Science.gov

Sample records for energy magnitude determinations

  1. Suitability of rapid energy magnitude determinations for emergency response purposes

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Domenico; Parolai, Stefano; Bormann, Peter; Grosser, Helmut; Saul, Joachim; Wang, Rongjiang; Zschau, Jochen

    2010-01-01

    It is common practice in the seismological community to use, especially for large earthquakes, the moment magnitude Mw as a unique magnitude parameter to evaluate the earthquake's damage potential. However, as a static measure of earthquake size, Mw does not provide direct information about the released seismic wave energy and its high frequency content, which is the more interesting information both for engineering purposes and for a rapid assessment of the earthquake's shaking potential. Therefore, we recommend to provide to disaster management organizations besides Mw also sufficiently accurate energy magnitude determinations as soon as possible after large earthquakes. We developed and extensively tested a rapid method for calculating the energy magnitude Me within about 10-15 min after an earthquake's occurrence. The method is based on pre-calculated spectral amplitude decay functions obtained from numerical simulations of Green's functions. After empirical validation, the procedure has been applied offline to a large data set of 767 shallow earthquakes that have been grouped according to their type of mechanism (strike-slip, normal faulting, thrust faulting, etc.). The suitability of the proposed approach is discussed by comparing our rapid Me estimates with Mw published by GCMT as well as with Mw and Me reported by the USGS. Mw is on average slightly larger than our Me for all types of mechanisms. No clear dependence on source mechanism is observed for our Me estimates. In contrast, Me from the USGS is generally larger than Mw for strike-slip earthquakes and generally smaller for the other source types. For ~67 per cent of the event data set our Me differs <= +/-0.3 magnitude units (m.u.) from the respective Me values published by the USGS. However, larger discrepancies (up to 0.8 m.u.) may occur for strike-slip events. A reason of that may be the overcorrection of the energy flux applied by the USGS for this type of earthquakes. We follow the original

  2. New approach of determinations of earthquake moment magnitude using near earthquake source duration and maximum displacement amplitude of high frequency energy radiation

    SciTech Connect

    Gunawan, H.; Puspito, N. T.; Ibrahim, G.; Harjadi, P. J. P.

    2012-06-20

    The new approach method to determine the magnitude by using amplitude displacement relationship (A), epicenter distance ({Delta}) and duration of high frequency radiation (t) has been investigated for Tasikmalaya earthquake, on September 2, 2009, and their aftershock. Moment magnitude scale commonly used seismic surface waves with the teleseismic range of the period is greater than 200 seconds or a moment magnitude of the P wave using teleseismic seismogram data and the range of 10-60 seconds. In this research techniques have been developed a new approach to determine the displacement amplitude and duration of high frequency radiation using near earthquake. Determination of the duration of high frequency using half of period of P waves on the seismograms displacement. This is due tothe very complex rupture process in the near earthquake. Seismic data of the P wave mixing with other wave (S wave) before the duration runs out, so it is difficult to separate or determined the final of P-wave. Application of the 68 earthquakes recorded by station of CISI, Garut West Java, the following relationship is obtained: Mw = 0.78 log (A) + 0.83 log {Delta}+ 0.69 log (t) + 6.46 with: A (m), d (km) and t (second). Moment magnitude of this new approach is quite reliable, time processing faster so useful for early warning.

  3. Determination of the Meteor Limiting Magnitude

    NASA Technical Reports Server (NTRS)

    Kingery, A.; Blaauw, R.; Cooke, W. J.

    2016-01-01

    The limiting meteor magnitude of a meteor camera system will depend on the camera hardware and software, sky conditions, and the location of the meteor radiant. Some of these factors are constants for a given meteor camera system, but many change between meteor shower or sporadic source and on both long and short timescales. Since the limiting meteor magnitude ultimately gets used to calculate the limiting meteor mass for a given data set, it is important to have an understanding of these factors and to monitor how they change throughout the night, as a 0.5 magnitude uncertainty in limiting magnitude translates to a uncertainty in limiting mass by a factor of two.

  4. The moment magnitude M w and the energy magnitude M e: common roots and differences

    NASA Astrophysics Data System (ADS)

    Bormann, Peter; di Giacomo, Domenico

    2011-04-01

    Starting from the classical empirical magnitude-energy relationships, in this article, the derivation of the modern scales for moment magnitude M w and energy magnitude M e is outlined and critically discussed. The formulas for M w and M e calculation are presented in a way that reveals, besides the contributions of the physically defined measurement parameters seismic moment M 0 and radiated seismic energy E S, the role of the constants in the classical Gutenberg-Richter magnitude-energy relationship. Further, it is shown that M w and M e are linked via the parameter Θ = log( E S/ M 0), and the formula for M e can be written as M e = M w + (Θ + 4.7)/1.5. This relationship directly links M e with M w via their common scaling to classical magnitudes and, at the same time, highlights the reason why M w and M e can significantly differ. In fact, Θ is assumed to be constant when calculating M w. However, variations over three to four orders of magnitude in stress drop Δ σ (as well as related variations in rupture velocity V R and seismic wave radiation efficiency η R) are responsible for the large variability of actual Θ values of earthquakes. As a result, for the same earthquake, M e may sometimes differ by more than one magnitude unit from M w. Such a difference is highly relevant when assessing the actual damage potential associated with a given earthquake, because it expresses rather different static and dynamic source properties. While M w is most appropriate for estimating the earthquake size (i.e., the product of rupture area times average displacement) and thus the potential tsunami hazard posed by strong and great earthquakes in marine environs, M e is more suitable than M w for assessing the potential hazard of damage due to strong ground shaking, i.e., the earthquake strength. Therefore, whenever possible, these two magnitudes should be both independently determined and jointly considered. Usually, only M w is taken as a unified magnitude in many

  5. The empirical formula determination of local magnitude for North Moluccas region

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Basri; Suardi, Iman; Heryandoko, Nova; Bunaga, I. Gusti Ketut Satria

    2016-05-01

    The energy of local and regional earthquake is usually expressed by local magnitude. In addition, local magnitude is also useful for seismic hazard assessment. The aims of this study are to determine the empirical formula of local magnitude and the correction distance function, -log A 0, applied for North Moluccas region. This study used waveform data from the MCGA seismic network located around North Moluccas region. We collected 148 maximum amplitude data of 40 earthquake events which are recorded by 6 seismometers with range of time from December 1, 2013 till January 31, 2014, hypocentral distance from 25km till 550 km, and depth below 70 km. The results of this study are the empirical formula of local magnitude, ML = log A + 0.651logR + 0.0037R 1.3568, and the correction distance function, logA0 = 0.651logR + 0.0037R 1.3568, respectively. Also we found that the station correction values of the GLMI, LBMI, MNI, SANI, TMSI, and TNTI seismic stations were -0.057, -0.216, -0.322, 0.088, -0.494, and 0.180, respectively. Low amplification is indicated by the positive value of station correction; meanwhile high amplification is by the negative. The correction distance function of North Moluccas region is similar to the Central California region. It means that the attenuation characteristics of the two regions have similarities.

  6. Fast Moment Magnitude Determination from P-wave Trains for Bucharest Rapid Early Warning System (BREWS)

    NASA Astrophysics Data System (ADS)

    Lizurek, Grzegorz; Marmureanu, Alexandru; Wiszniowski, Jan

    2017-03-01

    Bucharest, with a population of approximately 2 million people, has suffered damage from earthquakes in the Vrancea seismic zone, which is located about 170 km from Bucharest, at a depth of 80-200 km. Consequently, an earthquake early warning system (Bucharest Rapid earthquake Early Warning System or BREWS) was constructed to provide some warning about impending shaking from large earthquakes in the Vrancea zone. In order to provide quick estimates of magnitude, seismic moment was first determined from P-waves and then a moment magnitude was determined from the moment. However, this magnitude may not be consistent with previous estimates of magnitude from the Romanian Seismic Network. This paper introduces the algorithm using P-wave spectral levels and compares them with catalog estimates. The testing procedure used waveforms from about 90 events with catalog magnitudes from 3.5 to 5.4. Corrections to the P-wave determined magnitudes according to dominant intermediate depth events mechanism were tested for November 22, 2014, M5.6 and October 17, M6 events. The corrections worked well, but unveiled overestimation of the average magnitude result of about 0.2 magnitude unit in the case of shallow depth event ( H < 60 km). The P-wave spectral approach allows for the relatively fast estimates of magnitude for use in BREWS. The average correction taking into account the most common focal mechanism for radiation pattern coefficient may lead to overestimation of the magnitude for shallow events of about 0.2 magnitude unit. However, in case of events of intermediate depth of M6 the resulting M w is underestimated at about 0.1-0.2. We conclude that our P-wave spectral approach is sufficiently robust for the needs of BREWS for both shallow and intermediate depth events.

  7. Relation between postural sway magnitude and metabolic energy cost during upright standing on a compliant surface.

    PubMed

    Houdijk, Han; Brown, Starr E; van Dieën, Jaap H

    2015-09-15

    Postural control performance is often described in terms of postural sway magnitude, assuming that lower sway magnitude reflects better performance. However, people do not typically minimize sway magnitude when performing a postural control task. Possibly, other criteria are satisfied when people select the amount of sway they do. Minimal metabolic cost has been suggested as such a criterion. The aim of this study was to experimentally test the relation between sway magnitude and metabolic cost to establish whether metabolic cost could be a potential optimization criterion in postural control. Nineteen healthy subjects engaged in two experiments in which different magnitudes of sway were evoked during upright standing on a foam surface while metabolic energy expenditure, center of pressure (CoP) excursion, and muscle activation were recorded. In one experiment, sway was manipulated by visual feedback of CoP excursion. The other experiment involved verbal instructions of standing still, natural or relaxed. In both experiments, metabolic cost changed with sway magnitude in an asymmetric parabolic fashion, with a minimum around self-selected sway magnitudes and a larger increase at small compared with large sway magnitudes. This metabolic response was paralleled by a change in tonic and phasic EMG activity in the major leg muscles. It is concluded that these results are in line with the notion that metabolic cost can be an optimization criterion used to set postural control and as such could account for the magnitude of naturally occurring postural sway in healthy individuals, although the pathway remains to be elucidated.

  8. Moment Magnitude Determination for Marmara Region-Turkey Using Displacement Spectra

    NASA Astrophysics Data System (ADS)

    Köseoǧlu Küsmezer, Ayşegül; Meral Özel, Nurcan; Barış, Å.žErif; Üçer, S. Balamir; Ottemöller, Lars

    2010-05-01

    The main purpose of the study is to determine moment magnitude Mω using displacement source spectra of earthquakes occurred in Marmara Region. The region is the most densely populated and fast-developing part of Turkey, bounded by 39.0°N to 42.0°N and 26.0°E to 32.0°E, and have experienced major earthquake disasters during the last four centuries with destructive earthquakes and probabilistic seismic hazard studies shows that the region have significant probability of producing M>7 earthquake within the next years. Seismic moment is a direct measurement of earthquake size (rupture area and static displacement) and does not saturate, spectral analysis at local distances is a very useful method which allows the reliable determination of seismic moment and moment magnitude. We have used converging grid search method developed by L. Ottemöller, and J. Havskov, 2008 for the automatic determination of moment magnitude for local distances. For data preperation; the time domain signal of S waves were extracted from the vertical component seismograms.Data was transformed from time to frequency domain by applying the standart fast fourier transform (fft). Source parameters and moment magnitudes of earthquakes are determined by applying spectral fitting procedure to classical Brune's model. The method is first manually and then automatically performed on the source spectrum of S waves within 20 sec. Mo and fc (Aki;1967, and Brune;1970) were determined by using the method which the model space is divided into a grid and the error function detected for all grid points. A smaller grid with denser spacing around the best solution is generated with an iterative procedure. The moment magnitudes of the earthquakes have been calculated according to the scale of Kanamori (1977) and Hanks and Kanamori (1979). A data set of 279 events recorded on broadband velocity seismograms extracted from KOERI (Kandilli Observatory and Earthquake Research Institute) seismic network were

  9. The Magnitude, Destinations, and Determinants of Mathematics and Science Teacher Turnover. CPRE Research Report # RR-66

    ERIC Educational Resources Information Center

    Ingersoll, Richard M.; May, Henry

    2010-01-01

    This study examines the magnitude, destinations, and determinants of the departures of mathematics and science teachers from public schools. The data are from the National Center for Education Statistics' nationally representative Schools and Staffing Survey and its longitudinal supplement, the Teacher Follow-up Survey. Our analyses show that…

  10. A method for determining the V magnitude of asteroids from CCD images

    NASA Astrophysics Data System (ADS)

    Dymock, R.; Miles, R.

    2009-06-01

    We describe a method of obtaining the V magnitude of an asteroid using differential photometry, with the magnitudes of comparison stars derived from Carlsberg Meridian Catalogue 14 (CMC14) data. The availability of a large number of suitable CMC14 stars enables a reasonably accurate magnitude (+/-0.05 mag) to be determined without having to resort to more complicated absolute or all-sky photometry. An improvement in accuracy to +/-0.03 mag is possible if an ensemble of several CMC14 stars is used. This method is expected to be less accurate for stars located within +/-10° of the galactic equator owing to excessive interstellar reddening and stellar crowding. Non-refereed articles

  11. Doing more with short period data: Determining magnitudes from clipped and over-run seismic data at Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Wellik, John J., II

    How can we calculate earthquake magnitudes when the signal is clipped and over-run? When a volcano is very active, the seismic record may saturate (i.e., the full amplitude of the signal is not recorded) or be over-run (i.e., the end of one event is covered by the start of a new event). The duration, and sometimes the amplitude, of an earthquake signal are necessary for determining event magnitudes; thus, it may be impossible to calculate earthquake magnitudes when a volcano is very active. This problem is most likely to occur at volcanoes with limited networks of short period seismometers. This study outlines two methods for calculating earthquake magnitudes when events are clipped and over-run. The first method entails modeling the shape of earthquake codas as a power law function and extrapolating duration from the decay of the function. The second method draws relations between clipped duration (i.e., the length of time a signal is clipped) and the full duration. These methods allow for magnitudes to be determined within 0.2 to 0.4 units of magnitude. This error is within the range of analyst hand-picks and is within the acceptable limits of uncertainty when quickly quantifying volcanic energy release during volcanic crises. Most importantly, these estimates can be made when data are clipped or over-run. These methods were developed with data from the initial stages of the 2004-2008 eruption at Mount St. Helens. Mount St. Helens is a well-studied volcano with many instruments placed at varying distances from the vent. This fact makes the 2004-2008 eruption a good place to calibrate and refine methodologies that can be applied to volcanoes with limited networks.

  12. Roles of testosterone and amygdaloid LTP induction in determining sex differences in fear memory magnitude.

    PubMed

    Chen, Li-Shen; Tzeng, Wen-Yu; Chuang, Jia-Ying; Cherng, Chianfang G; Gean, Po-Wu; Yu, Lung

    2014-08-01

    Women are thought to form fear memory more robust than men do and testosterone is suspected to play a role in determining such a sex difference. Mouse cued fear freezing was used to study the sex-related susceptibility and the role of testosterone in fear memory in humans. A 75-dB tone was found to provoke weak freezing, while 0.15-mA and 0.20-mA footshock caused strong freezing responses. No sex differences were noticed in the tone- or footshock-induced (naïve fear) freezing. Following the conditionings, female mice exhibited greater tone (cued fear)-induced freezing than did male mice. Nonetheless, female mice demonstrated indistinctive cued fear freezing across the estrous phases and ovariectomy did not affect such freezing in female mice. Orchidectomy enhanced the cued fear freezing in male mice. Systemic testosterone administrations and an intra-lateral nucleus of amygdala (LA) testosterone infusion diminished the cued fear freezing in orchidectomized male mice, while pretreatment with flutamide (Flu) eradicated these effects. Long-term potentiation (LTP) magnitude in LA has been known to correlate with the strength of the cued fear conditioning. We found that LA LTP magnitude was indeed greater in female than male mice. Orchidectomy enhanced LTP magnitude in males' LA, while ovariectomy decreased LTP magnitude in females' LA. Testosterone decreased LTP magnitude in orchidectomized males' LA and estradiol enhanced LTP magnitude in ovariectomized females' LA. Finally, male mice had lower LA GluR1 expression than female mice and orchidectomy enhanced the GluR1 expression in male mice. These findings, taken together, suggest that testosterone plays a critical role in rendering the sex differences in the cued fear freezing and LA LTP. Testosterone is negatively associated with LA LTP and the cued fear memory in male mice. However, ovarian hormones and LA LTP are loosely associated with the cued fear memory in female mice.

  13. Local magnitude determinations for intermountain seismic belt earthquakes from broadband digital data

    USGS Publications Warehouse

    Pechmann, J.C.; Nava, S.J.; Terra, F.M.; Bernier, J.C.

    2007-01-01

    The University of Utah Seismograph Stations (UUSS) earthquake catalogs for the Utah and Yellowstone National Park regions contain two types of size measurements: local magnitude (ML) and coda magnitude (MC), which is calibrated against ML. From 1962 through 1993, UUSS calculated ML values for southern and central Intermountain Seismic Belt earthquakes using maximum peak-to-peak (p-p) amplitudes on paper records from one to five Wood-Anderson (W-A) seismographs in Utah. For ML determinations of earthquakes since 1994, UUSS has utilized synthetic W-A seismograms from U.S. National Seismic Network and UUSS broadband digital telemetry stations in the region, which numbered 23 by the end of our study period on 30 June 2002. This change has greatly increased the percentage of earthquakes for which ML can be determined. It is now possible to determine ML for all M ???3 earthquakes in the Utah and Yellowstone regions and earthquakes as small as M <1 in some areas. To maintain continuity in the magnitudes in the UUSS earthquake catalogs, we determined empirical ML station corrections that minimize differences between MLs calculated from paper and synthetic W-A records. Application of these station corrections, in combination with distance corrections from Richter (1958) which have been in use at UUSS since 1962, produces ML values that do not show any significant distance dependence. ML determinations for the Utah and Yellowstone regions for 1981-2002 using our station corrections and Richter's distance corrections have provided a reliable data set for recalibrating the MC scales for these regions. Our revised ML values are consistent with available moment magnitude determinations for Intermountain Seismic Belt earthquakes. To facilitate automatic ML measurements, we analyzed the distribution of the times of maximum p-p amplitudes in synthetic W-A records. A 30-sec time window for maximum amplitudes, beginning 5 sec before the predicted Sg time, encompasses 95% of the

  14. The energy-magnitude scaling law for M s ≤ 5.5 earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, Jeen-Hwa

    2015-04-01

    The scaling law of seismic radiation energy, E s , versus surface-wave magnitude, M s , proposed by Gutenberg and Richter (1956) was originally based on earthquakes with M s > 5.5. In this review study, we examine if this law is valid for 0 < M s ≤ 5.5 from earthquakes occurring in different regions. A comparison of the data points of log( E s ) versus M s with Gutenberg and Richter's law leads to a conclusion that the law is still valid for earthquakes with 0 < M s ≤ 5.5.

  15. Star/galaxy separation at faint magnitudes: Application to a simulated Dark Energy Survey

    SciTech Connect

    Soumagnac, M.T.; et al.

    2013-06-21

    We address the problem of separating stars from galaxies in future large photometric surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the first part of the paper, we derive the science requirements on star/galaxy separation, for measurement of the cosmological parameters with the Gravitational Weak Lensing and Large Scale Structure probes. These requirements are dictated by the need to control both the statistical and systematic errors on the cosmological parameters, and by Point Spread Function calibration. We formulate the requirements in terms of the completeness and purity provided by a given star/galaxy classifier. In order to achieve these requirements at faint magnitudes, we propose a new method for star/galaxy separation in the second part of the paper. We first use Principal Component Analysis to outline the correlations between the objects parameters and extract from it the most relevant information. We then use the reduced set of parameters as input to an Artificial Neural Network. This multi-parameter approach improves upon purely morphometric classifiers (such as the classifier implemented in SExtractor), especially at faint magnitudes: it increases the purity by up to 20% for stars and by up to 12% for galaxies, at i-magnitude fainter than 23.

  16. Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey

    SciTech Connect

    Soumagnac, M. T.; Abdalla, F. B.; Lahav, O.; Kirk, D.; Sevilla, I.; Bertin, E.; Rowe, B. T. P.; Annis, J.; Busha, M. T.; Da Costa, L. N.; Frieman, J. A.; Gaztanaga, E.; Jarvis, M.; Lin, H.; Percival, W. J.; Santiago, B. X.; Sabiu, C. G.; Wechsler, R. H.; Wolz, L.; Yanny, B.

    2015-04-14

    We address the problem of separating stars from galaxies in future large photometric surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the first part of the paper, we derive the science requirements on star/galaxy separation, for measurement of the cosmological parameters with the gravitational weak lensing and large-scale structure probes. These requirements are dictated by the need to control both the statistical and systematic errors on the cosmological parameters, and by point spread function calibration. We formulate the requirements in terms of the completeness and purity provided by a given star/galaxy classifier. In order to achieve these requirements at faint magnitudes, we propose a new method for star/galaxy separation in the second part of the paper. We first use principal component analysis to outline the correlations between the objects parameters and extract from it the most relevant information. We then use the reduced set of parameters as input to an Artificial Neural Network. This multiparameter approach improves upon purely morphometric classifiers (such as the classifier implemented in SExtractor), especially at faint magnitudes: it increases the purity by up to 20 per cent for stars and by up to 12 per cent for galaxies, at i-magnitude fainter than 23.

  17. Sources and magnitude of bias associated with determination of polychlorinated biphenyls in environmental samples

    USGS Publications Warehouse

    Eganhouse, R.P.; Gossett, R.W.

    1991-01-01

    Recently complled data on the composition of commercial Aroclor mixtures and ECD (electron capture detector) response factors for all 209 PCB congeners are used to develop estimates of the bias associated with determination of polychlorinated blphenyis. During quantitation of multlcomponent peaks by congener-specific procedures error is introduced because of variable ECD response to isomeric PCBs. Under worst case conditions, the magnitude of this bias can range from less than 2% to as much as 600%. Multicomponent peaks containing the more highly and the lower chlorinated congeners experience the most bias. For this reason, quantitation of ??PCB in Aroclor mixtures dominated by these species (e.g. 1016) are potentially subject to the greatest error. Comparison of response factor data for ECDs from two laboratories shows that the sign and magnitude of calibration bias for a given multicomponent peak is variable and depends, in part, on the response characteristics of individual detectors. By using the most abundant congener (of each multicomponent peak) for purposes of calibration, one can reduce the maximum bias to less than 55%. Moreover, due to cancellation of errors, the bias resulting from summation of all peak concentrations (i.e. ??PCB) becomes vanishingly small (200%) and highly variable in sign and magnitude. In this case, bias originates not only from the incomplete chromatographic resolution of PCB congeners but also the overlapping patterns of the Aroclor mixtures. Together these results illustrate the advantages of the congener-specific method of PCB quantitation over the traditional Aroclor Method and the extreme difficulty of estimating bias incurred by the latter procedure on a post hoc basis.

  18. HYPOELLIPSE; a computer program for determining local earthquake hypocentral parameters, magnitude, and first-motion pattern

    USGS Publications Warehouse

    Lahr, John C.

    1999-01-01

    This report provides Fortran source code and program manuals for HYPOELLIPSE, a computer program for determining hypocenters and magnitudes of near regional earthquakes and the ellipsoids that enclose the 68-percent confidence volumes of the computed hypocenters. HYPOELLIPSE was developed to meet the needs of U.S. Geological Survey (USGS) scientists studying crustal and sub-crustal earthquakes recorded by a sparse regional seismograph network. The program was extended to locate hypocenters of volcanic earthquakes recorded by seismographs distributed on and around the volcanic edifice, at elevations above and below the hypocenter. HYPOELLIPSE was used to locate events recorded by the USGS southern Alaska seismograph network from October 1971 to the early 1990s. Both UNIX and PC/DOS versions of the source code of the program are provided along with sample runs.

  19. CODA-DERIVED SOURCE SPECTRA, MOMENT MAGNITUDES, AND ENERGY-MOMENT SCALING IN THE WESTERN ALPS

    SciTech Connect

    Morasca, P; Mayeda, K; Malagnini, L; Walter, W

    2004-02-03

    A stable estimate of the earthquake source spectra in the western Alps is obtained using an empirical method based on coda envelope amplitude measurements described by Mayeda et al. (2003) for events ranging between M{sub W} {approx} 1.0 to {approx}5.0. We calibrated path corrections for consecutive narrow frequency bands ranging between 0.2 and 25.0-Hz using a simple 1-D model for 5 three-component stations of the Regional Seismic network of Northwestern Italy (RSNI). The 1-D assumption performs well, even though the region is characterized by a complex structural setting involving strong lateral variations in the Moho depth. For frequencies less than 1.0-Hz, we tied our dimensionless, distance-corrected coda amplitudes to an absolute scale in units of dyne-cm by using independent moment magnitudes from long-period waveform modeling for 3 moderate magnitude events in the region. For the higher frequencies, we used small events as empirical Green's functions, with corner frequencies above 25.0-Hz. For each station, the procedure yields frequency-dependent corrections that account for site effects, including those related to f{sub max}, as well as those related to S-to-coda transfer function effects. After the calibration was completed, the corrections were applied to the entire data-set composed of 957 events. Our findings using the coda-derived source spectra are summarized as follows: (1) We derived stable estimates of seismic moment, M{sub 0}, (and hence M{sub W}) as well as radiated S-wave energy, (E{sub S}), from waveforms recorded by as few as one station, for events that were too small to be waveform modeled (i.e., events less than M{sub W} {approx}3.5); (2) The source spectra were used to derive an equivalent local magnitude, M{sub L(coda)}, that is in excellent agreement with the network averaged values using direct S-waves; (3) Scaled energy, {tilde e} = E{sub R}/M{sub 0}, where E{sub R}, the radiated seismic energy, is comparable to results from other

  20. Acrylamide concentration determines the direction and magnitude of helical membrane protein gel shifts

    PubMed Central

    Rath, Arianna; Cunningham, Fiona; Deber, Charles M.

    2013-01-01

    SDS/PAGE is universally used in biochemistry, cell biology, and immunology to resolve minute protein amounts readily from tissue and cell extracts. Although molecular weights of water-soluble proteins are reliably determined from their SDS/PAGE mobility, most helical membrane proteins, which comprise 20–30% of the human genome and the majority of drug targets, migrate to positions that have for decades been unpredictably slower or faster than their actual formula weight, often confounding their identification. Using de novo designed transmembrane-mimetic polypeptides that match the composition of helical membrane-spanning sequences, we quantitate anomalous SDS/PAGE fractionation of helical membrane proteins by comparing the relative mobilities of these polypeptides with typical water-soluble reference proteins on Laemmli gels. We find that both the net charge and effective molecular size of the migrating particles of transmembrane-mimetic species exceed those of the corresponding reference proteins and that gel acrylamide concentration dictates the impact of these two factors on the direction and magnitude of anomalous migration. Algorithms we derived from these data compensate for this differential effect of acrylamide concentration on the SDS/PAGE mobility of a variety of natural membrane proteins. Our results provide a unique means to predict anomalous migration of membrane proteins, thereby facilitating straightforward determination of their molecular weights via SDS/PAGE. PMID:24019476

  1. What determines the magnitude of climate change commitment after cessation of emissions?

    NASA Astrophysics Data System (ADS)

    Ehlert, D.; Zickfeld, K.

    2013-12-01

    Previous studies show that climate change persists for several centuries after CO2 emissions cease. For example, global mean warming stays approximately constant after CO2 emissions stop, i.e., CO2 forcing levels decline. Thermosteric sea level rise continues after emissions stop. The question thus arises: what determines the magnitude of these committed climate changes? This study focuses on the timing at which emissions cease. One would assume that given a constant forcing level, the earlier emissions cease, the further the system is away from equilibrium, i.e., the larger the expected residual change. We will investigate this question by using a climate model of intermediate complexity, version 2.9 of the University of Victoria Earth System Climate Model (Uvic ESCM 2.9). The simulations follow the four Representative Concentration Pathways (RCPs) and their extensions to the year 2300 for CO2 and non-CO2 GHG forcings. After 2300 the CO2 concentrations are set at a constant level. Starting from different points along the RCP trajectories CO2 emissions are set to preindustrial levels and the atmospheric CO2 concentrations are allowed to evolve freely. By comparing these different simulations we will gain improved understanding of the role of the forcing level and the timing of emission cessation for climate change commitment.

  2. Determining the magnitude, frequency and source of prehistoric events - Is there a Holy Grail?

    NASA Astrophysics Data System (ADS)

    Goff, James; Dominey-Howes, Dale; Chague-Goff, Catherine; Strotz, Luke; Anning, David; Bird, Deanne; Calgaro, Emma; Courtney, Claire

    2010-05-01

    palaeotsunami sources, we need to be able to compare and contrast between national databases. This can only happen if databases exist and are compatible - for example, are the criteria used for palaeotsunami interpretations consistent? Similarly, to be able to start commenting on the magnitude and frequency of palaeotsunamis from local, regional and distant sources there need to be regional and national databases to refer to. Surprisingly, this is rarely the case. We highlight this issue with reference to palaeotsunami data from the Pacific Ocean. Palaeotsunami magnitude, frequency and source (PMFS) modelling can be and has been achieved albeit with some caution. While it is acknowledged that any single palaeotsunami database will never be entirely complete and we may therefore never be fully able to determine the PMFS for any one region, this does not mean that is has no value. Far from it, after all every single historical database is also incomplete and they are regularly used for probabilistic tsunami hazard modelling. Is there a Holy Grail? In many ways it largely depends upon whether you think the cup is half full or half empty.

  3. A framework for accurate determination of the T₂ distribution from multiple echo magnitude MRI images.

    PubMed

    Bai, Ruiliang; Koay, Cheng Guan; Hutchinson, Elizabeth; Basser, Peter J

    2014-07-01

    Measurement of the T2 distribution in tissues provides biologically relevant information about normal and abnormal microstructure and organization. Typically, the T2 distribution is obtained by fitting the magnitude MR images acquired by a multi-echo MRI pulse sequence using an inverse Laplace transform (ILT) algorithm. It is well known that the ideal magnitude MR signal follows a Rician distribution. Unfortunately, studies attempting to establish the validity and efficacy of the ILT algorithm assume that these input signals are Gaussian distributed. Violation of the normality (or Gaussian) assumption introduces unexpected artifacts, including spurious cerebrospinal fluid (CSF)-like long T2 components; bias of the true geometric mean T2 values and in the relative fractions of various components; and blurring of nearby T2 peaks in the T2 distribution. Here we apply and extend our previously proposed magnitude signal transformation framework to map noisy Rician-distributed magnitude multi-echo MRI signals into Gaussian-distributed signals with high accuracy and precision. We then perform an ILT on the transformed data to obtain an accurate T2 distribution. Additionally, we demonstrate, by simulations and experiments, that this approach corrects the aforementioned artifacts in magnitude multi-echo MR images over a large range of signal-to-noise ratios.

  4. Making sense of nonsense: the visual salience of units determines sensitivity to magnitude.

    PubMed

    Shen, Luxi; Urminsky, Oleg

    2013-03-01

    When are people sensitive to the magnitude of numerical information presented in unfamiliar units, such as a price in a foreign currency or a measurement of an unfamiliar product attribute? We propose that people exhibit deliberational blindness, a failure to consider the meaning of even unfamiliar units. When an unfamiliar unit is not salient, people fail to take their lack of knowledge into account, and their judgments reflect sensitivity to the magnitude of the number. However, subtly manipulating the visual salience of the unit (e.g., enlarging its font size relative to the font size of the number) prompts recognition of the unit's unfamiliarity and reduces magnitude sensitivity. In five experiments, we demonstrated this unit-salience effect, provided evidence for deliberational blindness, and ruled out alternative explanations, such as nonperception and fluency. These findings have implications for decision making involving numerical information expressed in both unfamiliar units and familiar but poorly calibrated units.

