Science.gov

Sample records for energy loss spectroscopy

  1. Image simulation for electron energy loss spectroscopy

    SciTech Connect

    Oxley, Mark P.; Pennycook, Stephen J.

    2007-10-22

    In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations. Finally, the affect of the channelling of the electron probe within the sample is also discussed.

  2. Image simulation for electron energy loss spectroscopy

    DOE PAGES

    Oxley, Mark P.; Pennycook, Stephen J.

    2007-10-22

    In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations.more » Finally, the affect of the channelling of the electron probe within the sample is also discussed.« less

  3. Probing battery chemistry with liquid cell electron energy loss spectroscopy

    DOE PAGES

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; ...

    2015-01-01

    Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn2O4 and Li4Ti5O12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.

  4. Probing Battery Chemistry with Liquid Cell Electron Energy Loss Spectroscopy

    SciTech Connect

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Aguiar, Jeffery A.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren L.

    2015-11-25

    We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. The use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. Furthermore, we discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies.

  5. Simulating electron energy loss spectroscopy with the MNPBEM toolbox

    NASA Astrophysics Data System (ADS)

    Hohenester, Ulrich

    2014-03-01

    Within the MNPBEM toolbox, we show how to simulate electron energy loss spectroscopy (EELS) of plasmonic nanoparticles using a boundary element method approach. The methodology underlying our approach closely follows the concepts developed by García de Abajo and coworkers (Garcia de Abajo, 2010). We introduce two classes eelsret and eelsstat that allow in combination with our recently developed MNPBEM toolbox for a simple, robust, and efficient computation of EEL spectra and maps. The classes are accompanied by a number of demo programs for EELS simulation of metallic nanospheres, nanodisks, and nanotriangles, and for electron trajectories passing by or penetrating through the metallic nanoparticles. We also discuss how to compute electric fields induced by the electron beam and cathodoluminescence. Catalogue identifier: AEKJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKJ_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 38886 No. of bytes in distributed program, including test data, etc.: 1222650 Distribution format: tar.gz Programming language: Matlab 7.11.0 (R2010b). Computer: Any which supports Matlab 7.11.0 (R2010b). Operating system: Any which supports Matlab 7.11.0 (R2010b). RAM:≥1 GB Classification: 18. Catalogue identifier of previous version: AEKJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 370 External routines: MESH2D available at www.mathworks.com Does the new version supersede the previous version?: Yes Nature of problem: Simulation of electron energy loss spectroscopy (EELS) for plasmonic nanoparticles. Solution method: Boundary element method using electromagnetic potentials. Reasons for new version: The new version of the toolbox includes two additional classes for the simulation of electron energy

  6. Probing battery chemistry with liquid cell electron energy loss spectroscopy

    SciTech Connect

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren Leslie; Aguiar, Jeffery A.

    2015-01-01

    Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn2O4 and Li4Ti5O12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.

  7. Electron energy-loss spectroscopy of branched gap plasmon resonators

    PubMed Central

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen; Mortensen, N. Asger; Brongersma, Mark L.; Bozhevolnyi, Sergey I.

    2016-01-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron microscope combined with electron energy-loss spectroscopy, we experimentally show the propagation, bending and splitting of slot gap plasmons. PMID:27982030

  8. Electron energy-loss spectroscopy of branched gap plasmon resonators

    NASA Astrophysics Data System (ADS)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen; Mortensen, N. Asger; Brongersma, Mark L.; Bozhevolnyi, Sergey I.

    2016-12-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron microscope combined with electron energy-loss spectroscopy, we experimentally show the propagation, bending and splitting of slot gap plasmons.

  9. Data processing for atomic resolution electron energy loss spectroscopy.

    PubMed

    Cueva, Paul; Hovden, Robert; Mundy, Julia A; Xin, Huolin L; Muller, David A

    2012-08-01

    The high beam current and subangstrom resolution of aberration-corrected scanning transmission electron microscopes has enabled electron energy loss spectroscopy (EELS) mapping with atomic resolution. These spectral maps are often dose limited and spatially oversampled, leading to low counts/channel and are thus highly sensitive to errors in background estimation. However, by taking advantage of redundancy in the dataset map, one can improve background estimation and increase chemical sensitivity. We consider two such approaches--linear combination of power laws and local background averaging--that reduce background error and improve signal extraction. Principal component analysis (PCA) can also be used to analyze spectrum images, but the poor peak-to-background ratio in EELS can lead to serious artifacts if raw EELS data are PCA filtered. We identify common artifacts and discuss alternative approaches. These algorithms are implemented within the Cornell Spectrum Imager, an open source software package for spectroscopic analysis.

  10. Uranium trioxide behavior during electron energy loss spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Alekseev, Evgeny V.

    2015-03-01

    A sample of uranium trioxide (UO3) was produced by focused ion beam (~10 μm×~10 μm×<0.5 μm) for transmission electron and electron energy loss (EEL) spectroscopy examinations in a transmission electron microscope (TEM). The EEL spectra were recorded as a function of the thickness for the P and O edges in the low energy range 0-350 eV and were compared to spectra of UO3 small grains attached to a TEM grid. The EEL spectrum was studied through a range of thicknesses going from ~60 to ~260 nm. The EEL spectra recorded for UO3 are compared with those recorded for UO2. The reduction of UO3 into U4O9 and/or UO2 is readily observed apparently during the TEM investigations and as confirmed by electron diffraction (eD). This redox effect is similar to that known for other redox sensitive oxides. Recommendations are suggested to avoid sample decomposition.

  11. Reflection Electron Energy Loss Spectroscopy of Iron Monosilicide

    NASA Astrophysics Data System (ADS)

    Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.

    2017-02-01

    X-ray photoelectron spectra, reflection electron energy loss spectra, and inelastic electron scattering cross section spectra of iron monosilicide FeSi are investigated. It is shown that the spectra of inelastic electron scattering cross section have advantages over the reflection electron energy loss spectra in studying the processes of electron energy losses. An analysis of the fine structure of the inelastic electron scattering cross section spectra allows previously unresolved peaks to be identified and their energy, intensity, and nature to be determined. The difference between energies of fitting loss peaks in the spectra of inelastic electron scattering cross section of FeSi and pure Fe are more substantial than the chemical shifts in X-ray photoelectron spectra, which indicates the possibility of application of the fine structure of the spectra of inelastic electron scattering cross section for elemental analysis.

  12. Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene

    SciTech Connect

    Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; Lee, Jaekwang; Prange, Micah P.; Pennycook, Stephen J.; Idrobo Tapia, Juan Carlos; Pantelides, Sokrates T.

    2015-09-25

    Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with a theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.

  13. Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene

    DOE PAGES

    Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; ...

    2015-09-25

    Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with amore » theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.« less

  14. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping.

    PubMed

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E W; Guo, Jiandong

    2015-08-01

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi2Sr2CaCu2O(8+δ). The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  15. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping

    SciTech Connect

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E. W.; Guo, Jiandong

    2015-08-15

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ}. The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  16. Nanoscale mapping of optical band gaps using monochromated electron energy loss spectroscopy.

    PubMed

    Zhan, W; Granerød, C S; Venkatachalapathy, V; Johansen, K M H; Jensen, I J T; Kuznetsov, A Yu; Prytz, Ø

    2017-03-10

    Using monochromated electron energy loss spectroscopy in a probe-corrected scanning transmission electron microscope we demonstrate band gap mapping in ZnO/ZnCdO thin films with a spatial resolution below 10 nm and spectral precision of 20 meV.

  17. Nanoscale mapping of optical band gaps using monochromated electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhan, W.; Granerød, C. S.; Venkatachalapathy, V.; Johansen, K. M. H.; Jensen, I. J. T.; Kuznetsov, A. Yu; Prytz, Ø.

    2017-03-01

    Using monochromated electron energy loss spectroscopy in a probe-corrected scanning transmission electron microscope we demonstrate band gap mapping in ZnO/ZnCdO thin films with a spatial resolution below 10 nm and spectral precision of 20 meV.

  18. Angular-resolved electron energy loss spectroscopy on a split-ring resonator

    NASA Astrophysics Data System (ADS)

    von Cube, F.; Niegemann, J.; Irsen, S.; Bell, D. C.; Linden, S.

    2014-03-01

    We investigate the plasmonic near field of a lithographically defined split-ring resonator with angular-resolved electron energy loss spectroscopy in a scanning transmission electron microscope. By tilting the sample, different electric field components of the plasmonic modes can be probed with the electron beam. The electron energy loss spectra recorded under oblique incidence can feature plasmonic resonances that are not observable under normal incidence. Our experimental findings are supported by full numerical calculations based on the discontinuous Galerkin time-domain method.

  19. Toward 10 meV electron energy-loss spectroscopy resolution for plasmonics.

    PubMed

    Bellido, Edson P; Rossouw, David; Botton, Gianluigi A

    2014-06-01

    Energy resolution is one of the most important parameters in electron energy-loss spectroscopy. This is especially true for measurement of surface plasmon resonances, where high-energy resolution is crucial for resolving individual resonance peaks, in particular close to the zero-loss peak. In this work, we improve the energy resolution of electron energy-loss spectra of surface plasmon resonances, acquired with a monochromated beam in a scanning transmission electron microscope, by the use of the Richardson-Lucy deconvolution algorithm. We test the performance of the algorithm in a simulated spectrum and then apply it to experimental energy-loss spectra of a lithographically patterned silver nanorod. By reduction of the point spread function of the spectrum, we are able to identify low-energy surface plasmon peaks in spectra, more localized features, and higher contrast in surface plasmon energy-filtered maps. Thanks to the combination of a monochromated beam and the Richardson-Lucy algorithm, we improve the effective resolution down to 30 meV, and evidence of success up to 10 meV resolution for losses below 1 eV. We also propose, implement, and test two methods to limit the number of iterations in the algorithm. The first method is based on noise measurement and analysis, while in the second we monitor the change of slope in the deconvolved spectrum.

  20. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.

    PubMed

    Alexander, Jessica A; Scheltens, Frank J; Drummy, Lawrence F; Durstock, Michael F; Hage, Fredrik S; Ramasse, Quentin M; McComb, David W

    2017-03-02

    Advances in electron monochromator technology are providing opportunities for high energy resolution (10 - 200meV) electron energy-loss spectroscopy (EELS) to be performed in the scanning transmission electron microscope (STEM). The energy-loss near-edge structure in core-loss spectroscopy is often limited by core-hole lifetimes rather than the energy spread of the incident illumination. However, in the valence-loss region, the reduced width of the zero loss peak makes it possible to resolve clearly and unambiguously spectral features at very low energy-losses (<3eV). In this contribution, high-resolution EELS was used to investigate four materials commonly used in organic photovoltaics (OPVs): poly(3-hexlythiophene) (P3HT), [6,6] phenyl-C61 butyric acid methyl ester (PCBM), copper phthalocyanine (CuPc), and fullerene (C60). Data was collected on two different monochromated instruments - a Nion UltraSTEM 100 MC 'HERMES' and a FEI Titan(3) 60-300 Image-Corrected S/TEM - using energy resolutions (as defined by the zero loss peak full-width at half-maximum) of 35meV and 175meV, respectively. The data was acquired to allow deconvolution of plural scattering, and Kramers-Kronig analysis was utilized to extract the complex dielectric functions. The real and imaginary parts of the complex dielectric functions obtained from the two instruments were compared to evaluate if the enhanced resolution in the Nion provides new opto-electronic information for these organic materials. The differences between the spectra are discussed, and the implications for STEM-EELS studies of advanced materials are considered.

  1. A proximal retarding field analyzer for scanning probe energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Bauer, Karl; Murphy, Shane; Palmer, Richard E.

    2017-03-01

    A compact proximal retarding field analyzer for scanning probe energy loss spectroscopy measurements is described. Using the scanning tunneling microscope (STM) tip as a field emission (FE) electron source in conjunction with this analyzer, which is placed at a glancing angle to the surface plane, FE sample current and electron reflectivity imaging may be performed simultaneously. This is demonstrated in measurements of Ag nanostructures prepared on graphite by electron-beam lithography, where a material contrast of 13% is observed, with a lateral resolution of 25 nm, between the silver and graphite in electron reflectivity images. Topological contrast mechanisms such as edge enhancement and shadowing are also observed, giving rise to additional features in the electron reflectivity images. The same instrument configuration has been used to measure electron energy loss spectra on bare graphite, where the zero loss peak, π band plasmon loss peak and secondary electron peaks are observed. Using this simple and compact analyzer an STM, with sufficient open access to the tip-sample junction, may easily be augmented to provide simultaneous elemental and topographic mapping, supplementing STM image measurements with FE sample current and electron reflectivity images, as well as electron energy loss spectroscopy measurements, in the same instrument.

  2. A proximal retarding field analyzer for scanning probe energy loss spectroscopy.

    PubMed

    Bauer, Karl; Murphy, Shane; Palmer, Richard E

    2017-03-10

    A compact proximal retarding field analyzer for scanning probe energy loss spectroscopy measurements is described. Using the scanning tunneling microscope (STM) tip as a field emission (FE) electron source in conjunction with this analyzer, which is placed at a glancing angle to the surface plane, FE sample current and electron reflectivity imaging may be performed simultaneously. This is demonstrated in measurements of Ag nanostructures prepared on graphite by electron-beam lithography, where a material contrast of 13% is observed, with a lateral resolution of 25 nm, between the silver and graphite in electron reflectivity images. Topological contrast mechanisms such as edge enhancement and shadowing are also observed, giving rise to additional features in the electron reflectivity images. The same instrument configuration has been used to measure electron energy loss spectra on bare graphite, where the zero loss peak, π band plasmon loss peak and secondary electron peaks are observed. Using this simple and compact analyzer an STM, with sufficient open access to the tip-sample junction, may easily be augmented to provide simultaneous elemental and topographic mapping, supplementing STM image measurements with FE sample current and electron reflectivity images, as well as electron energy loss spectroscopy measurements, in the same instrument.

  3. Real-space imaging of nanotip plasmons using electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Schröder, Benjamin; Weber, Thorsten; Yalunin, Sergey V.; Kiel, Thomas; Matyssek, Christian; Sivis, Murat; Schäfer, Sascha; von Cube, Felix; Irsen, Stephan; Busch, Kurt; Ropers, Claus; Linden, Stefan

    2015-08-01

    We report the spatial mapping of surface plasmons on conical gold nanotips by electron energy loss spectroscopy. We observe standing-wave patterns resulting from reflections of the fundamental surface-plasmon mode at the nanotip apex. The experimental results are in very good agreement with numerical calculations using the discontinuous Galerkin time-domain method and analytical computations based on a cylindrical mode expansion.

  4. The electronic properties of potassium doped copper-phthalocyanine studied by electron energy-loss spectroscopy.

    PubMed

    Flatz, K; Grobosch, M; Knupfer, M

    2007-06-07

    The authors have studied the electronic structure of potassium doped copper-phthalocyanine using electron energy-loss spectroscopy. The evolution of the loss function indicates the formation of distinct KxCuPc phases. Taking into account the C1s and K2p core level excitations and recent results by Giovanelli et al. [J. Chem. Phys. 126, 044709 (2007)], they conclude that these are K2CuPc and K4CuPc. They discuss the changes in the electronic excitations upon doping on the basis of the molecular electronic levels and the presence of electronic correlations.

  5. Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects

    SciTech Connect

    Yedra, Ll.; Estradé, S.; Torruella, P.; Eljarrat, A.; Peiró, F.; Darbal, A. D.; Weiss, J. K.

    2014-08-04

    The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio.

  6. Energy-loss- and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy

    SciTech Connect

    Tan, Haiyan; Zhu, Ye; Dwyer, Christian; Xin, Huolin L.

    2014-12-31

    Atomic-scale elemental maps of materials acquired by core-loss inelastic electron scattering often exhibit an undesirable sensitivity to the unavoidable elastic scattering, making the maps counter-intuitive to interpret. Here, we present a systematic study that scrutinizes the energy-loss and sample-thickness dependence of atomic-scale elemental maps acquired using 100 keV incident electrons in a scanning transmission electron microscope. For single-crystal silicon, the balance between elastic and inelastic scattering means that maps generated from the near-threshold Si-L signal (energy loss of 99 eV) show no discernible contrast for a thickness of 0.5λ (λ is the electron mean-free path, here approximately 110 nm). At greater thicknesses we observe a counter-intuitive “negative” contrast. Only at much higher energy losses is an intuitive “positive” contrast gradually restored. Our quantitative analysis shows that the energy-loss at which a positive contrast is restored depends linearly on the sample thickness. This behavior is in very good agreement with our double-channeling inelastic scattering calculations. We test a recently-proposed experimental method to correct the core-loss inelastic scattering and restore an intuitive “positive” chemical contrast. The method is demonstrated to be reliable over a large range of energy losses and sample thicknesses. The corrected contrast for near-threshold maps is demonstrated to be (desirably) inversely proportional to sample thickness. As a result, implications for the interpretation of atomic-scale elemental maps are discussed.

  7. Energy-loss- and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy

    DOE PAGES

    Tan, Haiyan; Zhu, Ye; Dwyer, Christian; ...

    2014-12-31

    Atomic-scale elemental maps of materials acquired by core-loss inelastic electron scattering often exhibit an undesirable sensitivity to the unavoidable elastic scattering, making the maps counter-intuitive to interpret. Here, we present a systematic study that scrutinizes the energy-loss and sample-thickness dependence of atomic-scale elemental maps acquired using 100 keV incident electrons in a scanning transmission electron microscope. For single-crystal silicon, the balance between elastic and inelastic scattering means that maps generated from the near-threshold Si-L signal (energy loss of 99 eV) show no discernible contrast for a thickness of 0.5λ (λ is the electron mean-free path, here approximately 110 nm). Atmore » greater thicknesses we observe a counter-intuitive “negative” contrast. Only at much higher energy losses is an intuitive “positive” contrast gradually restored. Our quantitative analysis shows that the energy-loss at which a positive contrast is restored depends linearly on the sample thickness. This behavior is in very good agreement with our double-channeling inelastic scattering calculations. We test a recently-proposed experimental method to correct the core-loss inelastic scattering and restore an intuitive “positive” chemical contrast. The method is demonstrated to be reliable over a large range of energy losses and sample thicknesses. The corrected contrast for near-threshold maps is demonstrated to be (desirably) inversely proportional to sample thickness. As a result, implications for the interpretation of atomic-scale elemental maps are discussed.« less

  8. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    SciTech Connect

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng

    2015-12-07

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.

  9. Role of the kinematics of probing electrons in electron energy-loss spectroscopy of solid surfaces

    NASA Astrophysics Data System (ADS)

    Nazarov, V. U.; Silkin, V. M.; Krasovskii, E. E.

    2016-01-01

    Inelastic scattering of electrons incident on a solid surface is determined by two properties: (i) electronic response of the target system and (ii) the detailed quantum-mechanical motion of the projectile electron inside and in the vicinity of the target. We emphasize the equal importance of the second ingredient, pointing out the fundamental limitations of the conventionally used theoretical description of the electron energy-loss spectroscopy (EELS) in terms of the "energy-loss functions." Our approach encompasses the dipole and impact scattering as specific cases, with the emphasis on the quantum-mechanical treatment of the probe electron. Applied to the high-resolution EELS of Ag surface, our theory largely agrees with recent experiments, while some instructive exceptions are rationalized.

  10. Sensitivity of photoelectron energy loss spectroscopy to surface reconstruction of microcrystalline diamond films

    NASA Astrophysics Data System (ADS)

    David, Denis G. F.; Pinault-Thaury, Marie-Amandine; Ballutaud, Dominique; Godet, Christian

    2013-05-01

    In X-ray Photoelectron Spectroscopy (XPS), binding energies and intensities of core level peaks are commonly used for chemical analysis of solid surfaces, after subtraction of a background signal. This background due to photoelectron energy losses to electronic excitations in the solid (surface and bulk plasmon excitation, inter band transitions) contains valuable information related to the near surface dielectric function ɛ(ħω). In this work, the sensitivity of Photoelectron Energy Loss Spectroscopy (PEELS) is investigated using a model system, namely the well-controlled surface reconstruction of diamond. Boron-doped microcrystalline thin films with a mixture of (1 1 1) and (1 0 0) preferential orientations were characterized in the as-grown state, with a partially hydrogenated surface, and after annealing at 1150 °C in ultra high vacuum. After annealing, the bulk (σ + π) plasmon of diamond at 34.5 eV is weakly attenuated but no evidence for surface graphitization is observed near 6 eV, as confirmed by electronic properties. Unexpected features which appear at 10 ± 1 eV and 19 ± 1 eV in the energy loss distribution are well described by simulation of surface plasmon excitations in graphite-like materials; alternatively, they also coincide with experimental inter band transition losses in some graphene layers. This comparative study shows that the PEELS technique gives a clear signature of weak effects in the diamond surface reconstruction, even in the absence of graphitization. It confirms the sensitivity of PEELS acquisition with standard XPS equipment as a complementary tool for surface analysis.

  11. High-resolution electron microscopy and electron energy-loss spectroscopy of giant palladium clusters

    NASA Astrophysics Data System (ADS)

    Oleshko, V.; Volkov, V.; Gijbels, R.; Jacob, W.; Vargaftik, M.; Moiseev, I.; van Tendeloo, G.

    1995-12-01

    Combined structural and chemical characterization of cationic polynuclear palladium coordination compounds Pd561L60(OAc)180, where L=1,10-phenantroline or 2,2'-bipyridine has been carried out by high-resolution electron microscopy (HREM) and analytical electron microscopy methods including electron energy-loss spectroscopy (EELS), zero-loss electron spectroscopic imaging, and energy-dispersive X-ray spectroscopy (EDX). The cell structure of the cluster matter with almost completely uniform metal core size distributions centered around 2.3 ±0.5 nm was observed. Zero-loss energy filtering allowed to improve the image contrast and resolution. HREM images showed that most of the palladium clusters had a cubo-octahedral shape. Some of them had a distorted icosahedron structure exhibiting multiple twinning. The selected-area electron diffraction patterns confirmed the face centered cubic structure with lattice parameter close to that of metallic palladium. The energy-loss spectra of the populations of clusters contained several bands, which could be assigned to the delayed Pd M4, 5-edge at 362 eV, the Pd M3-edge at 533 eV and the Pd M2-edge at 561 eV, the NK-edge at about 400 eV, the O K-edge at 532 eV overlapping with the Pd M3-edge and the carbon C K-edge at 284 eV. Background subtraction was applied to reveal the exact positions and fine structure of low intensity elemental peaks. EELS evaluations have been confirmed by EDX. The recorded series of the Pd M-edges and the N K-edge in the spectra of the giant palladium clusters obviously were related to Pd-Pd- and Pd-ligand bonding.

  12. High-Resolution Electron Energy-Loss Spectroscopy (HREELS) Using a Monochromated TEM/STEM

    NASA Technical Reports Server (NTRS)

    Sai, Z. R.; Bradley, J. P.; Erni, R.; Browning, N.

    2005-01-01

    A 200 keV FEI TF20 XT monochromated (scanning) transmission electron microscope funded by NASA's SRLIDAP program is undergoing installation at Lawrence Livermore National Laboratory. Instrument specifications in STEM mode are Cs =1.0 mm, Cc =1.2 mm, image resolution =0.18 nm, and in TEM mode Cs =1.3 mm, Cc =1.3 mm, information limit =0.14 nm. Key features of the instrument are a voltage-stabilized high tension (HT) supply, a monochromator, a high-resolution electron energy-loss spectrometer/energy filter, a high-resolution annular darkfield detector, and a solid-state x-ray energy-dispersive spectrometer. The high-tension tank contains additional sections for 60Hz and high frequency filtering, resulting in an operating voltage of 200 kV plus or minus 0.005V, a greater than 10-fold improvement over earlier systems. The monochromator is a single Wien filter design. The energy filter is a Gatan model 866 Tridiem-ERS high resolution GIF spec d for less than or equal to 0.15 eV energy resolution with 29 pA of current in a 2 nm diameter probe. 0.13 eV has already been achieved during early installation. The x-ray detector (EDAX/Genesis 4000) has a take-off angle of 20 degrees, an active area of 30 square millimeters, and a solid angle of 0.3 steradians. The higher solid angle is possible because the objective pole-piece allows the detector to be positioned as close as 9.47 mm from the specimen. The voltage-stabilized HT supply, monochromator and GIF enable high-resolution electron energy-loss spectroscopy (HREELS) with energy resolution comparable to synchrotron XANES, but with approximately 100X better spatial resolution. The region between 0 and 100 eV is called the low-loss or valence electron energy-loss spectroscopy (VEELS) region where features due to collective plasma oscillations and single electron transitions of valence electrons are observed. Most of the low-loss VEELS features we are detecting are being observed for the first time in IDPs. A major focus of

  13. Probing the chemical structure in diamond-based materials using combined low-loss and core-loss electron energy-loss spectroscopy.

    PubMed

    Longo, Paolo; Twesten, Ray D; Olivier, Jaco

    2014-06-01

    We report the analysis of the changes in local carbon structure and chemistry caused by the self-implantation of carbon into diamond via electron energy-loss spectroscopy (EELS) plasmon energy shifts and core-edge fine structure fingerprinting. These two very different EELS energy and intensity ranges of the spectrum can be acquired under identical experimental conditions and nearly simultaneously using specially designed deflectors and energy offset devices known as "DualEELS." In this way, it is possible to take full advantage of the unique and complementary information that is present in the low- and core-loss regions of the EELS spectrum. We find that self-implanted carbon under the implantation conditions used for the material investigated in this paper creates an amorphous region with significant sp 2 content that varies across the interface.

  14. Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy.

    PubMed

    Barrow, Steven J; Rossouw, David; Funston, Alison M; Botton, Gianluigi A; Mulvaney, Paul

    2014-07-09

    We present a scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) investigation of gold nanosphere chains with lengths varying from 1 to 5 particles. We show localized EELS signals from the chains and identify energy-loss peaks arising due to l = 1, 2, 3, 4, and 5 plasmon modes through the use of EELS mapping. We also show the evolution of the energy of these modes as the length of a given chain increases, and we find that a chain containing N particles can accommodate at least N experimentally observable modes, in addition to the transverse mode. As the chain length is increased by the addition of one more gold particle to the chain, the new N + 1 mode becomes the highest energy mode, while the existing modes lower their energy and eventually asymptote as they delocalize along the chain. We also show that modes become increasingly difficult to detect with the EELS technique as l approaches N. The data are compared to numerical simulations.

  15. High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy.

    PubMed

    Krivanek, Ondrej L; Ursin, Jonathan P; Bacon, Neil J; Corbin, George J; Dellby, Niklas; Hrncirik, Petr; Murfitt, Matthew F; Own, Christopher S; Szilagyi, Zoltan S

    2009-09-28

    An all-magnetic monochromator/spectrometer system for sub-30 meV energy-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope is described. It will link the energy being selected by the monochromator to the energy being analysed by the spectrometer, without resorting to decelerating the electron beam. This will allow it to attain spectral energy stability comparable to systems using monochromators and spectrometers that are raised to near the high voltage of the instrument. It will also be able to correct the chromatic aberration of the probe-forming column. It should be able to provide variable energy resolution down to approximately 10 meV and spatial resolution less than 1 A.

  16. Band gap widening at random CIGS grain boundary detected by valence electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Keller, Debora; Buecheler, Stephan; Reinhard, Patrick; Pianezzi, Fabian; Bissig, Benjamin; Carron, Romain; Hage, Fredrik; Ramasse, Quentin; Erni, Rolf; Tiwari, Ayodhya N.

    2016-10-01

    Cu(In,Ga) Se2 (CIGS) thin film solar cells have demonstrated very high efficiencies, but still the role of nanoscale inhomogeneities in CIGS and their impact on the solar cell performance are not yet clearly understood. Due to the polycrystalline structure of CIGS, grain boundaries are very common structural defects that are also accompanied by compositional variations. In this work, we apply valence electron energy loss spectroscopy in scanning transmission electron microscopy to study the local band gap energy at a grain boundary in the CIGS absorber layer. Based on this example, we demonstrate the capabilities of a 2nd generation monochromator that provides a very high energy resolution and allows for directly relating the chemical composition and the band gap energy across the grain boundary. A band gap widening of about 20 meV is observed at the grain boundary. Furthermore, the compositional analysis by core-loss EELS reveals an enrichment of In together with a Cu, Ga and Se depletion at the same area. The experimentally obtained results can therefore be well explained by the presence of a valence band barrier at the grain boundary.

  17. The applications of in situ electron energy loss spectroscopy to the study of electron beam nanofabrication.

    PubMed

    Chen, Shiahn J; Howitt, David G; Gierhart, Brian C; Smith, Rosemary L; Collins, Scott D

    2009-06-01

    An in situ electron energy loss spectroscopy (EELS) technique has been developed to investigate the dynamic processes associated with electron-beam nanofabrication on thin membranes. In this article, practical applications germane to e-beam nanofabrication are illustrated with a case study of the drilling of nanometer-sized pores in silicon nitride membranes. This technique involves successive acquisitions of the plasmon-loss and the core-level ionization-loss spectra in real time, both of which provide the information regarding the hole-drilling kinetics, including two respective rates for total mass loss, individual nitrogen and silicon element depletion, and the change of the atomic bonding environment. In addition, the in situ EELS also provides an alternative method for endpoint detection with a potentially higher time resolution than by imaging. On the basis of the time evolution of in situ EELS spectra, a qualitative working model combining knock-on sputtering, irradiation-induced mass transport, and phase separation can be proposed.

  18. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.

    PubMed

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-03-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  19. Electron energy-loss spectroscopy of coupled plasmonic systems: beyond the standard electron perspective

    NASA Astrophysics Data System (ADS)

    Bernasconi, G. D.; Flauraud, V.; Alexander, D. T. L.; Brugger, J.; Martin, O. J. F.; Butet, J.

    2016-09-01

    Electron energy-loss spectroscopy (EELS) has become an experimental method of choice for the investigation of localized surface plasmon resonances, allowing the simultaneous mapping of the associated field distributions and their resonant energies with a nanoscale spatial resolution. The experimental observations have been well-supported by numerical models based on the computation of the Lorentz force acting on the impinging electrons by the scattered field. However, in this framework, the influence of the intrinsic properties of the plasmonic nanostructures studied with the electron energy-loss (EEL) measurements is somehow hidden in the global response. To overcome this limitation, we propose to go beyond this standard, and well-established, electron perspective and instead to interpret the EELS data using directly the intrinsic properties of the nanostructures, without regard to the force acting on the electron. The proposed method is particularly well-suited for the description of coupled plasmonic systems, because the role played by each individual nanoparticle in the observed EEL spectrum can be clearly disentangled, enabling a more subtle understanding of the underlying physical processes. As examples, we consider different plasmonic geometries in order to emphasize the benefits of this new conceptual approach for interpreting experimental EELS data. In particular, we use it to describe results from samples made by traditional thin film patterning and by arranging colloidal nanostructures.

  20. Electron Energy-Loss Spectroscopy Theory and Simulation Applied to Nanoparticle Plasmonics

    NASA Astrophysics Data System (ADS)

    Bigelow, Nicholas Walker

    In this dissertation, the capacity of electron energy-loss spectroscopy (EELS) to probe plasmons is examined in detail. EELS is shown to be able to detect both electric hot spots and Fano resonances in contrast to the prevailing knowledge prior to this work. The most detailed examination of magnetoplasmonic resonances in multi-ring structures to date and the utility of electron tomography to computational plasmonics is explored, and a new tomographic method for the reconstruction of a target is introduced. Since the observation of single-molecule surface-enhanced Raman scattering (SMSERS) in 1997, questions regarding the nature of the electromagnetic hot spots responsible for such observations still persist. A computational analysis of the electron- and photon-driven surface-plasmon resonances of monomer and dimer metal nanorods is presented to elucidate the differences and similarities between the two excitation mechanisms in a system with well understood optical properties. By correlating the nanostructure's simulated electron energy loss spectrum and loss-probability maps with its induced polarization and scattered electric field we discern how certain plasmon modes are selectively excited and how they funnel energy from the excitation source into the near- and far-field. Using a fully retarded electron-scattering theory capable of describing arbitrary three-dimensional nanoparticle geometries, aggregation schemes, and material compositions, we find that electron energy-loss spectroscopy (EELS) is able to indirectly probe the same electromagnetic hot spots that are generated by an optical excitation source. EELS is then employed in a scanning transmission electron microscope (STEM) to obtain maps of the localized surface plasmon modes of SMSERS-active nanostructures, which are resolved in both space and energy. Single-molecule character is confirmed by the bianalyte approach using two isotopologues of Rhodamine 6G. The origins of this observation are explored

  1. Quantification of ordering at a solid-liquid interface using plasmon electron energy loss spectroscopy

    SciTech Connect

    Gandman, Maria; Kauffmann, Yaron; Kaplan, Wayne D.

    2015-02-02

    We present an in situ electron energy loss spectroscopy (EELS) study of ordering of liquid Al at various Al-Al{sub 2}O{sub 3} interfaces. This technique utilizes precise measurements of the shifts in bulk plasmon resonance and their sensitivity to the valence electron density. Plasmon EELS combined with high resolution transmission electron microscopy provides information regarding the chemical composition in liquid Al at Al-Al{sub 2}O{sub 3} interfaces. Preferential oxygen segregation to the (0006) Al{sub 2}O{sub 3} plane was verified, and the (101{sup ¯}2) Al{sub 2}O{sub 3} plane was found to contain the lowest amount of segregated species.

  2. Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction

    NASA Technical Reports Server (NTRS)

    Daulton, Tyrone L.; Little, Brenda J.; Lowe, Kristine; Jones-Meehan, Joanne

    2002-01-01

    Electron energy loss spectroscopy (EELS) techniques were used to determine oxidation state, at high spatial resolution, of chromium associated with the metal-reducing bacteria, Shewanella oneidensis, in anaerobic cultures containing Cr(VI)O4(2-). These techniques were applied to fixed cells examined in thin section by conventional transmission electron microscopy (TEM) as well as unfixed, hydrated bacteria examined by environmental cell (EC)-TEM. Two distinct populations of bacteria were observed by TEM: bacteria exhibiting low image contrast and bacteria exhibiting high contrast in their cell membrane (or boundary) structure which was often encrusted with high-contrast precipitates. Measurements by EELS demonstrated that cell boundaries became saturated with low concentrations of Cr and the precipitates encrusting bacterial cells contained a reduced form of Cr in oxidation state + 3 or lower.

  3. Fabrication of co-axial field emitter tips for scanning probe energy loss spectroscopy.

    PubMed

    Song, Mi Yeon; Robinson, Alex P G; Palmer, Richard E

    2010-04-16

    We report on the fabrication of a co-axial tip for application to scanning probe energy loss spectroscopy (SPELS). The device consists of a 23.3 microm tall tip on a 76 microm tall mesa with a multilayer Si/Au/HfO(2)/Au structure; the outer Au and HfO(2) layers are stripped from the apex of the tip. The inner Au layer is used as a field emitting layer and the outer Au layer is grounded to screen the electric field between the tip and the substrate. The co-axial tip shows comparable field emission characteristics to electrochemically etched tungsten tips. The SPELS spectra of graphite obtained with the new tips show pi and sigma plasmon peaks and intense secondary electron emission peaks. It is anticipated that such co-axial tips will present a significant advantage for future angular resolved SPELS measurements.

  4. Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction.

    PubMed

    Daulton, Tyrone L; Little, Brenda J; Lowe, Kristine; Jones-Meehan, Joanne

    2002-06-01

    Electron energy loss spectroscopy (EELS) techniques were used to determine oxidation state, at high spatial resolution, of chromium associated with the metal-reducing bacteria, Shewanella oneidensis, in anaerobic cultures containing Cr(VI)O4(2-). These techniques were applied to fixed cells examined in thin section by conventional transmission electron microscopy (TEM) as well as unfixed, hydrated bacteria examined by environmental cell (EC)-TEM. Two distinct populations of bacteria were observed by TEM: bacteria exhibiting low image contrast and bacteria exhibiting high contrast in their cell membrane (or boundary) structure which was often encrusted with high-contrast precipitates. Measurements by EELS demonstrated that cell boundaries became saturated with low concentrations of Cr and the precipitates encrusting bacterial cells contained a reduced form of Cr in oxidation state + 3 or lower.

  5. Transition metal d -band occupancy in skutterudites studied by electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Prytz, Ø.; Taftø, J.; Ahn, C. C.; Fultz, B.

    2007-03-01

    The transition-metal 3d occupancy of a series of thermoelectric skutterudites is investigated using electron energy-loss spectroscopy. We find that bonding causes an emptying of the 3d states in the binary skutterudites CoP3 , CoAs3 , CoSb3 , and NiP3 , while compared to the pure Fe the 3d occupancy in LaFe4P12 is significantly increased, consistent with the idea that each interstitial La atom (rattler) donates three electrons to compensate for missing valence electron of Fe as compared to Co. These experimental results are in agreement with previous models suggesting a predominantly covalent bonding between transition metal and pnictogen atoms in skutterudites, and provide evidence of charge transfer from La to the Fe-P complex in LaFe4P12 .

  6. Electron energy loss spectroscopy study of Sr2-xGdxTiMnO6

    NASA Astrophysics Data System (ADS)

    Biskup, Nevenko; Alvarez-Serrano, Inmaculada; Veiga, Maria Luisa; Garcia-Hernandez, Mar; Lopez, Maria Luisa; Varela, Maria

    2012-02-01

    The newly synthesized double perovskite family Sr2-xGdxTiMnO6 (0energy loss spectroscopy. We find that, is spite of some precipitations of Mn and Ti rich regions that exist in 0.25<=x<=0.75, the manganese and titanium ions are generally well intermixed in both interior of the grains and on the grain boundaries. We discuss these results in the frame of highly non-linear electrical conductivity found in these materials.

  7. Practical spatial resolution of electron energy loss spectroscopy in aberration corrected scanning transmission electron microscopy.

    PubMed

    Shah, A B; Ramasse, Q M; Wen, J G; Bhattacharya, A; Zuo, J M

    2011-08-01

    The resolution of electron energy loss spectroscopy (EELS) is limited by delocalization of inelastic electron scattering rather than probe size in an aberration corrected scanning transmission electron microscope (STEM). In this study, we present an experimental quantification of EELS spatial resolution using chemically modulated 2×(LaMnO(3))/2×(SrTiO(3)) and 2×(SrVO(3))/2×(SrTiO(3)) superlattices by measuring the full width at half maxima (FWHM) of integrated Ti M(2,3), Ti L(2,3), V L(2,3), Mn L(2,3), La N(4,5), La N(2,3) La M(4,5) and Sr L(3) edges over the superlattices. The EELS signals recorded using large collection angles are peaked at atomic columns. The FWHM of the EELS profile, obtained by curve-fitting, reveals a systematic trend with the energy loss for the Ti, V, and Mn edges. However, the experimental FWHM of the Sr and La edges deviates significantly from the observed experimental tendency.

  8. Time-of-flight electron energy loss spectroscopy using TM110 deflection cavities.

    PubMed

    Verhoeven, W; van Rens, J F M; van Ninhuijs, M A W; Toonen, W F; Kieft, E R; Mutsaers, P H A; Luiten, O J

    2016-09-01

    We demonstrate the use of two TM110 resonant cavities to generate ultrashort electron pulses and subsequently measure electron energy losses in a time-of-flight type of setup. The method utilizes two synchronized microwave cavities separated by a drift space of 1.45 m. The setup has an energy resolution of 12 ± 2 eV FWHM at 30 keV, with an upper limit for the temporal resolution of 2.7 ± 0.4 ps. Both the time and energy resolution are currently limited by the brightness of the tungsten filament electron gun used. Through simulations, it is shown that an energy resolution of 0.95 eV and a temporal resolution of 110 fs can be achieved using an electron gun with a higher brightness. With this, a new method is provided for time-resolved electron spectroscopy without the need for elaborate laser setups or expensive magnetic spectrometers.

  9. Time-of-flight electron energy loss spectroscopy using TM110 deflection cavities

    PubMed Central

    Verhoeven, W.; van Rens, J. F. M.; van Ninhuijs, M. A. W.; Toonen, W. F.; Kieft, E. R.; Mutsaers, P. H. A.; Luiten, O. J.

    2016-01-01

    We demonstrate the use of two TM110 resonant cavities to generate ultrashort electron pulses and subsequently measure electron energy losses in a time-of-flight type of setup. The method utilizes two synchronized microwave cavities separated by a drift space of 1.45 m. The setup has an energy resolution of 12 ± 2 eV FWHM at 30 keV, with an upper limit for the temporal resolution of 2.7 ± 0.4 ps. Both the time and energy resolution are currently limited by the brightness of the tungsten filament electron gun used. Through simulations, it is shown that an energy resolution of 0.95 eV and a temporal resolution of 110 fs can be achieved using an electron gun with a higher brightness. With this, a new method is provided for time-resolved electron spectroscopy without the need for elaborate laser setups or expensive magnetic spectrometers. PMID:27704035

  10. A Complete Overhaul of the Electron Energy-Loss Spectroscopy and X-Ray Absorption Spectroscopy Database: eelsdb.eu.

    PubMed

    Ewels, Philip; Sikora, Thierry; Serin, Virginie; Ewels, Chris P; Lajaunie, Luc

    2016-06-01

    The electron energy-loss spectroscopy (EELS) and X-ray absorption spectroscopy (XAS) database has been completely rewritten, with an improved design, user interface, and a number of new tools. The database is accessible at https://eelsdb.eu/ and can now be used without registration. The submission process has been streamlined to encourage spectrum submissions and the new design gives greater emphasis on contributors' original work by highlighting their papers. With numerous new filters and a powerful search function, it is now simple to explore the database of several hundred EELS and XAS spectra. Interactive plots allow spectra to be overlaid, facilitating online comparison. An application-programming interface has been created, allowing external tools and software to easily access the information held within the database. In addition to the database itself, users can post and manage job adverts and read the latest news and events regarding the EELS and XAS communities. In accordance with the ongoing drive toward open access data increasingly demanded by funding bodies, the database will facilitate open access data sharing of EELS and XAS spectra.

  11. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-01

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum.

  12. Electron energy loss spectroscopy of carbon in dissociated dislocations in tantalum carbide

    NASA Astrophysics Data System (ADS)

    Allison, Craig; Hoffman, Mark; Williams, Wendell S.

    1982-10-01

    The carbon concentration in individual stacking faults in dissociated dislocations in tantalum carbide (TaCx) was analyzed using electron energy loss spectroscopy. Although the faulted region is less than 10 nm wide, the small diameter electron beam (0.5 nm) of a dedicated scanning transmission electron microscope allowed the carbon K x-ray excitation edge from the faulted region to be distinguished from the corresponding signal from the unfaulted region. The 50-nm thick foil was prepared by grinding, polishing, and ion milling a specimen sawed from a single crystal of TaC0.78. The analysis showed a significantly lower value for the carbon concentration in the fault, in accordance with crystallographic and energy considerations. The stacking fault in NaCl-structure TaCx must exhibit hcp symmetry, but the appropriate hcp phase, Ta2C, contains less carbon. Hence diffusion of carbon away from the moving dislocation must accompany plastic deformation. However, in view of the high melting point and high activation energy for carbon migration, diffusion is slow below approximately 1600 °C. This temperature corresponds approximately with the brittle-ductile transition for TaC. The isomorphic compound TiC does not exhibit dissociated dislocations, and hence this form of Suzuki hardening should not occur. Indeed, gross plastic deformation in TiC can occur at temperatures as low as 800 °C.

  13. Study of the Dielectric Function of Graphene from Spectroscopic Ellipsometry and Electron Energy Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nelson, Florence

    For more than 60 years, semiconductor research has been advancing up the periodic table. The first transistor was made from germanium. This later gave way to silicon-based devices due to the latter's ability to form an excellent interface with thermally-grown oxide. Now for the last ˜8 years, the focus has moved up one more row to carbon for post-CMOS devices in order to comply with the scaling limitations of Moore's law. However, for each of these, the measurements of film properties and dimensions have always been required for technological applications. These measurement methods often incorporate the use of light or electrons in order to take advantage of a wavelength that is on the order of, or smaller than, the feature sizes of interest. This thesis compares the dielectric function of graphene measured by an optical method to that obtained from an electron energy loss method in order to observe the effect of contamination and substrate on the optical properties of graphene exposed to the environment. Whether viewed in terms of how light affects a material (dielectric function) or how a material affects light (refractive index), the optical response is a quantity that may be used to obtain information about a film's thickness, energy structure, and the types of excitations that are responsible for energy loss. The three main experimental methods used in this thesis work are spectroscopic ellipsometry (SE), scanning transmission electron microscopy (STEM), and electron energy loss spectroscopy (EELS). SE is commonly used in clean-room environments for optical measurement over the energy range of ˜0-5 eV. This method is used to study graphene's dielectric function from the ultraviolet (UV) through infrared (IR) regions through use of an oscillator dispersion model. A nearly constant absorbance over the IR and into the visible region is observed due to vertical transitions between graphene's linearly dispersed pi-bands at the Dirac points. An exciton

  14. Electronic and optical properties of Fe, Pd, and Ti studied by reflection electron energy loss spectroscopy

    SciTech Connect

    Tahir, Dahlang; Kraaer, Jens; Tougaard, Sven

    2014-06-28

    We have studied the electronic and optical properties of Fe, Pd, and Ti by reflection electron energy-loss spectroscopy (REELS). REELS spectra recorded for primary energies in the range from 300 eV to 10 keV were corrected for multiple inelastically scattered electrons to determine the effective inelastic-scattering cross section. The dielectric functions and optical properties were determined by comparing the experimental inelastic-electron scattering cross section with a simulated cross section calculated within the semi-classical dielectric response model in which the only input is Im(−1/ε) by using the QUEELS-ε(k,ω)-REELS software package. The complex dielectric functions ε(k,ω), in the 0–100 eV energy range, for Fe, Pd, and Ti were determined from the derived Im(−1/ε) by Kramers-Kronig transformation and then the refractive index n and extinction coefficient k. The validity of the applied model was previously tested and found to give consistent results when applied to REELS spectra at energies between 300 and 1000 eV taken at widely different experimental geometries. In the present paper, we provide, for the first time, a further test on its validity and find that the model also gives consistent results when applied to REELS spectra in the full range of primary electron energies from 300 eV to 10000 eV. This gives confidence in the validity of the applied method.

  15. Valence electron energy-loss spectroscopy study of ZrSiO₄ and ZrO₂.

    PubMed

    Jiang, Nan; Spence, John C H

    2013-11-01

    ZrSiO4 (zircon) and m-ZrO2 (zirconia) are fundamental and industrially important materials. This work reports the detailed valence electron energy-loss spectroscopy (VEELS) studies of these compounds. The dielectric response functions, as well as single-electron interband transition spectra, are derived from VEELS data for both ZrSiO4 and m-ZrO2, in the range 5-50 eV using the Kramers-Kronig analysis method. Our interpretation of the interband transitions is given with the aid of ab initio calculations of density of states. The bandgap energies for both materials are also measured using VEELS. The surface and bulk plasmons are identified: the surface plasmon peaks locate at around 12 eV, and two bulk plasmon peaks are ∼15-16 eV and ∼25-27 eV, respectively. Although similarities in the VEELS exist between ZrSiO4 and m-ZrO2, two major differences are also noticed and explained in terms of composition and structure differences.

  16. Mode Coupling in Plasmonic Heterodimers Probed with Electron Energy Loss Spectroscopy.

    PubMed

    Flauraud, Valentin; Bernasconi, Gabriel D; Butet, Jérémy; Alexander, Duncan T L; Martin, Olivier J F; Brugger, Juergen

    2017-03-14

    While plasmonic antennas composed of building blocks made of the same material have been thoroughly studied, recent investigations have highlighted the unique opportunities enabled by making compositionally asymmetric plasmonic systems. So far, mainly heterostructures composed of nanospheres and nanodiscs have been investigated, revealing opportunities for the design of Fano resonant nanostructures, directional scattering, sensing and catalytic applications. In this article, an improved fabrication method is reported that enables precise tuning of the heterodimer geometry, with interparticle distances made down to a few nanometers between Au-Ag and Au-Al nanoparticles. A wide range of mode energy detuning and coupling conditions are observed by near field hyperspectral imaging performed with electron energy loss spectroscopy, supported by full wave analysis numerical simulations. These results provide direct insights into the mode hybridization of plasmonic heterodimers, pointing out the influence of each dimer constituent in the overall electromagnetic response. By relating the coupling of non-dipolar modes and plasmon-interband interaction with the dimer geometry, this work facilitates the development of plasmonic heterostructures with tailored responses, beyond the possibilities offered by homodimers.

  17. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    SciTech Connect

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P. E-mail: michael.brunger@flinders.edu.au; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J. E-mail: michael.brunger@flinders.edu.au; and others

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  18. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations.

    PubMed

    Ferreira da Silva, F; Lange, E; Limão-Vieira, P; Jones, N C; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J; Brunger, M J; Neves, R F C; Lopes, M C A; de Oliveira, E M; da Costa, R F; Varella, M T do N; Bettega, M H F; Blanco, F; García, G; Lima, M A P; Jones, D B

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  19. Quantification of the boron speciation in alkali borosilicate glasses by electron energy loss spectroscopy

    PubMed Central

    Cheng, Shaodong; Yang, Guang; Zhao, Yanqi; Peng, MingYing; Skibsted, Jørgen; Yue, Yuanzheng

    2015-01-01

    Transmission electron microscopy and related analytical techniques have been widely used to study the microstructure of different materials. However, few research works have been performed in the field of glasses, possibly due to the electron-beam irradiation damage. In this paper, we have developed a method based on electron energy loss spectroscopy (EELS) data acquisition and analyses, which enables determination of the boron speciation in a series of ternary alkali borosilicate glasses with constant molar ratios. A script for the fast acquisition of EELS has been designed, from which the fraction of BO4 tetrahedra can be obtained by fitting the experimental data with linear combinations of the reference spectra. The BO4 fractions (N4) obtained by EELS are consistent with those from 11B MAS NMR spectra, suggesting that EELS can be an alternative and convenient way to determine the N4 fraction in glasses. In addition, the boron speciation of a CeO2 doped potassium borosilicate glass has been analyzed by using the time-resolved EELS spectra. The results clearly demonstrate that the BO4 to BO3 transformation induced by the electron beam irradiation can be efficiently suppressed by doping CeO2 to the borosilicate glasses. PMID:26643370

  20. Chemical Analysis of Individual Aerosols Particles by Electron Energy-Loss Spectroscopy (EELS)

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Buseck, P. R.; Garvie, L. A.; Li, J.; Posfai, M.

    2001-12-01

    We use electron energy-loss spectroscopy (EELS) with a transmission electron microscope (TEM) to obtain chemical and bonding information on individual aerosol particles. EELS is ideally suited to this task because of its high spatial resolution and sensitivity to light elements such as C, N, and O. In addition, the spectral shapes provide information regarding bonding, atomic coordination and, for polyvalent elements, oxidation states. Our current focus is on carbonaceous aerosols both in the ambient air and emissions from biomass burning, with emphasis on the heterogeneous chemistry, particle structure, and chemical composition of soot particles. From the EELS spectra we were able to record for the first time, differences in composition between individual spherules within the same soot aggregate. We also found evidence of chemical variations even within individual soot spheres as small as 50 nm across. In the case of biomass burning, the most striking chemical differences are in the quantity of K, minor O and, in places, N. The quantity of elements associated with C decreases with the degree of graphitization of the soot spheres, as shown by the shapes of the C spectra and was corroborated by high-resolution TEM images of the analyzed particles. Knowledge of the degree of graphitization and quantity of associated elements is important for understanding and modeling their optical properties and in some case in source attributions.

  1. Electron energy-loss spectroscopy of carbon in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Bradley, John P.; Thomas, Kathie L.; Mckay, David S.

    1994-01-01

    The nature of the carbon-bearing phases in IDP's provides information regarding the chemical and physical processes involved in the formation and evolution of the early solar system. Several carbon-bearing materials have been observed in IDP's, but details of their nature, abundance, and distribution are still poorly known. A knowledge of the abundance and nature of carbon in IDP's is useful in constraining the sources of IDP's and for comparisons with other chondritic materials. Estimates of carbon abundance in anhydrous and hydrated IDP's indicate that most of these particles have significantly higher carbon than the carbonaceous chondrites. Mineralogical analyses show that carbonates are only a minor component of most hydrated IDP's, and so the high carbon abundances in this group of IDP's indicates that other carbon-bearing phases are present in significant concentrations. Using the technique of electron energy-loss spectroscopy (EELS), we have identified two forms of carbon in a hydrated IDP, oxidized carbon (carbonates), and amorphous elemental carbon.

  2. Quasinormal mode theory and modelling of electron energy loss spectroscopy for plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Ge, Rong-Chun; Hughes, Stephen

    2016-05-01

    Understanding light-matter interactions using localized surface plasmons (LSPs) is of fundamental interest in classical and quantum plasmonics and has a wide range of applications. In order to understand the spatial properties of LSPs, electron energy loss spectroscopy (EELS) is a common and powerful method of spatially resolving the extreme localized fields that can be obtained with metal resonators. However, modelling EELS for general shaped resonators presents a major challenge in computational electrodynamics, requiring the full photon Green function as a function of two space points and frequency. Here we present an intuitive and computationally simple method for computing EELS maps of plasmonic resonators using a quasinormal mode (QNM) expansion technique. By separating the contribution of the QNM and the bulk material, we give closed-form analytical formulas for the plasmonic QNM contribution to the EELS maps. We exemplify our technique for a split ring resonator, a gold nanorod, and a nanorod dimer structure. The method is accurate, intuitive, and gives orders of magnitude improvements over direct dipole simulations that numerically solve the full 3D Maxwell equations. We also show how the same QNM Green function can be used to obtain the Purcell factor (and projected local density of optical states) from quantum dipole emitters or two level atoms, and we demonstrate how the spectral features differ in general to the EELS spectrum.

  3. Signatures of distinct impurity configurations in atomic-resolution valence electron-energy-loss spectroscopy: Application to graphene

    NASA Astrophysics Data System (ADS)

    Kapetanakis, Myron D.; Oxley, Mark P.; Zhou, Wu; Pennycook, Stephen J.; Idrobo, Juan-Carlos; Pantelides, Sokrates T.

    2016-10-01

    The detection and identification of impurities and other point defects in materials is a challenging task. Signatures for point defects are typically obtained using spectroscopies without spatial resolution. Here we demonstrate the power of valence electron-energy-loss spectroscopy (VEELS) in an aberration-corrected scanning transmission-electron microscope (STEM) to provide energy-resolved and atomically resolved maps of electronic excitations of individual impurities which, combined with theoretical simulations, yield unique signatures of distinct bonding configurations of impurities. We report VEELS maps for isolated Si impurities in graphene, which are known to exist in two distinct configurations. We also report simulations of the maps, based on density functional theory and dynamical scattering theory, which agree with and provide direct interpretation of observed features. We show that theoretical VEELS maps exhibit distinct and unambiguous signatures for the threefold- and fourfold-coordinated configurations of Si impurities in different energy-loss windows, corresponding to impurity-induced bound states, resonances, and antiresonances. With the advent of new monochromators and detectors with high energy resolution and low signal-to-noise ratio, the present work ushers an atomically resolved STEM-based spectroscopy of individual impurities as an alternative to conventional spectroscopies for probing impurities and defects.

  4. Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy.

    PubMed

    Ramasse, Quentin M; Seabourne, Che R; Kepaptsoglou, Despoina-Maria; Zan, Recep; Bangert, Ursel; Scott, Andrew J

    2013-10-09

    A combination of scanning transmission electron microscopy, electron energy loss spectroscopy, and ab initio calculations reveal striking electronic structure differences between two distinct single substitutional Si defect geometries in graphene. Optimised acquisition conditions allow for exceptional signal-to-noise levels in the spectroscopic data. The near-edge fine structure can be compared with great accuracy to simulations and reveal either an sp(3)-like configuration for a trivalent Si or a more complicated hybridized structure for a tetravalent Si impurity.

  5. Comparison of theoretical and experimental dielectric functions: Electron energy-loss spectroscopy and density-functional calculations on skutterudites

    NASA Astrophysics Data System (ADS)

    Prytz, Ø.; Løvvik, O. M.; Taftø, J.

    2006-12-01

    We explore the possibility of combining density functional theory (DFT) and electron energy loss spectroscopy (EELS) to determine the dielectric function of materials. As model systems we use the skutterudites CoP3 , CoAs3 , and CoSb3 which are prototypes for thermoelectric materials. We achieve qualitative agreement between the theoretically and experimentally obtained low energy-loss spectra and dielectric function. Some of the remaining discrepancies may be caused by the challenge of refining the experimental spectra before Kramers-Kronig analysis. However, contrary to what is the case for some crystals with less complicated electronic structure, the DFT calculated plasmon energies deviate significantly from the experimental values. The great accuracy with which the plasmon energy can be determined by EELS, suggests that this technique may provide valuable inputs in further efforts to improve DFT calculations. The use of EELS as the experimental technique may become particularly powerful in studies of small volumes of materials.

  6. Electron energy-loss spectroscopy of excited states of the pyridine molecules

    NASA Astrophysics Data System (ADS)

    Linert, Ireneusz; Zubek, Mariusz

    2016-04-01

    Electron energy-loss spectra of the pyridine, C5H5N, molecules in the gas phase have been measured to investigate electronic excitation in the energy range 3.5-10 eV. The applied wide range of residual electron energy and the scattering angle range from 10° to 180° enabled to differentiate between optically-allowed and -forbidden transitions. These measurements have allowed vertical excitation energies of the triplet excited states of pyridine to be determined and tentative assignments of these states to be proposed. Some of these states have not been identified in the previous works. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  7. Combination of electron energy-loss spectroscopy and energy dispersive x-ray spectroscopy to determine indium concentration in InGaN thin film structures

    NASA Astrophysics Data System (ADS)

    Wang, X.; Chauvat, M. P.; Ruterana, P.; Walther, T.

    2015-11-01

    We demonstrate a method to determine the indium concentration, x, of In x Ga1-x N thin films by combining plasmon excitation studies in electron energy-loss spectroscopy (EELS) with a novel way of quantification of the intensity of x-ray lines in energy-dispersive x-ray spectroscopy (EDXS). The plasmon peak in EELS of InGaN is relatively broad. We fitted a Lorentz function to the main plasmon peak to suppress noise and the influence from the neighboring Ga 3d transition in the spectrum, which improves the precision in the evaluation of the plasmon peak position. As the indium concentration of InGaN is difficult to control during high temperature growth due to partial In desorption, the nominal indium concentrations provided by the growers were not considered reliable. The indium concentration obtained from EDXS quantification using Oxford Instrument ISIS 300 x-ray standard quantification software often did not agree with the nominal indium concentration, and quantification using K and L lines was inconsistent. We therefore developed a self-consistent iterative procedure to determine the In content from thickness-dependent k-factors, as described in recent work submitted to Journal of Microscopy. When the plasmon peak position is plotted versus the indium concentration from EDXS we obtain a linear relationship over the whole compositional range, and the standard error from linear least-squares fitting shows that the indium concentration can be determined from the plasmon peak position to within Δx = ± 0.037 standard deviation.

  8. Implementation of subcellular water mapping by electron energy loss spectroscopy in a medium-voltage scanning transmission electron microscope.

    PubMed

    Terryn, C; Michel, J; Thomas, X; Laurent-Maquin, D; Balossier, G

    2004-07-01

    The water concentration in biological cells plays a predominant role in cellular life. Using electron energy loss spectroscopy, the feasibility to measure the water content in cells has already been demonstrated. In this paper, we present an upgrade of water measurement in hydrated cryosections by spectrum imaging mode in a medium-voltage scanning transmission electron microscope. The electron energy loss spectra are recorded in spectrum imaging mode in a 2(n)x2(n) pixels array. Each spectrum is processed in order to determine the water mass content in the corresponding pixel. Then a parametric image is obtained in which grey levels are related to water concentration. In this image, it is possible to recognize the different subcellular compartments. By averaging the water concentration over the relevant pixels, we can determine the water mass content in the concerned subcellular compartment. As an example, we present water mass content measurement at subcellular level in rat hepatocytes.

  9. A reverse Monte Carlo method for deriving optical constants of solids from reflection electron energy-loss spectroscopy spectra

    NASA Astrophysics Data System (ADS)

    Da, B.; Sun, Y.; Mao, S. F.; Zhang, Z. M.; Jin, H.; Yoshikawa, H.; Tanuma, S.; Ding, Z. J.

    2013-06-01

    A reverse Monte Carlo (RMC) method is developed to obtain the energy loss function (ELF) and optical constants from a measured reflection electron energy-loss spectroscopy (REELS) spectrum by an iterative Monte Carlo (MC) simulation procedure. The method combines the simulated annealing method, i.e., a Markov chain Monte Carlo (MCMC) sampling of oscillator parameters, surface and bulk excitation weighting factors, and band gap energy, with a conventional MC simulation of electron interaction with solids, which acts as a single step of MCMC sampling in this RMC method. To examine the reliability of this method, we have verified that the output data of the dielectric function are essentially independent of the initial values of the trial parameters, which is a basic property of a MCMC method. The optical constants derived for SiO2 in the energy loss range of 8-90 eV are in good agreement with other available data, and relevant bulk ELFs are checked by oscillator strength-sum and perfect-screening-sum rules. Our results show that the dielectric function can be obtained by the RMC method even with a wide range of initial trial parameters. The RMC method is thus a general and effective method for determining the optical properties of solids from REELS measurements.

