for energy applications

    NASA Astrophysics Data System (ADS)

    Kuo, Mei-Ling

    To maximize the efficiency of collection or extraction in terms of controllability of photons is one of the solutions to overcome the hurdle of the global energy crisis. By engineering the optical index of materials to create complex network structure, the light propagation is able to be modified as well as their optical properties, such as reflection, transmission, diffraction, absorption and emission. Moreover, advances in nanotechnology, present an unprecedented opportunity to explore strong photon-structure interaction and to manipulate the basic optical modes. In this study, we modulate the optical index of material and nanostructure to control the flow of the light and the optical modes guided or trapped in terms of a need for energy-efficient photonics. Two cases of photon controlling are investigated. One is the graded-index multilayer antireflection coating for maximizing collection efficiency. The other is the randomness 2-demensional (2D) array of light emitting diode for enhancing extraction efficiency. An antireflection (AR) coating is a type of coating applied to the surface of a material to reduce light reflection and to increase light transmission. The coating can improve solar collection efficiency and, therefore, the overall solar-to-electricity efficiency. A theoretical calculation predicts an extremely low reflectance using the concept of a multi-layer graded index profile. The graded-index approach is shown to achieve this goal by offering a mechanism for minimizing Fresnel reflection that is fundamentally different from either the traditional lambda/4 AR-coating or the modified surface structures. Multi-layer nanostructure AR-coating was engineered to dramatically reduce optical reflection over all wavelengths of sun light and incident anglestheta. Our experimental result illustrates that solar-to-electrical conversion efficiency increases by 22.2% when going from a conventional single-layer lambda/4 to a seven layer graded index AR

  16. Artificial light-harvesting arrays for solar energy conversion.

    PubMed

    Harriman, Anthony

    2015-07-28

    Solar fuel production, the process whereby an energy-rich substance is produced using electrons provided by water under exposure to sunlight, requires the cooperative accumulation of multiple numbers of photons. Identifying the optimum reagents is a difficult challenge, even without imposing the restriction that these same materials must function as both sensitiser and catalyst. The blockade caused by an inadequate supply of photons at the catalytic sites might be resolved by making use of an artificial light-harvesting array whose sole purpose is to funnel photons of appropriate frequency to the active catalyst, which can now be a dark reagent. Here we consider several types of artificial photon collectors built from fluorescent modules interconnected via electronic energy transfer. Emphasis is placed on the materials aspects and on establishing the basic operating principles.

  17. Energy distribution functions of kilovolt ions in a modified Penning discharge.

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1972-01-01

    The distribution function of ion energy parallel to the magnetic field of a modified Penning discharge has been measured with a retarding potential energy analyzer. These ions escaped through one of the throats of the magnetic mirror geometry. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field have been made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and the parallel and perpendicular kinetic temperatures are equal within experimental error. These results suggest that turbulent processes previously observed in this discharge Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution.

  18. Energy distribution functions of kilovolt ions in a modified Penning discharge.

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1973-01-01

    The distribution function of ion energy parallel to the magnetic field of a modified Penning discharge has been measured with a retarding potential energy analyzer. These ions escaped through one of the throats of the magnetic mirror geometry. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field have been made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and the parallel and perpendicular kinetic temperatures are equal within experimental error. These results suggest that turbulent processes previously observed in this discharge Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution.

  19. Slow light in ruby: delaying energy beyond the input pulse

    NASA Astrophysics Data System (ADS)

    Wisniewski-Barker, Emma; Gibson, Graham; Franke-Arnold, Sonja; Shi, Zhimin; Narum, Paul; Boyd, Robert W.; Padgett, Miles J.

    2015-03-01

    The mechanism by which light is slowed through ruby has been the subject of great debate. To distinguish between the two main proposed mechanisms, we investigate the problem in the time domain by modulating a laser beam with a chopper to create a clean square wave. By exploring the trailing edge of the pulsed laser beam propagating through ruby, we can determine whether energy is delayed beyond the input pulse. The effects of a time-varying absorber alone cannot delay energy into the trailing edge of the pulse, as a time-varying absorber can only attenuate a coherent pulse. Therefore, our observation of an increase in intensity at the trailing edge of the pulse provides evidence for a complicated model of slow light in ruby that requires more than just pulse reshaping. In addition, investigating the Fourier components of the modulated square wave shows that harmonic components with different frequencies are delayed by different amounts, regardless of the intensity of the component itself. Understanding the difference in delays of the individual Fourier components of the modulated beam reveals the cause of the distortion the pulse undergoes as it propagates through the ruby.

  20. Fifth high-energy heavy-ion study

    SciTech Connect

    Not Available

    1981-10-01

    This was the fifth of a continuing series of summer studies held at LBL to discuss high energy heavy ion collisions. Recently, a similar meeting has been held on alternate years at GSI (Darmstadt); and, in 1979, we held a meeting at LBL exclusively devoted to ultra-relativistic nuclear collisions. Two new features distinguish this study from earlier meetings in the series. First, the energy range for discussion was broadened by including collisions from about 20 MeV/nucleon to the highest available in the cosmic radiation. The lower range, particularly below 100 MeV/nucleon, will be under intense study in the near future with machines such as the upgraded Bevalac, Michigan State University Superconducting Cyclotron, GANIL in France, and the SC at CERN. Recently, the high energy collision regime has been expanded by the successful operation of the CERN ISR with alpha particles. Second, in addition to an extensive program of invited talks, we decided for the first time to actively solicit contributions. Forty-seven individual items from the conference were prepared separately for the data base. (GHT)

  1. Shape analysis applied in heavy ion reactions near Fermi energy

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Huang, M.; Wada, R.; Liu, X.; Lin, W.; Wang, J.

    2017-03-01

    A new method is proposed to perform shape analyses and to evaluate their validity in heavy ion collisions near the Fermi energy. In order to avoid erroneous values of shape parameters in the calculation, a test particle method is utilized in which each nucleon is represented by n test particles, similar to that used in the Boltzmann–Uehling–Uhlenbeck (BUU) calculations. The method is applied to the events simulated by an antisymmetrized molecular dynamics model. The geometrical shape of fragments is reasonably extracted when n = 100 is used. A significant deformation is observed for all fragments created in the multifragmentation process. The method is also applied to the shape of the momentum distribution for event classification. In the momentum case, the errors in the eigenvalue calculation become much smaller than those of the geometrical shape analysis and the results become similar between those with and without the test particle method, indicating that in intermediate heavy ion collisions the shape analysis of momentum distribution can be used for the event classification without the test particle method.

  2. Energy spectra of ions from impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Richardson, I. G.; Wenzel, K.-P.

    1991-01-01

    A study of the energy spectra of ions from impulsive solar flares in the 0.1 to 100 MeV region is reported with data from the combined observations of experiments on the ISEE 3 and IMP 8 spacecraft. Most of the events studied are dominated by He, and these He spectra show a persistent steepening or break above about 10 MeV resulting in an increase in the power-law spectral indices from about 2 to about 3.5 or more. One event, dominated by protons, shows a clear maximum in the spectrum near 1 MeV. If the rollover in the spectrum below 1 MeV is interpreted as a consequence of matter traversal in the solar atmosphere, then the source of the acceleration would lie only about 800 km above the photosphere, well below the corona. An alternative interpretation is that trapping in the acceleration region directly causes a peak in the spectrum.

  3. Vacancy supersaturations produced by high-energy ion implantation

    SciTech Connect

    Venezia, V.C.; Eaglesham, D.J.; Jacobson, D.C.; Gossmann, H.J.; Haynes, T.E.; Agarwal, A. |; Friessnegg, T.; Nielsen, B.

    1998-01-01

    A new technique for detecting the vacancy clusters produced by high-energy ion implantation into silicon is proposed and tested. This technique takes advantage of the fact that metal impurities, such as Au, are gettered near one-half of the projected range ({1/2}R{sub p}) of MeV implants. The vacancy clustered region produced by a 2 MeV Si{sup +} implant into silicon has been labeled with Au diffused in from the front surface. The trapped Au was detected by Rutherford backscattering spectrometry (RBS) to profile the vacancy clusters. Cross section transmission electron microscopy (XTEM) analysis shows that the Au in the region of vacancy clusters is in the form of precipitates. By annealing MeV implanted samples prior to introduction of the Au, changes in the defect concentration within the vacancy clustered region were monitored as a function of annealing conditions.

  4. Linac4 low energy beam measurements with negative hydrogen ions

    NASA Astrophysics Data System (ADS)

    Scrivens, R.; Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T.

    2014-02-01

    Linac4, a 160 MeV normal-conducting H- linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H- beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  5. Linac4 low energy beam measurements with negative hydrogen ions

    SciTech Connect

    Scrivens, R. Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T.

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  6. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2007-12-31

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This final report summarizes the experimental procedure and results of all cycles (Cycles 1 through 8) of PEARL program from the beginning of year 2000 to the end of 2007, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. In each cycle of PEARL program, PEARL Board selects a list of Compact Fluorescent Lamp (CFL) and Residential Lighting Fixture (RLF) models that are Energy Star qualified. In Cycle 5, Cycle 7, and Cycle 8, no fixture models were selected. After that PEARL sponsors procure product samples for each selected model from different stores and locations in the retail market and send them to LRC for testing. LRC then receive and select the samples, and test them against Energy Star specifications. After the testing LRC analyze and report the results to PEARL Board. Totally 185 models of CFL and 52 models of RLF were tested in PEARL program. Along with the evolution of the Energy Star specifications from year 2000 to 2003, parameters that were required by Energy Star changed during the eight years of PEARL program. The testing parameters and number of samples tested in PEARL program also changed during this time. For example, in Cycle 1, three samples of each models were tested

  7. Topological phases in oxide heterostructures with light and heavy transition metal ions (invited)

    SciTech Connect

    Fiete, Gregory A.; Rüegg, Andreas

    2015-05-07

    Using a combination of density functional theory, tight-binding models, and Hartree-Fock theory, we predict topological phases with and without time-reversal symmetry breaking in oxide heterostructures. We consider both heterostructures containing light transition metal ions and those containing heavy transition metal ions. We find that the (111) growth direction naturally leads to favorable conditions for topological phases in both perovskite structures and pyrochlore structures. For the case of light transition metal elements, Hartree-Fock theory predicts the spin-orbit coupling is effectively enhanced by on-site multiple-orbital interactions and may drive the system through a topological phase transition, while heavy elements with intrinsically large spin-orbit coupling require much weaker or even vanishing electron interactions to bring about a topological phase.

  8. A modified broad beam ion source for low-energy hydrogen implantation

    NASA Astrophysics Data System (ADS)

    Otte, K.; Schindler, A.; Bigl, F.; Schlemm, H.