  5. Determination of Love- and Rayleigh-Wave Magnitudes for Earthquakes and Explosions and Other Studies

    DTIC Science & Technology

    2012-12-30

    However, tectonic release (Toksöz and Kehrer, 1972) near the explosion source often results in Love Approved for public release; distribution is...bias in magnitude estimation. Significant heterogeneities along the plate boundaries are the most likely causes of such scattering. We have applied...areas with strong lateral velocity variations, including active tectonic belts, continental shelves etc. Strike-slip mechanisms are usually better

  6. Conspecific density determines the magnitude and character of predator-induced phenotype.

    PubMed

    McCoy, Michael W

    2007-10-01

    The benefits in survival gained from predator-induced phenotypes often come at a cost to other components of fitness. Therefore, the level of expression of an induced phenotype should mirror the level of risk in the environment. When a predator exhibits a saturating functional response the risk of mortality to a given prey decreases as prey density increases. Therefore, for a given predator threat, investment in defense should be lower in prey at high density relative to those at low density. In this study, I test whether the magnitude of predator-induced morphological plasticity decreases with increasing conspecific density by exposing pine woods tree frog (Hyla femoralis) tadpoles at three different densities to predators (present or absent) in a factorial experiment. Tadpole morphology was not affected by changes in density in the absence of predators. However, predators had a significant, density-dependent effect on tadpole morphology. Specifically, the magnitude of morphological response was graded and larger for animals in the low density (high risk) environment. This study demonstrates that tadpoles can modulate phenotypic plasticity in response to mortality risk as a function of both the density of conspecifics and chemical cues from predators, which suggests that they are able to detect and respond to fine-scale changes in the threat environment. In addition, this study highlights the need for analytical approaches that allow morphological plasticity studies to elucidate allometric relationships in addition to simply quantifying size-corrected traits.

  7. The role of active muscle mass in determining the magnitude of peripheral fatigue during dynamic exercise.

    PubMed

    Rossman, Matthew J; Garten, Ryan S; Venturelli, Massimo; Amann, Markus; Richardson, Russell S

    2014-06-15

    Greater peripheral quadriceps fatigue at the voluntary termination of single-leg knee-extensor exercise (KE), compared with whole-body cycling, has been attributed to confining group III and IV skeletal muscle afferent feedback to a small muscle mass, enabling the central nervous system (CNS) to tolerate greater peripheral fatigue. However, as task specificity and vastly differing systemic challenges may have complicated this interpretation, eight males were studied during constant workload trials to exhaustion at 85% of peak workload during single-leg and double-leg KE. It was hypothesized that because of the smaller muscle mass engaged during single-leg KE, a greater magnitude of peripheral quadriceps fatigue would be present at exhaustion. Vastus lateralis integrated electromyogram (iEMG) signal relative to the first minute of exercise, preexercise to postexercise maximal voluntary contractions (MVCs) of the quadriceps, and twitch-force evoked by supramaximal magnetic femoral nerve stimulation (Qtw,pot) quantified peripheral quadriceps fatigue. Trials performed with single-leg KE (8.1 ± 1.2 min; 45 ± 4 W) resulted in significantly greater peripheral quadriceps fatigue than double-leg KE (10 ± 1.3 min; 83 ± 7 W), as documented by changes in the iEMG signal (147 ± 24 vs. 85 ± 13%), MVC (-25 ± 3 vs. -12 ± 3%), and Qtw,pot (-44 ± 6 vs. -33 ± 7%), for single-leg and double-leg KE, respectively. Therefore, avoiding concerns over task specificity and cardiorespiratory limitations, this study reveals that a reduction in muscle mass permits the development of greater peripheral muscle fatigue and supports the concept that the CNS tolerates a greater magnitude of peripheral fatigue when the source of group III/IV afferent feedback is limited to a small muscle mass.

  8. Anthropogenic Disturbance Can Determine the Magnitude of Opportunistic Species Responses on Marine Urban Infrastructures

    PubMed Central

    Airoldi, Laura; Bulleri, Fabio

    2011-01-01

    Background Coastal landscapes are being transformed as a consequence of the increasing demand for infrastructures to sustain residential, commercial and tourist activities. Thus, intertidal and shallow marine habitats are largely being replaced by a variety of artificial substrata (e.g. breakwaters, seawalls, jetties). Understanding the ecological functioning of these artificial habitats is key to planning their design and management, in order to minimise their impacts and to improve their potential to contribute to marine biodiversity and ecosystem functioning. Nonetheless, little effort has been made to assess the role of human disturbances in shaping the structure of assemblages on marine artificial infrastructures. We tested the hypothesis that some negative impacts associated with the expansion of opportunistic and invasive species on urban infrastructures can be related to the severe human disturbances that are typical of these environments, such as those from maintenance and renovation works. Methodology/Principal Findings Maintenance caused a marked decrease in the cover of dominant space occupiers, such as mussels and oysters, and a significant enhancement of opportunistic and invasive forms, such as biofilm and macroalgae. These effects were particularly pronounced on sheltered substrata compared to exposed substrata. Experimental application of the disturbance in winter reduced the magnitude of the impacts compared to application in spring or summer. We use these results to identify possible management strategies to inform the improvement of the ecological value of artificial marine infrastructures. Conclusions/Significance We demonstrate that some of the impacts of globally expanding marine urban infrastructures, such as those related to the spread of opportunistic, and invasive species could be mitigated through ecologically-driven planning and management of long-term maintenance of these structures. Impact mitigation is a possible outcome of policies

  9. Magnitude of daily energy deficit predicts frequency but not severity of menstrual disturbances associated with exercise and caloric restriction

    PubMed Central

    Leidy, Heather J.; Hill, Brenna R.; Lieberman, Jay L.; Legro, Richard S.; Souza, Mary Jane De

    2014-01-01

    We assessed the impact of energy deficiency on menstrual function using controlled feeding and supervised exercise over four menstrual cycles (1 baseline and 3 intervention cycles) in untrained, eumenorrheic women aged 18–30 yr. Subjects were randomized to either an exercising control (EXCON) or one of three exercising energy deficit (ED) groups, i.e., mild (ED1; −8 ± 2%), moderate (ED2; −22 ± 3%), or severe (ED3; −42 ± 3%). Menstrual cycle length and changes in urinary concentrations of estrone-1-glucuronide, pregnanediol glucuronide, and midcycle luteinizing hormone were assessed. Thirty-four subjects completed the study. Weight loss occurred in ED1 (−3.8 ± 0.2 kg), ED2 (−2.8 ± 0.6 kg), and ED3 (−2.6 ± 1.1 kg) but was minimal in EXCON (−0.9 ± 0.7 kg). The overall sum of disturbances (luteal phase defects, anovulation, and oligomenorrhea) was greater in ED2 compared with EXCON and greater in ED3 compared with EXCON AND ED1. The average percent energy deficit was the main predictor of the frequency of menstrual disturbances (f = 10.1, β = −0.48, r2 = 0.23, P = 0.003) even when weight loss was included in the model. The estimates of the magnitude of energy deficiency associated with menstrual disturbances ranged from −22 (ED2) to −42% (ED3), reflecting an energy deficit of −470 to −810 kcal/day, respectively. This is the first study to demonstrate a dose-response relationship between the magnitude of energy deficiency and the frequency of exercise-related menstrual disturbances; however, the severity of menstrual disturbances was not dependent on the magnitude of energy deficiency. PMID:25352438

  10. Determining the Location and Magnitude of Basin and Range and Laramide Faulting, Southern Nevada

    NASA Astrophysics Data System (ADS)

    Brundrett, C. E.; Lamb, M. A.; Beard, S.

    2014-12-01

    Southern Nevada records two recent periods of deformation; the Laramide orogeny and Basin and Range extension. Our research focuses on these events to understand the history of faulting in this area and the resulting landscape. First, we have advanced an on-going research project in the Lake Mead region of Nevada, which was deformed by extension that began around 17 Ma. We are currently working in the White Basin, near Lake Mead. The White Basin is comprised of the Lovell Wash Member, ~14-12 Ma, of the Horse Spring Formation. The Lovell Wash Member contains siliciclastic and carbonate units that vary laterally and vertically throughout this area. This is a change from the fairly homogenous Bitter Ridge Limestone Member below and suggests a change in the style of faulting. To determine the faulting history, we mapped out marker beds, focusing on tuffs and limestone beds that form continuous, well-exposed outcrops in the area. We found abrupt stratigraphic thickening of ~50% across faults, documenting syndepositional faulting. We used dated tuffs to determine that this faulting developed from ~13.7-13.2 Ma. Secondly, we are working on a Laramide uplift project. We are testing the hypothesis that an area in the Kingman Uplift region was deformed by a Laramide age fault, prior to Miocene extensional deformation. We are using U-Th/He Apatite and K-Spar Multiple Diffusion Domain thermochronology, to determine the cooling histories of rocks on either side of the proposed fault. Both of these on-going research projects highlight the complex geology that is found in the Basin and Range province in the United States. Understanding this complex geology will help answer questions about the timing, driving forces, and processes associated with extensional and compressional events.

  11. Success importance and urge magnitude as determinants of cardiovascular response to a behavioral restraint challenge.

    PubMed

    Agtarap, Stephanie D; Wright, Rex A; Mlynski, Christopher; Hammad, Rawan; Blackledge, Sabrina

    2016-04-01

    Decades of research have investigated a conceptual analysis concerned with determinants and cardiovascular correlates of effort in people confronted with performance challenges, that is, opportunities to alter some course of events by acting. One suggestion is that effort and associated cardiovascular responses should be determined jointly by the difficulty of meeting a challenge and the importance of doing so. The present experiment tested this in a context involving behavioral restraint, that is, effortful resistance against a behavioral impulse or urge. Participants were presented a mildly evocative violent film clip (restraint difficulty low) or a strongly evocative violent film clip (restraint difficulty high) with instructions to refrain from showing any facial response. Success was made more or less important through coordinated manipulations of outcome expectancy, ego-involvement and social evaluation. As expected, SBP responses assessed during the work period were proportional to clip evocativeness - i.e., the difficulty of the restraint challenge - when importance was high, but low regardless of clip evocativeness when importance was low. Findings conceptually replicate previous cardiovascular results and support extension of the guiding analysis to the behavioral restraint realm.

  12. Fuzzy Discrimination Analysis Method for Earthquake Energy K-Class Estimation with respect to Local Magnitude Scale

    NASA Astrophysics Data System (ADS)

    Mumladze, T.; Gachechiladze, J.

    2014-12-01

    The purpose of the present study is to establish relation between earthquake energy K-class (the relative energy characteristic) defined as logarithm of seismic waves energy E in joules obtained from analog stations data and local (Richter) magnitude ML obtained from digital seismograms. As for these data contain uncertainties the effective tools of fuzzy discrimination analysis are suggested for subjective estimates. Application of fuzzy analysis methods is an innovative approach to solving a complicated problem of constracting a uniform energy scale through the whole earthquake catalogue, also it avoids many of the data collection problems associated with probabilistic approaches; and it can handle incomplete information, partial inconsistency and fuzzy descriptions of data in a natural way. Another important task is to obtain frequency-magnitude relation based on K parameter, calculation of the Gutenberg-Richter parameters (a, b) and examining seismic activity in Georgia. Earthquake data files are using for periods: from 1985 to 1990 and from 2004 to 2009 for area j=410 - 430.5, l=410 - 470.

  13. Patterns of relative magnitudes of soil energy channels and their relationships with environmental factors in different ecosystems in Romania.

    PubMed

    Ciobanu, Marcel; Popovici, Iuliana; Zhao, Jie; Stoica, Ilie-Adrian

    2015-12-01

    The percentage compositions of soil herbivorous, bacterivorous and fungivorous nematodes in forests, grasslands and scrubs in Romania was analysed. Percentages of nematode abundance, biomass and metabolic footprint methods were used to evaluate the patterns and relative size of herbivory, bacterial- and fungal-mediated channels in organic and mineral soil horizons. Patterns and magnitudes of herbivore, bacterivore and fungivore energy pathways differed for a given ecosystem type and soil depth according to the method used. The relevance of herbivore energy channel increased with soil depth due to higher contribution of root-feeders. Ectoparasites, sedentary parasites and epidermal cell and root hair feeders were the most important contributors to the total biomass and metabolic footprints of herbivores. Metabolic footprint method revealed the general dominance of bacterial-based energy channel in all five types of ecosystems. The influence of altitude and climatic factors on percentages of abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores decreased with soil depth, whereas the influence of humus content, cation-exchange capacity and base saturation increased. Vegetation, altitude, climate and soil physico-chemical characteristics are important factors that influenced the abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores.

  14. Patterns of relative magnitudes of soil energy channels and their relationships with environmental factors in different ecosystems in Romania

    PubMed Central

    Ciobanu, Marcel; Popovici, Iuliana; Zhao, Jie; Stoica, Ilie-Adrian

    2015-01-01

    The percentage compositions of soil herbivorous, bacterivorous and fungivorous nematodes in forests, grasslands and scrubs in Romania was analysed. Percentages of nematode abundance, biomass and metabolic footprint methods were used to evaluate the patterns and relative size of herbivory, bacterial- and fungal-mediated channels in organic and mineral soil horizons. Patterns and magnitudes of herbivore, bacterivore and fungivore energy pathways differed for a given ecosystem type and soil depth according to the method used. The relevance of herbivore energy channel increased with soil depth due to higher contribution of root-feeders. Ectoparasites, sedentary parasites and epidermal cell and root hair feeders were the most important contributors to the total biomass and metabolic footprints of herbivores. Metabolic footprint method revealed the general dominance of bacterial-based energy channel in all five types of ecosystems. The influence of altitude and climatic factors on percentages of abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores decreased with soil depth, whereas the influence of humus content, cation-exchange capacity and base saturation increased. Vegetation, altitude, climate and soil physico-chemical characteristics are important factors that influenced the abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores. PMID:26620189

  15. Patterns of relative magnitudes of soil energy channels and their relationships with environmental factors in different ecosystems in Romania

    NASA Astrophysics Data System (ADS)

    Ciobanu, Marcel; Popovici, Iuliana; Zhao, Jie; Stoica, Ilie-Adrian

    2015-12-01

    The percentage compositions of soil herbivorous, bacterivorous and fungivorous nematodes in forests, grasslands and scrubs in Romania was analysed. Percentages of nematode abundance, biomass and metabolic footprint methods were used to evaluate the patterns and relative size of herbivory, bacterial- and fungal-mediated channels in organic and mineral soil horizons. Patterns and magnitudes of herbivore, bacterivore and fungivore energy pathways differed for a given ecosystem type and soil depth according to the method used. The relevance of herbivore energy channel increased with soil depth due to higher contribution of root-feeders. Ectoparasites, sedentary parasites and epidermal cell and root hair feeders were the most important contributors to the total biomass and metabolic footprints of herbivores. Metabolic footprint method revealed the general dominance of bacterial-based energy channel in all five types of ecosystems. The influence of altitude and climatic factors on percentages of abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores decreased with soil depth, whereas the influence of humus content, cation-exchange capacity and base saturation increased. Vegetation, altitude, climate and soil physico-chemical characteristics are important factors that influenced the abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores.

  16. Determination of fault planes and dimensions for low-magnitude earthquakes - A case study in eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Mozziconacci, Laetitia; Delouis, Bertrand; Huang, Bor-Shouh

    2017-03-01

    We present a modified version of the FMNEAR method for determining the focal mechanisms and fault plane geometries of small earthquakes. Our improvements allow determination of the fault plane and dimensions using the near-field components of only a few local records. The limiting factor is the number of stations: a minimum of five to six stations is required to discriminate between the fault plane and auxiliary plane. This limitation corresponds to events with magnitudes ML > 3.5 in eastern Taiwan, but strongly depends on station coverage in the study area. Once a fault plane is identified, it is provided along with its source time function and fault slip distribution. The proposed approach is validated by synthetic tests, and applied to real cases from a seismic crisis that occurred in the Longitudinal Valley of eastern Taiwan in April 2006. The fault geometries and faulting types of test events closely match the fault system of the main shock and reveal a minor one inside the faults zone of the Longitudinal Valley. Tested on a larger scale, this approach enables the fault geometries of main and secondary fault systems to be recovered from small earthquakes, allowing subsurface faults to be mapped in detail without waiting for a large, damaging event.

  17. Magnitude and determinants of malnutrition among pregnant women in eastern Ethiopia: evidence from rural, community-based setting.

    PubMed

    Kedir, Haji; Berhane, Yemane; Worku, Alemayehu

    2016-01-01

    Maternal malnutrition is a worldwide public health problem affecting a high proportion of pregnant women. This study aimed to determine the magnitude and determinants of malnutrition among pregnant women in eastern Ethiopia. A cross-sectional study was conducted on 1731 pregnant women selected by a cluster random sampling method. Data on maternal anthropometry and other factors were gathered by trained data collectors. Mid-upper arm circumference < 22 cm defined malnutrition. Mixed-effect, multilevel logistic regression was used to control clustering effect. On average, 19.06% of subjects were malnourished, while 23.3% study participants were underweight (body mass index < 19.8 kg m(-2)). In the final adjusted analysis, the risk of malnutrition was more than twofold higher in pregnant women with low (adjusted odds ratio = 2.47, 95% confidence interval = 1.41-4.34) and medium (adjusted odds ratio = 2.74, 95% confidence interval = 1.40-5.35) autonomy of household decision-making than those who had high level of autonomy in household decision-making. Husband illiteracy and not owning livestock were associated with increased risk of malnutrition. Women in the second and third trimester had a 66% and nearly twofold increased risk of malnutrition compared with their counterparts in the first trimester, respectively. Women who improved their eating habits had a 53% lower risk of malnutrition than those who did not. The risk of malnutrition was 39% lower in respondents who received prenatal dietary advice than in those who did not. Malnutrition affects at least one of every five pregnant women studied, calling for priority attention. Interventions that improve maternal involvement in household decision-making autonomy and provision of prenatal dietary advice are recommended.

  18. A theoretical study of correlation between scaled energy and earthquake magnitude based on two source displacement models

    NASA Astrophysics Data System (ADS)

    Wang, Jeen-Hwa

    2013-12-01

    The correlation of the scaled energy, ê = E s/ M 0, versus earthquake magnitude, M s, is studied based on two models: (1) Model 1 based on the use of the time function of the average displacements, with a ω -2 source spectrum, across a fault plane; and (2) Model 2 based on the use of the time function of the average displacements, with a ω -3 source spectrum, across a fault plane. For the second model, there are two cases: (a) As τ ≒ T, where τ is the rise time and T the rupture time, lg( ê) ~ - M s; and (b) As τ ≪ T, lg( ê) ~ -(1/2) M s. The second model leads to a negative value of ê. This means that Model 2 cannot work for studying the present problem. The results obtained from Model 1 suggest that the source model is a factor, yet not a unique one, in controlling the correlation of ê versus M s.

  19. Moments, magnitudes, and radiated energies of non-volcanic tremor near Cholame, CA, from ground motion spectra at UPSAR

    USGS Publications Warehouse

    Fletcher, Joe B.; McGarr, A.

    2011-01-01

    By averaging the spectra of events within two episodes of tremor (on Jan. 21 and 24, 2005) across the 12 stations of UPSAR, we improved the S/N sufficiently to define source spectra. Analysis of eleven impulsive events revealed attenuation-corrected spectra of displacement similar to those of earthquakes, with a low-frequency plateau, a corner frequency, and a high frequency decay proportional to f−2. Seismic moments, M0, estimated from these spectra range from about 3 to 10 × 1011 N-m or moment magnitudes in the range 1.6 to 1.9. The corner frequencies range from 2.6 to 7.2 Hz and, if interpreted in the same way as for earthquakes, indicate low stress drops that vary from 0.001 to 0.04 MPa. Seismic energies, estimated from the ground motion spectra, vary from 0.2 × 105 to 4.4 × 105 J, or apparent stresses in the range 0.002 to 0.02 MPa. The low stress parameters are consistent with a weak fault zone in the lower crust at the depth of tremor. In contrast, the same analysis on a micro-earthquake, located near Cholame (depth = 10.3 km), revealed a stress drop of 0.5 MPa and an apparent stress of 0.02 MPa. Residual spectra from ω−2 model fits to the displacement spectra of the non-volcanic tremor events show peaks near 4 Hz that are not apparent in the spectra for the microearthquake nor for the spectrum of earth noise. These spectral peaks may indicate that tremor entails more than shear failure reminiscent of mechanisms, possibly entailing fluid flow, associated with volcanic tremor or deep volcanic earthquakes.

  20. Heterogeneity in the Energy Cost of Posture Maintenance during Standing Relative to Sitting: Phenotyping According to Magnitude and Time-Course

    PubMed Central

    Miles-Chan, Jennifer L.; Sarafian, Delphine; Montani, Jean-Pierre; Schutz, Yves; Dulloo, Abdul

    2013-01-01

    Background Reducing sitting-time may decrease risk of disease and increase life-span. In the search for approaches to reduce sitting-time, research often compares sitting to standing and ambulation, but the energetic cost of standing alone versus sitting is equivocal, with large variation in reported mean values (0% to >20% increase in energy expenditure (EE) during standing). Objective To determine the magnitude and time-course of changes in EE and respiratory quotient (RQ) during steady-state standing versus sitting. Design Min-by-min monitoring using a posture-adapted ventilated-hood indirect calorimetry system was conducted in 22 young adults with normal BMI during 10 min of steady-state standing versus sitting comfortably. Results This study reveals three distinct phenotypes based on the magnitude and time-course of the EE response to steady-state standing. One-third of participants (8/22) showed little or no change in EE during standing relative to sitting (ΔEE <5%; below first quartile). Of the 14 responders (ΔEE 7–21%), 4 showed sustained, elevated EE during standing, while 10 decreased their EE to baseline sitting values during the second half of the standing period. These EE phenotypes were systematically mirrored by alterations in RQ (a proxy of substrate oxidation), with ΔEE inversely correlated with ΔRQ (r = 0.6–0.8, p<0.01). Conclusion This study reveals different phenotypes pertaining to both energy cost and fuel utilization during standing, raising questions regarding standing as a strategy to increase EE and thermogenesis for weight control, and opening new avenues of research towards understanding the metabolic and psychomotor basis of variability in the energetics of standing and posture maintenance. PMID:23741514

  1. The horizon line, linear perspective, interposition, and background brightness as determinants of the magnitude of the pictorial moon illusion.

    PubMed

    Jones, Stephanie A H; Wilson, Alexander E

    2009-01-01

    A total of 110 undergraduate students participated in a series of three experiments that explored the magnitude of the moon illusion in pictures. Experiment 1 examined the role of the number and salience of depth cues and background brightness. Experiment 2 examined the role of the horizon line, linear perspective, interposition, and background brightness. In Experiment 3, comparative distance judgments of the moon as a function of linear perspective, interposition, and the size of the standard moon were obtained. The magnitude of the moon illusion increased as a function of the number and salience of depth cues and changes in background brightness. Experiment 2 failed to support the role of the horizon line in affecting the illusion. Experiment 3 provided additional support for the illusory distance component of the moon illusion.

  2. Energy Intensity Determination in Wood Processing Sawmills

    NASA Astrophysics Data System (ADS)

    Maddula, Ramakrishna Babu

    Energy intensity is an important aspect to wood products producing sawmills in the State of West Virginia. This research aims to facilitate the accurate measurement of electrical energy intensity in sawmills by means of energy analysis and diagnostics using various data acquisition devices on electrical motors used in the manufacturing processes. Close to 90% of the electrical energy used in a typical sawmill is consumed by motors alone. The energy intensity determination is being accomplished by data collection with respect to electrical energy consumption parameters as well as production parameters. The electrical energy consumption was recorded on all the major motors in three sawmills for a period of one month. The recorded data were analyzed with respect to the production volume and the specific energy consumption for different size lumber of varying species was developed. The specific energy allocation for different size lumber was done based on the surface area cut to manufacture that lumber. The specific energy consumption of a particular size lumber has been compared with respect to different species. The specific energy consumption of different size lumber of the same species was developed. Sawmills can evaluate the impact of their production decisions on energy consumption using the results of this research. Energy consumption of different size and species was compared among three sawmills. Specific energy consumption of hardwood species in sawmill 1 for 4/4 lumber is varying from 124 kwh to 170 kWh per 1,000 board feet, where as in sawmill 2 it is varying from 79 kwh to 118 kWh and in sawmill 3 it is varying from 90 kwh to 145 kWh. Further, results of the energy assessment conducted in each sawmill would save on average 12% of energy consumption at current operation. Finally, productivity improvement that can be achieved by sawing high quality logs and using new saw blade technologies were discussed.

  3. The Role of Spatial and Temporal Variability in Determining the Magnitude and Structure of Thermospheric Vertical Winds

    NASA Astrophysics Data System (ADS)

    Yigit, E.; Ridley, A. J.

    2010-12-01

    Vertical winds in the thermosphere can occur in various spatial scales and vary in very short time-scales. They are typically associated with barometric, divergent, and nonhydrostatic motions. Increasing number of observational studies suggest that vertical winds are temporally and spatially highly variable and their magnitudes and structures are overall not captured well enough by contemporary general circulation models (GCMs) that are based on the hydrostatic assumption and have coarse spatial resolutions and relatively large time steps. In this study, using the 3-D nonhydrostatic Global Ionosphere Thermosphere Model (GITM) developed at the University of Michigan, we investigate the physical mechanisms that control the magnitudes and structures of the thermosphere neutral vertical winds, focusing on the role of spatial and temporal variability simulated by GITM. To identify the response of the high-latitude thermosphere-ionosphere (TI) to variable magnetospheric inputs, such as the IMF Bz, the associated Joule and auroral heating are analyzed. In a series of systematic simulations, the magnitude and temporal variations of Bz are modulated. Additionally, the effects of random electric field variability are investigated by implementing first constant and then temporally variable noise term in the electric fields. Vertical winds are found to be sensitive to spatial resolution as well as to the specific form of temporally varying magnetospheric input and random noise in the electric field input.

  4. Initial viral load determines the magnitude of the human CD8 T cell response to yellow fever vaccination.

    PubMed

    Akondy, Rama S; Johnson, Philip L F; Nakaya, Helder I; Edupuganti, Srilatha; Mulligan, Mark J; Lawson, Benton; Miller, Joseph D; Pulendran, Bali; Antia, Rustom; Ahmed, Rafi

    2015-03-10

    CD8 T cells are a potent tool for eliminating intracellular pathogens and tumor cells. Thus, eliciting robust CD8 T-cell immunity is the basis for many vaccines under development. However, the relationship between antigen load and the magnitude of the CD8 T-cell response is not well-described in a human immune response. Here we address this issue by quantifying viral load and the CD8 T-cell response in a cohort of 80 individuals immunized with the live attenuated yellow fever vaccine (YFV-17D) by sampling peripheral blood at days 0, 1, 2, 3, 5, 7, 9, 11, 14, 30, and 90. When the virus load was below a threshold (peak virus load < 225 genomes per mL, or integrated virus load < 400 genome days per mL), the magnitude of the CD8 T-cell response correlated strongly with the virus load (R(2) ∼ 0.63). As the virus load increased above this threshold, the magnitude of the CD8 T-cell responses saturated. Recent advances in CD8 T-cell-based vaccines have focused on replication-incompetent or single-cycle vectors. However, these approaches deliver relatively limited amounts of antigen after immunization. Our results highlight the requirement that T-cell-based vaccines should deliver sufficient antigen during the initial period of the immune response to elicit a large number of CD8 T cells that may be needed for protection.

  5. How Are the Form and Magnitude of DIF Effects in Multiple-Choice Items Determined by Distractor-Level Invariance Effects?

    ERIC Educational Resources Information Center

    Penfield, Randall D.

    2011-01-01

    This article explores how the magnitude and form of differential item functioning (DIF) effects in multiple-choice items are determined by the underlying differential distractor functioning (DDF) effects, as modeled under the nominal response model. The results of a numerical investigation indicated that (a) the presence of one or more nonzero DDF…

  6. Determinants of energy efficiency across countries

    NASA Astrophysics Data System (ADS)

    Yao, Guolin

    With economic development, environmental concerns become more important. Economies cannot be developed without energy consumption, which is the major source of greenhouse gas emissions. Higher energy efficiency is one means of reducing emissions, but what determines energy efficiency? In this research we attempt to find answers to this question by using cross-sectional country data; that is, we examine a wide range of possible determinants of energy efficiency at the country level in an attempt to find the most important causal factors. All countries are divided into three income groups: high-income countries, middle-income countries, and low-income countries. Energy intensity is used as a measurement of energy efficiency. All independent variables belong to two categories: quantitative and qualitative. Quantitative variables are measures of the economic conditions, development indicators and energy usage situations. Qualitative variables mainly measure political, societal and economic strengths of a country. The three income groups have different economic and energy attributes. Each group has different sets of variables to explain energy efficiency. Energy prices and winter temperature are both important in high-income and middle-income countries. No qualitative variables appear in the model of high-income countries. Basic economic factors, such as institutions, political stability, urbanization level, population density, are important in low-income countries. Besides similar variables, such as macroeconomic stability and index of rule of law, the hydroelectricity share in total electric generation is also a driver of energy efficiency in middle-income countries. These variables have different policy implications for each group of countries.

  7. Aspects of energy transitions: History and determinants

    NASA Astrophysics Data System (ADS)

    O'Connor, Peter A.

    Energy intensity in the U.S. from 1780 to 2010 shows a declining trend when traditional energy is included, in contrast to the "inverted U-curve" seen when only commercial energy is considered. The analysis quantifies use of human and animal muscle power, wind and water power, biomass, harvested ice, fossil fuels, and nuclear power. Historical prices are provided for many energy resources. The analysis reaffirms the importance of innovation in conversion technologies in energy transitions. An increase in energy intensity in the early 20th century is explained by diminishing returns to pre-electric manufacturing systems, which produced a transformation in manufacturing. In comparison to similar studies for other countries, the U.S. has generally higher energy intensity. A population-weighted series of heating degree days and cooling degree days partially explains differences in energy intensity. Series are developed for 231 countries and territories with multiple reference temperatures, with a "wet-bulb" series accounting for the effects of humidity. Other variables considered include energy prices, income per capita, and governance indices. A panel regression of thirty-two countries from 1995 to 2010 establishes GDP per capita and share of primary energy as determinants of energy intensity, but fails to establish statistical significance of the climate variables. A group mean regression finds average heating and cooling degree days to be significant predictors of average energy intensity over the study period, increasing energy intensity by roughly 1.5 kJ per 2005 international dollar for each annual degree day. Group mean regression results explain differences in countries' average energy intensity, but not changes within a country over time. Energy Return on Investment (EROI) influences the economic competitiveness and environmental impacts of an energy resource and is one driver of energy transitions. The EROI of U.S. petroleum production has declined since 1972

  8. Determining energy costs for milling solid matter

    NASA Astrophysics Data System (ADS)

    Guangbin, Yu., Dr.; Kuznetsova, M. M.; Marakhovskii, M. B.; Aleksina, A. A.

    2015-05-01

    The article provides findings of analytical research into the process of milling friable matter in a ball mill. We have received an expression to determine energy cost of milling with the account of the method of milling and the characteristics of the material to be ground.