  10. A reverse Monte Carlo method for deriving optical constants of solids from reflection electron energy-loss spectroscopy spectra

    SciTech Connect

    Da, B.; Sun, Y.; Ding, Z. J.; Mao, S. F.; Zhang, Z. M.; Jin, H.; Yoshikawa, H.; Tanuma, S.

    2013-06-07

    A reverse Monte Carlo (RMC) method is developed to obtain the energy loss function (ELF) and optical constants from a measured reflection electron energy-loss spectroscopy (REELS) spectrum by an iterative Monte Carlo (MC) simulation procedure. The method combines the simulated annealing method, i.e., a Markov chain Monte Carlo (MCMC) sampling of oscillator parameters, surface and bulk excitation weighting factors, and band gap energy, with a conventional MC simulation of electron interaction with solids, which acts as a single step of MCMC sampling in this RMC method. To examine the reliability of this method, we have verified that the output data of the dielectric function are essentially independent of the initial values of the trial parameters, which is a basic property of a MCMC method. The optical constants derived for SiO{sub 2} in the energy loss range of 8-90 eV are in good agreement with other available data, and relevant bulk ELFs are checked by oscillator strength-sum and perfect-screening-sum rules. Our results show that the dielectric function can be obtained by the RMC method even with a wide range of initial trial parameters. The RMC method is thus a general and effective method for determining the optical properties of solids from REELS measurements.

  11. Combined study of the ground and unoccupied electronic states of graphite by electron energy-loss spectroscopy

    SciTech Connect

    Feng, Zhenbao; Löffler, Stefan; Eder, Franz; Meyer, Jannik C.; Su, Dangsheng; Schattschneider, Peter

    2013-11-14

    Both the unoccupied and ground electronic states of graphite have been studied by electron energy-loss spectroscopy in a transmission electron microscope. Electron energy-loss near-edge structures of the K-edge of carbon have been investigated in detail for scattering angles from 0 to 2.8 mrad. The π{sup *} and σ{sup *} components were separated. The angular and energy dependences of the π{sup *} and σ{sup *} structures were in fair agreement with theory. Electron energy loss Compton spectra of graphite were recorded at scattering angles from 45 to 68 mrad. One Compton scattering spectrum was obtained in 1 min compared with several hours or days using photons. The contributions of core electrons were calculated by the exact Hartree-Slater method in the Compton scattering region. The electron Compton profile for graphite is in good agreement with other conventional Compton profile measurements, as well as with theory, thus establishing the validity of the technique.

  12. Blue and red shifts of interband transition energy in supported Au nanoclusters on SiO2 and HOPG investigated by reflection electron energy-loss spectroscopy.

    PubMed

    Borisyuk, P V; Troyan, V I; Pushkin, M A; Borman, V D; Tronin, V N

    2012-11-01

    Gold nanoclusters supported on SiO2 and HOPG are experimentally investigated by the reflection electron energy-loss spectroscopy. Two different trends in the size-dependence of the position of the energy-loss peak corresponding to the interband Au 5d --> 6s6p transition is observed: a blue shift for Au clusters on SiO2 and a red shift for Au clusters on HOPG. The different behaviors are qualitatively explained by the influence of the substrate on the spectrum of electronic states in Au nanoclusters.

  13. Si(111)(\\sqrt{3}× \\sqrt{3})-Al Surface Studied by Angle-Resolved Electron-Energy-Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Sung-Te; Hasegawa, Shigehiko; Nakamura, Shogo; Nakashima, Hisao

    1991-09-01

    The surface electronic structures of Si(111)(\\sqrt{3}× \\sqrt{3})-Al are investigated with the use of angle-resolved electron-energy-loss spectroscopy. Three new surface one-electron transitions (in specular reflection) are found at 1.8, 7.2, and 13.1 eV. Compared with the surface state band structures calculated by Northrup and STM results by Hamers and Demuth, the loss peak at 1.8 eV is ascribed to the one-electron transition between the occupied and unoccupied surface state bands which originate from the Al adatoms. The other two peaks are considered to be due to the Si-Si strained back bonds.

  14. Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers.

    PubMed

    Bigelow, Nicholas W; Vaschillo, Alex; Camden, Jon P; Masiello, David J

    2013-05-28

    Through numerical simulation, we predict the existence of the Fano interference effect in the electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) of symmetry-broken nanorod dimers that are heterogeneous in material composition and asymmetric in length. The differing selection rules of the electron probe in comparison to the photon of a plane wave allow for the simultaneous excitation of both optically bright and dark plasmons of each monomer unit, suggesting that Fano resonances will not arise in EELS and CL. Yet, interferences are manifested in the dimer's scattered near- and far-fields and are evident in EELS and CL due to the rapid π-phase offset in the polarizations between super-radiant and subradiant hybridized plasmon modes of the dimer as a function of the energy loss suffered by the impinging electron. Depending upon the location of the electron beam, we demonstrate the conditions under which Fano interferences will be present in both optical and electron spectroscopies (EELS and CL) as well as a new class of Fano interferences that are uniquely electron-driven and are absent in the optical response. Among other things, the knowledge gained from this work bears impact upon the design of some of the world's most sensitive sensors, which are currently based upon Fano resonances.

  15. Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy

    SciTech Connect

    Heo, Sung; Cho, Eunseog; Lee, Hyung-Ik; Park, Gyeong Su; Kang, Hee Jae; Nagatomi, T.; Choi, Pyungho; Choi, Byoung-Deog

    2015-07-15

    The band gap and defect states of MgO thin films were investigated by using reflection electron energy loss spectroscopy (REELS) and high-energy resolution REELS (HR-REELS). HR-REELS with a primary electron energy of 0.3 keV revealed that the surface F center (FS) energy was located at approximately 4.2 eV above the valence band maximum (VBM) and the surface band gap width (E{sub g}{sup S}) was approximately 6.3 eV. The bulk F center (F{sub B}) energy was located approximately 4.9 eV above the VBM and the bulk band gap width was about 7.8 eV, when measured by REELS with 3 keV primary electrons. From a first-principles calculation, we confirmed that the 4.2 eV and 4.9 eV peaks were F{sub S} and F{sub B}, induced by oxygen vacancies. We also experimentally demonstrated that the HR-REELS peak height increases with increasing number of oxygen vacancies. Finally, we calculated the secondary electron emission yields (γ) for various noble gases. He and Ne were not influenced by the defect states owing to their higher ionization energies, but Ar, Kr, and Xe exhibited a stronger dependence on the defect states owing to their small ionization energies.

  16. Isolated energy level in the band gap of Yb2Si2O7 identified by electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Ogawa, Takafumi; Kobayashi, Shunsuke; Wada, Masashi; Fisher, Craig A. J.; Kuwabara, Akihide; Kato, Takeharu; Yoshiya, Masato; Kitaoka, Satoshi; Moriwake, Hiroki

    2016-05-01

    We report the detection of an isolated energy level in the band gap of crystalline Yb2Si2O7 in the low-energy-loss region of its electron energy-loss (EEL) spectrum, obtained using a monochromated scanning transmission electron microscope. The experimental results are corroborated by first-principles calculations of the theoretical EEL spectrum. The calculations reveal that unoccupied Yb 4 f orbitals constitute an isolated energy level about 1 eV below the conduction band minimum (CBM), resulting in a terrace about 1 eV wide at the band edge of the EEL spectrum. In the case of Yb2O3 , no band edge terrace is present because the unoccupied f level lies just below the CBM. We also examined optical absorption properties of Yb2Si2O7 using UV-vis diffuse reflectance spectroscopy, which shows that the isolated energy level could not be detected in the band edge of the obtained absorbance spectrum. These findings demonstrate the utility of low-loss EEL spectroscopy with high energy resolution for probing semilocalized electronic features.

  17. Surface plasmon excitations in metal spheres: Direct comparison of light scattering and electron energy-loss spectroscopy by modal decomposition

    NASA Astrophysics Data System (ADS)

    Collins, Sean M.; Midgley, Paul A.

    2013-06-01

    In previous publications, qualitative agreement between studies of surface plasmon excitations in nanoparticles by near-field light scattering and electron energy-loss spectroscopy (EELS) has been found for experiments and simulations. Here, we present a quantitative method for the comparison of light scattering and EELS for surface plasmons in metal spheres. Defining the Fourier transform of the modal component of the scattered electric field along the equivalent electron trajectory enables a direct evaluation of the relative weighting factor for light- and electron-excited surface plasmon modes. This common quantity for light scattering and EELS is examined for size, composition, and trajectory dependencies, facilitating the analysis of key differences between light and electron excitation. A single functional dependence on Drude model plasmon energies is identified to explain the relative modal weighting factors for light scattering and EELS. This method represents an important step toward the complete spectral and spatial reconstruction of EELS maps from near-field light scattering calculations.

  18. Verifying the presence of low levels of neptunium in a uranium matrix with electron energy-loss spectroscopy.

    PubMed

    Buck, Edgar C; Douglas, Matt; Wittman, Rick S

    2010-01-01

    This paper examines the problems associated with analysis of low levels of neptunium in a uranium matrix with electron energy-loss spectroscopy (EELS) on the transmission electron microscope (TEM). The detection of neptunium in a matrix of uranium can be impeded by the occurrence of a plural scattering event from uranium (U-M(5)+U-O(4,5)) that results in severe overlap on the Np-M(5) edge at 3665 eV. Low levels of Np (1600-6300 ppm) can be detected in a uranium solid, uranophane [Ca(UO(2))(2)(SiO(3)OH)(2)(H(2)O)(5)], by confirming that the energy gap between the Np-M(5) and Np-M(4) edges is at 184 eV and showing that the M(4)/M(5) ratio for the neptunium is smaller than that for uranium. The Richardson-Lucy deconvolution method was applied to energy-loss spectral images and was shown to increase the signal to noise ratio.

  19. Verifying the Presence of Low Levels of Neptunium in a Uranium Matrix with Electron Energy-Loss Spectroscopy

    SciTech Connect

    Buck, Edgar C.; Douglas, Matthew; Wittman, Richard S.

    2010-01-01

    This paper examines the problems associated with the analysis of low levels of neptunium (Np) in a uranium (U) matrix with electron energy-loss spectroscopy (EELS) on the transmission electron microscope (TEM). The detection of Np in a matrix of uranium (U) can be impeded by the occurrence of a plural scattering event from U (U-M5 + U-O4,5) that results in severe overlap on the Np-M5 edge at 3665 eV. Low levels (1600 - 6300 ppm) of Np can be detected in U solids by confirming the energy gap between the Np-M5 and Np-M4 edges is at 184 eV and showing that the M4/M5 ratio for the Np is smaller than that for U. The Richardson-Lucy deconvolution method was applied to energy-loss spectral images and was shown to increase the signal to noise. This method also improves the limits of detection for Np in a U matrix.

  20. The beta-SiC(100) surface studied by low energy electron diffraction, Auger electron spectroscopy, and electron energy loss spectra

    NASA Technical Reports Server (NTRS)

    Dayan, M.

    1986-01-01

    The beta-SiC(100) surface has been studied by low energy electron diffraction, Auger electron spectroscopy, high resolution electron energy loss spectra (HREELS), and core level excitation EELS. Two new Si-terminated phases have been discovered, one with (3 x 2) symmetry, and the other with (2 x 1) symmetry. Models are presented to describe these phases. New results, for the C-rich surface, are presented and discussed. In addition, core level excitation EELS results are given and compared with theory.

  1. π-plasmon dispersion in free-standing graphene by momentum-resolved electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Liou, S. C.; Shie, C.-S.; Chen, C. H.; Breitwieser, R.; Pai, W. W.; Guo, G. Y.; Chu, M.-W.

    2015-01-01

    The π-plasmon dispersion in graphene was scrutinized by momentum-resolved electron energy-loss spectroscopy with an improved momentum q resolution and was found to display the square root of the q dispersion characteristic of the collective excitation of two-dimensional electron systems, in contrast to previous experimental and theoretical studies which reported a linear q dispersion. Our theoretical elaborations on the q -dependent spectra affirm this square root of q relation and further unveil an in-plane electronic anisotropy. The physical property of the π plasmon is thoroughly compared to that of the two-dimensional plasmon due to carriers of the Dirac fermions. A clear distinction between the π plasmon and the two-dimensional Dirac plasmon is demonstrated, clarifying the common notion about correlating the linearly dispersed Dirac cones with the linear dispersion of the π plasmon previously reported.

  2. π-Plasmon Dispersion in Free-Standing Monolayer Graphene Investigated by Momentum-Resolved Electron Energy-Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liou, S. C.; Breitwieser, R.; Chen, C. H.; Pai, W. W.; Guo, G. Y.; Chu, M. W.

    2014-08-01

    The {\\pi}-plasmon dispersion in graphene was scrutinized by momentum(q)-resolved electron energy-loss spectroscopy with an improved q resolution and found to display the square root of q dispersion characteristic of the collective excitation of two-dimensional electron systems, in contrast with previous experimental and theoretical studies which reported a linear q dispersion. Our theoretical elaborations on the q-dependent spectra affirm this square root of q relation and further unveil an in-plane electronic anisotropy. The physical property of the {\\pi} plasmon is thoroughly compared to that of the two-dimensional plasmon due to carriers of the Dirac fermions. A clear distinction between the {\\pi} plasmon and the two-dimensional Dirac plasmon was demonstrated, clarifying the common notion on correlating the linearly-dispersed Dirac cones to the linear dispersion of the {\\pi} plasmon previously reported.

  3. Investigation of the oxidation states of Cu additive in colored borosilicate glasses by electron energy loss spectroscopy

    SciTech Connect

    Yang, Guang Cheng, Shaodong; Li, Chao; Ma, Chuansheng; Zhong, Jiasong; Xiang, Weidong; Wang, Zhao

    2014-12-14

    Three optically transparent colorful (red, green, and blue) glasses were synthesized by the sol-gel method. Nano-sized precipitates were found in scanning electron microscopy images. The precipitates were analyzed by transmission electron microscopy (TEM) and high resolution TEM. The measured lattice parameters of these precipitates were found to fit the metallic copper in red glass but deviate from single valenced Cu oxides in green and blue glasses. The chemistry of these nano-sized particles was confirmed by electron energy loss spectroscopy (EELS). By fitting the EELS spectra obtained from the precipitates with the linear combination of reference spectra from Cu reference compounds, the oxidation states of Cu in the precipitates have been derived. First principle calculations suggested that the Cu nano-particles, which are in the similar oxidation states as our measurement, would show green color in the visible light range.

  4. Using Plasmon Peaks in Electron Energy-Loss Spectroscopy to Determine the Physical and Mechanical Properties of Nanoscale Materials

    SciTech Connect

    Howe, James M.

    2013-05-09

    In this program, we developed new theoretical and experimental insights into understanding the relationships among fundamental universality and scaling phenomena, the solid-state physical and mechanical properties of materials, and the volume plasmon energy as measured by electron energy-loss spectroscopy (EELS). Particular achievements in these areas are summarized as follows: (i) Using a previously proposed physical model based on the universal binding-energy relation (UBER), we established close phenomenological connections regarding the influence of the valence electrons in materials on the longitudinal plasma oscillations (plasmons) and various solid-state properties such as the optical constants (including absorption and dispersion), elastic constants, cohesive energy, etc. (ii) We found that carbon materials, e.g., diamond, graphite, diamond-like carbons, hydrogenated and amorphous carbon films, exhibit strong correlations in density vs. Ep (or maximum of the volume plasmon peak) and density vs. hardness, both from available experimental data and ab initio DFT calculations. This allowed us to derive a three-dimensional relationship between hardness and the plasmon energy, that can be used to determine experimentally both hardness and density of carbon materials based on measurements of the plasmon peak position. (iii) As major experimental accomplishments, we demonstrated the possibility of in-situ monitoring of changes in the physical properties of materials with conditions, e.g., temperature, and we also applied a new plasmon ratio-imaging technique to map multiple physical properties of materials, such as the elastic moduli, cohesive energy and bonding electron density, with a sub-nanometer lateral resolution. This presents new capability for understanding material behavior. (iv) Lastly, we demonstrated a new physical phenomenon - electron-beam trapping, or electron tweezers - of a solid metal nanoparticle inside a liquid metal. This phenomenon is

  5. Band gap opening in strongly compressed diamond observed by x-ray energy loss spectroscopy

    SciTech Connect

    Gamboa, E. J.; Fletcher, L. B.; Lee, H. J.; MacDonald, M. J.; Zastrau, U.; Gauthier, M.; Gericke, D. O.; Vorberger, J.; Granados, E.; Hastings, J. B.; Glenzer, S. H.

    2016-01-25

    The extraordinary mechanical and optical properties of diamond are the basis of numerous technical applications and make diamond anvil cells a premier device to explore the high-pressure behavior of materials. However, at applied pressures above a few hundred GPa, optical probing through the anvils becomes difficult because of the pressure-induced changes of the transmission and the excitation of a strong optical emission. Such features have been interpreted as the onset of a closure of the optical gap in diamond, and can significantly impair spectroscopy of the material inside the cell. In contrast, a comparable widening has been predicted for purely hydrostatic compressions, forming a basis for the presumed pressure stiffening of diamond and resilience to the eventual phase change to BC8. We here present the first experimental evidence of this effect at geo-planetary pressures, exceeding the highest ever reported hydrostatic compression of diamond by more than 200 GPa and any other measurement of the band gap by more than 350 GPa. We here apply laser driven-ablation to create a dynamic, high pressure state in a thin, synthetic diamond foil together with frequency-resolved x-ray scattering as a probe. The frequency shift of the inelastically scattered x-rays encodes the optical properties and, thus, the behavior of the band gap in the sample. Using the ultra-bright x-ray beam from the Linac Coherent Light Source (LCLS), we observe an increasing direct band gap in diamond up to a pressure of 370 GPa. This finding points to the enormous strains in the anvils and the impurities in natural Type Ia diamonds as the source of the observed closure of the optical window. Our results demonstrate that diamond remains an insulating solid to pressures approaching its limit strength.

  6. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.

    PubMed

    Brintlinger, Todd; Herzing, Andrew A; Long, James P; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, B S

    2015-06-23

    We have produced large numbers of hybrid metal-semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden gap-localized transverse mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance via active modulation of the gap material's optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek.

  7. Identification of local phase of nanoscale BaTiO₃ powders by high-resolution electron energy loss spectroscopy.

    PubMed

    Moon, Sun-Min; Wang, Xiaohui; Cho, Nam-Hee

    2013-08-01

    The electron energy loss spectroscopy (EELS) technique was applied to investigate the local variation in the phase of barium titanate (BaTiO₃) ceramics. It was found that the fine structure of the titanium L₂,₃ edge and their satellite peaks were sensitively varied with the tetragonal-cubic phase transition. The peak splitting of Ti-L₃ edge of tetragonal-phased BaTiO₃ ceramics was widened because of the increased crystal field effect compared with that of cubic-phased BaTiO₃. In case of nanoscale BaTiO₃ powders, the L₃ edge splitting of the core region was found to be smaller than that of the shell region. The energy gap between peaks t₂g and eg varied from 2.36 to 1.94 eV with changing the probe position from 1 to 20 nm from the surface. These results suggest that the EELS technique can be used to identify the local phase of sintered BaTiO₃ ceramics.

  8. Comprehensive studies of the electronic structure of pristine and potassium doped chrysene investigated by electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Roth, Friedrich; Mahns, Benjamin; Schönfelder, Ronny; Hampel, Silke; Nohr, Markus; Büchner, Bernd; Knupfer, Martin

    2012-09-01

    We have performed electron energy-loss spectroscopy studies in order to investigate the electronic properties of chrysene molecular solids. The valence band electronic excitation spectra and the C 1s core level excitations have been measured for pristine and potassium doped chrysene. The core level studies show a fine structure which signals the presence of four close lying conduction bands close to the Fermi level. Upon potassium doping, these bands are filled with electrons, and we have reached a doping level of about K2.7chrysene. Furthermore, undoped chrysene is characterized by an optical gap of about 3.3 eV and five, relatively weak, excitonic features following the excitation onset. Doping induces major changes in the electronic excitation spectra, with a new, prominent low energy excitation at about 1.3 eV. The results of a Kramers-Kronig analysis indicate that this new feature can be assigned to a charge carrier plasmon in the doped material, and momentum dependent studies reveal a negative plasmon dispersion.

  9. Reflection electron energy loss spectroscopy as efficient technique for the determination of optical properties of polystyrene intermixed with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Deris, Jamileh; Hajati, Shaaker

    2017-01-01

    The electronic properties (electron inelastic cross section, energy loss function) of a nano-metalized polystyrene obtained by reflection electron energy loss spectroscopy (REELS) in a previous study [J. Deris, S. Hajati, S. Tougaard, V. Zaporojtchenko, Appl. Surf. Sci. 377 (2016) 44-47], which relies on the Yubero-Tougaard method, were used in the complementary application of Kramers-Kronig transformation to determine its optical properties such as the real part (ε1) and imaginary part (ε2) of the dielectric function (ε), refractive index (n), coefficients of extinction (k), reflection (R) and absorption (μ). The degree of intermixing of polystyrene thin film and gold nanoparticles of sizes 5.5 nm was controlled by annealing the sample to achieve a morphology in which the nanoparticles were homogeneously distributed within polystyrene. It is worth noting that no data are available on the optical properties of metalized polymers such as gold nanoparticles intermixed with polystyrene. Therefore, this work is of high importance in terms of both the sample studied here and the method applied. The advantage of the method applied here is that no information on the lateral distribution of the nanocomposite sample is required. This means that the REELS technique has been presented here to suitably, efficiently and easily obtain the optical properties of such nano-metalized polymer in which the metal nanoparticles have been vertically well distributed (homogeneous in depth). Therefore, for vertically homogeneous and laterally inhomogeneous samples, it is possible to make REELS imaging by scanning the sample and thus to make an image of their optical properties.

  10. High resolution electron energy loss spectroscopy of clean and hydrogen covered Si(001) surfaces: first principles calculations.

    PubMed

    Patterson, C H

    2012-09-07

    Surface phonons, conductivities, and loss functions are calculated for reconstructed (2×1), p(2×2) and c(4×2) clean Si(001) surfaces, and (2×1) H and D covered Si(001) surfaces. Surface conductivities perpendicular to the surface are significantly smaller than conductivities parallel to the surface. The surface loss function is compared to high resolution electron energy loss measurements. There is good agreement between calculated loss functions and experiment for H and D covered surfaces. However, agreement between experimental data from different groups and between theory and experiment is poor for clean Si(001) surfaces. Formalisms for calculating electron energy loss spectra are reviewed and the mechanism of electron energy losses to surface vibrations is discussed.

  11. Electron Energy-Loss Spectroscopy (EELS)Calculation in Finite-Difference Time-Domain (FDTD) Package: EELS-FDTD

    NASA Astrophysics Data System (ADS)

    Large, Nicolas; Cao, Yang; Manjavacas, Alejandro; Nordlander, Peter

    2015-03-01

    Electron energy-loss spectroscopy (EELS) is a unique tool that is extensively used to investigate the plasmonic response of metallic nanostructures since the early works in the '50s. To be able to interpret and theoretically investigate EELS results, a myriad of different numerical techniques have been developed for EELS simulations (BEM, DDA, FEM, GDTD, Green dyadic functions). Although these techniques are able to predict and reproduce experimental results, they possess significant drawbacks and are often limited to highly symmetrical geometries, non-penetrating trajectories, small nanostructures, and free standing nanostructures. We present here a novel approach for EELS calculations using the Finite-difference time-domain (FDTD) method: EELS-FDTD. We benchmark our approach by direct comparison with results from the well-established boundary element method (BEM) and published experimental results. In particular, we compute EELS spectra for spherical nanoparticles, nanoparticle dimers, nanodisks supported by various substrates, and gold bowtie antennas on a silicon nitride substrate. Our EELS-FDTD implementation can be easily extended to more complex geometries and configurations and can be directly implemented within other numerical methods. Work funded by the Welch Foundation (C-1222, L-C-004), and the NSF (CNS-0821727, OCI-0959097).

  12. Measurement of vibrational spectrum of liquid using monochromated scanning transmission electron microscopy-electron energy loss spectroscopy.

    PubMed

    Miyata, Tomohiro; Fukuyama, Mao; Hibara, Akihide; Okunishi, Eiji; Mukai, Masaki; Mizoguchi, Teruyasu

    2014-10-01

    Investigations on the dynamic behavior of molecules in liquids at high spatial resolution are greatly desired because localized regions, such as solid-liquid interfaces or sites of reacting molecules, have assumed increasing importance with respect to improving material performance. In application to liquids, electron energy loss spectroscopy (EELS) observed with transmission electron microscopy (TEM) is a promising analytical technique with the appropriate resolutions. In this study, we obtained EELS spectra from an ionic liquid, 1-ethyl-3-methylimidazolium bis (trifluoromethyl-sulfonyl) imide (C2mim-TFSI), chosen as the sampled liquid, using monochromated scanning TEM (STEM). The molecular vibrational spectrum and the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of the liquid were investigated. The HOMO-LUMO gap measurement coincided with that obtained from the ultraviolet-visible spectrum. A shoulder in the spectrum observed ∼0.4 eV is believed to originate from the molecular vibration. From a separately performed infrared observation and first-principles calculations, we found that this shoulder coincided with the vibrational peak attributed to the C-H stretching vibration of the [C2mim(+)] cation. This study demonstrates that a vibrational peak for a liquid can be observed using monochromated STEM-EELS, and leads one to expect observations of chemical reactions or aids in the analysis of the dynamic behavior of molecules in liquid.

  13. Electron energy loss spectroscopy of the L2,3 edge of phosphorus skutterudites and electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Sæterli, Ragnhild; Flage-Larsen, Espen; Prytz, Øystein; Taftø, Johan; Marthinsen, Knut; Holmestad, Randi

    2009-08-01

    In this study we report the results of experiments and theoretical calculations on the phosphorus L2,3 edges of the skutterudites CoP3 , LaFe4P12 , NiP3 , RhP3 , and IrP3 . Phosphorus s and d density of states above the Fermi level was studied by transmission electron energy loss spectroscopy while theoretical calculations were performed using both a real-space multiple-scattering procedure and density-functional theory. Generally, there are good agreements between both types of calculations and the experimental results. The near-edge structure of all the examined compounds shows the same overall features, including the metallic NiP3 and the metallic filled skutterudite LaFeP12 , and is well explained by comparison to phosphorus density of states. We also discuss the similarities to previously reported results on SiL2,3 edges and interpret the differences of the various skutterudites in terms of the electronegativities of the involved atom species.

  14. High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region.

    PubMed

    Sato, Yohei; Terauchi, Masami; Mukai, Masaki; Kaneyama, Toshikatsu; Adachi, Kenji

    2011-07-01

    The dielectric properties of LaB(6) crystals and the plasmonic behavior of LaB(6) nanoparticles, which have been applied to solar heat-shielding filters, were studied by high energy-resolution electron energy-loss spectroscopy (HR-EELS). An EELS spectrum of a LaB(6) crystal showed a peak at 2.0 eV, which was attributed to volume plasmon excitation of carrier electrons. EELS spectra of single LaB(6) nanoparticles showed peaks at 1.1-1.4 eV depending on the dielectric effect from the substrates. The peaks were assigned to dipole oscillation excitations. These peak energies almost coincided with the peak energy of optical absorption of a heat-shielding filter with LaB(6) nanoparticles. On the other hand, those energies were a smaller than a dipole oscillation energy predicted using the dielectric function of bulk LaB(6) crystal. It is suggested that the lower energy than expected is due to an excitation at 1.2 eV, which was observed for oxidized LaB(6) area.

  15. High resolution electron energy loss spectroscopy of manganese oxides: Application to Mn{sub 3}O{sub 4} nanoparticles

    SciTech Connect

    Laffont, L.; Gibot, P.

    2010-11-15

    Manganese oxides particularly Mn{sub 3}O{sub 4} Hausmannite are currently used in many industrial applications such as catalysis, magnetism, electrochemistry or air contamination. The downsizing of the particle size of such material permits an improvement of its intrinsic properties and a consequent increase in its performances compared to a classical micron-sized material. Here, we report a novel synthesis of hydrophilic nano-sized Mn{sub 3}O{sub 4}, a bivalent oxide, for which a precise characterization is necessary and for which the determination of the valency proves to be essential. X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and particularly High Resolution Electron Energy Loss Spectroscopy (HREELS) allow us to perform these measurements on the nanometer scale. Well crystallized 10-20 nm sized Mn{sub 3}O{sub 4} particles with sphere-shaped morphology were thus successfully synthesized. Meticulous EELS investigations allowed the determination of a Mn{sup 3+}/Mn{sup 2+} ratio of 1.5, i.e. slightly lower than the theoretical value of 2 for the bulk Hausmannite manganese oxide. This result emphasizes the presence of vacancies on the tetrahedral sites in the structure of the as-synthesized nanomaterial. - Research Highlights: {yields}Mn{sub 3}O{sub 4} bulk and nano were studied by XRD, TEM and EELS. {yields}XRD and TEM determine the degree of crystallinity and the narrow grain size. {yields}HREELS gave access to the Mn{sup 3+}/Mn{sup 2+} ratio. {yields}Mn{sub 3}O{sub 4} nano have vacancies on the tetrahedral sites.

  16. The use of high resolution electron-energy-loss spectroscopy for refining the infrared optical constants of GaS, GaSe, and InSe

    NASA Astrophysics Data System (ADS)

    Yu, Li-Ming; Thiry, P. A.; Degiovanni, A.; Conard, Th.; Leclerc, G.; Caudano, R.; Lambin, Ph.; Debever, J.-M.

    1994-06-01

    Cleaved surfaces of III-VI lamellar semiconducting compounds GaS, GaSe, and InSe have been studied by high resolution electron-energy-loss spectroscopy (HREELS). The infrared optical constants of the materials were retrieved by using the dielectric theory taking account of the resonance frequencies published from infrared reflectivity (IRS) data. The limitations of the HREELS and IRS measurements in the case of these materials are discussed in detail. However, it is shown that, by combining the informations from both spectroscopies, it is possible to refine some of the oscillator strengths of these materials.

  17. Study of semiconductor valence plasmon line shapes via electron energy-loss spectroscopy in the transmission electron microscope

    SciTech Connect

    Kundmann, M.K.

    1988-11-01

    Electron energy-loss spectra of the semiconductors Si, AlAs, GaAs, InAs, InP, and Ge are examined in detail in the regime of outer-shell and plasmon energy losses (0--100eV). Particular emphasis is placed on modeling and analyzing the shapes of the bulk valence plasmon lines. A line shape model based on early work by Froehlich is derived and compared to single-scattering probability distributions extracted from the measured spectra. Model and data are found to be in excellent agreement, thus pointing the way to systematic characterization of the plasmon component of EELS spectra. The model is applied to three separate investigations. 82 refs.

  18. Doubly excited states of water as studied by electron energy loss spectroscopy in coincidence with detecting Lyman-α photons

    NASA Astrophysics Data System (ADS)

    Tsuchida, Toshinori; Odagiri, Takeshi; Ishikawa, Lisa; Yachi, Kazufumi; Shigemura, Keisuke; Ohno, Naruhito; Hosaka, Kouichi; Kitajima, Masashi; Kouchi, Noriyuki

    2011-09-01

    The electron energy loss spectrum of H2O in coincidence with detecting Lyman-α photons (CoEELS) has been measured at the incident electron energy of 100 eV and electron scattering angle of 8° in the inner valence range in order to investigate the formation and decay of the doubly excited states. The present CoEELS has been compared with that at the infinite incident electron energy and 0° electron scattering angle, which was derived from the density of the dipole oscillator strength of H2O for the emission of the Lyman-α photons against the incident photon energy (Nakano et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 215206). It is remarkable that there exists a large difference in shape between these CoEELSs. This difference has turned out to be attributed to the noticeable contribution of the forbidden doubly excited states at 100 eV incident electron energy and 8° scattering angle. They lie at 25.0 and 27.4 eV and have been found out in this study. The differential cross sections for the excitation to the superexcited states resulting in H(2p) formation have been obtained at 100 eV and 8° and compared with those at the infinite energy and 0°. The electron collisions at 100 eV and 8° enhance the dissociative double excitation against the dissociative single excitation as compared with the electron collision at the infinite energy and 0°.

  19. Study of the evolution of the atomic composition of thin NbN films under irradiation with mixed ion beams by methods of electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Dement'eva, M. M.; Prikhod'ko, K. E.; Gurovich, B. A.; Kutuzov, L. V.; Komarov, D. A.

    2016-11-01

    The variation in the atomic composition of ultrathin NbN films under irradiation by mixed ion beams to a doze of 4 dpa (for nitrogen) is experimentally studied by methods of electron energy loss spectroscopy with a transmission electron microscope in the transmission scan mode on cross-cut samples. The behavior of the substitution of nitrogen atoms by oxygen atoms has been established; it is characterized by changing the composition of the conducting part of the film from NbN to NbNO.

  20. Microwave fixation and localization of calcium in synaptic terminals using x-ray microanalysis and electron energy loss spectroscopy imaging.

    PubMed

    Mizuhira, V; Hasegawa, H

    1997-01-01

    The distribution of calcium ions is demonstrated in synaptic terminals by means of a two-step chemical precipitation of calcium ions in the rat brain. K-oxalate/K-antimonate chemical replacement with simultaneous computerized microwave irradiation was used. This precipitate in nerve cell structures was investigated by computerized electron probe x-ray microanalysis (EDX) and electron energy loss spectroscopic (EELS) imaging. The values obtained by EDX agreed with those of the standard sample and theoretical values of Ca-antimonate. Typical EELS spectra of Ca:L, O:K, and Sb:M were obtained from nerve terminals in the same tissue block as that used for EDX analysis. Excellent net Ca:L and Sb:M EELS digital images were obtained after their background images were subtracted. Calcium ions were distributed in the nerve terminals, synaptic vesicles, mitochondria, and synaptic membranes.

  1. Determination of electronic properties of nanostructures using reflection electron energy loss spectroscopy: Nano-metalized polymer as case study

    NASA Astrophysics Data System (ADS)

    Deris, Jamileh; Hajati, Shaaker; Tougaard, Sven; Zaporojtchenko, Vladimir

    2016-07-01

    In this work, Au was deposited with nominal effective thickness of 0.8 nm on polystyrene (PS) at room temperature. According to previous study, using XPS peak shape analysis [S. Hajati, V. Zaporojtchenko, F. Faupel, S. Tougaard, Surf. Sci. 601 (2007) 3261-3267], Au nanoparticles (Au-NPs) of sizes 5.5 nm were formed corresponding to such effective thickness (0.8 nm). Then the sample was annealed to 200 °C, which is far above the glass transition of PS. At this temperature, the Au-NPs were diffused within the depth 0.5 nm-6.5 nm as found using nondestructive XPS peak shape analysis. Electrons with primary energy 500 eV were used because the electronic properties will then be probed in utmost surface (∼1 IMFP range of depths that is 1.8 nm for PS). By using QUEELS software, theoretical and experimental electron inelastic cross section, energy loss function, electron inelastic mean free path and surface excitation parameters were obtained for the sample. The information obtained here, does not rely on any previously known information on the sample. This means that the method, applied here, is suitable for the determination of the electronic properties of new and unknown composite nanostructures.

  2. Trichroism in energy-loss near-edge structure spectroscopy: Polarization dependence of near-edge fine structures

    SciTech Connect

    Le Bosse, Jean-Claude; Epicier, Thierry; Chermette, Henry

    2007-08-15

    The goal of this paper is to relate the current of inelastically scattered electrons collected in a transmission electron microscope (TEM) to the double differential electron energy-loss cross section. Up to now, this relationship, which depends on the point symmetry around the probed atom site, has been essentially studied in a situation called dichroism. This situation can be encountered when a principal threefold, fourfold, or sixfold rotation axis through the probed atom site exists. The electron energy-loss cross section is then a linear combination of longitudinal and transversal cross sections, and the weights of these components are cos{sup 2} {theta}{sub q} and sin{sup 2} {theta}{sub q}, where {theta}{sub q} is the angle between the scattering wave vector q and the principal rotation axis. The first aim of this paper is to find the dependence on q of the cross section in all other cases, that is to say, when the symmetry around the probed atom site is described with one of the eight low symmetry point groups C{sub 1}, S{sub 2}, C{sub 1h}, C{sub 2}, C{sub 2h}, C{sub 2v}, D{sub 2}, and D{sub 2h}. In these eight cases of low symmetry, three distinct situations called trichroism can be distinguished. In these situations, the cross section is expressed in terms of the cross sections obtained for six, four, or three particular orientations of the scattering wave vector. The second aim of this paper is to provide an expression of the inelastically scattered electron current collected in a TEM for these three situations of trichroism. This current is expressed in terms of experimental parameters, such as the incident beam convergence, the collector acceptance, the electron beam kinetic energy, and the sample orientation. As in the case of dichroism, magic conditions can be found, for which the collected current becomes independent of the single-crystal sample orientation. The case of the C K edge in the nonstoichiometric V{sub 6}C{sub 5} metallic carbide with a

  3. Free electrons and ionic liquids: study of excited states by means of electron-energy loss spectroscopy and the density functional theory multireference configuration interaction method.

    PubMed

    Regeta, Khrystyna; Bannwarth, Christoph; Grimme, Stefan; Allan, Michael

    2015-06-28

    The technique of low energy (0-30 eV) electron impact spectroscopy, originally developed for gas phase molecules, is applied to room temperature ionic liquids (IL). Electron energy loss (EEL) spectra recorded near threshold, by collecting 0-2 eV electrons, are largely continuous, assigned to excitation of a quasi-continuum of high overtones and combination vibrations of low-frequency modes. EEL spectra recorded by collecting 10 eV electrons show predominantly discrete vibrational and electronic bands. The vibrational energy-loss spectra correspond well to IR spectra except for a broadening (∼0.04 eV) caused by the liquid surroundings, and enhanced overtone activity indicating a contribution from resonant excitation mechanism. The spectra of four representative ILs were recorded in the energy range of electronic excitations and compared to density functional theory multireference configuration interaction (DFT/MRCI) calculations, with good agreement. The spectra up to about 8 eV are dominated by π-π* transitions of the aromatic cations. The lowest bands were identified as triplet states. The spectral region 2-8 eV was empty in the case of a cation without π orbitals. The EEL spectrum of a saturated solution of methylene green in an IL band showed the methylene green EEL band at 2 eV, indicating that ILs may be used as a host to study nonvolatile compounds by this technique in the future.

  4. Martensitic transformation of Ni2FeGa ferromagnetic shape-memory alloy studied via transmission electron microscopy and electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, H. R.; Ma, C.; Tian, H. F.; Wu, G. H.; Li, J. Q.

    2008-06-01

    The structural properties of Ni2FeGa Heusler alloy synthesized by melt-spinning technique have been systematically studied by means of in situ heating and cooling transmission electron microscopy. It was found that the Ni2FeGa alloy was annealed into a well-defined L21 structure at around 980 K, and complex microstructural domains appeared along with lowering temperature. At room temperature (293 K), a rich variety of micromodulated domains were observed. The domain structures were aligned along the ⟨110⟩ or ⟨100⟩ directions resulting to complex tweed structures. Below martensitic transformation (MT) temperature (Ms,˜142K) , the cubic parent phase transformed into unmodulated martensitic variants and modulated martensitic variants. The variants were alternated along the ⟨100⟩ direction with various arrangements and steplike incommensurate boundaries. The modulated martensitic variants were composed of lamellar structures that have predominately a 5M modulation structure along the ⟨110⟩ directions. The electron energy-loss spectroscopy analysis of the low-loss region and the electron energy-loss near-edge fine structure revealed a visible change of the electronic structure along with MT, which can be well interpreted by means of intra-atomic or intraband charge redistribution due to spd orbital hybridization among the Ni-Fe-Ga atoms.

  5. Observability of localized magnetoplasmons in quantum dots: Scrutinizing the eligibility of far-infrared, Raman, and electron-energy-loss spectroscopies

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2016-03-01

    We investigate a one-component, quasi-zero dimensional, quantum plasma exposed to a parabolic potential and an applied magnetic field in the symmetric gauge. If the size of such a system as can be realized in the semiconducting quantum dots is on the order of the de-Broglie wavelength, the electronic and optical properties become highly tunable. Then the quantum size effects challenge the observation of many-particle phenomena such as the magneto-optical absorption, Raman intensity, and electron energy-loss spectrum. An exact analytical solution of the problem leads us to infer that these many-particle phenomena are, in fact, dictated by the generalized Kohn's theorem (GKT) in the long-wavelength limit. Maneuvering the confinement and/or the magnetic field furnishes the resonance energies capable of being explored with the FIR, Raman, and/or electron-energy-loss spectroscopy. This implies that either of these probes is competent in observing the localized magnetoplasmons in the system. As an application of the rigorous analytical diagnosis of the system, we have presented various pertinent single-particle, such as Fock-Darwin spectrum, Fermi energy, zigzag excitation spectrum, and magneto-optical transitions, and the many-particle phenomena, such as magneto-optical absorption, Raman intensity, and electron energy-loss probability. In the latter, the energy position of the resonance peaks is observed to be independent of the electron-electron interactions and hence of the number of electrons in the quantum dot in compliance with the GKT. It is found that both confinement potential and magnetic field play a decisive role in influencing the aforementioned many-particle phenomena. Specifically, increasing (decreasing) the strength of the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots and results into a blue (red) shift in the respective spectra. Intensifying the magnetic field has two-fold effects in the resonance

  6. Iron sources used by the nonpathogenic lactic acid bacterium Lactobacillus sakei as revealed by electron energy loss spectroscopy and secondary-ion mass spectrometry.

    PubMed

    Duhutrel, Philippe; Bordat, Christian; Wu, Ting-Di; Zagorec, Monique; Guerquin-Kern, Jean-Luc; Champomier-Vergès, Marie-Christine

    2010-01-01

    Lactobacillus sakei is a lactic acid bacterium naturally found on meat. Although it is generally acknowledged that lactic acid bacteria are rare species in the microbial world which do not have iron requirements, the genome sequence of L. sakei 23K has revealed quite complete genetic equipment dedicated to transport and use of this metal. Here, we aimed to investigate which iron sources could be used by this species as well as their role in the bacterium's physiology. Therefore, we developed a microscopy approach based on electron energy loss spectroscopy (EELS) analysis and nano-scale secondary-ion mass spectrometry (SIMS) in order to analyze the iron content of L. sakei cells. This revealed that L. sakei can use iron sources found in its natural ecosystem, myoglobin, hemoglobin, hematin, and transferrin, to ensure long-term survival during stationary phase. This study reveals that analytical image methods (EELS and SIMS) are powerful complementary tools for investigation of metal utilization by bacteria.

  7. High-resolution electron-energy-loss spectroscopy and photoelectron-diffraction studies of the geometric structure of adsorbates on single-crystal metal surfaces

    SciTech Connect

    Rosenblatt, D.H.

    1982-11-01

    Two techniques which have made important contributions to the understanding of surface phenomena are high resolution electron energy loss spectroscopy (EELS) and photoelectron diffraction (PD). EELS is capable of directly measuring the vibrational modes of clean and adsorbate covered metal surfaces. In this work, the design, construction, and performance of a new EELS spectrometer are described. These results are discussed in terms of possible structures of the O-Cu(001) system. Recommendations for improvements in this EELS spectrometer and guidelines for future spectrometers are given. PD experiments provide accurate quantitative information about the geometry of atoms and molecules adsorbed on metal surfaces. The technique has advantages when used to study disordered overlayers, molecular overlayers, multiple site systems, and adsorbates which are weak electron scatterers. Four experiments were carried out which exploit these advantages.

  8. Microstructure of highly strained BiFeO{sub 3} thin films: Transmission electron microscopy and electron-energy loss spectroscopy studies

    SciTech Connect

    Heon Kim, Young; Bhatnagar, Akash; Pippel, Eckhard; Hesse, Dietrich; Alexe, Marin

    2014-01-28

    Microstructure and electronic structure of highly strained bismuth ferrite (BiFeO{sub 3}) thin films grown on lanthanum aluminate substrates are studied using high-resolution transmission and scanning transmission electron microscopies and electron energy loss spectroscopy (EELS). Monoclinic and tetragonal phases were observed in films grown at different temperatures, and a mix of both phases was detected in a film grown at intermediate temperature. In this film, a smooth transition of the microstructure was found between the monoclinic and the tetragonal phases. A considerable increase in the c-axis parameters was observed in both phases compared with the rhombohedral bulk phase. The off-center displacement of iron (Fe) ions was increased in the monoclinic phase as compared with the tetragonal phase. EEL spectra show different electronic structures in the monoclinic and the tetragonal phases. These experimental observations are well consistent with the results of theoretical first-principle calculations performed.

  9. Microstructure of highly strained BiFeO3 thin films: Transmission electron microscopy and electron-energy loss spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Heon Kim, Young; Bhatnagar, Akash; Pippel, Eckhard; Alexe, Marin; Hesse, Dietrich

    2014-01-01

    Microstructure and electronic structure of highly strained bismuth ferrite (BiFeO3) thin films grown on lanthanum aluminate substrates are studied using high-resolution transmission and scanning transmission electron microscopies and electron energy loss spectroscopy (EELS). Monoclinic and tetragonal phases were observed in films grown at different temperatures, and a mix of both phases was detected in a film grown at intermediate temperature. In this film, a smooth transition of the microstructure was found between the monoclinic and the tetragonal phases. A considerable increase in the c-axis parameters was observed in both phases compared with the rhombohedral bulk phase. The off-center displacement of iron (Fe) ions was increased in the monoclinic phase as compared with the tetragonal phase. EEL spectra show different electronic structures in the monoclinic and the tetragonal phases. These experimental observations are well consistent with the results of theoretical first-principle calculations performed.

  10. Distributions of hafnia and titania cores in EUV metal resists evaluated by scanning transmission electron microscopy and electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Toriumi, Minoru; Sato, Yuta; Koshino, Masanori; Suenaga, Kazu; Itani, Toshiro

    2016-11-01

    The morphologies of hafnia (HfO x ) and titania (TiO x ) cores and their distributions in metal resists for EUV lithography were characterized at the atomic level by scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). The HfO x cores show a higher affinity to organic components, such as methacrylic acid and benzoic acid, than the TiO x cores, and the same core-shell state as in a solution is almost completely maintained in the HfO x resist film. Furthermore, it was found that the surface modification of the TiO x cores by silylation is effective for preventing their aggregation and improves the postcoating delay (PCD) of the resist.

  11. In Situ Environmental Cell-Transmission Electron Microscopy Study of Microbial Reduction of Chromium(VI) Using Electron Energy Loss Spectroscopy.

    PubMed

    Daulton, Tyrone L.; Little, Brenda J.; Lowe, Kristine; Jones-Meehan, Joanne

    2001-11-01

    Reduction of Cr(VI) by the bacterium, Shewanella oneidensis (previously classified Shewanella putrefaciens strain MR-1), was studied by absorption spectrophotometry and in situ, environmental cell-transmission electron microscopy (EC-TEM) coupled with electron energy loss spectroscopy (EELS). Bacteria from rinsed cultures were placed directly in the environmental cell of the transmission electron microscope and examined under 100 Torr pressure. Bright field EC-TEM images show two distinct populations of S. oneidensis in incubated cultures containing Cr(VI)O2- 4: those that exhibit low image contrast and heavily precipitate-encrusted cells exhibiting high image contrast. Several EELS techniques were applied to determine the oxidation state of Cr associated with encrusted cells. The encrusted cells are shown to contain a reduced form of Cr in oxidation state +3 or lower. These results demonstrate the capability to determine the chemistry and valence state of reduction products associated with unfixed, hydrated bacteria in an environmental cell transmission electron microscope.

  12. Electronic structure of metastable bcc Cu-Cr alloy thin films: Comparison of electron energy-loss spectroscopy and first-principles calculations.

    PubMed

    Liebscher, C H; Freysoldt, C; Dennenwaldt, T; Harzer, T P; Dehm, G

    2016-07-12

    Metastable Cu-Cr alloy thin films with nominal thickness of 300nm and composition of Cu67Cr33 (at%) are obtained by co-evaporation using molecular beam epitaxy. The microstructure, chemical phase separation and electronic structure are investigated by transmission electron microscopy (TEM). The thin film adopts the body-centered cubic crystal structure and consists of columnar grains with ~50nm diameter. Aberration-corrected scanning TEM in combination with energy dispersive X-ray spectroscopy confirms compositional fluctuations within the grains. Cu- and Cr-rich domains with composition of Cu85Cr15 (at%) and Cu42Cr58 (at%) and domain size of 1-5nm are observed. The alignment of the interface between the Cu- and Cr-rich domains shows a preference for {110}-type habit plane. The electronic structure of the Cu-Cr thin films is investigated by electron energy loss spectroscopy (EELS) and is contrasted to an fcc-Cu reference sample. The experimental EEL spectra are compared to spectra computed by density functional theory. The main differences between bcc-and fcc-Cu are related to differences in van Hove singularities in the electron density of states. In Cu-Cr solid solutions with bcc crystal structure a single peak after the L3-edge, corresponding to a van Hove singularity at the N-point of the first Brillouin zone is observed. Spectra computed for pure bcc-Cu and random Cu-Cr solid solutions with 10at% Cr confirm the experimental observations. The calculated spectrum for a perfect Cu50Cr50 (at%) random structure shows a shift in the van Hove singularity towards higher energy by developing a Cu-Cr d-band that lies between the delocalized d-bands of Cu and Cr.

  13. Assessing electron beam sensitivity for SrTiO3 and La0.7Sr0.3MnO3 using electron energy loss spectroscopy.

    PubMed

    Nord, Magnus; Vullum, Per Erik; Hallsteinsen, Ingrid; Tybell, Thomas; Holmestad, Randi

    2016-10-01

    Thresholds for beam damage have been assessed for La0.7Sr0.3MnO3 and SrTiO3 as a function of electron probe current and exposure time at 80 and 200kV acceleration voltage. The materials were exposed to an intense electron probe by aberration corrected scanning transmission electron microscopy (STEM) with simultaneous acquisition of electron energy loss spectroscopy (EELS) data. Electron beam damage was identified by changes of the core loss fine structure after quantification by a refined and improved model based approach. At 200kV acceleration voltage, damage in SrTiO3 was identified by changes both in the EEL fine structure and by contrast changes in the STEM images. However, the changes in the STEM image contrast as introduced by minor damage can be difficult to detect under several common experimental conditions. No damage was observed in SrTiO3 at 80kV acceleration voltage, independent of probe current and exposure time. In La0.7Sr0.3MnO3, beam damage was observed at both 80 and 200kV acceleration voltages. This damage was observed by large changes in the EEL fine structure, but not by any detectable changes in the STEM images. The typical method to validate if damage has been introduced during acquisitions is to compare STEM images prior to and after spectroscopy. Quantifications in this work show that this method possibly can result in misinterpretation of beam damage as changes of material properties.

  14. Detection of local chemical states of lithium and their spatial mapping by scanning transmission electron microscopy, electron energy-loss spectroscopy and hyperspectral image analysis.

    PubMed

    Muto, Shunsuke; Tatsumi, Kazuyoshi

    2017-02-08

    Advancements in the field of renewable energy resources have led to a growing demand for the analysis of light elements at the nanometer scale. Detection of lithium is one of the key issues to be resolved for providing guiding principles for the synthesis of cathode active materials, and degradation analysis after repeated use of those materials. We have reviewed the different techniques currently used for the characterization of light elements such as high-resolution transmission electron microscopy, scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). In the present study, we have introduced a methodology to detect lithium in solid materials, particularly for cathode active materials used in lithium-ion battery. The chemical states of lithium were isolated and analyzed from the overlapping multiple spectral profiles, using a suite of STEM, EELS and hyperspectral image analysis. The method was successfully applied in the chemical state analyses of hetero-phases near the surface and grain boundary regions of the active material particles formed by chemical reactions between the electrolyte and the active materials.

  15. Hydrogen bonding configuration and thermal stability of ambient exposed and in situ hydrogenated polycrystalline diamond surfaces studied by high resolution electron energy loss spectroscopy.

    PubMed

    Michaelson, Sh; Akhvlediani, R; Hoffman, A

    2011-06-28

    In this work we report on an investigation of hydrogen bonding and thermal stability on the surface of poly-crystalline diamond by high resolution electron energy loss spectroscopy (HR-EELS). Diamond films were grown on silicon substrates from CH(4)/H(2) as well as from CD(4)/D(2) gas mixtures by hot filament chemical vapor deposition (HF-CVD). The impact of ex situ ambient exposure on hydrogen bonding and its thermal stability was examined for: (i) as deposited films from a CH(4)/H(2) gas mixture; (ii) the same sample treated ex situ in micro-wave activated hydrogen plasma; and (iii) as deposited films from a CD(4)/D(2) gas mixture. In order to clarify the changes in the hydrogen bonding configuration detected on the different surfaces as a function of thermal annealing in situ hydrogenation by thermally activated atomic hydrogen was performed and examined. This study provides direct evidence that the exposure to ambient conditions and low temperature vacuum annealing have a pronounced effect on the hydrogen-carbon bonding configuration onto the poly-crystalline diamond surfaces.

  16. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    SciTech Connect

    Heo, Sung; Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su; Song, Taewon; Lee, Dongho Nam, Junggyu; Kang, Hee Jae; Choi, Pyung-Ho; Choi, Byoung-Deog

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.

  17. Two bonding configurations of acetylene on Si(001)-(2 x 1): a combined high-resolution electron energy loss spectroscopy and density functional theory study.

    PubMed

    Mineva, T; Nathaniel, R; Kostov, K L; Widdra, W

    2006-11-21

    Two coexisting adsorption states of molecularly adsorbed acetylene on the Si(001)-(2 x 1) surface have been identified by a combined study based on the high-resolution electron energy loss spectroscopy and density functional computations. Seven possible adsorbate-substrate structures are considered theoretically including their full vibrational analysis. Based on a significantly enhanced experimental resolution, the assignment of 15 C2H2- and C2D2-derived vibrational modes identifies a dominant di-sigma bonded molecule adsorbed on top of a single Si-Si dimer. Additionally there is clear evidence for a second minority species which is di-sigma bonded between two Si-Si dimers within the same dimer row (end-bridge geometry). The possible symmetries of the adsorbate complexes are discussed based on the specular and off-specular vibrational measurements. They suggest lower than ideal C(2v) and C(s) symmetries for on-top and end-bridge species, respectively. At low coverages the symmetry reductions might be lifted.

  18. Probing optical band gaps at the nanoscale in NiFe₂O₄ and CoFe₂O₄ epitaxial films by high resolution electron energy loss spectroscopy

    SciTech Connect

    Dileep, K.; Loukya, B.; Datta, R.; Pachauri, N.; Gupta, A.

    2014-09-14

    Nanoscale optical band gap variations in epitaxial thin films of two different spinel ferrites, i.e., NiFe₂O₄ (NFO) and CoFe₂O₄ (CFO), have been investigated by spatially resolved high resolution electron energy loss spectroscopy. Experimentally, both NFO and CFO show indirect/direct band gaps around 1.52 eV/2.74 and 2.3 eV, and 1.3 eV/2.31 eV, respectively, for the ideal inverse spinel configuration with considerable standard deviation in the band gap values for CFO due to various levels of deviation from the ideal inverse spinel structure. Direct probing of the regions in both the systems with tetrahedral A site cation vacancy, which is distinct from the ideal inverse spinel configuration, shows significantly smaller band gap values. The experimental results are supported by the density functional theory based modified Becke-Johnson exchange correlation potential calculated band gap values for the different cation configurations.

  19. Successful application of spatial difference technique to electron energy-loss spectroscopy studies of Mo/SrTiO3 interfaces.

    PubMed

    Gao, M; Scheu, C; Tchernychova, E; Rühle, M

    2003-04-01

    The electron energy-loss near-edge structure (ELNES) of Mo/SrTiO3 interfaces has been studied using high spatial resolution electron energy-loss spectroscopy (EELS) in a dedicated scanning transmission electron microscope. Thin films of Mo with a thickness of 50 nm were grown on (001)-orientated SrTiO3 surfaces by molecular beam epitaxy at 600 degrees C. High-resolution transmission electron microscopy revealed that the interfaces were atomically abrupt with the (110)Mo plane parallel to the substrate surface. Ti-L2,3 ( approximately 460 eV), O-K ( approximately 530 eV), Sr-L2,3 ( approximately 1950 eV) and Mo-L2,3 ( approximately 2500 eV) absorption edges were acquired by using the Gatan Enfina parallel EELS system with a CCD detector. The interface-specific components of the ELNES were extracted by employing the spatial difference method. The interfacial Ti-L2,3 edge shifted to lower energy values and the splitting due to crystal field became less pronounced compared to bulk SrTiO3, which indicated that the Ti atoms at the interface were in a reduced oxidation state and that the symmetry of the TiO6 octahedra was disturbed. No interfacial Sr-L2,3 edge was observed, which may demonstrate that Sr atoms do not participate in the interfacial bonding. An evident interface-specific O-K edge was found, which differs from that of the bulk in both position (0.8 +/- 0.2 eV positive shift) and shape. In addition, a positive shift (0.9 +/- 0.3 eV) occurred for the interfacial Mo-L2,3, revealing an oxidized state of Mo at the interface. Our results indicated that at the interface SrTiO3 was terminated with TiO2. The validity of the spatial difference technique is discussed and examined by introducing subchannel drift intentionally.

  20. Energy losses in photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Anis, Wagdy R.; Nour, M. Abdulsadek

    1994-10-01

    The maximum power generated by photovoltaic (PV) arrays is not fully used. During summer, the main cause for the energy loss is the system design that necessitates an oversizing of the PV array to supply the load during the winter season when the solar energy is limited. Other reasons that cause energy loss are: the mismatch between the array and the load or battery, the loss in the batteries, and the loss due to the PV array disconnect. The array disconnect loss takes place during summer season when the battery is fully charged. To avoid the disconnect loss, a novel battery voltage regulator (BVR) is used. This supplies the load directly from the array when the battery is fully charged. Energy losses have been analyzed and divided into fundamental (unavoidable) and non-fundamental losses. Both conventional (using a conventional BVR) and new (using a novel BVR) PV systems are studied. A load that consumes constant power for 24 h a day through the year is considered. The climatic condition of Cairo city is taken as the test case.

  1. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy.

    PubMed

    Shimoyamada, Atsushi; Yamamoto, Kazuo; Yoshida, Ryuji; Kato, Takehisa; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2015-12-01

    All-solid-state Li-ion batteries (LIBs) with solid electrolytes are expected to be the next generation devices to overcome serious issues facing conventional LIBs with liquid electrolytes. However, the large Li-ion transfer resistance at the electrode/solid-electrolyte interfaces causes low power density and prevents practical use. In-situ-formed negative electrodes prepared by decomposing the solid electrolyte Li(1+x+3z)Alx(Ti,Ge)(2-x)Si(3z)P(3-z)O12 (LASGTP) with an excess Li-ion insertion reaction are effective electrodes providing low Li-ion transfer resistance at the interfaces. Prior to our work, however, it had still been unclear how the negative electrodes were formed in the parent solid electrolytes. Here, we succeeded in dynamically visualizing the formation by in situ spatially resolved electron energy-loss spectroscopy in a transmission electron microscope mode (SR-TEM-EELS). The Li-ions were gradually inserted into the solid electrolyte region around 400 nm from the negative current-collector/solid-electrolyte interface in the charge process. Some of the ions were then extracted in the discharge process, and the rest were diffused such that the distribution was almost flat, resulting in the negative electrodes. The redox reaction of Ti(4+)/Ti(3+) in the solid electrolyte was also observed in situ during the Li insertion/extraction processes. The in situ SR-TEM-EELS revealed the mechanism of the electrochemical reaction in solid-state batteries.

  2. Spatially resolved chemical mapping of dry and hydrated polymer morphology by electron energy-loss spectroscopy in the scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Sousa, Alioscka A. C. A.

    Electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) is a technique that allows compositional analysis to be performed at high spatial resolution in thin TEM specimens, and here we implement and apply this technique to quantitatively study the morphology of unstained dry and frozen-hydrated polymer films. While water can play a controlling role that determines many of the important properties of polymers, there has not yet been much experimental work performed to correlate water spatial distribution with variations in underlying polymer morphology. We show how a quantitative map of the nanoscale spatial distribution of water can be generated from frozen-hydrated polymer thin films using EELS in the STEM. We find that hydrated polymers are very sensitive to the incident electron irradiation, and there is a trade off between the spatial resolution that a compositional map can display and its signal-to-noise ratio. The identification of minor fluctuations in composition within small regions across a given water map is therefore challenging because one must distinguish the fluctuations that are significant from those within noise. We implement a methodology using scatter diagrams in combination with noise simulations to threshold water maps and separate real pixel-by-pixel compositional fluctuations from noise. We study a model system comprised of hydrophilic poly(vinyl pyrrolidone) and hydrophobic poly(styrene), and we show that the thresholding approach enables us to quantitatively identify statistically significant single-pixel fluctuations in water content. We also apply EELS in the STEM to characterize the morphology of a dry, solvent-cast thin-film biopolymer blend comprised of poly(caprolactone) and poly(DTE carbonate). We quantitatively show the effect that solvent evaporation rate has on the morphology development of this blend and how the underlying morphology can dramatically influence the spatial distribution of

  3. Temperature dependence of the plasmon energy in liquid and solid phases of pure Al and of an Al-Si alloy using electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Eswara Moorthy, Santhana K.; Howe, James M.