    1998-03-01

    A modified broad beam ion source for low-energy hydrogen ion implantation of semiconductors is described. Based on a Kaufman type ion source two different solutions are presented: (a) an ion source with an extraction system consisting of two molybdenum grids with a low gas flow conductance reworked for hydrogen operation, and (b) a ten-grid mass separating ion beam system which enables the mass selection of H+, H2+, and H3+. The ion energy could be set in the range of 200-500 eV with a current density reaching from 1 to 100 μA/cm2. It is shown that at higher pressure the main ion created in the ion source is H3+ due to ion-molecule processes, whereas at lower pressure only H2+ and H+ are produced. Special consideration is given to the ion beam analysis of the two grid ion source operating in the 10-3 mbar range allowing to explain the different peak structures by the potential distribution across the ion source and different charge transfer processes. In addition, the analysis reveals neutral and ionized collision products in the ion beam. The ten-grid mass separating ion source could be operated in the 10-4 mbar range resulting in a nearly collision free ion beam which permits the generation of a mass separated hydrogen ion beam.

  9. Quantitative considerations in medium energy ion scattering depth profiling analysis of nanolayers

    NASA Astrophysics Data System (ADS)

    Zalm, P. C.; Bailey, P.; Reading, M. A.; Rossall, A. K.; van den Berg, J. A.

    2016-11-01

    The high depth resolution capability of medium energy ion scattering (MEIS) is becoming increasingly relevant to the characterisation of nanolayers in e.g. microelectronics. In this paper we examine the attainable quantitative accuracy of MEIS depth profiling. Transparent but reliable analytical calculations are used to illustrate what can ultimately be achieved for dilute impurities in a silicon matrix and the significant element-dependence of the depth scale, for instance, is illustrated this way. Furthermore, the signal intensity-to-concentration conversion and its dependence on the depth of scattering is addressed. Notably, deviations from the Rutherford scattering cross section due to screening effects resulting in a non-coulombic interaction potential and the reduction of the yield owing to neutralization of the exiting, backscattered H+ and He+ projectiles are evaluated. The former mainly affects the scattering off heavy target atoms while the latter is most severe for scattering off light target atoms and can be less accurately predicted. However, a pragmatic approach employing an extensive data set of measured ion fractions for both H+ and He+ ions scattered off a range of surfaces, allows its parameterization. This has enabled the combination of both effects, which provides essential information regarding the yield dependence both on the projectile energy and the mass of the scattering atom. Although, absolute quantification, especially when using He+, may not always be achievable, relative quantification in which the sum of all species in a layer adds up to 100%, is generally possible. This conclusion is supported by the provision of some examples of MEIS derived depth profiles of nanolayers. Finally, the relative benefits of either using H+ or He+ ions are briefly considered.

  10. Lithium Ion Cell Development for Photovoltaic Energy Storage Applications

    SciTech Connect

    Babinec, Susan

    2012-02-08

    The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge

  11. Method for Predicting the Energy Characteristics of Li-Ion Cells Designed for High Specific Energy

    NASA Technical Reports Server (NTRS)

    Bennett, William, R.

    2012-01-01

    Novel electrode materials with increased specific capacity and voltage performance are critical to the NASA goals for developing Li-ion batteries with increased specific energy and energy density. Although performance metrics of the individual electrodes are critically important, a fundamental understanding of the interactions of electrodes in a full cell is essential to achieving the desired performance, and for establishing meaningful goals for electrode performance in the first place. This paper presents design considerations for matching positive and negative electrodes in a viable design. Methods for predicting cell-level performance, based on laboratory data for individual electrodes, are presented and discussed.

  12. [The French project ETOILE: review of clinical data for light ion hadrontherapy].

    PubMed

    Pommier, P; Balosso, J; Bolla, M; Gérard, J P

    2002-12-01

    The Lawrence Berkeley Laboratory was the pioneer in light ions hadrontherapy with almost 2500 patients treated between 1957 and 1993 with Helium and Neon. The NIRS (National Institute For Radiological Science, Chiba, Japan) was the first dedicated medical centre for cancer with more than 1200 patients exclusively treated with carbon ion from 1994. A three-year 70 to 100% local control was reported for radio-resistant cancers, supporting the use of high LET particles. Hypo-fractionation was particularly explored for lung cancers and hepatocarcinoma (4 sessions only). Dose escalation studies demonstrated a tumour dose-effect and permitted to precise dose constraints for healthy tissues especially for the rectum. More than 140 patients were treated with carbon ion exclusively or associated with photons since 1997 in the GSI laboratory Gesellschaft Für Schwerionenforschung, Darmstadt, Germany). A very high local control was also obtained for radioresistant cancer of the base of the skull. Preliminary clinical data seem to confirm the expected therapeutic gain with light ions, due to their ballistic and radio-biological properties, and justify the European projects for the construction of dedicated medical facilities for cancers. The French "Etoile" project will be integrated in the European hadrontherapy network "Enlight", with the objectives to coordinate technologic, medical and economic features.

  13. Effect of mercuric ion on attraction to light of artemia sp nauplii.

    PubMed

    Saunders, J P; Trieff, N M; Kalmaz, E E; Uchida, T

    1985-02-01

    Living organisms exhibit a phototactic response which can be altered by certain environmental toxic chemical species. The analysis of photobehavior can help in elucidating environmental factors that influence photomotility reactions of the organisms. A method has been developed that measures the phototactic response of Artemia nauplii under the influence of mercuric ion (Hg2+) in synthetic seawater. The phototactic response of Artemia nauplii was manifested by movement of the organisms from a darkened half to lighted half of an experimental vessel containing synthetic seawater. The density as a function of time of Artemia nauplii is determined by removing aliquots from both light and dark sides and then plating on agar for counting under the dissecting microscope. Measurements consistently show a significant movement of nauplii to the lighted side within 45 min of the start of the experiments. The present investigation demonstrated that at concentrations as low as 0.010 mg HgCl2/liter there is an enhancement of phototactic effect on Artemia nauplii by mercuric ion as compared with control. The phototactic response of Artema nauplii is altered by mercuric ion in a dose-related manner, but the mechanism of this effect is presently unknown.

  14. Jet energy loss in heavy ion collisions from RHIC to LHC energies

    NASA Astrophysics Data System (ADS)

    Levai, Peter

    2011-07-01

    The suppression of hadron production originated from the induced jet energy loss is one of the most accepted and well understood phenomena in heavy ion collisions, which indicates the formation of color deconfined matter consists of quarks, antiquarks and gluons. This phenomena has been seen at RHIC energies and now the first LHC results display a very similar effect. In fact, the suppression is so close to each other at 200 AGeV and 2.76 ATeV, that it is interesting to investigate if such a suppression pattern can exist at all. We use the Gyulassy-Levai-Vitev description of induced jet energy loss combined with different nuclear shadowing functions and describe the experimental data. We claim that a consistent picture can be obtained for the produced hot matter with a weak nuclear shadowing. The interplay between nuclear shadowing and jet energy loss playes a crucial role in the understanding of the experimental data.

  15. Sputtering of cobalt and chromium by argon and xenon ions near the threshold energy region

    NASA Technical Reports Server (NTRS)

    Handoo, A. K.; Ray, P. K.

    1993-01-01

    Sputtering yields of cobalt and chromium by argon and xenon ions with energies below 50 eV are reported. The targets were electroplated on copper substrates. Measurable sputtering yields were obtained from cobalt with ion energies as low as 10 eV. The ion beams were produced by an ion gun. A radioactive tracer technique was used for the quantitative measurement of the sputtering yield. Co-57 and Cr-51 were used as tracers. The yield-energy curves are observed to be concave, which brings into question the practice of finding threshold energies by linear extrapolation.

  16. Inelastic processes in ion/surface collisions: Direct recoil ion fractions as a function of kinetic energy

    NASA Astrophysics Data System (ADS)

    Rabalais, J. Wayne; Chen, Jie-Nan

    1986-09-01

    Time-of-flight (TOF) spectra of the scattered and recoiled particles resulting from 1-10 keV Ar+ ions impingent on surfaces of MgO, Mg(OH)2, graphite, Si, and SiO2 have been obtained. Measurements of directly recoiled (DR) neutrals plus ions and neutrals only are used to calculate positive and negative ion fractions Y+,- from DR events. These positive and negative ion yields observed for DR of H, C, O, and Si have distinctly different behavior as a function of ion kinetic energy. The Y+ values exhibit a ``threshold-type'' behavior with a steep rise followed by a slowly rising or plateau region at higher energy. The Y- values exhibit a maximum in the low energy region followed by a decreasing yield as energy increases. The Y-/Y+ ratio for C and O is very sensitive to the amount of hydrogen present, with the Y+ yields dropping as hydrogen concentration increases. The recently developed model for electronic transitions in keV ion/surface collisions which considers Auger and resonant transitions along the ion trajectory and electron promotions in the quasidiatomic molecule of the close atomic encounter is extended to include DR events. Analytical expressions for Y+,- are derived for the case of surface atoms in positive, neutral, and negative bonding environments. These model expressions are fitted to the experimental data, allowing determination of the probabilities of ionization in the close atomic encounter and of electron capture along the outgoing trajectory.

  17. Fluorocarbon thin-film deposition on polymer surfaces from low-energy polyatomic ion beams

    NASA Astrophysics Data System (ADS)

    Wijesundara, Muthu Bandage Jayathilaka

    Low energy polyatomic ion deposition is attractive for selective surface modification of advanced materials. Surface modification by fluorocarbon (FC) thin film deposition is widely used for many technological applications. Thus, polymer surface modification by FC thin film deposition was carried out using mass-separated low energy FC ion beams. X-ray photoelectron spectroscopy, atomic force microscopy and air/water contact angles were employed to examine how the FC film chemistry, morphology, and long term stability depend on incident ion structure, kinetic energy, and fluence. Molecular dynamics simulations were performed to support experimental data. 25--100 eV CF3+ and C3F 5+ ion deposition on polystyrene (PS) surface was examined. CF3+ and C3F5+ each formed a distribution of different FC functional groups on PS in amounts dependent upon the incident ion energy, structure, and fluence. Both ions deposited mostly intact upon the surface at 25 eV. The total fluorine and fluorinated carbon content were increased with ion energy. The fluorination efficiency was higher for the larger ion. The simulations revealed that the fragmentation behavior depends on the incident ion structure and its energy. The simulations also confirmed that FC ions only penetrated a few angstroms into the surface. The compositional changes of 25--100 eV CF3+ and C3F5+ ion-modified PS surfaces were examined after being exposed to atmosphere for four and eight weeks. The FC films oxidized in atmospheric conditions. Oxygen incorporation into the ion-modified surfaces increased with ion energy due to higher surface bond breakage and active site formation at high collision energy. Overall, the aging process of these ion-deposited films appeared similar to that of plasma-deposited films. Mass-selected 50 eV C3F5+ ion deposition was employed to create chemical gradient thin films on polymethylmethacrylate (PMMA) by variation of the ion fluence across the substrate surface. The surface chemistry

  18. Visible light to electrical energy conversion using photoelectrochemical cells

    NASA Technical Reports Server (NTRS)

    Wrighton, Mark S. (Inventor); Ellis, Arthur B. (Inventor); Kaiser, Steven W. (Inventor)

    1983-01-01

    Sustained conversion of low energy visible or near i.r. light (>1.25 eV) to electrical energy has been obtained using wet photoelectrochemical cells where there are no net chemical changes in the system. Stabilization of n-type semi-conductor anodes of CdS, CdSe, CdTe, GaP, GaAs and InP to photoanodic dissolution is achieved by employing selected alkaline solutions of Na.sub.2 S, Na.sub.2 S/S, Na.sub.2 Se, Na.sub.2 Se/Se, Na.sub.2 Te and Na.sub.2 Te/Te as the electrolyte. The oxidation of (poly) sulfide, (poly)selenide or (poly)telluride species occurs at the irradiated anode, and reduction of polysulfide, polyselenide or polytelluride species occurs at the dark Pt cathode of the photoelectrochemical cell. Optical to electrical energy conversion efficiencies approaching 15% at selected frequencies have been observed in some cells. The wavelength for the onset of photocurrent corresponds to the band gap of the particular anode material used in the cell.