  9. Predator biomass determines the magnitude of non-consumptive effects (NCEs) in both laboratory and field environments.

    PubMed

    Hill, Jennifer M; Weissburg, Marc J

    2013-05-01

    Predator body size often indicates predation risk, but its significance in non-consumptive effects (NCEs) and predator risk assessment has been largely understudied. Although studies often recognize that predator body size can cause differing cascading effects, few directly examine prey foraging behavior in response to individual predator sizes or investigate how predator size is discerned. These mechanisms are important since perception of the risk imposed by predators dictates behavioral responses to predators and subsequent NCEs. Here, we evaluate the role of predator body size and biomass on risk assessment and the magnitude of NCEs by investigating mud crab foraging behavior and oyster survival in response to differing biomasses of blue crab predators using both laboratory and field methods. Cues from high predator biomass treatments including large blue crab predators and multiple small blue crab predators decreased mud crab foraging and increased oyster survival, whereas mud crab foraging in response to a single small blue crab did not differ from controls. Mud crabs also increased refuge use in the presence of large and multiple small, but not single small, blue crab predators. Thus, both predator biomass and aggregation patterns may affect the expression of NCEs. Understanding the impact of predator biomass may therefore be necessary to successfully predict the role of NCEs in shaping community dynamics. Further, the results of our laboratory experiments were consistent with observed NCEs in the field, suggesting that data from mesocosm environments can provide insight into field situations where flow and turbulence levels are moderate.

  10. Role of the spin magnitude of the magnetic ion in determining the frustration and low-temperature properties of kagome lattices.

    PubMed

    Pati, Swapan K; Rao, C N R

    2005-12-15

    In view of the variety of low-temperature magnetic properties reported recently for kagome lattices with transition-metal ions in different oxidation states, we have investigated the low-energy spectrum and low-temperature thermodynamic properties of antiferromagnetic kagome lattices with varying magnitudes of site spins, employing quantum many-body Heisenberg models. The ground state and the low-lying excitation spectrum are found to depend strongly on the nature of the spin magnitude of the magnetic ions. The system remains highly frustrated if spins are half-odd-integer in magnitude, while the frustration is very weak or almost absent for integer spins or mixed-spin systems. In fact, for a mixed-spin kagome system with a certain magnitude, the whole system behaves as a classical magnet with a ferrimagnetic ground state without any frustration. These theoretical findings are consistent with a few experimental observations recently reported in the literature and would be of value in designing new kagome systems with unusual and interesting low-temperature magnetic properties.

  11. The magnitude, share and determinants of unpaid care costs for home-based palliative care service provision in Toronto, Canada.

    PubMed

    Chai, Huamin; Guerriere, Denise N; Zagorski, Brandon; Coyte, Peter C

    2014-01-01

    With increasing emphasis on the provision of home-based palliative care in Canada, economic evaluation is warranted, given its tremendous demands on family caregivers. Despite this, very little is known about the economic outcomes associated with home-based unpaid care-giving at the end of life. The aims of this study were to (i) assess the magnitude and share of unpaid care costs in total healthcare costs for home-based palliative care patients, from a societal perspective and (ii) examine the sociodemographic and clinical factors that account for variations in this share. One hundred and sixty-nine caregivers of patients with a malignant neoplasm were interviewed from time of referral to a home-based palliative care programme provided by the Temmy Latner Centre for Palliative Care at Mount Sinai Hospital, Toronto, Canada, until death. Information regarding palliative care resource utilisation and costs, time devoted to care-giving and sociodemographic and clinical characteristics was collected between July 2005 and September 2007. Over the last 12 months of life, the average monthly cost was $14 924 (2011 CDN$) per patient. Unpaid care-giving costs were the largest component - $11 334, accounting for 77% of total palliative care expenses, followed by public costs ($3211; 21%) and out-of-pocket expenditures ($379; 2%). In all cost categories, monthly costs increased exponentially with proximity to death. Seemingly unrelated regression estimation suggested that the share of unpaid care costs of total costs was driven by patients' and caregivers' sociodemographic characteristics. Results suggest that overwhelming the proportion of palliative care costs is unpaid care-giving. This share of costs requires urgent attention to identify interventions aimed at alleviating the heavy financial burden and to ultimately ensure the viability of home-based palliative care in future.

  12. Methods for determining magnitude and frequency of floods in California, based on data through water year 2006

    USGS Publications Warehouse

    Gotvald, Anthony J.; Barth, Nancy A.; Veilleux, Andrea G.; Parrett, Charles

    2012-01-01

    Methods for estimating the magnitude and frequency of floods in California that are not substantially affected by regulation or diversions have been updated. Annual peak-flow data through water year 2006 were analyzed for 771 streamflow-gaging stations (streamgages) in California having 10 or more years of data. Flood-frequency estimates were computed for the streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows for each streamgage. Low-outlier and historic information were incorporated into the flood-frequency analysis, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low outliers. Special methods for fitting the distribution were developed for streamgages in the desert region in southeastern California. Additionally, basin characteristics for the streamgages were computed by using a geographical information system. Regional regression analysis, using generalized least squares regression, was used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged basins in California that are outside of the southeastern desert region. Flood-frequency estimates and basin characteristics for 630 streamgages were combined to form the final database used in the regional regression analysis. Five hydrologic regions were developed for the area of California outside of the desert region. The final regional regression equations are functions of drainage area and mean annual precipitation for four of the five regions. In one region, the Sierra Nevada region, the final equations are functions of drainage area, mean basin elevation, and mean annual precipitation. Average standard errors of prediction for the regression equations in all five regions range from 42.7 to 161.9 percent. For the desert region of California, an analysis of 33 streamgages was used to develop regional estimates

  13. Discrimination of DPRK M5.1 February 12th, 2013 Earthquake as Nuclear Test Using Analysis of Magnitude, Rupture Duration and Ratio of Seismic Energy and Moment

    NASA Astrophysics Data System (ADS)

    Salomo Sianipar, Dimas; Subakti, Hendri; Pribadi, Sugeng

    2015-04-01

    On February 12th, 2013 morning at 02:57 UTC, there had been an earthquake with its epicenter in the region of North Korea precisely around Sungjibaegam Mountains. Monitoring stations of the Preparatory Commission for the Comprehensive Nuclear Test-Ban Treaty Organization (CTBTO) and some other seismic network detected this shallow seismic event. Analyzing seismograms recorded after this event can discriminate between a natural earthquake or an explosion. Zhao et. al. (2014) have been successfully discriminate this seismic event of North Korea nuclear test 2013 from ordinary earthquakes based on network P/S spectral ratios using broadband regional seismic data recorded in China, South Korea and Japan. The P/S-type spectral ratios were powerful discriminants to separate explosions from earthquake (Zhao et. al., 2014). Pribadi et. al. (2014) have characterized 27 earthquake-generated tsunamis (tsunamigenic earthquake or tsunami earthquake) from 1991 to 2012 in Indonesia using W-phase inversion analysis, the ratio between the seismic energy (E) and the seismic moment (Mo), the moment magnitude (Mw), the rupture duration (To) and the distance of the hypocenter to the trench. Some of this method was also used by us to characterize the nuclear test earthquake. We discriminate this DPRK M5.1 February 12th, 2013 earthquake from a natural earthquake using analysis magnitude mb, ms and mw, ratio of seismic energy and moment and rupture duration. We used the waveform data of the seismicity on the scope region in radius 5 degrees from the DPRK M5.1 February 12th, 2013 epicenter 41.29, 129.07 (Zhang and Wen, 2013) from 2006 to 2014 with magnitude M ≥ 4.0. We conclude that this earthquake was a shallow seismic event with explosion characteristics and can be discriminate from a natural or tectonic earthquake. Keywords: North Korean nuclear test, magnitude mb, ms, mw, ratio between seismic energy and moment, ruptures duration

  14. SCARDEC: a new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body-wave deconvolution

    NASA Astrophysics Data System (ADS)

    Vallée, M.; Charléty, J.; Ferreira, A. M. G.; Delouis, B.; Vergoz, J.

    2011-01-01

    Accurate and fast magnitude determination for large, shallow earthquakes is of key importance for post-seismic response and tsumami alert purposes. When no local real-time data are available, which is today the case for most subduction earthquakes, the first information comes from teleseismic body waves. Standard body-wave methods give accurate magnitudes for earthquakes up to Mw= 7-7.5. For larger earthquakes, the analysis is more complex, because of the non-validity of the point-source approximation and of the interaction between direct and surface-reflected phases. The latter effect acts as a strong high-pass filter, which complicates the magnitude determination. We here propose an automated deconvolutive approach, which does not impose any simplifying assumptions about the rupture process, thus being well adapted to large earthquakes. We first determine the source duration based on the length of the high frequency (1-3 Hz) signal content. The deconvolution of synthetic double-couple point source signals—depending on the four earthquake parameters strike, dip, rake and depth—from the windowed real data body-wave signals (including P, PcP, PP, SH and ScS waves) gives the apparent source time function (STF). We search the optimal combination of these four parameters that respects the physical features of any STF: causality, positivity and stability of the seismic moment at all stations. Once this combination is retrieved, the integration of the STFs gives directly the moment magnitude. We apply this new approach, referred as the SCARDEC method, to most of the major subduction earthquakes in the period 1990-2010. Magnitude differences between the Global Centroid Moment Tensor (CMT) and the SCARDEC method may reach 0.2, but values are found consistent if we take into account that the Global CMT solutions for large, shallow earthquakes suffer from a known trade-off between dip and seismic moment. We show by modelling long-period surface waves of these events that

  15. 10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Alternative methods for determining energy efficiency or energy use. 429.70 Section 429.70 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION....70 Alternative methods for determining energy efficiency or energy use. (a) General. A...

  16. 10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Alternative methods for determining energy efficiency or energy use. 429.70 Section 429.70 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION....70 Alternative methods for determining energy efficiency or energy use. Link to an...

  17. 10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Alternative methods for determining energy efficiency or energy use. 429.70 Section 429.70 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION....70 Alternative methods for determining energy efficiency or energy use. (a) General. A...

  18. The worldwide magnitude of protein-energy malnutrition: an overview from the WHO Global Database on Child Growth.

    PubMed Central

    de Onís, M.; Monteiro, C.; Akré, J.; Glugston, G.

    1993-01-01

    Using the WHO Global Database on Child Growth, which covers 87% of the total population of under-5-year-olds in developing countries, we describe the worldwide distribution of protein-energy malnutrition, based on nationally representative cross-sectional data gathered between 1980 and 1992 in 79 developing countries in Africa, Asia, Latin America, and Oceania. The findings confirm that more than a third of the world's children are affected. For all the indicators (wasting, stunting, and underweight) the most favourable situation--low or moderate prevalences--occurs in Latin America; in Asia most countries have high or very high prevalences; and in Africa a combination of both these circumstances is found. A total 80% of the children affected live in Asia--mainly in southern Asia--15% in Africa, and 5% in Latin America. Approximately, 43% of children (230 million) in developing countries are stunted. Efforts to accelerate significantly economic development will be unsuccessful until optimal child growth and development are ensured for the majority. PMID:8313488

  19. The worldwide magnitude of protein-energy malnutrition: an overview from the WHO Global Database on Child Growth.

    PubMed

    de Onís, M; Monteiro, C; Akré, J; Glugston, G

    1993-01-01

    Using the WHO Global Database on Child Growth, which covers 87% of the total population of under-5-year-olds in developing countries, we describe the worldwide distribution of protein-energy malnutrition, based on nationally representative cross-sectional data gathered between 1980 and 1992 in 79 developing countries in Africa, Asia, Latin America, and Oceania. The findings confirm that more than a third of the world's children are affected. For all the indicators (wasting, stunting, and underweight) the most favourable situation--low or moderate prevalences--occurs in Latin America; in Asia most countries have high or very high prevalences; and in Africa a combination of both these circumstances is found. A total 80% of the children affected live in Asia--mainly in southern Asia--15% in Africa, and 5% in Latin America. Approximately, 43% of children (230 million) in developing countries are stunted. Efforts to accelerate significantly economic development will be unsuccessful until optimal child growth and development are ensured for the majority.

  20. A Robust Method for Determining the Magnitude of the Fully Asymmetric Alignment Tensor of Oriented Macromolecules in the Absence of Structural Information

    NASA Astrophysics Data System (ADS)

    Clore, G. Marius; Gronenborn, Angela M.; Bax, Ad

    1998-07-01

    It has recently been shown that the degree of alignment of macromolecules in an aqueous dilute liquid crystalline medium of bicelles is sufficient to permit accurate values of residual15N-1H,13C-1H, and13Cα-C‧ dipolar couplings to be obtained on a routine basis, thereby providing potentially unique long-range structural information. To make use of this information in macromolecular structure determination, the magnitude of the axial and rhombic components of the molecular alignment tensor must be determined. This can be achieved by taking advantage of the fact that different, fixed-distance internuclear vector types are differently distributed relative to the alignment tensor. A histogram of the ensemble of normalized residual dipolar couplings for several such vector types approximates a powder pattern from which the magnitude of the axial and rhombic components are readily extracted in the absence of any prior structural information. The applicability of this method is demonstrated using synthetic data derived from four proteins representative of different sizes, topologies, and secondary structures, and experimental data measured on the small protein ubiquitin.

  1. Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal films

    NASA Astrophysics Data System (ADS)

    Guo, Tianle; Sampat, Siddharth; Zhang, Kehao; Robinson, Joshua A.; Rupich, Sara M.; Chabal, Yves J.; Gartstein, Yuri N.; Malko, Anton V.

    2017-02-01

    Two-dimensional transition metal dichalcogenides (TMDCs) like MoS2 are promising candidates for various optoelectronic applications. The typical photoluminescence (PL) of monolayer MoS2 is however known to suffer very low quantum yields. We demonstrate a 10-fold increase of MoS2 excitonic PL enabled by nonradiative energy transfer (NRET) from adjacent nanocrystal quantum dot (NQD) films. The understanding of this effect is facilitated by our application of transient absorption (TA) spectroscopy to monitor the energy influx into the monolayer MoS2 in the process of ET from photoexcited CdSe/ZnS nanocrystals. In contrast to PL spectroscopy, TA can detect even non-emissive excitons, and we register an order of magnitude enhancement of the MoS2 excitonic TA signatures in hybrids with NQDs. The appearance of ET-induced nanosecond-scale kinetics in TA features is consistent with PL dynamics of energy-accepting MoS2 and PL quenching data of the energy-donating NQDs. The observed enhancement is attributed to the reduction of recombination losses for excitons gradually transferred into MoS2 under quasi-resonant conditions as compared with their direct photoproduction. The TA and PL data clearly illustrate the efficacy of MoS2 and likely other TMDC materials as energy acceptors and the possibility of their practical utilization in NRET-coupled hybrid nanostructures.

  2. Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal films.

    PubMed

    Guo, Tianle; Sampat, Siddharth; Zhang, Kehao; Robinson, Joshua A; Rupich, Sara M; Chabal, Yves J; Gartstein, Yuri N; Malko, Anton V

    2017-02-03

    Two-dimensional transition metal dichalcogenides (TMDCs) like MoS2 are promising candidates for various optoelectronic applications. The typical photoluminescence (PL) of monolayer MoS2 is however known to suffer very low quantum yields. We demonstrate a 10-fold increase of MoS2 excitonic PL enabled by nonradiative energy transfer (NRET) from adjacent nanocrystal quantum dot (NQD) films. The understanding of this effect is facilitated by our application of transient absorption (TA) spectroscopy to monitor the energy influx into the monolayer MoS2 in the process of ET from photoexcited CdSe/ZnS nanocrystals. In contrast to PL spectroscopy, TA can detect even non-emissive excitons, and we register an order of magnitude enhancement of the MoS2 excitonic TA signatures in hybrids with NQDs. The appearance of ET-induced nanosecond-scale kinetics in TA features is consistent with PL dynamics of energy-accepting MoS2 and PL quenching data of the energy-donating NQDs. The observed enhancement is attributed to the reduction of recombination losses for excitons gradually transferred into MoS2 under quasi-resonant conditions as compared with their direct photoproduction. The TA and PL data clearly illustrate the efficacy of MoS2 and likely other TMDC materials as energy acceptors and the possibility of their practical utilization in NRET-coupled hybrid nanostructures.

  3. Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal films

    PubMed Central

    Guo, Tianle; Sampat, Siddharth; Zhang, Kehao; Robinson, Joshua A.; Rupich, Sara M.; Chabal, Yves J.; Gartstein, Yuri N.; Malko, Anton V.

    2017-01-01

    Two-dimensional transition metal dichalcogenides (TMDCs) like MoS2 are promising candidates for various optoelectronic applications. The typical photoluminescence (PL) of monolayer MoS2 is however known to suffer very low quantum yields. We demonstrate a 10-fold increase of MoS2 excitonic PL enabled by nonradiative energy transfer (NRET) from adjacent nanocrystal quantum dot (NQD) films. The understanding of this effect is facilitated by our application of transient absorption (TA) spectroscopy to monitor the energy influx into the monolayer MoS2 in the process of ET from photoexcited CdSe/ZnS nanocrystals. In contrast to PL spectroscopy, TA can detect even non-emissive excitons, and we register an order of magnitude enhancement of the MoS2 excitonic TA signatures in hybrids with NQDs. The appearance of ET-induced nanosecond-scale kinetics in TA features is consistent with PL dynamics of energy-accepting MoS2 and PL quenching data of the energy-donating NQDs. The observed enhancement is attributed to the reduction of recombination losses for excitons gradually transferred into MoS2 under quasi-resonant conditions as compared with their direct photoproduction. The TA and PL data clearly illustrate the efficacy of MoS2 and likely other TMDC materials as energy acceptors and the possibility of their practical utilization in NRET-coupled hybrid nanostructures. PMID:28155920

  4. Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal films

    DOE PAGES

    Guo, Tianle; Sampat, Siddharth; Zhang, Kehao; ...

    2017-02-03

    Two-dimensional transition metal dichalcogenides (TMDCs) like MoS2 are promising candidates for various optoelectronic applications. The typical photoluminescence (PL) of monolayer MoS2 is however known to suffer very low quantum yields. We demonstrate a 10-fold increase of MoS2 excitonic PL enabled by nonradiative energy transfer (NRET) from adjacent nanocrystal quantum dot (NQD) films. The understanding of this effect is facilitated by our application of transient absorption (TA) spectroscopy to monitor the energy influx into the monolayer MoS2 in the process of ET from photoexcited CdSe/ZnS nanocrystals. In contrast to PL spectroscopy, TA can detect even non-emissive excitons, and we register anmore » order of magnitude enhancement of the MoS2 excitonic TA signatures in hybrids with NQDs. The appearance of ET-induced nanosecond-scale kinetics in TA features is consistent with PL dynamics of energy-accepting MoS2 and PL quenching data of the energy-donating NQDs. The observed enhancement is attributed to the reduction of recombination losses for excitons gradually transferred into MoS2 under quasi-resonant conditions as compared with their direct photoproduction. Furthermore, the TA and PL data clearly illustrate the efficacy of MoS2 and likely other TMDC materials as energy acceptors and the possibility of their practical utilization in NRET-coupled hybrid nanostructures.« less

  5. Determination of optical parameters in general film-substrate systems: a reformulation based on the concepts of envelope extremes and local magnitudes.

    PubMed

    Martínez-Antón, J C

    2000-09-01

    We present a reformulation of the determination of optical parameters in general film-substrate systems. Developed for interferential films in terms of photometric magnitudes (R, T), the formalism introduced allows us to establish how many parameters can be extracted from a set of measurements and from which type of sample model. These parameters are the refractive index and the absorption of both film and substrate (i.e., ñ1 = n1-jk1 and ñ2 = n2-jk2), the thickness of the film (d), the inhomogeneity of the film (Deltan1), and the surface roughness of the interfaces (sigma1, sigma2) delimiting the film. The new formalism leads to some new analytical results and confirms others. Among the new results we have the following: (a) The mathematical condition commonly related with extremes (maxima and minima) in an interference pattern defines in fact a condition for envelope extremes. (b) The refractive index of a film can be obtained without prior knowledge of the thickness or the refractive index of the substrate (provided we have an optical interference film). (c) Absorption can be directly extracted from an interference-free magnitude T/(1-R). (d) Roughness at the inner surface, inhomogeneity in the film, and absorption are correlated in reflection spectral measurements.

  6. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost...

  7. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost...

  8. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost...

  9. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost...

  10. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost...

  11. Elastic Barrier Dynamical Freezing in Free Energy Calculations: A Way To Speed Up Nonequilibrium Molecular Dynamics Simulations by Orders of Magnitude.

    PubMed

    Giovannelli, Edoardo; Cardini, Gianni; Chelli, Riccardo

    2016-03-08

    An important issue concerning computer simulations addressed to free energy estimates via nonequilibrium work theorems, such as the Jarzynski equality [Phys. Rev. Lett. 1997, 78, 2690], is the computational effort required to achieve results with acceptable accuracy. In this respect, the dynamical freezing approach [Phys. Rev. E 2009, 80, 041124] has been shown to improve the efficiency of this kind of simulations, by blocking the dynamics of particles located outside an established mobility region. In this report, we show that dynamical freezing produces a systematic spurious decrease of the particle density inside the mobility region. As a consequence, the requirements to apply nonequilibrium work theorems are only approximately met. Starting from these considerations, we have developed a simulation scheme, called "elastic barrier dynamical freezing", according to which a stiff potential-energy barrier is enforced at the boundaries of the mobility region, preventing the particles from leaving this region of space during the nonequilibrium trajectories. The method, tested on the calculation of the distance-dependent free energy of a dimer immersed into a Lennard-Jones fluid, provides an accuracy comparable to the conventional steered molecular dynamics, with a computational speedup exceeding a few orders of magnitude.

  12. Tevatron Combination of Single-Top-Quark Cross Sections and Determination of the Magnitude of the Cabibbo-Kobayashi-Maskawa Matrix Element Vt b

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Askew, A.; Atkins, S.; Auerbach, B.; Augsten, K.; Aurisano, A.; Avila, C.; Azfar, F.; Badaud, F.; Badgett, W.; Bae, T.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barbaro-Galtieri, A.; Barberis, E.; Baringer, P.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartlett, J. F.; Bartos, P.; Bassler, U.; Bauce, M.; Bazterra, V.; Bean, A.; Bedeschi, F.; Begalli, M.; Behari, S.; Bellantoni, L.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Bhatti, A.; Bland, K. R.; Blazey, G.; Blessing, S.; Bloom, K.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bortoletto, D.; Borysova, M.; Boudreau, J.; Boveia, A.; Brandt, A.; Brandt, O.; Brigliadori, L.; Brock, R.; Bromberg, C.; Bross, A.; Brown, D.; Brucken, E.; Bu, X. B.; Budagov, J.; Budd, H. S.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buszello, C. P.; Butti, P.; Buzatu, A.; Calamba, A.; Camacho-Pérez, E.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Casey, B. C. K.; Castilla-Valdez, H.; Castro, A.; Catastini, P.; Caughron, S.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Cho, S. W.; Choi, S.; Chokheli, D.; Choudhary, B.; Cihangir, S.; Claes, D.; Clark, A.; Clarke, C.; Clutter, J.; Convery, M. E.; Conway, J.; Cooke, M.; Cooper, W. E.; Corbo, M.; Corcoran, M.; Cordelli, M.; Couderc, F.; Cousinou, M.-C.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; Cutts, D.; Das, A.; d'Ascenzo, N.; Datta, M.; Davies, G.; de Barbaro, P.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Demortier, L.; Deninno, M.; Denisov, D.; Denisov, S. P.; D'Errico, M.; Desai, S.; Deterre, C.; DeVaughan, K.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dittmann, J. R.; Dominguez, A.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Ebina, K.; Edgar, R.; Edmunds, D.; Elagin, A.; Ellison, J.; Elvira, V. D.; Enari, Y.; Erbacher, R.; Errede, S.; Esham, B.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Farrington, S.; Fauré, A.; Feng, L.; Ferbel, T.; Fernández Ramos, J. P.; Fiedler, F.; Field, R.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Flanagan, G.; Forrest, R.; Fortner, M.; Fox, H.; Franklin, M.; Freeman, J. C.; Frisch, H.; Fuess, S.; Funakoshi, Y.; Galloni, C.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Garfinkel, A. F.; Garosi, P.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gerberich, H.; Gerchtein, E.; Gershtein, Y.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Ginther, G.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gogota, O.; Gold, M.; Goldin, D.; Golossanov, A.; Golovanov, G.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grosso-Pilcher, C.; Group, R. C.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Guimaraes da Costa, J.; Gutierrez, G.; Gutierrez, P.; Hahn, S. R.; Haley, J.; Han, J. Y.; Han, L.; Happacher, F.; Hara, K.; Harder, K.; Hare, M.; Harel, A.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hauptman, J. M.; Hays, C.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinrich, J.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herndon, M.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hocker, A.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Hong, Z.; Hopkins, W.; Hou, S.; Howley, I.; Hubacek, Z.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Introzzi, G.; Iori, M.; Ito, A. S.; Ivanov, A.; Jabeen, S.; Jaffré, M.; James, E.; Jang, D.; Jayasinghe, A.; Jayatilaka, B.; Jeon, E. J.; Jeong, M. S.; Jesik, R.; Jiang, P.; Jindariani, S.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jones, M.; Jonsson, P.; Joo, K. K.; Joshi, J.; Jun, S. Y.; Jung, A. W.; Junk, T. R.; Juste, A.; Kajfasz, E.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Karmanov, D.; Kasmi, A.; Kato, Y.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Ketchum, W.; Keung, J.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kiselevich, I.; Knoepfel, K.; Kohli, J. M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kozelov, A. V.; Kraus, J.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kumar, A.; Kupco, A.; Kurata, M.; Kurča, T.; Kuzmin, V. A.; Laasanen, A. T.; Lammel, S.; Lammers, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lebrun, P.; Lee, H. S.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Leo, S.; Leone, S.; Lewis, J. D.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Limosani, A.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipeles, E.; Lipton, R.; Lister, A.; Liu, H.; Liu, H.; Liu, Q.; Liu, T.; Liu, Y.; Lobodenko, A.; Lockwitz, S.; Loginov, A.; Lokajicek, M.; Lopes de Sa, R.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Luna-Garcia, R.; Lungu, G.; Lyon, A. L.; Lys, J.; Lysak, R.; Maciel, A. K. A.; Madar, R.; Madrak, R.; Maestro, P.; Magaña-Villalba, R.; Malik, S.; Malik, S.; Malyshev, V. L.; Manca, G.; Manousakis-Katsikakis, A.; Mansour, J.; Marchese, L.; Margaroli, F.; Marino, P.; Martínez-Ortega, J.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McCarthy, R.; McGivern, C. L.; McNulty, R.; Mehta, A.; Mehtala, P.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Mesropian, C.; Meyer, A.; Meyer, J.; Miao, T.; Miconi, F.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondal, N. K.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Mulhearn, M.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nagy, E.; Nakano, I.; Napier, A.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Nett, J.; Neu, C.; Neustroev, P.; Nguyen, H. T.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Nunnemann, T.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Orduna, J.; Ortolan, L.; Osman, N.; Osta, J.; Pagliarone, C.; Pal, A.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parashar, N.; Parihar, V.; Park, S. K.; Parker, W.; Partridge, R.; Parua, N.; Patwa, A.; Pauletta, G.; Paulini, M.; Paus, C.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pleier, M.-A.; Podstavkov, V. M.; Pondrom, L.; Popov, A. V.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prewitt, M.; Price, D.; Prokopenko, N.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ripp-Baudot, I.; Ristori, L.; Rizatdinova, F.; Robson, A.; Rodriguez, T.; Rolli, S.; Rominsky, M.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sajot, G.; Sakumoto, W. K.; Sakurai, Y.; Sánchez-Hernández, A.; Sanders, M. P.; Santi, L.; Santos, A. S.; Sato, K.; Savage, G.; Saveliev, V.; Savitskyi, M.; Savoy-Navarro, A.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlabach, P.; Schmidt, E. E.; Schwanenberger, C.; Schwarz, T.; Schwienhorst, R.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Sekaric, J.; Semenov, A.; Severini, H.; Sforza, F.; Shabalina, E.; Shalhout, S. Z.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simak, V.; Simonenko, A.; Skubic, P.; Slattery, P.; Sliwa, K.; Smirnov, D.; Smith, J. R.; Snider, F. D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Song, H.; Sonnenschein, L.; Sorin, V.; Soustruznik, K.; St. Denis, R.; Stancari, M.; Stark, J.; Stentz, D.; Stoyanova, D. A.; Strauss, M.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Suter, L.; Svoisky, P.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Titov, M.; Toback, D.; Tokar, S.; Tokmenin, V. V.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Ukegawa, F.; Uozumi, S.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Vázquez, F.; Velev, G.; Vellidis, C.; Verkheev, A. Y.; Vernieri, C.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vidal, M.; Vilanova, D.; Vilar, R.; Vizán, J.; Vogel, M.; Vokac, P.; Volpi, G.; Wagner, P.; Wahl, H. D.; Wallny, R.; Wang, M. H. L. S.; Wang, S. M.; Warchol, J.; Waters, D.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Williams, M. R. J.; Wilson, G. W.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wobisch, M.; Wolbers, S.; Wolfe, H.; Wood, D. R.; Wright, T.; Wu, X.; Wu, Z.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yamamoto, K.; Yamato, D.; Yang, S.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yeh, G. P.; Yi, K.; Yin, H.; Yip, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Youn, S. W.; Yu, G. B.; Yu, I.; Yu, J. M.; Zanetti, A. M.; Zeng, Y.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhou, C.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; Zucchelli, S.; CDF Collaboration

    2015-10-01

    We present the final combination of CDF and D0 measurements of cross sections for single-top-quark production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb-1 per experiment. The t -channel cross section is measured to be σt=2.2 5-0.31+0.29 pb . We also present the combinations of the two-dimensional measurements of the s - vs t -channel cross section. In addition, we give the combination of the s +t channel cross section measurement resulting in σs +t=3.3 0-0.40+0.52 pb , without assuming the standard model value for the ratio σs/σt . The resulting value of the magnitude of the top-to-bottom quark coupling is |Vt b|=1.0 2-0.05+0.06 , corresponding to |Vt b|>0.92 at the 95% C.L.

  13. Tevatron Combination of Single-Top-Quark Cross Sections and Determination of the Magnitude of the Cabibbo-Kobayashi-Maskawa Matrix Element V_{tb}.