    2011-08-01

    The plasmon energy of the solid and liquid phases of pure Al, and an Al-Si alloy, was recorded as a function of temperature. For the case of pure Al, the trend in the solid and liquid phases followed the expected behavior based on a free (specific) volume change. Quantitatively, the slope of Ep versus T was -0.5 meV/K in the solid state and -2.2 meV/K in the liquid state. For the case of the Al-Si alloy, the trend in the solid phase was similar to that of pure Al, however, the trend in the liquid Al-Si phase was exactly opposite to what was observed for the pure Al liquid (i.e., +1.9 meV/K). This unexpected result is explained based on the variation, i.e., partitioning, of Si with temperature in the Al-Si alloy.

  4. Crystal and Electronic Structure of Lithiated Nanosized RutileTiO2 by Electron Diffraction and Electron Energy-loss Spectroscopy

    SciTech Connect

    Wang, Chong M.; Yang, Zhenguo; Thevuthasan, Suntharampillai; Liu, Jun; Baer, Donald R.; Choi, Daiwon; Wang, Donghai; Zhang, Jiguang; Saraf, Laxmikant V.; Nie, Zimin

    2009-06-11

    The electronic structure of the nanosized rutile TiO2 before and after mechanical lithiation were studied using TEM and EELS. EELS reveals the Li K-edge at the energy-loss position of ~ 61 eV. After lithiation, the separation of the t2g-eg crystal-field splitting on both Ti L2,3-edge and O K-edge decreases, the O K-edge shifts towards a higher energy-loss position and the separation between the pre-edge peak and main peak on the O K-edge decreases. These results suggest that the lithiation of rutile TiO2 was accompanied by the reduction of Ti ion and a charge transfer from Li to Ti.

  5. Mass loss from red giants - Infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    A discussion is presented of IR spectroscopy, particularly high-resolution spectroscopy in the approximately 1-20 micron band, as it impacts the study of circumstellar envelopes. The molecular bands within this region contain an enormous amount of information, especially when observed with sufficient resolution to obtain kinematic information. In a single spectrum, it is possible to resolve lines from up to 50 different rotational/vibrational levels of a given molecule and to detect several different isotopic variants. When high resolution techniques are combined with mapping techniques and/or time sequence observations of variable stars, the resulting information can paint a very detailed picture of the mass-loss phenomenon. To date, near-IR observations have been made of 20 molecular species. CO is the most widely observed molecule and useful information has been gleaned from the observed rotational excitation, kinematics, time variability and spatial structure of its lines. Examples of different observing techniques are discussed in the following sections.

  6. Spectral restoration in high resolution electron energy loss spectroscopy based on iterative semi-blind Lucy-Richardson algorithm applied to rutile surfaces

    SciTech Connect

    Lazzari, Rémi Li, Jingfeng Jupille, Jacques

    2015-01-15

    A new spectral restoration algorithm of reflection electron energy loss spectra is proposed. It is based on the maximum likelihood principle as implemented in the iterative Lucy-Richardson approach. Resolution is enhanced and point spread function recovered in a semi-blind way by forcing cyclically the zero loss to converge towards a Dirac peak. Synthetic phonon spectra of TiO{sub 2} are used as a test bed to discuss resolution enhancement, convergence benefit, stability towards noise, and apparatus function recovery. Attention is focused on the interplay between spectral restoration and quasi-elastic broadening due to free carriers. A resolution enhancement by a factor up to 6 on the elastic peak width can be obtained on experimental spectra of TiO{sub 2}(110) and helps revealing mixed phonon/plasmon excitations.

  7. Evidence for anisotropic dielectric properties of monoclinic hafnia using valence electron energy-loss spectroscopy in high-resolution transmission electron microscopy and ab initio time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Guedj, C.; Hung, L.; Zobelli, A.; Blaise, P.; Sottile, F.; Olevano, V.

    2014-12-01

    The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO2) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO2, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO2 may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.

  8. The electronic states of buta-1,3-diene studied by ab initio configuration interaction and DFT methods, and electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    H., Michael; | Isobel C., Palmer; Walker

    2010-08-01

    The electronic vertical excitation energies for singlet and triplet valence, and Rydberg states of trans-buta-1,3-diene have been computed using ab initio multi-reference multi-root CI procedures with a [4s3p3d3f] set of Rydberg functions. Close numerical agreement between theory and experiment was found for a number of low-lying electronic states. The present CI and CASSCF [8MO,8e] calculations suggest that both the vertical and adiabatic order of the valence (ππ∗) states is: A˜1Aenergy-loss spectrum, reported here, in which the incident electrons have near-threshold energies, supports this order. Adiabatic excitation energies and structures were obtained for several singlet and triplet states using CASSCF and B3LYP procedures; the results from these methods are generally in good agreement with each other. The C 1C 2 to C 2C 3 bond length ratio in the excited states varies widely, and is discussed.

  9. The electronic states of oxazole studied by VUV absorption and electron energy-loss (EEL) spectroscopies, and ab initio configuration interaction methods

    NASA Astrophysics Data System (ADS)

    Palmer, Michael H.; Ganzenmüller, Georg; Walker, Isobel C.

    2007-04-01

    The oxazole VUV absorption spectrum over the range 5-12 eV shows intense bands centred near 6.3, 7.5, 8.3, 9.6 and 10.8 eV. The electron energy-loss (EEL) spectrum shows additional structure with a strong peak (˜1.4 eV) arising from resonant vibrational excitation of the molecule via a shape resonance, and a spin-forbidden 3ππ ∗ state at 4.6 eV. Electronic excitation energies for valence and Rydberg-type states have been computed using ab initio multi-reference multi-root CI methods. The CI studies used a triple zeta + polarisation basis set, augmented by diffuse (Rydberg) orbitals, to generate the theoretical singlet and triplet energy manifolds. The correlation of theory and experiment shows the nature of the more intense Rydberg state types, and identification of the main valence and Rydberg bands. Calculated energies for low-lying Rydberg states are relatively close (SD 0.38) to those expected, and there is generally a good correlation between the theoretical and experimental envelopes. Two of the three lowest electronic states arise from ππ ∗ excitation of the outer (3a″ and 2a″) π-orbitals, with one state (LP Nπ ∗) originating from the lone pair on nitrogen (15a') between them.

  10. Electron energy-loss spectra in molecular fluorine

    NASA Technical Reports Server (NTRS)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  11. Far-UV Spectroscopy of the Planet-hosting Star WASP-13: High-energy Irradiance, Distance, Age, Planetary Mass-loss Rate, and Circumstellar Environment

    NASA Astrophysics Data System (ADS)

    Fossati, L.; France, K.; Koskinen, T.; Juvan, I. G.; Haswell, C. A.; Lendl, M.

    2015-12-01

    Several transiting hot Jupiters orbit relatively inactive main-sequence stars. For some of those, the {log}{R}{HK}\\prime activity parameter lies below the basal level (-5.1). Two explanations have been proposed so far: (i) the planet affects the stellar dynamo, (ii) the {log}{R}{HK}\\prime measurements are biased by extrinsic absorption, either by the interstellar medium (ISM) or by material local to the system. We present here Hubble Space Telescope/COS far-UV spectra of WASP-13, which hosts an inflated hot Jupiter and has a measured {log}{R}{HK}\\prime value (-5.26), well below the basal level. From the star’s spectral energy distribution we obtain an extinction E(B - V) = 0.045 ± 0.025 mag and a distance d = 232 ± 8 pc. We detect at ≳4σ lines belonging to three different ionization states of carbon (C i, C ii, and C iv) and the Si iv doublet at ˜3σ. Using far-UV spectra of nearby early G-type stars of known age, we derive a C iv/C i flux ratio-age relation, from which we estimate WASP-13's age to be 5.1 ± 2.0 Gyr. We rescale the solar irradiance reference spectrum to match the flux of the C iv 1548 doublet. By integrating the rescaled solar spectrum, we obtain an XUV flux at 1 AU of 5.4 erg s-1 cm-2. We use a detailed model of the planet’s upper atmosphere, deriving a mass-loss rate of 1.5 × 1011 g s-1. Despite the low {log}{R}{HK}\\prime value, the star shows a far-UV spectrum typical of middle-aged solar-type stars, pointing toward the presence of significant extrinsic absorption. The analysis of a high-resolution spectrum of the Ca ii H&K lines indicates that the ISM absorption could be the origin of the low {log}{R}{HK}\\prime value. Nevertheless, the large uncertainty in the Ca ii ISM abundance does not allow us to firmly exclude the presence of circumstellar gas. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from MAST at the Space Telescope Science Institute, which is operated by the Association of Universities

  12. Nano-scale simultaneous observation of Li-concentration profile and Ti-, O electronic structure changes in an all-solid-state Li-ion battery by spatially-resolved electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuo; Yoshida, Ryuji; Sato, Takeshi; Matsumoto, Hiroaki; Kurobe, Hisanori; Hamanaka, Tadashi; Kato, Takehisa; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2014-11-01

    All-solid-state Li-ion batteries having incombustible solid electrolytes are expected to be promising candidates for safe next-generation energy storage devices that have a long lifetime and high energy density. However, it is essential to address the large resistance of Li-ion transfer at the electrode/solid-electrolyte interfaces. A new concept electrode that is formed in situ from the Li2O-Al2O3-TiO2-P2O5-based glass-ceramic solid electrolytes with Si and Ge doping (LASGTP) produces atomic scale connection at the interfaces, which provides extremely low interfacial resistance. However, the formation mechanism and the reason for the low resistance are still unclear. Here we applied spatially-resolved electron energy-loss spectroscopy in a transmission electron microscope mode (SR-TEM-EELS) to visualize the nanometer-scale Li distribution and its effects on the electronic structures of other important elements (Ti and O). Local electron diffraction showed that the in situ formed electrode was an amorphous phase caused by the Li insertion. Picometer-scale expansion of O-O distance due to the Li insertion was also visualized in the electrode. These electronic and crystal changes and gradual Li distribution contribute to the low resistance and stable battery cycles.

  13. Distribution network reconfiguration for energy loss reduction

    SciTech Connect

    Taleski, R.; Rajicic, D.

    1997-02-01

    A new method for energy loss reduction for distribution networks is presented. It is based on known techniques and algorithms for radial network analysis--oriented element ordering, power summation method for power flow, statistical representation of load variations, and a recently developed energy summation method for computation of energy losses. These methods, combined with the heuristic rules developed to lead the iterative process, make the energy loss minimization method effective, robust and fast. It presents an alternative to the power minimization methods for operation and planning purposes.

  14. Energy loss of helium ions in zinc

    SciTech Connect

    Lantschner, G.H.; Eckardt, J.C.; Lifschitz, A.F.; Arista, N.R.; Araujo, L.L.; Duarte, P.F.; Santos, J.H.R. dos; Behar, M.; Dias, J.F.; Grande, P.L.; Montanari, C.C.; Miraglia, J.E.

    2004-06-01

    The energy loss of helium ions in zinc has been measured in the energy range from 37.5 to 1750 keV/amu using the transmission technique and the Rutherford backscattering method. In addition, calculations using the extended Friedel sum rule, the unitary convolution approximation, and the local plasma approximation have been performed. The contributions of the inner-shell and valence electrons to the total energy loss are separately evaluated. The measurements and calculations are in good agreement over an extended range of energies, and both of them yield stopping values higher than those provided by SRIM 2003.

  15. Interferometric background reduction for femtosecond stimulated Raman scattering loss spectroscopy.

    PubMed

    Dobner, Sven; Cleff, Carsten; Fallnich, Carsten; Groß, Petra

    2012-11-07

    We present a purely optical method for background suppression in nonlinear spectroscopy based on linear interferometry. Employing an unbalanced Sagnac interferometer, an unprecedented background reduction of 17  dB over a broad bandwidth of 60  THz (2000  cm(-1)) is achieved and its application to femtosecond stimulated Raman scattering loss spectroscopy is demonstrated. Apart from raising the signal-to-background ratio in the measurement of the Raman intensity spectrum, this interferometric method grants access to the spectral phase of the resonant χ(3) contribution. The spectral phase becomes apparent as a dispersive lineshape and is reproduced numerically with a simple oscillator model.

  16. Electron energy loss spectrometry of interstellar diamonds

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Gibbons, Patrick C.; Lewis, Roy S.

    1990-01-01

    The results are reported of electron energy loss spectra (EELS) measurements on diamond residues from carbonaceous meteorites designed to elucidate the structure and composition of interstellar diamonds. Dynamic effective medium theory is used to model the dielectric properties of the diamonds and in particular to synthesize the observed spectra as mixtures of diamond and various pi-bonded carbons. The results are shown to be quantitatively consistent with the idea that diamonds and their surfaces are the only contributors to the electron energy loss spectra of the diamond residues and that these peculiar spectra are the result of the exceptionally small grain size and large specific surface area of the interstellar diamonds.

  17. New insights into the chemical structure of Y2Ti2O7-δ nanoparticles in oxide dispersion-strengthened steels designed for sodium fast reactors by electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Badjeck, V.; Walls, M. G.; Chaffron, L.; Malaplate, J.; March, K.

    2015-01-01

    In this paper we study by high resolution scanning transmission electron microscopy coupled with electron energy-loss spectroscopy (STEM-EELS) an oxide dispersion-strengthened (ODS) steel with the nominal composition Fe-14Cr-1W-0.3TiH2-0.3Y2O3 (wt.%) designed to withstand the extreme conditions met in Gen. IV nuclear reactors. After denoising via principal component analysis (PCA) the data are analyzed using independent component analysis (ICA) which is useful in the investigation of the physical properties and chemical structure of the material by separating the individual spectral responses. The Y-Ti-O nanoparticles are found to be homogeneously distributed in the ferritic matrix, sized from 1 to 20 nm and match a non-stoichiometric pyrochlore-Y2Ti2O7-δ structure for sizes greater than 5 nm. We show that they adopt a (Y-Ti-O)-Cr core-shell structure and that Cr also segregates at the matrix grain boundaries, which may slightly modify the corrosion properties of the steel. Using Ti-L2,3 and O-K fine structure (ELNES) the Ti oxidation state is shown to vary from the center of the nanoparticles to their periphery, from Ti4+ in distorted Oh symmetry to a valency often lower than 3+. The sensitivity of the Ti "white lines" ELNES to local symmetry distortions is also shown to be useful when investigating the strain induced in the nanoparticles by the surrounding matrix. The Cr-shell and the variation of the Ti valence state highlight a complex nanoparticle-matrix interface.

  18. Energy expenditure, energy intake, and weight loss in Alzheimer disease.

    PubMed

    Poehlman, E T; Dvorak, R V

    2000-02-01

    Alzheimer disease is one of the leading causes of death among older individuals. Unexplained weight loss and cachexia are frequent clinical findings in patients with Alzheimer disease. Thus, it has been postulated that Alzheimer disease may be associated with dysfunction in body weight regulation. This brief review examines the interrelations among energy intake, energy expenditure, and body composition in Alzheimer disease. We explored whether abnormally high daily energy expenditures, low energy intakes, or both contribute to unexplained weight loss and a decline in nutritional status. Specifically, we considered studies that examined energy intake, body composition, and daily energy expenditure and its components. The application of doubly labeled water and indirect calorimetry to understand the etiology of wasting has increased our knowledge regarding the relation among energy expenditure, physical activity levels, and body composition in Alzheimer disease patients. Although the number of studies are limited, results do not support the notion that a hypermetabolic state contributes to unexplained weight loss in Alzheimer disease, even in cachectic patients. Recent findings are presented suggesting an association between abnormally elevated levels of physical activity energy expenditure and elevated appendicular skeletal muscle mass and energy intake in Alzheimer disease patients. Clinical strategies aimed at developing lifestyle and dietary interventions to maintain adequate energy intake, restore energy balance, and maintain skeletal muscle mass should be a future area of investigation in Alzheimer disease research.

  19. Photoneutrino energy losses in strong magnetic fields.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Fassio-Canuto, L.

    1973-01-01

    Previously computed rates of energy losses (Petrosian et al., 1967) ignored the presence of strong magnetic fields, hence the change brought in when such a field (about 10 to the 12th to 10 to the 13th power G) is included is studied. The results indicate that for T about 10 to the 8th power K and densities rho of about 10,000 g/cu cm, the presence of a strong H field decreases the energy losses by at the most a factor between 10 and 100 in the region up to rho = 1,000,000 g/cu cm. At higher densities the neutrino emissivities are almost identical.

  20. Van Vleck from Spectroscopy to Susceptibilities: Kuhn Losses Regained

    NASA Astrophysics Data System (ADS)

    Janssen, Michel

    2011-03-01

    As a young assistant professor in Minneapolis, John H. Van Vleck spent much of his time between 1923 and 1926 writing a book-length Bulletin for the National Research Council. As its title, Quantum Principles and Line Spectra, suggests, the book focuses almost exclusively on spectroscopy, the core pursuit of the old quantum theory. By the time it finally appeared in 1926, the old quantum theory had given way to the new quantum mechanics. Van Vleck soon realized that matrix mechanics reinstated some well-confirmed results of the classical theory of susceptibilities that had been lost in the old quantum theory. In the history and philosophy of science literature, such losses are called 'Kuhn losses'. Using mathematical techniques similar to those presented in his NRC Bulletin, Van Vleck started to work on the theory of susceptibilities. In 1929, now a full professor in Madison, he began writing another book, which appeared in 1932 and has become a classic: The Theory of Electric and Magnetic Susceptibilities. In this talk I follow Van Vleck's trajectory from spectroscopy to susceptibilities and examine how his two books reflect and helped shape research traditions.The talk is based on joint work with Charles Midwinter.

  1. All-dielectric nanostructures for low-loss field enhanced spectroscopy and imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yano, Taka-aki; Tsuchimoto, Yuta; Hayashi, Tomohiro; Hara, Masahiko

    2016-09-01

    Dielectric nanostructures with high refractive index and low optical loss have attracted considerable attention as an alternative to plasmonic nanostructures. We experimentally demonstrated to control the visible electromagnetic resonances of Si-based core-shell nanostructures by thermally varying the core-shell ratio. We also found a Fano resonance which was generated by the interference between the electric and magnetic dipole moments excited in the core-shell nanostructures. The all-dielectric nanostructures realized low energy loss and high electromagnetic field enhancement comparable with that exhibited by plasmonic nanostructures. These unique optical properties would enable us to demonstrate effective field-enhanced spectroscopy and imaging with low heat generation.

  2. Instrumental correction of counting losses in nuclear pulse spectroscopy

    NASA Astrophysics Data System (ADS)

    Westphal, G. P.

    1985-05-01

    The virtual pulse generator (VPG) method of counting loss correction [1-3] is the first truly quantitative instrumental correction procedure taking into account both dead-time and pileup losses of a spectroscopy system over its full operative range of counting rates without the need for fast signal detection channels [4-6] or ambiguous post-processing of data [7,8], or the necessity to process artificial test pulses in addition to the detector signals [9]. Consequently, the VPG method is not limited in test frequency thus enabling the on-line generation of loss correction factors of sufficient statistical accuracy within extremely short periods of time. By adding weighting factors to the channels addressed by the analog-to-digital converter during the course of the measurement (instead of one as in conventional pulse height analysis) real-time correction of counting losses is made possible with millisecond time of response. Increased statistical accuracy may be achieved when using the VPG principle for loss-dependent prolonging of the measuring time similar to the live-time clock method. Both real-time and live-time modes of operation are provided for in a commercially available VPG correction module [10]. After a description of the set-up procedure of the module in connection with a likewise commercial semi-Gaussian shaping amplifier the performance of the VPG correction is exemplified to a level of 0.2% with the aid of repetitive two-source measurements in both the real-time and the live-time mode of operation.

  3. DYNAMICS AND ENERGY LOSS IN SUPERBUBBLES

    SciTech Connect

    Krause, Martin G. H.; Diehl, Roland

    2014-10-20

    Interstellar bubbles appear to be smaller in observations than expected from calculations. Instabilities at the shell boundaries create three-dimensional (3D) effects and are probably responsible for part of this discrepancy. We investigate instabilities and dynamics in superbubbles using 3D hydrodynamics simulations with time-resolved energy input from massive stars, including supernova explosions. We find that the superbubble shells are accelerated by supernova explosions, coincident with substantial brightening in soft X-ray emission. In between the explosions, the superbubbles lose energy efficiently, approaching the momentum-conserving snowplow limit. This and enhanced radiative losses due to instabilities reduce the expansion compared to the corresponding radiative bubbles in pressure-driven snowplow models with constant energy input. We note generally good agreement with observations of superbubbles and some open issues. In particular, there are hints that the shell velocities in the X-ray-bright phases are underpredicted.

  4. Radiative Energy Loss by Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    Interactions between galactic cosmic rays and matter are a primary focus of the NASA radiation problem. The electromagnetic forces involved are for the most part well documented. Building on previous research, this study investigated the relative importance of the weak forces that occur when a cosmic ray impinges on different types of materials. For the familiar electromagnetic case, it is known that energy lost in the form of radiation is more significant than that lost via contact collisions the rate at which the energy is lost is also well understood. Similar results were derived for the weak force case. It was found that radiation is also the dominant mode of energy loss in weak force interactions and that weak force effects are indeed relatively weak compared to electromagnetic effects.

  5. Energy loss of hydrogen projectiles in gases

    SciTech Connect

    Schiefermueller, A.; Golser, R.; Stohl, R.; Semrad, D. )

    1993-12-01

    The stopping cross sections of H[sub 2], D[sub 2], He, and Ne for hydrogen projectiles in the energy range 3--20 keV per nucleon have been measured by time of flight. We compare our experimental result to the sum of the individual contributions due to excitation and ionization of the target and of the projectile, respectively, and due to charge exchange, using published cross-section data. Satisfactory agreement is found only for the He target and only at moderate projectile velocities, whereas for H[sub 2] and D[sub 2] the calculated values are about 30% too low. A Monte Carlo program allows us to simulate the measured time-of-flight spectra and to explain minor trends in the experimental data: for increased Ne gas pressure, an increased specific energy loss has been found that can be traced to different regions of impact parameters selected in our transmission geometry. This also explains, in part, the increased specific energy loss for deuterons compared to protons of equal velocity that is most evident for Ne. In contrast, a decrease of the specific energy loss with increasing pressure for He may be explained by impurities in the target gas. If we correct for the effect of impurities, the stopping cross section of He at 4 keV per nucleon is slightly smaller (0.60[times]10[sup [minus]15] eV cm[sup 2]) than published earlier (0.72[times]10[sup [minus]15] eV cm[sup 2]) and depends on the 3.8th power of projectile velocity.

  6. Jet Quenching Beyond the Energy Loss Approach

    NASA Astrophysics Data System (ADS)

    Ovanesyan, Grigory

    2015-02-01

    We study the jet quenching effect in heavy ion collisions, based on medium-induced splitting functions calculated from Soft Collinear Effective Theory with Glauber Gluons. Our method is formulated in the language of DGLAP evolution equations with medium-induced splitting functions. In the small-x soft gluon approximation we analytically solve the evolution equations and find an intuitive connection to the energy loss approach. For central Pb+Pb collisions at the LHC we quantify the effect of finite-x corrections for the nuclear modification factor and compare to data.

  7. Energy losses in mechanically modified bacterial magnetosomes

    NASA Astrophysics Data System (ADS)

    Molcan, Matus; Gojzewski, Hubert; Skumiel, Andrzej; Dutz, Silvio; Kovac, Jozef; Kubovcikova, Martina; Kopcansky, Peter; Vekas, Ladislau; Timko, Milan

    2016-09-01

    Magnetosomes are isolated from the Magnetospirillum magneticum strain AMB-1 bacteria. Two samples are compared: magnetosomes normally prepared of a ‘standard’ length and magnetosomes of a short length. Chains of magnetosomes are shortened by mechanical modification (cleavage) by means of sonication treatment. They represent a new geometry of magnetosomes that have not been investigated before. The effect of the sonication is analysed using transmission and electron microscopy, atomic force microscopy, and dynamic light scattering. Scanning imaging reveals three types of shortening effect in a sample of shortened magnetosomes, namely, membrane collapse, membrane destruction, and magnetosome cleavage. Dynamic light scattering shows a reduction of hydrodynamic diameter in a sample of shortened magnetosomes. The magnetic properties of magnetosomes are analysed and compared in DC and AC magnetic fields based on the evaluation of quasi-static hysteresis loops (energy losses) and calorimetric hyperthermia measurements (specific absorption rate), respectively. A sample of shortened magnetosomes behaves magnetically in a different manner, showing that both the energy loss and the specific absorption rate are reduced, and thereby indicates a variation in the heating process. The magnetic properties of magnetosomes, together with the new and stable geometry, are balanced, which opens the way for a better adaptation of the magnetic field parameters for particular applications.

  8. Energy loss of coasting gold ions and deuterons in RHIC.

    SciTech Connect

    Abreu,N.; Blaskiewicz, M.; Brown, K.A.; Butler, J.J.; FischW; Harvey, M.; Tepikian, S.

    2008-06-23

    The total energy loss of coasting gold ion beams was measured at RHIC at two energies, corresponding to a gamma of 75.2 and 107.4. We describe the experiment and observations and compare the measured total energy loss with expectations from ionization losses at the residual gas, the energy loss due to impedance and synchrotron radiation. We find that the measured energy losses are below what is expected from free space synchrotron radiation. We believe that this shows evidence for suppression of synchrotron radiation which is cut off at long wavelength by the presence of the conducting beam pipe.

  9. The molecular and electronic states of 1,2,4,5-tetrazine studied by VUV absorption, near-threshold electron energy-loss spectroscopy and ab initio multi-reference configuration interaction studies

    NASA Astrophysics Data System (ADS)

    Palmer, Michael H.; McNab, Hamish; Reed, David; Pollacchi, Anne; Walker, Isobel C.; Guest, Martyn F.; Siggel, Michele R. F.

    1997-01-01

    The VUV electronic absorption spectrum of 1,2,4,5-tetrazine has been re-investigated, and together with electron energy-loss spectra has led to identification of a number of new excited states. The valence and Rydberg excited states have been studied by multi-reference multi-root configuration interaction studies using MRDCI techniques. Initial studies with the RPA and TDA methods gave almost identical results for the excitation energies, but there is a substantial energy-lowering in the MRDCI calculations, which improves agreement with experiment substantially; these differences are a result of the double, triple and quadruple excited reference configurations included in the reference set of the latter method. The 1ππ ∗ excitations are calculated rather higher than experiment, except for the lowest-lying (weak) 1B 2u state at 5.0 eV. The calculated order for the next three ππ ∗ states is 1B 1u (weak) followed by 1B 2u (strong) and 1B 1u (strong), the last two bands being responsible for the dominant absorption near 7.5 and 8.5 eV. All of this group of four bands involve excitations from the pair of MOs 1b 2g and 1b 1g into the 1a u∗ and 4b 3u∗ VMOs. The sequence of nπ ∗ stakes are in a similar order to the ππ ∗ excitations, with respect to the upper state, and the two lowest singlet states, 1B 3u and 1A u are reasonably well determined. The triplet states follow a similar order to the singlets, and again the dominance of the effect of the two lowest VMOs is demonstrated, but considerable differences between the weighting of leading configurations occurs between singlet and triplet manifolds. The non-diagonal TDA method has been used to reconsider the UV-photoelectron spectrum. The ionisation potentials for tetrazine are reinterpreted with the first three bands being regrouped into 1, 2, 2 ionisations respectively. The ground state properties of tetrazine suggest that the NQR spectrum will show a principal axis 14N quadrupole coupling constant

  10. Zero kinetic energy photoelectron spectroscopy of pyrene.

    PubMed

    Zhang, Jie; Han, Fangyuan; Kong, Wei

    2010-10-28

    We report zero kinetic energy photoelectron (ZEKE) spectroscopy of pyrene via resonantly enhanced multiphoton ionization. Our analysis centers on the symmetry of the first electronically excited state (S(1)), its vibrational modes, and the vibration of the ground cationic state (D(0)). From comparisons between the observed vibrational frequencies and those from ab initio calculations at the configuration interaction singles level using the 6-311G (d,p) basis set, and based on other previous experimental and theoretical reports, we confirm the (1)B(2u) symmetry for the S(1) state. This assignment represents a reversal in the energy order of the two closely spaced electronically excited states from our theoretical calculation, and extensive configuration interactions are attributed to this result. Among the observed vibrational levels of the S(1) state, three are results of vibronic coupling due to the nearby second electronically excited state. The ZEKE spectroscopy obtained via the vibronic levels of the S(1) state reveals similar modes for the cation as those of the intermediate state. Although we believe that the ground ionic state can be considered a single electron configuration, the agreement between theoretical and experimental frequencies for the cation is limited. This result is somewhat surprising based on our previous work on cata-condensed polycyclic aromatic hydrocarbons and small substituted aromatic compounds. Although a relatively small molecule, pyrene demonstrates its nonrigidity via several out-of-plane bending modes corresponding to corrugation of the molecular plane. The adiabatic ionization potential of neutral pyrene is determined to be 59 888 ± 7 cm(-1).

  11. Low-loss energy storage flywheel

    NASA Technical Reports Server (NTRS)

    Evans, H. E.; Studer, P. A.

    1977-01-01

    Magnetically-levitated, ironless-armature spokeless rotor is used. Ironless armature construction eliminates core losses due to hysteresis and eddy currents. Device combines features of homopolar salient poles and stationary ironless electronically commutated armature.

  12. The electron energy loss rate due to radiative recombination

    NASA Astrophysics Data System (ADS)

    Mao, Junjie; Kaastra, Jelle; Badnell, N. R.

    2017-02-01

    Context. For photoionized plasmas, electron energy loss rates due to radiative recombination (RR) are required for thermal equilibrium calculations, which assume a local balance between the energy gain and loss. While many calculations of total and/or partial RR rates are available from the literature, specific calculations of associated RR electron energy loss rates are lacking. Aims: Here we focus on electron energy loss rates due to radiative recombination of H-like to Ne-like ions for all the elements up to and including zinc (Z = 30), over a wide temperature range. Methods: We used the AUTOSTRUCTURE code to calculate the level-resolved photoionization cross section and modify the ADASRR code so that we can simultaneously obtain level-resolved RR rate coefficients and associated RR electron energy loss rate coefficients. We compared the total RR rates and electron energy loss rates of H i and He i with those found in the literature. Furthermore, we utilized and parameterized the weighted electron energy loss factors (dimensionless) to characterize total electron energy loss rates due to RR. Results: The RR electron energy loss data are archived according to the Atomic Data and Analysis Structure (ADAS) data class adf48. The RR electron energy loss data are also incorporated into the SPEX code for detailed modeling of photoionized plamsas. Full Tables 1 and 2 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A10

  13. Research of the conical cavity high-energy laser energy meter energy loss compensation technique

    NASA Astrophysics Data System (ADS)

    Yu, Xun; Li, Qian; Nie, Liang; Shang, Xiaoyan; Liu, Baoyuan

    2008-09-01

    Because absolute quantity thermal laser energy meter based on conical cavity has some features, for example, wavelength adaptation range is wide and laser damage threshold value is high. It is used for the standard of the high-energy laser energy meter and extensively in the domain of the high energy laser measurement. However, laser energy will lose because of the heat exchange and the back scattering of the conical absorption cavity. Therefore, only after compensating and amending the loss, the exact measurement of the laser energy can be achieved. Aimed to the energy loss compensation problem of the conical cavity high-energy laser energy meter, firstly, according to the heat transfer theory, this paper analyzes the heat energy loss of the conical cavity due to the heat emission, the heat convection and the heat exchange, and construct the mathematical model of the heat energy loss, based on which measuring result is curved fit using the least squares technique, and is compensated and amended utilizing the fitting curve, whose measurement repetitiveness is 0.7%, from which we can know that measuring repetitiveness is increased consumedly. Secondly, according to the optics principles of reciprocity of the conical cavity inner face and the incident laser and utilizing complexification Simpson numerical method, the mathematical model of conical cavity jaw opening optical power density distribution and back scattering gross power is established, based on which measuring result is compensated and amended, the back scattering energy loss is about 0.5% to 2.5%, high-energy laser energy measuring accuracy is improved availably.

  14. Study on energy loss compensation of back scattering conical cavity high-energy laser energy meter

    NASA Astrophysics Data System (ADS)

    Yu, Xun; Wang, Hui; Shang, Xiao-yan; Nie, Liang; Liu, Bao-yuan

    2009-05-01

    Because absolute quantity thermal laser energy meter based on conical cavity has some features, for example, wide wavelength adaptation range, high laser damage threshold value, extensive measuring energy range and so on, it is often used as the standard of high-energy laser energy meter, and is used extensively in the domain of high energy laser measurement. But, laser energy will lose because of back scattering of conical absorption cavity. So, only after the loss is compensated and amended, exact measurement of laser energy can be achieved. Aiming at energy loss compensation problem of conical cavity high-energy laser energy meter, we firstly, according to speckle statistics optical theory, analyze the back scattering of the conical absorption cavity in condition of uniform distribution laser incident on diffuse reflection surface, and secondly, we aim at high power laser's output facula shape: round, based on optical principles of interaction of the conical cavity inner face and the incident laser and utilize complexfication Simpson numerical method, the mathematical models of optical power density distribution at open-end of conical cavity and back scattering gross power are established. On this basis, the measured result is compensated and amended. The back scattering energy loss is about 0.5% to 2.5%.High-energy laser energy measuring accuracy is improved effectively.

  15. Ethanol production: energy, economic, and environmental losses.

    PubMed

    Pimentel, David; Patzek, Tad; Cecil, Gerald

    2007-01-01

    The prime focus of ethanol production from corn is to replace the imported oil used in American vehicles, without expending more fossil energy in ethanol production than is produced as ethanol energy. In a thorough and up-to-date evaluation of all the fossil energy costs of ethanol production from corn, every step in the production and conversion process must be included. In this study, 14 energy inputs in average U.S. corn production are included. Then, in the fermentation/distillation operation, 9 more identified fossil fuel inputs are included. Some energy and economic credits are given for the by-products, including dried distillers grains (DDG). Based on all the fossil energy inputs, a total of 1.43 kcal fossil energy is expended to produced 1 kcal ethanol. When the energy value of the DDG, based on the feed value of the DDG as compared to that of soybean meal, is considered, the energy cost of ethanol production is reduced slightly, to 1.28 kcal fossil energy input per 1 kcal ethanol produced. Several proethanol investigators have overlooked various energy inputs in U.S. corn production, including farm machinery, processing machinery, and the use of hybrid corn. In other studies, unrealistic, low energy costs were attributed to such inputs as nitrogen fertilizer, insecticides, and herbicides. Controversy continues concerning the energy and economic credits that should be assigned to the by-products. The U.S. Department of Energy reports that 17.0 billion L ethanol was produced in 2005. This represents only less than 1% of total oil use in the U.S. These yields are based on using about 18% of total U.S. corn production and 18% of cornland. Because the production of ethanol requires large inputs of both oil and natural gas in production, the U.S. is importing both oil and natural gas to produce ethanol. Furthermore, the U.S. Government is spending about dollar 3 billion annually to subsidize ethanol production, a subsidy of dollar 0.79/L ethanol produced. With

  16. Interference effect in elastic parton energy loss in a finitemedium

    SciTech Connect

    Wang, Xin-Nian

    2005-04-18

    Similar to the radiative parton energy loss due to gluonbremsstrahlung, elastic energy loss of a parton undergoing multiplescattering in a finite medium is demonstrated to be sensitive tointerference effect. The interference between amplitudes of elasticscattering via a gluon exchange and that of gluon radiation reduces theeffective elastic energy loss in a finite medium and gives rise to anon-trivial length dependence. The reduction is most significant for apropagation length L<4/\\pi T in a medium with a temperature T. Thoughthe finite size effect is not significant for the average partonpropagation in the most central heavy-ion collisions, it will affect thecentrality dependence of its effect on jet quenching.

  17. Zero kinetic energy photoelectron spectroscopy of triphenylene

    SciTech Connect

    Harthcock, Colin; Zhang, Jie; Kong, Wei

    2014-06-28

    We report vibrational information of both the first electronically excited state and the ground cationic state of jet-cooled triphenylene via the techniques of resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. The first excited electronic state S{sub 1} of the neutral molecule is of A{sub 1}′ symmetry and is therefore electric dipole forbidden in the D{sub 3h} group. Consequently, there are no observable Franck-Condon allowed totally symmetric a{sub 1}′ vibrational bands in the REMPI spectrum. All observed vibrational transitions are due to Herzberg-Teller vibronic coupling to the E′ third electronically excited state S{sub 3}. The assignment of all vibrational bands as e′ symmetry is based on comparisons with calculations using the time dependent density functional theory and spectroscopic simulations. When an electron is eliminated, the molecular frame undergoes Jahn-Teller distortion, lowering the point group to C{sub 2v} and resulting in two nearly degenerate electronic states of A{sub 2} and B{sub 1} symmetry. Here we follow a crude treatment by assuming that all e′ vibrational modes resolve into b{sub 2} and a{sub 1} modes in the C{sub 2v} molecular frame. Some observed ZEKE transitions are tentatively assigned, and the adiabatic ionization threshold is determined to be 63 365 ± 7 cm{sup −1}. The observed ZEKE spectra contain a consistent pattern, with a cluster of transitions centered near the same vibrational level of the cation as that of the intermediate state, roughly consistent with the propensity rule. However, complete assignment of the detailed vibrational structure due to Jahn-Teller coupling requires much more extensive calculations, which will be performed in the future.

  18. Zero kinetic energy photoelectron spectroscopy of triphenylene

    NASA Astrophysics Data System (ADS)

    Harthcock, Colin; Zhang, Jie; Kong, Wei

    2014-06-01

    We report vibrational information of both the first electronically excited state and the ground cationic state of jet-cooled triphenylene via the techniques of resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. The first excited electronic state S1 of the neutral molecule is of A1' symmetry and is therefore electric dipole forbidden in the D3h group. Consequently, there are no observable Franck-Condon allowed totally symmetric a1' vibrational bands in the REMPI spectrum. All observed vibrational transitions are due to Herzberg-Teller vibronic coupling to the E' third electronically excited state S3. The assignment of all vibrational bands as e' symmetry is based on comparisons with calculations using the time dependent density functional theory and spectroscopic simulations. When an electron is eliminated, the molecular frame undergoes Jahn-Teller distortion, lowering the point group to C2v and resulting in two nearly degenerate electronic states of A2 and B1 symmetry. Here we follow a crude treatment by assuming that all e' vibrational modes resolve into b2 and a1 modes in the C2v molecular frame. Some observed ZEKE transitions are tentatively assigned, and the adiabatic ionization threshold is determined to be 63 365 ± 7 cm-1. The observed ZEKE spectra contain a consistent pattern, with a cluster of transitions centered near the same vibrational level of the cation as that of the intermediate state, roughly consistent with the propensity rule. However, complete assignment of the detailed vibrational structure due to Jahn-Teller coupling requires much more extensive calculations, which will be performed in the future.

  19. Zero kinetic energy photoelectron spectroscopy of triphenylene.

    PubMed

    Harthcock, Colin; Zhang, Jie; Kong, Wei

    2014-06-28

    We report vibrational information of both the first electronically excited state and the ground cationic state of jet-cooled triphenylene via the techniques of resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. The first excited electronic state S1 of the neutral molecule is of A1' symmetry and is therefore electric dipole forbidden in the D3h group. Consequently, there are no observable Franck-Condon allowed totally symmetric a1' vibrational bands in the REMPI spectrum. All observed vibrational transitions are due to Herzberg-Teller vibronic coupling to the E' third electronically excited state S3. The assignment of all vibrational bands as e' symmetry is based on comparisons with calculations using the time dependent density functional theory and spectroscopic simulations. When an electron is eliminated, the molecular frame undergoes Jahn-Teller distortion, lowering the point group to C2v and resulting in two nearly degenerate electronic states of A2 and B1 symmetry. Here we follow a crude treatment by assuming that all e' vibrational modes resolve into b2 and a1 modes in the C2v molecular frame. Some observed ZEKE transitions are tentatively assigned, and the adiabatic ionization threshold is determined to be 63 365 ± 7 cm(-1). The observed ZEKE spectra contain a consistent pattern, with a cluster of transitions centered near the same vibrational level of the cation as that of the intermediate state, roughly consistent with the propensity rule. However, complete assignment of the detailed vibrational structure due to Jahn-Teller coupling requires much more extensive calculations, which will be performed in the future.

  20. Mass loss from red giants - Results from ultraviolet spectroscopy

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1985-01-01

    New instrumentation in space, primarily the IUE spacecraft, has enabled the application of ultraviolet spectroscopic techniques to the determination of physical properties and reliable mass loss rates for red giant winds. One important result is the determination of where in the H-R diagram are found stars with hot outer atmospheres and with cool winds. So far it appears that single cool stars, except perhaps the so-called hybrid stars, have either hot outer atmospheres or cool winds but not both. The C II resonance (1335 A) and intersystem (2325 A) multiplets have been used to derive temperatures, densities, and geometrical extents for the chromospheric portions of red giant winds, with the result that the red giants and the earlier giants with hot coronae have qualitatively different chromospheres. Mass loss rates can now be derived accurately from the analysis of asymmetric emission lines, such as the Mg II resonance lines, and from P Cygni profile lines of atoms in the dominant ionization stage when a hot star is available to probe the wind of a red giant. The Zeta Aur systems, consisting of a K-M supergiant and a main sequence B star are important systems for reliable mass loss rates for the red supergiant components are becoming available.

  1. Holographic energy loss in non-relativistic backgrounds

    NASA Astrophysics Data System (ADS)

    Atashi, Mahdi; Fadafan, Kazem Bitaghsir; Farahbodnia, Mitra

    2017-03-01

    In this paper, we study some aspects of energy loss in non-relativistic theories from holography. We analyze the energy lost by a rotating heavy point particle along a circle of radius l with angular velocity ω in theories with general dynamical exponent z and hyperscaling violation exponent θ . It is shown that this problem provides a novel perspective on the energy loss in such theories. A general computation at zero and finite temperature is done and it is shown how the total energy loss rate depends non-trivially on two characteristic exponents (z,θ ). We find that at zero temperature there is a special radius l_c where the energy loss is independent of different values of (θ ,z). Also at zero temperature, there is a crossover between a regime in which the energy loss is dominated by the linear drag force and by the radiation because of the acceleration of the rotating particle. We find that the energy loss of the particle decreases by increasing θ and z. We note that, unlike in the zero temperature, there is no special radius l_c at finite temperature case.

  2. Energy loss by resonance line photons in an absorbing medium

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.; Kunasz, P. B.

    1980-01-01

    The mean path length of photons undergoing repeated scatterings in media of large optical thickness is calculated from accurate numerical solutions of the transfer equation including the effect of frequency redistribution characteristic of combined Doppler and natural broadening. Energy loss by continuous absorption processes, such as ionization or dust absorption, is discussed, and asymptotic scaling laws for the energy loss, the mean path length, and the mean number of scatterings are inferred from the numerical data.

  3. Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy.

    PubMed

    Gu, Lin; Sigle, Wilfried; Koch, Christoph T; Nelayah, Jaysen; Srot, Vesna; van Aken, Peter A

    2009-08-01

    The advent of electron monochromators has opened new perspectives on electron energy-loss spectroscopy at low energy losses, including phenomena such as surface plasmon resonances or electron transitions from the valence to the conduction band. In this paper, we report first results making use of the combination of an energy filter and a post-filter annular dark-field detector. This instrumental design allows us to obtain energy-filtered (i.e. inelastic) annular dark-field images in scanning transmission electron microscopy of the 2-dimensional semiconductor band-gap distribution of a GaN/Al(45)Ga(55)N structure and of surface plasmon resonances of silver nanoprisms. In comparison to other approaches, the technique is less prone to inelastic delocalization and relativistic artefacts. The mixed contribution of elastic and inelastic contrast is discussed.

  4. Defect engineering in GaAs using high energy light ion irradiation: Role of electronic energy loss

    SciTech Connect

    Kabiraj, D.; Ghosh, Subhasis

    2011-02-01

    We report on the application of high energy light ions (Li and O) irradiation for modification of defects, in particular, for annihilation of point defects using electronic energy loss in GaAs to minimize the defects produced by nuclear collisions. The high resolution x-ray diffraction and micro-Raman spectroscopy have been used to monitor that no lattice damage or amorphization take place due to irradiating ions. The effects of irradiation on defects and their energy levels have been studied using thermally stimulated current spectroscopy. It has been observed that till an optimum irradiation fluence of 10{sup 13} ions/cm{sup 2} there is annihilation of native defects but further increase in irradiation fluence results in accumulation of defects, which scales with the nuclear energy loss process, indicating that the rate of defects produced by the binary collision process exceeds rate of defect annihilation. Defect annihilation due to electronic energy loss has been discussed on the basis of breaking of bonds and enhanced diffusivity of ionized native defects.

  5. Tailoring the energy distribution and loss of 2D plasmons

    NASA Astrophysics Data System (ADS)

    Lin, Xiao; Rivera, Nicholas; López, Josué J.; Kaminer, Ido; Chen, Hongsheng; Soljačić, Marin

    2016-10-01

    The ability to tailor the energy distribution of plasmons at the nanoscale has many applications in nanophotonics, such as designing plasmon lasers, spasers, and quantum emitters. To this end, we analytically study the energy distribution and the proper field quantization of 2D plasmons with specific examples for graphene plasmons. We find that the portion of the plasmon energy contained inside graphene (energy confinement factor) can exceed 50%, despite graphene being infinitely thin. In fact, this very high energy confinement can make it challenging to tailor the energy distribution of graphene plasmons just by modifying the surrounding dielectric environment or the geometry, such as changing the separation distance between two coupled graphene layers. However, by adopting concepts of parity-time symmetry breaking, we show that tuning the loss in one of the two coupled graphene layers can simultaneously tailor the energy confinement factor and propagation characteristics, causing the phenomenon of loss-induced plasmonic transparency.

  6. Heat Loss Experiments: Teach Energy Savings with Cardboard "House"

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2011-01-01

    Using two cardboard boxes, a light bulb socket, light bulbs of varying wattage, a thermometer, and some insulation, students can learn some interesting lessons about how heat loss occurs in homes. This article describes practical experiments that work well on units related to energy, sustainable energy, renewables, engineering, and construction.…

  7. Comments on GUT monopole energy loss and ionization

    SciTech Connect

    Hagstrom, R.

    1982-01-01

    A few comments about the likely behavior of the electromagnetic energy loss and ionization rates of super-slowly moving magnetic monopoles are presented. The questions of energy loss rates and ionization rates for super-low monopoles passing through matter are considered, concentrating on aspects of these issues which affect practical detection techniques. It is worthwhile here to emphasize that there is a potentially great distinction between energy loss rates and ionization rates and that the magnitude of this distinction is really the great issue which must be settled in order to understand the significance of experimental results from present and proposed investigations of the slow monopole question. Energy loss here means the total dE/dX of the projectile due to interactions with the electrons of the slowing medium. To the extent that nuclear collisions can be neglected, this so-called electronic energy loss is the relevant quantity in questions about whether monopoles stop within the earth's crust, whether they are slowed by interstellar plasmas, or the signal in a truly calorimetric measurement (measuring temperature rises along the trajectory), etc. Most of our successful detection techniques depend upon the promotion of ground state electrons into states which lie above some energy gap in the material of the detector: electrons must be knocked completely free from the gas atoms in a proportional chamber gas, electrons must be promoted to a higher band in solid scintillator plastics. These processes are generically identified as ionization. (WHK)

  8. Energy-Efficiency Options for Insurance Loss Prevention

    SciTech Connect

    Mills, E.; Knoepfel, I.

    1997-06-09

    Energy-efficiency improvements offer the insurance industry two areas of opportunity: reducing ordinary claims and avoiding greenhouse gas emissions that could precipitate natural disaster losses resulting from global climate change. We present three vehicles for taking advantage of this opportunity, including research and development, in- house energy management, and provision of key information to insurance customers and risk managers. The complementary role for renewable energy systems is also introduced.

  9. Estimating convective energy losses from solar central receivers

    SciTech Connect

    Siebers, D L; Kraabel, J S

    1984-04-01

    This report outlines a method for estimating the total convective energy loss from a receiver of a solar central receiver power plant. Two types of receivers are considered in detail: a cylindrical, external-type receiver and a cavity-type receiver. The method is intended to provide the designer with a tool for estimating the total convective energy loss that is based on current knowledge of convective heat transfer from receivers to the environment and that is adaptable to new information as it becomes available. The current knowledge consists of information from two recent large-scale experiments, as well as information already in the literature. Also outlined is a method for estimating the uncertainty in the convective loss estimates. Sample estimations of the total convective energy loss and the uncertainties in those convective energy loss estimates for the external receiver of the 10 MWe Solar Thermal Central Receiver Plant (Barstow, California) and the cavity receiver of the International Energy Agency Small Solar Power Systems Project (Almeria, Spain) are included in the appendices.

  10. Data Acquisition System for Electron Energy Loss Coincident Spectrometers

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Yu, Xiaoqi; Yang, Tao

    2005-12-01

    A Data Acquisition System (DAQ) for electron energy loss coincident spectrometers (EELCS) has been developed. The system is composed of a Multiplex Time-Digital Converter (TDC) that measures the flying time of positive and negative ions and a one-dimension position-sensitive detector that records the energy loss of scattering electrons. The experimental data are buffered in a first-in-first-out (FIFO) memory module, then transferred from the FIFO memory to PC by the USB interface. The DAQ system can record the flying time of several ions in one collision, and allows of different data collection modes. The system has been demonstrated at the Electron Energy Loss Coincident Spectrometers at the Laboratory of Atomic and Molecular Physics, USTC. A detail description of the whole system is given and experimental results shown.

  11. Exercise Training and Energy Expenditure following Weight Loss

    PubMed Central

    Hunter, Gary R.; Fisher, Gordon; Neumeier, William H.; Carter, Stephen J.; Plaisance, Eric P.

    2015-01-01

    Purpose Determine the effects of aerobic or resistance training on activity related energy expenditure (AEE, kcal/d) and physical activity index (ARTE) following weight loss. It was hypothesized that weight loss without exercise training would be accompanied by a decrease in AEE, ARTE, and non-training physical activity energy expenditure (NEAT) and that exercise training would prevent decreases in free living energy expenditure. Methods 140 pre-menopausal women underwent an average of 25 pound weight loss during an 800 kcal/day diet of furnished food. One group aerobically trained 3 times/wk (40 min/d), another resistance trained 3 times/wk (10 exercises/2 sets x10 repetitions) and the third group did not exercise. DXA was used to measure body composition, indirect calorimetry to measure resting (REE) and walking energy expenditure, and doubly labeled water to measure total energy expenditure (TEE). AEE, ARTE, and non-training physical activity energy expenditure (NEAT) were calculated. Results TEE, REE, and NEAT all decreased following weight loss for the no exercise group, but not for the aerobic and resistance trainers. Only REE decreased in the two exercise groups. The resistance trainers increased ARTE. Heart rate and oxygen uptake while walking on the flat and up a grade were consistently related to TEE, AEE, NEAT, and ARTE. Conclusion Exercise training prevents a decrease in energy expenditure, including free living energy expenditure separate from the exercise training, following weight loss. Resistance training increased physical activity, while ease and economy in walking associates with increased TEE, AEE, NEAT, and ARTE. PMID:25606816

  12. An electron energy-loss study of picene and chrysene based charge transfer salts

    SciTech Connect

    Müller, Eric; Mahns, Benjamin; Büchner, Bernd; Knupfer, Martin

    2015-05-14

    The electronic excitation spectra of charge transfer compounds built from the hydrocarbons picene and chrysene, and the strong electron acceptors F{sub 4}TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) and TCNQ (7,7,8,8-tetracyanoquinodimethan) have been investigated using electron energy-loss spectroscopy. The corresponding charge transfer compounds have been prepared by co-evaporation of the pristine constituents. We demonstrate that all investigated combinations support charge transfer, which results in new electronic excitation features at low energy. This might represent a way to synthesize low band gap organic semiconductors.

  13. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    NASA Astrophysics Data System (ADS)

    Tait, E. W.; Ratcliff, L. E.; Payne, M. C.; Haynes, P. D.; Hine, N. D. M.

    2016-05-01

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable.

  14. Uncertainty, loss aversion, and markets for energy efficiency

    SciTech Connect

    Greene, David L

    2010-01-01

    Increasing energy efficiency is critical to mitigating greenhouse gas emissions from fossil-fuel combustion, reducing oil dependence, and achieving a sustainable global energy system. The tendency of markets to neglect apparently cost-effective energy efficiency options has been called the efficiency gap or energy paradox. The market for energy efficiency in new, energy-using durable goods, however, appears to have a bias that leads to undervaluation of future energy savings relative to their expected value. This paper argues that the bias is chiefly produced by the combination of substantial uncertainty about the net value of future fuel savings and the loss aversion of typical consumers. This framework relies on the theory of contextdependent preferences. The uncertainty-loss aversion bias against energy efficiency is quantifiable, making it potentially correctible by policy measures. The welfare economics of such policies remains unresolved. Data on the costs of increased fuel economy of new passenger cars, taken from a National Research Council study, illustrate how an apparently cost-effective increase in energy efficiency would be uninteresting to lossaverse consumers.

  15. Energy loss of heavy ions in a dense hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Dietrich, K.-G.; Hoffmann, D. H. H.; Wahl, H.; Haas, C. R.; Kunze, H.; Brandenburg, W.; Noll, R.

    1990-12-01

    The energy loss of heavy ions with an energy of 1.4 MeV/u in a hydrogen plasma has been measured. A 20 cm long z-pinch has been used as plasma target. Our data show a strong enhancement of the stopping power of the plasma compared to that of a cold gas with equal density. The results completely confirm the predictions of the standard stopping power model.

  16. Loss of energy of internal solitary wave over underwater obstacle

    NASA Astrophysics Data System (ADS)

    Talipova, Tatiana; Terletska, Katherina; Maderich, Vladimir; Brovchenko, Igor; Jung, Kyung-Tae; Pelinovsky, Efim; Grimshaw, Roger

    2014-05-01

    Internal waves are considered as the main reason of mixing of the stratified ocean waters. They loss their energy for mixing processes when dissipate on the ocean shelves. The elementary act of interaction of an internal solitary wave with a bottom step is studied to estimate the energy loss of an incident internal solitary wave. It is studied numerically in a computing tank in the approximation of two-layer flow within the full Navier - Stokes equations. Five different regimes of internal solitary wave interaction were identified within the full range of ratios of height of bottom layer after the step to the incident wave amplitude: (1) weak interaction, when wave dynamics can fully described by weakly nonlinear theory, (2) moderate interaction when wave breaking mechanism over the step is mainly shear instability, (3) strong interaction when supercritical flow in the step vicinity results in backward jet and vortices for depression waves and in a forward moving vortex (bolus) transporting dense fluid on the step, (4) transitional regime of interaction at the step height between splash on the step and (5) complete reflection from the step, and reflection regime when almost all energy transfers to the energy of reflected wave. The mechanism of KH instability takes place for reasonable amplitude waves of both depression and elevation during interaction with the bottom step for all regimes except regime (1). For this two-layer flow the energy loss due to an internal solitary wave interacting with the bottom step does not exceed 50% of the energy of the incident wave. The maximum of energy loss an elevation incident wave is reached when the ratio of the height of bottom layer after the step to incident wave amplitude equals zero. For an incident depression wave this ratio in maximum of energy loss is close to one. Self-similarities of the energy loss versus the ratio of the height of upper layer after the step to incident wave amplitude take place for the values more

  17. Acceleration and energy loss in N = 4 SYM

    SciTech Connect

    Chernicoff, Mariano; Gueijosa, Alberto

    2009-04-20

    This contribution is based on two talks given at the XIII Mexican School of Particles and Fields. We revisit some of the results presented in [19], concerning the rate of energy loss of an accelerating quark in strongly-coupled N = 4 super-Yang-Mills.

  18. Energy losses through entrance condensation in small vapour engines

    SciTech Connect

    Bom, G.J. )

    1993-03-01

    The effects of entrance condensation were studied in a small piston type vapour engine as could be used for low power thermodynamic solar waterpumping (50-1000 W output). Indicative relations have been established between the magnitude of energy losses caused by this phenomenon and engine design features. 2 refs., 5 figs.

  19. Rotating gravity currents. Part 1. Energy loss theory

    NASA Astrophysics Data System (ADS)

    Martin, J. R.; Lane-Serff, G. F.

    2005-01-01

    A comprehensive energy loss theory for gravity currents in rotating rectangular channels is presented. The model is an extension of the non-rotating energy loss theory of Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) and the steady-state dissipationless theory of rotating gravity currents of Hacker (PhD thesis, 1996). The theory assumes the fluid is inviscid, there is no shear within the current, and the Boussinesq approximation is made. Dissipation is introduced using a simple method. A head loss term is introduced into the Bernoulli equation and it is assumed that the energy loss is uniform across the stream. Conservation of momentum, volume flux and potential vorticity between upstream and downstream locations is then considered. By allowing for energy dissipation, results are obtained for channels of arbitrary depth and width (relative to the current). The results match those from earlier workers in the two limits of (i) zero rotation (but including dissipation) and (ii) zero dissipation (but including rotation). Three types of flow are identified as the effect of rotation increases, characterized in terms of the location of the outcropping interface between the gravity current and the ambient fluid on the channel boundaries. The parameters for transitions between these cases are quantified, as is the detailed behaviour of the flow in all cases. In particular, the speed of the current can be predicted for any given channel depth and width. As the channel depth increases, the predicted Froude number tends to surd 2, as for non-rotating flows.

  20. Energy Drinks, Weight Loss, and Disordered Eating Behaviors

    ERIC Educational Resources Information Center

    Jeffers, Amy J.; Vatalaro Hill, Katherine E.; Benotsch, Eric G.

    2014-01-01

    Objective: The present study examined energy drink consumption and relations with weight loss attempts and behaviors, body image, and eating disorders. Participants/Methods: This is a secondary analysis using data from 856 undergraduate students who completed the American College Health Association-National College Health Assessment II…

  1. Two Theorems on Dissipative Energy Losses in Capacitor Systems

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2005-01-01

    This article examines energy losses in charge motion in two capacitor systems. In the first charge is transferred from a charged capacitor to an uncharged one through a resistor. In the second a battery charges an originally uncharged capacitor through a resistance. Analysis leads to two surprising general theorems. In the first case the fraction…

  2. Rupture dynamics with energy loss outside the slip zone

    USGS Publications Warehouse

    Andrews, D.J.

    2005-01-01

    Energy loss in a fault damage zone, outside the slip zone, contributes to the fracture energy that determines rupture velocity of an earthquake. A nonelastic two-dimensional dynamic calculation is done in which the slip zone is modeled as a fault plane and material off the fault is subject to a Coulomb yield condition. In a mode 2 crack-like solution in which an abrupt uniform drop of shear traction on the fault spreads from a point, Coulomb yielding occurs on the extensional side of the fault. Plastic strain is distributed with uniform magnitude along the fault, and it has a thickness normal to the fault proportional to propagation distance. Energy loss off the fault is also proportional to propagation distance, and it can become much larger than energy loss on the fault specified by the fault constitutive relation. The slip velocity function could be produced in an equivalent elastic problem by a slip-weakening friction law with breakdown slip Dc increasing with distance. Fracture energy G and equivalent Dc will be different in ruptures with different initiation points and stress drops, so they are not constitutive properties; they are determined by the dynamic solution that arrives at a particular point. Peak slip velocity is, however, a property of a fault location. Nonelastic response can be mimicked by imposing a limit on slip velocity on a fault in an elastic medium.

  3. Energy current loss instability model on a computer

    NASA Astrophysics Data System (ADS)

    Edighoffer, John A.

    1995-04-01

    The computer program called Energy Stability in a Recirculating Accelerator (ESRA) Free Electron Laser (FEL) has been written to model bunches of particles in longitudinal phase space transversing a recirculating accelerator and the associated rf changes and aperture current losses. This energy-current loss instability was first seen by Los Alamos's FEL group in their energy recovery experiments. This code addresses these stability issues and determines the transport, noise, feedback and other parameters for which these FEL systems are stable or unstable. Two representative systems are modeled, one for the Novosibirisk high power FEL racetrack microtron for photochemical research, the other is the CEBAF proposed UV FEL system. Both of these systems are stable with prudent choices of parameters.

  4. Dynamic Energy Loss Characteristics in the Native Aortic Valve

    NASA Astrophysics Data System (ADS)

    Hwai Yap, Choon; Dasi, Laksmi P.; Yoganathan, Ajit P.