  19. On the energy principle and ion tearing in the magnetotail

    NASA Technical Reports Server (NTRS)

    Brittnacher, M.; Quest, K. B.; Karimabadi, H.

    1994-01-01

    We re-examine the use of the energy principle as applied to the tearing instability in the magnetotail. We demonstrate that when a magnetic field component normal to the current sheet is present, electron pitch-angle diffusion (PAD) either by micro-turbulence or by chaotic orbits cannot remove the strong stabilization of the tearing mode caused by electron compressibility. We find that our conclusions are in agreement with those of Pellat et al. (1991), who argued on the basis of canonical P(sub y) conservation that the stabilization of the ion tearing mode cannot be removed by the introduction of PAD. Our results are at variance with those of Kuznetsova and Zelenyi (1991), who argued that the application of the energy principle used by Pellat et al. (1991) is incorrect, and that tearing is in fact unstable in the limit of strong PAD. We show that the disagreement between these two studies can be traced to an incorrect orbit evaluation first introduced by Coroniti (1980) and subnsequently used by Kuznetsova and Zelenyi (1991).

  20. Elliptic flow in heavy-ion collisions at NICA energies

    NASA Astrophysics Data System (ADS)

    B. Ivanov, Yu.; Soldatov, A. A.

    2016-08-01

    The transverse-momentum-integrated elliptic flow of charged particles at midrapidity, v2 (charged), and that of identified hadrons from Au+Au collisions are analyzed in the range of incident energies relevant to the Nuclotron-based Ion Collider Facility (NICA). Simulations are performed within a three-fluid model employing three different equations of state (EoSs): a purely hadronic EoS and two versions of the EoS involving the deconfinement transition-a first-order phase transition and a smooth crossover one. The present simulations demonstrate low sensitivity of v2 (charged) to the EoS. All considered scenarios equally well reproduce recent STAR data on v2 (charged) for mid-central Au+Au collisions and properly describe its change of sign at the incident energy decrease below √{s_{NN}} ≈ 3.5 GeV. The predicted integrated elliptic flow of various species exhibits a stronger dependence on the EoS. A noticeable sensitivity to the EoS is found for anti-protons and, to a lesser extent, for K- mesons. Presently there are no experimental data that could verify these predictions. Future experiments at NICA could corroborate these findings.

  1. High-Energy Electron-Ion and Photon-Ion Collisions: Status and Challenges

    NASA Technical Reports Server (NTRS)

    Kallman, Timothy R.

    2010-01-01

    Non-LTE plasmas are ubiquitous in objects studied in the UV and X-ray energy bands. Collisional and photoionization cross sections for atoms and ions are fundamental to our ability to model such plasmas. Modeling is key in the X-ray band, where detector properties and limited spectral resolution limit the ability to measure model-independent line strengths, or other spectral features. Much of the motivation for studying such collisions and many of the tools, are not new. However, the motivation for such studies and their applications, have been affected by the advent of X-ray spectroscopy with the gratings on Chandra and XMM-Newton. In this talk I will review this motivation and describe the tools currently in use for such studies. I will also describe some current unresolved problems and the likely future needs for such data.

  2. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    PubMed

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  3. Effect of three-body Coulomb interactions on the breakup of light nuclei in the field of a heavy ion: An asymptotic estimate

    SciTech Connect

    Alt, E.O.; Irgaziev, B.F.; Muminov, A.T.

    1995-11-01

    The quasielastic breakup of light nuclei into two charged fragments in the Coulomb field of a heavy multiply charged ion are studied. For fragments diverging with extremely low energies an asymptotic estimate is obtained for the ratio of the differential cross section in which three-body Coulomb effects are taken into account to that in which these effects are disregarded. It is shown that effects due to the acceleration of breakup fragments in the field of the heavy ion are significant. 13 refs., 2 figs.

  4. Experimental evidence for quantum cutting co-operative energy transfer process in Pr(3+)/Yb(3+) ions co-doped fluorotellurite glass: dispute over energy transfer mechanism.

    PubMed

    Balaji, Sathravada; Ghosh, Debarati; Biswas, Kaushik; Gupta, Gaurav; Annapurna, Kalyandurg

    2016-12-07

    Pr(3+)/Yb(3+) doped materials have been widely reported as quantum-cutting materials in recent times. However, the question of the energy transfer mechanism in the Pr(3+)/Yb(3+) pair in light of the quantum-cutting phenomenon still remains unanswered. In view of that, we explored a series of Pr(3+)/Yb(3+) co-doped low phonon fluorotellurite glass systems to estimate the probability of different energy transfer mechanisms. Indeed, a novel and simple way to predict the probability of the proper energy transfer mechanism in the Pr(3+)/Yb(3+) pair is possible by considering the donor Pr(3+) ion emission intensities and the relative ratio dependence in the presence of acceptor Yb(3+) ions. Moreover, the observed results are very much in accordance with other estimated results that support the quantum-cutting phenomena in Pr(3+)/Yb(3+) pairs, such as sub-linear power dependence of Yb(3+) NIR emission upon visible ∼450 nm laser excitation, integrated area of the donor Pr(3+) ion's visible excitation spectrum recorded by monitoring the acceptor Yb(3+) ion's NIR emission, and the experimentally obtained absolute quantum yield values using an integrating sphere setup. Our results give a simple way of estimating the probability of an energy transfer mechanism and the factors to be considered, particularly for the Pr(3+)/Yb(3+) pair.

  5. Excitonic Materials for Hybrid Solar Cells and Energy Efficient Lighting

    NASA Astrophysics Data System (ADS)

    Kabra, Dinesh; Lu, Li Ping; Vaynzof, Yana; Song, Myounghoon; Snaith, Henry J.; Friend, Richard H.

    2011-07-01

    Conventional photovoltaic technology will certainly contribute this century, but to generate a significant fraction of our global power from solar energy, a radically new disruptive technology is required. Research primarily focused on developing the physics and technologies being low cost photovoltaic concepts are required. The materials with carbon-based solution processible organic semiconductors with power conversion efficiency as high as ˜8.2%, which have emerged over the last decade as promising alternatives to expensive silicon based technologies. We aim at exploring the morphological and optoelectronic properties of blends of newly synthesized polymer semiconductors as a route to enhance the performance of organic semiconductor based optoelectronic devices, like photovoltaic diodes (PV) and Light Emitting Diodes (LED). OLED efficiency has reached upto 150 lm/W and going to be next generation cheap and eco friendly solid state lighting solution. Hybrid electronics represent a valuable alternative for the production of easy processible, flexible and reliable optoelectronic thin film devices. I will be presenting recent advancement of my work in the area of hybrid photovoltaics, PLED and research path towards realization electrically injectable organic laser diodes.

  6. Ion Flux and Energy Virtual Sensor for Measuring Ion Flux and Energy Distribution at a RF Biased Electrode in ICP Reactor (RIE-MODE)

    NASA Astrophysics Data System (ADS)

    Bogdanova, Maria; Lopaev, Dmitriy; Zyryanov, Sergey

    2014-10-01

    The modern technology of micro- and nanoelectronics involves a great number of steps, e.g. pattern transfer, where Reactive Ion Etching (RIE) in rf plasma reactors is widely used. RIE is carried out placing samples on the surface of rf biased electrode, as rule in an asymmetric rf low-pressure discharge. In an effort to control the etching process, ion flux and energy distribution should be controlled precisely as much as possible. However, measurements of them during the process in the real-time operation mode are impossible. Nevertheless, if virtual sensor of ion flux and energy can be developed, such a sensor would allow monitoring ion energy spectrum without direct measurements during plasma processing. This virtual plasma diagnostics should include calculation of ion energy spectrum based on the simple physical model of ion motion in collisionless rf sheath. In addition the modeling has to be fulfilled in the real-time operation mode by using the set of external measurable parameters. This paper is just devoted to creation of such ion energy distribution virtual diagnostics. The reported study was supported by RFBR, research Project No. 14-02-31599.

  7. Energy and Potassium Ion Homeostasis during Gamma Oscillations

    PubMed Central

    Kann, Oliver; Hollnagel, Jan-Oliver; Elzoheiry, Shehabeldin; Schneider, Justus

    2016-01-01

    Fast neuronal network oscillations in the gamma frequency band (30–100 Hz) occur in various cortex regions, require timed synaptic excitation and inhibition with glutamate and GABA, respectively, and are associated with higher brain functions such as sensory perception, attentional selection and memory formation. However, little is known about energy and ion homeostasis during the gamma oscillation. Recent studies addressed this topic in slices of the rodent hippocampus using cholinergic and glutamatergic receptor models of gamma oscillations (GAM). Methods with high spatial and temporal resolution were applied in vitro, such as electrophysiological recordings of local field potential (LFP) and extracellular potassium concentration ([K+]o), live-cell fluorescence imaging of nicotinamide adenine dinucleotide (phosphate) and flavin adenine dinucleotide [NAD(P)H and FAD, respectively] (cellular redox state), and monitoring of the interstitial partial oxygen pressure (pO2) in depth profiles with microsensor electrodes, including mathematical modeling. The main findings are: (i) GAM are associated with high oxygen consumption rate and significant changes in the cellular redox state, indicating rapid adaptations in glycolysis and oxidative phosphorylation; (ii) GAM are accompanied by fluctuating elevations in [K+]o of less than 0.5 mmol/L from baseline, likely reflecting effective K+-uptake mechanisms of neuron and astrocyte compartments; and (iii) GAM are exquisitely sensitive to metabolic stress induced by lowering oxygen availability or by pharmacological inhibition of the mitochondrial respiratory chain. These findings reflect precise cellular adaptations to maintain adenosine-5′-triphosphate (ATP), ion and neurotransmitter homeostasis and thus neural excitability and synaptic signaling during GAM. Conversely, the exquisite sensitivity of GAM to metabolic stress might significantly contribute the exceptional vulnerability of higher brain functions in brain

  8. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy.

    PubMed

    Yamamura, Hisao; Suzuki, Yoshiaki; Imaizumi, Yuji

    2015-05-01

    Ion channels play pivotal roles in a wide variety of cellular functions; therefore, their physiological characteristics, pharmacological responses, and molecular structures have been extensively investigated. However, the mobility of an ion channel itself in the cell membrane has not been examined in as much detail. A total internal reflection fluorescence (TIRF) microscope allows fluorophores to be imaged in a restricted region within an evanescent field of less than 200 nm from the interface of the coverslip and plasma membrane in living cells. Thus the TIRF microscope is useful for selectively visualizing the plasmalemmal surface and subplasmalemmal zone. In this review, we focused on a single-molecule analysis of the dynamic movement of ion channels in the plasma membrane using TIRF microscopy. We also described two single-molecule imaging techniques under TIRF microscopy: fluorescence resonance energy transfer (FRET) for the identification of molecules that interact with ion channels, and subunit counting for the determination of subunit stoichiometry in a functional channel. TIRF imaging can also be used to analyze spatiotemporal Ca(2+) events in the subplasmalemma. Single-molecule analyses of ion channels and localized Ca(2+) signals based on TIRF imaging provide beneficial pharmacological and physiological information concerning the functions of ion channels.