    PubMed

    Aaltonen, T; Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Askew, A; Atkins, S; Auerbach, B; Augsten, K; Aurisano, A; Avila, C; Azfar, F; Badaud, F; Badgett, W; Bae, T; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barbaro-Galtieri, A; Barberis, E; Baringer, P; Barnes, V E; Barnett, B A; Barria, P; Bartlett, J F; Bartos, P; Bassler, U; Bauce, M; Bazterra, V; Bean, A; Bedeschi, F; Begalli, M; Behari, S; Bellantoni, L; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Bhatti, A; Bland, K R; Blazey, G; Blessing, S; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bortoletto, D; Borysova, M; Boudreau, J; Boveia, A; Brandt, A; Brandt, O; Brigliadori, L; Brock, R; Bromberg, C; Bross, A; Brown, D; Brucken, E; Bu, X B; Budagov, J; Budd, H S; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burkett, K; Busetto, G; Bussey, P; Buszello, C P; Butti, P; Buzatu, A; Calamba, A; Camacho-Pérez, E; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Casey, B C K; Castilla-Valdez, H; Castro, A; Catastini, P; Caughron, S; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Cho, S W; Choi, S; Chokheli, D; Choudhary, B; Cihangir, S; Claes, D; Clark, A; Clarke, C; Clutter, J; Convery, M E; Conway, J; Cooke, M; Cooper, W E; Corbo, M; Corcoran, M; Cordelli, M; Couderc, F; Cousinou, M-C; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; Cutts, D; Das, A; d'Ascenzo, N; Datta, M; Davies, G; de Barbaro, P; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Demortier, L; Deninno, M; Denisov, D; Denisov, S P; D'Errico, M; Desai, S; Deterre, C; DeVaughan, K; Devoto, F; Di Canto, A; Di Ruzza, B; Diehl, H T; Diesburg, M; Ding, P F; Dittmann, J R; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Ebina, K; Edgar, R; Edmunds, D; Elagin, A; Ellison, J; Elvira, V D; Enari, Y; Erbacher, R; Errede, S; Esham, B; Evans, H; Evdokimov, A; Evdokimov, V N; Farrington, S; Fauré, A; Feng, L; Ferbel, T; Fernández Ramos, J P; Fiedler, F; Field, R; Filthaut, F; Fisher, W; Fisk, H E; Flanagan, G; Forrest, R; Fortner, M; Fox, H; Franklin, M; Freeman, J C; Frisch, H; Fuess, S; Funakoshi, Y; Galloni, C; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Garfinkel, A F; Garosi, P; Gavrilov, V; Geng, W; Gerber, C E; Gerberich, H; Gerchtein, E; Gershtein, Y; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Ginther, G; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gogota, O; Gold, M; Goldin, D; Golossanov, A; Golovanov, G; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grosso-Pilcher, C; Group, R C; Grünendahl, S; Grünewald, M W; Guillemin, T; Guimaraes da Costa, J; Gutierrez, G; Gutierrez, P; Hahn, S R; Haley, J; Han, J Y; Han, L; Happacher, F; Hara, K; Harder, K; Hare, M; Harel, A; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hauptman, J M; Hays, C; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinrich, J; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herndon, M; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hocker, A; Hoeneisen, B; Hogan, J; Hohlfeld, M; Holzbauer, J L; Hong, Z; Hopkins, W; Hou, S; Howley, I; Hubacek, Z; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Introzzi, G; Iori, M; Ito, A S; Ivanov, A; Jabeen, S; Jaffré, M; James, E; Jang, D; Jayasinghe, A; Jayatilaka, B; Jeon, E J; Jeong, M S; Jesik, R; Jiang, P; Jindariani, S; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jones, M; Jonsson, P; Joo, K K; Joshi, J; Jun, S Y; Jung, A W; Junk, T R; Juste, A; Kajfasz, E; Kambeitz, M; Kamon, T; Karchin, P E; Karmanov, D; Kasmi, A; Kato, Y; Katsanos, I; Kaur, M; Kehoe, R; Kermiche, S; Ketchum, W; Keung, J; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Kiselevich, I; Knoepfel, K; Kohli, J M; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kozelov, A V; Kraus, J; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kumar, A; Kupco, A; Kurata, M; Kurča, T; Kuzmin, V A; Laasanen, A T; Lammel, S; Lammers, S; Lancaster, M; Lannon, K; Latino, G; Lebrun, P; Lee, H S; Lee, H S; Lee, J S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Leo, S; Leone, S; Lewis, J D; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Limosani, A; Lincoln, D; Linnemann, J; Lipaev, V V; Lipeles, E; Lipton, R; Lister, A; Liu, H; Liu, H; Liu, Q; Liu, T; Liu, Y; Lobodenko, A; Lockwitz, S; Loginov, A; Lokajicek, M; Lopes de Sa, R; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Luna-Garcia, R; Lungu, G; Lyon, A L; Lys, J; Lysak, R; Maciel, A K A; Madar, R; Madrak, R; Maestro, P; Magaña-Villalba, R; Malik, S; Malik, S; Malyshev, V L; Manca, G; Manousakis-Katsikakis, A; Mansour, J; Marchese, L; Margaroli, F; Marino, P; Martínez-Ortega, J; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McCarthy, R; McGivern, C L; McNulty, R; Mehta, A; Mehtala, P; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Mesropian, C; Meyer, A; Meyer, J; Miao, T; Miconi, F; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondal, N K; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Mulhearn, M; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nagy, E; Nakano, I; Napier, A; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Nett, J; Neu, C; Neustroev, P; Nguyen, H T; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Nunnemann, T; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Orduna, J; Ortolan, L; Osman, N; Osta, J; Pagliarone, C; Pal, A; Palencia, E; Palni, P; Papadimitriou, V; Parashar, N; Parihar, V; Park, S K; Parker, W; Partridge, R; Parua, N; Patwa, A; Pauletta, G; Paulini, M; Paus, C; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pleier, M-A; Podstavkov, V M; Pondrom, L; Popov, A V; Poprocki, S; Potamianos, K; Pranko, A; Prewitt, M; Price, D; Prokopenko, N; Prokoshin, F; Ptohos, F; Punzi, G; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ripp-Baudot, I; Ristori, L; Rizatdinova, F; Robson, A; Rodriguez, T; Rolli, S; Rominsky, M; Ronzani, M; Roser, R; Rosner, J L; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sajot, G; Sakumoto, W K; Sakurai, Y; Sánchez-Hernández, A; Sanders, M P; Santi, L; Santos, A S; Sato, K; Savage, G; Saveliev, V; Savitskyi, M; Savoy-Navarro, A; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schlabach, P; Schmidt, E E; Schwanenberger, C; Schwarz, T; Schwienhorst, R; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Sekaric, J; Semenov, A; Severini, H; Sforza, F; Shabalina, E; Shalhout, S Z; Shary, V; Shaw, S; Shchukin, A A; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simak, V; Simonenko, A; Skubic, P; Slattery, P; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, H; Sonnenschein, L; Sorin, V; Soustruznik, K; St Denis, R; Stancari, M; Stark, J; Stentz, D; Stoyanova, D A; Strauss, M; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Suter, L; Svoisky, P; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Titov, M; Toback, D; Tokar, S; Tokmenin, V V; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Ukegawa, F; Uozumi, S; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vázquez, F; Velev, G; Vellidis, C; Verkheev, A Y; Vernieri, C; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vidal, M; Vilanova, D; Vilar, R; Vizán, J; Vogel, M; Vokac, P; Volpi, G; Wagner, P; Wahl, H D; Wallny, R; Wang, M H L S; Wang, S M; Warchol, J; Waters, D; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Williams, M R J; Wilson, G W; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wobisch, M; Wolbers, S; Wolfe, H; Wood, D R; Wright, T; Wu, X; Wu, Z; Wyatt, T R; Xie, Y; Yamada, R; Yamamoto, K; Yamato, D; Yang, S; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yeh, G P; Yi, K; Yin, H; Yip, K; Yoh, J; Yorita, K; Yoshida, T; Youn, S W; Yu, G B; Yu, I; Yu, J M; Zanetti, A M; Zeng, Y; Zennamo, J; Zhao, T G; Zhou, B; Zhou, C; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zucchelli, S

    2015-10-09

    We present the final combination of CDF and D0 measurements of cross sections for single-top-quark production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb^{-1} per experiment. The t-channel cross section is measured to be σ_{t}=2.25_{-0.31}^{+0.29} pb. We also present the combinations of the two-dimensional measurements of the s- vs t-channel cross section. In addition, we give the combination of the s+t channel cross section measurement resulting in σ_{s+t}=3.30_{-0.40}^{+0.52} pb, without assuming the standard model value for the ratio σ_{s}/σ_{t}. The resulting value of the magnitude of the top-to-bottom quark coupling is |V_{tb}|=1.02_{-0.05}^{+0.06}, corresponding to |V_{tb}|>0.92 at the 95% C.L.

  14. Tevatron combination of single-top-quark cross sections and determination of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element $\\bf V_{tb}$

    SciTech Connect

    Aaltonen, Timo Antero

    2015-10-07

    In this study, we present the final combination of CDF and D0 measurements of cross sections for single-top-quark production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb-1 per experiment. The t-channel cross section is measured to be σt= 2.25-0.31+0.29 pb. We also present the combinations of the two-dimensional measurements of the s- vs t-channel cross section. In addition, we give the combination of the s+t channel cross section measurement resulting in σs+t= 3.30-0.40+0.52 pb, without assuming the standard model value for the ratio σst. The resulting value of the magnitude of the top-to-bottom quark coupling is |Vtb|= 1.02-0.05+0.06, corresponding to |Vtb| > 0.92 at the 95% C.L.

  15. Tevatron combination of single-top-quark cross sections and determination of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element $$\\bf V_{tb}$$

    DOE PAGES

    Aaltonen, Timo Antero; Helsinki Institute of Physics, Helsinki

    2015-10-07

    In this study, we present the final combination of CDF and D0 measurements of cross sections for single-top-quark production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb-1 per experiment. The t-channel cross section is measured to be σt= 2.25-0.31+0.29 pb. We also present the combinations of the two-dimensional measurements of the s- vs t-channel cross section. In addition, we give the combination of the s+t channel cross section measurement resulting in σs+t= 3.30-0.40+0.52 pb, without assuming the standard model value for the ratio σs/σt. The resulting valuemore » of the magnitude of the top-to-bottom quark coupling is |Vtb|= 1.02-0.05+0.06, corresponding to |Vtb| > 0.92 at the 95% C.L.« less

  16. Dramatic role of fragility in determining the magnitude of Tg perturbations to ultrathin film layers and near-infinitely dilute blend components

    NASA Astrophysics Data System (ADS)

    Evans, Christopher; Torkelson, John; Northwestern University Team

    2013-03-01

    Using fluorescence, we measure the glass transition temperatures (Tg) of ultrathin (11-14 nm) polystyrene (PS, bulk Tg = 103 °C) layers which can be tuned over ~ 80 °C when sandwiched between two bulk neighboring layers of poly(4-vinyl pyridine) (P4VP), polycarbonate, poly(vinyl chloride) (PVC) or poly(tert-butyl acrylate). Between P4VP, an ultrathin PS layer has its dynamics slaved and reports the Tg of bulk P4VP. In contrast, an ultrathin PS layer is weakly perturbed (Tg = 97 °C) when placed between PVC. These perturbations to the PS Tg become evident even for layers 10s of nanometers in thickness. Additionally, binary blends were prepared with 0.1 wt% PS components surrounded by the same neighboring polymers as in the trilayers. The Tg reported by an ultrathin PS layer and a 0.1 wt% PS blend component are the same for a given polymer pair indicating that the Tg perturbations in these two systems arise from a common physical origin. The strength of perturbations to PS correlate with the fragility of the neighboring domain in both blends and multilayers indicating that it is a key variable in determining the strength of Tg-confinement effects. Fragility also tracks with the magnitude of Tg-confinement effects observed in single layer polymer films supported on silicon wafers.

  17. Research Plan to Determine Timing, Location, Magnitude and Cause of Mortality for Wild and Hatchery Spring/Summer Chinook Salmon Smolts Above Lower Granite Dam. Final Report.

    SciTech Connect

    Lower Granite Migration Study Steering Committee

    1993-10-01

    From 1966 to 1968, Raymond estimated an average survival rate of 89% for yearling chinook salmon (Oncorhynchus tshawytscha) migrating from trap sites on the Salmon River to Ice Harbor Dam, which was then the uppermost dam on the Snake River. During the 1970s, the estimated survival rate declined as the proportion of hatchery fish increased and additional dams were constructed. Recent survival indices for yearling chinook salmon smolts in the Snake River Basin indicate that substantial mortalities are occurring en route to Lower Granite Dam, now the uppermost dam on the Snake River. Detection rates for wild and hatchery PIT-tagged smolts at Lower Granite Dam have been much lower than expected. However, for wild fish, there is considerable uncertainty whether overwinter mortality or smolt loss during migration is the primary cause for low survival. Efforts to rebuild these populations will have a better chance of success after the causes of mortality are identified and addressed. Information on the migrational characteristics and survival of wild fish are especially needed. The goal of this initial planning phase is to develop a research plan to outline potential investigations that will determine the timing, location, magnitude, and cause of smolt mortality above Lower Granite Dam.

  18. Automaticity of Conceptual Magnitude.

    PubMed

    Gliksman, Yarden; Itamar, Shai; Leibovich, Tali; Melman, Yonatan; Henik, Avishai

    2016-02-16

    What is bigger, an elephant or a mouse? This question can be answered without seeing the two animals, since these objects elicit conceptual magnitude. How is an object's conceptual magnitude processed? It was suggested that conceptual magnitude is automatically processed; namely, irrelevant conceptual magnitude can affect performance when comparing physical magnitudes. The current study further examined this question and aimed to expand the understanding of automaticity of conceptual magnitude. Two different objects were presented and participants were asked to decide which object was larger on the screen (physical magnitude) or in the real world (conceptual magnitude), in separate blocks. By creating congruent (the conceptually larger object was physically larger) and incongruent (the conceptually larger object was physically smaller) pairs of stimuli it was possible to examine the automatic processing of each magnitude. A significant congruity effect was found for both magnitudes. Furthermore, quartile analysis revealed that the congruity was affected similarly by processing time for both magnitudes. These results suggest that the processing of conceptual and physical magnitudes is automatic to the same extent. The results support recent theories suggested that different types of magnitude processing and representation share the same core system.

  19. Automaticity of Conceptual Magnitude

    PubMed Central

    Gliksman, Yarden; Itamar, Shai; Leibovich, Tali; Melman, Yonatan; Henik, Avishai

    2016-01-01

    What is bigger, an elephant or a mouse? This question can be answered without seeing the two animals, since these objects elicit conceptual magnitude. How is an object’s conceptual magnitude processed? It was suggested that conceptual magnitude is automatically processed; namely, irrelevant conceptual magnitude can affect performance when comparing physical magnitudes. The current study further examined this question and aimed to expand the understanding of automaticity of conceptual magnitude. Two different objects were presented and participants were asked to decide which object was larger on the screen (physical magnitude) or in the real world (conceptual magnitude), in separate blocks. By creating congruent (the conceptually larger object was physically larger) and incongruent (the conceptually larger object was physically smaller) pairs of stimuli it was possible to examine the automatic processing of each magnitude. A significant congruity effect was found for both magnitudes. Furthermore, quartile analysis revealed that the congruity was affected similarly by processing time for both magnitudes. These results suggest that the processing of conceptual and physical magnitudes is automatic to the same extent. The results support recent theories suggested that different types of magnitude processing and representation share the same core system. PMID:26879153

  20. On the determination of dark energy

    SciTech Connect

    Clarkson, Chris

    2010-06-23

    I consider some of the issues we face in trying to understand dark energy. Huge fluctuations in the unknown dark energy equation of state can be hidden in distance data, so I argue that model-independent tests which signal if the cosmological constant is wrong are valuable. These can be constructed to remove degeneracies with the cosmological parameters. Gravitational effects can play an important role. Even small inhomogeneity clouds our ability to say something definite about dark energy. I discuss how the averaging problem confuses our potential understanding of dark energy by considering the backreaction from density perturbations to second-order in the concordance model: this effect leads to at least a 10% increase in the dynamical value of the deceleration parameter, and could be significantly higher. Large Hubble-scale inhomogeneity has not been investigated in detail, and could conceivably be the cause of apparent cosmic acceleration. I discuss void models which defy the Copernican principle in our Hubble patch, and describe how we can potentially rule out these models.This article is a summary of two talks given at the Invisible Universe Conference, Paris, 2009.

  1. Determination of focal mechanisms of intermediate-magnitude earthquakes in Mexico, based on Greens functions calculated for a 3D Earth model

    NASA Astrophysics Data System (ADS)

    Rodrigo Rodríguez Cardozo, Félix; Hjörleifsdóttir, Vala

    2015-04-01

    One important ingredient in the study of the complex active tectonics in Mexico is the analysis of earthquake focal mechanisms, or the seismic moment tensor. They can be determined trough the calculation of Green functions and subsequent inversion for moment-tensor parameters. However, this calculation is gets progressively more difficult as the magnitude of the earthquakes decreases. Large earthquakes excite waves of longer periods that interact weakly with laterally heterogeneities in the crust. For these earthquakes, using 1D velocity models to compute the Greens fucntions works well. The opposite occurs for smaller and intermediate sized events, where the relatively shorter periods excited interact strongly with lateral heterogeneities in the crust and upper mantle and requires more specific or regional 3D models. In this study, we calculate Greens functions for earthquakes in Mexico using a laterally heterogeneous seismic wave speed model, comprised of mantle model S362ANI (Kustowski et al 2008) and crustal model CRUST 2.0 (Bassin et al 1990). Subsequently, we invert the observed seismograms for the seismic moment tensor using a method developed by Liu et al (2004) an implemented by Óscar de La Vega (2014) for earthquakes in Mexico. By following a brute force approach, in which we include all observed Rayleigh and Love waves of the Mexican National Seismic Network (Servicio Sismológico Naciona, SSN), we obtain reliable focal mechanisms for events that excite a considerable amount of low frequency waves (Mw > 4.8). However, we are not able to consistently estimate focal mechanisms for smaller events using this method, due to high noise levels in many of the records. Excluding the noisy records, or noisy parts of the records manually, requires interactive edition of the data, using an efficient tool for the editing. Therefore, we developed a graphical user interface (GUI), based on python and the python library ObsPy, that allows the edition of observed and

  2. A Method for Determining Optimal Residential Energy Efficiency Packages

    SciTech Connect

    Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

    2011-04-01

    This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location.

  3. Comparison of TV magnitudes and visual magnitudes of meteors

    NASA Astrophysics Data System (ADS)

    Shigeno, Yoshihiko; Toda, Masayuki

    2008-08-01

    The generally accepted belief is that a meteor, with a large amount of infrared rays, can be captured brighter than it actually is by infrared-sensitive image intensifiers (I.I.) or CCD. We conducted observations of meteors using three methodologies: 1) I.I. with an attached filter that has the same spectral response as the human eye at night vision, 2) I.I. without the filter and 3) visually to determine meteor magnitudes. A total of 31 members of the astronomical club at Meiji University observed 50 Perseid meteors, 19 Geminid meteors as well as 44 sporadic meteors and the results were tabulated. The results helped us understand that on average I.I. can record meteors as brighter than visual observation by the magnitude equivalent of 0.5 for Perseids, 1.0 for Geminids and 0.5 for sporadic meteors. For I.I. with a filter that has the same spectral response the human eye at night vision, it turned out that we could obtain almost the same magnitude with observation by the human eye. We learned that a bright meteor with negative magnitude can be observed by I.I. brighter than the human eye. From several examples, we found I.I. could record a meteor with about -1 visual magnitude as brighter by about three magnitudes. We could probably do so because a bright meteor with negative magnitude may contain more infrared rays and the brightness could be amplified.

  4. Determination analysis of energy conservation standards for distribution transformers

    SciTech Connect

    Barnes, P.R.; Van Dyke, J.W.; McConnell, B.W.; Das, S.

    1996-07-01

    This report contains information for US DOE to use in making a determination on proposing energy conservation standards for distribution transformers as required by the Energy Policy Act of 1992. Potential for saving energy with more efficient liquid-immersed and dry-type distribution transformers could be significant because these transformers account for an estimated 140 billion kWh of the annual energy lost in the delivery of electricity. Objective was to determine whether energy conservation standards for distribution transformers would have the potential for significant energy savings, be technically feasible, and be economically justified from a national perspective. It was found that energy conservation for distribution transformers would be technically and economically feasible. Based on the energy conservation options analyzed, 3.6-13.7 quads of energy could be saved from 2000 to 2030.

  5. 7 CFR 1709.5 - Determination of energy cost benchmarks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...), other petroleum products, wood and other biomass fuels, coal, wind and solar energy. ... 7 Agriculture 11 2012-01-01 2012-01-01 false Determination of energy cost benchmarks. 1709.5... SERVICE, DEPARTMENT OF AGRICULTURE ASSISTANCE TO HIGH ENERGY COST COMMUNITIES General Requirements §...

  6. 7 CFR 1709.5 - Determination of energy cost benchmarks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...), other petroleum products, wood and other biomass fuels, coal, wind and solar energy. ... 7 Agriculture 11 2013-01-01 2013-01-01 false Determination of energy cost benchmarks. 1709.5... SERVICE, DEPARTMENT OF AGRICULTURE ASSISTANCE TO HIGH ENERGY COST COMMUNITIES General Requirements §...

  7. 7 CFR 1709.5 - Determination of energy cost benchmarks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...), other petroleum products, wood and other biomass fuels, coal, wind and solar energy. ... 7 Agriculture 11 2011-01-01 2011-01-01 false Determination of energy cost benchmarks. 1709.5... SERVICE, DEPARTMENT OF AGRICULTURE ASSISTANCE TO HIGH ENERGY COST COMMUNITIES General Requirements §...

  8. 7 CFR 1709.5 - Determination of energy cost benchmarks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...), other petroleum products, wood and other biomass fuels, coal, wind and solar energy. ... 7 Agriculture 11 2014-01-01 2014-01-01 false Determination of energy cost benchmarks. 1709.5... SERVICE, DEPARTMENT OF AGRICULTURE ASSISTANCE TO HIGH ENERGY COST COMMUNITIES General Requirements §...

  9. 7 CFR 1709.5 - Determination of energy cost benchmarks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...), other petroleum products, wood and other biomass fuels, coal, wind and solar energy. ... 7 Agriculture 11 2010-01-01 2010-01-01 false Determination of energy cost benchmarks. 1709.5... SERVICE, DEPARTMENT OF AGRICULTURE ASSISTANCE TO HIGH ENERGY COST COMMUNITIES General Requirements §...

  10. The free energy of DNA supercoiling is enthalpy-determined.

    PubMed

    Seidl, A; Hinz, H J

    1984-03-01

    The thermodynamics of superhelix formation was determined by combining superhelix density data with enthalpy values obtained from microcalorimetric measurements of the relaxation of supercoiled ColE1 amp plasmid DNA in the presence of topoisomerase I from Escherichia coli (omega protein). The thermodynamic quantities for superhelix formation at 37 degrees C in 10 mM Tris/2 mM MgCl2/1 mM EDTA pH 8, are: delta G = 921 kJ X (mol of plasmid)-1; delta H 2260 kJ X (mol of plasmid)-1; deltaS = 4.3 kJ X (mol of plasmid X K)-1. These data clearly demonstrate that the unfavorable Gibbs free energy associated with supercoiling of DNA results exclusively from the positive enthalpy involved in formation of superhelical turns. A positive overall entropy change accompanies superhelix formation, which overcompensates the expected decrease of configurational entropy. By neglecting contributions from bending, an estimate of the torsional rigidity C = 1.79 X 10(-19) erg X cm (1 erg = 0.1 microJ) of the supercoiled ColE1 amp plasmid DNA was made on the basis of the enthalpy value. This value is in excellent agreement with values of C derived from subnanosecond time-resolved fluorescence depolarization measurements for pBR322 DNA [Millar, D. P., Robbins, R. J. & Zewai, A.H. (1982) J. Chem. Phys. 76, 2080-2094]. The magnitude of C is larger than for linear DNAs, indicating that supercoiled DNA is more rigid than linear DNA.

  11. Associations between Mother-Child Relationship Quality and Adolescent Adjustment: Using a Genetically Controlled Design to Determine the Direction and Magnitude of Effects

    ERIC Educational Resources Information Center

    Guimond, Fanny-Alexandra; Laursen, Brett; Vitaro, Frank; Brendgen, Mara; Dionne, Ginette; Boivin, Michel

    2016-01-01

    This study used a genetically controlled design to examine the direction and the magnitude of effects in the over-time associations between perceived relationship quality with mothers and adolescent maladjustment (i.e., depressive symptoms and delinquency). A total of 163 monozygotic (MZ) twins pairs (85 female pairs, 78 male pairs) completed…

  12. Method for Determining Optimal Residential Energy Efficiency Retrofit Packages

    SciTech Connect

    Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

    2011-04-01

    Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.

  13. 75 FR 54117 - Building Energy Standards Program: Preliminary Determination Regarding Energy Efficiency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... building energy prices of $0.1028/kWh of electricity and $11.99 per 1000 cubic feet ($1.163/therm) of...] [FR Doc No: 2010-22060] DEPARTMENT OF ENERGY [Docket No. EERE-2006-BC-0132] RIN 1904-AC18 Building Energy Standards Program: Preliminary Determination Regarding Energy Efficiency Improvements in...

  14. Determining the Probability that a Small Event in Brazil (magnitude 3.5 to 4.5 mb) will be Followed by a Larger Event

    NASA Astrophysics Data System (ADS)

    Assumpcao, M.

    2013-05-01

    A typical earthquake story in Brazil: A swarm of small earthquakes starts to occur near a small town, reaching magnitude 3.5, causing some alarm but no damage. The freightened population, not used to feeling earthquakes, calls the seismology experts who set up a local network to study the seismicity. To the usual and inevitable question "Are we going to have a larger earthquake?", the usual and standard answer "It is not possible to predict earthquakes; larger earthquakes are possible". Fearing unecessary panic, seismologists often add that "however, large earthquakes are not very likely". This vague answer has proven quite inadequate. "Not very likely" is interpreted by the population and authorities as "not going to happen, and there is not need to do anything". Before L'Aquila 2009, one case of magnitude 3.8 in Eastern Brazil was followed seven months later by a magnitude 4.9 causing serious damage to poorly built houses. One child died and the affected population felt deceived by the seismologists. In order to provide better answers than just a vague "not likely", we examined the Brazilian catalog of earthquakes for all cases of moderate magnitude (3.4 mb or larger) that were followed, up to one year later, by a larger event. We found that the chance of an event with magnitude 3.4 or larger being the foreshock of a larger magntitude is roughly 1/6. The probability of an event being a foreshock varies with magnitude from about 20% for a 3.5 mb to about 5% for a 4.5 mb. Also, given that an event in the range 3.4 to 4.3 is a foreshock, the probability that the mainshock will be 4.7 or larger is 1/6. The probability for a larger event to occur decreases with time after the occurrence of the possible foreshock with a time constant of ~70 days. Perhaps, by giving the population and civil defense a more quantitative answer (such as "the chance of a larger even is like rolling a six in a dice") may help the decision to reinforce poor houses or even evacuate people from

  15. Determination of magnitudes and relative signs of 1H-19F coupling constants through 1D- and 2D-TOCSY experiments.

    PubMed

    Espinosa, Juan F

    2013-12-20

    A novel methodology based on 1D- and 2D-TOCSY experiments is described for a quick and accurate measurement of proton-fluorine coupling constants in fluorinated organic compounds. The magnitude of the (1)H-(19)F coupling was measured from the displacement between the relayed peaks associated with the α or β spin state of the fluorine, and its relative sign was derived from the sense of the displacement.

  16. Are Earthquake Magnitudes Clustered?

    SciTech Connect

    Davidsen, Joern; Green, Adam

    2011-03-11

    The question of earthquake predictability is a long-standing and important challenge. Recent results [Phys. Rev. Lett. 98, 098501 (2007); ibid.100, 038501 (2008)] have suggested that earthquake magnitudes are clustered, thus indicating that they are not independent in contrast to what is typically assumed. Here, we present evidence that the observed magnitude correlations are to a large extent, if not entirely, an artifact due to the incompleteness of earthquake catalogs and the well-known modified Omori law. The latter leads to variations in the frequency-magnitude distribution if the distribution is constrained to those earthquakes that are close in space and time to the directly following event.

  17. Lightstick Magic: Determination of the Activation Energy with PSL.

    ERIC Educational Resources Information Center

    Bindel, Thomas H.

    1996-01-01

    Presents experiments with lightsticks in which the activation energy for the light-producing reaction is determined. Involves monitoring the light intensity of the lightstick as a function of temperature. Gives students the opportunity to explore the concepts of kinetics and activation energies and the world of computer-interfaced experimentation…

  18. Misconceptions about astronomical magnitudes

    NASA Astrophysics Data System (ADS)

    Schulman, Eric; Cox, Caroline V.

    1997-10-01

    The present system of astronomical magnitudes was created as an inverse scale by Claudius Ptolemy in about 140 A.D. and was defined to be logarithmic in 1856 by Norman Pogson, who believed that human eyes respond logarithmically to the intensity of light. Although scientists have known for some time that the response is instead a power law, astronomers continue to use the Pogson magnitude scale. The peculiarities of this system make it easy for students to develop numerous misconceptions about how and why to use magnitudes. We present a useful exercise in the use of magnitudes to derive a cosmologically interesting quantity (the mass-to-light ratio for spiral galaxies), with potential pitfalls pointed out and explained.

  19. Energy and time determine scaling in biological and computer designs.

    PubMed

    Moses, Melanie; Bezerra, George; Edwards, Benjamin; Brown, James; Forrest, Stephanie

    2016-08-19

    Metabolic rate in animals and power consumption in computers are analogous quantities that scale similarly with size. We analyse vascular systems of mammals and on-chip networks of microprocessors, where natural selection and human engineering, respectively, have produced systems that minimize both energy dissipation and delivery times. Using a simple network model that simultaneously minimizes energy and time, our analysis explains empirically observed trends in the scaling of metabolic rate in mammals and power consumption and performance in microprocessors across several orders of magnitude in size. Just as the evolutionary transitions from unicellular to multicellular animals in biology are associated with shifts in metabolic scaling, our model suggests that the scaling of power and performance will change as computer designs transition to decentralized multi-core and distributed cyber-physical systems. More generally, a single energy-time minimization principle may govern the design of many complex systems that process energy, materials and information.This article is part of the themed issue 'The major synthetic evolutionary transitions'.

  20. Telescopic limiting magnitudes

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1990-01-01

    The prediction of the magnitude of the faintest star visible through a telescope by a visual observer is a difficult problem in physiology. Many prediction formulas have been advanced over the years, but most do not even consider the magnification used. Here, the prediction algorithm problem is attacked with two complimentary approaches: (1) First, a theoretical algorithm was developed based on physiological data for the sensitivity of the eye. This algorithm also accounts for the transmission of the atmosphere and the telescope, the brightness of the sky, the color of the star, the age of the observer, the aperture, and the magnification. (2) Second, 314 observed values for the limiting magnitude were collected as a test of the formula. It is found that the formula does accurately predict the average observed limiting magnitudes under all conditions.

  1. Magnitude And Distance Determination From The First Few Seconds Of One Three Components Seismological Station Signal Using Support Vector Machine Regression Methods

    NASA Astrophysics Data System (ADS)

    Ochoa Gutierrez, L. H.; Vargas Jimenez, C. A.; Niño Vasquez, L. F.

    2011-12-01

    The "Sabana de Bogota" (Bogota Savannah) is the most important social and economical center of Colombia. Almost the third of population is concentrated in this region and generates about the 40% of Colombia's Internal Brute Product (IBP). According to this, the zone presents an elevated vulnerability in case that a high destructive seismic event occurs. Historical evidences show that high magnitude events took place in the past with a huge damage caused to the city and indicate that is probable that such events can occur in the next years. This is the reason why we are working in an early warning generation system, using the first few seconds of a seismic signal registered by three components and wide band seismometers. Such system can be implemented using Computational Intelligence tools, designed and calibrated to the particular Geological, Structural and environmental conditions present in the region. The methods developed are expected to work on real time, thus suitable software and electronic tools need to be developed. We used Support Vector Machines Regression (SVMR) methods trained and tested with historic seismic events registered by "EL ROSAL" Station, located near Bogotá, calculating descriptors or attributes as the input of the model, from the first 6 seconds of signal. With this algorithm, we obtained less than 10% of mean absolute error and correlation coefficients greater than 85% in hypocentral distance and Magnitude estimation. With this results we consider that we can improve the method trying to have better accuracy with less signal time and that this can be a very useful model to be implemented directly in the seismological stations to generate a fast characterization of the event, broadcasting not only raw signal but pre-processed information that can be very useful for accurate Early Warning Generation.