    2009-11-01

    Aortic Valve (AV) stenosis if untreated leads to heart failure. From a mechanics standpoint, heart failure implies failure to generate sufficient mechanical power to overcome energy losses in the circulation. Thus energy efficiency-based measures are direct measures of AV disease severity, which unfortunately is not used in current clinical measures of stenosis severity. We present an analysis of the dynamic rate of energy dissipation through the AV from direct high temporal resolution measurements of flow and pressure drop across the AV in a pulsatile left heart setup. Porcine AV was used and measurements at various conditions were acquired: varying stroke volumes; heart rates; and stenosis levels. Energy dissipation waveform has a distinctive pattern of being skewed towards late systole, attributed to the explosive growth of flow instabilities from adverse pressure gradient. Increasing heart rate and stroke volume increases energy dissipation, but does not alter the normalized shape of the dissipation temporal profile. Stenosis increases energy dissipation and also alters the normalized shape of dissipation waveform with significantly more losses during late acceleration phase. Since stenosis produces a departure from the signature dissipation waveform shape, dynamic energy dissipation analysis can be extended into a clinical tool for AV evaluation.

  5. Energy-gap spectroscopy of superconductors using a tunneling microscope

    NASA Technical Reports Server (NTRS)

    Le Duc, H. G.; Kaiser, W. J.; Stern, J. A.

    1987-01-01

    A unique scanning tunneling microscope (STM) system has been developed for spectroscopy of the superconducting energy gap. High-resolution control of tunnel current and voltage allows for measurement of superconducting properties at tunnel resistance levels 100-1000 greater than that achieved in prior work. The previously used STM methods for superconductor spectroscopy are compared to those developed for the work reported here. Superconducting energy-gap spectra are reported for three superconductors, Pb, PbBi, and NbN, over a range of tunnel resistance. The measured spectra are compared directly to theory.

  6. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    PubMed

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  7. High resolution energy loss research: Si compound ceramics and composites. [1990 annual progress report

    SciTech Connect

    Carpenter, R W; Lin, S H

    1990-12-31

    This report discusses proposed work on silicon compound ceramics and composites. High resolution composition and structure analysis of interfaces in ceramic and metal matrix composites and certain grain boundaries in silicon and its interfaces with oxides and nitrides is proposed. Composition and bonding analysis will be done with high spatial resolution (20 Angstroms or better) parallel electron energy loss spectroscopy using a field emission analytical electron microscope. Structural analysis will be done at the 1.8 Angstrom resolution level at 200kV by HREM. Theoretical electron energy loss cross section computations will be used to interpret electronic structure of these materials. Both self-consistent field MO and multiple scattering computational methods are being done and evaluated.

  8. Deconvolution of the energy loss function of the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Hannen, V.; Heese, I.; Weinheimer, C.; Sejersen Riis, A.; Valerius, K.

    2017-03-01

    The KATRIN experiment aims at a direct and model independent determination of the neutrino mass with 0.2 eV/c2 sensitivity (at 90% C.L.) via a measurement of the endpoint region of the tritium beta-decay spectrum. The main components of the experiment are a windowless gaseous tritium source (WGTS), differential and cryogenic pumping sections and a tandem of a pre- and a main-spectrometer, applying the concept of magnetic adiabatic collimation with an electrostatic retardation potential to analyze the energy of beta decay electrons and to guide electrons passing the filter onto a segmented silicon PIN detector. One of the important systematic uncertainties of such an experiment are due to energy losses of β-decay electrons by elastic and inelastic scattering off tritium molecules within the source volume which alter the shape of the measured spectrum. To correct for these effects an independent measurement of the corresponding energy loss function is required. In this work we describe a deconvolution method to extract the energy loss function from measurements of the response function of the experiment at different column densities of the WGTS using a monoenergetic electron source.

  9. Aromatic Polyurea Possessing High Electrical Energy Density and Low Loss

    NASA Astrophysics Data System (ADS)

    Thakur, Yash; Lin, Minren; Wu, Shan; Zhang, Q. M.

    2016-10-01

    We report the development of a dielectric polymer, poly (ether methyl ether urea) (PEMEU), which possesses a dielectric constant of 4 and is thermally stable up to 150°C. The experimental results show that the ether units are effective in softening the rigid polymer and making it thermally processable, while the high dipole moment of urea units and glass structure of the polymer leads to a low dielectric loss and low conduction loss. As a result, PEMEU high quality thin films can be fabricated which exhibit exceptionally high breakdown field of >1.5 GV/m, and a low conduction loss at fields up to the breakdown. Consequently, the PEMEU films exhibit a high charge-discharge efficiency of 90% and a high discharged energy density of 36 J/cm3.

  10. Dielectric spectroscopy measurements on very low loss cross-linked polyethylene power cables

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Fothergill, John; Dodd, Steve; Nilsson, Ulf

    2009-08-01

    The principles of dielectric spectroscopy are reviewed and the techniques in both time and frequency domains are explored in search of appropriate methods for measurement on low loss XLPE cables. By combining the techniques of frequency response analyzer, transformer ratio bridge and discharging current measurements, some preliminary tests results on homopolymer XLPE model cables have been presented and analyzed, in a wide frequency range of 10-4Hz~2×104Hz. Dielectric loss mechanisms of XLPE cables are discussed based on the measurement results.

  11. Energy loss analysis of an integrated space power distribution system

    NASA Technical Reports Server (NTRS)

    Kankam, M. D.; Ribeiro, P. F.

    1992-01-01

    The results of studies related to conceptual topologies of an integrated utility-like space power system are described. The system topologies are comparatively analyzed by considering their transmission energy losses as functions of mainly distribution voltage level and load composition. The analysis is expedited by use of a Distribution System Analysis and Simulation (DSAS) software. This recently developed computer program by the Electric Power Research Institute (EPRI) uses improved load models to solve the power flow within the system. However, present shortcomings of the software with regard to space applications, and incompletely defined characteristics of a space power system make the results applicable to only the fundamental trends of energy losses of the topologies studied. Accountability, such as included, for the effects of the various parameters on the system performance can constitute part of a planning tool for a space power distribution system.

  12. Multiple parton scattering in nuclei: Parton energy loss

    SciTech Connect

    Wang, Xin-Nian; Guo, Xiao-feng

    2001-02-17

    Multiple parton scattering and induced parton energy loss are studied in deeply inelastic scattering (DIS) off nuclei. The effect of multiple scattering of a highly off-shell quark and the induced parton energy loss is expressed in terms of the modification to the quark fragmentation functions. The authors derive such modified quark fragmentation functions and their QCD evolution equations in DIS using the generalized factorization of higher twist parton distributions. They consider double-hard and hard-soft parton scattering as well as their interferences in the same framework. The final result, which depends on both the diagonal and off-diagonal twist-four parton distributions in nuclei, demonstrates clearly the Landau-Pomeranchuk-Migdal interference features and predicts a unique nuclear modification of the quark fragmentation functions.

  13. Theoretical interpretation of electron energy-loss spectroscopic images

    DOE PAGES

    Allen, L. J.; D'Alfonso, Adrian J.; Findlay, Scott D.; ...

    2008-04-10

    In this paper, we discuss the theory of electron energy-loss spectroscopic images in scanning transmission electron microscopy. Three case studies are presented which have as common themes issues of inelastic scattering, coherence and image interpretation. The first is a state-by-state inelastic transitions analysis of a spectroscopic image which does not admit direct visual interpretation. The second compares theory and experiment for two-dimensional mapping. Finally, the third considers imaging in three dimensions via depth sectioning.

  14. Proton Nonionizing Energy Loss (NIEL) for Device Applications

    NASA Technical Reports Server (NTRS)

    Jun, Insoo; Xapsos, Michael A.; Messenger, Scott R.; Burke, Edward A.; Walters, Robert J.; Summers, Geoff; Jordan, Thomas

    2003-01-01

    Nonionizing energy loss (NIEL) is a quantity that describes the rate of energy loss due to atomic displacements as a particle traverses a material. The product of the NIEL and the particle fluence (time integrated flux) gives the displacement damage energy deposition per unit mass of material. NIEL plays the same role to the displacement damage energy deposition as the stopping power to the total ionizing dose (TID). The concept of NIEL has been very useful for correlating particle induced displacement damage effects in semiconductor and optical devices. Many studies have successfully demonstrated that the degradation of semiconductor devices or optical sensors in a radiation field can be linearly correlated to the displacement damage energy, and subsequently to the NIEL deposited in the semiconductor devices or optical sensors. In addition, the NIEL concept was also useful in the study of both Si and GaAs solar cells and of high temperature superconductors, and at predicting the survivability of detectors used at the LHC at CERN. On the other hand, there are some instances where discrepancies are observed in the application of NIEL, most notably in GaAs semiconductor devices. However, NIEL is still a valuable tool, and can be used to scale damages produced by different particles and in different environments, even though this is not understood at the microscopic level.

  15. Charged-Particle Acceleration and Energy Loss Measurements on OMEGA

    NASA Astrophysics Data System (ADS)

    Hicks, D. G.; Li, C. K.; Séguin, F. H.; Ram, A. K.; Frenje, J. A.; Petrasso, R. D.; Soures, J. M.; Glebov, V. Yu.; Meyerhofer, D. D.; Roberts, S.; Sorce, C.; Stoeckl, C.; Sangster, T. C.; Phillips, T. W.

    2000-10-01

    Measurements have been made of charged fusion products produced in D ^3He-filled targets irradiated on OMEGA. Comparing the energy shifts of four particle types has probed two distinct physical processes: electrostatic acceleration in the low-density corona and energy loss in the high-density target. When the burn occurred during the laser pulse, particle energy shifts were dominated by acceleration effects. Using a simple mode, the time history of the target's electrostatic potential was found and shown to decay to zero soon after laser irradiation was complete. When the burn occurred after the pulse, particle energy shifts were dominated by energy losses in the target, allowing charged-particle stopping-power predictions to be tested. The results provide the first verification of the general form of stopping power theories over a wide velocity range. This work was supported by the U.S. DOE Office of ICF under Coop. Agreem. No. DE-FC03-92SF19460.

  16. Energy loss of ions implanted in MOS dielectric films

    NASA Astrophysics Data System (ADS)

    Shyam, Radhey

    Energy loss measurements of ions in the low kinetic energy regime have been made on as-grown SiO2(170-190nm) targets. Singly charged Na + ions with kinetic energies of 2-5 keV and highly charged ions Ar +Q (Q=4, 8 and 11) with a kinetic energy of 1 keV were used. Excitations produced by the ion energy loss in the oxides were captured by encapsulating the irradiated oxide under a top metallic contact. The resulting Metal-Oxide-Semiconductor (MOS) devices were probed with Capacitance-Voltage (C V) measurements and extracted the flatband voltages from the C-V curves. The C-V results for singly charged ion experiments reveal that the changes in the flatband voltage and slope for implanted devices relative to the pristine devices can be used to delineate effects due to implanted ions only and ion induced damage. The data shows that the flatband voltage shifts and C-V slope changes are energy dependent. The observed changes in flatband voltage which are greater than those predicted by calculations scaled for the ion dose and implantation range (SRIM). These results, however, are consistent with a columnar recombination model, where electron-hole pairs are created due to the energy deposited by the implanted ions within the oxide. The remaining holes left after recombination losses are diffused through the oxide at the room temperature and remain present as trapped charges. Comparison of the data with the total number of the holes generated gives a fractional yield of 0.0124 which is of the same order as prior published high energy irradiation experiments. Additionally, the interface trap density, extracted from high and low frequency C-V measurements is observed to increase by one order of magnitude over our incident beam energy. These results confirm that dose- and kinetic energy -dependent effects can be recorded for singly charged ion irradiation on oxides using this method. Highly charged ion results also confirm that dose as well as and charge-dependent effects can

  17. Power Loss Analysis and Comparison of Segmented and Unsegmented Energy Coupling Coils for Wireless Energy Transfer

    PubMed Central

    Tang, Sai Chun; McDannold, Nathan J.

    2015-01-01

    This paper investigated the power losses of unsegmented and segmented energy coupling coils for wireless energy transfer. Four 30-cm energy coupling coils with different winding separations, conductor cross-sectional areas, and number of turns were developed. The four coils were tested in both unsegmented and segmented configurations. The winding conduction and intrawinding dielectric losses of the coils were evaluated individually based on a well-established lumped circuit model. We found that the intrawinding dielectric loss can be as much as seven times higher than the winding conduction loss at 6.78 MHz when the unsegmented coil is tightly wound. The dielectric loss of an unsegmented coil can be reduced by increasing the winding separation or reducing the number of turns, but the power transfer capability is reduced because of the reduced magnetomotive force. Coil segmentation using resonant capacitors has recently been proposed to significantly reduce the operating voltage of a coil to a safe level in wireless energy transfer for medical implants. Here, we found that it can naturally eliminate the dielectric loss. The coil segmentation method and the power loss analysis used in this paper could be applied to the transmitting, receiving, and resonant coils in two- and four-coil energy transfer systems. PMID:26640745

  18. Power Loss Analysis and Comparison of Segmented and Unsegmented Energy Coupling Coils for Wireless Energy Transfer.

    PubMed

    Tang, Sai Chun; McDannold, Nathan J

    2015-03-01

    This paper investigated the power losses of unsegmented and segmented energy coupling coils for wireless energy transfer. Four 30-cm energy coupling coils with different winding separations, conductor cross-sectional areas, and number of turns were developed. The four coils were tested in both unsegmented and segmented configurations. The winding conduction and intrawinding dielectric losses of the coils were evaluated individually based on a well-established lumped circuit model. We found that the intrawinding dielectric loss can be as much as seven times higher than the winding conduction loss at 6.78 MHz when the unsegmented coil is tightly wound. The dielectric loss of an unsegmented coil can be reduced by increasing the winding separation or reducing the number of turns, but the power transfer capability is reduced because of the reduced magnetomotive force. Coil segmentation using resonant capacitors has recently been proposed to significantly reduce the operating voltage of a coil to a safe level in wireless energy transfer for medical implants. Here, we found that it can naturally eliminate the dielectric loss. The coil segmentation method and the power loss analysis used in this paper could be applied to the transmitting, receiving, and resonant coils in two- and four-coil energy transfer systems.

  19. Photon Detector For Inverse Photoemission Spectroscopy With Improved Energy Resolution

    SciTech Connect

    Maniraj, M.; D'Souza, S. W.; Barman, S. R.

    2011-07-15

    We present the results from newly designed and fabricated double window photon detector to improve the overall energy resolution for inverse photoemission spectroscopy (IPES). This simple design allows us to introduce an absorption gas (Krypton) to decrease the band-width of the energy selective photon detector and thus improve the resolution. Resonance absorption line of Kr of wavelength of 123.6 nm was used. By fitting the Fermi edge of the IPES spectrum of silver, we find an overall energy resolution improved by 73 meV. The design is modular and ensures ease and safety of handling.

  20. High-energy neutron spectroscopy with thick silicon detectors

    NASA Technical Reports Server (NTRS)

    Kinnison, James D.; Maurer, Richard H.; Roth, David R.; Haight, Robert C.

    2003-01-01

    The high-energy neutron component of the space radiation environment in thick structures such as the International Space Station contributes to the total radiation dose received by an astronaut. Detector design constraints such as size and mass have limited the energy range of neutron spectrum measurements in orbit to about 12 MeV in Space Shuttle studies. We present a new method for high-energy neutron spectroscopy using small silicon detectors that can extend these measurements to more than 500 MeV. The methodology is based on measurement of the detector response function for high-energy neutrons and inversion of this response function with measured deposition data to deduce neutron energy spectra. We also present the results of an initial shielding study performed with the thick silicon detector system for high-energy neutrons incident on polyethylene.

  1. Research of the temperature measurement of high-energy laser energy meter and energy loss compensation technique

    NASA Astrophysics Data System (ADS)

    Yu, Xun; Wang, Hui; Wu, Ji'an; Wang, Fang; Li, Qian

    2009-11-01

    The energy measurement of high energy laser is converts incident laser energy into heat energy, calculates energy utilizing absorber temperature rise, thus the energy value can be gained. Temperature measurement of high-energy laser energy meter and energy loss compensation during the course of the measurement were studied here. Firstly, temperature-resistance characteristics of resistance wire was analyzed, which was winded on exterior surface of the absorbing cavity of high-energy laser energy meter and used in temperature measurement. Least square method was used to process experiment data and a compensation model was established to calibrate the relationship of temperature vs. resistance. Experiment proved that, error between resistance wire and Pt100 is less than 0.01Ω and temperature error is less than 0.02°C. This greatly improves accuracy of the high energy meter measurement result. Secondly, aimed to the compensation of laser energy loss caused by absorbing cavity's heat exchange, the heat energy loss of absorbing cavity, resulted from thermal radiation, heat convection and heat conduction was analyzed based on heat transfer theory. Its mathematics model was established. Least square method was used to fit a curve of experiment data in order to compensate energy loss. Repetitiveness of measurement is 0.7%, which is highly improved.

  2. Technology Roadmap. Energy Loss Reduction and Recovery in Industrial Energy Systems

    SciTech Connect

    none,

    2004-11-01

    To help guide R&D decision-making and gain industry insights on the top opportunities for improved energy systems, ITP sponsored the Energy Loss Reduction and Recoveryin Energy Systems Roadmapping Workshopin April 2004 in Baltimore, Maryland. This Technology Roadmapis based largely on the results of the workshop and additional industrial energy studies supported by ITP and EERE. It summarizes industry feedback on the top opportunities for R&D investments in energy systems, and the potential for national impacts on energy use and the environment.

  3. Very low energy supernovae from neutrino mass loss

    SciTech Connect

    Lovegrove, Elizabeth; Woosley, S. E.

    2013-06-01

    It now seems likely that some percentage of more massive supernova progenitors do not explode by any of the currently discussed explosion mechanisms. This has led to speculation concerning the observable transients that might be produced if such a supernova fails. Even if a prompt outgoing shock fails to form in a collapsing presupernova star, one must still consider the hydrodynamic response of the star to the abrupt loss of mass via neutrinos as the core forms a protoneutron star. Following a suggestion by Nadezhin, we calculate the hydrodynamical responses of typical supernova progenitor stars to the rapid loss of approximately 0.2-0.5 M {sub ☉} of gravitational mass from their centers. In a red supergiant star, a very weak supernova with total kinetic energy ∼10{sup 47} erg results. The binding energy of a large fraction of the hydrogen envelope before the explosion is of the same order and, depending upon assumptions regarding the maximum mass of a neutron star, most of it is ejected. Ejection speeds are ∼100 km s{sup –1} and luminosities ∼10{sup 39} erg s{sup –1} are maintained for about a year. A significant part of the energy comes from the recombination of hydrogen. The color of the explosion is extremely red and the events bear some similarity to 'luminous red novae', but have much lower speeds.

  4. Method for reducing energy losses in laser crystals

    DOEpatents

    Atherton, L.J.; DeYoreo, J.J.; Roberts, D.H.

    1992-03-24

    A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light. 12 figs.

  5. Method for reducing energy losses in laser crystals

    DOEpatents

    Atherton, L. Jeffrey; DeYoreo, James J.; Roberts, David H.

    1992-01-01

    A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light.

  6. Multiple scattering calculations of relativistic electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Rehr, J. J.; Verbeeck, J.

    2010-04-01

    A generalization of the real-space Green’s-function approach is presented for ab initio calculations of relativistic electron energy loss spectra (EELS) which are particularly important in anisotropic materials. The approach incorporates relativistic effects in terms of the transition tensor within the dipole-selection rule. In particular, the method accounts for relativistic corrections to the magic angle in orientation resolved EELS experiments. The approach is validated by a study of the graphite CK edge, for which we present an accurate magic angle measurement consistent with the predicted value.

  7. Jet energy loss in heavy ion collisions from RHIC to LHC energies

    NASA Astrophysics Data System (ADS)

    Levai, Peter

    2011-07-01

    The suppression of hadron production originated from the induced jet energy loss is one of the most accepted and well understood phenomena in heavy ion collisions, which indicates the formation of color deconfined matter consists of quarks, antiquarks and gluons. This phenomena has been seen at RHIC energies and now the first LHC results display a very similar effect. In fact, the suppression is so close to each other at 200 AGeV and 2.76 ATeV, that it is interesting to investigate if such a suppression pattern can exist at all. We use the Gyulassy-Levai-Vitev description of induced jet energy loss combined with different nuclear shadowing functions and describe the experimental data. We claim that a consistent picture can be obtained for the produced hot matter with a weak nuclear shadowing. The interplay between nuclear shadowing and jet energy loss playes a crucial role in the understanding of the experimental data.

  8. Effect of the electron energy distribution on total energy loss with argon in inductively coupled plasmas

    SciTech Connect

    Kim, June Young; Kim, Young-Cheol; Kim, Yu-Sin; Chung, Chin-Wook

    2015-01-15

    The total energy lost per electron-ion pair lost ε{sub T} is investigated with the electron energy distribution function (EEDF). The EEDFs are measured at various argon powers in RF inductively coupled plasma, and the EEDFs show a depleted distribution (a discontinuity occurring at the minimum argon excitation threshold energy level) with the bulk temperature and the tail temperature. The total energy loss per electron-ion pair lost ε{sub T} is calculated from a power balance model with the Maxwellian EEDFs and the depleted EEDFs and then compared with the measured ε{sub T} from the floating probe. It is concluded that the small population of the depleted high energy electrons dramatically increases the collisional energy loss, and the calculated ε{sub T} from the depleted EEDFs has a value that is similar to the measured ε{sub T}.

  9. Optimized free energies from bidirectional single-molecule force spectroscopy.

    PubMed

    Minh, David D L; Adib, Artur B

    2008-05-09

    An optimized method for estimating path-ensemble averages using data from processes driven in opposite directions is presented. Based on this estimator, bidirectional expressions for reconstructing free energies and potentials of mean force from single-molecule force spectroscopy-valid for biasing potentials of arbitrary stiffness-are developed. Numerical simulations on a model potential indicate that these methods perform better than unidirectional strategies.

  10. Advanced theory of driven birdcage resonator with losses for biomedical magnetic resonance imaging and spectroscopy.

    PubMed

    Novikov, Alexander

    2011-02-01

    A complete time-dependent physics theory of symmetric unperturbed driven hybrid birdcage resonator was developed for general application. In particular, the theory can be applied for radiofrequency (RF) coil engineering, computer simulations of coil-sample interaction, etc. Explicit time dependence is evaluated for different forms of driving voltage. The major steps of the solution development are shown and appropriate explanations are given. Green's functions and spectral density formula were developed for any form of periodic driving voltage. The concept of distributed power losses based on transmission line theory is developed for evaluation of local losses of a coil. Three major types of power losses are estimated as equivalent series resistances in the circuit of the birdcage resonator. Values of generated resistances in legs and end-rings are estimated. An application of the theory is shown for many practical cases. Experimental curve of B(1) field polarization dependence is measured for eight-sections birdcage coil. It was shown that the steady-state driven resonance frequencies do not depend on damping factor unlike the free oscillation (transient) frequencies. An equivalent active resistance is generated due to interaction of RF electromagnetic field with a sample. Resistance of the conductor (enhanced by skin effect), Eddy currents and dielectric losses are the major types of losses which contribute to the values of generated resistances. A biomedical sample for magnetic resonance imaging and spectroscopy is the source of the both Eddy current and dielectric losses of a coil. As demonstrated by the theory, Eddy current loss is the major effect of coil shielding.

  11. Nonequilibrium thermodynamics and energy efficiency in weight loss diets.

    PubMed

    Feinman, Richard D; Fine, Eugene J

    2007-07-30

    Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models), but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie"). Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered. Here we review the principles of nonequilibrium thermodynamics and provide an approach to the problem of maintenance and change in body mass by recasting the problem of TAG accumulation and breakdown in the adipocyte in the language of nonequilibrium thermodynamics. We describe adipocyte physiology in terms of cycling between an efficient storage mode and a dissipative mode. Experimentally, this is measured in the rate of fatty acid flux and fatty acid oxidation. Hormonal levels controlled by changes in dietary carbohydrate regulate the relative contributions of the efficient and dissipative parts of the cycle. While no experiment exists that measures all relevant variables, the model is supported by evidence in the literature that 1) dietary carbohydrate, via its effect on hormone levels

  12. Mode-dependent dispersion in Raman line shapes: Observation and implications from ultrafast Raman loss spectroscopy

    SciTech Connect

    Umapathy, S.; Mallick, B.; Lakshmanna, A.

    2010-07-14

    Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse and a femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS.

  13. Elastic deformation and energy loss of flapping fly wings.

    PubMed

    Lehmann, Fritz-Olaf; Gorb, Stanislav; Nasir, Nazri; Schützner, Peter

    2011-09-01

    During flight, the wings of many insects undergo considerable shape changes in spanwise and chordwise directions. We determined the origin of spanwise wing deformation by combining measurements on segmental wing stiffness of the blowfly Calliphora vicina in the ventral and dorsal directions with numerical modelling of instantaneous aerodynamic and inertial forces within the stroke cycle using a two-dimensional unsteady blade elementary approach. We completed this approach by an experimental study on the wing's rotational axis during stroke reversal. The wing's local flexural stiffness ranges from 30 to 40 nN m(2) near the root, whereas the distal wing parts are highly compliant (0.6 to 2.2 nN m(2)). Local bending moments during wing flapping peak near the wing root at the beginning of each half stroke due to both aerodynamic and inertial forces, producing a maximum wing tip deflection of up to 46 deg. Blowfly wings store up to 2.30 μJ elastic potential energy that converts into a mean wing deformation power of 27.3 μW. This value equates to approximately 5.9 and 2.3% of the inertial and aerodynamic power requirements for flight in this animal, respectively. Wing elasticity measurements suggest that approximately 20% or 0.46 μJ of elastic potential energy cannot be recovered within each half stroke. Local strain energy increases from tip to root, matching the distribution of the wing's elastic protein resilin, whereas local strain energy density varies little in the spanwise direction. This study demonstrates a source of mechanical energy loss in fly flight owing to spanwise wing bending at the stroke reversals, even in cases in which aerodynamic power exceeds inertial power. Despite lower stiffness estimates, our findings are widely consistent with previous stiffness measurements on insect wings but highlight the relationship between local flexural stiffness, wing deformation power and energy expenditure in flapping insect wings.

  14. Nicotinamide prevents ultraviolet radiation-induced cellular energy loss.

    PubMed

    Park, Joohong; Halliday, Gary M; Surjana, Devita; Damian, Diona L

    2010-01-01

    UV radiation is carcinogenic by causing mutations in the skin and also by suppressing cutaneous antitumor immunity. We previously found nicotinamide (vitamin B3) to be highly effective at reducing UV-induced immunosuppression in human volunteers, with microarray studies on in vivo irradiated human skin suggesting that nicotinamide normalizes subsets of apoptosis, immune function and energy metabolism-related genes that are downregulated by UV exposure. Using human adult low calcium temperature keratinocytes, we further investigated nicotinamide's effects on cellular energy metabolism. We found that nicotinamide prevented UV-induced cellular ATP loss and protected against UV-induced glycolytic blockade. To determine whether nicotinamide alters the effects of UV-induced oxidative stress posttranslationally, we also measured UV-induced reactive oxygen species (ROS). Nicotinamide had no effect on ROS formation, and at the low UV doses used in these studies, equivalent to ambient daily sun exposure, there was no evidence of apoptosis. Hence, nicotinamide appears to exert its UV protective effects on the skin via its role in cellular energy pathways.

  15. Improving Diamagnetic Flux Temporal Resolution to Measure ELM Energy Loss

    NASA Astrophysics Data System (ADS)

    Sieck, P. E.; Baylor, L. R.; Evans, T. E.; Leonard, A. W.; Osborne, T. H.; Strait, E. J.

    2010-11-01

    When an ELM occurs in a tokamak, a substantial loss of stored thermal energy can occur in a very short time, resulting in a change in the plasma diamagnetism. A diamagnetic loop is therefore an attractive diagnostic for characterizing the change in energy during ELMs. A loop external to the vessel can be used but it is bandwidth-limited by the vessel wall, therefore the signal is severely attenuated above 40 Hz in DIII-D. The temporal resolution can be improved by combining the (slow) diamagnetic signal with a properly scaled internal (fast) toroidal BT signal. The results agree with finely-spaced EFIT equilibrium reconstructions to within 10% before each ELM, but the diamagnetic calculation often shows up to twice the drop in energy at the ELM. The BT signal reveals the magnetic change completes in 0.5 ms or less with occasional dynamics above 10 kHz. This improved temporal resolution allows comparison of phenomenology in natural vs. pellet-triggered ELMs, and also effects of partial ELM suppression under resonant magnetic perturbation.

  16. Collisional energy losses in relativistic nuclear collisions within an effective quasiparticle model

    SciTech Connect

    Tarasov, Yu. A.

    2009-10-15

    We investigate the collisional energy losses of the fast gluons and light quarks in quark-gluon plasma produced in central (Au+Au) collisions at at energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC) ({radical}(s{sub NN})=200 GeV). We use the effective quasiparticle model for investigation of physical characteristic of expanding plasma. We take into account the possibility of hot glue production at the first stage. We calculate these energy losses and compare them with radiative energy losses of gluons and quarks in an analogous model. We show that radiative energy losses exceed considerably the collisional energy losses.

  17. Jet energy loss and fragmentation in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Kharzeev, Dmitri E.; Loshaj, Frashër

    2013-04-01

    Recent LHC results indicate a suppression of jet fragmentation functions in Pb-Pb collisions at intermediate values of ξ=ln⁡(1/z). This seems to contradict the picture of energy loss based on the induced QCD radiation that is expected to lead to the enhancement of in-medium fragmentation functions. We use an effective 1+1 dimensional quasi-Abelian model to describe the dynamical modification of jet fragmentation in the medium. We find that this approach describes the data, and argue that there is no contradiction between the LHC results and the picture of QCD radiation induced by the in-medium scattering of the jet. The physics that underlies the suppression of the in-medium fragmentation function at intermediate values of ξ=ln⁡(1/z) is the partial screening of the color charge of the jet by the comoving medium-induced gluon.

  18. Energy loss mechanics in the erosion of cemented tungsten carbide

    SciTech Connect

    Freinkel, D.M. ); Luyckx, S.B. )

    1989-05-01

    The erosion of tungsten carbide has been studied by several researchers under various conditions: the cobalt content of the cemented carbide has been varied from 4.5 to 11.3 wt % Co, the size of the WC grains varied from 0.9 to 5.1 {mu}m, the size of the erodant particles varied from 30 to 630 {mu}m, the velocity of the particles varied from 30 to 507 m/s, and particle incidence angle varied from 15{degrees} to 90{degrees}. While it is generally agreed that with increasing cobalt content and increasing particle velocity the erosion rate of WC-Co increases, there is disagreement on the effect of grain size and angle of incidence. More work was clearly required to explain this disagreement, thus the present investigation was undertaken. The present work differs from previous experimental work in that the erodant particles are 4 mm average diameter and that the present investigation does not neglect the role of plastic deformation in the erosion process and the energy lost in damage to the erodant particles. These two additional energy loss mechanisms have been found to contribute significantly to the interpretation of the present results and of the results previously reported in the literature.

  19. Energy summation method for energy loss computation in radial distribution networks

    SciTech Connect

    Taleski, R.; Rajicic, D.

    1996-05-01

    A method for energy loss calculation in radial distribution networks is presented. It is based on the statistical representation of the influence of different load curves in the network upon element power flows and on the oriented ordering of the network elements. Also, the paper proposes the use of different, but constant, voltages at each node, instead of nominal voltage at all nodes. The procedure is very simple, and it involves four steps: element ordering, calculation of second moments, power flow calculation with average loads at nodes, and energy calculation in network elements. The presented results illustrate that the algorithm has advantages over methods that use nominal voltage at each node for accuracy, and advantages over methods that calculate accurate energy losses for speed.

  20. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.

    PubMed

    Jenke, T; Cronenberg, G; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H

    2014-04-18

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14  eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20  μm (95% C.L.).

  1. Constraints on dark energy with the LOSS SN Ia sample

    NASA Astrophysics Data System (ADS)

    Ganeshalingam, Mohan; Li, Weidong; Filippenko, Alexei V.

    2013-08-01

    We present a cosmological analysis of the Lick Observatory Supernova Search (LOSS) Type Ia supernova (SN Ia) photometry sample introduced by Ganeshalingam et al. These supernovae (SNe) provide an effective anchor point to estimate cosmological parameters when combined with data sets at higher redshift. The data presented by Ganeshalingam et al. have been rereduced in the natural system of the Katzman Automatic Imaging Telescope (KAIT) and Nickel telescopes to minimize systematic uncertainties. We have run the light-curve-fitting software SALT2 on our natural-system light curves to measure light-curve parameters for LOSS light curves and available SN Ia data sets in the literature. We present a Hubble diagram of 586 SNe in the redshift range z = 0.01-1.4 with a residual scatter of 0.176 mag. Of the 226 low-z SNe Ia in our sample, 91 objects are from LOSS, including 45 without previously published distances. Assuming a flat Universe, we find that the best fit for the dark energy equation-of-state parameter w = -0.86^{+0.13}_{-0.16} (stat) ±0.11 (sys) from SNe alone, consistent with a cosmological constant. Our data prefer a Universe with an accelerating rate of expansion with 99.999 per cent confidence. When looking at Hubble residuals as a function of host-galaxy morphology, we do not see evidence for a significant trend, although we find a somewhat reduced scatter in Hubble residuals from SNe residing within a projected distance <10 kpc of the host-galaxy nucleus (σ = 0.156 mag). Similar to the results of Blondin, Mandel and Kirshner and Silverman et al., we find that Hubble residuals do not correlate with the expansion velocity of Si II λ6355 measured in optical spectra near maximum light. Our data are consistent with no presence of a local `Hubble bubble.' Improvements in cosmological analyses within low-z samples can be achieved by better constraining calibration uncertainties in the zero-points of photometric systems.

  2. Comparing the rates of absorption and weight loss during a desorption test using near infrared spectroscopy.

    PubMed

    Qassem, M; Kyriacou, P A

    2013-05-01

    The importance of determining skin hydration has over the years prompt the development of many instruments and methods, specifically designed to assess this parameter or water contents especially in the stratum corneum, and have greatly matured to suit different anatomical sites and measure multiple attributes. Of those, Near Infrared Spectroscopy (NIRS) has gained wide interest as a precise, safe, fast and noninvasive technique for determining skin hydration due to its high sensitivity to hydrogen bonding and ability to measure the amount of water in skin directly using the intensities of overtone and combination bands of OH and HOH water bonds occurring in the NIR region, that are good indicators of the state of skin hydration. This paper reports near infrared spectrophotometric measurements using a highly sophisticated spectrophotometer in the region of 1000-2500 nm to study the water uptake and dehydration properties of skin in vitro using samples of porcine skin. Initial results of pure liquid water and skin samples have clearly displayed the prominent bands associated with water content, and desorption tests have been able to verify changes in these bands associated with water content, although a clear correlation between the rates of weight loss and absorbance loss at various hydration periods has not yet been established. These preliminary results are expected to further explain the relationship between water and skin, and its role within, in hope to aid the future development of a portable instrument based on near infrared spectroscopy that would be capable of directly measuring skin hydration and/or water content in a fast and noninvasive manner.

  3. Parametric study of minimum converter loss in an energy-storage dc-to-dc converter

    NASA Technical Reports Server (NTRS)

    Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.

    1982-01-01

    Through a combination of analytical and numerical minimization procedures, a converter design that results in the minimum total converter loss (including core loss, winding loss, capacitor and energy-storage-reactor loss, and various losses in the semiconductor switches) is obtained. Because the initial phase involves analytical minimization, the computation time required by the subsequent phase of numerical minimization is considerably reduced in this combination approach. The effects of various loss parameters on the optimum values of the design variables are also examined.

  4. Elemental electron energy loss mapping of a precipitate in a multi-component aluminium alloy.

    PubMed

    Mørtsell, Eva A; Wenner, Sigurd; Longo, Paolo; Andersen, Sigmund J; Marioara, Calin D; Holmestad, Randi

    2016-07-01

    The elemental distribution of a precipitate cross section, situated in a lean Al-Mg-Si-Cu-Ag-Ge alloy, has been investigated in detail by electron energy loss spectroscopy (EELS) and aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). A correlative analysis of the EELS data is connected to the results and discussed in detail. The energy loss maps for all relevant elements were recorded simultaneously. The good spatial resolution allows elemental distribution to be evaluated, such as by correlation functions, in addition to being compared with the HAADF image. The fcc-Al lattice and the hexagonal Si-network within the precipitates were resolved by EELS. The combination of EELS and HAADF-STEM demonstrated that some atomic columns consist of mixed elements, a result that would be very uncertain based on one of the techniques alone. EELS elemental mapping combined with a correlative analysis have great potential for identification and quantification of small amounts of elements at the atomic scale.

  5. Daily energy expenditure, physical activity, and weight loss in Parkinson's disease patients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patients with Parkinson's disease (PD) commonly exhibit weight loss (WL) which investigators attribute to various factors, including elevated energy expenditure. We tested the hypothesis that daily energy expenditure (DEE) and its components, resting energy expenditure (REE) and physical activity (P...

  6. Daily energy expenditure and physical activity measured in Parkinson's disease patients with and without weight loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patients with Parkinson's disease (PD) commonly exhibit weight loss, which investigators attribute to various factors, including elevated resting energy expenditure. We tested the hypothesis that daily energy expenditure (DEE) and its components, resting energy expenditure (REF) and physical activit...

  7. EMPIRICAL DETERMINATION OF THE ENERGY LOSS RATE OF ACCELERATED ELECTRONS IN A WELL-OBSERVED SOLAR FLARE

    SciTech Connect

    Torre, Gabriele; Pinamonti, Nicola; Guo, Jingnan; Piana, Michele; Emslie, A. Gordon; Massone, Anna Maria E-mail: pinamont@dima.unige.it E-mail: piana@dima.unige.it E-mail: annamaria.massone@cnr.it

    2012-06-01

    We present electron images of an extended solar flare source, deduced from RHESSI hard X-ray imaging spectroscopy data. We apply the electron continuity equation to these maps in order to determine empirically the form of the energy loss rate for the bremsstrahlung-emitting electrons. We show that this form is consistent with an energy transport model involving Coulomb collisions in a target with a temperature of about 2 Multiplication-Sign 10{sup 7} K, with a continuous injection of fresh deka-keV electrons at a rate of approximately 10{sup -2} electrons s{sup -1} per ambient electron.

  8. Adriatic seiche decay and energy loss to the Mediterranean

    NASA Astrophysics Data System (ADS)

    Cerovečki, Ivana; Orlić, Mirko; Hendershott, Myrl C.

    1997-12-01

    work are as follows. (1) Exponential decay of seiche amplitude with time does not necessarily guarantee that the observed decay is free of wind influence. (2) Winds blowing across the Adriatic may be of comparable importance to winds blowing along the Adriatic in influencing apparent decay of seiches; across-basin winds are probably coupled to the longitudinal seiche on account of the strong along-basin variability of across-basin winds forced by Croatian coastal orography. (3) The free decay time of the 21.2 h Adriatic seiche is 3.2±0.5 d. (4) A one dimensional shallow water model of the seiche damped by bottom stress represented by Godin's (1988) approximation to the quadratic bottom friction law ρ0CDu| u| using the commonly accepted drag coefficient CD = 0.0015 and quantitative estimates of bottom currents associated with wind driven currents, tides and wind waves, as well as with the seiche itself with no radiation gives a damping time of 9.46 d; radiation sufficient to give the observed damping time must then account for 66% of the energy loss per period. But independent estimates of bottom friction for Adriatic wind driven currents and inertial oscillations, as well as comparisons between quadratic law bottom stress and directly measured bottom stress, all suggest that the quadratic law with CD=0.0015 substantially underestimates the bottom stress. Based on these studies, a more appropriate value of the drag coefficient is at least CD=0. In this case, bottom friction with no radiation leads to a damping time of 4.73 d, radiation sufficient to give the observed damping time then accounts for 32% of the energy loss per period.

  9. Modeling heavy ion ionization energy loss at low and intermediate energies

    SciTech Connect

    Rakhno, I.L.; /Fermilab

    2009-11-01

    The needs of contemporary accelerator and space projects led to significant efforts made to include description of heavy ion interactions with matter in general-purpose Monte Carlo codes. This paper deals with an updated model of heavy ion ionization energy loss developed previously for the MARS code. The model agrees well with experimental data for various projectiles and targets including super-heavy ions in low-Z media.

  10. Spectroscopy of low energy solar neutrinos by MOON

    NASA Astrophysics Data System (ADS)

    Hazama, R.; Doe, P.; Ejiri, H.; Elliott, S. R.; Engel, J.; Finger, M.; Formaggio, J. A.; Fushimi, K.; Gehman, V.; Gorin, A.; Greenfield, M.; Ichihara, K.; Ikegami, Y.; Ishii, H.; Itahashi, T.; Kavitov, P.; Kekelidze, V.; Kuroda, K.; Kutsalo, V.; Manouilov, I.; Matsuoka, K.; Nakamura, H.; Nomachi, M.; Para, A.; Rielage, K.; Rjazantsev, A.; Robertson, R. G. H.; Shichijo, Y.; Shima, T.; Shimada, Y.; Shirkov, G.; Sissakian, A.; Sugaya, Y.; Titov, A.; Vatulin, V.; Vilches, O. E.; Voronov, V.; Wilkerson, J. F.; Will, D. I.; Yoshida, S.

    2005-01-01

    The MOON (Molybdenum Observatory Of Neutrinos) project aims at high sensitive studies of the double beta (ββ) decays with sensitivity to Majorana ν mass of the order of ˜0.03 eV and the charged-current (CC) neutrino spectroscopy of the major components of the pp and 7Be solar ν's. The present status of MOON for the low energy solar ν experiment is briefly discussed. The inverse β rays from solar-ν captures of 100Mo are measured in delayed coincidence with the subsequent β decay of 100Tc. MOON's exclusive CC value by 7Be solar ν, together with the GNO CC data, will provide the pp solar ν flux with good accuracy.

  11. Electron structure of excited configurations in Ca2V2O7 studied by electron-induced core-ionization loss spectroscopy, appearance-potential spectroscopy, and x-ray-photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Curelaru, I. M.; Strid, K.-G.; Suoninen, E.; Minni, E.; Rönnhult, T.

    1981-04-01

    We have measured the electron-induced core-ionization loss (CILS) spectra, the appearance-potential (APS) spectra, and the x-ray-photoelectron (XPS) spectra of Ca2V2O7, that is a prototype for a series of luminescent materials with general formula M2V2O7(M=Mg, Ca, Sr, Ba, Zn, Cd, Hg). From the analysis of the data provided by the edge spectroscopies (CILS and APS) and their comparison with the XPS binding energies, we deduced the electronic structure of the outer orbitals (occupied and empty) involved in these processes. Our data illustrate the strong many-body effects that occur in the excitation and decay of localized atomiclike configurations within the big ionic cluster V2O4-7. Excitation of core levels in calcium, outside the V2O4-7 ion, seems to involve more extended orbitals, since the screening is more efficient. Usefulness of complementary studies by x-ray emission and Auger electron spectroscopy is anticipated.

  12. Charge exchange and energy loss of slow highly charged ions in 1 nm thick carbon nanomembranes.

    PubMed

    Wilhelm, Richard A; Gruber, Elisabeth; Ritter, Robert; Heller, René; Facsko, Stefan; Aumayr, Friedrich

    2014-04-18

    Experimental charge exchange and energy loss data for the transmission of slow highly charged Xe ions through ultrathin polymeric carbon membranes are presented. Surprisingly, two distinct exit charge state distributions accompanied by charge exchange dependent energy losses are observed. The energy loss for ions exhibiting large charge loss shows a quadratic dependency on the incident charge state indicating that equilibrium stopping force values do not apply in this case. Additional angle resolved transmission measurements point on a significant contribution of elastic energy loss. The observations show that regimes of different impact parameters can be separated and thus a particle's energy deposition in an ultrathin solid target may not be described in terms of an averaged energy loss per unit length.

  13. Detection of photosynthetic energy storage in a photosystem I reaction center preparation by photoacoustic spectroscopy.

    PubMed

    Owens, T G; Carpentier, R; Leblanc, R M

    1990-06-01

    Thermal emission and photochemical energy storage were examined in photosystem I reaction center/core antenna complexes (about 40 Chl a/P700) using photoacoustic spectroscopy. Satisfactory signals could only be obtained from samples bound to hydroxyapatite and all samples had a low signal-to-noise ratio compared to either PS I or PS II in thylakoid membranes. The energy storage signal was saturated at low intensity (half saturation at 1.5 W m(-2)) and predicted a photochemical quantum yield of >90%. Exogenous donors and acceptors had no effect on the signal amplitudes indicating that energy storage is the result of charge separation between endogenous components. Fe(CN)6 (-3) oxidation of P700 and dithionite-induced reduction of acceptors FA-FB inhibited energy storage. These data are compatible with the hypothesis that energy storage in PS I arises from charge separation between P700 and Fe-S centers FA-FB that is stable on the time scale of the photoacoustic modulation. High intensity background light (160 W m(-2)) caused an irreversible loss of energy storage and correlated with a decrease in oxidizable P700; both are probably the result of high light-induced photoinhibition. By analogy to the low fluorescence yield of PS I, the low signal-to-noise ratio in these preparations is attributed to the short lifetime of Chl singlet excited states in PS I-40 and its indirect effect on the yield of thermal emission.

  14. Oxygen-induced changes in electron-energy-loss spectra for Al, Be and Ni. [Al; Be; Ni

    SciTech Connect

    Madden, H.H.; Landers, R.; Kleiman, G.G. , 13081-970 Campinas, Sao Paulo, Brasil); Zehner, D.M. )

    1999-09-01

    Electron-energy-loss spectroscopy (EELS) data are presented to illustrate line shape changes that occur as a result of oxygen interaction with metal surfaces. The metals were aluminum, beryllium and nickel. Core-level EELS data were taken for excitations from Al(2p), Be(1s), Ni(3p/3s) and O(1s) levels to the conduction band (CB) density of states (DOS) of the materials. The primary beam energies for the spectra were 300, 450, 300, and 1135 eV, respectively. The data are presented in both the (as measured) first-derivative and the integral forms. The integral spectra were corrected for coherent background losses and analyzed for CB DOS information. These spectra were found to be in qualitative agreement with published experimental and theoretical studies of these materials. One peak in the spectra for Al oxide is analyzed for its correlation with excitonic screening of the Al(2p) core hole. Similar evidence for exciton formation is found in the Ni(3p) spectra for Ni oxide. Data are also presented showing oxygen-induced changes in the lower-loss-energy EELS curves that, in the pure metal, are dominated by plasmon-loss and interband-transition signals. Single-scattering loss profiles in the integral form of the data were calculated using a procedure of Tougaard and Chorkendorff [S. Tougaard and I. Chorkendorff, Phys. Rev. B. [bold 35], 6570 (1987)]. For all three oxides these profiles are dominated by a feature with a loss energy of around 20[endash]25 eV. Although this feature has been ascribed by other researchers as due to bulk plasmon losses in the oxide, an alternative explanation is that the feature is simply due to O(2s)-to-CB-level excitations. An even stronger feature is found at 7 eV loss energy for Ni oxide. Speculation is given as to its source. The line shapes in both the core-level and noncore-level spectra can also be used simply as [open quotes]fingerprints[close quotes] of the surface chemistry of the materials. Our data were taken using commercially

  15. Nonlinear effects in the energy loss of a slow dipole in a free-electron gas

    SciTech Connect

    Alducin, M.; Juaristi, J.I.

    2002-11-01

    We analyze beyond linear-response theory the energy loss of a slow dipole moving inside a free-electron gas. The energy loss is obtained from a nonlinear treatment of the scattering of electrons at the dipole-induced potential. This potential and the total electronic density are calculated with density-functional theory. We focus on the interference effects, i.e., the difference between the energy loss of a dipole and that of the isolated charges forming it. Comparison of our results to those obtained in linear-response theory shows that a nonlinear treatment of the screening is required to accurately describe the energy loss of slow dipoles.

  16. Stellar energy loss rates in the pair-annihilation process beyond the standard model

    NASA Astrophysics Data System (ADS)

    Hernández-Ruíz, M. A.; Gutiérrez-Rodríguez, A.; González-Sánchez, A.

    2017-01-01

    We calculate the stellar energy loss due to neutrino-pair production in e+e- annihilation in the context of a 331 model, a left-right symmetric model and a simplest little Higgs model in a way that can be used in supernova calculations. We also present some simple estimates which show that such process can act as an efficient energy loss mechanism in the shocked supernova core. We find that the stellar energy loss is almost independent of the parameters of the models in the allowed range for these parameters. This work complements other studies on the stellar energy loss rate in e+e- annihilation.

  17. High energy cosmic ray spectroscopy. I. Status and prospects

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Wolfendale, A. W.

    1997-06-01

    In a recent paper ( Nature, 1996, submitted) we claimed that the 'bump' in the extensive air shower size spectrum near 10 6 particles is due to heavy nuclei from a comparatively local 'source'. The energy spectrum of this single source is of the shape advocated by Berezhko et al. (JETP 82 (1996) 1) for supernova remnants (SNR) and is characterized by, approximately, an E-2 spectrum up to an energy Emax followed by a rapid fall above. The SNR model makes specific predictions for Emax as a function of nuclear charge. If, as is likely, the CR nuclei are fully ionized, we must identify the 'bump' in the paper submitted to Nature with the CNO group of nuclei. We have, accordingly, searched for the corresponding bump due to iron at a bigger shower size. Analysis of the world's data so far leads us to claim its detection, although not, yet, at as high a level of significance as the first bump. Prospects for augmenting the size spectrum technique, for studying what we call this new branch of spectroscopy, are examined.

  18. Self-Directed Weight Loss Strategies: Energy Expenditure Due to Physical Activity Is Not Increased to Achieve Intended Weight Loss

    PubMed Central

    Elbelt, Ulf; Schuetz, Tatjana; Knoll, Nina; Burkert, Silke

    2015-01-01

    Reduced physical activity and almost unlimited availability of food are major contributors to the development of obesity. With the decline of strenuous work, energy expenditure due to spontaneous physical activity has attracted increasing attention. Our aim was to assess changes in energy expenditure, physical activity patterns and nutritional habits in obese subjects aiming at self-directed weight loss. Methods: Energy expenditure and physical activity patterns were measured with a portable armband device. Nutritional habits were assessed with a food frequency questionnaire. Results: Data on weight development, energy expenditure, physical activity patterns and nutritional habits were obtained for 105 patients over a six-month period from an initial cohort of 160 outpatients aiming at weight loss. Mean weight loss was −1.5 ± 7.0 kg (p = 0.028). Patients with weight maintenance (n = 75), with substantial weight loss (>5% body weight, n = 20) and with substantial weight gain (>5% body weight, n = 10) did not differ in regard to changes of body weight adjusted energy expenditure components (total energy expenditure: −0.2 kcal/kg/day; non-exercise activity thermogenesis: −0.3 kcal/kg/day; exercise-related activity thermogenesis (EAT): −0.2 kcal/kg/day) or patterns of physical activity (duration of EAT: −2 min/day; steps/day: −156; metabolic equivalent unchanged) measured objectively with a portable armband device. Self-reported consumption frequency of unfavorable food decreased significantly (p = 0.019) over the six-month period. Conclusions: An increase in energy expenditure or changes of physical activity patterns (objectively assessed with a portable armband device) are not employed by obese subjects to achieve self-directed weight loss. However, modified nutritional habits could be detected with the use of a food frequency questionnaire. PMID:26193310

  19. Derivation of dielectric function and inelastic mean free path from photoelectron energy-loss spectra of amorphous carbon surfaces

    NASA Astrophysics Data System (ADS)

    David, Denis; Godet, Christian

    2016-11-01

    Photoelectron Energy Loss Spectroscopy (PEELS) is a highly valuable non destructive tool in applied surface science because it gives access to both chemical composition and electronic properties of surfaces, including the near-surface dielectric function. An algorithm is proposed for real materials to make full use of experimental X-ray photoelectron spectra (XPS). To illustrate the capabilities and limitations of this algorithm, the near-surface dielectric function ε(ℏω) of a wide range of amorphous carbon (a-C) thin films is derived from energy losses measured in XPS, using a dielectric response theory which relates ε(ℏω) and the bulk plasmon (BP) loss distribution. Self-consistent separation of bulk vs surface plasmon excitations, deconvolution of multiple BP losses and evaluation of Bethe-Born sensitivity factors for bulk and surface loss distributions are crucial to obtain several material parameters: (1) energy loss function for BP excitation, (2) dielectric function of the near-surface material (3-5 nm depth sensitivity), (3) inelastic mean free path, λP (E0), for plasmon excitation, (4) surface excitation parameter, (5) effective number NEFF of valence electrons participating in the plasma oscillation. This photoelectron energy loss spectra analysis has been applied to a-C and a-C:H films grown by physical and chemical methods with a wide range of (sp3/sp2 + sp3) hybridization, optical gap and average plasmon energy values. Different methods are assessed to accurately remove the photoemission peak tail at low loss energy (0-10 eV) due to many-body interactions during the photo-ionization process. The σ + π plasmon excitation represents the main energy-loss channel in a-C; as the C atom density decreases, λP (970 eV) increases from 1.22 nm to 1.6 nm, assuming a cutoff plasmon wavenumber given by a free electron model. The π-π* and σ-σ* transitions observed in the retrieved dielectric function are discussed as a function of the average (sp3/sp

  20. Collisional Diffusion and Thick-Target Energy Losses in Solar Flares -- Death to the "Low-Energy Cufoff"

    NASA Astrophysics Data System (ADS)

    Emslie, Gordon; Bian, Nicolas; Jeffrey, Natasha; Kontar, Eduard

    2015-04-01

    We extend previous studies of nonthermal electron transport in solar flares by including the effects of collisional diffusion on the energy loss rate of the electron distribution as a whole. We conclude that previous estimates of electron energy loss, particularly at energies E ~ 10kT or less, have been greatly overestimated. Consequently the required number of electrons at the low-energy end of the accelerated electron spectrum, and concomitantly the overall energy content in the accelerated electrons, are significantly reduced. Use of an artificially-imposed ``low-energy cutoff'' in the accelerated spectrum is therefore not only unwarranted, but also unnecessary.

  1. Effects of dietary composition of energy expenditure during weight-loss maintenance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reduced energy expenditure following weight loss is thought to contribute to weight gain. However, the effect of dietary composition on energy expenditure during weight-loss maintenance has not been studied. To examine the effects of 3 diets differing widely in macronutrient composition and glycemic...

  2. Lifestyle modification to promote weight loss in the absence of energy restriction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the obesity epidemic showing no signs of abating, there is ongoing interest in altering energy balance (i.e., decreasing energy intake and/or increasing energy expenditure) to promote weight, specifically fat, loss. However, short- and long-term outcomes of, and adherence to, decreasing energy ...

  3. The role of electronic energy loss in ion beam modification of materials

    DOE PAGES

    Weber, William J.; Duffy, Dorothy M.; Thome, Lionel; ...

    2014-10-05

    The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while inmore » other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. Lastly, these results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments.« less

  4. The role of electronic energy loss in ion beam modification of materials

    SciTech Connect

    Weber, William J.; Duffy, Dorothy M.; Thome, Lionel; Zhang, Yanwen

    2014-10-05

    The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while in other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. Lastly, these results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments.

  5. Mode specific excited state dynamics study of bis(phenylethynyl)benzene from ultrafast Raman loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Roy, Khokan; Kayal, Surajit; Ariese, Freek; Beeby, Andrew; Umapathy, Siva

    2017-02-01

    Femtosecond transient absorption (fs-TA) and Ultrafast Raman Loss Spectroscopy (URLS) have been applied to reveal the excited state dynamics of bis(phenylethynyl)benzene (BPEB), a model system for one-dimensional molecular wires that have numerous applications in opto-electronics. It is known from the literature that in the ground state BPEB has a low torsional barrier, resulting in a mixed population of rotamers in solution at room temperature. For the excited state this torsional barrier had been calculated to be much higher. Our femtosecond TA measurements show a multi-exponential behaviour, related to the complex structural dynamics in the excited electronic state. Time-resolved, excited state URLS studies in different solvents reveal mode-dependent kinetics and picosecond vibrational relaxation dynamics of high frequency vibrations. After excitation, a gradual increase in intensity is observed for all Raman bands, which reflects the structural reorganization of Franck-Condon excited, non-planar rotamers to a planar conformation. It is argued that this excited state planarization is also responsible for its high fluorescence quantum yield. The time dependent peak positions of high frequency vibrations provide additional information: a rapid, sub-picosecond decrease in peak frequency, followed by a slower increase, indicates the extent of conjugation during different phases of excited state relaxation. The CC triple (-C≡C-) bond responds somewhat faster to structural reorganization than the CC double (>C=C<) bonds. This study deepens our understanding of the excited state of BPEB and analogous linear pi-conjugated systems and may thus contribute to the advancement of polymeric "molecular wires."

  6. Mode specific excited state dynamics study of bis(phenylethynyl)benzene from ultrafast Raman loss spectroscopy.

    PubMed

    Roy, Khokan; Kayal, Surajit; Ariese, Freek; Beeby, Andrew; Umapathy, Siva

    2017-02-14

    Femtosecond transient absorption (fs-TA) and Ultrafast Raman Loss Spectroscopy (URLS) have been applied to reveal the excited state dynamics of bis(phenylethynyl)benzene (BPEB), a model system for one-dimensional molecular wires that have numerous applications in opto-electronics. It is known from the literature that in the ground state BPEB has a low torsional barrier, resulting in a mixed population of rotamers in solution at room temperature. For the excited state this torsional barrier had been calculated to be much higher. Our femtosecond TA measurements show a multi-exponential behaviour, related to the complex structural dynamics in the excited electronic state. Time-resolved, excited state URLS studies in different solvents reveal mode-dependent kinetics and picosecond vibrational relaxation dynamics of high frequency vibrations. After excitation, a gradual increase in intensity is observed for all Raman bands, which reflects the structural reorganization of Franck-Condon excited, non-planar rotamers to a planar conformation. It is argued that this excited state planarization is also responsible for its high fluorescence quantum yield. The time dependent peak positions of high frequency vibrations provide additional information: a rapid, sub-picosecond decrease in peak frequency, followed by a slower increase, indicates the extent of conjugation during different phases of excited state relaxation. The CC triple (-C≡C-) bond responds somewhat faster to structural reorganization than the CC double (>C=C<) bonds. This study deepens our understanding of the excited state of BPEB and analogous linear pi-conjugated systems and may thus contribute to the advancement of polymeric "molecular wires."

  7. Resistant starch and energy balance: impact on weight loss and maintenance.

    PubMed

    Higgins, Janine A

    2014-01-01

    The obesity epidemic has prompted researchers to find effective weight-loss and maintenance tools. Weight loss and subsequent maintenance are reliant on energy balance--the net difference between energy intake and energy expenditure. Negative energy balance, lower intake than expenditure, results in weight loss whereas positive energy balance, greater intake than expenditure, results in weight gain. Resistant starch has many attributes, which could promote weight loss and/or maintenance including reduced postprandial insulinemia, increased release of gut satiety peptides, increased fat oxidation, lower fat storage in adipocytes, and preservation of lean body mass. Retention of lean body mass during weight loss or maintenance would prevent the decrease in basal metabolic rate and, therefore, the decrease in total energy expenditure, that occurs with weight loss. In addition, the fiber-like properties of resistant starch may increase the thermic effect of food, thereby increasing total energy expenditure. Due to its ability to increase fat oxidation and reduce fat storage in adipocytes, resistant starch has recently been promoted in the popular press as a "weight loss wonder food". This review focuses on data describing the effects of resistant starch on body weight, energy intake, energy expenditure, and body composition to determine if there is sufficient evidence to warrant these claims.

  8. Energy loss and straggling of MeV ions through biological samples

    SciTech Connect

    Ma Lei; Wang Yugang; Xue Jianming; Chen Qizhong; Zhang Weiming; Zhang Yanwen

    2007-10-15

    Energy loss and energy straggling of energetic ions through natural dehydrated biological samples were investigated using transmission technique. Biological samples (onion membrane, egg coat, and tomato coat) with different mass thickness were studied, together with Mylar for comparison. The energy loss and energy straggling of MeV H and He ions after penetrating the biological and Mylar samples were measured. The experimental results show that the average energy losses of MeV ions through the biological samples are consistent with SRIM predictions; however, large deviation in energy straggling is observed between the measured results and the SRIM predictions. Taking into account inhomogeneity in mass density and structure of the biological sample, an energy straggling formula is suggested, and the experimental energy straggling values are well predicted by the proposed formula.

  9. Energy loss and straggling of MeV ions through biological samples

    SciTech Connect

    Ma, Lie; Wang, Yugang; Xue, Jianming; Chen, Qizhong; Zhang, Weiming; Zhang, Yanwen

    2007-10-15

    Energy loss and energy straggling of energetic ions through natural dehydrated biological samples were investigated using transmission technique. Biological samples (onion membrane, egg coat and tomato coat) with different mass thickness were studied, together with mylar for comparison, in this work. The energy loss and energy straggling of MeV H and He ions after penetrating from the biological and mylar samples were measured. The experimental results show that the average energy losses of MeV ions through the biological samples are consistent with SRIM predictions, however, large deviation in energy straggling is observed between the measured result and the SRIM predictions. Taking into account inhomogeneity in mass density and structure of the biological sample, an energy straggling formula is suggested, and the experimental energy straggling values are well predicated by the proposed formula.

  10. Energy loss partitioning during ballistic impact of polymer composites

    NASA Technical Reports Server (NTRS)

    Zee, Ralph H.; Hsieh, Chung Y.