  9. On the electron whistler dispersion law in a cold plasma with light ions and heavy charged particulates

    SciTech Connect

    Lundin, B. V.; Krafft, C.

    2009-05-15

    The dispersion equation of electron whistler waves in a cold plasma with two light ions of comparable gyrofrequencies and heavy charged particulates is derived. It is valid in a very wide frequency range above the highest ion cutoff frequency when the wave frequency is essentially less than the electron plasma frequency. The derived electron whistler dispersion law is expressed through the relative contents of the two light ions and the electrons, as well as the characteristic frequencies of the magnetized plasma, as the lower hybrid resonance frequency, the two highest ion cutoff frequencies, the gyrofrequencies of the light ions, and the electron gyro- and plasma frequencies. The approximation of vanishingly small gyrofrequencies of the heavy ions permits to determine with a relevant accuracy the electron whistler dispersion law using the features of electron whistler spectrograms only. Estimates of the relative charge density of the light ions are obtained and the dispersion laws of the adjacent branches, i.e., the electron whistler waves and the so-called ion cyclotron whistlers are calculated. For the electron whistler waves, the presence of negative ions can be the origin of a manyfold increase in the lower cutoff frequency; a merging effect of the cutoff frequencies of the adjacent branches can also appear.

  10. Organic surfaces excited by low-energy ions: atomic collisions, molecular desorption and buckminsterfullerenes.

    PubMed

    Delcorte, Arnaud

    2005-10-07

    This article reviews the recent progress in the understanding of kiloelectronvolt particle interactions with organic solids, including atomic displacements in a light organic medium, vibrational excitation and desorption of fragments and entire molecules. This new insight is the result of a combination of theoretical and experimental approaches, essentially molecular dynamics (MD) simulations and secondary ion mass spectrometry (SIMS). Classical MD simulations provide us with a detailed microscopic view of the processes occurring in the bombarded target, from the collision cascade specifics to the scenarios of molecular emission. Time-of-flight SIMS measures the mass and energy distributions of sputtered ionized fragments and molecular species, a precious source of information concerning their formation, desorption, ionization and delayed unimolecular dissociation in the gas phase. The mechanisms of energy transfer and sputtering are compared for bulk molecular solids, organic overlayers on metal and large molecules embedded in a low-molecular weight matrix. These comparisons help understand some of the beneficial effects of metal substrates and matrices for the analysis of molecules by SIMS. In parallel, I briefly describe the distinct ionization channels of molecules sputtered from organic solids and overlayers. The specific processes induced by polyatomic projectile bombardment, especially fullerenes, are discussed on the basis of new measurements and calculations. Finally, the perspective addresses the state-of-the-art and potential developments in the fields of surface modification and analysis of organic materials by kiloelectronvolt ion beams.

  11. Design and optimization of the PBFA 2 vacuum interface and transmission lines for light ion fusion

    NASA Astrophysics Data System (ADS)

    McDaniel, D. B.; Stinnett, R. W.; Gray, E. W.

    1985-03-01

    The PBFA II vacuum insulator was originally designed for optimum coupling to a proton ion diode with minimum inductance. In July 1983 it was decided that lithium ions at 30 MeV would be the baseline for PBFA II. This requires the use of plasma opening switches (POS) and vacuum inductor to reach 30 MV. To achieve this, the vacuum magnetically insulated transmission lines had to be redesigned as an inductive energy store. To gain optimum coupling to this vacuum inductors, the output impedance of the water section was increased by the use of a water-dielectric transformer. The calculations leading to the final design will be discussed.

  12. On the origin of apparent Z1-oscillations in low-energy heavy-ion ranges

    NASA Astrophysics Data System (ADS)

    Wittmaack, Klaus

    2016-12-01

    It has been known for quite some time that projected ranges measured by Rutherford backscattering spectrometry for a variety of low-energy heavy ions (energy-to-mass ratio E/M1 less than ∼0.4 keV/u) exhibit significant or even pronounced deviations from the theoretically predicted smooth dependence on the projectile's atomic number Z1. Studied most thoroughly for silicon targets, the effect was attributed to 'Z1 oscillations' in nuclear stopping, in false analogy to the well established Z1 oscillations in electronic stopping of low-velocity light ions. In this study an attempt was made to get order into range data published by four different groups. To achieve the goal, the absolute values of the ranges from each group had to be (re-)adjusted by up to about ±10%. Adequate justification for this approach is provided. With the changes made, similarities and differences between the different sets of data became much more transparent than before. Very important is the finding that the distortions in heavy-ion ranges are not oscillatory in nature but mostly one-sided, reflecting element-specific transport of implanted atoms deeper into the solid. Exceptions are rare gas and alkali elements, known to exhibit bombardment induced transport towards the surface. Range distortions reported for Xe and Cs could be reproduced on the basis of the recently established rapid relocation model. The extent of transport into the bulk, observed with many other elements, notably noble metals and lanthanides, reflects their high mobility under ion bombardment. The complexity of the element specific transport phenomena became fully evident by also examining the limited number of data available for the apparent range straggling. Profile broadening was identified in several cases. One element (Eu) was found to exhibit profile narrowing. This observation suggests that implanted atoms may agglomerate at peak concentrations up to 2%, possibly a tool for generating nano-structured dopant

  13. Design of the Proposed Low Energy Ion Collider Ring at Jefferson Lab

    SciTech Connect

    Nissen, Edward W.; Lin, Fanglei; Morozov, Vasiliy; Zhang, Yuhong

    2013-06-01

    The polarized Medium energy Electron-Ion Collider (MEIC) envisioned at Jefferson Lab will cover a range of center-of-mass energies up to 65 GeV. The present MEIC design could also allow the accommodation of low energy electron-ion collisions (LEIC) for additional science reach. This paper presents the first design of the low energy ion collider ring which is converted from the large ion booster of MEIC. It can reach up to 25 GeV energy for protons and equivalent ion energies of the same magnetic rigidity. An interaction region and an electron cooler designed for MEIC are integrated into the low energy collider ring, in addition to other required new elements including crab cavities and ion spin rotators, for later reuse in MEIC itself. A pair of vertical chicanes which brings the low energy ion beams to the plane of the electron ring and back to the low energy ion ring are also part of the design.

  14. Hyperthermal Energy Collisions of CF3+ Ions With Modified Surfaces: Surface-Induced Dissociation

    SciTech Connect

    Rezayat, Talayeh; Shukla, Anil K.

    2004-12-01

    The dissociative scattering of low-energy ions, especially polyatomic ions, from surfaces has become an active area of research in chemistry, physics and material sciences. The interaction between an ion and a surface is more complicated than ion and gaseous neutral collisions and needs to be explored in detail to understand the ion excitation and dissociation phenomena associated with Surface-induced dissociation (SID) of ions, a technique used for the analysis of high mass ions from biological molecules. However, dynamics studies of SID have been performed only for a few simple systems, viz., ethanol, acetone, benzene and carbon disulfide ions. We have therefore undertaken a study of the SID of a small polyatomic ion, CF3+, at several collision energies between 28.8 eV and 159 eV in collision with fluorinated alkyl thiol on gold 111 crystal. These experiment were performed using a custom built tandem mass spectrometer where the energy and intensity distributions of the scattered fragment ions were measured as a function of the fragment mass and scattering angle. In contrast with the previous studies of the SID of ethanol and acetone cations where the inelastically scattered primary ions dominated the collision process (up to {approx}50 eV maximum energy used in those experiments), we did not observe a measurable abundance of inelastically scattered undissociated CF3+ ions up to the lowest energy studied here. We observed all fragment ions, CF2+, CF+, F+ and C+ at all energies studied with the relative intensity of the highest energy pathway, C+, increasing with collision energy. Also, the SID efficiency decreased significantly as the collision energy was increased from 106 eV to 159 eV. The energy distributions of all the fragment ions showed two distinct components, one corresponding to the loss of nearly all of the kinetic energy and scattered over a broad angular range while the other corresponding to smaller kinetic energy losses and scattered closer to the

  15. High-energy proton emission and Fermi motion in intermediate-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Lin, W.; Liu, X.; Wada, R.; Huang, M.; Ren, P.; Tian, G.; Luo, F.; Sun, Q.; Chen, Z.; Xiao, G. Q.; Han, R.; Shi, F.; Liu, J.; Gou, B.

    2016-12-01

    An antisymmetrized molecular dynamics model (AMD-FM), modified to take into account the Fermi motion explicitly in its nucleon-nucleon collision process, is presented. Calculated high-energy proton spectra are compared with those of 40Ar+51V at 44 MeV/nucleon from Coniglione et al. [Phys. Lett. B 471, 339 (2000), 10.1016/S0370-2693(99)01383-0] and those of 36Ar+181Ta at 94 MeV/nucleon from Germain et al. [Nucl. Phys. A 620, 81 (1997), 10.1016/S0375-9474(97)00146-2]. Both of the experimental data are reasonably well reproduced by the newly added Fermi boost in the nucleon-nucleon collision process without additional processes, such as a three-body collision or a short-range correlation. The production mechanism of high-energy protons in intermediate-energy heavy-ion collisions is discussed.

  16. Low energy highly charged ion beam facility at Inter University Accelerator Centre: Measurement of the plasma potential and ion energy distributions

    SciTech Connect

    Sairam, T. Bhatt, Pragya; Safvan, C. P.; Kumar, Ajit; Kumar, Herendra

    2015-11-15

    A deceleration lens coupled to one of the beam lines of the electron cyclotron resonance based low energy beam facility at Inter University Accelerator Centre is reported. This system is capable of delivering low energy (2.5 eV/q–1 keV/q) highly charged ion beams. The presence of plasma potential hinders the measurements of low energies (<50 eV), therefore, plasma potential measurements have been undertaken using a retarding plate analyzer in unison with the deceleration assembly. The distributions of the ion energies have been obtained and the effect of different source parameters on these distributions is studied.