  2. Strong motion duration and earthquake magnitude relationships

    SciTech Connect

    Salmon, M.W.; Short, S.A.; Kennedy, R.P.

    1992-06-01

    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ``strong motion duration`` has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions.

  3. REINFORCER MAGNITUDE ATTENUATES

    PubMed Central

    Pinkston, Jonathan W.; Lamb, R. J.

    2012-01-01

    When given to pigeons, the direct-acting dopamine agonist apomorphine elicits pecking. The response has been likened to foraging pecking because it bears remarkable similarity to foraging behavior, and it is enhanced by food deprivation. On the other hand, other data suggest the response is not related to foraging behavior and may even interfere with food ingestion. Although elicited pecking interferes with food capture, it may selectively alter procurement phases of feeding, which can be isolated in operant preparations. To explore the relation between operant and elicited pecking, we provided pigeons the opportunity to earn different reinforcer magnitudes during experimental sessions. During signaled components, each of 4 pigeons could earn 2-, 4-, or 8-s access to grain for a single peck made at the end of a 5-min interval. In general, responding increased as a function of reinforcer magnitude. Apomorphine increased pecking for 2 pigeons and decreased pecking for the other 2. In both cases, apomorphine was more potent under the component providing the smallest reinforcer magnitude. Analysis of the pattern of pecking across the interval indicated that behavior lost its temporal organization as dose increased. Because apomorphine-induced pecking varied inversely with reinforcer magnitude, we conclude that elicited pecks are not functionally related to food procurement. The data are consistent with the literature on behavioral resistance to change and suggest that the effects of apomorphine may be modulated by prevailing stimulus–reinforcer relationships. PMID:23144505

  4. Determining the magnitude and direction of photoinduced ligand field switching in photochromic metal-organic complexes: molybdenum-tetracarbonyl spirooxazine complexes.

    PubMed

    Paquette, Michelle M; Patrick, Brian O; Frank, Natia L

    2011-07-06

    The ability to optically switch or tune the intrinsic properties of transition metals (e.g., redox potentials, emission/absorption energies, and spin states) with photochromic metal-ligand complexes is an important strategy for developing "smart" materials. We have described a methodology for using metal-carbonyl complexes as spectroscopic probes of ligand field changes associated with light-induced isomerization of photochromic ligands. Changes in ligand field between the ring-closed spirooxazine (SO) and ring-opened photomerocyanine (PMC) forms of photochromic azahomoadamantyl and indolyl phenanthroline-spirooxazine ligands are demonstrated through FT-IR, (13)C NMR, and computational studies of their molybdenum-tetracarbonyl complexes. The frontier molecular orbitals (MOs) of the SO and PMC forms differ considerably in both electron density distributions and energies. Of the multiple π* MOs in the SO and PMC forms of the ligands, the LUMO+1, a pseudo-b(1)-symmetry phenanthroline-based MO, mixes primarily with the Mo(CO)(4) fragment and provides the major pathway for Mo(d)→phen(π*) backbonding. The LUMO+1 is found to be 0.2-0.3 eV lower in energy in the SO form relative to the PMC form, suggesting that the SO form is a better π-acceptor. Light-induced isomerization of the photochromic ligands was therefore found to lead to changes in the energies of their frontier MOs, which in turn leads to changes in π-acceptor ability and ligand field strength. Ligand field changes associated with photoisomerizable ligands allow tuning of excited-state and ground-state energies that dictate energy/electron transfer, optical/electrical properties, and spin states of a metal center upon photoisomerization, positioning photochromic ligand-metal complexes as promising targets for smart materials.

  5. Energy flux determines magnetic field strength of planets and stars.

    PubMed

    Christensen, Ulrich R; Holzwarth, Volkmar; Reiners, Ansgar

    2009-01-08

    The magnetic fields of Earth and Jupiter, along with those of rapidly rotating, low-mass stars, are generated by convection-driven dynamos that may operate similarly (the slowly rotating Sun generates its field through a different dynamo mechanism). The field strengths of planets and stars vary over three orders of magnitude, but the critical factor causing that variation has hitherto been unclear. Here we report an extension of a scaling law derived from geodynamo models to rapidly rotating stars that have strong density stratification. The unifying principle in the scaling law is that the energy flux available for generating the magnetic field sets the field strength. Our scaling law fits the observed field strengths of Earth, Jupiter, young contracting stars and rapidly rotating low-mass stars, despite vast differences in the physical conditions of the objects. We predict that the field strengths of rapidly rotating brown dwarfs and massive extrasolar planets are high enough to make them observable.

  6. Urban Surface Radiative Energy Budgets Determined Using Aircraft Scanner Data

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.; Arnold, James E. (Technical Monitor)

    2002-01-01

    It is estimated that by the year 2025, 80% of the world's population will live in cities. The extent of these urban areas across the world can be seen in an image of city lights from the Defense Meteorological Satellite Program. In many areas of North America and Europe, it is difficult to separate individual cities because of the dramatic growth and sprawl of urbanized areas. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. One of the earliest recognized and measured phenomena of urbanization is the urban heat island (UHI) which was reported as early as 1833 for London and 1862 for Paris. The urban heat island results from the energy that is absorbed by man-made materials during the day and is released at night resulting in the heating of the air within the urban area. The magnitude of the air temperature difference between the urban and surrounding countryside is highly dependent on the structure of the urban area, amount of solar immolation received during the day, and atmospheric conditions during the night. These night time air temperature differences can be in the range of 2 to 5 C. or greater. Although day time air temperature differences between urban areas and the countryside exists during the day, atmospheric mixing and stability reduce the magnitude. This phenomena is not limited to large urban areas, but also occurs in smaller metropolitan areas. The UHI has significant impacts on the urban air quality, meteorology, energy use, and human health. The UPI can be mitigated through increasing the amount of vegetation and modification of urban surfaces using high albedo materials for roofs and paved surfaces. To understand why the urban heat island phenomenon exists it is useful to define the surface in terms of the surface energy budget. Surface temperature and albedo is a major component of

  7. Determining characteristics of melting cheese by activation energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activation energy of flow (Ea) between 30 and 44 deg C was measured from temperature sweeps of various cheeses to determine its usefulness in predicting rheological behavior upon heating. Seven cheese varieties were heated in a rheometer from 22 to 70 deg C, and Ea was calculated from the resulting ...

  8. Experiments to Determine the Efficiency of Various Energy Conversions.

    ERIC Educational Resources Information Center

    Curtis, D.; Goodwin, R. D.

    1980-01-01

    Described are experiments used in the "Physical Science and Man" course at Hartley CAE which enable determinations of efficiencies of two energy conversion processes, namely, electricity into heat and burning gas to produce heat. Activities for comparing the processes are suggested. (DS)

  9. Determination of Atomic Data Pertinent to the Fusion Energy Program

    SciTech Connect

    Reader, J.

    2013-06-11

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  10. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1Determine the... 10 Energy 3 2010-01-01 2010-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  11. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1Determine the... 10 Energy 3 2012-01-01 2012-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  12. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1Determine the... 10 Energy 3 2011-01-01 2011-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  13. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1Determine the... 10 Energy 3 2013-01-01 2013-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  14. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1 Determine the... 10 Energy 3 2014-01-01 2014-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  15. Comparing primary energy attributed to renewable energy with primary energy equivalent to determine carbon abatement in a national context.

    PubMed

    Gallachóir, Brian P O; O'Leary, Fergal; Bazilian, Morgan; Howley, Martin; McKeogh, Eamon J

    2006-01-01

    The current conventional approach to determining the primary energy associated with non-combustible renewable energy (RE) sources such as wind energy and hydro power is to equate the electricity generated from these sources with the primary energy supply. This paper compares this with an approach that was formerly used by the IEA, in which the primary energy equivalent attributed to renewable energy was equated with the fossil fuel energy it displaces. Difficulties with implementing this approach in a meaningful way for international comparisons lead to most international organisations abandoning the primary energy equivalent methodology. It has recently re-emerged in prominence however, as efforts grow to develop baseline procedures for quantifying the greenhouse gas (GHG) emissions avoided by renewable energy within the context of the Kyoto Protocol credit trading mechanisms. This paper discusses the primary energy equivalent approach and in particular the distinctions between displacing fossil fuel energy in existing plant or in new plant. The approach is then extended provide insight into future primary energy displacement by renewable energy and to quantify the amount of CO2 emissions avoided by renewable energy. The usefulness of this approach in quantifying the benefits of renewable energy is also discussed in an energy policy context, with regard to increasing security of energy supply as well as reducing energy-related GHG (and other) emissions. The approach is applied in a national context and Ireland is case study country selected for this research. The choice of Ireland is interesting in two respects. The first relates to the high proportion of electricity only fossil fuel plants in Ireland resulting in a significant variation between primary energy and primary energy equivalent. The second concerns Ireland's poor performance to date in limiting GHG emissions in line with its Kyoto target and points to the need for techniques to quantify the potential

  16. Protein energy landscapes determined by five-dimensional crystallography

    PubMed Central

    Schmidt, Marius; Srajer, Vukica; Henning, Robert; Ihee, Hyotcherl; Purwar, Namrta; Tenboer, Jason; Tripathi, Shailesh

    2013-01-01

    Free-energy landscapes decisively determine the progress of enzymatically catalyzed reactions [Cornish-Bowden (2012 ▶), Fundamentals of Enzyme Kinetics, 4th ed.]. Time-resolved macromolecular crystallography unifies transient-state kinetics with structure determination [Moffat (2001 ▶), Chem. Rev. 101, 1569–1581; Schmidt et al. (2005 ▶), Methods Mol. Biol. 305, 115–154; Schmidt (2008 ▶), Ultrashort Laser Pulses in Medicine and Biology] because both can be determined from the same set of X-ray data. Here, it is demonstrated how barriers of activation can be determined solely from five-dimensional crystallo­graphy, where in addition to space and time, temperature is a variable as well [Schmidt et al. (2010 ▶), Acta Cryst. A66, 198–206]. Directly linking molecular structures with barriers of activation between them allows insight into the structural nature of the barrier to be gained. Comprehensive time series of crystallo­graphic data at 14 different temperature settings were analyzed and the entropy and enthalpy contributions to the barriers of activation were determined. One hundred years after the discovery of X-ray scattering, these results advance X-ray structure determination to a new frontier: the determination of energy landscapes. PMID:24311594

  17. Protein energy landscapes determined by five-dimensional crystallography

    SciTech Connect

    Schmidt, Marius; Srajer, Vukica; Henning, Robert; Ihee, Hyotcherl; Purwar, Namrta; Tenboer, Jason; Tripathi, Shailesh

    2013-12-01

    Barriers of activation within the photocycle of a photoactive protein were extracted from comprehensive time courses of time resolved crystallographic data collected at multiple temperature settings. Free-energy landscapes decisively determine the progress of enzymatically catalyzed reactions [Cornish-Bowden (2012 ▶), Fundamentals of Enzyme Kinetics, 4th ed.]. Time-resolved macromolecular crystallography unifies transient-state kinetics with structure determination [Moffat (2001 ▶), Chem. Rev.101, 1569–1581; Schmidt et al. (2005 ▶), Methods Mol. Biol.305, 115–154; Schmidt (2008 ▶), Ultrashort Laser Pulses in Medicine and Biology] because both can be determined from the same set of X-ray data. Here, it is demonstrated how barriers of activation can be determined solely from five-dimensional crystallography, where in addition to space and time, temperature is a variable as well [Schmidt et al. (2010 ▶), Acta Cryst. A66, 198–206]. Directly linking molecular structures with barriers of activation between them allows insight into the structural nature of the barrier to be gained. Comprehensive time series of crystallographic data at 14 different temperature settings were analyzed and the entropy and enthalpy contributions to the barriers of activation were determined. One hundred years after the discovery of X-ray scattering, these results advance X-ray structure determination to a new frontier: the determination of energy landscapes.

  18. Development of a Standardized Methodology for the Use of COSI-Corr Sub-Pixel Image Correlation to Determine Surface Deformation Patterns in Large Magnitude Earthquakes.

    NASA Astrophysics Data System (ADS)

    Milliner, C. W. D.; Dolan, J. F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.

    2014-12-01

    Coseismic surface deformation is typically measured in the field by geologists and with a range of geophysical methods such as InSAR, LiDAR and GPS. Current methods, however, either fail to capture the near-field coseismic surface deformation pattern where vital information is needed, or lack pre-event data. We develop a standardized and reproducible methodology to fully constrain the surface, near-field, coseismic deformation pattern in high resolution using aerial photography. We apply our methodology using the program COSI-corr to successfully cross-correlate pairs of aerial, optical imagery before and after the 1992, Mw 7.3 Landers and 1999, Mw 7.1 Hector Mine earthquakes. This technique allows measurement of the coseismic slip distribution and magnitude and width of off-fault deformation with sub-pixel precision. This technique can be applied in a cost effective manner for recent and historic earthquakes using archive aerial imagery. We also use synthetic tests to constrain and correct for the bias imposed on the result due to use of a sliding window during correlation. Correcting for artificial smearing of the tectonic signal allows us to robustly measure the fault zone width along a surface rupture. Furthermore, the synthetic tests have constrained for the first time the measurement precision and accuracy of estimated fault displacements and fault-zone width. Our methodology provides the unique ability to robustly understand the kinematics of surface faulting while at the same time accounting for both off-fault deformation and measurement biases that typically complicates such data. For both earthquakes we find that our displacement measurements derived from cross-correlation are systematically larger than the field displacement measurements, indicating the presence of off-fault deformation. We show that the Landers and Hector Mine earthquake accommodated 46% and 38% of displacement away from the main primary rupture as off-fault deformation, over a mean

  19. Surface diffusion activation energy determination using ion beam microtexturing

    NASA Technical Reports Server (NTRS)

    Rossnagel, S. M.; Robinson, R. S.

    1982-01-01

    The activation energy for impurity atom (adatom) surface diffusion can be determined from the temperature dependence of the spacing of sputter cones. These cones are formed on the surface during sputtering while simultaneously adding impurities. The impurities form clusters by means of surface diffusion, and these clusters in turn initiate cone formation. Values are given for the surface diffusion activation energies for various materials on polycrystalline Cu, Al, Pb, Au, and Ni. The values for different impurity species on each of these substrates are approximately independent of impurity species within the experimental uncertainty, suggesting the absence of strong chemical bonding effects on the diffusion.

  20. Landslide seismic magnitude

    NASA Astrophysics Data System (ADS)

    Lin, C. H.; Jan, J. C.; Pu, H. C.; Tu, Y.; Chen, C. C.; Wu, Y. M.

    2015-11-01

    Landslides have become one of the most deadly natural disasters on earth, not only due to a significant increase in extreme climate change caused by global warming, but also rapid economic development in topographic relief areas. How to detect landslides using a real-time system has become an important question for reducing possible landslide impacts on human society. However, traditional detection of landslides, either through direct surveys in the field or remote sensing images obtained via aircraft or satellites, is highly time consuming. Here we analyze very long period seismic signals (20-50 s) generated by large landslides such as Typhoon Morakot, which passed though Taiwan in August 2009. In addition to successfully locating 109 large landslides, we define landslide seismic magnitude based on an empirical formula: Lm = log ⁡ (A) + 0.55 log ⁡ (Δ) + 2.44, where A is the maximum displacement (μm) recorded at one seismic station and Δ is its distance (km) from the landslide. We conclude that both the location and seismic magnitude of large landslides can be rapidly estimated from broadband seismic networks for both academic and applied purposes, similar to earthquake monitoring. We suggest a real-time algorithm be set up for routine monitoring of landslides in places where they pose a frequent threat.

  1. A determination of Mg(+)-ligand binding energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry

    1991-01-01

    Theoretical calculations employing large basis sets and including correlation are carried out for Mg(+) with methanol, water, and formaldehyde. For Mg(+) with ethanol and acetaldehyde, the trends in the binding energies are studied at the self-consistent-field level. The predictions for the binding energy of Mg(+) to methanol and water of 41 + or - 5 and 36 + or - 5 kcal/mol, respectively, are much less than the experimental upper bounds, of 61 + or - 5 and 60 + or - 5 kcal mol, determined by using photodissociation techniques. The theoretical results are inconsistent with the onset of Mg(+) production observed in the photodissociation experiments, as the smallest absorptions are calculated at about 80 kcal/mol for both Mg(+)-CH3OH and Mg(+)-H2O, and these transitions are to bound excited states. The binding energy for Mg(+) with formaldehyde is predicted to be similar to Mg(+)-H2O. The relative binding energies are in reasonable agreement with experiment. The binding energy of a second water molecule to Mg(+) is predicted to be similar to the first. This suggests that the reduced reaction rate observed for the second ligand is not a consequence of a significantly smaller binding energy, at least for the smaller ligards such as those considered in this work.

  2. How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming.

    PubMed

    Billings, Sharon A; Ballantyne, Ford

    2013-01-01

    Recent empirical and theoretical advances inform us about multiple drivers of soil organic matter (SOM) decomposition and microbial responses to warming. Absent from our conceptual framework of how soil respiration will respond to warming are adequate links between microbial resource demands, kinetic theory, and substrate stoichiometry. Here, we describe two important concepts either insufficiently explored in current investigations of SOM responses to temperature, or not yet addressed. First, we describe the complete range of responses for how warming may change microbial resource demands, physiology, community structure, and total biomass. Second, we describe how any relationship between SOM activation energy of decay and carbon (C) and nitrogen (N) stoichiometry can alter the relative availability of C and N as temperature changes. Changing availabilities of C and N liberated from their organic precursors can feedback to microbial resource demands, which in turn influence the aggregated respiratory response to temperature we observe. An unsuspecting biogeochemist focused primarily on temperature sensitivity of substrate decay thus cannot make accurate projections of heterotrophic CO2 losses from diverse organic matter reservoirs in a warming world. We establish the linkages between enzyme kinetics, SOM characteristics, and potential for microbial adaptation critical for making such projections. By examining how changing microbial needs interact with inherent SOM structure and composition, and thus reactivity, we demonstrate the means by which increasing temperature could result in increasing, unchanging, or even decreasing respiration rates observed in soils. We use this exercise to highlight ideas for future research that will develop our abilities to predict SOM feedbacks to climate.

  3. Application of static and dynamic enclosures for determining dimethyl sulfide and carbonyl sulfide exchange in Sphagnum peatlands: Implications for the magnitude and direction of flux

    NASA Technical Reports Server (NTRS)

    De Mello, William Z.; Hines, Mark E.

    1994-01-01

    A static enclosure method was applied to determine the exchange of dimethyl sulfide (DMS) and carbonyl sulfide (OCS) between the surface of Sphagnum peatlands and the atmosphere. Measurements were performed concurrently with dynamic (flow through) enclosure measurements with sulfur-free air used as sweep gas. This latter technique has been used to acquire the majority of available data on the exchange of S gases between the atmosphere and the continental surfaces and has been criticized because it is thought to overestimate the true flux of gases by disrupting natural S gas gradients. DMS emission rates determined by both methods were not statistically different between 4 and greater than 400 nmol/sq m/h, indicating that previous data on emissions of at least DMS are probably valid. However, the increase in DMS in static enclosures was not linear, indicating the potential for a negative feedback of enlosure DMS concentrations on efflux. The dynamic enclosure method measured positive OCS flux rates (emission) at all sites, while data using static enclosures indicated that OCS was consumed from the atmosphere at these same sites at rates of 3.7 to 55 nmol/sq m/h. Measurements using both enclosure techniques at a site devoid of vegetation showed that peat was a source of both DMS and OCS. However, the rate of OCS efflux from decomposing peat was more than counterbalanced by OCS consumption by vegetation, including Sphagnum mosses, and net OCS uptake occurred at all sites. We propose that all wetlands are net sinks for OCS.

  4. Uranium enrichment determination by high-energy photon interrogation

    NASA Astrophysics Data System (ADS)

    Zhu, Jianyu; Zhang, Songbai; Wu, Jun

    2011-11-01

    Uranium enrichment determination by non-destructive assay is an important method in authenticating the nuclear warhead or uranium component in deep nuclear reduction verifications. In this paper, the feasibility of applying the high-energy photon interrogation to determine the uranium enrichment is studied. Simplified models are presented which were simulated by particle Monte Carlo transport code. The results indicate that the relation curves of the released neutrons and the enrichment of uranium objects are almost linear. For a uranium object of a given shape, the uranium enrichment can be obtained with the relation curves, which could be got in advance by calibration experiments or simulations.

  5. Age determines the magnitudes of angiotensin II-induced contractions, mRNA, and protein expression of angiotensin type 1 receptors in rat carotid arteries.

    PubMed

    Vamos, Zoltan; Cseplo, Peter; Ivic, Ivan; Matics, Robert; Hamar, Janos; Koller, Akos

    2014-05-01

    In this study, we hypothesized that aging alters angiotensin II (Ang II)-induced vasomotor responses and expression of vascular mRNA and protein angiotensin type 1 receptor (AT1R). Thus, carotid arteries were isolated from the following age groups of rats: 8 days, 2-9 months, 12-20 months, and 20-30 months, and their vasomotor responses were measured in a myograph after repeated administrations of Ang II. Vascular relative AT1R mRNA level was determined by quantitative reverse-transcriptase polymerase chain reaction and the AT1R protein density was measured by Western blot. Contractions to the first administration of Ang II increased from 8 days to 6 months and then they decreased to 30 months. In general, second administration of Ang II elicited reduced contractions, but they also increased from 8 days until 2 months and then they decreased to 30 months. Similarly the AT1R mRNA level increased from 8 days to 12 months and then decreased to 30 months. Similarly the AT1R protein density increased from 8 days until 16 months and then they decreased to 30 months. The pattern of these changes correlated with functional vasomotor data. We conclude that aging (newborn to senescence) has substantial effects on Ang II-induced vasomotor responses and AT1R signaling suggesting the importance of genetic programs.

  6. Limiting magnitude of hypertelescopes

    NASA Astrophysics Data System (ADS)

    Surya, Arun

    Optical stellar interferometers have demonstrated milli-arcsecond resolution with few apertures spaced hundreds of meters apart. To obtain rich direct images, many apertures will be needed, for a better sampling of the incoming wavefront. The coherent imaging thus achievable improves the sensitivity with respect to the incoherent combination of successive fringed exposures, heretofore achieved in the form of optical aperture synthesis. For efficient use of highly diluted apertures, this can be done with pupil densification, a technique also called ``Hypertelescope Imaging". Using numerical simulations we have found out the limiting magnitude of hypertelescopes over different baselines and pupil densifications. Here we discuss the advantages of using hypertelescope systems over classical pairwise optical interferometry.

  7. 10 CFR 434.506 - Use of the reference building to determine the energy cost budget.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1Each floor shall... 10 Energy 3 2011-01-01 2011-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  8. 10 CFR 434.506 - Use of the reference building to determine the energy cost budget.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1Each floor shall... 10 Energy 3 2012-01-01 2012-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  9. 10 CFR 434.506 - Use of the reference building to determine the energy cost budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1Each floor shall... 10 Energy 3 2010-01-01 2010-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  10. 10 CFR 434.506 - Use of the reference building to determine the energy cost budget.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1 Each floor... 10 Energy 3 2014-01-01 2014-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  11. 10 CFR 434.506 - Use of the reference building to determine the energy cost budget.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Alternative § 434.506 Use of the reference building to determine the energy cost budget. 506.1Each floor shall... 10 Energy 3 2013-01-01 2013-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  12. Ab initio potential energy and dipole moment surfaces for CS2: determination of molecular vibrational energies.

    PubMed

    Pradhan, Ekadashi; Carreón-Macedo, José-Luis; Cuervo, Javier E; Schröder, Markus; Brown, Alex

    2013-08-15

    The ground state potential energy and dipole moment surfaces for CS2 have been determined at the CASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Z level of theory. The potential energy surface has been fit to a sum-of-products form using the neural network method with exponential neurons. A generic interface between neural network potential energy surface fitting and the Heidelberg MCTDH software package is demonstrated. The potential energy surface has also been fit using the potfit procedure in MCTDH. For fits to the low-energy regions of the potential, the neural network method requires fewer parameters than potfit to achieve high accuracy; global fits are comparable between the two methods. Using these potential energy surfaces, the vibrational energies have been computed for the four most abundant CS2 isotopomers. These results are compared to experimental and previous theoretical data. The current potential energy surfaces are shown to accurately reproduce the low-lying vibrational energies within a few wavenumbers. Hence, the potential energy and dipole moments surfaces will be useful for future study on the control of quantum dynamics in CS2.

  13. Determination of Free-Energy Relationships Using Gas Chromatography

    NASA Astrophysics Data System (ADS)

    Snow, Nicholas H.

    1996-06-01

    By performing a few straightforward analyses on a gas chromatograph, it is possible to calculate the free energy, enthalpy, and entropy changes that occur when a compound transfers between the mobile and stationary phases. The partition theory of chromatography allows this transfer to be expressed as a chemical equlibrium. By calculating the equilibrium constant for this reaction from chromatographic retention times, the standard free energy change may be determined, and from this, the standard enthalpy and entropy changes. Also, by calculating these values at several temperatures for structurally related compounds, it is possible to explore the relationship between chromatographic retention, standard free energy, and the structure of a compound. These calculations were performed for groups of homologous alcohols, acetates, and hydrocarbons on packed and capillary column gas chromatographs, using both polar and non-polar columns, and on computer simulation software. It is seen that for homologous compounds, the relationship between standard free energy change in partitioning and hydrocarbon chain length for this reaction is linear. It is also seen that gas chromatography represents a useful tool for the calculation and comparison of thermodynamic properties of compounds and that straightforward exercise of this type allows training of students in chromatographic analysis, basic partition theory, thermodynamic relationships, and linear free energy relationships.

  14. Magnitudes and seasonal patterns of energy, water, and carbon exchanges at a boreal young jack pine forest in the BOREAS northern study area

    NASA Astrophysics Data System (ADS)

    McCaughey, J. Harry; Lafleur, Peter M.; Joiner, David W.; Bartlett, Paul A.; Costello, Andrew M.; Jelinski, Dennis E.; Ryan, Michael G.

    1997-12-01

    Seasonal patterns of the energy balance of a young jack pine site near Thompson, Manitoba, in the summer of 1994 are reported. The experiment was part of the Boreal Ecosystem-Atmosphere Study (BOREAS), and it ran from May 24 to September 19. The average tree density was 4.4 trees m-2, but there was substantial spatial variation associated with three primary vegetation patterns: dense cover of short trees, sparse cover of tall trees, and a mixture of short and tall trees. The frequency distribution of tree heights was bimodal with peaks at 1 and 2 m and a range from 0.3 to 5.7 m. The average tree height was 2.3 m. The daily average photosynthetically active radiation albedo was conservative, varying from 0.054 under clear-sky conditions to 0.051 under cloudy skies. The shortwave albedo was 0.136 under clear-sky conditions and decreased by 1% following rain; the presence of smoke over the site increased it by 1%. Heat storage in the soil, trees, and air was an important component of the energy balance throughout the season with soil heat flux comprising the bulk of the total storage. On the average, for the whole experimental period, the sensible heat flux was approximately twice the latent heat flux (Bowen ratio ≈2). The average daily energy balance closure varied from 85% before day-of-year (DOY) 200 to 95% after DOY 200. As a result of problems with the measurement of the net CO2 flux above the canopy under stable nighttime conditions, all nighttime values were modeled. The typical diurnal pattern of net CO2 flux shows maximum uptake by the surface in the morning and a gradual decrease through the afternoon. For the whole field season of 118 days, the site fixed 224 g m-2 of carbon.

  15. Influence of urban resilience measures in the magnitude and behaviour of energy fluxes in the city of Porto (Portugal) under a climate change scenario.

    PubMed

    Rafael, S; Martins, H; Sá, E; Carvalho, D; Borrego, C; Lopes, M

    2016-10-01

    Different urban resilience measures, such as the increase of urban green areas and the application of white roofs, were evaluated with the WRF-SUEWS modelling system. The case study consists of five heat waves occurring in Porto (Portugal) urban area in a future climate scenario. Meteorological forcing and boundary data were downscaled for Porto urban area from the CMIP5 earth system model MPI-ESM, for the Representative Concentration Pathway RCP8.5 scenario. The influence of different resilience measures on the energy balance components was quantified and compared between each other. Results show that the inclusion of green urban areas increases the evaporation and the availability of surface moisture, redirecting the energy to the form of latent heat flux (maximum increase of +200Wm(-2)) rather than to sensible heat. The application of white roofs increases the solar radiation reflection, due to the higher albedo of such surfaces, reducing both sensible and storage heat flux (maximum reductions of -62.8 and -35Wm(-2), respectively). The conjugations of the individual benefits related to each resilience measure shows that this measure is the most effective one in terms of improving the thermal comfort of the urban population, particularly due to the reduction of both sensible and storage heat flux. The obtained results contribute to the knowledge of the surface-atmosphere exchanges and can be of great importance for stakeholders and decision-makers.

  16. Using a delta-doped CCD to determine the energy of a low-energy particle

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Croley, Donald R. (Inventor); Murphy, Gerald B. (Inventor)

    2001-01-01

    The back surface of a thinned charged-coupled device (CCD) is treated to eliminate the backside potential well that appears in a conventional thinned CCD during backside illumination. The backside of the CCD includes a delta layer of high-concentration dopant confined to less than one monolayer of the crystal semiconductor. The thinned, delta-doped CCD is used to determine the energy of a very low-energy particle that penetrates less than 1.0 nm into the CCD, such as a proton having energy less than 10 keV.

  17. Photodisintegration of Ultrahigh Energy Cosmic Rays: A New Determination

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Salamon, M. H.

    1998-01-01

    We present the results of a new calculation of the photodisintegration of ultrahigh energy cosmic-ray (UHCR) nuclei in intergalactic space. The critical interactions for energy loss and photodisintegration of UHCR nuclei occur with photons of the 2.73 K cosmic background radiation (CBR) and with photons of the infrared background radiation (IBR). We have reexamined this problem making use of a new determination of the IBR based on empirical data, primarily from IRAS galaxies, consistent with direct measurements and upper limits from TeV gamma-ray observations. We have also improved the calculation by including the specific threshold energies for the various photodisintegration interactions in our Monte Carlo calculation. With the new smaller IBR flux, the steepness of the Wien side of the now relatively more important CBR makes their inclusion essential for more accurate results. Our results indicate a significant increase in the propagation time of UHCR nuclei of a given energy over previous results. We discuss the possible significance of this for UHCR origin theory.

  18. Determination of selenium in biological samples with an energy-dispersive X-ray fluorescence spectrometer.

    PubMed

    Li, Xiaoli; Yu, Zhaoshui

    2016-05-01

    Selenium is both a nutrient and a toxin. Selenium-especially organic selenium-is a core component of human nutrition. Thus, it is very important to measure selenium in biological samples. The limited sensitivity of conventional XRF hampers its widespread use in biological samples. Here, we describe the use of high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-Ray fluorescence spectroscopy (EDXRF) in tandem with a three-dimensional optics design to determine 0.1-5.1μgg(-1) levels of selenium in biological samples. The effects of various experimental parameters such as applied voltage, acquisition time, secondary target and various filters were thoroughly investigated. The detection limit of selenium in biological samples via high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-ray fluorescence spectroscopy was decreased by one order of magnitude versus conventional XRF (Paltridge et al., 2012) and found to be 0.1μg/g. To the best of our knowledge, this is the first report to describe EDXRF measurements of Se in biological samples with important implications for the nutrition and analytical chemistry communities.