    1993-01-01

    The objective of this study is to determine the energy dissipation processes in polymer-matrix composites during impact of ballistic projectiles. These processes include heat, fiber deformation and breakage, matrix deformation and fracture, and interfacial delamination. In this study, experimental measurements were made, using specialized specimen designs and test methods, to isolate the energy consumed by each of these processes during impact in the ballistic range. Using these experiments, relationships between material parameters and energy dissipation were examined. Composites with the same matrix but reinforced with Kevlar, PE, and graphite fabric were included in this study. These fibers were selected based on the differences in their intrinsic properties. Matrix cracking was found to be one of the most important energy absorption mechanisms during impact, especially in ductile samples such as Spectra-900 PE and Kevlar-49 reinforced polymer. On the contrary, delamination dominated the energy dissipation in brittle composites such as graphite reinforced materials. The contribution from frictional forces was also investigated and the energy partitioning among the different processes evaluated.

  11. A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate

    DOE PAGES

    Liu, Peng; Zhang, Yanwen; Xue, Haizhou; ...

    2016-01-09

    Understanding irradiation effects induced by elastic energy loss to atomic nuclei and inelastic energy loss to electrons in a crystal, as well as the coupled effect between them, is a scientific challenge. Damage evolution in LiNbO3 irradiated by 0.9 and 21 MeV Si ions at 300 K has been studied utilizing Rutherford backscattering spectrometry in channeling mode. During the low-energy ion irradiation process, damage accumulation produced due to elastic collisions is described utilizing a disorder accumulation model. Moreover, low electronic energy loss is shown to induce observable damage that increases with ion fluence. For the same electronic energy loss, themore » velocity of the incident ion could affect the energy and spatial distribution of excited electrons, and therefore effectively modify the diameter of the ion track. Furthermore, nonlinear additive phenomenon of irradiation damage induced by high electronic energy loss in pre-damaged LiNbO3 has been observed. The result indicates that pre-existing damage induced from nuclear energy loss interacts synergistically with inelastic electronic energy loss to promote the formation of amorphous tracks and lead to rapid phase transformation, much more efficient than what is observed in pristine crystal solely induced by electronic energy loss. As a result, this synergistic effect is attributed to the fundamental mechanism that the defects produced by the elastic collisions result in a decrease in thermal conductivity, increase in the electron-phonon coupling, and further lead to higher intensity in thermal spike from intense electronic energy deposition along high-energy ion trajectory.« less

  12. A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate

    SciTech Connect

    Liu, Peng; Zhang, Yanwen; Xue, Haizhou; Jin, Ke; Crespillo, Miguel L.; Wang, Xuelin; Weber, William J.

    2016-01-09

    Understanding irradiation effects induced by elastic energy loss to atomic nuclei and inelastic energy loss to electrons in a crystal, as well as the coupled effect between them, is a scientific challenge. Damage evolution in LiNbO3 irradiated by 0.9 and 21 MeV Si ions at 300 K has been studied utilizing Rutherford backscattering spectrometry in channeling mode. During the low-energy ion irradiation process, damage accumulation produced due to elastic collisions is described utilizing a disorder accumulation model. Moreover, low electronic energy loss is shown to induce observable damage that increases with ion fluence. For the same electronic energy loss, the velocity of the incident ion could affect the energy and spatial distribution of excited electrons, and therefore effectively modify the diameter of the ion track. Furthermore, nonlinear additive phenomenon of irradiation damage induced by high electronic energy loss in pre-damaged LiNbO3 has been observed. The result indicates that pre-existing damage induced from nuclear energy loss interacts synergistically with inelastic electronic energy loss to promote the formation of amorphous tracks and lead to rapid phase transformation, much more efficient than what is observed in pristine crystal solely induced by electronic energy loss. As a result, this synergistic effect is attributed to the fundamental mechanism that the defects produced by the elastic collisions result in a decrease in thermal conductivity, increase in the electron-phonon coupling, and further lead to higher intensity in thermal spike from intense electronic energy deposition along high-energy ion trajectory.

  13. Probing the electronic and spintronic properties of buried interfaces by extremely low energy photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Fetzer, Roman; Stadtmüller, Benjamin; Ohdaira, Yusuke; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Aeschlimann, Martin; Cinchetti, Mirko

    2015-02-01

    Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature.

  14. Probing the electronic and spintronic properties of buried interfaces by extremely low energy photoemission spectroscopy.

    PubMed

    Fetzer, Roman; Stadtmüller, Benjamin; Ohdaira, Yusuke; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Aeschlimann, Martin; Cinchetti, Mirko

    2015-02-23

    Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature.

  15. Probing the electronic and spintronic properties of buried interfaces by extremely low energy photoemission spectroscopy

    PubMed Central

    Fetzer, Roman; Stadtmüller, Benjamin; Ohdaira, Yusuke; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Aeschlimann, Martin; Cinchetti, Mirko

    2015-01-01

    Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature. PMID:25702631

  16. Energy losses and transition radiation produced by the interaction of charged particles with a graphene sheet

    NASA Astrophysics Data System (ADS)

    Mišković, Zoran L.; Segui, Silvina; Gervasoni, Juana L.; Arista, Néstor R.

    2016-09-01

    We present a fully relativistic formulation of the energy loss of a charged particle traversing a conductive monoatomic layer and apply it to the case of graphene in a transmission electron microscope (TEM). We use two models of conductivity appropriate for different frequency regimes: (a) THz (terahertz) frequency range and (b) optical range. In each range we distinguish two types of contributions to the electron energy loss: the energy deposited in graphene in the form of electronic excitations (Ohm losses), and the energy that is emitted in the form of radiation. We find strong relativistic effects in the electron energy loss spectra, which are manifested, e.g., in the increased heights of the principal π and σ +π peaks that may be observed in TEM in the optical range. While the radiative energy losses are suppressed in the optical range in comparison to the Ohmic losses, we find that these two contributions are comparable in magnitude in the THz range, where the response of doped graphene is dominated by the Dirac plasmon polariton (DPP). In particular, relative contributions of the Ohmic and radiative energy losses are strongly affected by the damping of DPP. In the case of a clean graphene with low damping, the angular distribution of the radiated spectra at the sub-THz frequencies exhibit strong and possibly observable skewing towards graphene.

  17. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    SciTech Connect

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  18. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-09-01

    Reflection electron energy loss spectra from some insulating materials (CaCO3, Li2CO3, and SiO2) taken at relatively high incoming electron energies (5-40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO2, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E - Egap)1.5. For CaCO3, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li2CO3 (7.5 eV) is the first experimental estimate.

  19. Magnetostrictive and Kinematic Model Considering the Dynamic Hysteresis and Energy Loss for GMA

    NASA Astrophysics Data System (ADS)

    LIU, Huifang; SUN, Xingwei; GAO, Yifei; WANG, Hanyu; GAO, Zijin

    2017-03-01

    Due to the influence of magnetic hysteresis and energy loss inherent in giant magnetostrictive materials (GMM), output displacement accuracy of giant magnetostrictive actuator (GMA) can not meet the precision and ultra precision machining. Using a GMM rod as the core driving element, a GMA which may be used in the field of precision and ultra precision drive engineering is designed through modular design method. Based on the Armstrong theory and elastic Gibbs free energy theory, a nonlinear magnetostriction model which considers magnetic hysteresis and energy loss characteristics is established. Moreover, the mechanical system differential equation model for GMA is established by utilizing D'Alembert's principle. Experimental results show that the model can preferably predict magnetization property, magnetic potential orientation, energy loss for GMM. It is also able to describe magnetostrictive elongation and output displacement of GMA. Research results will provide a theoretical basis for solving the dynamic magnetic hysteresis, energy loss and working precision for GMA fundamentally.

  20. Phase effect in the energy loss of hydrogen projectiles in zinc targets

    SciTech Connect

    Arnau, A.; Bauer, P.; Kastner, F.; Salin, A.; Ponce, V.H.; Fainstein, P.D.; Echenique, P.M.

    1994-03-01

    We present an experimental and theoretical study of the phase effect in the energy loss of fast hydrogen beams colliding with gas and solid zinc targets. The experiments show a maximum phase effect of 50% around 50 keV/u, the energy loss per atom in the solid target being smaller than in the gas target. An extensive theoretical study of all the processes contributing to the energy loss in the two phases shows that the experimental findings can be explained primarily by the screening of the projectile field by the valence electrons in the solid.

  1. Energy loss straggling in collisions of fast finite-size ions with atoms

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2013-03-01

    The influence of ion size on straggling of energy losses by fast partially stripped ions is studied using the nonperturbative approach based on the eikonal approximation. It is shown that such a consideration of collisions of ions with complex atoms can lead to considerable corrections in calculating root-mean-square straggling of energy losses by fast ions compared to the results obtained for point ions. The root-mean-square straggling of energy losses are calculated for bromide and iodine ions in collisions with copper, silver, and aluminum atoms. It is shown that allowance for the size of the electron "coat" of an ion noticeably improves the agreement with experimental data.

  2. Energy loss straggling in collisions of fast finite-size ions with atoms

    SciTech Connect

    Makarov, D. N. Matveev, V. I.

    2013-03-15

    The influence of ion size on straggling of energy losses by fast partially stripped ions is studied using the nonperturbative approach based on the eikonal approximation. It is shown that such a consideration of collisions of ions with complex atoms can lead to considerable corrections in calculating root-mean-square straggling of energy losses by fast ions compared to the results obtained for point ions. The root-mean-square straggling of energy losses are calculated for bromide and iodine ions in collisions with copper, silver, and aluminum atoms. It is shown that allowance for the size of the electron 'coat' of an ion noticeably improves the agreement with experimental data.

  3. Synergy of inelastic and elastic energy loss. Temperature effects and electronic stopping power dependence

    DOE PAGES

    Zarkadoula, Eva; Xue, Haizhou; Zhang, Yanwen; ...

    2015-06-16

    A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO3 systems with pre-existing disorder. We find temperature dependence of the ion track size. In addition, we find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss.

  4. Synergy of inelastic and elastic energy loss. Temperature effects and electronic stopping power dependence

    SciTech Connect

    Zarkadoula, Eva; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-06-16

    A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO3 systems with pre-existing disorder. We find temperature dependence of the ion track size. In addition, we find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss.

  5. Hydrodynamic evolution and jet energy loss in Cu + Cu collisions

    SciTech Connect

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-04-15

    We present results from a hybrid description of Cu + Cu collisions using (3 + 1)-dimensional hydrodynamics (music) for the bulk evolution and a Monte Carlo simulation (martini) for the evolution of high-momentum partons in the hydrodynamical background. We explore the limits of this description by going to small system sizes and determine the dependence on different fractions of wounded nucleon and binary collisions scaling of the initial energy density. We find that Cu + Cu collisions are well described by the hybrid description at least up to 20% central collisions.

  6. Energy losses from fast structured heavy ions in multiple collisions with molecules and nanoparticles

    SciTech Connect

    Matveev, V. I. Gusarevich, E. S.; Makarov, D. N.

    2009-11-15

    A nonperturbative method is developed to calculate the energy losses from fast, highly charged, heavy ions in collisions with complex molecules and nanoparticles. All possible processes of excitation and ionization of both projectile and target are taken into account. The contributions to energy losses due to multiple collisions are calculated, and the effect of target orientation with respect to the direction of projectile motion is examined. As examples, the energy losses in collisions with the XeF{sub 4} molecule and a C{sub 300} nanotube are determined. It is shown that the effect of multiple collisions leads to significant change in energy loss with target orientation, being insignificant for randomly oriented targets.

  7. Reflection electron energy loss spectrum of single layer graphene measured on a graphite substrate

    NASA Astrophysics Data System (ADS)

    Werner, Wolfgang S. M.; Bellissimo, Alessandra; Leber, Roland; Ashraf, Afshan; Segui, Silvina

    2015-05-01

    Reflection electron energy loss spectra (REELS) have been measured on a highly oriented pyrolytic graphite (HOPG) sample. Two spectra were measured for different energies, 1600 eV, being more sensitive to the bulk and 500 eV being more sensitive to the surface. The energy loss distributions for a single surface and bulk excitation were extracted from the two spectra using a simple decomposition procedure. These single scattering loss distributions correspond to electron trajectories with significantly different penetration depths and agree with energy loss spectra measured on free standing single layer graphene and multilayer graphene (i.e. graphite). This result implies that for a layered electron gas (LEG) material, the number of layers which responds in a correlated fashion to an external perturbation is determined by the depth range penetrated by the external perturbation, and not by the number of layers actually present in the specimen.

  8. Energy balance and the composition of weight loss during prolonged space flight

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1982-01-01

    Integrated metabolic balance analysis, Skylab integrated metabolic balance analysis and computer simulation of fluid-electrolyte responses to zero-g, overall mission weight and tissue losses, energy balance, diet and exercise, continuous changes, electrolyte losses, caloric and exercise requirements, and body composition are discussed.

  9. CEBAF at higher energies: Working group report on hadron spectroscopy and production

    SciTech Connect

    Barnes, T. |; Napolitano, J.

    1994-04-01

    This report summarizes topics in hadron spectroscopy and production which could be addressed at CEBAF with an energy upgrade to E{sub {gamma}} = 8 GeV and beyond. The topics discussed include conventional meson and baryon spectrocopy, spectroscopy of exotica (especially molecules and hybrids), CP and CPT tests using {phi} mesons, and new detector and accelerator options.

  10. Energy losses of positive and negative charged particles in electron gas

    NASA Astrophysics Data System (ADS)

    Diachenko, M. M.; Kholodov, R. I.

    2017-02-01

    A heavy charged particle propagation through electron gas has been studied using combination of non-relativistic quantum mechanics and the Green’s functions method. The energy loss of a charged particle has been found in the case of large transferred momentum taking into account the interference term in the expression for the rate. The dependence of the energy loss of a charged particles in electron gas with nonzero temperature on the sign of the charge has been obtained.

  11. Energy dependent 3-body loss in out-of-equilibrium 1D Bose gases

    NASA Astrophysics Data System (ADS)

    Zundel, Laura; Xia, Lin; Wilson, Joshua; Riou, Jean-Felix; Weiss, David

    2015-05-01

    We measure the three-body loss of out-of-equilibrium one-dimensional (1D) Bose gases and find that it depends strongly on the average energy of the distribution. The theory of three-body loss in 1D gas experiments is incomplete due to the challenge of calculating how correlations evolve. We present an empirical model based on energy dependent correlations and show that it reproduces the data.

  12. Energy loss of ions by electric-field fluctuations in a magnetized plasma

    SciTech Connect

    Nersisyan, Hrachya B.; Deutsch, Claude

    2011-06-15

    The results of a theoretical investigation of the energy loss of charged particles in a magnetized classical plasma due to the electric-field fluctuations are reported. The energy loss for a test particle is calculated through the linear-response theory. At vanishing magnetic field, the electric-field fluctuations lead to an energy gain of the charged particle for all velocities. It has been shown that in the presence of strong magnetic field, this effect occurs only at low velocities. In the case of high velocities, the test particle systematically loses its energy due to the interaction with a stochastic electric field. The net effect of the fluctuations is the systematic reduction of the total energy loss (i.e., the sum of the polarization and stochastic energy losses) at vanishing magnetic field and reduction or enhancement at strong field, depending on the velocity of the particle. It is found that the energy loss of the slow heavy ion contains an anomalous term that depends logarithmically on the projectile mass. The physical origin of this anomalous term is the coupling between the cyclotron motion of the plasma electrons and the long-wavelength, low-frequency fluctuations produced by the projectile ion. This effect may strongly enhance the stochastic energy gain of the particle.

  13. Energy loss of ions by electric-field fluctuations in a magnetized plasma.

    PubMed

    Nersisyan, Hrachya B; Deutsch, Claude

    2011-06-01

    The results of a theoretical investigation of the energy loss of charged particles in a magnetized classical plasma due to the electric-field fluctuations are reported. The energy loss for a test particle is calculated through the linear-response theory. At vanishing magnetic field, the electric-field fluctuations lead to an energy gain of the charged particle for all velocities. It has been shown that in the presence of strong magnetic field, this effect occurs only at low velocities. In the case of high velocities, the test particle systematically loses its energy due to the interaction with a stochastic electric field. The net effect of the fluctuations is the systematic reduction of the total energy loss (i.e., the sum of the polarization and stochastic energy losses) at vanishing magnetic field and reduction or enhancement at strong field, depending on the velocity of the particle. It is found that the energy loss of the slow heavy ion contains an anomalous term that depends logarithmically on the projectile mass. The physical origin of this anomalous term is the coupling between the cyclotron motion of the plasma electrons and the long-wavelength, low-frequency fluctuations produced by the projectile ion. This effect may strongly enhance the stochastic energy gain of the particle.

  14. Reducing heat loss from the energy absorber of a solar collector

    DOEpatents

    Chao, Bei Tse; Rabl, Ari

    1976-01-01

    A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

  15. Laser spectroscopy applied to energy, environmental and medical research

    NASA Astrophysics Data System (ADS)

    Svanberg, S.

    1988-01-01

    Applications of laser spectroscopy to the fields of combustion diagnostics, environmental remote sensing, and medicine are discussed. The techniques emphasized are CARS and laser-induced fluorescence. The monitoring of atmospheric trace gases, the treatment of tumors, and the detection and characterization of atherosclerotic plaques are addressed.

  16. Energy loss and straggling of MeV Si ions in gases

    NASA Astrophysics Data System (ADS)

    Vockenhuber, C.; Arstila, K.; Jensen, J.; Julin, J.; Kettunen, H.; Laitinen, M.; Rossi, M.; Sajavaara, T.; Thöni, M.; Whitlow, H. J.

    2017-01-01

    We present measurements of energy loss and straggling of Si ions in gases. An energy range from 0.5 to 12 MeV/u was covered using the 6 MV EN tandem accelerator at ETH Zurich, Switzerland, and the K130 cyclotron accelerator facility at the University of Jyväskylä, Finland. Our energy-loss data compare well with calculation based on the SRIM and PASS code. The new straggling measurements support a pronounced peak in He gas at around 4 MeV/u predicted by recent theoretical calculations. The straggling curve structure in the other gases (N2, Ne, Ar, Kr) is relatively flat in the covered energy range. Although there is a general agreement between the straggling data and the theoretical calculations, the experimental uncertainties are too large to confirm or exclude the predicted weak multi-peak structure in the energy-loss straggling.

  17. Hysteresis model and statistical interpretation of energy losses in non-oriented steels

    NASA Astrophysics Data System (ADS)

    Mănescu (Păltânea), Veronica; Păltânea, Gheorghe; Gavrilă, Horia

    2016-04-01

    In this paper the hysteresis energy losses in two non-oriented industrial steels (M400-65A and M800-65A) were determined, by means of an efficient classical Preisach model, which is based on the Pescetti-Biorci method for the identification of the Preisach density. The excess and the total energy losses were also determined, using a statistical framework, based on magnetic object theory. The hysteresis energy losses, in a non-oriented steel alloy, depend on the peak magnetic polarization and they can be computed using a Preisach model, due to the fact that in these materials there is a direct link between the elementary rectangular loops and the discontinuous character of the magnetization process (Barkhausen jumps). To determine the Preisach density it was necessary to measure the normal magnetization curve and the saturation hysteresis cycle. A system of equations was deduced and the Preisach density was calculated for a magnetic polarization of 1.5 T; then the hysteresis cycle was reconstructed. Using the same pattern for the Preisach distribution, it was computed the hysteresis cycle for 1 T. The classical losses were calculated using a well known formula and the excess energy losses were determined by means of the magnetic object theory. The total energy losses were mathematically reconstructed and compared with those, measured experimentally.

  18. Theoretical Basis and Application for Measuring Pork Loin Drip Loss Using Microwave Spectroscopy

    PubMed Central

    Mason, Alex; Abdullah, Badr; Muradov, Magomed; Korostynska, Olga; Al-Shamma’a, Ahmed; Bjarnadottir, Stefania Gudrun; Lunde, Kathrine; Alvseike, Ole

    2016-01-01

    During cutting and processing of meat, the loss of water is critical in determining both product quality and value. From the point of slaughter until packaging, water is lost due to the hanging, movement, handling, and cutting of the carcass, with every 1% of lost water having the potential to cost a large meat processing plant somewhere in the region of €50,000 per day. Currently the options for monitoring the loss of water from meat, or determining its drip loss, are limited to destructive tests which take 24–72 h to complete. This paper presents results from work which has led to the development of a novel microwave cavity sensor capable of providing an indication of drip loss within 6 min, while demonstrating good correlation with the well-known EZ-Driploss method (R2 = 0.896). PMID:26848661

  19. A new beam loss detector for low-energy proton and heavy-ion accelerators

    NASA Astrophysics Data System (ADS)

    Liu, Zhengzheng; Crisp, Jenna; Russo, Tom; Webber, Robert; Zhang, Yan

    2014-12-01

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR1

  20. Low or moderate dietary energy restriction for long-term weight loss: what works best?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theoretical calculations suggest that small daily reductions in energy intake can cumulatively lead to substantial weight loss, but experimental data to support these calculations are lacking. We conducted a 1-year randomized controlled pilot study of low (10%) or moderate (30%) energy restriction (...

  1. Ab initio research of energy loss for energetic protons in solid-density Be

    NASA Astrophysics Data System (ADS)

    He, Bin; Meng, Xu-Jun; Wang, Zhi-Gang; Wang, Jian-Guo

    2017-03-01

    Ab initio research of energy loss for energetic protons in solid-density Be is made based on the average atom model. Our results are found in good agreement with the recent experiment for both warm and cool matter. Our results are compared with the local density approximation model and the reason for their difference is also explored. The energy loss at smaller projectile energies is predicted by our model and local density approximation, which helps probe the higher reliability of the proving model and judge the existence of the non-Fermi-Dirac velocity distribution for free electrons exists in dense plasmas in future.

  2. Energy loss to intravalley acoustic modes in nano-dimensional wire structures at low temperatures

    NASA Astrophysics Data System (ADS)

    Nag, S.; Das, B.; Basu, A.; Das, J.; Bhattacharya, D. P.; Sarkar, C. K.

    2017-03-01

    The theory of rate of loss of energy of non-equilibrium electrons due to inelastic interaction with the intravalley acoustic phonons in a nano-dimensional semiconductor wire has been developed under the condition of low lattice temperature, when the approximations of the well known traditional theory are not valid. Numerical results are obtained for narrow-channel GaAs-GaAlAs wires structures. On comparison with other available results it is revealed that the finite energy of the intravalley acoustic phonons and, the use of the full form of the phonon distribution without truncation to the equipartition law, produce significant changes in the energy loss characteristics at low temperatures.

  3. [Calculation of energy losses in the participants of the skiing expedition to the North Pole].

    PubMed

    Efremov, V V; Ushakov, A S; Khmelevskiĭ, Iu I

    1983-01-01

    During the expedition to the North Pole, the food consumption rates were calculated on a regular basis. The mean daily energy losses of the participants of the expedition, the energy losses during skiing with a rucksack across the drifting ice were estimated and the energy metabolism curve by days was built up. The body weight of the participants averaged 78 +/- 5 kg. This made it possible to perform an overall calculation per whole group. The total energy supply with food was appraised from the total amount of the food consumed during the expedition. The total body weight loss of the participants was 11.5 kg, the energy consumption being 100.000 kkal. The total (for 7 men) energy consumption during skiing without a rucksack was calculated according to the formula: [(2,770 kkal X 28.5 days)]+ +[(2,385 kkal X 35.5 days)]. It was thus found to be equal to 1.145.300 kkal. The total energy consumption during skiing with a rucksack was calculated according to the formula: (7 men X X 449 h) and was found to be equal to 1.883.200 kkal. The total energy consumption during the expedition amounted to 3.237.500 kkal. During the expedition, the daily energy deficiency per man was 1.300-1.500 kkal. This deficiency was compensated for during rest. The maintenance of such an energy supply pattern made it possible to preserve a high level of work fitness.

  4. Hybrid superconducting magnetic bearing and its frictional energy loss and dynamics

    SciTech Connect

    Xia, Z.; Ma, K.B.; Chen, Q.Y.; Cooley, R.R.

    1995-12-31

    A hybrid superconducting magnetic bearing (SMB) has been designed and tested. A flywheel energy storage (FES) prototype has been constructed for testing bearing friction loss and characterizing the dynamics of the rotor. The hybrid SMB design uses magnetic forces from permanent magnets for levitation and high temperature superconductor YBCO in between the magnets for stabilization. A 42 lb. flywheel currently can rotate up to 6,000 RPM with kinetic energy of 8 Wh stored. The result from the recent rotor spin-down experiment indicates an average frictional energy loss <2% per hour in a vacuum of 10 {sup {minus}5} torr, with imperfect system alignment and balance of rotor. The system dynamics has been conducted to improve upon the energy loss and rotor-bearing modeling.

  5. Entropy Generation/Availability Energy Loss Analysis Inside MIT Gas Spring and "Two Space" Test Rigs

    NASA Technical Reports Server (NTRS)

    Ebiana, Asuquo B.; Savadekar, Rupesh T.; Patel, Kaushal V.

    2006-01-01

    The results of the entropy generation and availability energy loss analysis under conditions of oscillating pressure and oscillating helium gas flow in two Massachusetts Institute of Technology (MIT) test rigs piston-cylinder and piston-cylinder-heat exchanger are presented. Two solution domains, the gas spring (single-space) in the piston-cylinder test rig and the gas spring + heat exchanger (two-space) in the piston-cylinder-heat exchanger test rig are of interest. Sage and CFD-ACE+ commercial numerical codes are used to obtain 1-D and 2-D computer models, respectively, of each of the two solution domains and to simulate the oscillating gas flow and heat transfer effects in these domains. Second law analysis is used to characterize the entropy generation and availability energy losses inside the two solution domains. Internal and external entropy generation and availability energy loss results predicted by Sage and CFD-ACE+ are compared. Thermodynamic loss analysis of simple systems such as the MIT test rigs are often useful to understand some important features of complex pattern forming processes in more complex systems like the Stirling engine. This study is aimed at improving numerical codes for the prediction of thermodynamic losses via the development of a loss post-processor. The incorporation of loss post-processors in Stirling engine numerical codes will facilitate Stirling engine performance optimization. Loss analysis using entropy-generation rates due to heat and fluid flow is a relatively new technique for assessing component performance. It offers a deep insight into the flow phenomena, allows a more exact calculation of losses than is possible with traditional means involving the application of loss correlations and provides an effective tool for improving component and overall system performance.

  6. Proton MR spectroscopy in herpes simplex encephalitis: Assessment of neuronal loss

    SciTech Connect

    Menon, D.K.; Sargentoni, J.; Peden, C.J.; Bell, J.D.; Cox, I.J.; Coutts, G.A.; Baudouin, C.; Newman, C.G. )

    1990-05-01

    We present here the case of an 11-year-old boy with herpes simplex encephalitis diagnosed on the basis of clinical features, serology, and response to acyclovir, who relapsed after 3 weeks of therapy. In vivo proton magnetic resonance spectroscopy (1H MRS) of the brain, at 8 and 16 weeks after the onset of symptoms, showed abnormalities, most prominently a reduction in the N-acetylaspartate/choline ratio. The role of 1H MRS in assessing disease activity is discussed.

  7. Changes in Energy Expenditure with Weight Gain and Weight Loss in Humans.

    PubMed

    Müller, Manfred J; Enderle, Janna; Bosy-Westphal, Anja

    2016-12-01

    Metabolic adaptation to weight changes relates to body weight control, obesity and malnutrition. Adaptive thermogenesis (AT) refers to changes in resting and non-resting energy expenditure (REE and nREE) which are independent from changes in fat-free mass (FFM) and FFM composition. AT differs in response to changes in energy balance. With negative energy balance, AT is directed towards energy sparing. It relates to a reset of biological defence of body weight and mainly refers to REE. After weight loss, AT of nREE adds to weight maintenance. During overfeeding, energy dissipation is explained by AT of the nREE component only. As to body weight regulation during weight loss, AT relates to two different set points with a settling between them. During early weight loss, the first set is related to depleted glycogen stores associated with the fall in insulin secretion where AT adds to meet brain's energy needs. During maintenance of reduced weight, the second set is related to low leptin levels keeping energy expenditure low to prevent triglyceride stores getting too low which is a risk for some basic biological functions (e.g., reproduction). Innovative topics of AT in humans are on its definition and assessment, its dynamics related to weight loss and its constitutional and neuro-endocrine determinants.

  8. Electrochemistry and spectroscopy of energy conversion and polynuclear aromatic materials

    NASA Astrophysics Data System (ADS)

    Nazri, Maryam

    The field of materials chemistry is becoming increasingly important in many technological disciplines, including batteries, fuel cells, hydrogen storage materials, and application of poly-nuclear aromatic compounds in solar cells, color copiers, sensors, and catalysis. This multidisciplinary research work focuses on the development, understanding, and characterization of novel materials for advanced lithium batteries and a unique series of polyaromatic compounds for application in solar cells and color copiers. A general overview of materials and techniques used in this work is presented, including the electrochemistry, spectroscopy, thermal analysis, and x-ray diffraction. A unique electrochemical procedure based on carbon paste microelectrode was applied to study the electrochemistry of novel poly-nuclear aromatic compounds. X-ray diffraction and vibrational spectroscopy are also used to gain further information about their molecular organization in solid-state. Conductivity of a novel electrolyte based on a multi-blend of organic carbonate solvents, has been studied over a wide range of temperatures (-40 to 70°C). An optimized electrolyte for an advanced lithium battery based on ternary solvent blend of linear and cyclic organic carbonates has been developed. The nature of ion-association and ion-solvent interactions in complex electrolytes are studied using infrared spectroscopy. We have found a strong preferred solvation of lithium ion in electrolyte containing multi-blend solvent molecules. The advanced lithium battery uses intercalation compounds with layered structure such as LiCoO2 cathode, and lithiated graphite, (LiC 6), anode. In this work, we have studied the reactivity of Li-C anode materials in contact with organic carbonate-based electrolyte, and have investigated the nature of the decomposition products formed on the electrode surface. A significant reactivity between the LiC6 and organic electrolytes is observed, and is a major safety concern. A

  9. Athermal Energy Loss from X-rays Deposited in Thin Superconducting Films on Solid Substrates

    NASA Technical Reports Server (NTRS)

    Kozorezov, Alexander G.; Lambert, Colin J.; Bandler, Simon R.; Balvin, Manuel A.; Busch, Sarah E.; Sagler, Peter N.; Porst, Jan-Patrick; Smith, Stephen J.; Stevenson, Thomas R.; Sadleir, John E.

    2013-01-01

    When energy is deposited in a thin-film cryogenic detector, such as from the absorption of an X-ray, an important feature that determines the energy resolution is the amount of athermal energy that can be lost to the heat bath prior to the elementary excitation systems coming into thermal equilibrium. This form of energy loss will be position-dependent and therefore can limit the detector energy resolution. An understanding of the physical processes that occur when elementary excitations are generated in metal films on dielectric substrates is important for the design and optimization of a number of different types of low temperature detector. We have measured the total energy loss in one relatively simple geometry that allows us to study these processes and compare measurements with calculation based upon a model for the various di.erent processes. We have modeled the athermal phonon energy loss in this device by finding an evolving phonon distribution function that solves the system of kinetic equations for the interacting system of electrons and phonons. Using measurements of device parameters such as the Debye energy and the thermal di.usivity we have calculated the expected energy loss from this detector geometry, and also the position-dependent variation of this loss. We have also calculated the predicted impact on measured spectral line-shapes, and shown that they agree well with measurements. In addition, we have tested this model by using it to predict the performance of a number of other types of detector with di.erent geometries, where good agreement is also found.

  10. Biomedical and agricultural applications of energy dispersive X-ray spectroscopy in electron microscopy.

    PubMed

    Wyroba, Elżbieta; Suski, Szymon; Miller, Karolina; Bartosiewicz, Rafał

    2015-09-01

    Energy dispersive X-ray spectroscopy (EDS) in electron microscopy has been widely used in many research areas since it provides precise information on the chemical composition of subcellular structures that may be correlated with their high resolution images. In EDS the characteristic X-rays typical of each element are analyzed and the new detectors - an example of which we describe - allow for setting precisely the area of measurements and acquiring signals as a point analysis, as a linescan or in the image format of the desired area. Mapping of the elements requires stringent methods of sample preparation to prevent redistribution/loss of the elements as well as elimination of the risk of overlapping spectra. Both qualitative and quantitative analyses may be performed at a low probe current suitable for thin biological samples. Descriptions of preparation techniques, drawbacks and precautions necessary to obtain reliable results are provided, including data on standards, effects of specimen roughness and quantification. Data on EPMA application in different fields of biomedical and agricultural studies are reviewed. In this review we refer to recent EDS/EPMA applications in medical diagnostics, studies on air pollution and agrochemicals as well as on plant models used to monitor the environment.

  11. Impact of potassium doping on the electronic structure of tetracene and pentacene: An electron energy-loss study

    SciTech Connect

    Roth, Friedrich

    2015-10-21

    We report the doping induced changes of the electronic structure of tetracene and pentacene probed by electron energy-loss spectroscopy in transmission. A comparison between the dynamic response of undoped and potassium-intercalated tetracene and pentacene emphasizes the appearance of a new excitation feature in the former gap upon potassium addition. Interestingly, the momentum dependency of this new excitation shows a negative dispersion. Moreover, the analysis of the C 1s and K 2p core-level excitation results in a significantly lower doping level compared to potassium doped picene, a recently discovered superconductor. Therefore, the present electronic structure investigations open a new pathway to better understand the exceptional differences between acenes and phenacene and their divergent behavior upon alkali doping.

  12. Additive effects of electronic and nuclear energy loss in irradiation-induced amorphization of zircon

    DOE PAGES

    Zarkadoula, Eva; Toulemonde, Marcel; Weber, William J.

    2015-12-29

    We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. As a result, we found that taking the electronic energy loss out as a frictionmore » term results in reduced damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion.« less

  13. Additive effects of electronic and nuclear energy loss in irradiation-induced amorphization of zircon

    SciTech Connect

    Zarkadoula, Eva; Toulemonde, Marcel; Weber, William J.

    2015-12-29

    We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. As a result, we found that taking the electronic energy loss out as a friction term results in reduced damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion.

  14. Additive effects of electronic and nuclear energy losses in irradiation-induced amorphization of zircon

    SciTech Connect

    Zarkadoula, Eva; Toulemonde, Marcel; Weber, William J.

    2015-12-28

    We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. We found that taking the electronic energy loss out as a friction term results in reduced damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion.

  15. Jet suppression and the flavor dependence of partonic energy loss with ATLAS

    NASA Astrophysics Data System (ADS)

    Kosek, Tomas

    2016-12-01

    In relativistic heavy ion collisions, a hot medium with a high density of unscreened color charges is produced. One manifestation of the energy loss of jets propagating through the medium is a lower yield of jets and hadrons emerging from this medium than expected in the absence of medium effects. Therefore modifications of the jet yield are directly sensitive to the energy loss mechanism. Furthermore, jets with different flavor content are expected to be affected by the medium in different ways. In this publication, the latest ATLAS results on single hadron suppression along with the complementary measurements of single jet suppression are presented. Rapidity dependence, which is sensitive to the relative energy loss between quark and gluon jets, is discussed. Finally, a new measurement of jet fragmentation functions is presented.

  16. Energy loss of MeV protons specularly reflected from metal surfaces

    SciTech Connect

    Juaristi, J.I.

    1996-05-01

    A parameter-free model is presented to study the energy loss of fast protons specularly reflected from metal surfaces. The contributions to the energy loss from excitation of valence-band electrons and ionization of localized target-atom electronic states are calculated separately. The former is calculated from the induced surface wake potential using linear response theory and the specular-reflection model, while the latter is calculated in the first Born approximation. The results obtained are in good agreement with available experimental data. However, the experimental qualitative trend of the energy loss as a function of the angle of incidence is obtained when the valence-band electron model is replaced by localized target atom electron states, though with a worse quantitative agreement. {copyright} {ital 1996 The American Physical Society.}

  17. Hypochlorous acid-promoted loss of metabolic energy in Escherichia coli

    SciTech Connect

    Barrette, W.C. Jr.; Albrich, J.M.; Hurst, J.K.

    1987-10-01

    Oxidation of Escherichia coli by hypochlorous acid (HOCl) or chloramine (NH/sub 2/Cl) gives rise to massive hydrolysis of cytosolic nucleotide phosphoanhydride bonds, although no immediate change occurs in either the nucleotide pool size or the concentrations of extracellular end products of AMP catabolism. Titrimetric curves of the extent of hydrolysis coincide with curves for loss of cell viability, e.g., reduction in the adenylate energy charge from 0.8 to 0.1-0.2 accompanies loss of 99% of the bacterial CFU. The oxidative damage caused by HOCl is irreversible within 100 ms of exposure of the organism, although nucleotide phosphate bond hydrolysis requires several minutes to reach completion. Neither HOCl nor NH/sub 2/Cl reacts directly with nucleotides to hydrolyze phosphoanhydride bonds. Loss of viability is also accompanied by inhibition of induction of beta-galactosidase. The proton motive force, determined from the distribution of /sup 14/C-radiolabeled lipophilic ions, declines with incremental addition of HOCl after loss of respiratory function; severalfold more oxidant is required for the dissipation of the proton motive force than for loss of viability. These observations establish a causal link between loss of metabolic energy and cellular death and indicate that the mechanisms of oxidant-induced nucleotide phosphate bond hydrolysis are indirect and that they probably involve damage to the energy-transducing and transport proteins located in the bacterial plasma membrane.

  18. Hypochlorous acid-promoted loss of metabolic energy in Escherichia coli.

    PubMed Central

    Barrette, W C; Albrich, J M; Hurst, J K

    1987-01-01

    Oxidation of Escherichia coli by hypochlorous acid (HOCl) or chloramine (NH2Cl) gives rise to massive hydrolysis of cytosolic nucleotide phosphoanhydride bonds, although no immediate change occurs in either the nucleotide pool size or the concentrations of extracellular end products of AMP catabolism. Titrimetric curves of the extent of hydrolysis coincide with curves for loss of cell viability, e.g., reduction in the adenylate energy charge from 0.8 to 0.1-0.2 accompanies loss of 99% of the bacterial CFU. The oxidative damage caused by HOCl is irreversible within 100 ms of exposure of the organism, although nucleotide phosphate bond hydrolysis requires several minutes to reach completion. Neither HOCl nor NH2Cl reacts directly with nucleotides to hydrolyze phosphoanhydride bonds. Loss of viability is also accompanied by inhibition of induction of beta-galactosidase. The proton motive force, determined from the distribution of 14C-radiolabeled lipophilic ions, declines with incremental addition of HOCl after loss of respiratory function; severalfold more oxidant is required for the dissipation of the proton motive force than for loss of viability. These observations establish a causal link between loss of metabolic energy and cellular death and indicate that the mechanisms of oxidant-induced nucleotide phosphate bond hydrolysis are indirect and that they probably involve damage to the energy-transducing and transport proteins located in the bacterial plasma membrane. PMID:2820883

  19. Gas Phase Molecular Spectroscopy: Electronic Spectroscopy of Combustion Intermediates, Chlorine Azide kinetics, and Rovibrational Energy Transfer in Acetylene

    NASA Astrophysics Data System (ADS)

    Freel, Keith A.

    This dissertation is composed of three sections. The first deals with the electronic spectroscopy of combustion intermediates that are related to the formation of polycyclic aromatic hydrocarbons. Absorption spectra for phenyl, phenoxy, benzyl, and phenyl peroxy radicals were recorded using the technique of cavity ring-down spectroscopy. When possible, molecular constants, vibrational frequencies, and excited state lifetimes for these radicals were derived from these data. The results were supported by theoretical predictions. The second section presents a study of electron attachment to chlorine azide (ClN3) using a flowing-afterglow Langmuir-probe apparatus. Electron attachment rates were measured to be 3.5x10-8 and 4.5x10-8 cm3s-1 at 298 and 400 K respectively. The reactions of ClN3 with eighteen cations and seventeen anions were characterized. Rate constants were measured using a selected ion flow tube. The ionization energy (>9.6eV), proton affinity (713+/-41 kJ mol-1), and electron affinity (2.48+/-0.2 eV) for ClN 3 were determined from these data. The third section demonstrates the use of double resonance spectroscopy to observe state-selected rovibrational energy transfer from the first overtone asymmetric stretch of acetylene. The total population removal rate constants from various rotational levels of the (1,0,1,00,00) vibrational state were determined to be in the range of (9-17) x 10 -10 cm3s-1. Rotational energy transfer accounted for approximately 90% of the total removal rate from each state. Therefore, the upper limit of vibrational energy transfer from the (1,0,1,0 0,00) state was 10%.

  20. Measurement of optical constants of Si and SiO2 from reflection electron energy loss spectra using factor analysis method

    NASA Astrophysics Data System (ADS)

    Jin, H.; Shinotsuka, H.; Yoshikawa, H.; Iwai, H.; Tanuma, S.; Tougaard, S.

    2010-04-01

    The energy loss functions (ELFs) and optical constants of Si and SiO2 were obtained from quantitative analysis of reflection electron energy loss spectroscopy (REELS) by a new approach. In order to obtain the ELF, which is directly related to the optical constants, we measured series of angular and energy dependent REELS spectra for Si and SiO2. The λ(E )K(ΔE) spectra, which are the product of the inelastic mean free path (IMFP) and the differential inverse IMFP, were obtained from the measured REELS spectra. We used the factor analysis (FA) method to analyze series of λ(E )K(ΔE) spectra for various emission angles at fixed primary beam energy to separate the surface-loss and bulk-loss components. The extracted bulk-loss components enable to obtain the ELFs of Si and SiO2, which are checked by oscillator strength-sum and perfect-screening-sum rules. The real part of the reciprocal of the complex dielectric function was determined by Kramers-Kronig analysis of the ELFs. Subsequently, the optical constants of Si and SiO2 were calculated. The resulting optical constants in terms of the refractive index and the extinction coefficient for Si and SiO2 are in good agreement with Palik's reference data. The results demonstrate the general applicability of FA as an efficient method to obtain the bulk ELF and to determine the optical properties from REELS measurements.

  1. Negative electron energy loss and second-harmonic emission of nonlinear nanoparticles.

    PubMed

    Xu, Jinying; Zhang, Xiangdong

    2011-11-07

    A fast and general technique to investigation the interaction between a fast electron and nonlinear materials consisting of centrosymmetric spheres is presented by means of multiple scattering of electromagnetic multipole fields. Two kinds of new effect, the negative electron energy loss caused by the second-harmonic field and the second-harmonic Smith-Purcell radiation using finite chain of nonlinear spheres, are predicted for the first time. It is shown that these new effects can be probed by the electron energy loss spectrum, suggesting their possible applications in tunable light sources for the second-harmonic generation.

  2. Non-equilibrium energy loss for very highly charged ions in insulators

    SciTech Connect

    Briere, M.A.; Schenkel, T.; Bauer, P.; Amau, A.

    1996-12-31

    The energy loss of 144 keV Ar{sup +16} ions on a bilayer structure of C-CaF{sub 2} has been measured. An asymmetry in the results is found depending on which layer is passed by the ion first: the energy loss is about four times larger when the CaF{sub 2} layer is traversed by the ion first. We interpret this as an indication of the existence of a nonequilibrium charge state of the Ar ions inside the solid in the case of the insulator.

  3. Quantitative analysis of electron energy loss spectra and modelling of optical properties of multilayer systems for extreme ultraviolet radiation regime

    SciTech Connect

    Gusenleitner, S.; Hauschild, D.; Reinert, F.; Handick, E.

    2014-03-28

    Ruthenium capped multilayer coatings for use in the extreme ultraviolet (EUV) radiation regime have manifold applications in science and industry. Although the Ru cap shall protect the reflecting multilayers, the surface of the heterostructures suffers from contamination issues and surface degradation. In order to get a better understanding of the effects of these impurities on the optical parameters, reflection electron energy loss spectroscopy (REELS) measurements of contaminated and H cleaned Ru multilayer coatings were taken at various primary electron beam energies. Experiments conducted at low primary beam energies between 100 eV and 1000 eV are very surface sensitive due to the short inelastic mean free path of the electrons in this energy range. Therefore, influences of the surface condition on the above mentioned characteristics can be appraised. In this paper, it can be shown that carbon and oxide impurities on the mirror surface decrease the transmission of the Ru cap by about 0.75% and the overall reflectance of the device is impaired as the main share of the non-transmitted EUV light is absorbed in the contamination layer.

  4. Synergistic effects of nuclear and electronic energy loss in KTaO3 under ion irradiation

    DOE PAGES

    Zarkadoula, Eva; Jin, Ke; Zhang, Yanwen; ...

    2017-01-09

    In this paper, we use the inelastic thermal spike model for insulators and molecular dynamic simulations to investigate the effects of pre-existing damage on the energy dissipation and structural alterations in KTaO3 under irradiation with 21 MeV Ni ions. Our results reveal a synergy between the pre-existing defects and the electronic energy loss, indicating that the defects play an important role on the energy deposition in the system. Our findings highlight the need for better understanding on the role of defects in electronic energy dissipation and the coupling of the electronic and atomic subsystems.

  5. Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice

    PubMed Central

    Seimon, Radhika V.; Shi, Yan-Chuan; Slack, Katy; Lee, Kailun; Fernando, Hamish A.; Nguyen, Amy D.; Zhang, Lei; Lin, Shu; Enriquez, Ronaldo F.; Lau, Jackie

    2016-01-01

    Background Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled. Methods Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD) provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID) provided cycles of 82% of control intake for 5–6 consecutive days, and ad libitum intake for 1–3 days. Weight loss efficiency during this phase was calculated as (total weight change) ÷ [(total energy intake of mice on CD or ID)–(total average energy intake of controls)]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding. Results Mice on the ID showed transient hyperphagia relative to controls during each 1–3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05). There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01). Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC) relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups. Conclusion Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces

  6. Energy-loss of He ions in carbon allotropes studied by elastic resonance in backscattering spectra

    NASA Astrophysics Data System (ADS)

    Tosaki, Mitsuo; Rauhala, Eero

    2015-10-01

    Backscattering spectra for 4He ions incident on carbon allotropes have been measured in the energy range from 4.30 to 4.95 MeV in steps of 50-100 keV at scattering angles of 106° and 170°. We used three carbon allotropes: graphite, diamond and amorphous carbon. For all these allotropes, we can observe the sharp (4He, 12C) elastic nuclear resonance at the He ion energy of 4.265 MeV in the backscattering spectra. By varying the incident He energy, we have systematically analyzed the profiles of the resonance peaks to study the energy-loss processes: stopping cross-sections and energy-loss straggling around the interesting region of the stopping maximum at about 500 keV. We focus on the resonance profiles and investigate an allotropic effect concerning the energy-loss. Furthermore, an energy bunching effect on the straggling is presented and the mechanism is discussed.

  7. Energy homeostasis and appetite regulating hormones as predictors of weight loss in men and women.

    PubMed

    Williams, Rebecca L; Wood, Lisa G; Collins, Clare E; Morgan, Philip J; Callister, Robin

    2016-06-01

    Sex differences in weight loss are often seen despite using the same weight loss program. There has been relatively little investigation of physiological influences on weight loss success in males and females, such as energy homeostasis and appetite regulating hormones. The aims were to 1) characterise baseline plasma leptin, ghrelin and adiponectin concentrations in overweight and obese males and females, and 2) determine whether baseline concentrations of these hormones predict weight loss in males and females. Subjects were overweight or obese (BMI 25-40 kg/m(2)) adults aged 18-60 years. Weight was measured at baseline, and after three and six months participation in a weight loss program. Baseline concentrations of leptin, adiponectin and ghrelin were determined by enzyme-linked immunosorbent assay (ELISA). An independent t-test or non-parametric equivalent was used to determine any differences between sex. Linear regression determined whether baseline hormone concentrations were predictors of six-month weight change. Females had significantly higher baseline concentrations of leptin, adiponectin and unacylated ghrelin as well as ratios of leptin:adiponectin and leptin:ghrelin. The ratio of acylated:unacylated ghrelin was significantly higher in males. In males and females, a higher baseline concentration of unacylated ghrelin predicted greater weight loss at six months. Additionally in females, higher baseline total ghrelin predicted greater weight loss and a higher ratio of leptin:ghrelin predicted weight gain at six months. A higher pre-weight-loss plasma concentration of unacylated ghrelin is a modest predictor of weight loss success in males and females, while a higher leptin:ghrelin ratio is a predictor of weight loss failure in females. Further investigation is required into what combinations and concentrations of these hormones are optimal for weight loss success.

  8. The energy loss straggling of low Z ions in solids and gases

    NASA Astrophysics Data System (ADS)

    Montanari, C. C.; Miraglia, J. E.

    2013-04-01

    We present a study on the energy loss straggling of low Z ions (H up to B) in different solid (Al, Ti, Cu, Zn, Ge, Au) and gaseous targets (Ne, Ar, Kr, Xe). This work includes on one side, a critical analysis of the available experimental data and possible non-statistical (rugosity and inhomogeneity) contributions. On the other side, theoretical calculations performed by using the shell-wise local plasma approximation and the comparison of these results with the experimental data and with other theoretical curves available in the literature. We find that for the ions here considered, the square of the energy loss straggling normalized to Bohr limit is independent of the ion nuclear charge and of the ion charge state, in the case of electrons bound to the projectile. This shows a clear Z2 dependence of the square energy loss straggling, with Z being the ion nuclear charge. The tendency to Bohr limit at high energies, and the inconvenience of using Yang formula (Q. Yang etal, Nucl. Instrum. Meth. Phys. Res B 61, 149-155 (1991)) are also mentioned. The bases for the future development of a general formula for the energy loss straggling are introduced.

  9. Energy loss distributions of relativistic protons axially channeled in a bent silicon crystal

    NASA Astrophysics Data System (ADS)

    Stojanov, Nace; Petrović, Srdjan; Nešković, Nebojša

    2013-05-01

    A detailed study of the energy loss distributions of the relativistic protons axially channeled in the bent < 100 > Si crystals is presented in this work. The bending angle was varied from 0 to 20 μrad, while the crystal thickness was equal to 1 mm. The proton energy was chosen to be 7 TeV in accordance with the Large Hadron Collider (LHC) project, at the European Organization for Nuclear Research (CERN), in Geneva, Switzerland. The energy loss distributions of the channeled protons were generated using the numerical solution of the proton equations of motion in the transverse plane and the computer simulation method. An accurate energy loss model was used, which takes into account the trajectory dependence of the energy loss of protons during their motion through the crystal channels. Further, the dispersion of the proton's scattering angle caused by its collisions with the electrons of the crystal and the divergence of the proton beam were taken into account. The calculated dependence of the number of dechanneled protons on the bending angle was excellently fitted by the Gompertz type dechanneling function.

  10. Resolving Losses at the Negative Electrode in All-Vanadium Redox Flow Batteries Using Electrochemical Impedance Spectroscopy

    SciTech Connect

    Sun, Che Nan; Delnick, Frank M; Aaron, D; Mench, Matthew M; Zawodzinski, Thomas A

    2014-01-01

    We present an in situ electrochemical technique for the quantitative measurement and resolution of the ohmic, charge transfer and diffusion overvoltages at the negative electrode of an all-vanadium redox flow battery (VRFB) using electrochemical impedance spectroscopy (EIS). The mathematics describing the complex impedance of the V+2/V+3 redox reaction is derived and matches the experimental data. The voltage losses contributed by each process have been resolved and quantified at various flow rates and electrode thicknesses as a function of current density during anodic and cathodic polarization. The diffusion overvoltage was affected strongly by flow rate while the charge transfer and ohmic losses were invariant. On the other hand, adopting a thicker electrode significantly changed both the charge transfer and diffusion losses due to increased surface area. Furthermore, the Tafel plot obtained from the impedance resolved charge transfer overvoltage yielded the geometric exchange current density, anodic and cathodic Tafel slopes (135 5 and 121 5 mV/decade respectively) and corresponding transfer coefficients = 0.45 0.02 and = 0.50 0.02 in an operating cell.

  11. Characterizing the weathering induced haze formation and gloss loss of poly(ethylene-terephthalate) via MaPd:RTS spectroscopy

    NASA Astrophysics Data System (ADS)

    Gordon, Devin A.; Gok, Abdulkerim; Meyer, Corey W.; Fagerholm, Cara L.; Sweet, Noah W.; DeNoyer, Lin; Bruckman, Laura S.; French, Roger H.

    2016-09-01

    Poly(ethylene-terephthalate) (PET) film is a widely used material in photovoltaic module backsheets, for its dielectric breakdown strength, and in optical displays for its excellent combination of properties, notably optical clarity. However, PET degrades and loses optical clarity under environmental stressors of heat, moisture, and ultraviolet irradiance. Stabilizers are often included in PET formulation to increase its longevity; however, even these are subject to degradation and further reduce optical clarity. In a previous study, it was found that material yellowing is dominant with UV light exposures while moisture mostly causes hazing of the samples. Lifetime service prediction models were developed for PET from yellowing and hazing responses. To study the loss of optical clarity in PET films, samples of a UV-stabilized grade of PET were exposed to heat, moisture, and UV irradiance as prescribed by ASTM-G154 Cycle 4 and their optical properties were studied over time. Surface gloss loss and bulk haze formation were observed as primary material responses to degradation; after the first 168 hour exposure step an initial three-fold increase in bulk haze and a two-fold reduction in gloss were observed. Multi-Angle, Polarization-Dependent, Reflection, Transmission, and Scattering (MaPd:RTS) spectroscopy was employed to fully characterize the haze formation and gloss loss of the PET films under exposure.

  12. Total light loss optic spectroscopy. Progress towards a fiber optic Raman organic vapor sensor

    SciTech Connect

    Kyle, K.R.; Vess, T.M.; Angel, S.M.

    1993-09-01

    A Raman probe has been developed utilizing a single optical fiber as both a light pipe and an active sensing element. By coating a small segment of the surface of an exposed glass fiber core with a thin polymer film, an inverted waveguide is formed where light transmitted down the fiber is stripped out of the core and into the polymer film. The polymer coating is used both as a waveguide and as a medium for concentrating small organic molecules to be interrogated by Raman spectroscopy. The ability of the fiber optic thin film waveguide probe to detect organic vapors is demonstrated. The utility of the probe in the detection of nonaqueous phase liquids (NAPLs) is also described.

  13. Argon hydrochloride, Ar.HCl, bond energy by infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Miziolek, A. W.; Pimentel, G. C.

    1976-01-01

    The infrared absorption of argon (200 to 760 torr) and hydrogen chloride (2 to 6 torr) mixtures is reexamined in the missing Q branch region (spectral region between 2860 and 3010 wavelength/cm) at temperatures ranging from 195 to 298 K. The temperature dependence of two absorption features of the argon hydrogen chloride complex, at 2887 and 2879 wavelength/cm, leads to a bond energy estimate that depends on the assumptions made about the internal degrees of freedom of the complex. It is shown that agreement with experiment can be reached for well depths near 1.2 kcal/mole. This result is relatively insensitive to the choice of the vibrational frequencies and anharmonicities, but does depend on the extent to which the energy level manifolds are truncated to avoid molecular excitation in excess of the bond energy. The bond energy is found to deviate from the commonly accepted value of 0.4 kcal/mole. Possible causes for the discrepancy are considered.

  14. Determination of Mass-Loss Rates of PG 1159 Stars from Far-Ultraviolet Spectroscopy

    NASA Astrophysics Data System (ADS)

    Koesterke, Lars; Werner, Klaus

    1998-06-01

    We determine the mass-loss rates of four hot, low-gravity PG 1159 stars that are regarded as immediate descendants of Wolf-Rayet central stars of planetary nebulae (i.e., early spectral type [WCE]). The sample consists of classical hydrogen-deficient PG 1159 stars (K1-16, NGC 246, and RX J2117.1+3412) as well as one object of the very rare ``hybrid'' subtype, which also exhibits hydrogen lines (NGC 7094). The sample is complemented by the famous [WC]-PG 1159 transition object Abell 78. Our analysis is based on the O VI λλ1032, 1038 resonance line, which is the strongest wind feature in these objects. Far-UV observations were performed with the Berkeley spectrograph during the ORFEUS-SPAS II mission. One spectrum is taken from archive data of the ORFEUS-SPAS I mission, and another one was obtained with the Hopkins Ultraviolet Telescope during the Astro-2 mission. We find mass-loss rates in the range log(Ṁ/Msolar yr-1)=-8,...,-7, as compared to the [WCE] stars that have mass-loss rates of about log(Ṁ/Msolar yr-1)=-5.5,...,-6.5. By comparing with theory, we conclude that the wind of PG 1159 stars is driven by radiation pressure. Based on the development and utilization of ORFEUS (Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometers), a collaboration of the Institute for Astronomy and Astrophysics at the University of Tübingen, the Space Astrophysics Group of the University of California at Berkeley, and the Landessternwarte Heidelberg.

  15. Precise measurements of energy loss straggling for swift heavy ions in polymers

    NASA Astrophysics Data System (ADS)

    Rani, Bindu; Neetu; Sharma, Kalpana; Diwan, P. K.; Kumar, Shyam

    2016-11-01

    The energy loss straggling measurements for heavy ions with Z = 3-22 (∼0.2-2.5 MeV/u) in PEN (C7H5O2) and PET (C10H8O4) polymers have been carried out utilizing the swift heavy ion beam facility from 15UD Pelletron accelerator at Inter University Accelerator Centre (IUAC), New Delhi, India. The recorded spectra are analyzed in such a way that the Straggling associated with energy loss process could be measured in a systematic manner at any selected value of energy, in terms of per unit thickness of the absorber, at any desired energy intervals. The measured values have been compared with the calculated values obtained from the most commonly used Bethe-Livingston formulations applicable for collisional straggling. The results are tried to be understood in terms of the effective charge on the impinging ion within the absorber. Some interesting trends are observed.

  16. Studies of Photosynthetic Energy and Charge Transfer by Two-dimensional Fourier transform electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Ogilvie, Jennifer

    2010-03-01

    Two-dimensional (2D) Fourier transform electronic spectroscopy has recently emerged as a powerful tool for the study of energy transfer in complex condensed-phase systems. Its experimental implementation is challenging but can be greatly simplified by implementing a pump-probe geometry, where the two phase-stable collinear pump pulses are created with an acousto-optic pulse-shaper. This approach also allows the use of a continuum probe pulse, expanding the available frequency range of the detection axis and allowing studies of energy transfer and electronic coupling over a broad range of frequencies. We discuss several benefits of 2D electronic spectroscopy and present 2D data on the D1-D2 reaction center complex of Photosystem II from spinach. We discuss the ability of 2D spectroscopy to distinguish between current models of energy and charge transfer in this system.

  17. Energy losses of charged particles in a finite layer of substance

    NASA Astrophysics Data System (ADS)

    Chechin, V. A.

    1985-04-01

    The energy lost by a charged particle as it crosses a plane-parallel plate with dielectric permittivity in a vacuum is calculated theoretically, applying the intermediate transition to the Heaviside transformation and considering various combinations of particle Lorentz factor and plate thickness. The problems encountered in comparing the theoretical predictions with experimental data are examined, and the application of the model of energy loss in very thin layers of Ermilova et al. (1974) is found to explain the observed anomalies.

  18. A low energy ion source for electron capture spectroscopy.

    PubMed

    Tusche, C; Kirschner, J

    2014-06-01

    We report on the design of an ion source for the production of single and double charged Helium ions with kinetic energies in the range from 300 eV down to 5 eV. The construction is based on a commercial sputter ion gun equipped with a Wien-filter for mass/charge separation. Retardation of the ions from the ionizer potential (2 keV) takes place completely within the lens system of the sputter gun, without modification of original parts. For 15 eV He(+) ions, the design allows for beam currents up to 30 nA, limited by the space charge repulsion in the beam. For He(2 +) operation, we obtain a beam current of 320 pA at 30 eV, and 46 pA at 5 eV beam energy, respectively. In addition, operating parameters can be optimized for a significant contribution of metastable He*(+) (2s) ions.

  19. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyang; Lambrev, Petar H.; Wells, Kym L.; Garab, Győző; Tan, Howe-Siang

    2015-07-01

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

  20. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy

    PubMed Central

    Zhang, Zhengyang; Lambrev, Petar H.; Wells, Kym L.; Garab, Győző; Tan, Howe-Siang

    2015-01-01

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems. PMID:26228055

  1. A Bench Measurement of the Energy Loss of a Stored Beam to a Cavity

    SciTech Connect

    Sands, M.; Rees, J.

    2016-12-19

    A rather simple electronic bench experiment is proposed for obtaining a measure of the impulse energy loss of a stored particle bunch to an rf cavity or other vacuum-chamber structure--the so-called "cavity radiation". The proposed method is analyzed in some detail.

  2. A Bench Measurement of the Energy Loss of a Stored Beam to a Cavity

    SciTech Connect

    Sands, M.; Rees, John R.; /SLAC

    2005-08-08

    A rather simple electronic bench experiment is proposed for obtaining a measure of the impulse energy loss of a stored particle bunch to an rf cavity or other vacuum-chamber structure--the so-called ''cavity radiation''. The proposed method is analyzed in some detail.