  17. Collision energy dependence of viscous hydrodynamic flow in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Heinz, Ulrich

    2012-05-01

    Using a (2+1)-dimensional viscous hydrodynamical model, we study the dependence of flow observables on the collision energy ranging from s=7.7A GeV at the Relativistic Heavy Ion Collider (RHIC) to s=2760A GeV at the Large Hadron Collider (LHC). With a realistic equation of state, Glauber model initial conditions, and a small specific shear viscosity η/s=0.08, the differential charged hadron elliptic flow v2ch(pT,s) is found to exhibit a very broad maximum as a function of s around top RHIC energy, rendering it almost independent of collision energy for 39⩽s⩽2760A GeV. Compared to ideal fluid dynamical simulations, this “saturation” of elliptic flow is shifted to higher collision energies by shear viscous effects. For color-glass-motivated Monte Carlo-Kharzeev-Levin-Nardi initial conditions, which require a larger shear viscosity η/s=0.2 to reproduce the measured elliptic flow, a similar saturation is not observed up to LHC energies, except for very low pT. We emphasize that this saturation of the elliptic flow is not associated with the QCD phase transition, but arises from the interplay between radial and elliptic flow, which shifts with s depending on the fluid's viscosity and leads to a subtle cancellation between increasing contributions from light particles and decreasing contributions from heavy particles to v2 in the s range, where v2ch(pT,s) at fixed pT is maximal. By generalizing the definition of spatial eccentricity ɛx to isothermal hypersurfaces, we calculate ɛx on the kinetic freeze-out surface at different collision energies. Up to top RHIC energy, s=200A GeV, the fireball is still out-of-plane deformed at freeze-out, while at LHC energy the final spatial eccentricity is predicted to approach zero.

  18. Experimental results from CERN on reaction mechanisms in high energy heavy ion collisions

    SciTech Connect

    Sorensen, S.P. Tennessee Univ., Knoxville, TN . Dept. of Physics)

    1990-01-01

    Three main experimental results from CERN concerning reaction mechanisms in high energy heavy ion collisions are discussed: (1) the striking validity of the single particle picture, (2) the nuclear stopping power and (3) the attained energy densities.

  19. Measuring internal energy deposition in collisional activation using hydrated ion nanocalorimetry to obtain peptide dissociation energies and entropies.

    PubMed

    Demireva, Maria; Williams, Evan R

    2010-07-01

    The internal energy deposited in both on- and off-resonance collisional activation in Fourier transform ion cyclotron resonance mass spectrometry is measured with ion nanocalorimetry and is used to obtain information about the dissociation energy and entropy of a protonated peptide. Activation of Na(+)(H(2)O)(30) results in sequential loss of water molecules, and the internal energy of the activated ion can be obtained from the abundances of the product ions. Information about internal energy deposition in on-resonance collisional activation of protonated peptides is inferred from dissociation data obtained under identical conditions for hydrated ions that have similar m/z and degrees-of-freedom. From experimental internal energy deposition curves and Rice-Ramsperger-Kassel-Marcus (RRKM) theory, dissociation data as a function of collision energy for protonated leucine enkephalin, which has a comparable m/z and degrees-of-freedom as Na(+)(H(2)O)(30), are modeled. The threshold dissociation energies and entropies are correlated for data acquired at a single time point, resulting in a relatively wide range of threshold dissociation energies (1.1 to 1.7 eV) that can fit these data. However, this range of values could be significantly reduced by fitting data acquired at different dissociation times. By measuring the internal energy of an activated ion, the number of fitting parameters necessary to obtain information about the dissociation parameters by modeling these data is reduced and could result in improved accuracy for such methods.

  20. Solvation Energy of Ions in Polymers: Effects of Chain Length and Connectivity on Saturated Dipoles near Ions.

    PubMed

    Liu, Lijun; Nakamura, Issei

    2017-04-03

    We illustrate the effects of chain connectivity on the solvation energy of ions immersed in polymer liquids by developing a new coarse-grained molecular dynamics simulation. Our theory accounts for the dielectric response of the polymers through the connection of dipolar, monomeric units with nonlinear springs. In stark contrast to the standard Born solvation energy of ions, our results depend substantially on the chain length of the polymers. We also demonstrate the marked difference in the solvation energies of the ions immersed in non-polymeric particle mixtures, single-component polymers, polymer blends, and block copolymers. Thus, we suggest that the chain architecture of polymers is a key factor in ion solvation, whereas this feature is often inadequately considered in main theory and simulation literature. Our results are consistent with those predicted by previous coarse-grained mean-field theories when the dipole moment of the polymer compositions is relatively small. However, we also demonstrate that the strong ion-dipole and dipole-dipole interactions cause the chain-like association of the monomeric units, resulting in a qualitative discrepancy between the mean-field theory and simulation. Such a strong electrostatic correlation may reverse the dependence of the chain length on the solvation energy of the ions in the polymers.

  1. An ultra-efficient energy transfer beyond plasmonic light scattering

    SciTech Connect

    Fu, Sze-Ming; Zhong, Yan-Kai; Lin, Albert

    2014-11-14

    The energy transfer between nano-particles is of great importance for, solar cells, light-emitting diodes, nano-particle waveguides, and other photonic devices. This study shows through novel design and algorithm optimization, the energy transfer efficiency between plasmonic and dielectric nano-particles can be greatly improved. Using versatile designs including core-shell wrapping, supercells and dielectric mediated plasmonic scattering, 0.05 dB/μm attenuation can be achieved, which is 20-fold reduction over the baseline plasmonic nano-particle chain, and 8-fold reduction over the baseline dielectric nano-particle chain. In addition, it is also found that the dielectric nano-particle chains can actually be more efficient than the plasmonic ones, at their respective optimized geometry. The underlying physics is that although plasmonic nano-particles provide stronger coupling and field emission, the effect of plasmonic absorption loss is actually more dominant resulting in high attenuation. Finally, the group velocity for all design schemes proposed in this work is shown to be maintained above 0.4c, and it is found that the geometry optimization for transmission also boosts the group velocity.

  2. Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence

    SciTech Connect

    Yamamura, Y.; Tawara, H.

    1996-03-01

    The ion-induced sputtering yields from monatomic solids at normal incidence are presented graphically for various ion-target combinations as a function of the incident ion energy. To supplement the experimental data, sputtering yields are calculated by the Monte Carlo simulation code ACAT for some ion-target combinations. Each graph shows the available experimental and ACAT data points, together with the sputtering yields calculated by an empirical formula whose parameters determined from the best fit to available data.

  3. Extraction characteristics of a low-energy ion beam system with a remote plasma chamber

    SciTech Connect

    Vasquez, M. R.; Wada, M.

    2016-02-15

    Low-energy argon beams were extracted from a dual-chamber ion source system. The first chamber is a quartz cylinder where dense inductively coupled plasmas were produced using 13.56 MHz radio frequency (rf) power. The discharge was driven into an adjacent chamber which acts as a reservoir for ion beam extraction using a dual-electrode extractor configuration. Extraction of ions from the second chamber with energies in the 100 eV range was achieved while minimizing fluctuations induced by the rf signal. A custom-built retarding potential analyzer was used to analyze the effectiveness of ion beam transport using the remote plasma chamber. Well-defined beams were extracted between 60 and 100 V extraction potentials at 50–100 W rf powers. An increase in rf power resulted in an increase in average ion energy, increase in ion current density while the energy spread remains constant.

  4. High Energy Density Science at the Linac Coherent Light Source

    SciTech Connect

    Lee, R W

    2007-10-19

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded descriptions (Ch. V), and a

  5. The Marshall Space Flight Center Low-Energy Ion Facility: A preliminary report

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Reynolds, J. W.; Chisholm, W. L., Jr.; Hunt, R. D.

    1983-01-01

    The Low-Energy Ion Facility (LEIF) is designed for laboratory research of low-energy ion beams similar to those present in the magnetosphere. In addition, it provides the ability to develop and calibrate low-energy, less than 50 eV, plasma instrumentation over its full range of energy, mass, flux, and arrival angle. The current status of this evolving resource is described. It also provides necessary information to allow users to utilize it most efficiently.

  6. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    SciTech Connect

    Mashnik, Stepan Georgievich; Kerby, Leslie Marie

    2015-05-22

    MCNP6, the latest and most advanced LANL Monte Carlo transport code, representing a merger of MCNP5 and MCNPX, is actually much more than the sum of those two computer codes; MCNP6 is available to the public via RSICC at Oak Ridge, TN, USA. In the present work, MCNP6 was validated and verified (V&V) against different experimental data on intermediate-energy fragmentation reactions, and results by several other codes, using mainly the latest modifications of the Cascade-Exciton Model (CEM) and of the Los Alamos version of the Quark-Gluon String Model (LAQGSM) event generators CEM03.03 and LAQGSM03.03. It was found that MCNP6 using CEM03.03 and LAQGSM03.03 describes well fragmentation reactions induced on light and medium target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below, and can serve as a reliable simulation tool for different applications, like cosmic-ray-induced single event upsets (SEU’s), radiation protection, and cancer therapy with proton and ion beams, to name just a few. Future improvements of the predicting capabilities of MCNP6 for such reactions are possible, and are discussed in this work.

  7. Flow direction variations of low energy ions as measured by the ion electron sensor (IES) flying on board of Rosetta

    NASA Astrophysics Data System (ADS)

    Szegö, Karoly; Nemeth, Zoltan; Foldy, Lajos; Burch, James L.; Goldstein, Raymond; Mandt, Kathleen; Mokashi, Prachet; Broiles, Tom

    2015-04-01

    The Ion Electron Sensor (IES) simultaneously measures ions and electrons with two separate electrostatic plasma analyzers in the energy range of 4 eV- 22 keV for ions. The field of view is 90ox360o, with angular resolution 5ox45o for ions, with a sector containing the solar wind being further segmented to 5o × 5o. IES has operated continuously since early 2014. In the ion data a low energy (<50-100 eV) component is well separated from the higher energy ions. Here we analyze the arrival direction of this low energy component. The origin of these low energy ions is certainly the ionized component of the neutral gas emitted due to solar activity from comet 67P/Churiumov-Gerasimenko. The low energy component in general shows a 6h periodicity due to cometary rotation. The data show, however, that the arrival direction of the low energy ions is smeared both in azimuth and elevation, due possibly to the diverse mechanisms affecting these ions. One of these effects is the spacecraft potential (~-10V), which accelerates the ions towards the spacecraft omnidirectionally. To characterize the flow direction in azimuth-elevation, we have integrated over the lowest 8 energy channels using weighted energy: sum(counts * energy)/sum(counts); and considered only cases when the counts are above 30. When we apply higher cut for counts, the flow direction became more definite. For this analysis we use data files where the two neighbouring energy values and elevation values are collapsed; and the azimuthal resolution is 45o, that is the solar wind azimuthal segmentation is also collapsed. Here we use day 2014.09.11. as illustration. On that day a solar wind shock reached the spacecraft at about ~10 UT. After the shock transition the energy of the solar wind became higher, and after ~12 UT the flow direction of the solar wind fluctuated, sometimes by 35o. On this day Rosetta flew at about 29.3-29.6 km from the nucleus. In the azimuth-elevation plots summed over "weighted energy" (as

  8. Dynamics of midlatitude light ion trough and plasmatails. [from data obtained on OGO-4

    NASA Technical Reports Server (NTRS)

    Chen, A. J.; Grebowsky, J. M.; Taylor, H. A., Jr.

    1973-01-01

    Light ion trough measurements near midnight made by the RF ion mass spectrometer on OGO-4 operating in the high resolution mode in Feb. 1968 reveal the existence of irregular structure on the low latitude side of the midlatitude trough. Using two different relations between the equatorial convection electric field, assumed spatially invariant and directed from dawn to dusk, and Kp (one based on plasmapause measurements, the other on polar cap E field measurements) a model development was made of the outer plasmasphere. The model calculations produced multiple plasmatail extensions of the plasmasphere which compare favorably with the observed irregularities. Due to magnetic local time differences between the Northern and Southern Hemisphere along OGO's orbit, the time dependent irregularity structure observed is not symmetrical about the equator. The model development produces an outer plasmasphere boundary location which varies similarly to the observed minimum density point of the light ion trough. However the measurements are not extensive enough to yield conclusive proof that one of the electric field models is better than the other.