  19. Sexually transmitted diseases: magnitude, determinants and consequences.

    PubMed

    Aral, S O

    2001-04-01

    Sexually transmitted diseases (STDs) including human immuno-deficiency virus (HIV) infections constitute a major reproductive health burden for sexually-active individuals. The short-term and long-term consequences of STD have been well documented and include genital and other cancers, pelvic inflammatory disease, ectopic pregnancy, infertility, and adverse outcomes of pregnancy including pre-term delivery and low birth weight. The burden of sexually transmitted infections falls disproportionately on the young, the poor, minorities and women. At the societal level, there is a continuing need to educate people, particularly adolescents, about their risk for STDs and their sequelae and to increase the use of barrier methods including condoms. Policy decisions that facilitate more open discussion of sexuality and STDs, and that expand the accessibility and acceptability of sexual risk assessment, STD screening and treatment services would help decrease STD rates in the United States to levels similar to those observed in other industrialized countries.

  20. Magnitude and nature of carbohydrate-aromatic interactions in fucose-phenol and fucose-indole complexes: CCSD(T) level interaction energy calculations.

    PubMed

    Tsuzuki, Seiji; Uchimaru, Tadafumi; Mikami, Masuhiro

    2011-10-20

    The CH/π contact structures of the fucose-phenol and fucose-indole complexes and the stabilization energies by formation of the complexes (E(form)) were studied by ab initio molecular orbital calculations. The three types of interactions (CH/π and OH/π interactions and OH/O hydrogen bonds) were compared and evaluated in a single molecular system and at the same level of theory. The E(form) calculated for the most stable CH/π contact structure of the fucose-phenol complex at the CCSD(T) level (-4.9 kcal/mol) is close to that for the most stable CH/π contact structure of the fucose-benzene complex (-4.5 kcal/mol). On the other hand the most stable CH/π contact structure of the fucose-indole complex has substantially larger E(form) (-6.5 kcal/mol). The dispersion interaction is the major source of the attraction in the CH/π contact structures of the fucose-phenol and fucose-indole complexes as in the case of the fucose-benzene complex. The electrostatic interactions in the CH/π contact structures are small (less than 1.5 kcal/mol). The nature of the interactions between the nonpolar surface of the carbohydrate and aromatic rings is completely different from that of the conventional hydrogen bonds where the electrostatic interaction is the major source of the attraction. The distributed multipole analysis and DFT-SATP analysis show that the dispersion interactions in the CH/π contact structure of fucose-indole complex are substantially larger than those in the CH/π contact structures of fucose-benzene and fucose-phenol complexes. The large dispersion interactions are responsible for the large E(form) for the fucose-indole complex.

  1. First experimentally determined thermodynamic values of francium: hydration energy, energy of partitioning, and thermodynamic radius.

    PubMed

    Delmau, Lætitia H; Moine, Jérôme; Mirzadeh, Saed; Moyer, Bruce A

    2013-08-08

    The Gibbs energy of partitioning of Fr(+) ion between water and nitrobenzene has been determined to be 14.5 ± 0.6 kJ/mol at 25 °C, the first ever Gibbs energy of partitioning for francium in particular and the first ever solution thermodynamic quantity for francium in general. This value enabled the ionic radius and standard Gibbs energy of hydration for Fr(+) to be estimated as 173 pm and -251 kJ/mol, respectively, the former value being significantly smaller than previously thought. A new experimental method was established using a cesium dicarbollide as a cation-exchange agent, overcoming problems inherent to the trace-level concentrations of francium. The methodology opens the door to the study of the partitioning behavior of francium to other water-immiscible solvents and the determination of complexation constants for francium binding by receptor molecules.

  2. 10 CFR 434.502 - Determination of the annual energy cost budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Determination of the annual energy cost budget. 434.502 Section 434.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative §...

  3. 10 CFR 434.602 - Determination of the annual energy budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Determination of the annual energy budget. 434.602 Section 434.602 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Compliance Alternative §...

  4. 10 CFR 434.602 - Determination of the annual energy budget.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Determination of the annual energy budget. 434.602 Section 434.602 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Compliance Alternative §...

  5. 10 CFR 434.602 - Determination of the annual energy budget.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Determination of the annual energy budget. 434.602 Section 434.602 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Compliance Alternative §...

  6. 10 CFR 434.602 - Determination of the annual energy budget.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Determination of the annual energy budget. 434.602 Section 434.602 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Compliance Alternative §...

  7. 10 CFR 434.502 - Determination of the annual energy cost budget.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Determination of the annual energy cost budget. 434.502 Section 434.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative §...

  8. 10 CFR 434.502 - Determination of the annual energy cost budget.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Determination of the annual energy cost budget. 434.502 Section 434.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative §...

  9. 10 CFR 434.502 - Determination of the annual energy cost budget.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Determination of the annual energy cost budget. 434.502 Section 434.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative §...

  10. 10 CFR 434.502 - Determination of the annual energy cost budget.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Determination of the annual energy cost budget. 434.502 Section 434.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative §...

  11. Determination of anharmonic free energy contributions: Low temperature phases of the Lennard-Jones system

    SciTech Connect

    Calero, C.; Knorowski, C.; Travesset, A.

    2016-03-22

    We investigate a general method to calculate the free energy of crystalline solids by considering the harmonic approximation and quasistatically switching the anharmonic contribution. The advantage of this method is that the harmonic approximation provides an already very accurate estimate of the free energy, and therefore the anharmonic term is numerically very small and can be determined to high accuracy. We further show that the anharmonic contribution to the free energy satisfies a number of exact inequalities that place constraints on its magnitude and allows approximate but fast and accurate estimates. The method is implemented into a readily available general software by combining the code HOODLT (Highly Optimized Object Oriented Dynamic Lattice Theory) for the harmonic part and the molecular dynamics (MD) simulation package HOOMD-blue for the anharmonic part. We use the method to calculate the low temperature phase diagram for Lennard-Jones particles. We demonstrate that hcp is the equilibrium phase at low temperature and pressure and obtain the coexistence curve with the fcc phase, which exhibits reentrant behavior. Furthermore, several implications of the method are discussed.

  12. Determination of anharmonic free energy contributions: Low temperature phases of the Lennard-Jones system.

    PubMed

    Calero, C; Knorowski, C; Travesset, A

    2016-03-28

    We investigate a general method to calculate the free energy of crystalline solids by considering the harmonic approximation and quasistatically switching the anharmonic contribution. The advantage of this method is that the harmonic approximation provides an already very accurate estimate of the free energy, and therefore the anharmonic term is numerically very small and can be determined to high accuracy. We further show that the anharmonic contribution to the free energy satisfies a number of exact inequalities that place constraints on its magnitude and allows approximate but fast and accurate estimates. The method is implemented into a readily available general software by combining the code HOODLT (Highly Optimized Object Oriented Dynamic Lattice Theory) for the harmonic part and the molecular dynamics (MD) simulation package HOOMD-blue for the anharmonic part. We use the method to calculate the low temperature phase diagram for Lennard-Jones particles. We demonstrate that hcp is the equilibrium phase at low temperature and pressure and obtain the coexistence curve with the fcc phase, which exhibits reentrant behavior. Several implications of the method are discussed.

  13. Determination of anharmonic free energy contributions: Low temperature phases of the Lennard-Jones system

    DOE PAGES

    Calero, C.; Knorowski, C.; Travesset, A.

    2016-03-22

    We investigate a general method to calculate the free energy of crystalline solids by considering the harmonic approximation and quasistatically switching the anharmonic contribution. The advantage of this method is that the harmonic approximation provides an already very accurate estimate of the free energy, and therefore the anharmonic term is numerically very small and can be determined to high accuracy. We further show that the anharmonic contribution to the free energy satisfies a number of exact inequalities that place constraints on its magnitude and allows approximate but fast and accurate estimates. The method is implemented into a readily available generalmore » software by combining the code HOODLT (Highly Optimized Object Oriented Dynamic Lattice Theory) for the harmonic part and the molecular dynamics (MD) simulation package HOOMD-blue for the anharmonic part. We use the method to calculate the low temperature phase diagram for Lennard-Jones particles. We demonstrate that hcp is the equilibrium phase at low temperature and pressure and obtain the coexistence curve with the fcc phase, which exhibits reentrant behavior. Furthermore, several implications of the method are discussed.« less

  14. Determination of equivalent amounts of kinetic energy, work, and heat energy in the human body.

    PubMed

    Cinar, Yildirim

    2002-07-01

    The goal of this study is determine the mechanical equivalent of heat and the functional capacity of metabolism of walking at a slow pace (velocity = 4022m/hour, length of a step=75cm, energy utilization of a 70 kg person is 200kcal/hour). 50 healthy physicians were chosen randomly, and up and down motion of the body were determined as 6cm while stepping. Based on these, the heat equivalent is 37.5kcal/hour for horizontal motion and 52.7kcal/hour for 6cm up-and-down bobbing motions of body, and the functional capacity of metabolism is at least 45% ([37.5+52.7]/200=45%) for slow walking state, that this capacity is twofold more than earlier information. Muscle converts kinetic energy (work) to heat via friction, and heat sources of the body, and the concepts of thermogenesis and the functional capacity of metabolism should be revised.

  15. Determining Energy Distributions of HF-Accelerated Electrons at HAARP

    DTIC Science & Technology

    2015-11-18

    are presented for selected modification mechanisms (electron heating or electron acceleration energy ), total RF-plasma energy transfer flux, and...suprathermal accelerated electron energy spectra [Gustavsson et al., 2005] using inversion techniques similar to those described by Rees and Luckey [1974...primary excitation mechanisms include electron impact excitation by energetic electrons with kinetic energy exceeding the respective energies of 1.96 and

  16. Determination of Endpoint Energy and Bremsstrahlung Spectra for High-Energy Radiation-Therapy Beams

    NASA Astrophysics Data System (ADS)

    Landry, Danny Joe

    Few attempts have been made to experimentally determine thick-target bremsstrahlung spectra of megavoltage therapy beams. For spectral studies using the Compton scattering technique, sodium iodine (NaI) detectors with relatively poor energy resolution have been used. Other experimental techniques for determining spectra are generally not suited for a clinical environment with the inherent time and space constraints. To gather more spectral information than previously obtained in the region near the endpoint energy, the use of a high-resolution intrinsic-germanium (Ge) detector was proposed. A response function matrix was determined from experimentally obtained pulse height distributions on the multichannel analyzer. The distributions were for nine various monoenergetic sources between 280 adn 1525 keV. The response function was used to convert the measured pulse height distributions to photon flux spectra using an iterative approximation technique with a computer. Photon flux spectra from the Sagittaire Linear Accelerator were obtained at average-electron endpoint energies of 15, 20, and 25 MeV. Two spectra were measured at the 25 MeV setting; one spectrum was measured along the central axis and one spectrum at 4(DEGREES) off axis. Photon spectra were also obtained for a Van de Graaff generator at the nominal endpoint energies of 2.2, 2.35, and 2.5 MeV. The results for both the linac and the Van de Graaff generator were compared with theoretical spectra and previously measured spectra where available. Also, photon spectra from a Theratron-80 (('60)Co) unit were determined for three field sizes and for a 10 x 10 cm. field with a lucite tray or a 45(DEGREES) wedge in the beam. The resulting spectra were compared to previously measured ('60)Co spectra.

  17. Beta shapefactor determinations by the cutoff energy yield method

    NASA Astrophysics Data System (ADS)

    Grau Carles, A.

    2005-10-01

    The measurement of spectral deformations due to the forbiddenness of β transitions is commonly resolved by fitting a Kurie plot to experimental data. However, the autoabsorption of the sample and the presence of electromagnetic interferences frequently modify the expected spectral shape, making the determination of the shapefactor function inaccurate in semiconductor and magnetic spectrometers. Although the problem of autoabsorption is not present in liquid-scintillation samples, the sum-coincidence process for pulses and the poor resolution of scintillation spectrometers complicate the deconvolution of the spectra. The goal of this paper is to measure shapefactor functions by making use of observables, such as the maximum point or the cutoff energy yield, which are invariant under resolution changes. As a test of the method, the shapefactor coefficients of the six β-emitters, 36Cl, 204Tl, 210Bi, 89Sr, 90Y and 32P are determined from the analysis of the liquid-scintillation pulse-height spectra. Although the results for 210Bi, 89Sr and 90Y are in good agreement with theory, the measured shapefactors for 36Cl and 204Tl exhibit similar deviations from theory than those referenced in the literature for the Kurie plots.

  18. Analytic energy gradients with frozen molecular orbitals in coupled-cluster and many-body perturbation theory methods: Systematic study of the magnitude and trends of the effects of frozen molecular orbitals

    NASA Astrophysics Data System (ADS)

    Baeck, Kyoung K.; Watts, John D.; Bartlett, Rodney J.

    1997-09-01

    Analytic coupled-cluster (CC) and many-body perturbation theory (MBPT) energy gradient methods with restricted Hartree-Fock (RHF), unrestricted Hartree-Fock (UHF), restricted open-shell Hartree-Fock (ROHF), and quasi-RHF(QRHF) reference functions are extended to permit dopping core and excited orbitals. By using the canonical property of the semicanonical ROHF orbitals and the RHF orbitals from which the QRHF reference function is constructed, it is shown that a general procedure can be established not only for RHF and UHF, but also for ROHF and QRHF reference functions. The basic theory and implementation are reported. To provide a systematic study of the trends and magnitudes of the effects of dropped molecular orbitals (MOs) on the structures, harmonic frequencies, and ir intensities, we study HCN, C2H2, CO2, HO2, and C2H4 at increasing levels of correlation and basis sets. The effects of the dropped MOs with the largest basis sets are about 0.003 Å and 0.1° in structures and about 1% on harmonic frequencies and ir intensities. The magnitude and the direction of the drop-MO effect tend to be almost constant from MBPT(2) to CCSD(T) methods. The two isomers of S3 are studied by the drop-MO-method, yielding very accurate results.

  19. Determining Energy Saving Behavior and Energy Awareness of Secondary School Students According to Socio-Demographic Characteristics

    ERIC Educational Resources Information Center

    Aktamis, Hilal

    2011-01-01

    The aim of this study was to determine energy saving behavior and energy awareness of secondary school students and the effects of socio-demographic characteristics (gender, residential area and grade level) on energy saving and energy awareness. The research is a survey model with an approach that aims to describe the current status. A total of…

  20. Pilot test of Pickliq{reg_sign} process to determine energy and environmental benefits & economic feasibility

    SciTech Connect

    Olsen, D.R.

    1997-07-13

    Green Technology Group (GTG) was awarded Grant No. DE-FG01-96EE 15657 in the amount of $99,904 for a project to advance GTG`s Pickliq{reg_sign} Process in the Copper and Steel Industries. The use of the Pickliq{reg_sign} Process can significantly reduce the production of waste acids containing metal salts. The Pickliq{reg_sign} Process can save energy and eliminate hazardous waste in a typical copper rod or wire mill or a typical steel wire mill. The objective of this pilot project was to determine the magnitude of the economic, energy and environmental benefits of the Pickliq{reg_sign} Process in two applications within the metal processing industry. The effectiveness of the process has already been demonstrated at facilities cleaning iron and steel with sulfuric acid. 9207 companies are reported to use sulfuric and hydrochloric acid in the USA. The USEPA TRI statistics of acid not recycled in the US is 2.4 x 10{sup 9} lbs (net) for Hydrochloric Acid and 2.0 x 10{sup 9} lbs (net) for Sulfuric Acid. The energy cost of not reclaiming acid is 10.7 x 10{sup 6} BTU/ton for Hydrochloric Acid and 21.6 x 10{sup 6} BTU/Ton for Sulfuric Acid. This means that there is a very large market for the application of the Pickliq{reg_sign} Process and the widespread use of the process will bring significant world wide savings of energy to the environment.

  1. Magnitude M w in metropolitan France

    NASA Astrophysics Data System (ADS)

    Cara, Michel; Denieul, Marylin; Sèbe, Olivier; Delouis, Bertrand; Cansi, Yves; Schlupp, Antoine

    2016-12-01

    The recent seismicity catalogue of metropolitan France Sismicité Instrumentale de l'Hexagone (SI-Hex) covers the period 1962-2009. It is the outcome of a multipartner project conducted between 2010 and 2013. In this catalogue, moment magnitudes (M w) are mainly determined from short-period velocimetric records, the same records as those used by the Laboratoire de Détection Géophysique (LDG) for issuing local magnitudes (M L) since 1962. Two distinct procedures are used, whether M L-LDG is larger or smaller than 4. For M L-LDG >4, M w is computed by fitting the coda-wave amplitude on the raw records. Station corrections and regional properties of coda-wave attenuation are taken into account in the computations. For M L-LDG ≤4, M w is converted from M L-LDG through linear regression rules. In the smallest magnitude range M L-LDG <3.1, special attention is paid to the non-unity slope of the relation between the local magnitudes and M w. All M w determined during the SI-Hex project is calibrated according to reference M w of recent events. As for some small events, no M L-LDG has been determined; local magnitudes issued by other French networks or LDG duration magnitude (M D) are first converted into M L-LDG before applying the conversion rules. This paper shows how the different sources of information and the different magnitude ranges are combined in order to determine an unbiased set of M w for the whole 38,027 events of the catalogue.

  2. Rotational Energy Transfer of N2 Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    A new N2-N2 rigid-rotor surface has been determined using extensive Ab Initio quantum chemistry calculations together with recent experimental data for the second virial coefficient. Rotational energy transfer is studied using the new potential energy surface (PES) employing the close coupling method below 200 cm(exp -1) and coupled state approximation above that. Comparing with a previous calculation based on the PES of van der Avoird et al.,3 it is found that the new PES generally gives larger cross sections for large (delta)J transitions, but for small (delta)J transitions the cross sections are either comparable or smaller. Correlation between the differences in the cross sections and the two PES will be attempted. The computed cross sections will also be compared with available experimental data.

  3. Determinants of the Pace of Global Innovation in Energy Technologies

    DTIC Science & Technology

    2013-10-14

    SECURITY CLASSIFICATION OF: Understanding the factors driving innovation in energy technologies is of critical importance to mitigating climate change and...addressing other energy -related global challenges. Low levels of innovation, measured in terms of energy patent filings, were noted in the 1980s and...comprehensive global database of energy patents covering the period 1970–2009, which is unique in its temporal and geographical scope. Analysis of the data

  4. Integrated Circuit Stellar Magnitude Simulator

    ERIC Educational Resources Information Center

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  5. 77 FR 32038 - Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ...; ] DEPARTMENT OF ENERGY 10 CFR Parts 429, 430, and 431 RIN 1904-AC46 Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating Methods AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of proposed rulemaking. SUMMARY: The U.S....

  6. Determination of the jet energy scale at the collider detector at Fermilab

    SciTech Connect

    Bhatti, A.; Canelli, Florencia; Heinemann, B.; Adelman, J.; Ambrose, D.; Arguin, J.-F.; Barbaro-Galtieri, A.; Budd, H.; Chung, Y.S.; Chung, K.; Cooper, B.; Currat, C.; D'Onofrio, M.; Dorigo, T.; Erbacher, R.; Field, R.; Flanagan, G.; Gibson, A.; Hatakeyama, K.; Happacher, F.; Hoffman, D.; /Argonne /UCLA /Carnegie Mellon U. /Chicago U., EFI /Fermilab /Florida U. /Frascati /Geneva U. /LBL, Berkeley /Liverpool U. /University Coll. London /Michigan State U. /Toronto U. /Padua U. /INFN, Padua /Pavia U. /INFN, Pavia /Pennsylvania U. /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore

    2005-10-01

    A precise determination of the energy scale of jets at the Collider Detector at Fermilab at the Tevatron p{bar p} collider is described. Jets are used in many analyses to estimate the energies of partons resulting from the underlying physics process. Several correction factors are developed to estimate the original parton energy from the observed jet energy in the calorimeter. The jet energy response is compared between data and Monte Carlo simulation for various physics processes, and systematic uncertainties on the jet energy scale are determined. For jets with transverse momenta above 50 GeV the jet energy scale is determined with a 3% systematic uncertainty.

  7. Determining Energy Use Volatility for Commercial Mortgage Valuation

    SciTech Connect

    Mathew, Paul; Pang, XiuFeng; Wang, Liping

    2012-06-01

    Commercial mortgage contracts currently do not fully account for the risks inherent in the level and volatility of energy use in commercial buildings. As a result, energy efficiency is not explicitly included in the valuation process for commercial mortgage underwriting. In particular, there is limited if any consideration of the volatility of energy use and price, which is critical to evaluate the impact of extreme events and default risk. Explicit inclusion of energy use and volatility in commercial mortgage underwriting can send a strong “price signal” that financially rewards and values energy efficiency in commercial properties. This report presents the results of a technical analysis of and a proposed protocol to assess energy use volatility for the purposes of commercial mortgage valuation.

  8. The intensities and magnitudes of volcanic eruptions

    USGS Publications Warehouse

    Sigurdsson, H.

    1991-01-01

    Ever since 1935, when C.F Richter devised the earthquake magnitude scale that bears his name, seismologists have been able to view energy release from earthquakes in a systematic and quantitative manner. The benefits have been obvious in terms of assessing seismic gaps and the spatial and temporal trends of earthquake energy release. A similar quantitative treatment of volcanic activity is of course equally desirable, both for gaining a further understanding of the physical principles of volcanic eruptions and for volcanic-hazard assessment. A systematic volcanologic data base would be of great value in evaluating such features as volcanic gaps, and regional and temporal trends in energy release.  

  9. Determination of stepsize parameters for intermolecular vibrational energy transfer

    SciTech Connect

    Tardy, D.C.

    1992-03-01

    Intermolecular energy transfer of highly excited polyatomic molecules plays an important role in many complex chemical systems: combustion, high temperature and atmospheric chemistry. By monitoring the relaxation of internal energy we have observed trends in the collisional efficiency ({beta}) for energy transfer as a function of the substrate's excitation energy and the complexities of substrate and deactivator. For a given substrate {beta} increases as the deactivator's mass increase to {approximately}30 amu and then exhibits a nearly constant value; this is due to a mass mismatch between the atoms of the colliders. In a homologous series of substrate molecules (C{sub 3}{minus}C{sub 8}) {beta} decreases as the number of atoms in the substrate increases; replacing F with H increases {beta}. All substrates, except for CF{sub 2}Cl{sub 2} and CF{sub 2}HCl below 10,000 cm{sup {minus}1}, exhibited that {beta} is independent of energy, i.e. <{Delta}E>{sub all} is linear with energy. The results are interpreted with a simple model which considers that {beta} is a function of the ocillators energy and its vibrational frequency. Limitations of current approximations used in high temperature unimolecular reactions were evaluated and better approximations were developed. The importance of energy transfer in product yields was observed for the photoactivation of perfluorocyclopropene and the photoproduction of difluoroethyne. 3 refs., 18 figs., 4 tabs.

  10. Bidirectional Modulation of Numerical Magnitude.

    PubMed

    Arshad, Qadeer; Nigmatullina, Yuliya; Nigmatullin, Ramil; Asavarut, Paladd; Goga, Usman; Khan, Sarah; Sander, Kaija; Siddiqui, Shuaib; Roberts, R E; Cohen Kadosh, Roi; Bronstein, Adolfo M; Malhotra, Paresh A

    2016-05-01

    Numerical cognition is critical for modern life; however, the precise neural mechanisms underpinning numerical magnitude allocation in humans remain obscure. Based upon previous reports demonstrating the close behavioral and neuro-anatomical relationship between number allocation and spatial attention, we hypothesized that these systems would be subject to similar control mechanisms, namely dynamic interhemispheric competition. We employed a physiological paradigm, combining visual and vestibular stimulation, to induce interhemispheric conflict and subsequent unihemispheric inhibition, as confirmed by transcranial direct current stimulation (tDCS). This allowed us to demonstrate the first systematic bidirectional modulation of numerical magnitude toward either higher or lower numbers, independently of either eye movements or spatial attention mediated biases. We incorporated both our findings and those from the most widely accepted theoretical framework for numerical cognition to present a novel unifying computational model that describes how numerical magnitude allocation is subject to dynamic interhemispheric competition. That is, numerical allocation is continually updated in a contextual manner based upon relative magnitude, with the right hemisphere responsible for smaller magnitudes and the left hemisphere for larger magnitudes.

  11. Bidirectional Modulation of Numerical Magnitude

    PubMed Central

    Arshad, Qadeer; Nigmatullina, Yuliya; Nigmatullin, Ramil; Asavarut, Paladd; Goga, Usman; Khan, Sarah; Sander, Kaija; Siddiqui, Shuaib; Roberts, R. E.; Cohen Kadosh, Roi; Bronstein, Adolfo M.; Malhotra, Paresh A.

    2016-01-01

    Numerical cognition is critical for modern life; however, the precise neural mechanisms underpinning numerical magnitude allocation in humans remain obscure. Based upon previous reports demonstrating the close behavioral and neuro-anatomical relationship between number allocation and spatial attention, we hypothesized that these systems would be subject to similar control mechanisms, namely dynamic interhemispheric competition. We employed a physiological paradigm, combining visual and vestibular stimulation, to induce interhemispheric conflict and subsequent unihemispheric inhibition, as confirmed by transcranial direct current stimulation (tDCS). This allowed us to demonstrate the first systematic bidirectional modulation of numerical magnitude toward either higher or lower numbers, independently of either eye movements or spatial attention mediated biases. We incorporated both our findings and those from the most widely accepted theoretical framework for numerical cognition to present a novel unifying computational model that describes how numerical magnitude allocation is subject to dynamic interhemispheric competition. That is, numerical allocation is continually updated in a contextual manner based upon relative magnitude, with the right hemisphere responsible for smaller magnitudes and the left hemisphere for larger magnitudes. PMID:26879093

  12. Using Economics to Determine the Efficient Curtailment of Wind Energy

    SciTech Connect

    Ela, E.

    2009-02-01

    This paper discusses the potential societal benefits to the energy market by allowing the dispatch of wind generation in times when it may enhance reliability and be economically advantageous to do so.

  13. Molecular dynamics simulations of the nucleation of water: Determining the sticking probability and formation energy of a cluster

    NASA Astrophysics Data System (ADS)

    Tanaka, Kyoko K.; Kawano, Akio; Tanaka, Hidekazu

    2014-03-01

    We performed molecular dynamics simulations of the nucleation of water vapor in order to test nucleation theories. Simulations were performed for a wide range of supersaturation ratios (S = 3-25) and water temperatures (Tw = 300-390 K). We obtained the nucleation rates and the formation free energies of a subcritical cluster from the cluster size distribution. The classical nucleation theory and the modified classical nucleation theory (MCNT) overestimate the nucleation rates in all cases. The semi-phenomenological model, which corrects the MCNT prediction using the second virial coefficient of a vapor, reproduces the formation free energy of a cluster with the size ≲20 to within 10% and the nucleation rate and cluster size distributions to within one order of magnitude. The sticking probability of the vapor molecules to the clusters was also determined from the growth rates of the clusters. The sticking probability rapidly increases with the supersaturation ratio S, which is similar to the Lennard-Jones system.

  14. Determination of Resting Energy Expenditure After Severe Burn

    DTIC Science & Technology

    2013-02-01

    equation. In a recent survey of 65 burn centers, Graves et al10 discovered that the most commonly used for- mulas include the Harris -Benedict formula11...accuracy by Table 1. Equations for estimating daily energy expenditure for subjects with burns Predictive Equations for Energy Expenditure Harris -Benedict...predicted by using nine pre- dictive equations including 30 kcal/kg, 35 kcal/kg, 40 kcal/kg, the Harris -Benedict equation multiplied by an injury factor

  15. Determination of the internal chemical energy of wastewater.

    PubMed

    Heidrich, E S; Curtis, T P; Dolfing, J

    2011-01-15

    The wastewater industry is facing a paradigm shift, learning to view domestic wastewater not as a waste stream which needs to be disposed of but as a resource from which to generate energy. The extent of that resource is a strategically important question. The only previous published measurement of the internal chemical energy of wastewater measured 6.3 kJ/L. It has long been assumed that the energy content in wastewater relates directly to chemical oxygen demand (COD). However there is no standard relationship between COD and energy content. In this study a new methodology of preparing samples for measuring the internal chemical energy in wastewater is developed, and an analysis is made between this and the COD measurements taken. The mixed wastewater examined, using freeze-drying of samples to minimize loss of volatiles, had 16.8 kJ/L, while the domestic wastewater tested had 7.6 kJ/L nearly 20% higher than previously estimated. The size of the resource that wastewater presents is clearly both complex and variable but is likely to be significantly greater than previously thought. A systematic evaluation of the energy contained in wastewaters is warranted.

  16. Determination for the 2006 International Energy Conservation Code, Residential Buildings – Technical Support Document

    SciTech Connect

    Lucas, Robert G.

    2009-09-26

    Provides a technical analysis showing that the 2006 International Energy Conservation Code contains improvements in energy efficiency compared to its predecessor, the 2003 International Energy Conservation Code. DOE is required by law to issue "determinations" of whether or not new editions of the IECC improve energy efficiency.

  17. 16 CFR 305.5 - Determinations of estimated annual energy consumption, estimated annual operating cost, and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... consumption, estimated annual operating cost, and energy efficiency rating, and of water use rate. 305.5... energy efficiency rating, and of water use rate. (a) Procedures for determining the estimated annual energy consumption, the estimated annual operating costs, the energy efficiency ratings, and the...

  18. Energy intake and energy expenditure for determining excess weight gain in pregnant women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To conduct a secondary analysis designed to test whether gestational weight gain is the result of increased energy intake or adaptive changes in energy expenditures. In this secondary analysis, energy intake and energy expenditure of 45 pregnant women (body mass index [BMI] 18.5-24.9 [n=33] and BMI ...

  19. Neutron energy determination with a high-purity germanium detector

    NASA Technical Reports Server (NTRS)

    Beck, Gene A.

    1992-01-01

    Two areas that are related to planetary gamma-ray spectrometry are investigated. The first task was the investigation of gamma rays produced by high-energy charged particles and their secondaries in planetary surfaces by means of thick target bombardments. The second task was the investigation of the effects of high-energy neutrons on gamma-ray spectral features obtained with high-purity Ge-detectors. For both tasks, as a function of the funding level, the experimental work was predominantly tied to that of other researchers, whenever there was an opportunity to participate in bombardment experiments at large or small accelerators for charged particles.

  20. Determinants of Household Use of Selected Energy Star Appliances

    EIA Publications

    2016-01-01

    The main objective of this paper is to test a series of hypotheses regarding the influences of household characteristics (such as education, age, sex, race, income, and size of household), building characteristics (such as age, ownership, and type), and electricity prices on the use of ENERGY STAR appliances.

  1. Determining Energy Expenditure during Some Household and Garden Tasks.

    ERIC Educational Resources Information Center

    Gunn, Simon M.; Brooks, Anthony G.; Withers, Robert T.; Gore, Christopher J.; Owen, Neville; Booth, Michael L.; Bauman, Adrian E.