  3. Fast-ion Energy Loss During TAE Avalanches in the National Spherical Torus Experiment

    SciTech Connect

    Fredrickson, E D; Darrow, D S; Gorelenkov, N N; Kramer, G J; Kubota, S; Podesta, M; White, R B; Bortolon, A; Gerhardt, S P; Bell, R E; Diallo, A; LeBlanc, B; Levinton, F M

    2012-07-11

    Strong TAE avalanches on NSTX, the National Spherical Torus Experiment [M. Ono, et al., Nucl. Fusion 40 (2000) 557] are typically correlated with drops in the neutron rate in the range of 5% - 15%. In previous studies of avalanches in L-mode plasmas, these neutron drops were found to be consistent with modeled losses of fast ions. Here we expand the study to TAE avalanches in NSTX H-mode plasmas with improved analysis techniques. At the measured TAE mode amplitudes, simulations with the ORBIT code predict that fast ion losses are negligible. However, the simulations predict that the TAE scatter the fast ions in energy, resulting in a small (≈ 6%) drop in fast ion β. The net decrease in energy of the fast ions is sufficient to account for the bulk of the drop in neutron rate, even in the absence of fast ion losses. This loss of energy from the fast ion population is comparable to the estimated energy lost by damping from the Alfven wave during the burst. The previously studied TAE avalanches in L-mode are re-evaluated using an improved calculation of the potential fluctuations in the ORBIT code.

  4. Model for Calculating Electrolytic Shunt Path Losses in Large Electrochemical Energy Conversion Systems

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.

    1976-01-01

    Generalized analysis and solution techniques were developed to evaluate the shunt power losses in electrochemical systems designed with a common or circulating electrolyte supply. Sample data are presented for a hypothetical bulk energy storage redox system, and the general applicability of the analysis technique is discussed.

  5. Surface and bulk-loss reduction research by low-energy hydrogen doping

    NASA Technical Reports Server (NTRS)

    Fonash, S.

    1985-01-01

    Surface and bulk loss reduction by low energy hydrogen doping of silicon solar cells was examined. Hydrogen ions provided a suppression of space charge recombination currents. Implantation of hydrogen followed by the anneal cycle caused more redistribution of boron than the anneal which could complicate processing. It was demonstrated that passivation leads to space charge current reduction.

  6. Electron beam guiding by grooved SiO{sub 2} parallel plates without energy loss

    SciTech Connect

    Xue, Yingli; Yu, Deyang Liu, Junliang; Zhang, Mingwu; Yang, Bian; Zhang, Yuezhao; Cai, Xiaohong

    2015-12-21

    Using a pair of grooved SiO{sub 2} parallel plates, stably guided electron beams were obtained without energy loss at 800–2000 eV. This shows that the transmitted electrons are guided by a self-organized repulsive electric field, paving the way for a self-adaptive manipulation of electron beams.

  7. Low Energy Solar Neutrino Spectroscopy:. Results from the Borexino Experiment

    NASA Astrophysics Data System (ADS)

    D'Angelo, D.

    2011-03-01

    Till very recent the real-time solar neutrino experiments were detecting the tiny fraction of about 0.01% of the total neutrino flux above some MeV energy, the sub-MeV region remained explored only by radiochemical experiments without spectroscopical capabilities. The Borexino experiment, an unsegmented large volume liquid scintillator detector located in the Gran Sasso National Laboratory in central Italy, is at present the only experiment in the world acquiring the real-time solar neutrino data in the low-energy region, via the elastic scattering on electrons in the target mass. The data taking campaign started in 2007 and rapidly lead to the first independent measurement of the mono-cromatic line of 7Be of the solar neutrino spectrum at 862keV, which is of special interest because of the very loose limits coming from existing experiments. The latest measurement, after 41.3t · yr of exposure, is (49 ± 3stat ± 4syst)c/(day · 100t) and leaves the hypothesis of no oscillation inconsistent with data at 4σ level. It also represents the first direct measurement of the survival probability for solar ν e (P{7 Be}ee = 0.56 ± 0.10) in the vacuum-dominates oscillation regime. Recently Borexino was also able to measure of the 8B solar neutrinos interaction rate down to the threshold energy of 3 MeV, the lowest achieved so far. The inferred electron neutrino flux is Φ {8 B}ES = (2.7 ± 0.4stat ± 0.1syst ) × 106 cm{ - 2} s{ - 1} . The corresponding mean electron neutrino survival probability, is P{8 B}ee = 0.29 ± 0.10 at the effective energy of 8.9 MeV. Both measurements are in good agreement with other existing measurements and with predictions from the SSM in the hypothesis of MSW-LMA oscillation scenario. For the first time, thanks to the unprecedented radio-purity of the Borexino target and construction materials, we confirm with a single detector, the presence of a transition between the low energy vacuum-dominated and the high-energy matter-enhanced solar

  8. Competing Effects Of Electronic And Nuclear Energy Loss On Microstructural Evolution In Ionic-covalent Materials

    SciTech Connect

    Zhang, Yanwen; Varga, Tamas; Ishimaru, Manabu; Edmondson, P. D.; Xue, H.; Liu, Peng; Moll, Sandra; Hardiman, Christopher M.; Shannon, Steven; Weber, William J.

    2014-05-01

    Ever increasing energy needs have raised the demands for advanced fuels and cladding materials that withstand the extreme radiation environments with improved accident tolerance over a long period of time. Ceria (CeO2) is a well known ionic conductor that is isostructural with urania and plutonia-based nuclear fuels. In the context of nuclear fuels, immobilization and transmutation of actinides, CeO2 is a model system for radiation effect studies. Covalent silicon carbide (SiC) is a candidate for use as structural material in fusion, cladding material for fission reactors, and an inert matrix for the transmutation of plutonium and other radioactive actinides. Understanding microstructural change of these ionic-covalent materials to irradiation is important for advanced nuclear energy systems. While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic energy loss may, however, produce additional damage or anneal pre-existing defect. At intermediate transit energies where electronic and nuclear energy losses are both significant, synergistic, additive or competitive processes may evolve that affect the dynamic response of materials to irradiation. The response of crystalline and nanostructured CeO2 and SiC to ion irradiation are studied under different nuclear and electronic stopping powers to describe some general material response in this transit energy regime. Although fast radiation-induced grain growth in CeO2 is evident with no phase transformation, different fluence and dose dependence

  9. Antiferroelectric Thin-Film Capacitors with High Energy-Storage Densities, Low Energy Losses, and Fast Discharge Times.

    PubMed

    Ahn, Chang Won; Amarsanaa, Gantsooj; Won, Sung Sik; Chae, Song A; Lee, Dae Su; Kim, Ill Won

    2015-12-09

    We demonstrate a capacitor with high energy densities, low energy losses, fast discharge times, and high temperature stabilities, based on Pb(0.97)Y(0.02)[(Zr(0.6)Sn(0.4))(0.925)Ti(0.075)]O3 (PYZST) antiferroelectric thin-films. PYZST thin-films exhibited a high recoverable energy density of U(reco) = 21.0 J/cm(3) with a high energy-storage efficiency of η = 91.9% under an electric field of 1300 kV/cm, providing faster microsecond discharge times than those of commercial polypropylene capacitors. Moreover, PYZST thin-films exhibited high temperature stabilities with regard to their energy-storage properties over temperatures ranging from room temperature to 100 °C and also exhibited strong charge-discharge fatigue endurance up to 1 × 10(7) cycles.

  10. Mössbauer spectroscopy, magnetic characteristics, and reflection loss analysis of nickel-strontium substituted cobalt ferrite nanoparticles

    SciTech Connect

    Ghasemi, Ali; Paesano, Andrea; Cerqueira Machado, Carla Fabiana; Shirsath, Sagar E.; Liu, Xiaoxi; Morisako, Akimitsu

    2014-05-07

    In current research work, Co{sub 1-x}Ni{sub x/2}Sr{sub x/2}Fe{sub 2}O{sub 4} (x = 0–1 in a step of 0.2) ferrite nanoparticles were synthesized by a sol-gel method. According to the evolution in the subspectral areas obtained from Mössbauer spectroscopy, it was found that the relaxing iron belongs mostly to the site B, since the Mössbauer fraction of site A does not vary appreciably. With an increase in Ni-Sr substitution contents in cobalt ferrite, the coercivity and saturation of magnetization decrease. Variation of reflection loss versus frequency in microwave X-band demonstrates that the reflection peak shifts to lower frequency by adding substituted cations and the synthesized nanoparticles can be considered for application in electromagnetic wave absorber technology.

  11. Occupational exposures to PAHs measured with UV derivative spectroscopy corrected for advective and gaseous losses

    SciTech Connect

    Ares, J. )

    1993-08-01

    PAHs (polynuclear aromatic hydrocarbons) are a group of ubiquitous substances occuring in occupational environments due to combustion of hydrocarbons and coal, vehicle emissions, etc. Some PAHs are known to be carcinogenic in animal tests, and most legislation requires the air concentration of several of them should be kept at minimum values, implying a model of [open quotes]no safe threshold[close quotes]. An adequate analysis of occupational exposures to PAHs in air should satisfy a number of requisites. The sample must be obtained with a personal portable pump, and should cover a substantial or representative part of the working period. Vapor-phase components and particulates both should be samples, and carcinogenice PAHs would be estimated with greater precision. The collection and analytical techniques would require only average trained personnel with the shortest time elapsed between sample collection and producing the results. For several reasons, these simultaneous objectives are sometimes difficult to attain. If the cleanup and evaporation could be obviated, about 7-10 ng could be delivered to the detector chamber with the corresponding increase in detection accuracy. This study extends the use of a newly developed technique of UV-diode array computer enhanced derivative spectroscopy to the analysis of PAHs in particulate samples obtained in the usual way with personal monitors. This method provides a reliable and conservative estimate of total PAH exposure and lower errors in detection of relatively heavy PAHs. 13 refs., 3 figs., 1 tab.

  12. Gain and loss mechanisms for neutral species in low pressure fluorocarbon plasmas by infrared spectroscopy

    SciTech Connect

    Nelson, Caleb T.; Overzet, Lawrence J.; Goeckner, Matthew J.

    2012-09-15

    This article examines the chemical reaction pathways of stable neutral species in fluorocarbon plasmas. Octafluorocyclobutane (c-C{sub 4}F{sub 8}) inductively coupled plasma discharges were found to primarily produce stable and metastable products downstream from the discharge, including c-C{sub 4}F{sub 8}, C{sub 2}F{sub 4}, C{sub 2}F{sub 6}, CF{sub 4}, C{sub 3}F{sub 8}, C{sub 4}F{sub 10}, C{sub 3}F{sub 6}, and CF{sub 2}. A novel analysis technique allows the estimation of gain and loss rates for neutral species in the steady state as functions of residence time, pressure, and discharge power. The gain and loss rates show that CF{sub 4}, C{sub 2}F{sub 6}, C{sub 3}F{sub 8}, and C{sub 4}F{sub 10} share related gain mechanisms, speculated to occur at the surface. Further analysis confirms that CF{sub 2} is predominantly produced at the chamber walls through electron impact dissociation of C{sub 2}F{sub 4} and lost through gas-phase addition reactions to form C{sub 2}F{sub 4}. Additionally, time-resolved FTIR spectra provide a second-order rate coefficient of 1.8 Multiplication-Sign 10{sup -14} cm{sup 3}/s for the gas-phase addition of CF{sub 2} to form C{sub 2}F{sub 4}. Finally, C{sub 2}F{sub 4,} which is much more abundant than CF{sub 2} in the discharge, is shown to be dominantly produced through electron impact dissociation of c-C{sub 4}F{sub 8} and lost through either surface or gas-phase addition reactions.

  13. Tagging of Isobars Using Energy Loss and Time-of-flight Measurements

    SciTech Connect

    Shapira, D.

    2001-11-02

    The technique for tagging isobars in a mixed beam by measuring energy loss by time-of-flight has been tested. With this method, isobar separation should improve by allowing more energy loss (thicker absorber), but only if one can control absorber homogeneity. Measurements of beam energy toss and energy spread obtained under such conditions were shown to be close to predicted values using both collisional and charge exchange contributions to energy straggling. The calculation of energy straggling allows us to study the efficacy of this method for isobar separation when applied to different mass ranges and beam energies. Separation in a most difficult case, an analyzed beam of A = 132 isobars at energies near 3 MeV/A has been demonstrated. The time-of-flight information can be added on line as an additional tag to the data stream for events of interest. Such event by event tagging enables one to study the effect of differences in isobaric mixture in the beam on the reaction outcome even when isobar separation is not complete.

  14. Spectroscopy and Chemistry of Molecules with High Vibrational Energy Content.

    DTIC Science & Technology

    1982-10-15

    dissociation channels, viz., HC elimination, ring scission, and C=Cl homolysis. (Francisco and Steinfeld, 1981; Lawrance et al., 1981). The species CF300CF 3...Trifluoromethyl) peroxide", Intl. J. Chem. Kinetics, 13, 627 (1981). W.D. Lawrance , J. Silberstein, Zhang Fu-min, Zhu Qing-shi, J.S. Francisco, and J...75, 3153 (1981). J.S. Francisco, W.D. Lawrance , J.I. Steinfeld, and R.G. Gilbert, "Infrared Multiphoton Decomposition and Energy-Dependent

  15. IMPLICATIONS OF MASS AND ENERGY LOSS DUE TO CORONAL MASS EJECTIONS ON MAGNETICALLY ACTIVE STARS

    SciTech Connect

    Drake, Jeremy J.; Cohen, Ofer; Yashiro, Seiji; Gopalswamy, Nat

    2013-02-20

    Analysis of a database of solar coronal mass ejections (CMEs) and associated flares over the period 1996-2007 finds well-behaved power-law relationships between the 1-8 A flare X-ray fluence and CME mass and kinetic energy. We extrapolate these relationships to lower and higher flare energies to estimate the mass and energy loss due to CMEs from stellar coronae, assuming that the observed X-ray emission of the latter is dominated by flares with a frequency as a function of energy dn/dE = kE {sup -{alpha}}. For solar-like stars at saturated levels of X-ray activity, the implied losses depend fairly weakly on the assumed value of {alpha} and are very large: M-dot {approx}5 Multiplication-Sign 10{sup -10} M{sub sun} yr{sup -1} and E-dot {approx}0.1 L{sub sun}. In order to avoid such large energy requirements, either the relationships between CME mass and speed and flare energy must flatten for X-ray fluence {approx}> 10{sup 31} erg, or the flare-CME association must drop significantly below 1 for more energetic events. If active coronae are dominated by flares, then the total coronal energy budget is likely to be up to an order of magnitude larger than the canonical 10{sup -3} L {sub bol} X-ray saturation threshold. This raises the question of what is the maximum energy a magnetic dynamo can extract from a star? For an energy budget of 1% of L {sub bol}, the CME mass loss rate is about 5 Multiplication-Sign 10{sup -11} M {sub Sun} yr{sup -1}.

  16. Effect of Diet Composition on Energy Expenditure during Weight Loss: The POUNDS LOST Study

    PubMed Central

    Bray, George A.; Smith, Steven R.; DeJonge, Lilian; de Souza, Russell; Rood, Jennifer; Champagne, Catherine M.; Laranjo, Nancy; Carey, Vincent; Obarzanek, Eva; Loria, Catherine M.; Anton, Stephen D.; Ryan, Donna H.; Greenway, Frank L.; Williamson, Donald; Sacks, Frank M.

    2011-01-01

    Background Weight loss reduces energy expenditure, but the contribution of different macronutrients to this change is unclear. Hypothesis We tested the hypothesis that macronutrient composition of the diet might affect the partitioning of energy expenditure during weight loss. Design A sub-study of 99 participants from the POUNDS LOST trial had total energy expenditure (TEE) measured by doubly labeled water and resting energy expenditure (REE) measured by indirect calorimetry at baseline and repeated at 6 months in 89 participants. Participants were randomly assigned to one of 4 diets with either 15% or 25% protein and 20% or 40% fat. Results TEE and REE were positively correlated with each other and with fat free mass and body fat, at baseline and 6 months. The average weight loss of 8.1±0.65 kg (LSmean±SE) reduced TEE by 120±56 kcal/d and REE by 136±18 kcal/d. A greater weight loss at 6 months was associated with a greater decrease in TEE and REE. Participants eating the high fat diet lost significantly more fat free mass (1.52±0.55 kg) than the low fat diet group (p<0.05). Participants eating the low fat diet had significantly higher measures of physical activity than the high fat group. Conclusion A greater weight loss was associated with a larger decrease in both TEE and REE. The low fat diet was associated with significant changes in fat free body mass and energy expenditure from physical activity compared to the high fat diet. PMID:21946707

  17. Measurement of Absolute Excitation Cross Sections in Highly-Charged Ions Using Electron Energy Loss and Merged Beams

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Smith, Steven J.; Lozano, J.

    2002-01-01

    There is increasing emphasis during this decade on understanding energy balance and phenomena observed in high electron temperature plasmas. The UV spectral return from FUSE, the X-ray spectral return from the HETG on Chandra and the LETGS 011 XMM-Newton are just beginning. Line emissions are almost entirely from highly-charged ions (HCIs) of C, N, 0, Ne, Mg, S, Si, Ca, and Fe. The Constellation-X mission will provide X-ray spectroscopy up to photon energies of 0.12 nm (10 keV) where primary line emitters will be HCIs. A variety of atomic parameters are required to model the stellar and solar plasma. These include cross sections for excitation, ionization, charge-exchange, X-ray emission, direct and indirect recombination, lifetimes and branching ratios, and dependences on l, m mixing by external E and B fields. In almost all cases the atomic quantities are calculated, and few comparisons to experiment have been carried out. Collision strengths and Einstein A-values are required to convert the observed spectral intensities to electron temperatures and densities in the stellar plasma. The JPL electron energy-loss and merged beam approach has been used to measure absolute collision strengths in a number of ions, with critical comparison made to the best available theories.

  18. Multi-excitation Raman difference spectroscopy based on modified multi-energy constrained iterative deconvolution algorithm

    NASA Astrophysics Data System (ADS)

    Zou, Wenlong; Cai, Zhijian; Zhou, Hongwu; Wu, Jianhong

    2013-12-01

    Raman spectroscopy is fast and nondestructive, and it is widely used in chemistry, biomedicine, food safety and other areas. However, Raman spectroscopy is often hampered by strong fluorescence background, especially in food additives detection and biomedicine researching. In this paper, one efficient technique was the multi-excitation Raman difference spectroscopy (MERDS) which incorporated a series of small wavelength-shift wavelengths as excitation sources. A modified multi-energy constrained iterative deconvolution (MMECID) algorithm was proposed to reconstruct the Raman Spectroscopy. Computer simulation and experiments both demonstrated that the Raman spectrum can be well reconstructed from large fluorescence background. The more excitation sources used, the better signal to noise ratio got. However, many excitation sources were equipped on the Raman spectrometer, which increased the complexity of the experimental system. Thus, a trade-off should be made between the number of excitation frequencies and experimental complexity.

  19. A Computational Study of Energy Efficiency and Pressure Losses in the Total Cavopulmonary Connection

    NASA Astrophysics Data System (ADS)

    Marsden, Alison

    2005-11-01

    The total cavopulmonary connection (TCPC) is an operation performed to treat single ventricle congenital heart defects. The superior and inferior vena cavae are connected to the pulmonary arteries in a t-shaped junction, separating the systemic and pulmonary circulations. In this work, we hypothesize that the effects of respiration and exercise cause significant hemodynamic disturbances and energy loss. Time- dependent, 3-D blood flow simulations are performed using a custom finite element solver and patient specific geometry. Blood flow features, pressure, and energy losses are analyzed at rest and with increasing flow rates to simulate exercise conditions. Resistance boundary conditions are enforced at the pulmonary artery outlets. Energy efficiency is high at rest but drops substantially with maximal exercise. Flow vortices increase in intensity with respiration and exercise, explaining higher energy dissipation when compared to rest. Pressure drop and energy loss in the TCPC are small at rest but increase to significant levels, even at moderate exercise. We conclude that the effects of respiration and exercise should be incorporated in models to provide realistic evaluations of TCPC performance, and for future work in optimizing TCPC geometry.

  20. Energy losses of nanomechanical resonators induced by atomic force microscopy-controlled mechanical impedance mismatching

    NASA Astrophysics Data System (ADS)

    Rieger, Johannes; Isacsson, Andreas; Seitner, Maximilian J.; Kotthaus, Jörg P.; Weig, Eva M.

    2014-03-01

    Clamping losses are a widely discussed damping mechanism in nanoelectromechanical systems, limiting the performance of these devices. Here we present a method to investigate this dissipation channel. Using an atomic force microscope tip as a local perturbation in the clamping region of a nanoelectromechanical resonator, we increase the energy loss of its flexural modes by at least one order of magnitude. We explain this by a transfer of vibrational energy into the cantilever, which is theoretically described by a reduced mechanical impedance mismatch between the resonator and its environment. A theoretical model for this mismatch, in conjunction with finite element simulations of the evanescent strain field of the mechanical modes in the clamping region, allows us to quantitatively analyse data on position and force dependence of the tip-induced damping. Our experiments yield insights into the damping of nanoelectromechanical systems with the prospect of engineering the energy exchange in resonator networks.

  1. Energy losses of nanomechanical resonators induced by atomic force microscopy-controlled mechanical impedance mismatching

    PubMed Central

    Rieger, Johannes; Isacsson, Andreas; Seitner, Maximilian J.; Kotthaus, Jörg P.; Weig, Eva M.

    2014-01-01

    Clamping losses are a widely discussed damping mechanism in nanoelectromechanical systems, limiting the performance of these devices. Here we present a method to investigate this dissipation channel. Using an atomic force microscope tip as a local perturbation in the clamping region of a nanoelectromechanical resonator, we increase the energy loss of its flexural modes by at least one order of magnitude. We explain this by a transfer of vibrational energy into the cantilever, which is theoretically described by a reduced mechanical impedance mismatch between the resonator and its environment. A theoretical model for this mismatch, in conjunction with finite element simulations of the evanescent strain field of the mechanical modes in the clamping region, allows us to quantitatively analyse data on position and force dependence of the tip-induced damping. Our experiments yield insights into the damping of nanoelectromechanical systems with the prospect of engineering the energy exchange in resonator networks. PMID:24594876

  2. SPITZER SPECTROSCOPY OF MASS-LOSS AND DUST PRODUCTION BY EVOLVED STARS IN GLOBULAR CLUSTERS

    SciTech Connect

    Sloan, G. C.; Bernard-Salas, J.; Houck, J. R.; Matsunaga, N.; Matsuura, M.; Zijlstra, A. A.; Kraemer, K. E.; Wood, P. R.; Nieusma, J.; Devost, D. E-mail: jbs@isc.astro.cornell.ed E-mail: matsunaga@ioa.s.u-tokyo.ac.j E-mail: albert.zijlstra@manchester.ac.u E-mail: judaniel@umich.ed

    2010-08-20

    We have observed a sample of 35 long-period variables (LPVs) and four Cepheid variables in the vicinity of 23 Galactic globular clusters using the Infrared Spectrograph on the Spitzer Space Telescope. The LPVs in the sample cover a range of metallicities from near solar to about 1/40th solar. The dust mass-loss rate (MLR) from the stars increases with pulsation period and bolometric luminosity. Higher MLRs are associated with greater contributions from silicate grains. The dust MLR also depends on metallicity. The dependence is most clear when segregating the sample by dust composition, less clear when segregating by bolometric magnitude, and absent when segregating by period. The spectra are rich in solid-state and molecular features. Emission from alumina dust is apparent across the range of metallicities. Spectra with a 13 {mu}m dust emission feature, as well as an associated feature at 20 {mu}m, also appear at most metallicities. Molecular features in the spectra include H{sub 2}O bands at 6.4-6.8 {mu}m, seen in both emission and absorption, SO{sub 2} absorption at 7.3-7.5 {mu}m, and narrow emission bands from CO{sub 2} from 13.5 to 16.8 {mu}m. The star Lyngaa 7 V1 has an infrared spectrum revealing it to be a carbon star, adding to the small number of carbon stars associated with Galactic globular clusters.

  3. A low-loss hybrid rectification technique for piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Schlichting, A. D.; Fink, E.; Garcia, E.

    2013-09-01

    Embedded systems have decreased in size and increased in capability; however, small-scale energy storage technologies still significantly limit these advances. Energy neutral operation using small-scale energy harvesting technologies would allow for longer device operation times and smaller energy storage masses. Vibration energy harvesting is an attractive method due to the prevalence of energy sources in many environments. Losses in efficiency due to AC-DC rectification and conditioning circuits limit its application. This work presents a low-loss hybrid rectification technique for piezoelectric vibration energy harvesting using magnetically actuated reed switches and a passive semiconductor full-bridge rectifier. This method shows the capability to have higher efficiency levels and the rectification of low-voltage harvesters without the need for active electrical components. A theoretical model shows that the hybrid rectification technique performance is highly dependent on the proximity delay and the hysteresis behavior of the reed switches. Experimental results validate the model and support the hypothesis of increased performance using the hybrid rectification technique.

  4. Radiation and ionization energy loss simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab

    DOE PAGES

    Yan, Xin -Hu; Ye, Yun -Xiu; Chen, Jian -Ping; ...

    2015-07-17

    The radiation and ionization energy loss are presented for single arm Monte Carlo simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab. Radiation and ionization energy loss are discussed formore » $$^{12}C$$ elastic scattering simulation. The relative momentum ratio $$\\frac{\\Delta p}{p}$$ and $$^{12}C$$ elastic cross section are compared without and with radiation energy loss and a reasonable shape is obtained by the simulation. The total energy loss distribution is obtained, showing a Landau shape for $$^{12}C$$ elastic scattering. This simulation work will give good support for radiation correction analysis of the GDH sum rule experiment.« less

  5. Radiation and ionization energy loss simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab

    SciTech Connect

    Yan, Xin -Hu; Ye, Yun -Xiu; Chen, Jian -Ping; Lu, Hai -Jiang; Zhu, Peng -Jia; Jiang, Feng -Jian

    2015-07-17

    The radiation and ionization energy loss are presented for single arm Monte Carlo simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab. Radiation and ionization energy loss are discussed for $^{12}C$ elastic scattering simulation. The relative momentum ratio $\\frac{\\Delta p}{p}$ and $^{12}C$ elastic cross section are compared without and with radiation energy loss and a reasonable shape is obtained by the simulation. The total energy loss distribution is obtained, showing a Landau shape for $^{12}C$ elastic scattering. This simulation work will give good support for radiation correction analysis of the GDH sum rule experiment.

  6. Determination of molecular spectroscopic parameters and energy-transfer rates by double-resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Steinfeld, J. I.; Foy, B.; Hetzler, J.; Flannery, C.; Klaassen, J.; Mizugai, Y.; Coy, S.

    1990-05-01

    The spectroscopy of small to medium-size polyatomic molecules can be extremely complex, especially in higher-lying overtone and combination vibrational levels. The high density of levels also complicates the understanding of inelastic collision processes, which is required to model energy transfer and collision broadening of spectral lines. Both of these problems can be addressed by double-resonance spectroscopy, i.e., time-resolved pump-probe measurements using microwave, infrared, near-infrared, and visible-wavelength sources. Information on excited-state spectroscopy, transition moments, inelastic energy transfer rates and propensity rules, and pressure-broadening parameters may be obtained from such experiments. Examples are given for several species of importance in planetary atmospheres, including ozone, silane, ethane, and ammonia.

  7. Simulating Energy Relaxation in Pump-Probe Vibrational Spectroscopy of Hydrogen-Bonded Liquids.

    PubMed

    Dettori, Riccardo; Ceriotti, Michele; Hunger, Johannes; Melis, Claudio; Colombo, Luciano; Donadio, Davide

    2017-03-14

    We introduce a nonequilibrium molecular dynamics simulation approach, based on the generalized Langevin equation, to study vibrational energy relaxation in pump-probe spectroscopy. A colored noise thermostat is used to selectively excite a set of vibrational modes, leaving the other modes nearly unperturbed, to mimic the effect of a monochromatic laser pump. Energy relaxation is probed by analyzing the evolution of the system after excitation in the microcanonical ensemble, thus providing direct information about the energy redistribution paths at the molecular level and their time scale. The method is applied to hydrogen-bonded molecular liquids, specifically deuterated methanol and water, providing a robust picture of energy relaxation at the molecular scale.

  8. X-ray photo-emission and energy dispersive spectroscopy of HA coated titanium

    SciTech Connect

    Drummond, J.L.; Steinberg, A.D.; Krauss, A.R.

    1997-08-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (x-ray photo-emission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls, 30 minutes and 3 hours aged specimens in distilled water or 0.2M sodium phosphate buffer (pH 7.2) at room temperature. Each x-ray photo-emission cycle consisted of 3 scans followed by argon sputtering for 10 minutes for a total of usually 20 cycles, corresponding to a sampling depth of {approximately} 1500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {mu}m area for 500 sec. Scanning electron microscopy examination showed crystal formation (3P{sub 2}O{sub 5}*2CAO*?H{sub 2}O by energy dispersive spectroscopy analysis) on the HA coating for the specimens aged in sodium phosphate buffer. The x-ray photo-emission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorous. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis. The crystal growth was only observed for the sodium phosphate buffer specimens and only on the HA surface.

  9. Internal solitary wave transformation over a bottom step: loss of energy

    NASA Astrophysics Data System (ADS)

    Talipova, Tatiana; Terletska, Katherina; Maderich, Vladimir; Brovchenko, Igor; Jung, Kyung Tae; Pelinovsky, Efim; Grimshaw, Roger

    2013-04-01

    The interaction of an internal solitary wave with a bottom step is studied to estimate the energy loss of an incident internal solitary wave. It is studied numerically in a computing tank in the approximation of two-layer flow within the full Navier - Stokes equations. Five different regimes of internal solitary wave interaction were identified within the full range of ratios of height of bottom layer after the step to the incident wave amplitude: (1) weak interaction, when wave dynamics can fully described by weakly nonlinear theory, (2) moderate interaction when wave breaking mechanism over the step is mainly shear instability, (3) strong interaction when supercritical flow in the step vicinity results in backward jet and vortices for depression waves and in a forward moving vortex (bolus) transporting dense fluid on the step, (4) transitional regime of interaction at the step height between splash on the step and (5) complete reflection from the step, and reflection regime when almost all energy transfers to the energy of reflected wave. The mechanism of KH instability takes place for reasonable amplitude waves of both depression and elevation during interaction with the bottom step for all regimes except regime 1. For this two-layer flow the energy loss due to an internal solitary wave interacting with the bottom step does not exceed 50% of the energy of the incident wave. The maximum of energy loss an elevation incident wave is reached when the ratio of the height of bottom layer after the step to incident wave amplitude equals zero. For an incident depression wave this ratio in maximum of energy loss is close to one. Self-similarities of the energy loss versus the ratio of the height of upper layer after the step to incident wave amplitude take place for the values more than -0.75 for elevation ISW and for more than 0.5 for depression ISW. It is shown that incident depression ISW in the transitional regime reflects with the formation of secondary solitary

  10. Charge-state-dependent energy loss of slow ions. I. Experimental results on the transmission of highly charged ions

    NASA Astrophysics Data System (ADS)

    Wilhelm, Richard A.; Gruber, Elisabeth; Smejkal, Valerie; Facsko, Stefan; Aumayr, Friedrich

    2016-05-01

    We report on energy loss measurements of slow (v ≪v0 ), highly charged (Q >10 ) ions upon transmission through a 1-nm-thick carbon nanomembrane. We emphasize here the scaling of the energy loss with the velocity and charge exchange or loss. We show that a weak linear velocity dependence exists, whereas charge exchange dominates the kinetic energy loss, especially in the case of a large charge capture. A universal scaling of the energy loss with the charge exchange and velocity is found and discussed in this paper. A model for charge-state-dependent energy loss for slow ions is presented in paper II in this series [R. A. Wilhelm and W. Möller, Phys. Rev. A 93, 052709 (2016), 10.1103/PhysRevA.93.052709].

  11. Measurement of Runaway Electron Plateau Final Loss Energy Deposition into Wall of DIII-D

    NASA Astrophysics Data System (ADS)

    Hollmann, E. M.; Bykov, I.; Moyer, R. A.; Rudakov, D. L.; Commaux, N.; Shiraki, D.; Lasnier, C.; Martin-Solis, R.; Cooper, C.; Eidietis, N.; Parks, P.; Paz-Soldan, C.

    2016-10-01

    Intentional runaway electron (RE) plateau-wall strikes with different initial impurity levels are used to study the effect of background plasma relativistic electron Z (as well as plasma resistivity for slow electrons) on RE-wall loss dynamics. RE wall loss time is found to be close to the avalanche time (meC/eE| |) 1 nλ √{ 3 (Z + 5) / π } , consistent with REs being lost by a series of MHD reconnection events, with timescale limited by current profile filling via avalanche. Local kinetic energy deposition is estimated with both hard x-ray emission and with infra-red imaging. At higher plasma impurity levels Z 10 , energy deposition appears to be consistent with power balance estimates, as long as collisional dissipation during the final loss event is included. At low impurity levels Z 1 , however, local energy deposition appears around 10 × less than expected, indicating that the energy dissipation at low Z is still poorly understood. Work supported by the US DOE under DE-FG02-07ER54917, DE-AC05-00OR22725, DE-AC52-07NA27344, DE-FC02-04ER54698.

  12. Dynamical energy loss as a novel Quark-Gluon Plasma tomographic tool

    NASA Astrophysics Data System (ADS)

    Djordjevic, Magdalena

    2016-12-01

    High momentum suppression of light and heavy flavor observables is considered to be an excellent probe of jet-medium interactions in QCD matter created at RHIC and LHC. Utilizing this tool requires accurate suppression predictions for different experiments, probes and experimental conditions, and their unbiased comparison with experimental data. With this goal, we developed the dynamical energy loss formalism towards generating predictions for non-central collisions; the formalism takes into account both radiative and collisional energy loss computed within the same theoretical framework, dynamical (as opposed to static) scattering centers, finite magnetic mass, running coupling and uses no free parameters in comparison with experimental data. Within this formalism, we provided predictions, and a systematic comparison with experimental data, for a diverse set of suppression data: all available light and heavy flavor probes, lower and high momentum ranges, various centrality ranges and various collision energies at RHIC and LHC. We here also provide clear qualitative and quantitative predictions for soon to become available LHC experimental data. Comprehensive agreement between our predictions and experimental results provides a good deal of confidence that our dynamical energy loss formalism can well explain the jet-medium interactions in QGP, which will be further tested by the obtained predictions for the upcoming data. Application of this model, as a novel high-precision tomographic tool of QGP medium, are also discussed.

  13. Water loss control using pressure management: life-cycle energy and air emission effects.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad; Sturm, Reinhard

    2013-10-01

    Pressure management is one cost-effective and efficient strategy for controlling water distribution losses. This paper evaluates the life-cycle energy use and emissions for pressure management zones in Philadelphia, Pennsylvania, and Halifax, Nova Scotia. It compares water savings using fixed-outlet and flow-modulated pressure control to performance without pressure control, considering the embedded electricity and chemical consumption in the lost water, manufacture of pipe and fittings to repair breaks caused by excess pressure, and pressure management. The resulting energy and emissions savings are significant. The Philadelphia and Halifax utilities both avoid approximately 130 million liters in water losses annually using flow-modulated pressure management. The conserved energy was 780 GJ and 1900 GJ while avoided greenhouse gas emissions were 50 Mg and 170 Mg a year by Philadelphia and Halifax, respectively. The life-cycle financial and environmental performance of pressure management systems compares favorably to the traditional demand management strategy of installing low-flow toilets. The energy savings may also translate to cost-effective greenhouse gas emission reductions depending on the energy mix used, an important advantage in areas where water and energy are constrained and/or expensive and greenhouse gas emissions are regulated as in California, for example.

  14. Extended electron energy loss fine structure simulation of the local boron environment in sodium aluminoborosilicate glasses containing gadolinium

    SciTech Connect

    Qian, Morris; Li, Hong; Li, Liyu ); Strachan, Denis M. )

    2003-12-01

    Phase separation in sodium-aluminoborosilicate glasses was systematically studied as a function of Gd2O3 concentration with transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) methods. Gadolinium-induced phase separation in the three systems can be consistently explained by proposing that Gd cations partition to the borate-rich environments and subsequent agglomeration of the Gd-borate moieties, or short-range ordered structural groups, in the glass. Agglomeration of the Gd-borate rich environments is further discussed within the context of excess metal oxides,[Na2O]ex or[Al2O3]ex=|Na2O - Al2O3|, and excess B2O3,[B2O3]ex, available for incorporating Gd cations. Results showed that agglomeration of the Gd-borate rich environments occurred at a much lower Gd2O3 concentration in the glass without[Na2O]ex or[Al2O3]ex and at a significantly higher Gd2O3 concentration in the glass with either[Na2O]ex or[Al2O3]ex. Assuming 1BO4 : 1Gd : 2BO3 (based on literature-reported Gd-metaborate structure) as a local Gd-borate environment in glass, we introduced the saturation index of boron, SI[B]= Gd2O3/(1/3[B2O3]ex), to examine the glass susceptibility to Gd-induced phase separation for all three alkali-aluminoborosilicate systems. While our results have provided some insight to the glass structure, they also provide insight to the mechanism by which the metal oxide is dissolved into the melt. This appears to occur predominantly through boron complexation of the metal oxide.

  15. Energy- and Activity-Dependent Loss Timescales for Inner Magnetospheric keV-Energy Electrons

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.

    2011-12-01

    The Hot Electron and Ion Drift Integrator (HEIDI) inner magnetospheric drift physics model has recently been modified to include keV-energy electron scattering rates by VLF chorus and hiss waves, thus allowing for the calculation of the electron phase space distribution in the inner magnetosphere and electron precipitation to the upper atmosphere. Comparisons of calculated electron fluxes are made with low-Earth orbit electron precipitation data and dayside electron measurements to validate the scattering implementation procedure. The energy-dependent scattering rate coefficients are adjusted to take into account geomagnetic activity and plasmapause location, providing a scattering rate that best matches the simulations to the observed electron fluxes. In addition, the electron ring current intensities and spatio-temporal evolution are compared against simulation results for the hot ion species. While the electron total energy content is typically 10 times smaller than the ion total energy content in the inner magnetosphere, it can be significantly higher than this during the late main phase of magnetic storms.

  16. Anomalies in the theory of viscous energy losses due to shear in rotational MEMS resonators.

    SciTech Connect

    Walsh, Timothy Francis; Klody, Kelly Anne; Jenkins, Mark W.; Dohner, Jeffrey Lynn

    2003-12-01

    In this paper, the effect of viscous wave motion on a micro rotational resonator is discussed. This work shows the inadequacy of developing theory to represent energy losses due to shear motion in air. Existing theory predicts Newtonian losses with little slip at the interface. Nevertheless, experiments showed less effect due to Newtonian losses and elevated levels of slip for small gaps. Values of damping were much less than expected. Novel closed form solutions for the response of components are presented. The stiffness of the resonator is derived using Castigliano's theorem, and viscous fluid motion above and below the resonator is derived using a wave approach. Analytical results are compared with experimental results to determine the utility of existing theory. It was found that existing macro and molecular theory is inadequate to describes measured responses.

  17. MHD activity and energy loss during beta saturation and collapse at high beta poloidal in PBX

    SciTech Connect

    Kugel, H.W.; Sesnic, S.; Bol, K.; Chance, M.; Fishman, H.; Fonck, R.; Gammel, G.; Kaita, R.; Kaye, S.; LeBlanc, B.

    1987-10-01

    High-..beta.. experiments, in medium to high-q tokamak plasmas, exhibit a temporal ..beta.. saturation and collapse. This behavior has been attributed to ballooning, ideal kink, or tearing modes. In PBX, a unique diagnostic capability allowed studies of the relation between MHD and energy loss for neutral-beam-heated (<6 MW), mildly indented (10 to 15%), nearly steady I/sub p/ discharges that approached the Troyon-Gruber limit. Under these conditions, correlations between MHD activity and energy losses have shown that the latter can be almost fully accounted for by various long wavelength MHD instabilities and that there is no need to invoke high-n ballooning modes in PBX. 6 refs., 4 figs.

  18. Estimates of methane loss and energy recovery potential in anaerobic reactors treating domestic wastewater.

    PubMed

    Lobato, L C S; Chernicharo, C A L; Souza, C L

    2012-01-01

    This work aimed at developing a mathematical model that could estimate more precisely the fraction of chemical oxygen demand (COD) recovered as methane in the biogas and which, effectively, represented the potential for energy recovery in upflow anaerobic sludge blanket (UASB) reactors treating domestic wastewater. The model sought to include all routes of conversion and losses in the reactor, including the portion of COD used for the reduction of sulfates and the loss of methane in the residual gas and dissolved in the effluent. Results from the production of biogas in small- and large-scale UASB reactors were used to validate the model. The results showed that the model allowed a more realistic estimate of biogas production and of its energy potential.

  19. Impact of inward turbulence spreading on energy loss of edge-localized modesa)

    DOE PAGES

    Ma, C. H.; Xu, X. Q.; Xi, P. W.; ...

    2015-05-18

    Nonlinear two-fluid and gyrofluid simulations show that an edge localized modes(ELM) crash has two phases: fast initial crash of ion temperature perturbation on the Alfvén time scale and slow turbulence spreading. The turbulencetransport phase is a slow encroachment of electron temperature perturbation due to the ELM event into pedestal region. Because of the inward turbulence spreading effect, the energy loss of an ELM decreases when density pedestal height increases. The Landau resonance yields the different cross phase-shift of ions and electrons. A 3 + 1 gyro-Landau-fluid model is implemented in BOUT++ framework. As a result, the gyrofluid simulations show thatmore » the kinetic effects have stabilizing effects on the ideal ballooning mode and the energy loss increases with the pedestal height.« less

  20. Point-source idealization in classical field theories. II. Mechanical energy losses from electromagnetic radiation reaction

    NASA Astrophysics Data System (ADS)

    Kates, Ronald E.; Rosenblum, Arnold

    1982-05-01

    This paper compares the mechanical energy losses due to electromagnetic radiation reaction on a two-particle, slow-motion system, as calculated from (1) the method of matched asymptotic expansions and (2) the Lorentz-Dirac equation, which assumes point sources. The matching derivation of the preceding paper avoided the assumption of a δ-function source by using Reissner-Nordström matching zones. Despite the differing mathematical assumptions of the two methods, their results are in agreement with each other and with the electromagnetic-field energy losses calculated by the evaluation of flux integrals. Our purpose is eventually to analyze Rosenblum's use of point sources as a possible cause of disagreement between the analogous calculations of gravitational radiation on a slow-motion system of two bodies. We begin with the simpler electromagnetic problem.

  1. Visual evidence of suppressing the ion and electron energy loss on the wall in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Peng, Wuji; Sun, Hezhi; Wei, Liqiu; Zeng, Ming; Wang, Fufeng; Yu, Daren

    2017-03-01

    A method of pushing down magnetic field with two permanent magnetic rings is proposed in this paper. It can realize ionization in a channel and acceleration outside the channel. The wall will only suffer from the bombardment of low-energy ions and electrons, which can effectively reduce channel erosion and extend the operational lifetime of thrusters. Furthermore, there is no additional power consumption of coils, which improves the efficiency of systems. We show here the newly developed 200 W no wall-loss Hall thruster (NWLHT-200) that applies the method of pushing down magnetic field with two permanent magnetic rings; the visual evidence we obtained preliminarily confirms the feasibility that the proposed method can realize discharge without wall energy loss or erosion of Hall thrusters.

  2. Impact of inward turbulence spreading on energy loss of edge-localized modes

    SciTech Connect

    Ma, C. H.; Xi, P. W.; Xu, X. Q.; Xia, T. Y.; Snyder, P. B.; Kim, S. S.

    2015-05-15

    Nonlinear two-fluid and gyrofluid simulations show that an edge localized modes (ELM) crash has two phases: fast initial crash of ion temperature perturbation on the Alfvén time scale and slow turbulence spreading. The turbulence transport phase is a slow encroachment of electron temperature perturbation due to the ELM event into pedestal region. Because of the inward turbulence spreading effect, the energy loss of an ELM decreases when density pedestal height increases. The Landau resonance yields the different cross phase-shift of ions and electrons. A 3 + 1 gyro-Landau-fluid model is implemented in BOUT++ framework. The gyrofluid simulations show that the kinetic effects have stabilizing effects on the ideal ballooning mode and the energy loss increases with the pedestal height.

  3. Intensity distribution analysis of cathodoluminescence using the energy loss distribution of electrons.

    PubMed

    Fukuta, Masahiro; Inami, Wataru; Ono, Atsushi; Kawata, Yoshimasa

    2016-01-01

    We present an intensity distribution analysis of cathodoluminescence (CL) excited with a focused electron beam in a luminescent thin film. The energy loss distribution is applied to the developed analysis method in order to determine the arrangement of the dipole locations along the path of the electron traveling in the film. Propagating light emitted from each dipole is analyzed with the finite-difference time-domain (FDTD) method. CL distribution near the film surface is evaluated as a nanometric light source. It is found that a light source with 30 nm widths is generated in the film by the focused electron beam. We also discuss the accuracy of the developed analysis method by comparison with experimental results. The analysis results are brought into good agreement with the experimental results by introducing the energy loss distribution.

  4. Energy-loss cross sections for inclusive charge-exchange reactions at intermediate energies

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Dubey, Rajendra R.

    1993-01-01

    Charge-exchange reactions for scattering to the continuum are considered in a high-energy multiple scattering model. Calculations for (p,n) and (He-3,H-3) reactions are made and compared with experimental results for C-12, O-16, and Al-27 targets. Coherent effects are shown to lead to an important role for inelastic multiple scattering terms when light projectiles are considered.

  5. Mass by Energy Loss Quantitation as a Practical Sub-Microgram Balance

    SciTech Connect

    Palmblad, M; Bench, G; Vogel, J S

    2004-09-28

    A simple device integrating a thin film support and a standard microcentrifuge tube can be used for making solutions of accurately known concentration of any organic compound in a single step, avoiding serial dilution and the use of microgram balances. Nanogram to microgram quantities of organic material deposited on the thin film are quantified by ion energy loss and transferred to the microcentrifuge tube with high recovery.

  6. Energy loss of 107Ag, 109Ag, and 150Sm in Ni and Au

    NASA Astrophysics Data System (ADS)

    Ribas, R. V.; Seale, W. A.; Roney, W. A.; Szanto, E. M.

    1980-04-01

    The stopping pow´er of 107Ag, 109Ag, and 150Sm in nickel and gold was measured as a preliminary test of a new technique for measuring energy loss based on the γ-ray Doppler shift. The analysis of the data was based on the theories of Lindhard, Scharff, and Schiott for nuclear and electronic stopping. The results are compared with the semiempirical predictions of Northcliffe and Schilling and the Lindhard-Scharff-Schiott theory.

  7. APPARATUS FOR MINIMIZING ENERGY LOSSES FROM MAGNETICALLY CONFINED VOLUMES OF HOT PLASMA

    DOEpatents

    Post, R.F.

    1961-10-01

    An apparatus is described for controlling electron temperature in plasma confined in a Pyrotron magnetic containment field. Basically the device comprises means for directing low temperature electrons to the plasma in controlled quantities to maintain a predetermined optimum equilibrium electron temperature whereat minimum losses of plasma ions due to ambipolar effects and energy damping of the ions due to dynamical friction with the electrons occur. (AEC)

  8. Measurements of energy loss in the scrape-off layer of C-2U

    NASA Astrophysics Data System (ADS)

    Griswold, M. E.; Korepanov, S.; Thompson, M. C.; the TAE Team Team

    2016-10-01

    We report on measurements of energy transport in the scrape-off layer (SOL) plasma that surrounds the advanced beam-driven field reversed configuration (FRC) of the C-2U experiment at Tri Alpha Energy. The SOL plasma is trapped on mirror-like open field lines outside of the FRC separatrix that connect to material surfaces at both ends of the vacuum vessel. Heat transport in this region is expected to be convective, like in mirror machines, and can be characterized by the amount of energy lost per electron-ion pair. We measured this value with an end loss analyzer system that consists of gridded ion energy analyzers that measure ion current density and pyroelectric crystal bolometers that measure total particle power flux.

  9. Novel Molecules Regulating Energy Homeostasis: Physiology and Regulation by Macronutrient Intake and Weight Loss

    PubMed Central

    Gavrieli, Anna

    2016-01-01

    Excess energy intake, without a compensatory increase of energy expenditure, leads to obesity. Several molecules are involved in energy homeostasis regulation and new ones are being discovered constantly. Appetite regulating hormones such as ghrelin, peptide tyrosine-tyrosine and amylin or incretins such as the gastric inhibitory polypeptide have been studied extensively while other molecules such as fibroblast growth factor 21, chemerin, irisin, secreted frizzle-related protein-4, total bile acids, and heme oxygenase-1 have been linked to energy homeostasis regulation more recently and the specific role of each one of them has not been fully elucidated. This mini review focuses on the above mentioned molecules and discusses them in relation to their regulation by the macronutrient composition of the diet as well as diet-induced weight loss. PMID:27469065

  10. Determination of the area density and composition of alloy film using dual alpha particle energy loss

    NASA Astrophysics Data System (ADS)

    Ma, Xiaojun; Li, Bo; Gao, Dangzhong; Xu, Jiayun; Tang, Yongjian

    2017-02-01

    A novel method based on dual α-particles energy loss (DAEL) is proposed for measuring the area density and composition of binary alloy films. In order to obtain a dual-energy α-particles source, an ingenious design that utilizes the transmitted α-particles traveling the thin film as a new α-particles source is presented. Using the DAEL technique, the area density and composition of Au/Cu film are determined accurately with an uncertainty of better than 10%. Finally, some measures for improving the combined uncertainty are discussed.

  11. Vanishing Electronic Energy Loss of Very Slow Light Ions in Insulators with Large Band Gaps

    SciTech Connect

    Markin, S. N.; Primetzhofer, D.; Bauer, P.

    2009-09-11

    Electronic energy loss of light ions in nanometer films of materials with large band gaps has been studied for very low velocities. For LiF, a threshold velocity is observed at 0.1 a.u. (250 eV/u), below which the ions move without transferring energy to the electronic system. For KCl, a lower (extrapolated) threshold velocity is found, identical for H and He ions. For SiO{sub 2}, no clear velocity threshold is observed for He particles. For protons and deuterons, electronic stopping is found to perfectly fulfill velocity scaling, as expected for binary ion-electron interaction.

  12. Competing effects of electronic and nuclear energy loss on microstructural evolution in ionic-covalent materials

    SciTech Connect

    Zhang, Yanwen; Varga, Tamas; Ishimaru, Dr. Manabu; Edmondson, Dr. Philip; Xue, Haizhou; Liu, Peng; Moll, Sandra; Namavar, Fereydoon; Hardiman, Chris; Shannon, Prof. Steven; Weber, William J

    2014-01-01

    Ever increasing energy needs have raised the demands for advanced fuels and cladding materials that withstand the extreme radiation environments with improved accident tolerance over a long period of time. Ceria (CeO2) is a well known ionic conductor that is isostructural with urania and plutonia-based nuclear fuels. In the context of nuclear fuels, immobilization and transmutation of actinides, CeO2 is a model system for radiation effect studies. Covalent silicon carbide (SiC) is a candidate for use as structural material in fusion, cladding material for fission reactors, and an inert matrix for the transmutation of plutonium and other radioactive actinides. Understanding microstructural change of these ionic-covalent materials to irradiation is important for advanced nuclear energy systems. While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic energy loss may, however, produce additional damage or anneal pre-existing defect. At intermediate transit energies where electronic and nuclear energy losses are both significant, synergistic, additive or competitive processes may evolve that affect the dynamic response of materials to irradiation. The response of crystalline and nanostructured CeO2 and SiC to ion irradiation are studied under different nuclear and electronic stopping powers to describe some general material response in this transit energy regime. Although fast radiation-induced grain growth in CeO2 is evident with no phase transformation, different fluence and dose dependence on the growth rate is observed under Si and Au irradiations. While grain shrinkage and amorphization are observed in the nano-engineered 3C SiC with a high-density of stacking faults embedded in nanosize columnar grains, significantly enhanced radiation resistance is

  13. Did high-energy astrophysical sources contribute to Martian atmospheric loss?

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    2016-11-01

    Mars is believed to have had a substantial atmosphere in the past. Atmospheric loss led to depressurization and cooling, and is thought to be the primary driving force responsible for the loss of liquid water from its surface. Recently, Mars Atmosphere and Volatile Evolution observations have provided new insight into the physics of atmospheric loss induced by Interplanetary Coronal Mass Ejections and solar wind interacting with the Martian atmosphere. In addition to solar radiation, it is likely that its atmosphere has been exposed to radiation bursts from high-energy astrophysical sources which become highly probable on time-scales of ˜Gy and beyond. These sources are capable of significantly enhancing the rates of photoionization and charged particle-induced ionization in the upper atmosphere. We use Monte Carlo simulations to model the interaction of charged particles and photons from astrophysical sources in the upper Martian atmosphere and discuss its implications on atmospheric loss. Our calculations suggest that the passage of the Solar system though dense interstellar clouds is the most significant contributor to atmospheric loss among the sources considered here.

  14. Energy loss of proton, alpha particle, and electron beams in hafnium dioxide films

    SciTech Connect

    Behar, Moni; Fadanelli, Raul C.; Nagamine, Luiz C. C. M.; Abril, Isabel; Denton, Cristian D.; Garcia-Molina, Rafael; Arista, Nestor R.

    2009-12-15

    The electronic stopping power, S, of HfO{sub 2} films for proton and alpha particle beams has been measured and calculated. The experimental data have been obtained by the Rutherford backscattering technique and cover the range of 120-900 and 120-3000 keV for proton and alpha particle beams, respectively. Theoretical calculations of the energy loss for the same projectiles have been done by means of the dielectric formalism using the Mermin energy loss function--generalized oscillator strength (MELF-GOS) model for a proper description of the HfO{sub 2} target on the whole momentum-energy excitation spectrum. At low projectile energies, a nonlinear theory based on the extended Friedel sum rule has been employed. The calculations and experimental measurements show good agreement for protons and a quite good one for alpha particles. In particular, the experimental maximums of both stopping curves (around 120 and 800 keV, respectively) are well reproduced. On the basis of this good agreement, we have also calculated the inelastic mean-free path (IMFP) and the stopping power for electrons in HfO{sub 2} films. Our results predict a minimum value of the IMFP and a maximum value of the S for electrons with energies around 120 and 190 eV, respectively.

  15. Ab initio study of energy loss and wake potential in the vicinity of a graphene monolayer

    NASA Astrophysics Data System (ADS)

    Despoja, V.; Dekanić, K.; Šunjić, M.; Marušić, L.

    2012-10-01

    A propagator of the dynamically screened Coulomb interaction in the vicinity of a graphene monolayer is calculated using ground-state Kohn-Sham orbitals, and the imaginary part of this propagator is used to calculate the energy-loss rate of a static blinking point charge due to excitation of electronic modes in graphene. Energy loss calculated for all (Q,ω) modes gives intensities of electronic excitations, including plasmon dispersions in graphene, with low-energy two-dimensional (2D) and high-energy π1, π2, and π+σ plasmons. Plasmon energies are in good agreement with experimental results. This spectral analysis also enables us to study the contribution of each plasmon mode to the stopping power and potential induced by a point charge moving parallel to the graphene. We find the bow waves that in pristine graphene appear for higher velocities (v≥2vF) and predominantly originate from excitation of π plasmons. Doping induces extra features which appear for lower v≈vF velocities and predominantly originate from the excitation of 2D or Drude plasmons.

  16. Impact of inward turbulence spreading on energy loss of edge-localized modes

    NASA Astrophysics Data System (ADS)

    Ma, Chenhao

    2014-10-01

    BOUT++ six-field Landau-fluid simulations show that an ELM crash has two phases: fast initial crash of ion temperature profile on the order of Alfven time scale near the peak gradient region and slow electron inward turbulence spreading from the ELM crash event. Both of them contribute to the ELM energy loss. However, the conducted ELM energy loss dominates over the convected ELM energy loss, which remains almost constant after the initial crash. The total ELM energy loss is mainly determined by the MHD turbulence spreading when the pedestal temperature height is large. The inward front propagation of electron temperature perturbation spreads into the linearly stable zone, while the ion perturbation front has much less spreading. The electron temperature fluctuation peaks on the rational surfaces and the front jumps gradually inwards towards neighboring rational surfaces. The electron wave-particle resonances via Landau closure provide a relatively strong parallel damping effect on the electron temperature perturbation and induce a large cross-phase shift of about π / 2 angle between ExB velocity and the ion temperature, which yields almost no spreading for ion temperature and density fluctuation. When pedestal temperature height increases, the cross-phase shift of electron decreases and is close to π / 4 angle which yields a large turbulence spreading and generates the large electron conducted energy loss. The front propagation stops at the position where the radial turbulent correlation length is shorter than the magnetic surface spacing. The energy burst of an ELM is controlled by the magnetic shear profile, the characteristic front propagating velocity and the turbulence correlation time. The inward turbulence spreading is mainly driven by (1) a series of micro-crashes due to a localized steepening of profile and (2) the magnetic flutter. The impact of other kinetic effects, such as full FLR effect and toroidal resonance, will be presented via simulations of

  17. Shear Stress, Energy Losses, and Costs: A Resolved Dilemma of Pulsatile Cardiac Assist Devices

    PubMed Central

    Liu, Jia; Dai, Gang; Carbognani, Daniel; Yang, Daya; Wu, Guifu; Wang, Qinmei; Chachques, Juan Carlos

    2014-01-01

    Cardiac assist devices (CAD) cause endothelial dysfunction with considerable morbidity. Employment of pulsatile CAD remains controversial due to inadequate perfusion curves and costs. Alternatively, we are proposing a new concept of pulsatile CAD based on a fundamental revision of the entire circulatory system in correspondence with the physiopathology and law of physics. It concerns a double lumen disposable tube device that could be adapted to conventional cardiopulmonary bypass (CPB) and/or CAD, for inducing a homogenous, downstream pulsatile perfusion mode with lower energy losses. In this study, the device's prototypes were tested in a simulated conventional pediatric CPB circuit for energy losses and as a left ventricular assist device (LVAD) in ischemic piglets model for endothelial shear stress (ESS) evaluations. In conclusion and according to the study results the pulsatile tube was successfully capable of transforming a conventional CPB and/or CAD steady flow into a pulsatile perfusion mode, with nearly physiologic pulse pressure and lower energy losses. This represents a cost-effective promising method with low mortality and morbidity, especially in fragile cardiac patients. PMID:24511541

  18. VizieR Online Data Catalog: Radiative recombination electron energy loss data (Mao+, 2017)

    NASA Astrophysics Data System (ADS)

    Mao, J.; Kaastra, J.; Badnell, N. R.

    2016-11-01

    The weighted electron energy loss factors (dimensionless) are defined by weighting the electron energy loss rate coefficients (per ion) with respect to the total radiative recombination rates. Both the unparameterized and parameterized weighted electron energy-loss factors for H-like to Ne-like ions from H (z=1) up to and including Zn (z=30), in a wide temperature range, are available here. For the unparameterized data set, the temperatures are set to the conventional ADAS temperature grid, i.e. c2*(10,20,50,100,200,...,2*106,5*106,107)K, where c is the ionic charge of the recombined ion. For the fitting parameters, the temperature should be in units of eV. We refer to the recombined ion when we speak of the radiative recombination of a certain ion, for example, for a bare oxygen ion capturing a free electron via radiative recombination to form H-like oxygen (O VIII, s=1, z=8). The fitting accuracies are better than 4%. (2 data files).

  19. Energy Loss Calculations for Target Thickness Determinations using SRIM and Excel

    NASA Astrophysics Data System (ADS)

    Pawlak, A. S.; Greene, J. P.

    2011-10-01

    The thickness of a thin target foil can be determined by measuring the energy loss of alpha particles that travel through it. In the Target Laboratory of the Physics Division at Argonne National Laboratory (ANL), this is accomplished by measuring the energy loss of the 5812 keV alpha particles emitted by a 2 49 Cf source using a silicon detector set-up. The energy loss is translated into the target foil thickness using the stopping power for 4He in the target material obtained from the stopping/range tables provided by SRIM. This calculation has until recently been carried out using a program developed for this purpose, ``ENELOSS.'' This program uses the stopping/range tables from the original work published by Ziegler. Additionally, due to its design, ENELOSS is unable to easily accommodate targets made from compounds. In order to perform theses measurements using the most recent SRIM data, and to better calculate the thickness of compound targets, we have developed a ``Thickness Calculation'' spreadsheet using Microsoft Excel. This spreadsheet approach is not limited to elemental targets and employs stopping/range tables from the most recent edition of SRIM available on the web. The calculations obtained allow for more accurate target thicknesses and automates the process conveniently for repetitive measurements. This work was supported by the U.S. DoE, Nuclear Physics Division, under Contract No. W-31-109-Eng-38.