  9. Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation

    NASA Astrophysics Data System (ADS)

    Poulet, L.; Massa, G. D.; Morrow, R. C.; Bourget, C. M.; Wheeler, R. M.; Mitchell, C. A.

    2014-07-01

    Bioregenerative life-support systems involving photoautotrophic organisms will be necessary to sustain long-duration crewed missions at distant space destinations. Since sufficient sunlight will not always be available for plant growth at many space destinations, efficient electric-lighting solutions are greatly needed. The present study demonstrated that targeted plant lighting with light-emitting diodes (LEDs) and optimizing spectral parameters for close-canopy overhead LED lighting allowed the model crop leaf lettuce (Lactuca sativa L. cv. 'Waldmann's Green') to be grown using significantly less electrical energy than using traditional electric-lighting sources. Lettuce stands were grown hydroponically in a growth chamber controlling temperature, relative humidity, and CO2 level. Several red:blue ratios were tested for growth rate during the lag phase of lettuce growth. In addition, start of the exponential growth phase was evaluated. Following establishment of a 95% red + 5% blue spectral balance giving the best growth response, the energy efficiency of a targeted lighting system was compared with that of two total coverage (untargeted) LED lighting systems throughout a crop-production cycle, one using the same proportion of red and blue LEDs and the other using white LEDs. At the end of each cropping cycle, whole-plant fresh and dry mass and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed for crop lighting. Lettuce crops grown with targeted red + blue LED lighting used 50% less energy per unit dry biomass accumulated, and the total coverage white LEDs used 32% less energy per unit dry biomass accumulated than did the total coverage red + blue LEDs. An energy-conversion efficiency of less than 1 kWh/g dry biomass is possible using targeted close-canopy LED lighting with spectral optimization. This project was supported by NASA grant NNX09AL99G.

  10. Deployment methods of visible light communication lights for energy efficient buildings

    NASA Astrophysics Data System (ADS)

    Niaz, Muhammad Tabish; Imdad, Fatima; Kim, Soomi; Kim, Hyung Seok

    2016-10-01

    Indoor visible light communication (VLC) uses light emitting diodes (LEDs) to provide both illumination and data communication. The deployment of LED plays an important role in maintaining a steady optical power distribution over the reference receiving plane. Typical ways of luminaire deployment in offices and homes are not optimized for VLC. This paper investigates various configurations of LEDs for deploying them on the ceilings of offices and homes. The existing square array deployment of LEDs does not provide a full coverage on the receiving plane leaving dead spaces, which in turn affects the performance of the whole system. An optimized circular deployment scheme is proposed that considers both the position of the LED transmitters on the ceiling and the first reflections at each wall to yield more accurate results. Rectangular deployment and circular deployment are analyzed through simulation of the received optical power distribution, average outage area rate, and energy consumption. An optimization technique is developed to analyze the LED deployment schemes. It is clear from the results that the circular LED deployment provides a better performance than the square array grid LED deployment.

  11. Light ion fusion experiment (L. I. F. E. ) concept validation studies. Final report, July 1979-May 1980

    SciTech Connect

    Christensen, T E; Orthel, J L; Thomson, J J

    1980-12-01

    This report reflects the considerable advances made for the objectives of the contractual program, validating by detailed anaytical studies the concept of a new Light Ion Fusion Experiment for Inertial Confinement Fusion. The studies have produced an analytical design of a novel electrostatic accelerator based on separate function and strong channel focusing principles, to launch 3 to 10 MeV, 23 kA, He/sup +/ neutralized beams in 400 ns pulses, delivering on a 5 mm radius target located 10 m downstream, 50 kJ of implosion energy in approx. 20 ns impact times The control, stability and focusing of beams is made by electrostatic quadrupoles, producing overall beam normalized emittance of approx. 3 x 10/sup -5/ m-rad.

  12. Neutron-induced light-ion production from Fe, Pb and U at 96 MeV.

    PubMed

    Pomp, S; Blideanu, V; Blomgren, J; Eudes, Ph; Guertin, A; Haddad, F; Johansson, C; Klug, J; Le Brun, Ch; Lecolley, F R; Lecolley, J F; Lefort, T; Louvel, M; Marie, N; Prokofiev, A; Tippawan, U; Ohrn, A; Osterlund, M

    2007-01-01

    Double-differential cross-sections for light-ion production (up to A = 4) induced by 96 MeV neutrons have been measured for Fe, Pb and U. The experiments have been performed at The Svedberg Laboratory in Uppsala, using two independent devices, MEDLEY and SCANDAL. The recorded data cover a wide angular range (20 degrees -160 degrees ) with low energy thresholds. The data have been normalised to obtain cross-sections using np elastic scattering events. The latter have been recorded with the same setup, and results for this measurement are reported. The work was performed within the HINDAS collaboration with the primary aim of improving the database for three of the most important nuclei for incineration of nuclear waste with accelerator-driven systems. The obtained cross-section data are of particular interest for the understanding of the so-called pre-equilibrium stage in a nuclear reaction and will be compared with model calculations.

  13. Surface pattern formation during MeV energy ion beam irradiation

    SciTech Connect

    Srivastava, S. K.; Nair, K. G. M.; Kannan, R. Kamala; Kamruddin, M.; Panigrahi, B. K.; Tyagi, A. K.

    2012-06-05

    Surface patterning during high energy heavy ion irradiation is a relatively recent observation. We report in this paper the results of a study on the formation of self organized ripple patterns on silica surface irradiated with MeV energy gold ions.

  14. Sources and transport systems for low energy extreme of ion implantation

    SciTech Connect

    Hershcovitch, A.; Batalin, V.A.; Bugaev, A.S.; Gushenets, V.I.; Alexeyenko, O.; Gurkova, E.; Johnson, B.M.; Kolomiets, A.A.; Kropachev, G.N.; Kuibeda, R.P.; Kulevoy, T.V.; Masunov, E.S.; Oks, E.M.; Pershin, V.I.; Polozov, S.M.; Poole, H.J.; Seleznev, D.N.; Storozhenko, P.A.; Vizir, A.; Svarovski, A.Ya.; Yakushin, P.; Yushkov, G.Yu.

    2010-06-06

    For the past seven years a joint research and development effort focusing on the design of steady state, intense ion sources has been in progress with the ultimate goal being to meet the two, energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. However, since the last Fortier is low energy ion implantation, focus of the endeavor has shifted to low energy ion implantation. For boron cluster source development, we started with molecular ions of decaborane (B{sub 10}H{sub 14}), octadecaborane (B{sub 18}H{sub 22}), and presently our focus is on carborane (C{sub 2}B{sub 10}H{sub 12}) ions developing methods for mitigating graphite deposition. Simultaneously, we are developing a pure boron ion source (without a working gas) that can form the basis for a novel, more efficient, plasma immersion source. Our Calutron-Berna ion source was converted into a universal source capable of switching between generating molecular phosphorous P{sub 4}{sup +}, high charge state ions, as well as other types of ions. Additionally, we have developed transport systems capable of transporting a very large variety of ion species, and simulations of a novel gasless/plasmaless ion beam deceleration method were also performed.

  15. Evidence for MeV Particle Emission from Ti Charged with Low Energy Deuterium Ions

    DTIC Science & Technology

    1991-12-18

    Low Energy Deuterium Ions GEORGE P. CHAMBERS, GRAHAM K. HUBLER AND KENNETH S. GRABOWSKI Surface Modification Branch Condensed Matter and Radiation...FUNDING NUMBERS Evidence for MeV Particle Emission From Ti Charged with Low Energy Deuterium Ions 46-3765-01 6. AUT1HOR(S) OR628 George P. Chambers... deuterium ions at high current density (0.2-0.4 mA.cm ) to investigate the reported occurrence of nuclear reations at ambient temperatures in deuteriumn

  16. Benchmark solutions for the galactic heavy-ion transport equations with energy and spatial coupling

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Lamkin, Stanley L.; Wilson, John W.

    1991-01-01

    Nontrivial benchmark solutions are developed for the galactic heavy ion transport equations in the straightahead approximation with energy and spatial coupling. Analytical representations of the ion fluxes are obtained for a variety of sources with the assumption that the nuclear interaction parameters are energy independent. The method utilizes an analytical LaPlace transform inversion to yield a closed form representation that is computationally efficient. The flux profiles are then used to predict ion dose profiles, which are important for shield design studies.

  17. Characterization of Surface Modifications by White Light Interferometry: Applications in Ion Sputtering, Laser Ablation, and Tribology Experiments

    PubMed Central

    Baryshev, Sergey V.; Erck, Robert A.; Moore, Jerry F.; Zinovev, Alexander V.; Tripa, C. Emil; Veryovkin, Igor V.

    2013-01-01

    In materials science and engineering it is often necessary to obtain quantitative measurements of surface topography with micrometer lateral resolution. From the measured surface, 3D topographic maps can be subsequently analyzed using a variety of software packages to extract the information that is needed. In this article we describe how white light interferometry, and optical profilometry (OP) in general, combined with generic surface analysis software, can be used for materials science and engineering tasks. In this article, a number of applications of white light interferometry for investigation of surface modifications in mass spectrometry, and wear phenomena in tribology and lubrication are demonstrated. We characterize the products of the interaction of semiconductors and metals with energetic ions (sputtering), and laser irradiation (ablation), as well as ex situ measurements of wear of tribological test specimens. Specifically, we will discuss: Aspects of traditional ion sputtering-based mass spectrometry such as sputtering rates/yields measurements on Si and Cu and subsequent time-to-depth conversion. Results of quantitative characterization of the interaction of femtosecond laser irradiation with a semiconductor surface. These results are important for applications such as ablation mass spectrometry, where the quantities of evaporated material can be studied and controlled via pulse duration and energy per pulse. Thus, by determining the crater geometry one can define depth and lateral resolution versus experimental setup conditions. Measurements of surface roughness parameters in two dimensions, and quantitative measurements of the surface wear that occur as a result of friction and wear tests. Some inherent drawbacks, possible artifacts, and uncertainty assessments of the white light interferometry approach will be discussed and explained. PMID:23486006

  18. Characterization of surface modifications by white light interferometry: applications in ion sputtering, laser ablation, and tribology experiments.