    2002-01-01

    Calculated the reproducibility and precision for VO2 during moderate paced walking and four housework and gardening activities, examining which rated at least 3.0 when calculating exercise intensity in METs and multiples of measured resting metabolic rate (MRM). VO2 was measured with reproducibility and precision. Expressing energy expenditure in…

  2. Determinants of the Pace of Global Innovation in Energy Technologies

    PubMed Central

    Kaur, Jasleen

    2013-01-01

    Understanding the factors driving innovation in energy technologies is of critical importance to mitigating climate change and addressing other energy-related global challenges. Low levels of innovation, measured in terms of energy patent filings, were noted in the 1980s and 90s as an issue of concern and were attributed to limited investment in public and private research and development (R&D). Here we build a comprehensive global database of energy patents covering the period 1970–2009, which is unique in its temporal and geographical scope. Analysis of the data reveals a recent, marked departure from historical trends. A sharp increase in rates of patenting has occurred over the last decade, particularly in renewable technologies, despite continued low levels of R&D funding. To solve the puzzle of fast innovation despite modest R&D increases, we develop a model that explains the nonlinear response observed in the empirical data of technological innovation to various types of investment. The model reveals a regular relationship between patents, R&D funding, and growing markets across technologies, and accurately predicts patenting rates at different stages of technological maturity and market development. We show quantitatively how growing markets have formed a vital complement to public R&D in driving innovative activity. These two forms of investment have each leveraged the effect of the other in driving patenting trends over long periods of time. PMID:24155867

  3. Determinants of the pace of global innovation in energy technologies.

    PubMed

    Bettencourt, Luís M A; Trancik, Jessika E; Kaur, Jasleen

    2013-01-01

    Understanding the factors driving innovation in energy technologies is of critical importance to mitigating climate change and addressing other energy-related global challenges. Low levels of innovation, measured in terms of energy patent filings, were noted in the 1980s and 90s as an issue of concern and were attributed to limited investment in public and private research and development (R&D). Here we build a comprehensive global database of energy patents covering the period 1970-2009, which is unique in its temporal and geographical scope. Analysis of the data reveals a recent, marked departure from historical trends. A sharp increase in rates of patenting has occurred over the last decade, particularly in renewable technologies, despite continued low levels of R&D funding. To solve the puzzle of fast innovation despite modest R&D increases, we develop a model that explains the nonlinear response observed in the empirical data of technological innovation to various types of investment. The model reveals a regular relationship between patents, R&D funding, and growing markets across technologies, and accurately predicts patenting rates at different stages of technological maturity and market development. We show quantitatively how growing markets have formed a vital complement to public R&D in driving innovative activity. These two forms of investment have each leveraged the effect of the other in driving patenting trends over long periods of time.

  4. DETERMINATION OF LOW-ENERGY CUTOFFS AND TOTAL ENERGY OF NONTHERMAL ELECTRONS IN A SOLAR FLARE ON 2002 APRIL 15

    NASA Technical Reports Server (NTRS)

    Sui, Linhui; Holman, Gordon D.; Dennis, Brian R.

    2005-01-01

    The determination of the low-energy cutoff to the spectrum of accelerated electrons is decisive for the estimation of the total nonthermal energy in solar flares. Because thermal bremsstrahlung dominates the low-energy part of flare X-ray spectra, this cutoff energy is difficult to determine with spectral fitting alone. We have used anew method that combines spatial, spectral, and temporal analysis to determine the cutoff energy for the M1.2 flare observed with RHESSI on 2002 April 15. A low-energy cutoff of 24 +/- 2 keV is required to ensure that the assumed thermal emissions always dominate over nonthermal emissions at low energies (<20 keV) and that the spectral fitting results are consistent with the RHESSI light curves and images. With this cutoff energy, we obtain a total nonthermal energy in electrons of (1.6 +/- 1) x 10(exp 30) ergs that is comparable to the peak energy in the thermal plasma, estimated from RHESSI observations to be (6 +/- 0.6) x 10(exp 29) ergs assuming a filling factor of 1.

  5. An accurate determination of the surface energy of solid selenium

    NASA Astrophysics Data System (ADS)

    Guisbiers, G.; Arscott, S.; Snyders, R.

    2012-12-01

    Selenium is currently a key element for developing nano and micro-technologies. Nevertheless, the surface energy of solid selenium (γSe) reported in the literature is still questionable. In this work, we have measured γSe = 0.291 ± 0.025 J/m2 at 293 K using the sessile drop technique with different probe liquids, namely ethylene glycol, de-ionized water, mercury, and gallium. This value is in excellent agreement with theoretical predictions.

  6. 76 FR 43287 - Building Energy Standards Program: Determination Regarding Energy Efficiency Improvements in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... index, DOE relied on national average commercial building energy prices of $0.1027/kWh of electricity... energy savings are estimated to be approximately 4.6 percent. Using national average fuel prices for... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY...

  7. Understanding Magnitudes to Understand Fractions

    ERIC Educational Resources Information Center

    Gabriel, Florence

    2016-01-01

    Fractions are known to be difficult to learn and difficult to teach, yet they are vital for students to have access to further mathematical concepts. This article uses evidence to support teachers employing teaching methods that focus on the conceptual understanding of the magnitude of fractions.

  8. An approach to an accurate determination of the energy spectrum of high-energy electron beams using magnetic spectrometry

    NASA Astrophysics Data System (ADS)

    Renner, F.; Schwab, A.; Kapsch, R.-P.; Makowski, Ch; Jannek, D.

    2014-03-01

    At the national metrology institute of Germany, the Physikalisch-Technische Bundesanstalt, a research accelerator for dosimetry in radiation therapy has been installed. Magnetic spectrometry is used to determine the spectrum of high-energy electrons generated by this accelerator. Regarding the intended experiments at the accelerator, a high accuracy for the energy determination of the electron beam is required. For this purpose, an experimental setup is used that has a number of additional devices assembled around the spectrometer to determine geometric characteristics of the electron beam, which influence the energy analysis. For the analysis of the acquired data, a software was developed which meets specific needs. One important aspect is that the software is based on an algorithm for energy determination which considers the measured magnetic flux density of the spectrometer and geometric details of the beam and the spectrometer. The software also meets the demand that it can be used to estimate the uncertainty assigned to the energy. This paper covers the experimental and analytical background of magnetic spectrometry at the high-energy beamline of PTB's research accelerator. A comparison of results calculated with the specific algorithm for energy determination which was developed for this experimental setup and with well-known algorithms is given to show the advantage of the specific method. Results of measurements and their analysis with the algorithm are presented as well.

  9. Theoretical determination of the alkali-metal superoxide bond energies

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Sodupe, Mariona; Langhoff, Stephen R.

    1992-01-01

    The bond dissociation energies for the alkali-metal superoxides have been computed using extensive Gaussian basis sets and treating electron correlation at the modified coupled-pair functional level. Our computed D0 values are 61.4, 37.2, 40.6, and 38.4 kcal/mol for LiO2, NaO2, KO2, and RbO2, respectively. These values, which are expected to be lower bounds and accurate to 2 kcal/mol, agree well with some of the older flame data, but rule out several recent experimental measurements.

  10. Determination of the Surface Energy of Sand Using Adsorption Isotherm

    NASA Astrophysics Data System (ADS)

    Ma, Lianxi; Holste, James; Hall, Kenneth

    2003-03-01

    The BET isotherm equation for multiplayer adsorption was applied to hexane, methyl propyl ketone, and water adsorption by sand (particle size > 75 mm) at 25¡ãC and accordingly, specific surface area of sand was obtained. Spreading pressures and surface energies of sand were calculated from adsorption isotherms. Hysteresis loops were observed in all isotherms but desorption isotherms approach to original points at low vapor pressure. A modified Toth-Freundlich equation was developed, which agrees with experimental data well over a wider p/p0 range. Plots of Dubinin-Radushkevich show that at low-pressure linear relation was obtained therefore our sand sample can be treated as microporous materials.

  11. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  12. Development of an Empirical Local Magnitude Formula for Northern Oklahoma

    NASA Astrophysics Data System (ADS)

    Spriggs, N.; Karimi, S.; Moores, A. O.

    2015-12-01

    In this paper we focus on determining a local magnitude formula for northern Oklahoma that is unbiased with distance by empirically constraining the attenuation properties within the region of interest based on the amplitude of observed seismograms. For regional networks detecting events over several hundred kilometres, distance correction terms play an important role in determining the magnitude of an event. Standard distance correction terms such as Hutton and Boore (1987) may have a significant bias with distance if applied in a region with different attenuation properties, resulting in an incorrect magnitude. We have presented data from a regional network of broadband seismometers installed in bedrock in northern Oklahoma. The events with magnitude in the range of 2.0 and 4.5, distributed evenly across this network are considered. We find that existing models show a bias with respect to hypocentral distance. Observed amplitude measurements demonstrate that there is a significant Moho bounce effect that mandates the use of a trilinear attenuation model in order to avoid bias in the distance correction terms. We present two different approaches of local magnitude calibration. The first maintains the classic definition of local magnitude as proposed by Richter. The second method calibrates local magnitude so that it agrees with moment magnitude where a regional moment tensor can be computed. To this end, regional moment tensor solutions and moment magnitudes are computed for events with magnitude larger than 3.5 to allow calibration of local magnitude to moment magnitude. For both methods the new formula results in magnitudes systematically lower than previous values computed with Eaton's (1992) model. We compare the resulting magnitudes and discuss the benefits and drawbacks of each method. Our results highlight the importance of correct calibration of the distance correction terms for accurate local magnitude assessment in regional networks.

  13. Tectonic stress - Models and magnitudes

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Bergman, E. A.; Richardson, R. M.

    1980-01-01

    It is shown that global data on directions of principal stresses in plate interiors can serve as a test of possible plate tectonic force models. Such tests performed to date favor force models in which ridge pushing forces play a significant role. For such models the general magnitude of regional deviatoric stresses is comparable to the 200-300 bar compressive stress exerted by spreading ridges. An alternative approach to estimating magnitudes of regional deviatoric stresses from stress orientations is to seek regions of local stress either demonstrably smaller than or larger than the regional stresses. The regional stresses in oceanic intraplate regions are larger than the 100-bar compression exerted by the Ninetyeast Ridge and less than the bending stresses (not less than 1 kbar) beneath Hawaii.

  14. 77 FR 31756 - Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... Parts 429, 430, and 431 RIN 1904-AC46 Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating Methods: Public Meeting AGENCY: Office of Energy Efficiency and Renewable... proposed modifications to the regulations authorizing the use of alternative methods of determining...

  15. A terrain-dependent reference atmosphere determination method for available potential energy calculations

    NASA Technical Reports Server (NTRS)

    Koehler, T. L.

    1986-01-01

    An iterative technique that determines the reference atmosphere which incorporates the effects of uneven surface topography is presented. This method has been successfully applied in several available potential energy studies. An alternative method due to Taylor is also evaluated. While Taylor presented excellent continuous formulations of the available potential energy that include topography, his method for determining the reference atmosphere distributions failed to provide the accuracy needed to produce reliable available potential energy estimates. Since topography has a significant influence on the general circulation, it is important to employ techniques that incorporate its effects in the determination of available potential energy.

  16. 18 CFR 11.15 - Procedures for determining charges by energy gains investigation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Procedures for determining charges by energy gains investigation. 11.15 Section 11.15 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF THE...

  17. 18 CFR 11.11 - Energy gains method of determining headwater benefits charges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Energy gains method of determining headwater benefits charges. 11.11 Section 11.11 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF THE FEDERAL...

  18. Subject position affects EEG magnitudes.

    PubMed

    Rice, Justin K; Rorden, Christopher; Little, Jessica S; Parra, Lucas C

    2013-01-01

    EEG (electroencephalography) has been used for decades in thousands of research studies and is today a routine clinical tool despite the small magnitude of measured scalp potentials. It is widely accepted that the currents originating in the brain are strongly influenced by the high resistivity of skull bone, but it is less well known that the thin layer of CSF (cerebrospinal fluid) has perhaps an even more important effect on EEG scalp magnitude by spatially blurring the signals. Here it is shown that brain shift and the resulting small changes in CSF layer thickness, induced by changing the subject's position, have a significant effect on EEG signal magnitudes in several standard visual paradigms. For spatially incoherent high-frequency activity the effect produced by switching from prone to supine can be dramatic, increasing occipital signal power by several times for some subjects (on average 80%). MRI measurements showed that the occipital CSF layer between the brain and skull decreases by approximately 30% in thickness when a subject moves from prone to supine position. A multiple dipole model demonstrated that this can indeed lead to occipital EEG signal power increases in the same direction and order of magnitude as those observed here. These results suggest that future EEG studies should control for subjects' posture, and that some studies may consider placing their subjects into the most favorable position for the experiment. These findings also imply that special consideration should be given to EEG measurements from subjects with brain atrophy due to normal aging or neurodegenerative diseases, since the resulting increase in CSF layer thickness could profoundly decrease scalp potential measurements.

  19. The determinants and trends in household energy consumption in United States during 2001-2009

    NASA Astrophysics Data System (ADS)

    Karuppusamy, Sadasivan

    Objective: The focus of this study is a broad examination of household energy consumption for appliance use, space heating, space cooling, and water heating in United States over the period 2001-2009 using Residential Energy Consumption Survey (RECS) from the years 2001 and 2009. Methods: Linear Regression Analysis is used to identfy determinants of household energy consumption for each of the end uses. Regression based decomposition analysis is used to identify trends in residential energy consumption for each of the end uses. Results: The study identified current determinants of household energy consumption for each of the end uses. These determinants are employed in the study to predict trends in household energy consumption for each of the end uses. Based on the results policy interventions at local and federal level for energy conservation are suggested.

  20. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, Henry W.; Kaita, Robert

    1987-03-03

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  1. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, Henry W.; Kaita, Robert

    1987-01-01

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  2. Determination of neutron energy spectrum at KAMINI shielding experiment location.

    PubMed

    Sen, Sujoy; Bagchi, Subhrojit; Prasad, R R; Venkatasubramanian, D; Mohanakrishnan, P; Keshavamurty, R S; Haridas, Adish; Arul, A John; Puthiyavinayagam, P

    2016-09-01

    The neutron spectrum at KAMINI reactor south beam tube end has been determined using multifoil activation method. This beam tube is being used for characterizing neutron attenuation of novel shield materials. Starting from a computed guess spectrum, the spectrum adjustment/unfolding procedure makes use of minimization of a modified constraint function representing (a) least squared deviations between the measured and calculated reaction rates, (b) a measure of sharp fluctuations in the adjusted spectrum and (c) the square of the deviation of adjusted spectrum from the guess spectrum. The adjusted/unfolded spectrum predicts the reaction rates accurately. The results of this new procedure are compared with those of widely used SAND-II code.

  3. Determination of residual stress in a microtextured α titanium component using high-energy synchrotron X-rays

    SciTech Connect

    Park, Jun -Sang; Ray, Atish K.; Dawson, Paul R.; Lienert, Ulrich; Miller, Matthew P.

    2016-05-02

    A shrink-fit sample is manufactured with a Ti-8Al-1Mo-1V alloy to introduce a multiaxial residual stress field in the disk of the sample. A set of strain and orientation pole figures are measured at various locations across the disk using synchrotron high-energy X-ray diffraction. Two approaches—the traditional sin2Ψ method and the bi-scale optimization method—are taken to determine the stresses in the disk based on the measured strain and orientation pole figures, to explore the range of solutions that are possible for the stress field within the disk. While the stress components computed using the sin2Ψ method and the bi-scale optimization method have similar trends, their magnitudes are significantly different. Lastly, it is suspected that the local texture variation in the material is the cause of this discrepancy.

  4. Determination of residual stress in a microtextured α titanium component using high-energy synchrotron X-rays

    DOE PAGES

    Park, Jun -Sang; Ray, Atish K.; Dawson, Paul R.; ...

    2016-05-02

    A shrink-fit sample is manufactured with a Ti-8Al-1Mo-1V alloy to introduce a multiaxial residual stress field in the disk of the sample. A set of strain and orientation pole figures are measured at various locations across the disk using synchrotron high-energy X-ray diffraction. Two approaches—the traditional sin2Ψ method and the bi-scale optimization method—are taken to determine the stresses in the disk based on the measured strain and orientation pole figures, to explore the range of solutions that are possible for the stress field within the disk. While the stress components computed using the sin2Ψ method and the bi-scale optimization methodmore » have similar trends, their magnitudes are significantly different. Lastly, it is suspected that the local texture variation in the material is the cause of this discrepancy.« less

  5. On the determination of curvature and dynamical dark energy

    SciTech Connect

    Virey, J-M; Taxil, P; Talon-Esmieu, D; Ealet, A; Tilquin, A E-mail: talon@cppm.in2p3.fr E-mail: taxil@cpt.univ-mrs.fr

    2008-12-15

    Constraining simultaneously the dark energy (DE) equation of state and the curvature of the universe is difficult due to strong degeneracies. To circumvent this problem when analyzing data it is usual to assume flatness to constrain the DE or, conversely, to assume that the DE is a cosmological constant to constrain the curvature. In this paper, we quantify the impact of such assumptions with an eye to future large surveys. We simulate future data for type Ia supernovae, the cosmic microwave background and baryon acoustic oscillations for a large range of fiducial cosmologies allowing a small spatial curvature. We take into account a possible time evolution of DE through a parameterized equation of state: w(a) = w{sub 0}+(1-a)w{sub a}. We then fit the simulated data with a wrong assumption on the curvature or on the DE parameters. For a fiducial {Lambda}CDM cosmology, if flatness is incorrectly assumed in the fit and if the true curvature is within the ranges 0.01<{Omega}{sub k}<0.03 and -0.07<{Omega}{sub k}<-0.01, one will be led to conclude erroneously that an evolving DE is present, even with high statistics. On the other hand, models with curvature and dynamical DE can be confused with a flat {Lambda}CDM model when the fit ignores a possible DE evolution. We find that, in the future, with high statistics, such risks of confusion should be limited, but they are still possible, and biases in the cosmological parameters might be important. We conclude by recalling that, in the future, it will be mandatory to perform some complete multi-probe analyses, leaving the DE parameters as well as the curvature as free parameters.

  6. Hydrophobic ion hydration and the magnitude of the dipole potential.

    PubMed Central

    Schamberger, Jens; Clarke, Ronald J

    2002-01-01

    The magnitude of the dipole potential of lipid membranes is often estimated from the difference in conductance between the hydrophobic ions, tetraphenylborate, and tetraphenylarsonium or tetraphenylphosphonium. The calculation is based on the tetraphenylarsonium-tetraphenylborate hypothesis that the magnitude of the hydration energies of the anions and cations are equal (i.e., charge independent), so that their different rates of transport across the membrane are solely due to differential interactions with the membrane phase. Here we investigate the validity of this assumption by quantum mechanical calculations of the hydration energies. Tetraphenylborate (Delta G(hydr) = -168 kJ mol(-1)) was found to have a significantly stronger interaction with water than either tetraphenylarsonium (Delta G(hydr) = -145 kJ mol(-1)) or tetraphenylphosphonium (Delta G(hydr) = -157 kJ mol(-1)). Taking these differences into account, literature conductance data were recalculated to yield values of the dipole potential 57 to 119 mV more positive in the membrane interior than previous estimates. This may partly account for the discrepancy of at least 100 mV generally observed between dipole potential values calculated from lipid monolayers and those determined on bilayers. PMID:12023231

  7. Acylation type determines ghrelin's effects on energy homeostasis in rodents.

    PubMed

    Heppner, Kristy M; Chaudhary, Nilika; Müller, Timo D; Kirchner, Henriette; Habegger, Kirk M; Ottaway, Nickki; Smiley, David L; Dimarchi, Richard; Hofmann, Susanna M; Woods, Stephen C; Sivertsen, Bjørn; Holst, Birgitte; Pfluger, Paul T; Perez-Tilve, Diego; Tschöp, Matthias H

    2012-10-01

    Ghrelin is a gastrointestinal polypeptide that acts through the ghrelin receptor (GHSR) to promote food intake and increase adiposity. Activation of GHSR requires the presence of a fatty-acid (FA) side chain on amino acid residue serine 3 of the ghrelin molecule. However, little is known about the role that the type of FA used for acylation plays in the biological action of ghrelin. We therefore evaluated a series of differentially acylated peptides to determine whether alterations in length or stability of the FA side chain have an impact on the ability of ghrelin to activate GHSR in vitro or to differentially alter food intake, body weight, and body composition in vivo. Fatty acids principally available in the diet (such as palmitate C16) and therefore representing potential substrates for the ghrelin-activating enzyme ghrelin O-acyltransferase (GOAT) were used for dose-, time-, and administration/route-dependent effects of ghrelin on food intake, body weight, and body composition in rats and mice. Our data demonstrate that altering the length of the FA side chain of ghrelin results in the differential activation of GHSR. Additionally, we found that acylation of ghrelin with a long-chain FA (C16) delays the acute central stimulation of food intake. Lastly, we found that, depending on acylation length, systemic and central chronic actions of ghrelin on adiposity can be enhanced or reduced. Together our data suggest that modification of the FA side-chain length can be a novel approach to modulate the efficacy of pharmacologically administered ghrelin.

  8. The representation of numerical magnitude

    PubMed Central

    Brannon, Elizabeth M

    2006-01-01

    The combined efforts of many fields are advancing our understanding of how number is represented. Researchers studying numerical reasoning in adult humans, developing humans and non-human animals are using a suite of behavioral and neurobiological methods to uncover similarities and differences in how each population enumerates and compares quantities to identify the neural substrates of numerical cognition. An important picture emerging from this research is that adult humans share with non-human animals a system for representing number as language-independent mental magnitudes and that this system emerges early in development. PMID:16546373

  9. Relativistic effect on total energies for determination of correlation energies of atoms from their experimental total energies

    NASA Astrophysics Data System (ADS)

    Anno, Tosinobu; Teruya, Hirohide

    1989-10-01

    Relativistic effect Erel upon the total electronic energy of an atom is discussed with particular reference to obtaining the nonrelativistic total energy Eexact from the experimental total energy. Numerical values of this effect obtained by various authors by different nonempirical methods are compared for neutral atoms of rare-gas elements. It is shown that methods either of a Hartree-Fock-type or of a Dirac-Hartree-Fock-type give much the same Erel value for He through Ar. It is pointed out that Erel calculated with Hartree-Fock wave functions is not adequate for use in obtaining Eexact from the experimental total energy and that the Erel value calculated with wave functions including electron correlation should work well, although an actual demonstration can be done only for two-electron systems for lack of data. A semiempirical formula is therefore proposed, which is useful for least-squares fit of experimental total energies of isoelectronic series of atoms to extract nonrelativistic total energies along with the relativistic effect. From nonrelativistic energies thus derived, semiempirical values of correlation energies of atoms are obtained. The results thus obtained are in reasonable agreement with correlation energies derived by Clementi along somewhat different lines. The power series expansion in Z of the fitted formula for the He series shows that numerical values of expansion coefficients agree reasonably well with the corresponding values obtained by accurate relativistic and nonrelativistic Z expansion-type calculations.

  10. Evolution and magnitudes of candidate Planet Nine

    NASA Astrophysics Data System (ADS)

    Linder, Esther F.; Mordasini, Christoph

    2016-05-01

    Context. The recently renewed interest in a possible additional major body in the outer solar system prompted us to study the thermodynamic evolution of such an object. We assumed that it is a smaller version of Uranus and Neptune. Aims: We modeled the temporal evolution of the radius, temperature, intrinsic luminosity, and the blackbody spectrum of distant ice giant planets. The aim is also to provide estimates of the magnitudes in different bands to assess whether the object might be detectable. Methods: Simulations of the cooling and contraction were conducted for ice giants with masses of 5, 10, 20, and 50 M⊕ that are located at 280, 700, and 1120 AU from the Sun. The core composition, the fraction of H/He, the efficiency of energy transport, and the initial luminosity were varied. The atmospheric opacity was set to 1, 50, and 100 times solar metallicity. Results: We find for a nominal 10 M⊕ planet at 700 AU at the current age of the solar system an effective temperature of 47 K, much higher than the equilibrium temperature of about 10 K, a radius of 3.7 R⊕, and an intrinsic luminosity of 0.006 L♃. It has estimated apparent magnitudes of Johnson V, R, I, L, N, Q of 21.7, 21.4, 21.0, 20.1, 19.9, and 10.7, and WISE W1-W4 magnitudes of 20.1, 20.1, 18.6, and 10.2. The Q and W4 band and other observations longward of about 13 μm pick up the intrinsic flux. Conclusions: If candidate Planet 9 has a significant H/He layer and an efficient energy transport in the interior, then its luminosity is dominated by the intrinsic contribution, making it a self-luminous planet. At a likely position on its orbit near aphelion, we estimate for a mass of 5, 10, 20, and 50 M⊕ a V magnitude from the reflected light of 24.3, 23.7, 23.3, and 22.6 and a Q magnitude from the intrinsic radiation of 14.6, 11.7, 9.2, and 5.8. The latter would probably have been detected by past surveys.

  11. Determination of the mean solid-liquid interface energy of pivalic acid

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Gliksman, M. E.

    1989-01-01

    A high-confidence solid-liquid interfacial energy is determined for an anisotropic material. A coaxial composite having a cylindrical specimen chamber geometry provides a thermal gradient with an axial heating wire. The surface energy is derived from measurements of grain boundary groove shapes. Applying this method to pivalic acid, a surface energy of 2.84 erg/sq cm was determined with a total systematic and random error less than 10 percent. The value of interfacial energy corresponds to 24 percent of the latent heat of fusion per molecule.

  12. Simultaneous determination of interfacial energy and growth activation energy from induction time measurements

    NASA Astrophysics Data System (ADS)

    Shiau, Lie-Ding; Wang, Hsu-Pei

    2016-05-01

    A model is developed in this work to calculate the interfacial energy and growth activation energy of a crystallized substance from induction time data without the knowledge of the actual growth rate. Induction time data for αL-glutamic acid measured with a turbidity probe for various supersaturations at temperatures from 293 to 313 K are employed to verify the developed model. In the model a simple empirical growth rate with growth order 2 is assumed because experiments are conducted at low supersaturation. The results indicate for αL-glutamic acid that the growth activation energy is 39 kJ/mol, which suggests that the growth rate of small nuclei in the agitated induction time experiments is integration controlled. The interfacial energy obtained from the current model is in the range of 5.2-7.4 mJ/m2, which is slightly greater than that obtained from the traditional method (ti-1∝J) for which the value is in the range 4.1-5.7 mJ/m2.

  13. Magnitude and frequency of floods in Washington

    USGS Publications Warehouse

    Cummans, J.E.; Collings, Michael R.; Nasser, Edmund George

    1975-01-01

    Relations are provided to estimate the magnitude and frequency of floods on Washington streams. Annual-peak-flow data from stream gaging stations on unregulated streams having 1 years or more of record were used to determine a log-Pearson Type III frequency curve for each station. Flood magnitudes having recurrence intervals of 2, 5, i0, 25, 50, and 10years were then related to physical and climatic indices of the drainage basins by multiple-regression analysis using the Biomedical Computer Program BMDO2R. These regression relations are useful for estimating flood magnitudes of the specified recurrence intervals at ungaged or short-record sites. Separate sets of regression equations were defined for western and eastern parts of the State, and the State was further subdivided into 12 regions in which the annual floods exhibit similar flood characteristics. Peak flows are related most significantly in western Washington to drainage-area size and mean annual precipitation. In eastern Washington-they are related most significantly to drainage-area size, mean annual precipitation, and percentage of forest cover. Standard errors of estimate of the estimating relations range from 25 to 129 percent, and the smallest errors are generally associated with the more humid regions.

  14. Comparison of local magnitude scales in Central Europe

    NASA Astrophysics Data System (ADS)

    Kysel, Robert; Kristek, Jozef; Moczo, Peter; Cipciar, Andrej; Csicsay, Kristian; Srbecky, Miroslav; Kristekova, Miriam

    2015-04-01

    Efficient monitoring of earthquakes and determination of their magnitudes are necessary for developing earthquake catalogues at a regional and national levels. Unification and homogenization of the catalogues in terms of magnitudes has great importance for seismic hazard assessment. Calibrated local earthquake magnitude scales are commonly used for determining magnitudes of regional earthquakes by all national seismological services in the Central Europe. However, at the local scale, each seismological service uses its own magnitude determination procedure. There is no systematic comparison of the approaches and there is no unified procedure. We present a comparison of the local magnitude scales used by the national seismological services of Slovakia (Geophysical Institute, Slovak Academy of Sciences), Czech Republic (Institute of Geophysics, Academy of Sciences of the Czech Republic), Austria (ZAMG), Hungary (Geodetic and Geophysical Institute, Hungarian Academy of Sciences) and Poland (Institute of Geophysics, Polish Academy of Sciences), and by the local network of seismic stations located around the Nuclear Power Plant Jaslovske Bohunice, Slovakia. The comparison is based on the national earthquake catalogues and annually published earthquake bulletins for the period from 1985 to 2011. A data set of earthquakes has been compiled based on identification of common events in the national earthquake catalogues and bulletins. For each pair of seismic networks, magnitude differences have been determined and investigated as a function of time. The mean and standard deviations of the magnitude differences as well as regression coefficients between local magnitudes from the national seismological networks have been computed. Results show relatively big scatter between different national local magnitudes and its considerable time variation. A conversion between different national local magnitudes in a scale 1:1 seems inappropriate, especially for the compilation of the

  15. Determining the Intermolecular Potential Energy in a Gas: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Olbregts, J.; Walgraeve, J. P.

    1976-01-01

    Describes an experiment in which gas viscosity coefficients over a large temperature range are used to determine the parameters of the intermolecular potential energy and other properties such as virial coefficients. (MLH)

  16. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    SciTech Connect

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  17. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-09-01

    Reflection electron energy loss spectra from some insulating materials (CaCO3, Li2CO3, and SiO2) taken at relatively high incoming electron energies (5-40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO2, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E - Egap)1.5. For CaCO3, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li2CO3 (7.5 eV) is the first experimental estimate.

  18. Determination of the Arrhenius Activation Energy Using a Temperature-Programmed Flow Reactor.

    ERIC Educational Resources Information Center

    Chan, Kit-ha C.; Tse, R. S.

    1984-01-01

    Describes a novel method for the determination of the Arrhenius activation energy, without prejudging the validity of the Arrhenius equation or the concept of activation energy. The method involves use of a temperature-programed flow reactor connected to a concentration detector. (JN)

  19. 76 FR 142 - Notice of Prevention of Significant Deterioration Final Determination for Russell City Energy Center

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... AGENCY Notice of Prevention of Significant Deterioration Final Determination for Russell City Energy... Petitions for Review of a Federal Prevention of Significant Deterioration (PSD) Permit issued to Russell... agreement dated February 4, 2008, issued a PSD permit to Russell City Energy Center, LLC, on February...

  20. Determination of Rest Mass Energy of the Electron by a Compton Scattering Experiment

    ERIC Educational Resources Information Center

    Prasannakumar, S.; Krishnaveni, S.; Umesh, T. K.

    2012-01-01

    We report here a simple Compton scattering experiment which may be carried out in graduate and undergraduate laboratories to determine the rest mass energy of the electron. In the present experiment, we have measured the energies of the Compton scattered gamma rays with a NaI(Tl) gamma ray spectrometer coupled to a 1 K multichannel analyzer at…

  1. 76 FR 64904 - Building Energy Standards Program: Final Determination Regarding Energy Efficiency Improvements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... give electric resistance heat an efficiency advantage over natural gas. DOE's role in determinations is... based on the national model codes (in this case, ASHRAE Standard 90.1). The Natural Resources Defense... + (adds for automatic occupancy sensor lighting shutoff, requirements for adds specific many...

  2. Cost of photovoltaic energy systems as determined by balance-of-system costs

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.