  20. Energy loss process analysis for radiation degradation and immediate recovery of amorphous silicon alloy solar cells

    NASA Astrophysics Data System (ADS)

    Sato, Shin-ichiro; Beernink, Kevin; Ohshima, Takeshi

    2015-06-01

    Performance degradation of a-Si/a-SiGe/a-SiGe triple-junction solar cells due to irradiation of silicon ions, electrons, and protons are investigated using an in-situ current-voltage measurement system. The performance recovery immediately after irradiation is also investigated. Significant recovery is always observed independent of radiation species and temperature. It is shown that the characteristic time, which is obtained by analyzing the short-circuit current annealing behavior, is an important parameter for practical applications in space. In addition, the radiation degradation mechanism is discussed by analyzing the energy loss process of incident particles (ionizing energy loss: IEL, and non-ionizing energy loss: NIEL) and their relative damage factors. It is determined that ionizing dose is the primarily parameter for electron degradation whereas displacement damage dose is the primarily parameter for proton degradation. This is because the ratio of NIEL to IEL in the case of electrons is small enough to be ignored the damage due to NIEL although the defect creation ratio of NIEL is much larger than that of IEL in the cases of both protons and electrons. The impact of “radiation quality effect” has to be considered to understand the degradation due to Si ion irradiation.

  1. X-Ray Microanalysis and Electron Energy Loss Spectrometry in the Analytical Electron Microscope: Review and Future Directions

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.; Williams, D. B.

    1992-01-01

    This paper reviews and discusses future directions in analytical electron microscopy for microchemical analysis using X-ray and Electron Energy Loss Spectroscopy (EELS). The technique of X-ray microanalysis, using the ratio method and k(sub AB) factors, is outlined. The X-ray absorption correction is the major barrier to the objective of obtaining I% accuracy and precision in analysis. Spatial resolution and Minimum Detectability Limits (MDL) are considered with present limitations of spatial resolution in the 2 to 3 microns range and of MDL in the 0.1 to 0.2 wt. % range when a Field Emission Gun (FEG) system is used. Future directions of X-ray analysis include improvement in X-ray spatial resolution to the I to 2 microns range and MDL as low as 0.01 wt. %. With these improvements the detection of single atoms in the analysis volume will be possible. Other future improvements include the use of clean room techniques for thin specimen preparation, quantification available at the I% accuracy and precision level with light element analysis quantification available at better than the 10% accuracy and precision level, the incorporation of a compact wavelength dispersive spectrometer to improve X-ray spectral resolution, light element analysis and MDL, and instrument improvements including source stability, on-line probe current measurements, stage stability, and computerized stage control. The paper reviews the EELS technique, recognizing that it has been slow to develop and still remains firmly in research laboratories rather than in applications laboratories. Consideration of microanalysis with core-loss edges is given along with a discussion of the limitations such as specimen thickness. Spatial resolution and MDL are considered, recognizing that single atom detection is already possible. Plasmon loss analysis is discussed as well as fine structure analysis. New techniques for energy-loss imaging are also summarized. Future directions in the EELS technique will be

  2. Valence electron energy loss study of Fe-doped SrTiO3 and a sigma13 boundary: electronic structure and dispersion forces.

    PubMed

    van Benthem, K; French, R H; Sigle, W; Elsässer, C; Rühle, M

    2001-02-01

    Valence electron energy loss spectroscopy in a dedicated scanning transmission electron microscope has been used to obtain the interband transition strength of a sigma13 tilt grain boundary in SrTiO3. In a first step the electronic structure of bulk SrTiO3 has been analysed quantitatively by comparing VEELS spectra with vacuum ultraviolet spectra and with ab initio density of states calculations. The electronic structure of a near sigma13 grain boundary and the corresponding dispersion forces were then determined by spatially resolved VEELS. Also the effects of delocalization of the inelastic scattering processes were estimated and compared with results from the literature.

  3. Methane Output of Tortoises: Its Contribution to Energy Loss Related to Herbivore Body Mass

    PubMed Central

    Franz, Ragna; Soliva, Carla R.; Kreuzer, Michael; Hatt, Jean-Michel; Furrer, Samuel; Hummel, Jürgen; Clauss, Marcus

    2011-01-01

    An increase in body mass (M) is traditionally considered advantageous for herbivores in terms of digestive efficiency. However, recently increasing methane losses with increasing M were described in mammals. To test this pattern in non-mammal herbivores, we conducted feeding trails with 24 tortoises of various species (M range 0.52–180 kg) fed a diet of grass hay ad libitum and salad. Mean daily dry matter and gross energy intake measured over 30 consecutive days scaled to M0.75 (95%CI 0.64–0.87) and M0.77 (95%CI 0.66–0.88), respectively. Methane production was measured over two consecutive days in respiration chambers and scaled to M1.03 (95%CI 0.84–1.22). When expressed as energy loss per gross energy intake, methane losses scaled to 0.70 (95%CI 0.47–1.05) M0.29 (95%CI 0.14–0.45). This scaling overlaps in its confidence intervals to that calculated for nonruminant mammals 0.79 (95%CI 0.63–0.99) M0.15 (95%CI 0.09–0.20), but is lower than that for ruminants. The similarity between nonruminant mammals and tortoises suggest a common evolution of the gut fauna in ectotherms and endotherms, and that the increase in energetic losses due to methane production with increasing body mass is a general allometric principle in herbivores. These findings add evidence to the view that large body size itself does not necessarily convey a digestive advantage. PMID:21408074

  4. Ferroelectric polymer thin films with high energy density and low loss

    NASA Astrophysics Data System (ADS)

    Kandas, Ishac Lamei Nagiub

    Dielectric materials with large electric energy density are actively pursued for many applications. Among commercially available polymer capacitor film, poly(vinylidene fluoride chlorotrifluoroethylene) P(VDF-CTFE) stands out due to its excellent capability to store electrical energy with relatively high efficiency. In this dissertation, we employed crosslinking approaches to improve energy density of the copolymer by concurrently reducing loss, enhancing permittivity, and improving breakdown strength of the copolymer. The fundamental idea of this effort is to introduce covalent bonding between the polymer chains to confine and destabilize the formation of ferroelectric domain. By carefully controlling of the process conditions and varying the polymer/crosslinking agents feeding ratios the copolymer structures were systematically tuned for optimized dielectric and electrical properties. The crosslinking method leads to the copolymer film with impressive 64% decreased of total loss, 24% improvement of polarization level (under 250 MV/m field) and 70 % improvement of breakdown strength compared to the pristine. All of above improvements have been synergized and consequently 315 % enhancement of energy density can be achieved in the crosslinked copolymers.

  5. Radiant energy and insensible water loss in the premature newborn infant nursed under a radiant warmer.

    PubMed

    Baumgart, S

    1982-10-01

    Radiant warmers are a powerful and efficient source of heat serving to warm the cold-stressed infant acutely and to provide uninterrupted maintenance of body temperature despite a multiplicity of nursing, medical, and surgical procedures required to care for the critically ill premature newborn in today's intensive care nursery. A recognized side-effect of radiant warmer beds is the now well-documented increase in insensible water loss through evaporation from an infant's skin. Particularly the very-low-birth-weight, severely premature, and critically ill neonate is subject to this increase in evaporative water loss. The clinician caring for the infant is faced with the difficult problem of fluid and electrolyte balance, which requires vigilant monitoring of all parameters of fluid homeostasis. Compounding these difficulties, other portions of the electromagnetic spectrum (for example, phototherapy) may affect an infant's fluid metabolism by mechanisms that are not well understood. The role of plastic heat shielding in reducing large insensible losses in infants nursed on radiant warmer beds is currently under intense investigation. Apparently, convective air currents and not radiant heat energy may be the cause of the observed increase in insensible water loss in the intensive care nursery. A thin plastic blanket may be effective in reducing evaporative water loss by diminishing an infant's exposure to convective air currents while being nursed on an open radiant warmer bed. A rigid plastic body hood, although effective as a radiant heat shield, is not as effective in preventing exposure to convection in the intensive care nursery and, therefore, is not as effective as the thin plastic blanket in reducing insensible water loss. Care should be exercised in determining the effect of heat shielding on all parameters of heat exchange (convection, evaporation, and radiation) before application is made to the critically ill premature infant nursed on an open radiant

  6. Reduction in tribological energy losses in the transportation and electric utilities sectors

    SciTech Connect

    Pinkus, O.; Wilcock, D.F.; Levinson, T.M.

    1985-09-01

    This report is part of a study of ways and means of advancing the national energy conservation effort, particularly with regard to oil, via progress in the technology of tribology. The report is confined to two economic sectors: transportation, where the scope embraces primarily the highway fleets, and electric utilities. Together these two sectors account for half of the US energy consumption. Goal of the study is to ascertain the energy sinks attributable to tribological components and processes and to recommend long-range research and development (R and D) programs aimed at reducing these losses. In addition to the obvious tribological machine components such as bearings, piston rings, transmissions and so on, the study also extends to processes which are linked to tribology indirectly such as wear of machine parts, coatings of blades, high temperature materials leading to higher cycle efficiencies, attenuation of vibration, and other cycle improvements.

  7. The effect of electronic energy loss on irradiation-induced grain growth in nanocrystalline oxides.

    PubMed

    Zhang, Yanwen; Aidhy, Dilpuneet S; Varga, Tamas; Moll, Sandra; Edmondson, Philip D; Namavar, Fereydoon; Jin, Ke; Ostrouchov, Christopher N; Weber, William J

    2014-05-07

    Grain growth of nanocrystalline materials is generally thermally activated, but can also be driven by irradiation at much lower temperature. In nanocrystalline ceria and zirconia, energetic ions deposit their energy to both atomic nuclei and electrons. Our experimental results have shown that irradiation-induced grain growth is dependent on the total energy deposited, where electronic energy loss and elastic collisions between atomic nuclei both contribute to the production of disorder and grain growth. Our atomistic simulations reveal that a high density of disorder near grain boundaries leads to locally rapid grain movement. The additive effect from both electronic excitation and atomic collision cascades on grain growth demonstrated in this work opens up new possibilities for controlling grain sizes to improve functionality of nanocrystalline materials.

  8. An experimental study of energy loss mechanisms and efficiency considerations in the low power dc arcjet

    NASA Technical Reports Server (NTRS)

    Curran, F. M.

    1985-01-01

    The potential utility of the low power dc arcjet in auxiliary propulsion was investigated. It was indicated that improvements in the areas of stability, energy efficiency, reliability, and electrode erosion are necessary to obtain a useful device. A water-cooled arcjet simulator was tested to investigate both the energy loss mechanisms at the electrodes and the stability of different conventional arcjet configurations in the presence of a vortex flow field. It is shown that in certain configurations only 25 to 30 percent of the input energy is lost to the electrodes. It is also shown that vortex stabilization is not difficult to obtain in many cases at the flow rates used and that a careful starting procedure is effective in minimizing electrode damage.

  9. An experimental study of energy loss mechanisms and efficiency consideration in the low power dc arcjet

    NASA Technical Reports Server (NTRS)

    Curran, F. M.

    1985-01-01

    The potential utility of the low power dc arcjet in auxiliary propulsion was investigated. It was indicated that improvements in the areas of stability, energy efficiency, reliability, and electrode erosion are necessary to obtain a useful device. A water-cooled arcjet simulator was tested to investigate both the energy loss mechanisms at the electrodes and the stability of different conventional arcjet configurations in the presence of a vortex flow field. It is shown that in certain configurations only 25 to 30% of the input energy is lost to the electrodes. It is also shown that vortex stabilization is not difficult to obtain in many cases at the flow rates used and that a careful starting procedure is effective in minimizing electrode damage.

  10. Auger electron spectroscopy, electron loss spectroscopy and low energy electron diffraction of oxygen and carbon monoxide adsorption of Pd films

    SciTech Connect

    Vook, R.W.; De Cooman, B.C.; Vankar, V.D.

    1983-01-01

    The adsorption of oxygen and carbon monoxide at room temperature on polycrystalline and (111) monocrystalline thin films of Pd vapor deposited on mice was investigated by AES, ELS, and LEED. The results show that adsorbate coverage depends strongly on surface microstructure, composition, and topography. Polycrystalline or Cl contaminated surfaces adsorb large amounts of the gases, while flat, monocrystalline surfaces will adsorb almost none. These results are quite different from those observed earlier using sputter etched and annealed bulk single cyrstals where adsorbate superlattices formed after rather low gaseous exposures. In the present work no superlattices were observed after exposures ranging up to several thousand langmuirs. The contradictory results obtained in the two cases are attributed to probable differences in surface microtopography and microstructure.

  11. N-losses and energy use in a scenario for conversion to organic farming.

    PubMed

    Dalgaard, T; Kjeldsen, C; Hutchings, N J; Hansen, J F

    2001-11-16

    The aims of organic farming include the recycling of nutrients and organic matter and the minimisation of the environmental impact of agriculture. Reduced nitrogen (N)-losses and energy (E)-use are therefore fundamental objectives of conversion to organic farming. However, the case is not straightforward, and different scenarios for conversion to organic farming might lead to reduced or increased N-losses and E-use. This paper presents a scenario tool that uses a Geographical Information System in association with models for crop rotations, fertilisation practices, N-losses, and E-uses. The scenario tool has been developed within the multidisciplinary research project Land Use and Landscape Development Illustrated with Scenarios (ARLAS). A pilot scenario was carried out, where predicted changes in N-losses and E-uses following conversion to organic farming in areas with special interests in clean groundwater were compared. The N-surplus and E-use were on average reduced by 10 and 54%, respectively. However, these reductions following the predicted changes in crop rotations, livestock densities, and fertilisation practices were not large enough to ensure a statistically significant reduction at the 95% level. We therefore recommend further research in how conversion to organic farming or other changes in the agricultural practice might help to reduce N-surpluses and E-uses. In that context, the presented scenario tool would be useful.

  12. Displacement damage and predicted non-ionizing energy loss in GaAs

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Chen, Nanjun; Hernandez-Rivera, Efrain; Huang, Danhong; LeVan, Paul D.

    2017-03-01

    Large-scale molecular dynamics (MD) simulations, along with bond-order interatomic potentials, have been applied to study the defect production for lattice atom recoil energies from 500 eV to 20 keV in gallium arsenide (GaAs). At low energies, the most surviving defects are single interstitials and vacancies, and only 20% of the interstitial population is contained in clusters. However, a direct-impact amorphization in GaAs occurs with a high degree of probability during the cascade lifetime for Ga PKAs (primary knock-on atoms) with energies larger than 2 keV. The results reveal a non-linear defect production that increases with the PKA energy. The damage density within a cascade core is evaluated, and used to develop a model that describes a new energy partition function. Based on the MD results, we have developed a model to determine the non-ionizing energy loss (NIEL) in GaAs, which can be used to predict the displacement damage degradation induced by space radiation on electronic components. The calculated NIEL predictions are compared with the available data, thus validating the NIEL model developed in this study.

  13. A multichannel electron energy loss spectrometer for low-temperature condensed films

    SciTech Connect

    David, Donald E.; Popovic, Duska B.; Antic, Dean; Michl, Josef

    2004-12-01

    We describe a wide-gap multichannel cylindrical deflection electron energy analyzer suitable for measuring the weak signals characteristic of electronically inelastic electron energy loss spectra. The analyzer has nearly ideal fringing field termination, and its resolution and energy dispersion were characterized as a function of energy by solving numerically the equation of motion of electrons in an ideal cylindrical electric field. The numerical results for the radial location of the electrons at the detector as a function of the entrance location, angle, and energy are closely approximated by a second order polynomial, and match closely with those observed. The detection efficiency of the analyzer is 100-150 times better than that of an equivalent single-channel instrument, but limited energy transmission of the zoom lens system used in our case reduced it by a factor of about 2. The performance of the new instrument was demonstrated by measuring the {sup 3}E{sub 1u} electronic spectrum of benzene in only 2 min and the spectrum of endo-benzotricyclo[4.2.1.0{sup 2.5}]nonane.

  14. Analysis of some Nigerian solid mineral ores by energy-dispersive X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Obiajunwa, E. I.

    2001-11-01

    Determination of major, minor and trace elements in some Nigerian solid mineral ores by energy-dispersive X-ray fluorescence (EDXRF) spectroscopy is described. Concentration values of major, minor and trace elements for Z>18 are reported. The mineral ores studied include (i) tantalite-coloumbite minerals, (ii) bismuth minerals and (iii) lead minerals. The accuracy and precision of the technique for chemical analysis was assured by analysing the geological standards mica-Fe (biotite) and NBS 278 (obsidian).

  15. Energy loss straggling of (0.5 < Ep < 2.0) MeV protons in formvar

    NASA Astrophysics Data System (ADS)

    Djaroum, S.; Damache, S.; Moussa, D.; Ouichaoui, S.; Amari, L.

    2015-07-01

    Energy loss distributions for (0.5 < Ep < 2.0) MeV protons traversing polyvinyl formal have been measured in transmission. Then, they have been analyzed in order to determine energy loss straggling variance data. For avoiding non-stochastic broadenings and single collision events, only energy loss fractions within the range 2 % ⩽ ΔE/E ⩽ 20 % have been considered. The inferred energy loss straggling data are compared to values derived by several theories of the collisional energy straggling and by Yang et al. empirical formula with assuming the validity of the Bragg-Kleeman additivity rule for compounds in all the performed calculations. The obtained results are discussed with distinguishing two projectile velocity regimes delimited by the proton energy Ep ∼ 1.2 MeV. Over the high proton velocity regime, our data are in very consistent with the classical Bohr theory and the Yang et al. empirical formula predicting constant collisional energy loss straggling. It clearly appears that over the low proton velocity regime, our energy loss straggling data are in best overall quantitative agreement with values predicted by the Sigmund-Schinner binary collision stopping theory (the BCAS) involving both the shell and Barkas-Anderson corrections. Besides, the slight low energy-dependent behavior of experimental data shows to be consistent with the predictions of the Bethe-Livingston theory and the Yang et al. empirical formula.

  16. Surface effects in the energy loss of ions passing through a thin foil

    SciTech Connect

    Osma, J.

    1997-09-01

    The role of surface plasmon excitation in the interaction of ions passing through thin films has been studied in both the Bloch hydrodynamic approximation and the local response approach for projectile velocities above the maximum of the stopping power curve. The effect of the surface is found to be much weaker when the dispersion of the modes is taken into consideration than in the case of nondispersive media, though qualitatively the main features of the hydrodynamic approach resemble those of the local one. A generalization of the Bothe-Landau convolution formula for the loss probability distribution is derived to take into account the scattering due to the surface. The effects of the surface in the energy-loss spectra are discussed. A comparison with experiment is given. {copyright} {ital 1997} {ital The American Physical Society}

  17. Decoupling criterion based on limited energy loss condition for groove measurement using optical scanning microscopes

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Li, Mengzhou; Li, Qiang; Tan, Jiubin

    2016-12-01

    In confocal metrology, the lateral and axial responses are coupled in narrow regions near groove edges. This coupling results in an area with an uncertain profile, particularly for measurements of tight structures or deep grooves. In this paper, to delineate the area with measurement accuracy loss, an analytical model depicting the coupling relationships between the groove depth, the coupled portions and the NA of the objective used is introduced. Based on this model, the limited energy lost (LEL) decoupling criterion is presented that can enable users to choose suitable numerical apertures before performing measurements, predict the extents of the areas with measurement accuracy loss, and identify readout areas that yield accurate height measurements. The theory was verified by using confocal microscopes and is also applicable to far-field optical scanning metrology.

  18. Low-energy electro- and photo-emission spectroscopy of GaN materials and devices

    SciTech Connect

    Piccardo, Marco; Weisbuch, Claude; Iveland, Justin; Nakamura, Shuji; Speck, James S.; Martinelli, Lucio Peretti, Jacques; Choi, Joo Won

    2015-03-21

    In hot-electron semiconductor devices, carrier transport extends over a wide range of conduction states, which often includes multiple satellite valleys. Electrical measurements can hardly give access to the transport processes over such a wide range without resorting to models and simulations. An alternative experimental approach however exists which is based on low-energy electron spectroscopy and provides, in a number of cases, very direct and selective information on hot-electron transport mechanisms. Recent results obtained in GaN crystals and devices by electron emission spectroscopy are discussed. Using near-band-gap photoemission, the energy position of the first satellite valley in wurtzite GaN is directly determined. By electro-emission spectroscopy, we show that the measurement of the electron spectrum emitted from a GaN p-n junction and InGaN/GaN light-emitting diodes (LEDs) under electrical injection of carriers provides a direct observation of transport processes in these devices. In particular, at high injected current density, high-energy features appear in the electro-emission spectrum of the LEDs showing that Auger electrons are being generated in the active region. These measurements allow us identifying the microscopic mechanism responsible for droop which represents a major hurdle for widespread adoption of solid-state lighting.

  19. Chemical effects of lanthanides and actinides in glasses determined with electron energy loss spectroscopy

    SciTech Connect

    Fortner, J.A.; Buck, E.C.; Ellison, A.J.G.; Bates, J.K.

    1996-07-01

    Chemical and structural environments of f-electron elements in glasses are the origin of many of the important properties of materials with these elements; thus oxidation state and chemical coordination of lanthanides and actinides in host materials is an important design consideration in optically active glasses, magnetic materials, perovskite superconductors, and nuclear waste materials. We have made use of the line shapes of Ce to determine its oxidation state in alkali borosilicate glasses being developed for immobilization of Pu. Examination of several prototype waste glass compositions with EELS shows that the redox state of Ce doped to 7 wt% could be varied by suitable choice of alkali elements. EELS for a Pu-doped glass illustrate the small actinide N{sub 4}/N{sub 5} intensity ratio and show that the Pu-N{sub 4,5} white line cross section is comparable to that of Gd M{sub 4,5}.

  20. Electron Energy-Loss Spectroscopy (EELS) of Fe-bearing Sheet Silicates in CM Chondrites

    NASA Technical Reports Server (NTRS)

    Zega, Thomas J.; Garvie, Laurence A. J.; Buseck, Peter R.

    2003-01-01

    The primitive character and hydrated mineralogy of the CM chondrites offers insight into some of the earliest reactions between solids and water. Such reactions profoundly affected the matrices and fine-grained rims (FGRs) [1-4], two of the most significant components of these meteorites [5]. We are using EELS combined with a transmission electron microscope (TEM) to investigate the compositions of Fe-bearing minerals, with emphasis on determining oxidation states and quantification of oxidation-state ratios. Iron is among the most abundant elements in the solar system and it can occur naturally in three oxidation states: Fe0, Fe2+, and Fe3+. Determination of oxidation- state ratios is useful because they can be used to infer the redox conditions under which the minerals formed or were last equilibrated [6, 7]. We are particularly interested in understanding how the oxidation state of Fe was affected by the aqueous reactions of the CM chondrites.

  1. High Resolution Electron Energy Loss Spectroscopy Studies of Chemisorbed Species on Metal Surfaces

    DTIC Science & Technology

    1990-03-31

    vibrational modes at crystal surfaces, the first detection of projected bulk phonon modes by surface electron scattering and elucidation of novel properties associated with hydrogen interaction at Niobium surfaces. (jg)

  2. Dairy-Rich Diets Augment Fat Loss on an Energy-Restricted Diet: A Multicenter Trial

    PubMed Central

    Zemel, Michael B.; Teegarden, Dorothy; Loan, Marta Van; Schoeller, Dale A.; Matkovic, Velimir; Lyle, Roseann M.; Craig, Bruce A.

    2009-01-01

    A 12-week randomized controlled multi-center clinical trial was conducted in 106 overweight and obese adults. Diets were designed to produce a 2,093 kJ/day energy deficit with either low calcium (LC; ~600 mg/day), high calcium (HC; ~1,400 mg/day), or high dairy (HD; three dairy servings, diet totaling ~1,400 mg/day). Ninety-three subjects completed the trial, and 68 met all a priori weekly compliance criteria. Both HC and HD contained comparable levels of calcium, but HC was only ~30% as effective as HD in suppressing 1,25-(OH)2D and exerted no significant effects on weight loss or body composition compared to LC. In the group that met compliance criteria, HD resulted in ~two-fold augmentation of fat loss compared to LC and HC (HD: -4.43 ± 0.53 kg; LC: -2.69 ± 0.0.53 kg; HC: -2.23 ± 0.73kg, p < 0.025); assessment of all completers and an intent-to-treat analysis produced similar trends. HD augmentated central (trunk) fat loss (HD: -2.38 ± 0.30 kg; HC: -1.42 ± 0.30 kg; LC: -1.36 ± 0.42 kg, p < 0.05) and waist circumference (HD: -7.65 ± 0.75 cm; LC: -4.92 ± 0.74 cm; LC: -4.95 ± 1.05 cm, p < 0.025). Similar effects were noted among all subjects completing the study and in an intent-to-treat analysis. These data indicate that dairy-rich diets augment weight loss by targeting the fat compartment during energy restriction. PMID:22253969

  3. Relation of ultrasonic energy loss factors and constituent properties in unidirectional composites. [graphite-epxoy composite materials

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lee, S. S.; Nayebhashemi, H.

    1979-01-01

    A model is developed relating composite constituents properties with ultrasonic energy loss factors for longitudinal waves propagating in the principal directions of a unidirectional graphite/epoxy fiber composite. All the constituents are assumed to behave as linear viscoelastic materials with energy dissipation properties defined by loss factors. It is found that by introducing a new constituent called the interface material, the composite and constituent properties can be brought into consistency with simple series and parallel models. An expression relating the composite loss factors to the loss factors of the constituents is derived and its coefficients are evaluated.

  4. FGF21, energy expenditure and weight loss – How much brown fat do you need?

    PubMed Central

    Straub, Leon; Wolfrum, Christian

    2015-01-01

    Background Fibroblast growth factor 21 (FGF21) belongs to the large family of fibroblast growth factors (FGFs). Even though FGF signaling has been mainly implicated in developmental processes, recent studies have demonstrated that FGF21 is an important regulator of whole body energy expenditure and metabolism, in obesity. Scope of review Given the fact that obesity has developed epidemic proportions, not just in industrialized countries, FGF21 has emerged as a novel therapeutic avenue to treat obesity as well as associated metabolic disorders. While the metabolic effects of FGF21 are undisputed, the mechanisms by which FGF21 regulate weight loss have not yet been fully resolved. Until recently it was believed that FGF21 induces brown fat activity, thereby enhancing energy expenditure, which concomitantly leads to weight loss. Novel studies have challenged this concept as they could demonstrate that a part of the FGF21 mediated effects are retained in a mouse model of impaired brown adipose tissue function. Major conclusions The review illustrates the recent advances in FGF21 research and discusses the role of FGF21 in the regulation of energy expenditure linked to brown fat activity. PMID:26413466

  5. Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to weight-loss.

    PubMed

    Henry, Fredrick E; Sugino, Ken; Tozer, Adam; Branco, Tiago; Sternson, Scott M

    2015-09-02

    Molecular and cellular processes in neurons are critical for sensing and responding to energy deficit states, such as during weight-loss. Agouti related protein (AGRP)-expressing neurons are a key hypothalamic population that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific transcriptomics can be used to identify pathways that counteract weight-loss, and here we report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived young adult mice. For comparison, we also analyzed Proopiomelanocortin (POMC)-expressing neurons, an intermingled population that suppresses appetite and body weight. We find that AGRP neurons are considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion channels, neuropeptides, and receptors. Combined with methods to validate and manipulate these pathways, this resource greatly expands molecular insight into neuronal regulation of body weight, and may be useful for devising therapeutic strategies for obesity and eating disorders.

  6. Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to weight-loss

    PubMed Central

    Henry, Fredrick E; Sugino, Ken; Tozer, Adam; Branco, Tiago; Sternson, Scott M

    2015-01-01

    Molecular and cellular processes in neurons are critical for sensing and responding to energy deficit states, such as during weight-loss. Agouti related protein (AGRP)-expressing neurons are a key hypothalamic population that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific transcriptomics can be used to identify pathways that counteract weight-loss, and here we report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived young adult mice. For comparison, we also analyzed Proopiomelanocortin (POMC)-expressing neurons, an intermingled population that suppresses appetite and body weight. We find that AGRP neurons are considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion channels, neuropeptides, and receptors. Combined with methods to validate and manipulate these pathways, this resource greatly expands molecular insight into neuronal regulation of body weight, and may be useful for devising therapeutic strategies for obesity and eating disorders. DOI: http://dx.doi.org/10.7554/eLife.09800.001 PMID:26329458

  7. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect

    Gao, Zhiming; Finney, Charles; Daw, Charles; LaClair, Tim J.; Smith, David

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  8. Time-resolved energy transfer spectroscopy for measuring mitochondrial metabolism in living cells

    NASA Astrophysics Data System (ADS)

    Schneckenburger, Herbert; Gschwend, Michael H.; Strauss, Wolfgang S. L.; Sailer, Reinhard; Bauer, Manfred; Steiner, Rudolf W.

    1997-12-01

    Energy transfer from NADH to the mitochondrial marker rhodamine 123 (R123) was used to probe mitochondrial malfunction of cultivated endothelial cells incubated with various inhibitors of specific enzyme complexes of the respiratory chain. Pronounced differences of 'energy transfer efficacy' of incubated cells as compared to controls were deduced from the ratio of fluorescence intensity and intracellular amount of the acceptor. A combination of cw and time-gated (nanosecond) fluorescence spectroscopy appeared to be an appropriate tool for probing mitochondrial malfunction in various kinds of diseases.

  9. Microscopic energy transfer spectroscopy to determine mitochondrial malfunction in human myotubes

    NASA Astrophysics Data System (ADS)

    Gschwend, Michael H.; Strauss, Wolfgang S. L.; Brinkmeier, H.; Ruedel, R.; Steiner, Rudolf W.; Schneckenburger, Herbert

    1996-12-01

    A microscopic equipment is reported for examination of cellular autofluorescence and determination of energy transfer in vitro, which is proposed to be an appropriate tool to investigate mitochondrial malfunction. The method includes fluorescence microscopy combined with time-gated (nanosecond) fluorescence emission spectroscopy and is presently used to study mitochondrial metabolism of human myotube primary cultures Enzyme complexes of the respiratory chain, located at the inner mitochondrial membrane, were inhibited by various drugs, and fluorescence of the mitochondrial coenzyme nicotinamide adenine dinucleotide (NADH) as well as of the mitochondrial marker rhodamine 123 (R123) was examined. After inhibition of enzyme complex I (NADH-coenzyme Q reductase) by rotenone or enzyme complex III (coenzyme QH2-cytochrome c reductase) by antimycin a similar or increased NADH fluorescence was observed. In addition, energy transfer from excited states of NADH (energy donor) to R123 (energy acceptor) was deduced from a decrease of NADH fluorescence after coincubation with these inhibitors and R123. Application of microscopic energy transfer spectroscopy for diagnosis of congenital mitochondrial deficiencies is currently in preparation.

  10. Radiation and ionization energy loss simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Yan, Xin-Hu; Ye, Yun-Xiu; Chen, Jian-Ping; Lu, Hai-Jiang; Zhu, Peng-Jia; Jiang, Feng-Jian

    2015-07-01

    The radiation and ionization energy loss are presented for single arm Monte Carlo simulation for the GDH sum rule experiment in Hall-A at the Jefferson Lab. Radiation and ionization energy loss are discussed for 12C elastic scattering simulation. The relative momentum ratio \\frac{{Δ p}}{p} and 12C elastic cross section are compared without and with radiative energy loss and a reasonable shape is obtained by the simulation. The total energy loss distribution is obtained, showing a Landau shape for 12C elastic scattering. This simulation work will give good support for radiation correction analysis of the GDH sum rule experiment. Supported by National Natural Science Foundation of China (11135002, 11275083), US Department of Energy contract DE-AC05-84ER-40150 under which Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility and Natural Science Foundation of An'hui Educational Committee (KJ2012B179)

  11. Effects of inverse degree on electronic structure and electron energy-loss spectrum in zinc ferrites

    NASA Astrophysics Data System (ADS)

    Sun, D.; Wang, M. X.; Zhang, Z. H.; Tao, H. L.; He, M.; Song, B.; Li, Q.

    2015-12-01

    First-principles calculations were performed to study the effects of inverse degree in zinc ferrite on electronic structure and properties. The electron energy-loss near-edge fine structure (ELNES) were simulated, and the splitting of peak and intensities of the oxygen K-edges can be used to identify the inversion of zinc ferrite. More Fe3+ transferring from the octahedral sites to the tetrahedral sites lead to the changing of the ligand shells surrounding the absorbing atom, accounting for the observed changing in ELNES. The standard criterion for determining the reversal extent of the cations in zinc ferrite by ELNES was given.

  12. Subsurface-channeling-like energy loss structure of the skipping motion on an ionic crystal.

    PubMed

    Villette, J; Borisov, A G; Khemliche, H; Momeni, A; Roncin, P

    2000-10-09

    The skipping motion of Ne+ ions in grazing scattering from the LiF(001) surface is studied for velocity below 0.1 a.u. with a time-of-flight technique. It is demonstrated that suppression of electronic excitation and dominance of optical phonon excitation in the projectile stopping results in an odd 1,3,5,... progression of the energy loss peaks, a feature usually ascribed to subsurface channeling. The experimental findings are well reproduced by parameter-free model calculations where thermal vibrations are the dominant cause for the ion trapping and detrapping.

  13. A computer model of the energy-current loss instabilities in a recirculating accelerator system

    NASA Astrophysics Data System (ADS)

    Edighoffer, J. A.; Kim, K.-J.

    1995-04-01

    The computer program called ESRA (energy stability in a recirculating accelerator FELs) has been written to model bunches of particles in longitudinal phase space traversing a recirculating accelerator and the associated rf changes and aperture current losses. This code addresses stability issues and determines the transport, noise, feedback and other parameters for which these FEL systems are stable or unstable. A representative system is modeled, the Novosibirisk high power FEL race-track microtron for photochemical research. The system is stable with prudent choice of parameters.

  14. Electron emission and energy loss in grazing collisions of protons with insulator surfaces

    SciTech Connect

    Gravielle, M. S.; Miraglia, J. E.; Aldazabal, I.; Aumayr, F.; Lederer, S.; Winter, H.

    2007-07-15

    Electron emission from LiF, KCl, and KI crystal surfaces during grazing collisions of swift protons is studied using a first-order distorted-wave formalism. Owing to the localized character of the electronic structure of these surfaces, we propose a model that allows us to describe the process as a sequence of atomic transitions from different target ions. Experimental results are presented for electron emission from LiF and KI and energy loss from KI surfaces. Calculations show reasonable agreement with these experimental data. The role played by the charge of the incident particle is also investigated.

  15. The relation between the electron energy loss spectra of hafnia and its dielectric function

    NASA Astrophysics Data System (ADS)

    Vos, Maarten; Grande, Pedro Luis

    2014-12-01

    Recently two papers have been published deriving the dielectric function from hafnia from electron energy loss data (Jin et al. Applied Physics Letters 100 083713 (2006), Behar et al. Phys. Rev A. 80 062901 (2009)). The obtained dielectric functions are compared in their optical limit and differ considerably. Here we try to clarify the situation by presenting new experimental data and review the analysis procedure used in the earlier work. We conclude that the discrepancy is most likely caused by a shortcoming in the way that the momentum-dependence of the dielectric function is modelled.

  16. Electronic energy loss spectra from mono-layer to few layers of phosphorene

    NASA Astrophysics Data System (ADS)

    Mohan, Brij; Thakur, Rajesh; Ahluwalia, P. K.

    2016-05-01

    Using first principles calculations, electronic and optical properties of few-layers phosphorene has been investigated. Electronic band structure show a moderate band gap of 0.9 eV in monolayer phosphorene which decreases with increasing number of layers. Optical properties of few-layers of phosphorene in infrared and visible region shows tunability with number of layers. Electron energy loss function has been plotted and huge red shift in plasmonic behaviours is found. These tunable electronic and optical properties of few-layers of phosphorene can be useful for the applications of optoelectronic devices.

  17. Dielectric properties of WS2-coated multiwalled carbon nanotubes studied by energy-loss spectroscopic profiling

    NASA Astrophysics Data System (ADS)

    Stolojan, Vlad; Silva, S. R. P.; Goringe, Michael J.; Whitby, R. L. D.; Hsu, Wang K.; Walton, D. R. M.; Kroto, Harold W.

    2005-02-01

    We investigate experimentally the electronic properties of the coating for multiwalled carbon nanotubes covered in tungsten disulfide (WS2) of various thicknesses. Coatings of thicknesses between 2 and 8 monolayers (ML) are analyzed using energy-loss spectroscopic profiling (ELSP), by studying the variations in the plasmon excitations across the coated nanotube, as a function of the coating thickness. We find a change in the ELSP for coatings above 5 ML thickness, which we interpret in terms of a change in its dielectric properties.

  18. Daily energy expenditure, physical activity, and weight loss in Parkinson's disease patients.

    PubMed

    Delikanaki-Skaribas, Evangelia; Trail, Marilyn; Wong, William Wai-Lun; Lai, Eugene C

    2009-04-15

    Patients with Parkinson's disease (PD) commonly exhibit weight loss (WL) which investigators attribute to various factors, including elevated energy expenditure. We tested the hypothesis that daily energy expenditure (DEE) and its components, resting energy expenditure (REE) and physical activity (PA) energy expenditure (PAEE), are elevated in WL compared with weight stable (WS) PD patients. We measured DEE in 10 PD WL patients and 10 PD WS patients using doubly labeled water (DLW). PAEE was estimated with DLW, activity monitors, and activity questionnaires. REE was measured with indirect calorimetry. We evaluated energy intake (EI) with a patient's 3-day food diary. Data was assessed employing SPSS, Spearman correlation coefficients, and Bland and Altman plots. There was no difference in DEE between the WL and WS groups measured with DLW. There were no differences in REE and EI between groups. DEE (r = 0.548, P < 0.05) and PAEE (r = 0.563, P < 0.01) are related with caloric intake. The WL group had higher PA than the WS group (P < 0.042) only when measured with wrist activity monitors. Results suggest that WL in PD patients cannot be fully explained by an increase in DEE. Large longitudinal studies to examine multiple relationships between variables might provide us with a better understanding of WL among PD patients.

  19. Monitoring heat energy transfer in condensed phases using ultrafast transient spectroscopies

    NASA Astrophysics Data System (ADS)

    Dang, Nhan; Gottfried, Jennifer

    2015-06-01

    The primary motivation for this work is the desire to observe the initial evolution of temperature transfer into a solid explosive on the picosecond timescale following indirect ultrafast flash heating, which may provide insight the role of temperature in the shock-induced initiation mechanism in explosives. In this presentation, we describe the methods of indirect flash heating on glass-gold-sample substrates using femtosecond laser pulses; and the methods of monitoring the sample response under the influence of the heat transferred from the heated gold layer through the sample using time-resolved visible transient absorption (TA) spectroscopy and coherent Raman spectroscopies. Data presented here are the evolution of heat energy transfer in a drop-cast thin film of unreacted cyclotrimethylene trinitramine (RDX) monitored using visible TA and surface-enhanced coherent anti-Stokes Raman spectroscopy. The method of nonequilibrium temperature measurement using femtosecond-stimulated Raman spectroscopy reported in will be also discussed here for the application of monitoring and measuring temperature in real-time.

  20. Electronic Energy Loss of the Partially Stripped Boron-Like and Carbon-Like Fast Ions

    NASA Astrophysics Data System (ADS)

    Gümüs, H.; Özalp, C.; Köroglu, A.

    2001-04-01

    An analytical formula of the electronic stopping power expression in this study was derived for swift boron-like and carbon-like ions by using first-order perturbation theory and frozen-charge-state model. The Hartree-- Fock--Slater determinant was used for the description of the bound electrons attached to ions in the ground state and orbital-screening parameter was determined by variational method. The calculated ground state energies in this study were compared with the results of Clementi--Roetti and they are in good agreement with 5%. It has been observed that the difference of energy loss for boron-like and carbon-like projectiles in a frozen-charge state increases as an atomic number increases. Furthermore, the analytical expression of the effective charge of boron-like and carbon-like projectiles was derived.

  1. Optimal heading change with minimum energy loss for a hypersonic gliding vehicle

    NASA Astrophysics Data System (ADS)

    Calise, Anthony J.; Bae, Gyoung H.

    A three state model is presented for analyzing the problem of optimal changes in heading with minimum energy loss for a hypersonic gliding vehicle. A further model order reduction to a single state model is examined using singular perturbation theory. The optimal solution for the reduced problem defines an optimal altitude profile dependent on the current energy of the vehicle, and the corresponding optimal lift and bank angle. A separate boundary layer analysis, based on an expansion of the necessary conditions about the reduced solution, is used to account for altitude and flight path angle dynamics and to derive a guidance law in feedback form. The guidance law is evaluated for a hypothetical vehicle.

  2. Optimal heading change with minimum energy loss for a hypersonic gliding vehicle

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Bae, Gyoung H.

    1987-01-01

    A three state model is presented for analyzing the problem of optimal changes in heading with minimum energy loss for a hypersonic gliding vehicle. A further model order reduction to a single state model is examined using singular perturbation theory. The optimal solution for the reduced problem defines an optimal altitude profile dependent on the current energy of the vehicle, and the corresponding optimal lift and bank angle. A separate boundary layer analysis, based on an expansion of the necessary conditions about the reduced solution, is used to account for altitude and flight path angle dynamics and to derive a guidance law in feedback form. The guidance law is evaluated for a hypothetical vehicle.

  3. Charge-state-dependent energy loss of slow ions. II. Statistical atom model

    NASA Astrophysics Data System (ADS)

    Wilhelm, Richard A.; Möller, Wolfhard

    2016-05-01

    A model for charge-dependent energy loss of slow ions is developed based on the Thomas-Fermi statistical model of atoms. Using a modified electrostatic potential which takes the ionic charge into account, nuclear and electronic energy transfers are calculated, the latter by an extension of the Firsov model. To evaluate the importance of multiple collisions even in nanometer-thick target materials we use the charge-state-dependent potentials in a Monte Carlo simulation in the binary collision approximation and compare the results to experiment. The Monte Carlo results reproduce the incident charge-state dependence of measured data well [see R. A. Wilhelm et al., Phys. Rev. A 93, 052708 (2016), 10.1103/PhysRevA.93.052708], even though the experimentally observed charge exchange dependence is not included in the model.

  4. Comparison between Monte Carlo and experimental aluminum and silicon electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Dapor, Maurizio; Calliari, Lucia; Scarduelli, Giorgina

    2011-07-01

    A Monte Carlo (MC) simulation is described and used to calculate the energy distribution spectra of backscattered electrons from Al and Si. For the simulations, elastic scattering cross sections are calculated by numerically solving the Dirac equation in a central field. Inelastic scattering cross sections are computed within the dielectric response theory developed by Ritchie, and by Tung et al. Extension from the optical case to non-zero momentum transfer is done according to Ritchie and Howie. To evaluate surface and bulk contributions to the spectra, the Monte Carlo model treats the surface excitations according to the Werner differential surface and volume excitation probability theory. The Monte Carlo calculations are compared with the experimental reflection electron energy loss (REEL) spectra acquired in our laboratory.

  5. Distortion-triggered loss of long-range order in solids with bonding energy hierarchy.

    PubMed

    Kolobov, A V; Krbal, M; Fons, P; Tominaga, J; Uruga, T

    2011-04-01

    An amorphous-to-crystal transition in phase-change materials like Ge-Sb-Te is widely used for data storage. The basic principle is to take advantage of the property contrast between the crystalline and amorphous states to encode information; amorphization is believed to be caused by melting the materials with an intense laser or electrical pulse and subsequently quenching the melt. Here, we demonstrate that distortions in the crystalline phase may trigger a collapse of long-range order, generating the amorphous phase without going through the liquid state. We further show that the principal change in optical properties occurs during the distortion of the still crystalline structure, upsetting yet another commonly held belief that attributes the change in properties to the loss of long-range order. Furthermore, our results suggest a way to lower energy consumption by condensing phase change inducing energy into shorter pulses or through the use of coherent phonon excitation.

  6. Implications of Postharvest Food Loss/Waste Prevention to Energy and Resources Conservation

    NASA Astrophysics Data System (ADS)

    Cai, X.; Shafiee-Jood, M.

    2015-12-01

    World's growing demand for food is driven by population and income growth, dietary changes, and the ever-increasing competition between food, feed and bioenergy challenges food security; meanwhile agricultural expansion and intensification threats the environment by the various detrimental impacts. Researchers have attempted to explore strategies to overcome this grand challenge. One of the promising solutions that have attracted considerable attention recently is to increase the efficiency of food supply chain by reducing food loss and waste (FLW). According to recent studies conducted by Food and Agriculture Organization (FAO), United Nation, almost one third of the food produced for human consumption globally is lost or wasted along the food supply chain. This amount of food discarded manifests a missing, yet potential, opportunity to sustainably enhance both food security and environmental sustainability. However, implementing the strategies and technologies for tackling FLW does not come up as an easy solution since it requires economic incentives, benefit and cost analysis, infrastructure development, and appropriate market mechanism. In this presentation I will provide a synthesis of knowledge on the implications of postharvest food loss/waste prevention to energy and resource conservation, environmental protection, as well as food security. I will also discuss how traditional civil and environmental engineering can contribute to the reduction of postharvest food loss, an important issue of sustainable agriculture.

  7. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy

    SciTech Connect

    Cortesi, M.; Prasser, H.-M.; Dangendorf, V.; Zboray, R.

    2014-07-15

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  8. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy.

    PubMed

    Cortesi, M; Dangendorf, V; Zboray, R; Prasser, H-M

    2014-07-01

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  9. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Cortesi, M.; Dangendorf, V.; Zboray, R.; Prasser, H.-M.

    2014-07-01

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  10. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    DOE PAGES

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; ...

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions« less

  11. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  12. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy.

    PubMed

    Dong, Hui; Lewis, Nicholas H C; Oliver, Thomas A A; Fleming, Graham R

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  13. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions

  14. FAR-INFRARED SPECTROSCOPY OF CATIONIC POLYCYCLIC AROMATIC HYDROCARBONS: ZERO KINETIC ENERGY PHOTOELECTRON SPECTROSCOPY OF PENTACENE VAPORIZED FROM LASER DESORPTION

    SciTech Connect

    Zhang Jie; Han Fangyuan; Pei Linsen; Kong Wei; Li Aigen

    2010-05-20

    The distinctive set of infrared (IR) emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 {mu}m are ubiquitously seen in a wide variety of astrophysical environments. They are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. However, not a single PAH species has yet been identified in space, as the mid-IR vibrational bands are mostly representative of functional groups and thus do not allow one to fingerprint individual PAH molecules. In contrast, the far-IR (FIR) bands are sensitive to the skeletal characteristics of a molecule, hence they are important for chemical identification of unknown species. With an aim to offer laboratory astrophysical data for the Herschel Space Observatory, Stratospheric Observatory for Infrared Astronomy, and similar future space missions, in this work we report neutral and cation FIR spectroscopy of pentacene (C{sub 22}H{sub 14}), a five-ring PAH molecule. We report three IR active modes of cationic pentacene at 53.3, 84.8, and 266 {mu}m that may be detectable by space missions such as the SAFARI instrument on board SPICA. In the experiment, pentacene is vaporized from a laser desorption source and cooled by a supersonic argon beam. We have obtained results from two-color resonantly enhanced multiphoton ionization and two-color zero kinetic energy photoelectron (ZEKE) spectroscopy. Several skeletal vibrational modes of the first electronically excited state of the neutral species and those of the cation are assigned, with the aid of ab initio and density functional calculations. Although ZEKE is governed by the Franck-Condon principle different from direct IR absorption or emission, vibronic coupling in the long ribbon-like molecule results in the observation of a few IR active modes. Within the experimental resolution of {approx}7 cm{sup -1}, the frequency values from our calculation agree with the experiment for the cation, but differ for the electronically excited intermediate state. Consequently, modeling of the

  15. Energy resolved electrochemical impedance spectroscopy for electronic structure mapping in organic semiconductors

    SciTech Connect

    Nádaždy, V. Gmucová, K.; Schauer, F.

    2014-10-06

    We introduce an energy resolved electrochemical impedance spectroscopy method to map the electronic density of states (DOS) in organic semiconductor materials. The method consists in measurement of the charge transfer resistance of a semiconductor/electrolyte interface at a frequency where the redox reactions determine the real component of the impedance. The charge transfer resistance value provides direct information about the electronic DOS at the energy given by the electrochemical potential of the electrolyte, which can be adjusted using an external voltage. A simple theory for experimental data evaluation is proposed, along with an explanation of the corresponding experimental conditions. The method allows mapping over unprecedentedly wide energy and DOS ranges. Also, important DOS parameters can be determined directly from the raw experimental data without the lengthy analysis required in other techniques. The potential of the proposed method is illustrated by tracing weak bond defect states induced by ultraviolet treatment above the highest occupied molecular orbital in a prototypical σ-conjugated polymer, poly[methyl(phenyl)silylene]. The results agree well with those of our previous DOS reconstruction by post-transient space-charge-limited-current spectroscopy, which was, however, limited to a narrow energy range. In addition, good agreement of the DOS values measured on two common π-conjugated organic polymer semiconductors, polyphenylene vinylene and poly(3-hexylthiophene), with the rather rare previously published data demonstrate the accuracy of the proposed method.

  16. Phenotypic vulnerability of energy balance responses to sleep loss in healthy adults

    PubMed Central

    Spaeth, Andrea M.; Dinges, David F.; Goel, Namni

    2015-01-01

    Short sleep duration is a risk factor for increased hunger and caloric intake, late-night eating, attenuated fat loss when dieting, and for weight gain and obesity. It is unknown whether altered energy-balance responses to sleep loss are stable (phenotypic) over time, and the extent to which individuals differ in vulnerability to such responses. Healthy adults experienced two laboratory exposures to sleep restriction separated by 60–2132 days. Caloric intake, meal timing and weight were objectively measured. Although there were substantial phenotypic differences among participants in weight gain, increased caloric intake, and late-night eating and fat intake, responses within participants showed stability across sleep restriction exposures. Weight change was consistent in both normal-weight and overweight adults. Weight change and increased caloric intake were more stable in men whereas late-night eating was consistent in both genders. This is the first evidence of phenotypic differential vulnerability and trait-like stability of energy balance responses to repeated sleep restriction, underscoring the need for biomarkers and countermeasures to predict and mitigate this vulnerability. PMID:26446681

  17. Compositions and chemical bonding in ceramics by quantitative electron energy-loss spectrometry

    SciTech Connect

    Bentley, J.; Horton, L.L.; McHargue, C.J.; McKernan, S.; Carter, C.B.; Revcolevschi, A.; Tanaka, S.; Davis, R.F.

    1993-12-31

    Quantitative electron energy-loss spectrometry was applied to a range of ceramic materials at a spatial resolution of <5 nm. Analysis of Fe L{sub 23} white lines indicated a low-spin state with a charge transfer of {approximately}1.5 electrons/atom onto the Fe atoms implanted into (amorphized) silicon carbide. Gradients of 2 to 5% in the Co:O stoichiometry were measured across 100-nm-thick Co{sub 3}O{sub 4} layers in an oxidized directionally solidified CoO-ZrO{sub 2} eutectic, with the highest O levels near the ZrO{sub 2}. The energy-loss near-edge structures were dramatically different for the two cobalt oxides; those for CO{sub 3}O{sub 4} have been incorrectly ascribed to CoO in the published literature. Kinetically stabilized solid solubility occurred in an AlN-SiC film grown by low-temperature molecular beam epitaxy (MBE) on {alpha}(6H)-SiC, and no detectable interdiffusion occurred in couples of MBE-grown AlN on SiC following annealing at up to 1750C. In diffusion couples of polycrystalline AlN on SiC, interfacial 8H sialon (aluminum oxy-nitride) and pockets of Si{sub 3}N{sub 4}-rich {beta}{prime} sialon in the SiC were detected.

  18. On the diversity of compact objects within supernova remnants - II. Energy-loss mechanisms

    NASA Astrophysics Data System (ADS)

    Rogers, Adam; Safi-Harb, Samar

    2017-02-01

    Energy losses from isolated neutron stars are commonly attributed to the emission of electromagnetic radiation from a rotating point-like magnetic dipole in vacuum. This emission mechanism predicts a braking index n = 3, which is not observed in highly magnetized neutron stars. Despite this fact, the assumptions of a dipole field and rapid early rotation are often assumed a priori, typically causing a discrepancy between the characteristic age and the associated supernova remnant (SNR) age. We focus on neutron stars with `anomalous' magnetic fields that have established SNR associations and known ages. Anomalous X-ray pulsars (AXPs) and soft gamma repeaters (SGRs) are usually described in terms of the magnetar model that posits a large magnetic field established by dynamo action. The high magnetic field pulsars (HBPs) have extremely large magnetic fields just above quantum electrodynamics scale (but below that of the AXPs and SGRs), and central compact objects (CCOs) may have buried fields that will emerge in the future as nascent magnetars. In the first part of this series, we examined magnetic field growth as a method of uniting the CCOs with HBPs and X-ray dim isolated neutron stars (XDINSs) through evolution. In this work, we constrain the characteristic age of these neutron stars using the related SNR age for a variety of energy-loss mechanisms and allowing for arbitrary initial spin periods. In addition to the SNR age, we also use the observed braking indices and X-ray luminosities to constrain the models.

  19. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    DOE PAGES

    Gao, Zhiming; Finney, Charles; Daw, Charles; ...

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energymore » (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.« less

  20. Complex suppression patterns distinguish between major energy loss effects in Quark-Gluon Plasma

    NASA Astrophysics Data System (ADS)

    Djordjevic, Magdalena

    2016-12-01

    Interactions of high momentum partons with Quark-Gluon Plasma created in relativistic heavy-ion collisions provide an excellent tomography tool for this new form of matter. Recent measurements for charged hadrons and unidentified jets at the LHC show an unexpected flattening of the suppression curves at high momentum, exhibited when either momentum or the collision centrality is changed. Furthermore, a limited data available for B probes indicate a qualitatively different pattern, as nearly the same flattening is exhibited for the curves corresponding to two opposite momentum ranges. We here show that the experimentally measured suppression curves are well reproduced by our theoretical predictions, and that the complex suppression patterns are due to an interplay of collisional, radiative energy loss and the dead-cone effect. Furthermore, for B mesons, we predict that the uniform flattening of the suppression indicated by the limited dataset is in fact valid across the entire span of the momentum ranges, which will be tested by the upcoming experiments. Overall, the study presented here, provides a rare opportunity for pQCD theory to qualitatively distinguish between the major energy loss mechanisms at the same (nonintuitive) dataset.

  1. Bodybuilding, Energy, and Weight-Loss Supplements are Associated with Deployment and Physical Activity in U.S. Military Personnel

    DTIC Science & Technology

    2012-05-01

    the herbal weight-loss supplement hydroxycut. Ann Intern Med. 2005;142:477–478. 22. Baum M, Weiss M. The influence of a taurine containing drink on...Naval Health Research Center Bodybuilding, Energy, and Weight-Loss Supplements Are Associated With Deployment and Physical Activity in U.S...Weight-Loss Supplements Are Associated With Deployment and Physical Activity in U.S. Military Personnel ISABEL G. JACOBSON, MPH, JAIME L. HORTON, BS

  2. Thermal Energy Exchange Model and Water Loss of a Barrel Cactus, Ferocactus acanthodes.

    PubMed

    Lewis, D A; Nobel, P S

    1977-10-01

    The influences of various diurnal stomatal opening patterns, spines, and ribs on the stem surface temperature and water economy of a CAM succulent, the barrel cactus Ferocactus acanthodes, were examined using an energy budget model. To incorporate energy exchanges by shortwave and longwave irradiation, latent heat, conduction, and convection as well as the heat storage in the massive stem, the plant was subdivided into over 100 internal and external regions in the model. This enabled the average surface temperature to be predicted within 1 C of the measured temperature for both winter and summer days.Reducing the stem water vapor conductance from the values observed in the field to zero caused the average daily stem surface temperature to increase only 0.7 C for a winter day and 0.3 C for a summer day. Thus, latent heat loss does not substantially reduce stem temperature. Although the surface temperatures averaged 18 C warmer for the summer day than for the winter day for a plant 41 cm tall, the temperature dependence of stomatal opening caused the simulated nighttime water loss rates to be about the same for the 2 days.Spines moderated the amplitude of the diurnal temperature changes of the stem surface, since the daily variation was 17 C for the winter day and 25 C for the summer day with spines compared with 23 C and 41 C, respectively, in their simulated absence. Ribs reduced the daytime temperature rise by providing 54% more area for convective heat loss than for a smooth circumscribing surface. In a simulation where both spines and ribs were eliminated, the daytime average surface temperature rose by 5 C.

  3. Thermal Energy Exchange Model and Water Loss of a Barrel Cactus, Ferocactus acanthodes1

    PubMed Central

    Lewis, Donald A.; Nobel, Park S.

    1977-01-01

    The influences of various diurnal stomatal opening patterns, spines, and ribs on the stem surface temperature and water economy of a CAM succulent, the barrel cactus Ferocactus acanthodes, were examined using an energy budget model. To incorporate energy exchanges by shortwave and longwave irradiation, latent heat, conduction, and convection as well as the heat storage in the massive stem, the plant was subdivided into over 100 internal and external regions in the model. This enabled the average surface temperature to be predicted within 1 C of the measured temperature for both winter and summer days. Reducing the stem water vapor conductance from the values observed in the field to zero caused the average daily stem surface temperature to increase only 0.7 C for a winter day and 0.3 C for a summer day. Thus, latent heat loss does not substantially reduce stem temperature. Although the surface temperatures averaged 18 C warmer for the summer day than for the winter day for a plant 41 cm tall, the temperature dependence of stomatal opening caused the simulated nighttime water loss rates to be about the same for the 2 days. Spines moderated the amplitude of the diurnal temperature changes of the stem surface, since the daily variation was 17 C for the winter day and 25 C for the summer day with spines compared with 23 C and 41 C, respectively, in their simulated absence. Ribs reduced the daytime temperature rise by providing 54% more area for convective heat loss than for a smooth circumscribing surface. In a simulation where both spines and ribs were eliminated, the daytime average surface temperature rose by 5 C. PMID:16660148

  4. Z1/3/ contribution to the energy loss of heavy charged particles

    NASA Technical Reports Server (NTRS)

    Morgan, S. H., Jr.; Sung, C. C.

    1979-01-01

    The Z1(3) contribution of distant collisions to the average energy loss of heavy charged particles is obtained by extending Bethe's quantum-mechanical calculation to the next highest order in Z1. The second-order Born approximation for the inelastic-collision cross section is simplified by using two major approximations. The infinite summation over terms arising from the coupling to intermediate states of the target atom is approximated with the aid of a parameter and the closure relation. This parameter is proportional to the average excitation energy of the intermediate states as described in the literature. The atomic form factors are simplified through a dipole expansion. Results are obtained in terms of an average excitation energy of the medium. Exemplary results for stopping in Al are presented for estimated values of the average excitation energy of the intermediate states. These results approach the classical and experimental values as the velocity of the penetrating particle increases, agreeing within 20% at beta = 0.3.

  5. Food stress prompts dispersal behavior in apterous pea aphids: do activated aphids incur energy loss?

    PubMed

    Tabadkani, Seyed Mohammad; Ahsaei, Seyed Mohammad; Hosseininaveh, Vahid; Nozari, Jamasb

    2013-02-17

    The pea aphid, Acyrthosiphon pisum (Hem: Aphididae), has been repeatedly used as a model species in a wide range of biological studies including genetics, ecology, physiology, and behavior. When red pea aphids feed on low quality plants in crowded conditions, some individuals lose their color shade and become pale yellowish, while other individuals on the same host plants remain changeless. The pale aphids have been shown to walk significantly faster and migrate more frequently to neighboring plants compared to the original red ones. We hypothesized that the color change and higher activity of pale aphids are directly associated with their suboptimal nutritional status. We showed that the pale aphids have significantly lower wet and dry weights than red ones. Analyses of energy reserves in individual aphids revealed that the pale aphids suffer a significant loss in their lipid and soluble carbohydrate contents. Our results provide a strong link between host quality, body color, dispersal rate, and energy reserves of pea aphids. Apparently, utilization of energy reserves resulted from an imbalance in food sources received by the aphids stimulates them to walk more actively to find new hosts and restore their lost energy. This reversible shift enables aphids to quickly respond to deprived host plants much earlier than the appearance of winged morph and restore their original status when they find appropriate host.

  6. Detailed Monte Carlo Simulation of electron transport and electron energy loss spectra.

    PubMed

    Attarian Shandiz, M; Salvat, F; Gauvin, R

    2016-11-01

    A computer program for detailed Monte Carlo simulation of the transport of electrons with kinetic energies in the range between about 0.1 and about 500 keV in bulk materials and in thin solid films is presented. Elastic scattering is described from differential cross sections calculated by the relativistic (Dirac) partial-wave expansion method with different models of the scattering potential. Inelastic interactions are simulated from an optical-data model based on an empirical optical oscillator strength that combines optical functions of the solid with atomic photoelectric data. The generalized oscillator strength is built from the adopted optical oscillator strength by using an extension algorithm derived from Lindhard's dielectric function for a free-electron gas. It is shown that simulated backscattering fractions of electron beams from bulk (semi-infinite) specimens are in good agreement with experimental data for beam energies from 0.1 keV up to about 100 keV. Simulations also yield transmitted and backscattered fractions of electron beams on thin solid films that agree closely with measurements for different film thicknesses and incidence angles. Simulated most probable deflection angles and depth-dose distributions also agree satisfactorily with measurements. Finally, electron energy loss spectra of several elemental solids are simulated and the effects of the beam energy and the foil thickness on the signal to background and signal to noise ratios are investigated. SCANNING 38:475-491, 2016. © 2015 Wiley Periodicals, Inc.