    PubMed

    Baryshev, Sergey V; Erck, Robert A; Moore, Jerry F; Zinovev, Alexander V; Tripa, C Emil; Veryovkin, Igor V

    2013-02-27

    In materials science and engineering it is often necessary to obtain quantitative measurements of surface topography with micrometer lateral resolution. From the measured surface, 3D topographic maps can be subsequently analyzed using a variety of software packages to extract the information that is needed. In this article we describe how white light interferometry, and optical profilometry (OP) in general, combined with generic surface analysis software, can be used for materials science and engineering tasks. In this article, a number of applications of white light interferometry for investigation of surface modifications in mass spectrometry, and wear phenomena in tribology and lubrication are demonstrated. We characterize the products of the interaction of semiconductors and metals with energetic ions (sputtering), and laser irradiation (ablation), as well as ex situ measurements of wear of tribological test specimens. Specifically, we will discuss: i. Aspects of traditional ion sputtering-based mass spectrometry such as sputtering rates/yields measurements on Si and Cu and subsequent time-to-depth conversion. ii. Results of quantitative characterization of the interaction of femtosecond laser irradiation with a semiconductor surface. These results are important for applications such as ablation mass spectrometry, where the quantities of evaporated material can be studied and controlled via pulse duration and energy per pulse. Thus, by determining the crater geometry one can define depth and lateral resolution versus experimental setup conditions. iii. Measurements of surface roughness parameters in two dimensions, and quantitative measurements of the surface wear that occur as a result of friction and wear tests. Some inherent drawbacks, possible artifacts, and uncertainty assessments of the white light interferometry approach will be discussed and explained.

  19. Sign preference in ion-induced nucleation: contributions to the free energy barrier.

    PubMed

    Keasler, Samuel J; Kim, Hyunmi; Chen, Bin

    2012-11-07

    We have performed a series of computer simulations using the AVUS-HR approach to better understand the origin of the sign preference in ion-induced nucleation. In particular, we emphasize the importance of distinguishing between the total formation free energy of a cluster, and the nucleation free energy, which involves only those steps contributing to the free energy barrier. We have separately considered how the ion-water potential energy, the water-water potential energy, and the entropy contribute to both the cluster formation free energy, and the nucleation free energy. These simulations have shown that while the ion-water potential energies make the largest contribution to the formation free energy difference between positive and negative ions, the entropy is the contribution leading to lower nucleation free energy barriers for negative ions. The primary reason for this is the larger stable (but precritical) clusters formed around negative ions. We have further shown that the distinction between formation and nucleation free energies is of particular importance when comparing small cations with larger anions where the formation free energies can be much lower for the cationic clusters, even though the nucleation barriers are lower for the anionic clusters.

  20. Ultra-low-energy (<10 eV/u) ion beam bombardment effect on naked DNA

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Thongkumkoon, P.; Prakrajang, K.; Suwannakachorn, D.; Yu, L. D.

    2014-05-01

    Since ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range, it is very interesting to know effects from ultra-low-energy ion interaction with DNA for understanding ion-beam-induced genetic mutation. Tens-keV Ar- and N-ion beams were decelerated to ultra-low energy ranging from 20 to 100 eV, or only a few to 10 eV/u, to bombard naked plasmid DNA. The bombarded DNA was analyzed using gel electrophoresis for DNA form changes. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks after bombarded by tens-eV ion beam. N-ion beam was found more effective in inducing DNA change and mutation than Ar-ion beam. The study demonstrated that the ion bombardment with energy as low as several-tens eV was able to break DNA strands and thus potentially to cause genetic modification of biological cells. The experimental results were discussed in terms of direct atomic collision between the ions and DNA atoms.

  1. Measurements of Ion Energy and Ion Flux Distributions in Inductively Coupled Plasmas in CF4/O2/Ar Mixtures

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Kim, J. S.; Cappelli, M. A.; Sharma, Surendra; Partridge, Harry (Technical Monitor)

    1999-01-01

    We report mass spectrometric studies of energy distributions and absolute concentrations of ions generated in CF4/O2/Ar inductively coupled rf plasmas. The ions were collected through a 100 mm orifice in the grounded and water cooled lower electrode in a GEC cell configuration. The measurements were made at gas pressures in the 10-50 mTorr range and rf coil power in the 100-300 W range. The observed ions are CF3(+), CF2(+), CF(+), C(+), F(+), COF(+), CO(+), O2(+), and O(+). The relative abundance of these ions varies with pressure and rf power. The energy distribution and absolute concentrations are correlated with electron number density and floating plasma potential measured by a compensated Langmuir probe.

  2. Plasma characteristics of single- and dual-electrode ion source systems utilized in low-energy ion extraction

    SciTech Connect

    Vasquez, M. R.; Tokumura, S.; Kasuya, T.; Wada, M.

    2014-02-15

    Discharge characteristics in the upstream as well as in the downstream regions of a 50-eV positive ion beam were measured along the beam axis. Single- and dual-electrode configurations made of 0.1-mm diameter tungsten wires were tested. By varying the upstream discharge parameters, the shape of the sheath edge around the extractors, which can either be “planar” or “cylindrical,” can be controlled. The sheath eventually affected the simultaneous extraction of ions and neutralizing electrons. The dual-electrode configuration at the lower discharge current, revealed a homogeneous discharge downstream. At this condition, the edge of the sheath can be inferred to be “planar” which allowed the uniform extraction and propagation of low-energy ions at longer distances. The dual-electrode configuration was capable of transmitting low-energy ions up to 70 mm downstream.

  3. Surface analysis of catalysts by low-energy ion scattering

    NASA Astrophysics Data System (ADS)

    Vanleerdam, Gerrit Cornelis

    1991-01-01

    The characterization of catalyst surfaces using Low Energy Ion Scattering (LEIS) is described. The structure of a catalyst is generally described in conjunction with the different spectroscopic techniques used to characterize them. LEIS is discussed in detail. The importance of the different mechanisms for a number of elements is discussed and related to the total shape of a LEIS spectrum. The consequences for quantitative surface composition analysis are addressed. The absence of signals for tetragonally coordinated cations in the surface of gamma Al2O3 is argued to be due to the preferential exposure of crystallographic planes which contain exclusively octahedral sites. The insight makes it possible to propose a detailed model for the surface structure of gamma Al2O3 and the position of deposited metaloxides there upon. The location of molybdenum strongly depends on the amount deposited and the calcination temperature. The addition of lanthanum making gamma Al2O3 more thermostable is investigated. A series of silica supported molybdenum oxide catalysts is investigated toexplain the remarkable behavior to the selective oxidation of ammonia.

  4. Root apex sealing with different filling materials photopolymerized with argon ion laser light

    NASA Astrophysics Data System (ADS)

    Lupato Conrado, Luis Augusto; Frois, Iris M.; Amaro Zangaro, Renato; Munin, Egberto

    2003-06-01

    The present study evaluates the seal quality in apex delta of single root human teeth filled with light-curing materials (Ultrablend Calcium-hydroxide, Vitremer glass ionomer and Flow-Fill Magic composite). 45 roots prepared by the endo PTC/Dakin technique were used. All prepared samples received photopolymerization with the blue 488 nm argon ion laser light. A 200 μm optical fiber introduced into the root canal delivered 100 mW of light power to the light-curing material. The fiber tip was positioned 5 mm away from the apex. Light was applied for 20 seconds. After curing, the samples received impermeabilization with ethyl-cyanoacrylate, leaving only the apex exposed, and then immersed in a methylene-blue dye solution for 24 hours. The samples were cut longitudinally and analyzed under a stereoscopic microscope for dye infiltration. It was found that those samples sealed with Ultrablend Calcium-hydroxide or the glass ionomer presented the best results, as compared to those samples sealed with the Flow-Fill Magic composite. No statistically significant difference was observed between the group treated with Ultrablend Calcium-hydroxide and the group treated with the glass ionomer, for a significance level of 0.05.

  5. Spectrally Enhanced Lighting Program Implementation for Energy Savings: Field Evaluation

    SciTech Connect

    Gordon, Kelly L.; Sullivan, Gregory P.; Armstrong, Peter R.; Richman, Eric E.; Matzke, Brett D.

    2006-08-22

    This report provides results from an evaluation PNNL conducted of a spectrally enhanced lighting demonstration project. PNNL performed field measurements and occupant surveys at three office buildings in California before and after lighting retrofits were made in August and December 2005. PNNL measured the following Overhead lighting electricity demand and consumption, Light levels in the workspace, Task lighting use, and Occupant ratings of satisfaction with the lighting. Existing lighting, which varied in each building, was replaced with lamps with correlated color temperature (CCT) of 5000 Kelvin, color rendering index (CRI) of 85, of varying wattages, and lower ballast factor electronic ballasts. The demonstrations were designed to decrease lighting power loads in the three buildings by 22-50 percent, depending on the existing installed lamps and ballasts. The project designers hypothesized that this reduction in electrical loads could be achieved by the change to higher CCT lamps without decreasing occupant satisfaction with the lighting.

  6. Observation of a high-energy tail in ion energy distribution in the cylindrical Hall thruster plasma

    SciTech Connect

    Lim, Youbong; Kim, Holak; Choe, Wonho Lee, Seung Hun; Seon, Jongho; Lee, Hae June

    2014-10-15

    A novel method is presented to determine populations and ion energy distribution functions (IEDFs) of individual ion species having different charge states in an ion beam from the measured spectrum of an E × B probe. The inversion of the problem is performed by adopting the iterative Tikhonov regularization method with the characteristic matrices obtained from the calculated ion trajectories. In a cylindrical Hall thruster plasma, an excellent agreement is observed between the IEDFs by an E × B probe and those by a retarding potential analyzer. The existence of a high-energy tail in the IEDF is found to be mainly due to singly charged Xe ions, and is interpreted in terms of non-linear ion acceleration.

  7. Internal energy transfer phenomenon and light-emission properties of γ-LiAlO2 phosphor doped with Mn2+

    NASA Astrophysics Data System (ADS)

    Wang, Bai-Bin; Chang, Chi-Fen; Yang, Wein-Duo

    2013-07-01

    γ-LiAlO2:Mn2+ phosphor was synthesized using the cellulose-citric acid sol-gel method, and its light emission and energy transfer properties were investigated. Excitation and emission spectrum analysis revealed a decrease in intensity of the spectrum as the amount of Mn2+ doping increased. Blasse's equation determined the maximum distance for energy transfer between Mn2+ ions as 4.3142 nm. Dexter's theory verifies that the mechanism of energy transfer between Mn2+ ions conforms to an electric dipole and electric quadrupole interaction.

  8. Light sources and cameras for standard in vitro membrane potential and high-speed ion imaging.

    PubMed

    Davies, R; Graham, J; Canepari, M

    2013-07-01

    Membrane potential and fast ion imaging are now standard optical techniques routinely used to record dynamic physiological signals in several preparations in vitro. Although detailed resolution of optical signals can be improved by confocal or two-photon microscopy, high spatial and temporal resolution can be obtained using conventional microscopy and affordable light sources and cameras. Thus, standard wide-field imaging methods are still the most common in research laboratories and can often produce measurements with a signal-to-noise ratio that is superior to other optical approaches. This paper seeks to review the most important instrumentation used in these experiments, with particular reference to recent technological advances. We analyse in detail the optical constraints dictating the type of signals that are obtained with voltage and ion imaging and we discuss how to use this information to choose the optimal apparatus. Then, we discuss the available light sources with specific attention to light emitting diodes and solid state lasers. We then address the current state-of-the-art of available charge coupled device, electron multiplying charge coupled device and complementary metal oxide semiconductor cameras and we analyse the characteristics that need to be taken into account for the choice of optimal detector. Finally, we conclude by discussing prospective future developments that are likely to further improve the quality of the signals expanding the capability of the techniques and opening the gate to novel applications.

  9. Anomalous electron-ion energy coupling in electron drift wave turbulence

    NASA Astrophysics Data System (ADS)

    Zhao, Lei

    Turbulence is a ubiquitous phenomenon in nature, and it is well known that turbulence couples energy input to dissipation by cascade processes. Plasma turbulence play a critical role in tokamak confinement. Magnetized plasma turbulence is quasi 2D, anisotropic, wave like and two fluid (i.e. electrons and ions) in structure. Thus, weakly collisional plasma turbulence can mediate electron and ion energy transfer. The issue of anomalous electron and ion energy coupling is particularly important for low collisionality, electron heated plasmas, such as ITER. In this work, we reconsider the classic problem of turbulent heating and energy transfer pathways in drift wave turbulence. The total turbulent heating, composed of quasilinear electron cooling, quasilinear ion heating, nonlinear ion heating and zonal flow frictional heating, is analyzed. In Chapter 2, the electron and ion energy exchange via linear wave and particle resonance will be computed. To address net heating, we show the turbulent heating in an annulus arises due to a wave energy flux differential across this region. We show this net heating is proportional to the Reynolds work on the zonal flow. Zonal flow friction heats ions, thus the turbulence and zonal flow interaction enters as an important energy transfer channel. Since zonal flows are nonlinearly generated, it follows that we should apply weak turbulence theory to calculate the nonlinear ion turbulent heating via the virtual mode resonance in the electron drift wave turbulence, which will be discussed in Chapter 3. We defines a new collisionless turbulent energy transfer channel through nonlinear Landau damping in the electron and ion energy coupling process. The result shows that nonlinear ion heating can exceed quasilinear ion heating, so that nonlinear heating becomes the principal collisionless wave energy dissipation channel in electron drift wave turbulence. This follows since the beat mode resonates with the bulk of the ion distribution, in

  10. Ion energy distribution functions of low energy beams formed by wire extraction electrodes

    SciTech Connect

    Tokumura, S.; Kasuya, T.; Vasquez, M. Jr.; Maeno, S.; Wada, M.

    2012-02-15

    The two-electrode extractor system made of 0.1 mm diameter tungsten wires separated by 0.7 mm has formed an argon ion beam with 50 V extraction potential. Energy spreads of the extracted beams were typically less than 2 eV when the beam current density was low. The beam intensity rapidly decreased as the distance between the extractor and the beam detector increased, indicating space charge limited transport of the beam. Problems associated with the emittance measurements are also discussed.

  11. Effects due to adsorbed atoms upon angular and energy distributions of surface produced negative hydrogen ions

    NASA Astrophysics Data System (ADS)

    Wada, M.; Bacal, M.; Kasuya, T.; Kato, S.; Kenmotsu, T.; Sasao, M.

    2013-02-01

    Exposure to Cs added hydrogen discharge makes surface of plasma grid of a negative hydrogen ion source covered with Cs and hydrogen. A Monte-Carlo particle simulation code ACAT was run to evaluate the effects due to adsorbed Cs and H atoms upon the angular and energy distributions of H atoms leaving the surface. Accumulation of H atoms on the surface reduces particle reflection coefficients and the mean energy of backscattered H atoms. Angular distributions of H atoms reflected from the hydrogen covered surface tend to be under-cosine at lower energies. Desorption of adsorbed H atoms is more efficient for hydrogen positive ions than for Cs positive ions at lower incident energy. At higher energy more than 100 eV, Cs ions desorb adsorbed H atoms more efficiently than hydrogen ions.

  12. Product distributions for some thermal energy charge transfer reactions of rare gas ions

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.; Laudenslager, J. B.; Huntress, W. T., Jr.; Futrell, J. H.

    1977-01-01

    Ion cyclotron resonance methods were used to measure the product distributions for thermal-energy charge-transfer reactions of He(+), Ne(+), and Ar(+) ions with N2, O2, CO, NO, CO2, and N2O. Except for the He(+)-N2 reaction, no molecular ions were formed by thermal-energy charge transfer from He(+) and Ne(+) with these target molecules. The propensity for dissociative ionization channels in these highly exothermic charge-transfer reactions at thermal energies contrasts with the propensity for formation of parent molecular ions observed in photoionization experiments and in high-energy charge-transfer processes. This difference is explained in terms of more stringent requirements for energy resonance and favorable Franck-Condon factors at thermal ion velocities.

  13. The role of electronic energy loss in ion beam modification of materials

    DOE PAGES

    Weber, William J.; Duffy, Dorothy M.; Thome, Lionel; ...

    2014-10-05

    The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while inmore » other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. Lastly, these results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments.« less

  14. The role of electronic energy loss in ion beam modification of materials

    SciTech Connect

    Weber, William J.; Duffy, Dorothy M.; Thome, Lionel; Zhang, Yanwen

    2014-10-05

    The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while in other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. Lastly, these results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments.

  15. Department of Energy Office of Energy Efficiency and Renewable Energy Solid Lighting Core Technologies

    SciTech Connect

    Jiangeng Xue; Elliot Douglas

    2011-03-31

    The overall objective of this project is to demonstrate an ultra-effective light extraction mechanism that can be universally applied to all top-emitting white OLEDs (TE-WOLEDs) and can be integrated with thin film encapsulation techniques. The scope of work proposed in this project includes four major areas: (1) optical modeling; (2) microlens and array fabrication; (3) fabrication, encapsulation, and characterization of TE-WOLEDs; and (4) full device integration and characterization. First, the light extraction efficiency in a top-emitting OLED with or without a microlens array are modeled using wave optics. Second, individual microlenses and microlens arrays are fabricated by inkjet printing of microdroplets of a liquid thiol-ene monomer with high refractive index followed by photopolymerization. Third, high efficiency top-emitting white OLEDs are fabricated, and fully characterized. Finally, optimized microlens arrays are fabricated on TE-WOLEDs with dielectric barrier layers. The overall light extraction efficiency of these devices, as well as its wavelength and angular dependencies, are measured by comparing the efficiencies of devices with and without microlens arrays. In conclusion, we have demonstrated the feasibility of applying inkjet printed microlens arrays to enhance the light extraction efficiency of top-emitting white OLEDs. We have shown that the geometry (contact angle) of the printed microlenses can be controlled by controlling the surface chemistry prior to printing the lenses. A 90% enhancement in the light extraction efficiency has been achieved with printed microlens array on a top-emitting white OLED, which can be further improved to 140% using a more close-packed microlens array fabricated from a molding process. Future work will focus on improvement of the microlens fabrication process to improve the array fill factor and the contact angle, as well as use transparent materials with a higher index of refraction. We will also further

  16. Next Generation Luminaires: Recognizing Innovative, Energy-Efficient Commercial Lighting Luminaires

    SciTech Connect

    2013-04-01

    Fact sheet that describes the Next Generation Luminaires SSL lighting design competition, which recognizes excellence in technical innovation and design of high-quality, energy-efficient commercial lighting, both indoor and outdoor.

  17. Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles

    NASA Astrophysics Data System (ADS)

    Bai, Zhitong; Zhang, Lin; Liu, Ling

    2016-04-01

    Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically analyzing the effects of the incident angle and ion energy in determining the probabilities of six distinct types of physics that may occur in an ion bombardment event, including reflection, absorption, substitution, single vacancy, double vacancy, and transmission. By analyzing the atomic trajectories from 576 000 simulations, we identified three single vacancy creation mechanisms and four double vacancy creation mechanisms, and quantified their probability distributions in the angle-energy space. These findings further open the door for improved control of ion implantation towards a wide range of applications of graphene.Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically

  18. Enhanced light absorption of amorphous silicon thin film by substrate control and ion irradiation

    PubMed Central

    2014-01-01

    Large-area periodically aligned silicon nanopillar (PASiNP) arrays were fabricated by magnetic sputtering with glancing angle deposition (GLAD) on substrates coated by a monolayer of close-packed polystyrene (PS) nanospheres. The structure of PASiNP arrays could be manipulated by changing the diameter of PS nanospheres. Enhanced light absorptance within a wavelength range from 300 to 1,000 nm was observed as the diameter of nanopillars and porosity of PASiNP arrays increased. Meanwhile, Xe ion irradiation with dose from 1 × 1014 to 50 × 1014 ions/cm2 was employed to modify the surface morphology and top structure of thin films, and the effect of the irradiation on the optical bandgap was discussed. PACS code 81.15.Cd; 78.66.Jg; 61.80.Jh PMID:24717078

  19. Benzylammonium Thermometer Ions: Internal Energies of Ions Formed by Low Temperature Plasma and Atmospheric Pressure Chemical Ionization.

    PubMed

    Stephens, Edward R; Dumlao, Morphy; Xiao, Dan; Zhang, Daming; Donald, William A

    2015-12-01

    The extent of internal energy deposition upon ion formation by low temperature plasma and atmospheric pressure chemical ionization was investigated using novel benzylammonium thermometer ions. C-N heterolytic bond dissociation enthalpies of nine 4-substituted benzylammoniums were calculated using CAM-B3LYP/6-311++G(d,p), which was significantly more accurate than B3LYP/6-311++G(d,p), MP2/6-311++G(d,p), and CBS-QB3 for calculating the enthalpies of 20 heterolytic dissociation reactions that were used to benchmark theory. All 4-substituted benzylammonium thermometer ions fragmented by a single pathway with comparable dissociation entropies, except 4-nitrobenzylammonium. Overall, the extent of energy deposition into ions formed by low temperature plasma was significantly lower than those formed by atmospheric pressure chemical ionization under these conditions. Because benzylamines are volatile, this new suite of thermometer ions should be useful for investigating the extent of internal energy deposition during ion formation for a wide range of ionization methods, including plasma, spray and laser desorption-based techniques. Graphical Abstract ᅟ.

  20. Benzylammonium Thermometer Ions: Internal Energies of Ions Formed by Low Temperature Plasma and Atmospheric Pressure Chemical Ionization

    NASA Astrophysics Data System (ADS)

    Stephens, Edward R.; Dumlao, Morphy; Xiao, Dan; Zhang, Daming; Donald, William A.

    2015-12-01

    The extent of internal energy deposition upon ion formation by low temperature plasma and atmospheric pressure chemical ionization was investigated using novel benzylammonium thermometer ions. C-N heterolytic bond dissociation enthalpies of nine 4-substituted benzylammoniums were calculated using CAM-B3LYP/6-311++G(d,p), which was significantly more accurate than B3LYP/6-311++G(d,p), MP2/6-311++G(d,p), and CBS-QB3 for calculating the enthalpies of 20 heterolytic dissociation reactions that were used to benchmark theory. All 4-substituted benzylammonium thermometer ions fragmented by a single pathway with comparable dissociation entropies, except 4-nitrobenzylammonium. Overall, the extent of energy deposition into ions formed by low temperature plasma was significantly lower than those formed by atmospheric pressure chemical ionization under these conditions. Because benzylamines are volatile, this new suite of thermometer ions should be useful for investigating the extent of internal energy deposition during ion formation for a wide range of ionization methods, including plasma, spray and laser desorption-based techniques.