  7. Navigating membrane protein structure, dynamics, and energy landscapes using spin labeling and EPR spectroscopy

    PubMed Central

    Claxton, Derek P; Kazmier, Kelli; Mishra, Smriti; Mchaourab, Hassane S

    2017-01-01

    A detailed understanding of the functional mechanism of a protein entails the characterization of its energy landscape. Achieving this ambitious goal requires the integration of multiple approaches including determination of high resolution crystal structures, uncovering conformational sampling under distinct biochemical conditions, characterizing the kinetics and thermodynamics of transitions between functional intermediates using spectroscopic techniques, and interpreting and harmonizing the data into novel computational models. With increasing sophistication in solution-based and ensemble-oriented biophysical approaches such as electron paramagnetic resonance (EPR) spectroscopy, atomic resolution structural information can be directly linked to conformational sampling in solution. Here, we detail how recent methodological and technological advances in EPR spectroscopy have contributed to the elucidation of membrane protein mechanisms. Furthermore, we aim to assist investigators interested in pursuing EPR studies by providing an introduction to the technique, a primer on experimental design, and a description of the practical considerations of the method towards generating high quality data. PMID:26477257

  8. In Situ Soft X-ray Spectroscopy Characterization of Interfacial Phenomena in Energy Materials and Devices

    NASA Astrophysics Data System (ADS)

    Guo, Jinghua; Liu, Yi-Sheng; Kapilashrami, Mukes; Glans, Per-Anders; Bora, Debajeet; Braun, Artur; Velasco Vélez, Juan Jesús; Salmeron, Miquel; ALS/LBNL Team; EMPA, MSD/LBNL Collaboration

    2015-03-01

    Advanced energy technology arises from the understanding in basic science, thus rest in large on in-situ/operando characterization tools for observing the physical and chemical interfacial processes, which has been largely limited in a framework of thermodynamic and kinetic concepts or atomic and nanoscale. In many important energy systems such as energy conversion, energy storage and catalysis, advanced materials and functionality in devices are based on the complexity of material architecture, chemistry and interactions among constituents within. To understand and thus ultimately control the energy conversion and energy storage applications calls for in-situ/operando characterization tools. Soft X-ray spectroscopy offers a number of very unique features. We will present our development of the in-situ/operando soft X-ray spectroscopic tools of catalytic and electrochemical reactions in recent years, and reveal how to overcome the challenge that soft X-rays cannot easily peek into the high-pressure catalytic cells or liquid electrochemical cells. In this presentation a number of examples are given, including the nanocatalysts and the recent experiment performed for studying the hole generation in a specifically designed photoelectrochemical cell under operando conditions. The ALS is supported by the the U.S. Department of Energy.

  9. Energy level alignment between C 60 and Al using ultraviolet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Seo, J. H.; Kang, S. J.; Kim, C. Y.; Cho, S. W.; Yoo, K.-H.; Whang, C. N.

    2006-09-01

    The energy level alignment between C 60 and Al has been investigated by using ultraviolet photoelectron spectroscopy. To obtain the interfacial electronic structure between C 60 and Al, C 60 was deposited on a clean Al substrate in a stepwise manner. The valence-band spectra were measured immediately after each step of C 60 deposition without breaking the vacuum. The measured onset of the highest occupied molecular orbital energy level was located at 1.59 eV from the Fermi level of Al. The vacuum level was shifted 0.68 eV toward lower binding energy with additional C 60 layers. The observed vacuum level shift means that the interface dipole exists at the interface between C 60 and Al. The barrier height of electron injection from Al to C 60 is 0.11 eV, which is smaller value than that of hole injection.

  10. Angular dependence of the electron energy loss spectra from a clean and adsorbate covered W(001) surface

    NASA Astrophysics Data System (ADS)

    Avery, N. R.

    1981-11-01

    A dispersion analysis of the EELS from a W(001) surface in the range 1 < ΔE < 35 eV has been performed and compared with recent and complete optical data for tungsten. The non-dispersive ( k ˜ 0) EELS correlated well with a combination of the surface and bulk loss functions calculated from the optical data. Losses at 1-5 eV and a pair at 32 and 34.5 eV were assigned to interband and N 6,7 core ionization excitations respectively. The principal bulk and surface plasmon losses were identified at 24.0 and 20.3 eV respectively. Two further losses at 14.0 and 9.6 eV were also observed and assigned to subsidiary plasmon losses. All four plasmon losses showed only minimal energy dispersion, never exceeding 1.5 eV. A momentum selectivity for separating bulk and surface interband losses was demonstrated with the non-dispersive losses arising from excitations within the bulk even with incident energies as low as 88 eV, whereas their dispersive counterparts were extremely sensitive to the chemical state of the surface. New adsorbate derived losses which develop during adsorption were associated with excitations from the new deep lying adsorbate levels to final state levels at or near the Fermi level. It was concluded that this final state was also responsible for the N 6,7 ionization losses.

  11. Channeling effects observed in energy-loss spectra of nitrogen ions scattered off a Pt(110) surface

    NASA Astrophysics Data System (ADS)

    Robin, A.; Heiland, W.; Jensen, J.; Juaristi, J. I.; Arnau, A.

    2001-11-01

    We present measured energy-loss spectra of nitrogen ions, which are scattered off a (1×2) missing row reconstructed Pt(110) single-crystal surface. The primary energy is varied from below 1 keV up to above 1 MeV, i.e., 0.04v0energies. Experimental results are compared with theoretical energy-loss values obtained from trajectory and stopping power calculations of charged particles scattered under grazing incidence conditions from metallic surfaces. The stopping power is calculated using the scattering theory formalism. Different trajectory classes are found by the calculations and assigned to different contributions in the energy-loss spectra. Regarding the simplicity of the presented model the agreement with the experiment is good.

  12. Energy loss in vehicle collisions from permanent deformation: an extension of the `Triangle Method'

    NASA Astrophysics Data System (ADS)

    Vangi, Dario; Begani, Filippo

    2013-06-01

    The paper presents an extension of the 'Triangle Method', to evaluate the energy loss in road accidents. The improvement of the method allows to evaluate the energy loss by both the colliding vehicles in car to car impacts, considering the main possible configurations of accident. The limits of applicability of the method are those of the Campbell's method [K.E. Campbell, Energy basis for collision severity, SAE paper 740565, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1974; A.G. Fonda, Principles of crush energy determination, SAE 1999-01-0106, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1999; N.S. Tumbas and R.A. Smith, Measurement protocol for quantifying vehicle damage from an energy basis point of view, SAE paper 880072, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1988; G.A. Nystrom, G. Kost, and S.M. Werner, Stiffness parameters for vehicle collision analysis, SAE paper 910119, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1991; J.A. Neptune, G.Y. Blair, and J.E. Flynn, A method for quantifying vehicle crush stiffness coefficients, SAE paper 920607, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1992]. The advantage over the usual methods are that the method does not require the knowledge of the stiffness of the vehicles and only two parameters are needed to define the damage geometry. The latter can be easily evaluated by visual inspection on a suitable photographical documentation of the damages, without the need to perform any direct measurement on the vehicles. Furthermore, the method can be used also in the very frequent cases in which some of the damage data about one of the vehicles are missing or in accidents involving lateral parts of the vehicle as zones near the wheels or the front, that have different behaviour from that tested in the classical crash tests. The error analysis developed shows that the errors due to the application of the extended

  13. A novel method for analyzing seismic energy loss associated with wave-induced fluid flow

    NASA Astrophysics Data System (ADS)

    Solazzi, Santiago G.; Germán Rubino, J.; Müller, Tobias M.; Milani, Marco; Guarracino, Luis; Holliger, Klaus

    2014-05-01

    Whenever a seismic wave propagates through a fluid saturated porous rock that contains heterogeneities in the mesoscopic scale, that is, heterogeneities larger than the typical pore size but smaller than the predominant wavelengths, local gradients in the pore-fluid pressure arise. These pressure gradients, which are due to the uneven response of the heterogeneities to the stress applied by the passing seismic wavefield, induce viscous fluid flow and energy dissipation. Consequently, seismic waves tend to be strongly attenuated and dispersed in this kind of media. This attenuation mechanism scales with the compressibility contrast between heterogeneities and the background. Correspondingly, environments characterized by patchy saturation as well as fractured media represent two prominent scenarios where seismic attenuation due to wave-induced fluid flow is expected to be the predominant energy dissipation mechanism. Numerical oscillatory compressibility and shear tests based on the quasistatic poroelasticity equations provide an effective means to compute equivalent viscoelastic moduli for representative rock samples of the heterogeneous media under study. Approaches of this type rely on the existence of a dynamic-equivalent medium, that is, the heterogeneous porous rock is represented by an equivalent homogeneous viscoelastic solid that exhibits an overall response similar to that of the original heterogeneous porous sample. This methodology allows for extracting the equivalent seismic attenuation and phase velocity of the sample, but fails to provide any information with regard to the underlying physical processes. In this work, we present a novel approach based on the quantification of the energy loss taking place in the interior of the considered heterogeneous rock sample. To this end, we first determine the spatial distribution of the energy dissipation in response to the applied oscillatory stresses. Next, we quantify the total dissipated energy as well as

  14. A method to determine stratification efficiency of thermal energy storage processes independently from storage heat losses

    SciTech Connect

    Haller, Michel Y.; Streicher, Wolfgang; Bales, Chris

    2010-06-15

    A new method for the calculation of a stratification efficiency of thermal energy storages based on the second law of thermodynamics is presented. The biasing influence of heat losses is studied theoretically and experimentally. Theoretically, it does not make a difference if the stratification efficiency is calculated based on entropy balances or based on exergy balances. In practice, however, exergy balances are less affected by measurement uncertainties, whereas entropy balances can not be recommended if measurement uncertainties are not corrected in a way that the energy balance of the storage process is in agreement with the first law of thermodynamics. A comparison of the stratification efficiencies obtained from experimental results of charging, standby, and discharging processes gives meaningful insights into the different mixing behaviors of a storage tank that is charged and discharged directly, and a tank-in-tank system whose outer tank is charged and the inner tank is discharged thereafter. The new method has a great potential for the comparison of the stratification efficiencies of thermal energy storages and storage components such as stratifying devices. (author)

  15. Electron momentum spectroscopy study of amantadine: binding energy spectra and valence orbital electron density distributions

    NASA Astrophysics Data System (ADS)

    Litvinyuk, I. V.; Zheng, Y.; Brion, C. E.

    2000-11-01

    The electron binding energy spectrum and valence orbital electron momentum density distributions of amantadine (1-aminoadamantane), an important anti-viral and anti-Parkinsonian drug, have been measured by electron momentum spectroscopy. Theoretical momentum distributions, calculated at the 6-311++G** and AUG-CC-PVTZ levels within the target Hartree-Fock and also the target Kohn-Sham density functional theory approximations, show good agreement with the experimental results. The results for amantadine are also compared with those for the parent molecule, adamantane, reported earlier (Chem. Phys. 253 (2000) 41). Based on the comparison tentative assignments of the valence region ionization bands of amantadine have been made.

  16. Spectroscopy of low energy solar neutrinos using CdTe detectors

    NASA Astrophysics Data System (ADS)

    Zuber, K.

    2003-10-01

    The usage of a large amount of CdTe(CdZnTe) semiconductor detectors for solar neutrino spectroscopy in the low energy region is investigated. Several different coincidence signals can be formed on five different isotopes to measure the 7Be neutrino line at 862 keV in real-time. The most promising one is the usage of 116Cd resulting in 227 SNU. The presence of 125Te permits even the real-time detection of pp-neutrinos. A possible antineutrino flux above 713 keV might be detected by capture on 106Cd.

  17. Energy landscape investigation by wavelet transform analysis of atomic force spectroscopy data in a biorecognition experiment.

    PubMed

    Bizzarri, Anna Rita

    2016-01-01

    Force fluctuations recorded in an atomic force spectroscopy experiment, during the approach of a tip functionalized with biotin towards a substrate charged with avidin, have been analyzed by a wavelet transform. The observation of strong transient changes only when a specific biorecognition process between the partners takes place suggests a drastic modulation of the force fluctuations when biomolecules recognize each other. Such an analysis allows to investigate the peculiar features of a biorecognition process. These results are discussed in connection with the possible role of energy minima explored by biomolecules during the biorecognition process.

  18. Anisotropy energy distribution determined by Mössbauer spectroscopy in a metallic glass

    NASA Astrophysics Data System (ADS)

    Sánchez, F. H.; Passamani, E. C.; Mendoza Zélis, P.; Biondo, A.; Vázquez, M.; Proveti, J. R.; Larica, C.; Cabrera, A. F.; Baggio saitovitch, E.

    2006-10-01

    The distribution of frozen-in magnetic anisotropy in as-quenched Fe 73.5Si 13.5Cu 1Nb 3B 9 amorphous melt-spun ribbons was studied by Mössbauer effect spectroscopy, using the temperature-dependent magnetoelastic effect produced on the metallic glass by 1 μm Al coatings. Al coatings were deposited by RF sputtering at T≈350 K on both sides of the amorphous ribbons. Estimated magnetic anisotropy values were below 1 kJ/m 3, with preeminence of anisotropy energy densities lower than 300 J/m 3.

  19. Effects of intermittent compared to continuous energy restriction on short-term weight loss and long-term weight loss maintenance.

    PubMed

    Keogh, J B; Pedersen, E; Petersen, K S; Clifton, P M

    2014-06-01

    Effective strategies are needed to help individuals lose weight and maintain weight loss. The primary aim of this study was to investigate the effect of intermittent energy restriction (IER) compared to continuous energy restriction (CER) on weight loss after 8 weeks and weight loss maintenance after 12 months. Secondary aims were to determine changes in waist and hip measurements and diet quality. In a randomized parallel study, overweight and obese (body mass index [BMI] ≥ 27 kg m(-2)) women were stratified by age and BMI before randomization. Participants undertook an 8-week intensive period with weight, waist and hip circumference measured every 2 weeks, followed by 44 weeks of independent dieting. A food frequency questionnaire was completed at baseline and 12 months, from which diet quality was determined. Weight loss was not significantly different between the two groups at 8 weeks (-3.2 ± 2.1 kg CER, n = 20, -2.0 ± 1.9 kg IER, n = 25; P = 0.06) or at 12 months (-4.2 ± 5.6 kg CER, n = 17 -2.1 ± 3.8 kg IER, n = 19; P = 0.19). Weight loss between 8 and 52 weeks was -0.7 ± 49 kg CER vs. -1 ± 1.1 kg IER; P = 0.6. Waist and hip circumference decreased significantly with time (P < 0.01), with no difference between groups. There was an increase in the Healthy Eating Index at 12 months in the CER compared with the IER group (CER 8.4 ± 9.1 vs. IER -0.3 ± 8.4, P = 0.006). This study indicates that intermittent dieting was as effective as continuous dieting over 8 weeks and for weight loss maintenance at 12 months. This may be useful for individuals who find CER too difficult to maintain.

  20. Efficient light storage with reduced energy loss via nonlinear compensation in rubidium vapor

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Zhou, Wei; Chen, Hong-Li; Xue, Yan; Wu, Jin-Hui; Xu, Huai-Liang; Gao, Jin-Yue

    2016-06-01

    We report an experimental demonstration of efficient light storage based on a modified technique of electromagnetically induced transparency in hot rubidium vapor. By introducing an auxiliary pump field to go beyond the Λ -type configuration, we find that the undesired four-wave mixing can be greatly suppressed to result in sufficiently reduced energy loss of a probe pulse. The light storage efficiency can be as high as  ∼80% within the storage time of 100 ns with the pump field applied, which is almost 6 times larger than that in the absence of the pump field. We may also amend the light storage efficiency in a linear way by increasing the optical depth of our atomic vapor even without saturation effect. We obtain, in fact, an amplified probe pulse via Raman gain during light storage and retrieval, which should have practical applications in classical and quantum information processing.

  1. Energy loss at NLO in a high-temperature Quark-Gluon Plasma

    NASA Astrophysics Data System (ADS)

    Ghiglieri, Jacopo

    2016-12-01

    We present an extension of the Arnold-Moore-Yaffe kinetic equations for jet energy loss to NLO in the strong coupling constant. A novel aspect of the NLO analysis is a consistent description of wider-angle bremsstrahlung (semi-collinear emissions), which smoothly interpolates between 2 ↔ 2 scattering and collinear bremsstrahlung. We describe how many of the ingredients of the NLO transport equations (such as the drag coefficient) can be expressed in terms of Wilson line operators and can be computed using a Euclidean formalism or sum rules, both motivated by the analytic properties of amplitudes at light-like separations. We conclude with an outlook on the computation of the shear viscosity at NLO.

  2. Parton Energy Loss and Momentum Broadening at NLO in High Temperature QCD Plasmas

    NASA Astrophysics Data System (ADS)

    Ghiglieri, Jacopo; Teaney, Derek

    We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles and a non-abelian plasma, consisting of on-shell thermal excitations and soft gluonic fields. These interactions include 2 ↔ 2 scatterings, collinear bremsstrahlung, and drag and momentum diffusion. We show how the contribution from the soft gluonic fields can be factorized into a set of Wilson line correlators on the light-cone. We review recent field-theoretical developments, rooted in the causal properties of these correlators, which simplify the calculation of the appropriate Wilson lines in thermal field theory. With these simplifications lattice measurements of transverse momentum broadening have become possible, and the kinetic equations describing parton transport have been extended to next-to-leading order in the coupling g.

  3. Parton energy loss and momentum broadening at NLO in high temperature QCD plasmas

    NASA Astrophysics Data System (ADS)

    Ghiglieri, Jacopo; Teaney, Derek

    2015-10-01

    We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles and a non-abelian plasma, consisting of on-shell thermal excitations and soft gluonic fields. These interactions include ↔ scatterings, collinear bremsstrahlung, and drag and momentum diffusion. We show how the contribution from the soft gluonic fields can be factorized into a set of Wilson line correlators on the light-cone. We review recent field-theoretical developments, rooted in the causal properties of these correlators, which simplify the calculation of the appropriate Wilson lines in thermal field theory. With these simplifications lattice measurements of transverse momentum broadening have become possible, and the kinetic equations describing parton transport have been extended to next-to-leading order in the coupling g.

  4. Energy loss of the electron system in individual single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Santavicca, Daniel; Chudow, Joel; Prober, Daniel; Purewal, Meninder; Kim, Philip

    2011-03-01

    We characterize the energy loss of the non-equilibrium electron system in individual metallic single-walled carbon nanotubes at low temperature. Using Johnson noise thermometry, we demonstrate that, for a nanotube with ohmic contacts, the dc resistance at finite bias current directly reflects the average electron temperature. This enables a straightforward determination of the thermal conductance associated with cooling of the nanotube electron system. In analyzing the temperature- and length-dependence of the thermal conductance, we consider contributions from acoustic phonon emission, optical phonon emission, and hot electron outdiffusion. In the same sample, we also characterize the radio frequency heterodyne response. Distinct responses are seen from bolometric detection and from the electrical nonlinearity due to non-ohmic contacts. This work was supported by NSF-DMR and NSF-CHE.

  5. Coupling of Multiple Coulomb Scattering with Energy Loss and Straggling in HZETRN

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Wilson, John W.; Walker, Steven A.; Tweed, John

    2007-01-01

    The new version of the HZETRN deterministic transport code based on Green's function methods, and the incorporation of ground-based laboratory boundary conditions, has lead to the development of analytical and numerical procedures to include off-axis dispersion of primary ion beams due to small-angle multiple Coulomb scattering. In this paper we present the theoretical formulation and computational procedures to compute ion beam broadening and a methodology towards achieving a self-consistent approach to coupling multiple scattering interactions with ionization energy loss and straggling. Our initial benchmark case is a 60 MeV proton beam on muscle tissue, for which we can compare various attributes of beam broadening with Monte Carlo simulations reported in the open literature.

  6. Variable scheduling to mitigate channel losses in energy-efficient body area networks.

    PubMed

    Tselishchev, Yuriy; Boulis, Athanassios; Libman, Lavy

    2012-11-02

    We consider a typical body area network (BAN) setting in which sensor nodes send data to a common hub regularly on a TDMA basis, as defined by the emerging IEEE 802.15.6 BAN standard. To reduce transmission losses caused by the highly dynamic nature of the wireless channel around the human body, we explore variable TDMA scheduling techniques that allow the order of transmissions within each TDMA round to be decided on the fly, rather than being fixed in advance. Using a simple Markov model of the wireless links, we devise a number of scheduling algorithms that can be performed by the hub, which aim to maximize the expected number of successful transmissions in a TDMA round, and thereby significantly reduce transmission losses as compared with a static TDMA schedule. Importantly, these algorithms do not require a priori knowledge of the statistical properties of the wireless channels, and the reliability improvement is achieved entirely via shuffling the order of transmissions among devices, and does not involve any additional energy consumption (e.g., retransmissions). We evaluate these algorithms directly on an experimental set of traces obtained from devices strapped to human subjects performing regular daily activities, and confirm that the benefits of the proposed variable scheduling algorithms extend to this practical setup as well.

  7. Energy loss due to eddy current in linear transformer driver cores

    NASA Astrophysics Data System (ADS)

    Kim, A. A.; Mazarakis, M. G.; Manylov, V. I.; Vizir, V. A.; Stygar, W. A.

    2010-07-01

    In linear transformer drivers [Phys. Rev. ST Accel. Beams 12, 050402 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050402; Phys. Rev. ST Accel. Beams 12, 050401 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050401] as well as any other linear induction accelerator cavities, ferromagnetic cores are used to prevent the current from flowing along the induction cavity walls which are in parallel with the load. But if the core is made of conductive material, the applied voltage pulse generates the eddy current in the core itself which heats the core and therefore also reduces the overall linear transformer driver (LTD) efficiency. The energy loss due to generation of the eddy current in the cores depends on the specific resistivity of the core material, the design of the core, as well as on the distribution of the eddy current in the core tape during the remagnetizing process. In this paper we investigate how the eddy current is distributed in a core tape with an arbitrary shape hysteresis loop. Our model is based on the textbook knowledge related to the eddy current generation in ferromagnetics with rectangular hysteresis loop, and in usual conductors. For the reader’s convenience, we reproduce some most important details of this knowledge in our paper. The model predicts that the same core would behave differently depending on how fast the applied voltage pulse is: in the high frequency limit, the equivalent resistance of the core reduces during the pulse whereas in the low frequency limit it is constant. An important inference is that the energy loss due to the eddy current generation can be reduced by increasing the cross section of the core over the minimum value which is required to avoid its saturation. The conclusions of the model are confirmed with experimental observations presented at the end of the paper.

  8. Inactivity-induced bone loss is not exacerbated by moderate energy restriction

    NASA Astrophysics Data System (ADS)

    Heer, M.; Boese, A.; Baecker, N.; Zittermann, A.; Smith, S. M.

    Severe energy restriction leads to decreased bone mineral density (BMD) in postmenopausal women, adolescent females, and in male athletes. Astronauts in space also lose bone mass, and most of them have reduced energy intake (about 25 % below requirements). The aim of our study was to examine if bone loss in space is partly induced by moderate energy restriction. Physiological changes of space flight were simulated by 6 head-down tilt bed rest (HDBR). Nine healthy male subjects (age: 23.6 ± 3.0 years; BMI: 23.0 ± 2.9 kg/m2, mean ± SD) finished four study phases, two of normocaloric nutrition, either ambulatory or HDBR, and two of hypocaloric nutrition, either ambulatory or HDBR. Urine samples (24 h) were analyzed for calcium excretion (UCaV) and bone resorption markers (C-Telopeptide, CTX, and N-Telopeptide, NTX). Serum calcium, parathyroid hormone (PTH) and bone formation markers (Procollagen-I-C-terminal-Peptide, PICP, Procollagen-I-N-terminal-Peptide, PINP, and bone-specific alkaline phosphatase, bAP) were analyzed. No significant changes in serum calcium or PTH were noted either during HDBR or during hypocaloric nutrition. PICP, but not PINP or bAP, decreased significantly during HDBR (normocaloric: p<0.02; hypocaloric: p<0.005). UCaV increased significantly over time (p<0.01) but no difference between HDBR or hypocaloric nutrition or both (p<0.26) occurred. Both CTX and NTX excretion significantly increased with HDBR (CTX: p<0.05; NTX: p<0.05), but were unaffected by hypocaloric nutrition in ambulatory and HDBR phases. In conclusion, moderate energy restriction did not exaggerate bone resorption during HDBR.

  9. Recovery effects due to the interaction between nuclear and electronic energy losses in SiC irradiated with a dual-ion beam

    SciTech Connect

    Thomé, Lionel Debelle, Aurélien; Garrido, Frédérico; Sattonnay, Gaël; Mylonas, Stamatis; Velisa, Gihan; Miro, Sandrine; Trocellier, Patrick; Serruys, Yves

    2015-03-14

    Single and dual-beam ion irradiations of silicon carbide (SiC) were performed to study possible Synergetic effects between Nuclear (S{sub n}) and Electronic (S{sub e}) Energy Losses. Results obtained combining Rutherford backscattering in channeling conditions, Raman spectroscopy, and transmission electron microscopy techniques show that dual-beam irradiation of SiC induces a dramatic change in the final sample microstructure with a substantial decrease of radiation damage as compared to single-beam irradiation. Actually, a defective layer containing dislocations is formed upon dual-beam irradiation (S{sub n} and S{sub e}), whereas single low-energy irradiation (S{sub n} alone) or even sequential (S{sub n} + S{sub e}) irradiations lead to full amorphization. The healing process is ascribed to the electronic excitation arising from the electronic energy loss of swift ions. These results shed new light on the long-standing puzzling problem of the existence of a possible synergy between S{sub n} and S{sub e} in ion-irradiation experiments. This work is interesting for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where recovery S{sub n}/S{sub e} effects may preserve the integrity of nuclear devices.

  10. X-ray spectroscopy studies of nonradiative energy transfer processes in luminescent lanthanide materials

    NASA Astrophysics Data System (ADS)

    Pacold, Joseph I.

    Luminescent materials play important roles in energy sciences, through solid state lighting and possible applications in solar energy utilization, and in biomedical research and applications, such as in immunoassays and fluorescence microscopy. The initial excitation of a luminescent material leads to a sequence of transitions between excited states, ideally ending with the emission of one or more optical-wavelength photons. It is essential to understand the microscopic physics of this excited state cascade in order to rationally design materials with high quantum efficiencies or with other fine-tuning of materials response. While optical-wavelength spectroscopies have unraveled many details of the energy transfer pathways in luminescent materials, significant questions remain open for many lanthanide-based luminescent materials. For organometallic dyes in particular, quantum yields remain limited in comparison with inorganic phosphors. This dissertation reports on a research program of synchrotron x-ray studies of the excited state electronic structure and energy-relaxation cascade in trivalent lanthanide phosphors and dyes. To this end, one of the primary results presented here is the first time-resolved x-ray absorption near edge spectroscopy studies of the transient 4f excited states in lanthanide-activated luminescent dyes and phosphors. This is a new application of time-resolved x-ray absorption spectroscopy that makes it possible to directly observe and, to some extent, quantify intramolecular nonradiative energy transfer processes. We find a transient increase in 4f spectral weight associated with an excited state confined to the 4f shell of trivalent Eu. This result implies that it is necessary to revise the current theoretical understanding of 4f excitation in trivalent lanthanide activators: either transient 4f-5d mixing effects are much stronger than previously considered, or else the lanthanide 4f excited state has an unexpectedly large contribution

  11. Synergy of elastic and inelastic energy loss on ion track formation in SrTiO3

    SciTech Connect

    Weber, William J.; Zarkadoula, Eva; Pakarinen, Olli H.; Sachan, Ritesh; Chisholm, Matthew F.; Liu, Peng; Xue, Haizhou; Jin, Ke; Zhang, Yanwen

    2015-01-12

    While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontium titanate (SrTiO3), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties.

  12. Synergy of elastic and inelastic energy loss on ion track formation in SrTiO3

    PubMed Central

    Weber, William J.; Zarkadoula, Eva; Pakarinen, Olli H.; Sachan, Ritesh; Chisholm, Matthew F.; Liu, Peng; Xue, Haizhou; Jin, Ke; Zhang, Yanwen

    2015-01-01

    While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontium titanate (SrTiO3), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties. PMID:25578009

  13. Synergy of elastic and inelastic energy loss on ion track formation in SrTiO3

    DOE PAGES

    Weber, William J.; Zarkadoula, Eva; Pakarinen, Olli H.; ...

    2015-01-12

    While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontiummore » titanate (SrTiO3), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties.« less

  14. Francium spectroscopy: Towards a low energy test of the standard model

    SciTech Connect

    Orozco, L. A.; Simsarian, J. E.; Sprouse, G. D.; Zhao, W. Z.

    1997-03-15

    An atomic parity non-conservation measurement can test the predictions of the standard model for the electron-quark coupling constants. The measurements, performed at very low energies compared to the Z{sup 0} pole, can be sensitive to physics beyond the standard model. Francium, the heaviest alkali, is a viable candidate for atomic parity violation measurements. The extraction of weak interaction parameters requires a detailed knowledge of the electronic wavefunctions of the atom. Measurements of atomic properties of francium provide data for careful comparisons with ab initio calculations of its atomic structure. The spectroscopy, including energy level location and atomic lifetimes, is carried out using the recently developed techniques of laser cooling and trapping of atoms.

  15. Energy Transfer Observed in Live Cells Using Two-Dimensional Electronic Spectroscopy

    PubMed Central

    Dahlberg, Peter D.; Fidler, Andrew F.; Caram, Justin R.; Long, Phillip D.; Engel, Gregory S.

    2013-01-01

    Two-dimensional electronic spectroscopy (2DES) elucidates electronic structure and dynamics on a femtosecond time scale and has proven to be an incisive tool for probing congested linear spectra of biological systems. However, samples that scatter light intensely frustrate 2DES analysis, necessitating the use of isolated protein chromophore complexes when studying photosynthetic energy transfer processes. We present a method for conducting 2DES experiments that takes only seconds to acquire thousands of 2DES spectra and permits analysis of highly scattering samples, specifically whole cells of the purple bacterium Rhodobacter sphaeroides. These in vivo 2DES experiments reveal similar timescales for energy transfer within the antennae complex (light harvesting complex 2, LH2) both in the native photosynthetic membrane environment and in isolated detergent micelles. PMID:24478821

  16. Frequency modulated femtosecond stimulated Raman spectroscopy of ultrafast energy transfer in a donor-acceptor copolymer.

    PubMed

    Grumstrup, Erik M; Chen, Zhuo; Vary, Ryan P; Moran, Andrew M; Schanze, Kirk S; Papanikolas, John M

    2013-07-11

    A Raman-pump frequency modulation scheme and an automated signal-processing algorithm are developed for improved collection of time-resolved femtosecond stimulated Raman spectra. Together, these two advancements remove the broad background signals endemic to FSRS measurements and retrieve signals with high sensitivity. We apply this frequency-modulated femtosecond stimulated Raman spectroscopy (FM-FSRS) to the characterization of ultrafast energy transport in a copolymer comprised of polystyrene linked oligo(phenylene-ethynylene) donor and thiophene-benzothiadiazole acceptor chromophores. After photoexcitation of the donor, ultrafast energy transfer is monitored by the decay of donor vibrational modes and simultaneous growth of acceptor modes. The FM-FSRS method shows clear advantages in signal-to-noise levels, mitigation of artifact features, and ease of data processing over the conventional FSRS technique.

  17. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    PubMed

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  18. LASER SPECTROSCOPY AND TRACE ELEMENT ANALYSIS Chapter from the Energy and Environment Division Annual Report 1980

    SciTech Connect

    Various, Authors

    1981-05-01

    In order to control pollutants resulting from energy production and utilization, adequate methods are required for monitoring the level of various substances often present at low concentrations. The Energy and Environment Division Applied Research in Laser Spectroscopy & Analytical Techniques Program is directed toward meeting these needs, Emphasis is on the development of physical methods, as opposed to conventional chemical analysis techniques. The advantages, now widely recognized, include ultra-high sensitivity coupled with minimal sample preparation. In some instances physical methods provide multi-parameter measurements which often provide the only means of achiev·ing the sensitivity necessary for the detection of trace contaminants. Work is reported in these areas: APPLIED PHYSICS AND LASER SPECTROSCOPY RESEARCH; MICROPROCESSOR CONTROLLER ANODIC STRIPPING VOLTAMETER FOR TRACE METALS ANALYSIS IN WATER; THE SURVEY OF INSTRUMENTATION FOR ENVIRONMENTAL MONITORING; THE POSSIBLE CHRONDRITIC NATURE OF THE DANISH CRETACEOUS~TERTIARY BOUNDARY; IMPROVEMENT OF THE SENSITIVITY AND PRECISION OF NEUTRON ACTIVATION ANALYSIS OF SOME ELEMENTS IN PLANKTON AND PLANKTONIC FISH; and SOURCES OF SOME SECONDARILY WORKED OBSIDIAN ARTIFACTS FROM TIKAL, GUATEMALA.

  19. Self-reported vs. actual energy intake in youth with and without loss of control eating.

    PubMed

    Wolkoff, Laura E; Tanofsky-Kraff, Marian; Shomaker, Lauren B; Kozlosky, Merel; Columbo, Kelli M; Elliott, Camden A; Ranzenhofer, Lisa M; Osborn, Robyn L; Yanovski, Susan Z; Yanovski, Jack A

    2011-01-01

    Episodes of loss of control over eating (LOC) in children and adolescents--often characterized by the consumption of highly palatable dessert and snack-type foods--have been associated with a lack of awareness while eating that could lead to under- or over-estimation of how much food is consumed. However, little is known about the reporting accuracy of food intake in youth with and without LOC eating. One hundred fifty-six girls and boys were administered the Eating Disorder Examination to assess for the presence of LOC eating. Youth were queried regarding the amounts of foods consumed directly following a multi-item, laboratory buffet test meal. Children with LOC (n=42) did not differ significantly from youth without LOC (n=114) in reporting accuracy of total food intake (reported minus actual energy intake: 153.0 ± 59.6 vs. 96.9 ± 36.0 kcal; p=0.42). However, compared to those without LOC, children with LOC were less accurate at reporting percentage of energy intake from carbohydrate (p=0.01). Youth with LOC were also less accurate at reporting their intake of desserts (p=0.04). Findings point to the possibility that youth with LOC may have poorer recall of sweet food consumption. Future research is required to examine whether poorer recall reflects a lack of awareness while eating palatable, sweet foods.

  20. High-efficiency polymer solar cells with small photon energy loss.

    PubMed

    Kawashima, Kazuaki; Tamai, Yasunari; Ohkita, Hideo; Osaka, Itaru; Takimiya, Kazuo

    2015-12-02

    A crucial issue facing polymer-based solar cells is how to manage the energetics of the polymer/fullerene blends to maximize short-circuit current density and open-circuit voltage at the same time and thus the power conversion efficiency. Here we demonstrate that the use of a naphthobisoxadiazole-based polymer with a narrow bandgap of 1.52 eV leads to high open-circuit voltages of approximately 1 V and high-power conversion efficiencies of ∼9% in solar cells, resulting in photon energy loss as small as ∼0.5 eV, which is much smaller than that of typical polymer systems (0.7-1.0 eV). This is ascribed to the high external quantum efficiency for the systems with a very small energy offset for charge separation. These unconventional features of the present polymer system will inspire the field of polymer-based solar cells towards further improvement of power conversion efficiencies with both high short-circuit current density and open-circuit voltage.

  1. Numerical simulation of the plasma current quench following a disruptive energy loss

    SciTech Connect

    Strickler, D.J.; Peng, Y.K.M.; Holmes, J.A.; Miller, J.B.; Rothe, K.E.

    1983-11-01

    The plasma electromagnetic interaction with poloidal field coils and nearby passive conductor loops during the current quench following a disruptive loss of plasma energy is simulated. By solving a differential/algebraic system consisting of a set of circuit equations (including the plasma circuit) coupled to a plasma energy balance equation and an equilibrium condition, the electromagnetic consequences of an abrupt thermal quench are observed. Limiters on the small and large major radium sides of the plasma are assumed to define the plasma cross section. The presence of good conductors near the plasma and a small initial distance (i.e., 5 to 10% of the plasma minor radius) between the plasma edge and an inboard limiter are shown to lead to long current decay times. For a plasma with an initial major radius R/sub o/ = 4.3 m, aspect ratio A = 3.6, and current I/sub P/ = 4.0 MA, introducing nearby passive conductors lengthens the current decay from milliseconds to hundreds of milliseconds.

  2. High-efficiency polymer solar cells with small photon energy loss

    PubMed Central

    Kawashima, Kazuaki; Tamai, Yasunari; Ohkita, Hideo; Osaka, Itaru; Takimiya, Kazuo

    2015-01-01

    A crucial issue facing polymer-based solar cells is how to manage the energetics of the polymer/fullerene blends to maximize short-circuit current density and open-circuit voltage at the same time and thus the power conversion efficiency. Here we demonstrate that the use of a naphthobisoxadiazole-based polymer with a narrow bandgap of 1.52 eV leads to high open-circuit voltages of approximately 1 V and high-power conversion efficiencies of ∼9% in solar cells, resulting in photon energy loss as small as ∼0.5 eV, which is much smaller than that of typical polymer systems (0.7–1.0 eV). This is ascribed to the high external quantum efficiency for the systems with a very small energy offset for charge separation. These unconventional features of the present polymer system will inspire the field of polymer-based solar cells towards further improvement of power conversion efficiencies with both high short-circuit current density and open-circuit voltage. PMID:26626042

  3. Magnetic Resonance Measurement of Turbulent Kinetic Energy for the Estimation of Irreversible Pressure Loss in Aortic Stenosis

    PubMed Central

    Dyverfeldt, Petter; Hope, Michael D.; Tseng, Elaine E.; Saloner, David

    2013-01-01

    OBJECTIVES The authors sought to measure the turbulent kinetic energy (TKE) in the ascending aorta of patients with aortic stenosis and to assess its relationship to irreversible pressure loss. BACKGROUND Irreversible pressure loss caused by energy dissipation in post-stenotic flow is an important determinant of the hemodynamic significance of aortic stenosis. The simplified Bernoulli equation used to estimate pressure gradients often misclassifies the ventricular overload caused by aortic stenosis. The current gold standard for estimation of irreversible pressure loss is catheterization, but this method is rarely used due to its invasiveness. Post-stenotic pressure loss is largely caused by dissipation of turbulent kinetic energy into heat. Recent developments in magnetic resonance flow imaging permit noninvasive estimation of TKE. METHODS The study was approved by the local ethics review board and all subjects gave written informed consent. Three-dimensional cine magnetic resonance flow imaging was used to measure TKE in 18 subjects (4 normal volunteers, 14 patients with aortic stenosis with and without dilation). For each subject, the peak total TKE in the ascending aorta was compared with a pressure loss index. The pressure loss index was based on a previously validated theory relating pressure loss to measures obtainable by echocardiography. RESULTS The total TKE did not appear to be related to global flow patterns visualized based on magnetic resonance–measured velocity fields. The TKE was significantly higher in patients with aortic stenosis than in normal volunteers (p < 0.001). The peak total TKE in the ascending aorta was strongly correlated to index pressure loss (R2 = 0.91). CONCLUSIONS Peak total TKE in the ascending aorta correlated strongly with irreversible pressure loss estimated by a well-established method. Direct measurement of TKE by magnetic resonance flow imaging may, with further validation, be used to estimate irreversible pressure loss

  4. Predicting successful long-term weight loss from short-term weight-loss outcomes: new insights from a dynamic energy balance model (the POUNDS Lost study)123

    PubMed Central

    Ivanescu, Andrada E; Martin, Corby K; Heymsfield, Steven B; Marshall, Kaitlyn; Bodrato, Victoria E; Williamson, Donald A; Anton, Stephen D; Sacks, Frank M; Ryan, Donna; Bray, George A

    2015-01-01

    Background: Currently, early weight-loss predictions of long-term weight-loss success rely on fixed percent-weight-loss thresholds. Objective: The objective was to develop thresholds during the first 3 mo of intervention that include the influence of age, sex, baseline weight, percent weight loss, and deviations from expected weight to predict whether a participant is likely to lose 5% or more body weight by year 1. Design: Data consisting of month 1, 2, 3, and 12 treatment weights were obtained from the 2-y Preventing Obesity Using Novel Dietary Strategies (POUNDS Lost) intervention. Logistic regression models that included covariates of age, height, sex, baseline weight, target energy intake, percent weight loss, and deviation of actual weight from expected were developed for months 1, 2, and 3 that predicted the probability of losing <5% of body weight in 1 y. Receiver operating characteristic (ROC) curves, area under the curve (AUC), and thresholds were calculated for each model. The AUC statistic quantified the ROC curve’s capacity to classify participants likely to lose <5% of their body weight at the end of 1 y. The models yielding the highest AUC were retained as optimal. For comparison with current practice, ROC curves relying solely on percent weight loss were also calculated. Results: Optimal models for months 1, 2, and 3 yielded ROC curves with AUCs of 0.68 (95% CI: 0.63, 0.74), 0.75 (95% CI: 0.71, 0.81), and 0.79 (95% CI: 0.74, 0.84), respectively. Percent weight loss alone was not better at identifying true positives than random chance (AUC ≤0.50). Conclusions: The newly derived models provide a personalized prediction of long-term success from early weight-loss variables. The predictions improve on existing fixed percent-weight-loss thresholds. Future research is needed to explore model application for informing treatment approaches during early intervention. The POUNDS Lost study was registered at clinicaltrials.gov as NCT00072995. PMID:25733628

  5. Determination of energy loss of 1200 keV deuterons along axial and planar channels of Si

    NASA Astrophysics Data System (ADS)

    Shafiei, S.; Lamehi-Rachti, M.

    2015-02-01

    In this paper, the energy loss of 1200 keV deuterons along the <1 0 0> and <1 1 0> axes as well as the {1 0 0} and {1 1 0} planes of Si were determined by the simulation of the channeling Rutherford backscattering spectra. The simulation was done by taking two considerations into account: (i) a minimum random component of the beam which enters the sample because of the scattering ions from the surface, (ii) the dechanneling starts at greater penetration depths, xDech. Moreover, it was assumed that the dechanneling follows a Gompertz type sigmoidal function with two parameters k and xc which present the dechanneling rate and range, respectively. The best simulation parameters, penetration depth at which the dechanneling starts, energy loss and dechanneling rate and range, were chosen by using the Levenberg-Marquardt algorithm. The experimental results are well reproduced by this simulation. The ratio of channeling energy loss to the random is changed from 0.63 ± 0.02 along the <1 1 0> axial channel to the 0.91 ± 0.02 along the {1 0 0} planar direction. The differences in the energy loss and the dechanneling process along the axial and planar channels are attributed to the potential barrier and the fractional area of each channel blocked by atoms. The ratio of channeling to random energy loss of deuterons along the <1 0 0> axial direction is in agreement with another reference.

  6. Low-energy photon spectroscopy data in support of ASTM method development

    SciTech Connect

    Dry, D. E.; Boone, S.

    2002-01-01

    The Isotope and Nuclear Chemistry (C-INC) Radioassay Facility at Los Alamos National Laboratory (LANL) has been in operation since 1948 to measure fission-product and actinide activities from the U.S. weapons testing program. Since the cessation of testing in 1992, the facility has remained in continuous operation by analyzing samples for environmental, bioassay and research projects. In addition to the many gamma spectroscopy systems, two independent planar germanium detectors are employed for measurement of x-rays and low-energy gsunma rays. 'These counters were used to collect data of select isotopes to support the development of a new ASTM standard, 'Standard Practice for High-Resolution Low-Energy Photon Spectrometry of Water'. This standard is being developed by ASTM Subcommittee D19.04 as a tool for measurement of low-energy gamma-rays and x-rays fiom approximately 4 keV to 150 keV. This work describes empirical counting results obtained fkom traceable sources covering the energy range of interest. Specifically, the isotopes used were 5%i, 55Fe, Am, I, Cd, and 57C0 which provide a range of 5.9 to 136 keV. Mixed nuclide sources were also counted for the purpose of providing data for coincidence summing effects. All data is presented in hardcopy and accompanying electronic form.

  7. Resonant nature of intrinsic defect energy levels in PbTe revealed by infrared photoreflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Bingpo; Cai, Chunfeng; Jin, Shuqiang; Ye, Zhenyu; Wu, Huizhen; Qi, Zhen

    2014-07-01

    Step-scan Fourier-transform infrared photoreflectance and modulated photoluminescence spectroscopy were used to characterize the optical transitions of the epitaxial PbTe thin film grown by molecular beam epitaxy on BaF2 (111) substrate in the vicinity of energy gap of lead telluride at 77 K. It is found that the intrinsic defect energy levels in the electronic structure are of resonant nature. The Te-vacancy energy level is located above the conduction band minimum by 29.1 meV. Another defect (VX) energy level situated below valance band maximum by 18.1 meV is also revealed. Whether it is associated with the Pb vacancy is still not clear. It might also be related to the misfit dislocations stemming from the lattice mismatch between PbTe and BaF2 substrate. The experimental results support the theory prediction (N. J. Parada and G. W. Pratt, Jr., Phys. Rev. Lett. 22, 180 (1969), N. J. Parada, Phys. Rev. B 3, 2042 (1971)) and are consistent with the reported Hall experimental results (G. Bauer, H. Burkhard, H. Heinrich, and A. Lopez-Otero, J. Appl. Phys. 47, 1721 (1976)).

  8. Electronic properties of graphene nano-flakes: Energy gap, permanent dipole, termination effect, and Raman spectroscopy

    SciTech Connect

    Singh, Sandeep Kumar Peeters, F. M.; Neek-Amal, M.

    2014-02-21

    The electronic properties of graphene nano-flakes (GNFs) with different edge passivation are investigated by using density functional theory. Passivation with F and H atoms is considered: C{sub N{sub c}} X{sub N{sub x}} (X = F or H). We studied GNFs with 10 < N{sub c} < 56 and limit ourselves to the lowest energy configurations. We found that: (i) the energy difference Δ between the highest occupied molecular orbital and the lowest unoccupied molecular orbital decreases with N{sub c}, (ii) topological defects (pentagon and heptagon) break the symmetry of the GNFs and enhance the electric polarization, (iii) the mutual interaction of bilayer GNFs can be understood by dipole-dipole interaction which were found sensitive to the relative orientation of the GNFs, (iv) the permanent dipoles depend on the edge terminated atom, while the energy gap is independent of it, and (v) the presence of heptagon and pentagon defects in the GNFs results in the largest difference between the energy of the spin-up and spin-down electrons which is larger for the H-passivated GNFs as compared to F-passivated GNFs. Our study shows clearly the effect of geometry, size, termination, and bilayer on the electronic properties of small GNFs. This study reveals important features of graphene nano-flakes which can be detected using Raman spectroscopy.

  9. Enhanced energy transfer in respiratory-deficient endothelial cells probed by microscopic fluorescence excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Schneckenburger, Herbert; Gschwend, Michael H.; Bauer, Manfred; Strauss, Wolfgang S. L.; Steiner, Rudolf W.

    1996-12-01

    Mitochondrial malfunction may be concomitant with changes of the redox states of the coenzymes nicotinamide adenine dinucleotide (NAD+/NADH), as well as flavin.mononucleotide or dinucleotide. The intrinsic fluorescence of these coenzymes was therefore proposed to be a measure of malfunction. Since mitochondrial fluorescence is strongly superposed by autofluorescence from various cytoplasmatic fluorophores, cultivated endothelial cells were incubated with the mitochondrial marker rhodamine 123 (R123), and after excitation of flavin molecules, energy transfer to R123 was investigated. Due to spectral overlap of flavin and R123 fluorescence, energy transfer flavin yields R123 could not be detected from their emission spectra. Therefore, the method of microscopic fluorescence excitation spectroscopy was established. When detecting R123 fluorescence, excitation maxima at 370 - 390 nm and 420-460 nm were assigned to flavins, whereas a pronounced excitation band at 465 - 490 nm was attributed to R123. Therefore, excitation at 475 nm reflected the intracellular concentration of R123, whereas excitation at 385 nm reflected flavin excitation with a subsequent energy transfer to R123 molecules. An enhanced energy transfer after inhibition of specific enzyme complexes of the respiratory chain is discussed in the present article.

  10. Mapping and uncertainty analysis of energy and pitch angle phase space in the DIII-D fast ion loss detector

    SciTech Connect

    Pace, D. C. Fisher, R. K.; Van Zeeland, M. A.; Pipes, R.

    2014-11-15

    New phase space mapping and uncertainty analysis of energetic ion loss data in the DIII-D tokamak provides experimental results that serve as valuable constraints in first-principles simulations of energetic ion transport. Beam ion losses are measured by the fast ion loss detector (FILD) diagnostic system consisting of two magnetic spectrometers placed independently along the outer wall. Monte Carlo simulations of mono-energetic and single-pitch ions reaching the FILDs are used to determine the expected uncertainty in the measurements. Modeling shows that the variation in gyrophase of 80 keV beam ions at the FILD aperture can produce an apparent measured energy signature spanning across 50-140 keV. These calculations compare favorably with experiments in which neutral beam prompt loss provides a well known energy and pitch distribution.

  11. The chemical sensitivity of X-ray spectroscopy: high energy resolution XANES versus X-ray emission spectroscopy of substituted ferrocenes.

    PubMed

    Atkins, Andrew J; Bauer, Matthias; Jacob, Christoph R

    2013-06-07

    X-ray spectroscopy at the metal K-edge is an important tool for understanding catalytic processes and provides insight into the geometric and electronic structures of transition metal complexes. In particular, X-ray emission-based methods such as high-energy resolution fluorescence detection (HERFD), X-ray absorption near-edge spectroscopy (XANES) and valence-to-core X-ray emission spectroscopy (V2C-XES) hold the promise of providing increased chemical sensitivity compared to conventional X-ray absorption spectroscopy. Here, we explore the ability of HERFD-XANES and V2C-XES spectroscopy to distinguish substitutions beyond the directly coordinated atoms for the example of ferrocene and selected ferrocene derivatives. The experimental spectra are assigned and interpreted through the use of density functional theory (DFT) calculations. We find that while the pre-edge peaks in the HERFD-XANES spectra are affected by substituents at the cyclopentadienyl ring containing π-bonds [A. J. Atkins, Ch. R. Jacob and M. Bauer, Chem.-Eur. J., 2012, 18, 7021], the V2C-XES spectra are virtually unchanged. The pre-edge in HERFD-XANES probes the weak transition to unoccupied metal d-orbitals, while the V2C-XES spectra are determined by dipole-allowed transitions from occupied ligand orbitals to the 1s core hole. The latter turn out to be less sensitive to changes beyond the first coordination shell.

  12. Shear-scaling-based approach for irreversible energy loss estimation in stenotic aortic flow - An in vitro study.

    PubMed

    Gülan, Utku; Binter, Christian; Kozerke, Sebastian; Holzner, Markus

    2017-03-12

    Today, the functional and risk assessment of stenosed arteries is mostly based on ultrasound Doppler blood flow velocity measurements or catheter pressure measurements, which rely on several assumptions. Alternatively, blood velocity including turbulent kinetic energy (TKE) may be measured using MRI. The aim of the present study is to validate a TKE-based approach that relies on the fact that turbulence production is dominated by the flow's shear to determine the total irreversible energy loss from MRI scans. Three-dimensional particle tracking velocimetry (3D-PTV) and phase-contrast magnetic resonance imaging (PC-MRI) simulations were performed in an anatomically accurate, compliant, silicon aortic phantom. We found that measuring only the laminar viscous losses does not reflect the true losses of stenotic flows since the contribution of the turbulent losses to the total loss become more dominant for more severe stenosis types (for example, the laminar loss is 0.0094±0.0015W and the turbulent loss is 0.0361±0.0015W for the Remax=13,800 case, where Remax is the Reynolds number based on the velocity in the vena-contracta). We show that the commonly used simplified and modified Bernoulli's approaches overestimate the total loss, while the new TKE-based method proposed here, referred to as "shear scaling" approach, results in a good agreement between 3D-PTV and simulated PC-MRI (mean error is around 10%). In addition, we validated the shear scaling approach on a geometry with post-stenotic dilatation using numerical data by Casas et al. (2016). The shear scaling-based method may hence be an interesting alternative for irreversible energy loss estimation to replace traditional approaches for clinical use. We expect that our results will evoke further research, in particular patient studies for clinical implementation of the new method.

  13. Inversion vibration of PH3+(X~ 2A2'') studied by zero kinetic energy photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Li, Juan; Hao, Yusong; Zhou, Chang; Mo, Yuxiang

    2006-08-01

    We report the first rotationally resolved spectroscopic studies on PH3+(X˜A2″2) using zero kinetic energy photoelectron spectroscopy and coherent VUV radiation. The spectra about 8000cm-1 above the ground vibrational state of PH3+(X˜A2″2) have been recorded. We observed the vibrational energy level splittings of PH3+(X˜A2″2) due to the tunneling effect in the inversion (symmetric bending) vibration (ν2+). The energy splitting for the first inversion vibrational state (0+/0-) is 5.8cm-1. The inversion vibrational energy levels, rotational constants, and adiabatic ionization energies (IEs) for ν2+=0-16 have been determined. The bond angles between the neighboring P-H bonds and the P-H bond lengths are also obtained using the experimentally determined rotational constants. With the increasing of the inversion vibrational excitations (ν2+), the bond lengths (P-H) increase a little and the bond angles (H-P-H) decrease a lot. The inversion vibrational energy levels have also been calculated by using one dimensional potential model and the results are in good agreement with the experimental data for the first several vibrational levels. In addition to inversion vibration, we also observed firstly the other two vibrational modes: the symmetric P-H stretching vibration (ν1+) and the degenerate bending vibration (ν4+). The fundamental frequencies for ν1+ and ν4+ are 2461.6 (±2) and 1043.9 (±2)cm-1, respectively. The first IE for PH3 was determined as 79670.9 (±1)cm-1.

  14. Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire. II. Electron energy loss spectroscopic study

    SciTech Connect

    Lee, Sung Bo Han, Heung Nam; Kim, Young-Min

    2015-07-15

    In Part I, we have shown that the addition of Si into sapphire by ion implantationmakes the sapphire substrate elastically softer than for the undoped sapphire. The more compliant layer of the Si-implanted sapphire substrate can absorb the misfit stress at the GaN/sapphire interface, which produces a lower threading-dislocation density in the GaN overlayer. Here in Part II, based on experimental results by electron energy loss spectroscopy and a first-principle molecular orbital calculation in the literature, we suggest that the softening effect of Si results from a reduction of ionic bonding strength in sapphire (α-Al{sub 2}O{sub 3}) with the substitution of Si for Al.

  15. Longer coronary anastomosis provides lower energy loss in coronary artery bypass grafting.

    PubMed

    Tsukui, Hiroyuki; Shinke, Manabu; Park, Young Kwang; Yamazaki, Kenji

    2017-01-01

    Distal anastomosis technique affects graft patency and long-term outcomes in coronary artery bypass grafting, however, there is no standard for the appropriate length of distal anastomosis. The purpose of this study is to evaluate whether longer distal anastomosis provides higher quality of distal anastomosis and better hemodynamic patterns. Off pump CABG training simulator, YOUCAN (EBM Corporation, Japan), was used for distal anastomosis model. Two lengths of distal anastomosis model (10 versus 4 mm) were prepared by end-to-side anastomosis technique. After CT scan constructed three-dimensional inner shape of distal anastomosis, computational flow dynamics (CFD) was used to analyze hemodynamic patterns. The working flow was defined as Newtonian fluid with density of 1050 kg/m(3) and viscosity of 4 mPa s. The boundary condition was set to 100 mmHg at inlet, 50 ml/min at outlet, and 100 % stenosis of proximal coronary artery. Three-dimensional CT imaging showed quality of distal anastomosis in 10 mm model was more uniform without vessel wall inversion or kinking compared to 4 mm model. Anastomotic flow area was significantly larger in 10 mm model than that in 4 mm model (28.67 ± 4.91 versus 8.89 ± 3.18 mm(2), p < 0.0001). Anastomotic angle was significantly smaller in 10 mm model compared to 4 mm model (10.2 ± 5.65° versus 20.6 ± 3.31°, p < 0.0001). CFD analysis demonstrated 10 mm model had streamlined flow with smooth graft curvature, whereas 4 mm model had abrupt blood flow direction changes with flow separation at the toe. 10 mm model had significantly lower energy loss than 4 mm model (34.78 ± 6.90 versus 77.10 ± 21.47 μW, p < 0.0001). Longer distal anastomosis provided higher quality of distal anastomosis, larger anastomotic flow area, smaller anastomotic angle, and smoother graft curvatures. These factors yielded lower energy loss at distal anastomosis.

  16. Strongly Dipolar Polythiourea and Polyurea Dielectrics with High Electrical Breakdown, Low Loss, and High Electrical Energy Density

    NASA Astrophysics Data System (ADS)

    Wu, Shan; Burlingame, Quinn; Cheng, Zhao-Xi; Lin, Minren; Zhang, Q. M.

    2014-12-01

    Dielectric materials with high electric energy density and low loss are of great importance for applications in modern electronics and electrical systems. Strongly dipolar materials have the potential to reach relatively higher dielectric constants than the widely used non-polar or weakly dipolar polymers, as well as a much lower loss than that of nonlinear high K polymer dielectrics or polymer-ceramic composites. To realize the high energy density while maintaining the low dielectric loss, aromatic polythioureas and polyureas with high dipole moments, high dipole densities, tunable molecular structures and dielectric properties were investigated. High energy density (>24 J/cm3), high breakdown strength (>800 MV/m), and high charge-discharge efficiency (>90%) can be achieved in the new polymers. The molecular structure and film surface morphology were also studied; it is of great importance to optimize the fabrication process to make high-quality thin films.

  17. Multiple-scattering distributions and angular dependence of the energy loss of slow protons in copper and silver

    NASA Astrophysics Data System (ADS)

    Cantero, E. D.; Lantschner, G. H.; Eckardt, J. C.; Lovey, F. C.; Arista, N. R.

    2010-04-01

    Measurements of angular distributions and of the angular dependence of the energy loss of 4-, 6-, and 9-keV protons transmitted through thin Cu and Ag polycrystalline foils are presented. By means of standard multiple-scattering model calculations it is found that a V(r)∝r-2.8 potential leads to significantly better fits of the angular distributions than the standard Thomas Fermi, Lenz-Jensen, or Ziegler-Biersack-Littmark potentials. A theoretical model for the angular dependence of the energy loss based on considering geometric effects on a frictional inelastic energy loss plus an angular-dependent elastic contribution and the effects of foil roughness reproduces the experimental data. This agrees with previous results in Au and Al, therefore extending the applicability of the model to other metallic elements.

  18. Effect of georesource–consumer process flows on coal loss in energy supply of the Polar regions in Yakutia

    NASA Astrophysics Data System (ADS)

    Tkach, SM; Gavrilov, VL

    2017-02-01

    It is shown that the process flows of mining, haulage and utilization of coal in the Polar regions in Yakutia feature high quantitative and qualitative loss. In case the process flows are considered as integrated systems aimed at the overall performance efficiency, it is possible to reduce the loss per each individual chain loop. The authors formulate approaches intended to lower total loss of coal in process flows. The geotechnical and organizational solutions are put forward to improve and stabilize quality of fuel used by local fuel and energy industry.

  19. High energy-resolution x-ray spectroscopy at ultra-high dilution with spherically bent crystal analyzers of 0.5 m radius

    NASA Astrophysics Data System (ADS)

    Rovezzi, Mauro; Lapras, Christophe; Manceau, Alain; Glatzel, Pieter; Verbeni, Roberto

    2017-01-01

    We present the development, manufacturing, and performance of spherically bent crystal analyzers (SBCAs) of 100 mm diameter and 0.5 m bending radius. The elastic strain in the crystal wafer is partially released by a "strip-bent" method where the crystal wafer is cut into strips prior to the bending and the anodic bonding process. Compared to standard 1 m SBCAs, a gain in intensity is obtained without loss of energy resolution. The gain ranges between 2.5 and 4.5, depending on the experimental conditions and the width of the emission line measured. This reduces the acquisition times required to perform high energy-resolution x-ray absorption and emission spectroscopy on ultra-dilute species, accessing concentrations of the element of interest down to, or below, the ppm (ng/mg) level.

  20. High energy-resolution x-ray spectroscopy at ultra-high dilution with spherically bent crystal analyzers of 0.5 m radius.

    PubMed

    Rovezzi, Mauro; Lapras, Christophe; Manceau, Alain; Glatzel, Pieter; Verbeni, Roberto

    2017-01-01

    We present the development, manufacturing, and performance of spherically bent crystal analyzers (SBCAs) of 100 mm diameter and 0.5 m bending radius. The elastic strain in the crystal wafer is partially released by a "strip-bent" method where the crystal wafer is cut into strips prior to the bending and the anodic bonding process. Compared to standard 1 m SBCAs, a gain in intensity is obtained without loss of energy resolution. The gain ranges between 2.5 and 4.5, depending on the experimental conditions and the width of the emission line measured. This reduces the acquisition times required to perform high energy-resolution x-ray absorption and emission spectroscopy on ultra-dilute species, accessing concentrations of the element of interest down to, or below, the ppm (ng/mg) level.