    1978-01-01

    The effect of the balance-of-system (BOS), i.e., the total system less the modules, on photo-voltaic energy system costs is discussed for multikilowatt, flat-plate systems. Present BOS costs are in the range of 10 to 16 dollars per peak watt (1978 dollars). BOS costs represent approximately 50% of total system cost. The possibility of future BOS cost reduction is examined. It is concluded that, given the nature of BOS costs and the lack of comprehensive national effort focussed on cost reduction, it is unlikely that BOS costs will decline greatly in the next several years. This prognosis is contrasted with the expectations of the Department of Energy National Photovoltaic Program goals and pending legislation in the Congress which require a BOS cost reduction of an order of magnitude or more by the mid-1980s.

  3. Determining the life cycle energy efficiency of six biofuel systems in China: a Data Envelopment Analysis.

    PubMed

    Ren, Jingzheng; Tan, Shiyu; Dong, Lichun; Mazzi, Anna; Scipioni, Antonio; Sovacool, Benjamin K

    2014-06-01

    This aim of this study was to use Data Envelopment Analysis (DEA) to assess the life cycle energy efficiency of six biofuels in China. DEA can differentiate efficient and non-efficient scenarios, and it can identify wasteful energy losses in biofuel production. More specifically, the study has examined the efficiency of six approaches for bioethanol production involving a sample of wheat, corn, cassava, and sweet potatoes as feedstocks and "old," "new," "wet," and "dry" processes. For each of these six bioethanol production pathways, the users can determine energy inputs such as the embodied energy for seed, machinery, fertilizer, diesel, chemicals and primary energy utilized for manufacturing, and outputs such as the energy content of the bioethanol and byproducts. The results indicate that DEA is a novel and feasible method for finding efficient bioethanol production scenarios and suggest that sweet potatoes may be the most energy-efficient form of ethanol production for China.

  4. Percussive Force Magnitude in Permafrost

    NASA Technical Reports Server (NTRS)

    Eustes, A. W., III; Bridgford, E.; Tischler, A.; Wilcox, B. H.

    2000-01-01

    An in-depth look at percussive drilling shows that the transmission efficiency is very important; however, data for percussive drilling in hard rock or permafrost is rarely available or the existing data are very old. Transmission efficiency can be used as a measurement of the transmission of the energy in the piston to the drill steel or bit and from the bit to the rock. Having a plane and centralized impact of the piston on the drill steel can optimize the transmission efficiency from the piston to the drill steel. A transmission efficiency of near 100% between piston and drill steel is possible. The transmission efficiency between bit and rock is dependent upon the interaction within the entire system. The main factors influencing this transmission efficiency are the contact area between cutting structure and surrounding rock (energy loss due to friction heat), damping characteristics of the surrounding rock (energy dampening), and cuttings transport. Some of these parameters are not controllable. To solve the existing void regarding available drilling data, an experiment for gathering energy data in permafrost for percussive drilling was designed. Fifteen artificial permafrost samples were prepared. The samples differed in the grain size distribution to observe a possible influence of the grain size distribution on the drilling performance. The samples were then manually penetrated (with a sledge-hammer) with two different spikes.

  5. Precise Determination of the Lyman-1 Transition Energy in Hydrogen-like Gold Ions with Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Grabitz, P.; Kilbourne, C.; Kiselev, O.; McCammon, D.; Scholz, P.

    2014-09-01

    The precise determination of the transition energy of the Lyman-1 line in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. We report the determination of the Lyman-1 transition energy of gold ions (Au) with microcalorimeters at the experimental storage ring at GSI. X-rays produced by the interaction of 125 MeV/u Au ions with an internal argon gas-jet target were detected. The detector array consisted of 14 pixels with silicon thermistors and Sn absorbers, for which an energy resolution of 50 eV for an X-ray energy of 59.5 keV was obtained in the laboratory. The Lyman-1 transition energy was determined for each pixel in the laboratory frame, then transformed into the emitter frame and averaged. A Dy-159 source was used for energy calibration. The absolute positions of the detector pixels, which are needed for an accurate correction of the Doppler shift, were determined by topographic measurements and by scanning a collimated Am-241 source across the cryostat window. The energy of the Lyman-1 line in the emitter frame is eV, in good agreement with theoretical predictions. The systematic error is dominated by the uncertainty in the position of the cryostat relative to the interaction region of beam and target.

  6. Low energy determination of the QCD strong coupling constant on the lattice

    SciTech Connect

    Maezawa, Yu; Petreczky, Peter

    2016-09-28

    Here we present a determination of the strong coupling constant from lattice QCD using the moments of pseudo-scalar charmonium correlators calculated using highly improved staggerered quark action. We obtain a value αs( μ = mc) = 0.3397(56), which is the lowest energy determination of the strong coupling constant so far.

  7. Low energy determination of the QCD strong coupling constant on the lattice

    DOE PAGES

    Maezawa, Yu; Petreczky, Peter

    2016-09-28

    Here we present a determination of the strong coupling constant from lattice QCD using the moments of pseudo-scalar charmonium correlators calculated using highly improved staggerered quark action. We obtain a value αs( μ = mc) = 0.3397(56), which is the lowest energy determination of the strong coupling constant so far.

  8. The binding energies of NO-Rg (Rg = He, Ne, Ar) determined by velocity map imaging.

    PubMed

    Holmes-Ross, Heather L; Lawrance, Warren D

    2011-07-07

    We report velocity map imaging measurements of the binding energies, D(0), of NO-Rg (Rg = He, Ne, Ar) complexes. The X state binding energies determined are 3.0 ± 1.8, 28.6 ± 1.7, and 93.5 ± 0.9 cm(-1) for NO-He, -Ne, and -Ar, respectively. These values compare reasonably well with ab initio calculations. Because the Ã-X transitions were unable to be observed for NO-He and NO-Ne, values for the binding energies in the à state of these complexes have not been determined. Based on our X state value and the reported Ã-X origin band position, the à state binding energy for NO-Ar was determined to be 50.6 ± 0.9 cm(-1).

  9. Determination of Gibbs energies of formation in aqueous solution using chemical engineering tools.

    PubMed

    Toure, Oumar; Dussap, Claude-Gilles

    2016-08-01

    Standard Gibbs energies of formation are of primary importance in the field of biothermodynamics. In the absence of any directly measured values, thermodynamic calculations are required to determine the missing data. For several biochemical species, this study shows that the knowledge of the standard Gibbs energy of formation of the pure compounds (in the gaseous, solid or liquid states) enables to determine the corresponding standard Gibbs energies of formation in aqueous solutions. To do so, using chemical engineering tools (thermodynamic tables and a model enabling to predict activity coefficients, solvation Gibbs energies and pKa data), it becomes possible to determine the partial chemical potential of neutral and charged components in real metabolic conditions, even in concentrated mixtures.

  10. Adhesion determination of dental porcelain to zirconia using the Schwickerath test: strength vs. fracture energy approach.

    PubMed

    Kosyfaki, P; Swain, M V

    2014-11-01

    Two approaches to measure the fracture energy to delaminate four different porcelains from zirconia substrates are compared using Schwickerath adhesion strength test specimens. In all instances it was possible to stably extend the crack along or adjacent to the porcelain-zirconia interface. The fracture energy expended to delaminate the porcelain was found by determining the work of fracture upon loading to 12 N and then unloading. Additional tests were undertaken on specimens notched along the interface, which enabled the compliance of the cracked Schwickerath specimens to be calibrated. The strain energy and deflection of the Schwickerath specimen as a function of crack length were derived. On this basis a simple expression was determined for the strain energy release rate or interfacial fracture toughness from the minima in the force-displacement curves. Consequently two measures of the adhesion energy were determined, the work of fracture and the strain energy release rate. It was found that the ranking for the four porcelains bonded to zirconia differed depending upon the approach. The work of fracture was substantially different from the strain energy release rate for three of the porcelain-zirconia systems and appears to be directly related to the residual stresses present in the bonded structures. The relative merits of the strain energy release rate, work of fracture vs. the stress to initiate cracking in the case of the Schwickerath adhesion test, are discussed. The advantage of this test is that it enables three estimates of the adhesion for porcelain veneers bonded to zirconia.

  11. Rapid spectrophotometric method for determining surface free energy of microalgal cells.

    PubMed

    Zhang, Xinru; Jiang, Zeyi; Li, Mengyin; Zhang, Xinxin; Wang, Ge; Chou, Aihui; Chen, Liang; Yan, Hai; Zuo, Yi Y

    2014-09-02

    Microalgae are one of the most promising renewable energy sources with environmental sustainability. The surface free energy of microalgal cells determines their biofouling and bioflocculation behavior and hence plays an important role in microalgae cultivation and harvesting. To date, the surface energetic properties of microalgal cells are still rarely studied. We developed a novel spectrophotometric method for directly determining the surface free energy of microalgal cells. The principles of this method are based on analyzing colloidal stability of microalgae suspensions. We have shown that this method can effectively differentiate the surface free energy of four microalgal strains, i.e., marine Chlorella sp., marine Nannochloris oculata, freshwater autotrophic Chlorella sp., and freshwater heterotrophic Chlorella sp. With advantages of high-throughput and simplicity, this new spectrophotometric method has the potential to evolve into a standard method for measuring the surface free energy of cells and abiotic particles.

  12. A method for determining d-D neutron energies in a large sample

    NASA Astrophysics Data System (ADS)

    Luo, Junhua

    2015-09-01

    The energy of monoenergetic neutrons generated by the D(d,n)3He reaction was determined as a function of emergent angle and incidence energy of d+-beam, En(θ,Ed). Based on the geometric size of the experimental sample, position of the sample relative to the Ti-D solid or D2 gas targets, volume distribution of D2 gas targets, theoretical formulas were obtained for calculating the mean neutron energy required to irradiate a large sample. Using these formulas, the mean neutron energies of the Ti-D solid and D2 gas targets irradiating a large sample were calculated under various conditions. The results were compared to those reported in the literature. The formulas obtained in this study were found to be applicable for the determination of mean neutron energy irradiating a large sample for the Ti-D solid and D2 gas targets.

  13. Ginzburg-Landau free energy for molecular fluids: Determination and coarse-graining

    NASA Astrophysics Data System (ADS)

    Desgranges, Caroline; Delhommelle, Jerome

    2017-02-01

    Using molecular simulation, we determine Ginzburg-Landau free energy functions for molecular fluids. To this aim, we extend the Expanded Wang-Landau method to calculate the partition functions, number distributions and Landau free energies for Ar,CO2 and H2O . We then parametrize a coarse-grained free energy function of the density order parameter and assess the performance of this free energy function on its ability to model the onset of criticality in these systems. The resulting parameters can be readily used in hybrid atomistic/continuum simulations that connect the microscopic and mesoscopic length scales.

  14. Application of Energy Processor Model for Diagnostic Symptom Limit Value Determination in Steam Turbines

    NASA Astrophysics Data System (ADS)

    Galka, Tomasz

    1999-09-01

    With growing importance of quantitative technical condition assessment in critical machinery, the need for adequate determination of diagnostic symptom limit values is becoming vital. Such determination may be based on the energy processor model of a machine [1]. The general model should, for each specific case, be developed in order to account for unique features of machine design and operation. The paper describes such an approach for large steam turbines, operated by utility power stations. The energy processor model, adopted for these machines, is described and its mathematical description is presented, based on resonable simplifying assumptions. Possibilities of the determination of model parameters from data obtained during normal operation are outlined and discussed.

  15. The impact and determinants of the energy paradigm on economic growth in European Union.

    PubMed

    Andrei, Jean Vasile; Mieila, Mihai; Panait, Mirela

    2017-01-01

    Contemporary economies are strongly reliant on energy and analyzing the determining factors that trigger the changes in energy paradigm and their impact upon economic growth is a topical research subject. Our contention is that energy paradigm plays a major role in achieving the sustainable development of contemporary economies. In order to prove this the panel data methodology of research was employed, namely four panel unit root tests (LLC, IPS, F-ADF and F-PP) aiming to reveal the connections and relevance among 17 variables denoting energy influence on economic development. Moreover, it was introduced a specific indicator to express energy consumption per capita. Our findings extend the classical approach of the changes in energy paradigm and their impact upon economic growth and offer a comprehensive analysis which surpasses the practices and policy decisions in the field.

  16. The impact and determinants of the energy paradigm on economic growth in European Union

    PubMed Central

    Mieila, Mihai; Panait, Mirela

    2017-01-01

    Contemporary economies are strongly reliant on energy and analyzing the determining factors that trigger the changes in energy paradigm and their impact upon economic growth is a topical research subject. Our contention is that energy paradigm plays a major role in achieving the sustainable development of contemporary economies. In order to prove this the panel data methodology of research was employed, namely four panel unit root tests (LLC, IPS, F-ADF and F-PP) aiming to reveal the connections and relevance among 17 variables denoting energy influence on economic development. Moreover, it was introduced a specific indicator to express energy consumption per capita. Our findings extend the classical approach of the changes in energy paradigm and their impact upon economic growth and offer a comprehensive analysis which surpasses the practices and policy decisions in the field. PMID:28301505

  17. Determining Linac Beam Energy from C-11/O-15 Activity Ratios in Polymers

    NASA Astrophysics Data System (ADS)

    Cardman, Ryan; Shepherd, Matthew

    2017-01-01

    A method for precisely measuring the beam energy of 20-25 MeV electron linear accelerator was developed. Polyoxymethylene (Delrin) and poly(methyl methacrylate) (acrylic) samples were irradiated with an electron linac at several energy settings of the accelerator simultaneously producing C-11 and O-15 via photonuclear reactions within each of the polymers. Using gamma-ray spectroscopy the activity ratios of C-11/O-15 were measured by analyzing the decay of activity vs. time. The C-11/O-15 ratio exhibits an energy dependence due to differences in the production cross section vs. energy. The observed dependence can be matched to predictions of the activity ratio vs. energy, developed from GEANT4 Monte Carlo models of an electromagnetic shower and knowledge of the cross sections, in order to determine the energy of the beam at a sub-MeV level of precision. National Science Foundation Research Experience for Undergraduates.

  18. High-energy water sites determine peptide binding affinity and specificity of PDZ domains.

    PubMed

    Beuming, Thijs; Farid, Ramy; Sherman, Woody

    2009-08-01

    PDZ domains have well known binding preferences for distinct C-terminal peptide motifs. For most PDZ domains, these motifs are of the form [S/T]-W-[I/L/V]. Although the preference for S/T has been explained by a specific hydrogen bond interaction with a histidine in the PDZ domain and the (I/L/V) is buried in a hydrophobic pocket, the mechanism for Trp specificity at the second to last position has thus far remained unknown. Here, we apply a method to compute the free energies of explicit water molecules and predict that potency gained by Trp binding is due to a favorable release of high-energy water molecules into bulk. The affinities of a series of peptides for both wild-type and mutant forms of the PDZ domain of Erbin correlate very well with the computed free energy of binding of displaced waters, suggesting a direct relationship between water displacement and peptide affinity. Finally, we show a correlation between the magnitude of the displaced water free energy and the degree of Trp-sensitivity among subtypes of the HTRA PDZ family, indicating a water-mediated mechanism for specificity of peptide binding.

  19. Energy dispersive X-Ray fluorescence determination of thorium in phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Mirashi, N. N.; Dhara, Sangita; Kumar, S. Sanjay; Chaudhury, Satyajeet; Misra, N. L.; Aggarwal, S. K.

    2010-07-01

    Energy dispersive X-ray fluorescence studies on determination of thorium (in the range of 7 to 137 mg/mL) in phosphoric acid solutions obtained by dissolution of thoria in autoclave were made. Fixed amounts of Y internal standard solutions, after dilution with equal amount of phosphoric acid, were added to the calibration as well as sample solutions. Solution aliquots of approximately 2-5 µL were deposited on thick absorbent sheets to absorb the solutions and the sheets were presented for energy dispersive X-ray fluorescence measurements. A calibration plot was made between intensity ratios (Th Lα/Y Kα) against respective amounts of thorium in the calibration solutions. Thorium amounts in phosphoric acid samples were determined using their energy dispersive X-ray fluorescence spectra and the above calibration plot. The energy dispersive X-ray fluorescence results, thus obtained, were compared with the corresponding gamma ray spectrometry results and were found to be within average deviation of 2.6% from the respective gamma ray spectrometry values. The average precision obtained in energy dispersive X-ray fluorescence determinations was found to be 4% (1 σ). The energy dispersive X-ray fluorescence method has an advantage over gamma ray spectrometry for thorium determination as the amount of sample required and measurement time is far less compared to that required in gamma ray spectrometry.

  20. The Effects Of Reinforcement Magnitude On Functional Analysis Outcomes

    PubMed Central

    2005-01-01

    The duration or magnitude of reinforcement has varied and often appears to have been selected arbitrarily in functional analysis research. Few studies have evaluated the effects of reinforcement magnitude on problem behavior, even though basic findings indicate that this parameter may affect response rates during functional analyses. In the current study, 6 children with autism or developmental disabilities who engaged in severe problem behavior were exposed to three separate functional analyses, each of which varied in reinforcement magnitude. Results of these functional analyses were compared to determine if a particular reinforcement magnitude was associated with the most conclusive outcomes. In most cases, the same conclusion about the functions of problem behavior was drawn regardless of the reinforcement magnitude. PMID:16033163

  1. Total Galaxy Magnitudes and Effective Radii from Petrosian Magnitudes and Radii

    NASA Astrophysics Data System (ADS)

    Graham, Alister W.; Driver, Simon P.; Petrosian, Vahé; Conselice, Christopher J.; Bershady, Matthew A.; Crawford, Steven M.; Goto, Tomotsugu

    2005-10-01

    Petrosian magnitudes were designed to help with the difficult task of determining a galaxy's total light. Although these magnitudes [taken here as the flux within 2RP, with the inverted Petrosian index 1/η(RP)=0.2] can represent most of an object's flux, they do of course miss the light outside the Petrosian aperture (2RP). The size of this flux deficit varies monotonically with the shape of a galaxy's light profile, i.e., its concentration. In the case of a de Vaucouleurs R1/4 profile, the deficit is 0.20 mag; for an R1/8 profile this figure rises to 0.50 mag. Here we provide a simple method for recovering total (Sérsic) magnitudes from Petrosian magnitudes using only the galaxy concentration (R90/R50 or R80/R20) within the Petrosian aperture. The corrections hold to the extent that Sérsic's model provides a good description of a galaxy's luminosity profile. We show how the concentration can also be used to convert Petrosian radii into effective half-light radii, enabling a robust measure of the mean effective surface brightness. Our technique is applied to the Sloan Digital Sky Survey Data Release 2 (SDSS DR2) Petrosian parameters, yielding good agreement with the total magnitudes, effective radii, and mean effective surface brightnesses obtained from the New York University Value-Added Galaxy Catalog Sérsic R1/n fits by Blanton and coworkers. Although the corrective procedure described here is specifically applicable to the SDSS DR2 and DR3, it is generally applicable to all imaging data where any Petrosian index and concentration can be constructed.

  2. Polynomial dual energy inverse functions for bone Calcium/Phosphorus ratio determination and experimental evaluation.

    PubMed

    Sotiropoulou, P; Fountos, G; Martini, N; Koukou, V; Michail, C; Kandarakis, I; Nikiforidis, G

    2016-12-01

    An X-ray dual energy (XRDE) method was examined, using polynomial nonlinear approximation of inverse functions for the determination of the bone Calcium-to-Phosphorus (Ca/P) mass ratio. Inverse fitting functions with the least-squares estimation were used, to determine calcium and phosphate thicknesses. The method was verified by measuring test bone phantoms with a dedicated dual energy system and compared with previously published dual energy data. The accuracy in the determination of the calcium and phosphate thicknesses improved with the polynomial nonlinear inverse function method, introduced in this work, (ranged from 1.4% to 6.2%), compared to the corresponding linear inverse function method (ranged from 1.4% to 19.5%).

  3. Determination and Finite Element Validation of the WYPIWYG Strain Energy of Superficial Fascia from Experimental Data.

    PubMed

    Latorre, Marcos; Peña, Estefanía; Montáns, Francisco J

    2017-03-01

    What-You-Prescribe-Is-What-You-Get (WYPIWYG) procedures are a novel and general phenomenological approach to modelling the behavior of soft materials, applicable to biological tissues in particular. For the hyperelastic case, these procedures solve numerically the nonlinear elastic material determination problem. In this paper we show that they can be applied to determine the stored energy density of superficial fascia. In contrast to the usual approach, in such determination no user-prescribed material parameters and no optimization algorithms are employed. The strain energy densities are computed solving the equilibrium equations of the set of experiments. For the case of superficial fascia it is shown that the mechanical behavior derived from such strain energies is capable of reproducing simultaneously the measured load-displacement curves of three experiments to a high accuracy.

  4. 25 CFR 224.73 - How will the scope of energy resource development affect the Secretary's determination of the...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... energy resource development under the TERA will include a determination as to each type of energy... 25 Indians 1 2014-04-01 2014-04-01 false How will the scope of energy resource development affect... AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE...

  5. THE AGE OF ELLIPTICALS AND THE COLOR-MAGNITUDE RELATION

    SciTech Connect

    Schombert, James; Rakos, Karl E-mail: karl.rakos@chello.at

    2009-07-10

    Using new narrowband color observations of early-type galaxies in clusters, we reconstruct the color-magnitude relation (CMR) with a higher degree of accuracy than previous work. We then use the spectroscopically determined ages and metallicities from three samples, combined with multimetallicity spectral energy distribution models, to compare predicted colors for galaxies with young ages (less than 8 Gyr) with the known CMR. We find that the CMR cannot by reproduced by the spectroscopically determined ages and metallicities in any of the samples despite the high internal accuracies to the spectroscopic indices. In contrast, using only the (Fe) index to determine [Fe/H], and assuming a mean age of 12 Gyr for a galaxy's stellar population, we derive colors that exactly match not only the color zero point of the CMR but also its slope. We consider the source of young age estimates, the H{beta} index, and examine the conflict between red continuum colors and large H{beta} values in galaxy spectra. We conclude that our current understanding of stellar populations is insufficient to correctly interpret H{beta} values.

  6. Determination of thickness and composition of high-k dielectrics using high-energy electrons

    SciTech Connect

    Grande, P. L.; Vos, M.; Venkatachalam, D. K.; Elliman, R. G.; Nandi, S. K.

    2013-08-12

    We demonstrate the application of high-energy elastic electron backscattering to the analysis of thin (2–20 nm) HfO{sub 2} overlayers on oxidized Si substrates. The film composition and thickness are determined directly from elastic scattering peaks characteristic of each element. The stoichiometry of the films is determined with an accuracy of 5%–10%. The experimental results are corroborated by medium energy ions scattering and Rutherford backscattering spectrometry measurements, and clearly demonstrate the applicability of the technique for thin-film analysis. Significantly, the presented technique opens new possibilities for nm depth profiling with high spatial resolution in scanning electron microscopes.

  7. Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures; January 2012 - March 2013

    SciTech Connect

    Jayaweera, T.; Haeri, H.

    2013-04-01

    Under the Uniform Methods Project, DOE is developing a framework and a set of protocols for determining the energy savings from specific energy efficiency measures and programs. The protocols provide a straightforward method for evaluating gross energy savings for common residential and commercial measures offered in ratepayer-funded initiatives in the United States. They represent a refinement of the body of knowledge supporting energy efficiency evaluation, measurement, and verification (EM&V) activities. This document deals with savings from the following measures: commercial and industrial lighting, commercial and industrial lighting controls, small commercial and residential unitary and split system HVAC cooling equipment, residential furnaces and boilers, residential lighting, refrigerator recycling, whole-building retrofit using billing analysis, metering, peak demand and time-differentiated energy savings, sample design, survey design and implementation, and assessing persistence and other evaluation issues.

  8. Definition and determination of the triplet-triplet energy transfer reaction coordinate

    SciTech Connect

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis; Frutos, Luis Manuel; Acuña, A. Ulises

    2014-01-21

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfer processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.

  9. Magnitude and sign correlations in heartbeat fluctuations

    NASA Technical Reports Server (NTRS)

    Ashkenazy, Y.; Ivanov, P. C.; Havlin, S.; Peng, C. K.; Goldberger, A. L.; Stanley, H. E.

    2001-01-01

    We propose an approach for analyzing signals with long-range correlations by decomposing the signal increment series into magnitude and sign series and analyzing their scaling properties. We show that signals with identical long-range correlations can exhibit different time organization for the magnitude and sign. We find that the magnitude series relates to the nonlinear properties of the original time series, while the sign series relates to the linear properties. We apply our approach to the heartbeat interval series and find that the magnitude series is long-range correlated, while the sign series is anticorrelated and that both magnitude and sign series may have clinical applications.

  10. The Ages of 55 Globular Clusters as Determined Using an Improved \\Delta V^HB_TO Method along with Color-Magnitude Diagram Constraints, and Their Implications for Broader Issues

    NASA Astrophysics Data System (ADS)

    VandenBerg, Don A.; Brogaard, K.; Leaman, R.; Casagrande, L.

    2013-10-01

    Ages have been derived for 55 globular clusters (GCs) for which Hubble Space Telescope Advanced Camera for Surveys photometry is publicly available. For most of them, the assumed distances are based on fits of theoretical zero-age horizontal-branch (ZAHB) loci to the lower bound of the observed distributions of HB stars, assuming reddenings from empirical dust maps and metallicities from the latest spectroscopic analyses. The age of the isochrone that provides the best fit to the stars in the vicinity of the turnoff (TO) is taken to be the best estimate of the cluster age. The morphology of isochrones between the TO and the beginning part of the subgiant branch (SGB) is shown to be nearly independent of age and chemical abundances. For well-defined color-magnitude diagrams (CMDs), the error bar arising just from the "fitting" of ZAHBs and isochrones is ≈ ± 0.25 Gyr, while that associated with distance and chemical abundance uncertainties is ~ ± 1.5-2 Gyr. The oldest GCs in our sample are predicted to have ages of ≈13.0 Gyr (subject to the aforementioned uncertainties). However, the main focus of this investigation is on relative GC ages. In conflict with recent findings based on the relative main-sequence fitting method, which have been studied in some detail and reconciled with our results, ages are found to vary from mean values of ≈12.5 Gyr at [Fe/H] <~ - 1.7 to ≈11 Gyr at [Fe/H] >~ -1. At intermediate metallicities, the age-metallicity relation (AMR) appears to be bifurcated: one branch apparently contains clusters with disk-like kinematics, whereas the other branch, which is displaced to lower [Fe/H] values by ≈0.6 dex at a fixed age, is populated by clusters with halo-type orbits. The dispersion in age about each component of the AMR is ~ ± 0.5 Gyr. There is no apparent dependence of age on Galactocentric distance (R G) nor is there a clear correlation of HB type with age. As previously discovered in the case of M3 and M13, subtle variations have

  11. On the role of energy barriers in determining contact angle hysteresis.

    PubMed

    Long, J; Chen, P

    2006-11-30

    The thermodynamic model of contact angles on rough, heterogeneous surfaces developed by Long et al. [J. Long, M.N. Hyder, R.Y.M. Huang and P. Chen, Adv. Colloid Interface Sci. 118 (2005) 173] was employed to study the role of energy barriers in determining contact angle hysteresis. Major energy barriers corresponding to metastable states and minor energy barriers corresponding to secondary metastable states were defined. Distributions of major and/or minor energy barriers as a function of apparent contact angle for various surfaces were obtained. The reproducibility of contact angle measurement, the effect of vibrational energy on contact angle hysteresis and the "stick-slip" phenomenon were discussed. Quantitative relations between contact angles and vibrational energy were obtained. It was found that receding contact angles are normally poorly reproducible for hydrophilic surfaces, but for extremely hydrophobic surfaces, advancing contact angles may have a poor reproducibility. When the vibrational energy available to a system increases, the measured advancing contact angle will decrease while the receding angle will increase until both reach a common value: the system equilibrium angle. This finding not only agrees well with the experimental observations in system equilibrium contact angle measurements, but also lays a theoretical foundation for such measurements. A small vibrational energy may result in a "stick-slip" phenomenon.

  12. The discovery and comparison of symbolic magnitudes.

    PubMed

    Chen, Dawn; Lu, Hongjing; Holyoak, Keith J

    2014-06-01

    Humans and other primates are able to make relative magnitude comparisons, both with perceptual stimuli and with symbolic inputs that convey magnitude information. Although numerous models of magnitude comparison have been proposed, the basic question of how symbolic magnitudes (e.g., size or intelligence of animals) are derived and represented in memory has received little attention. We argue that symbolic magnitudes often will not correspond directly to elementary features of individual concepts. Rather, magnitudes may be formed in working memory based on computations over more basic features stored in long-term memory. We present a model of how magnitudes can be acquired and compared based on BARTlet, a representationally simpler version of Bayesian Analogy with Relational Transformations (BART; Lu, Chen, & Holyoak, 2012). BARTlet operates on distributions of magnitude variables created by applying dimension-specific weights (learned with the aid of empirical priors derived from pre-categorical comparisons) to more primitive features of objects. The resulting magnitude distributions, formed and maintained in working memory, are sensitive to contextual influences such as the range of stimuli and polarity of the question. By incorporating psychological reference points that control the precision of magnitudes in working memory and applying the tools of signal detection theory, BARTlet is able to account for a wide range of empirical phenomena involving magnitude comparisons, including the symbolic distance effect and the semantic congruity effect. We discuss the role of reference points in cognitive and social decision-making, and implications for the evolution of relational representations.

  13. Magnitude systems in old star catalogues

    NASA Astrophysics Data System (ADS)

    Fujiwara, Tomoko; Yamaoka, Hitoshi

    2005-06-01

    The current system of stellar magnitudes originally introduced by Hipparchus was strictly defined by Norman Pogson in 1856. He based his system on Ptolemy's star catalogue, the Almagest, recorded in about AD137, and defined the magnitude-intensity relationship on a logarithmic scale. Stellar magnitudes observed with the naked eye recorded in seven old star catalogues were analyzed in order to examine the visual magnitude systems. Although psychophysicists have proposed that human visual sensitivity follows a power-law scale, it is shown here that the degree of agreement is far better for a logarithmic scale than for a power-law scale. It is also found that light ratios in each star catalogue are nearly equal to 2.512, if the brightest (1st magnitude) and the faintest (6th magnitude and dimmer) stars are excluded from the study. This means that the visual magnitudes in the old star catalogues agree fully with Pogson's logarithmic scale.

  14. Determination of energy density threshold for laser ablation of bacteria. An in vitro study.

    PubMed

    Coffelt, D W; Cobb, C M; MacNeill, S; Rapley, J W; Killoy, W J

    1997-01-01

    The Nd:YAG and CO2 lasers have been shown to be bactericidal at relative low energy densities. However, at energy densities exceeding 120 J/cm2 (CO2) and 200 J/cm2 (Nd:YAG), laser irradiation also causes irreparable root surface damage. The purpose of this study was to determine, in vitro, the energy density threshold at which microbial ablation could be achieved while inflicting the least amount of damage to the root surfaces of human teeth. Pairs of Escherichia coli colonies cultured on broth agar were treated with a CO2 laser using a pulsed waveform at approximate energy densities ranging from 3 to 110 J/cm2. One of each colony-pair was then examined by scanning electron microscopy (SEM) and the other subcultured for viable microbes. Roots of extracted teeth were lightly scaled and treated by CO2 laser, again with pulsed beam using approximate energy densities of 3 to 110 J/cm2: and examined by SEM. Regardless of the level of energy density, residual bacteria could be subcultured from all laser treated microbial colonies. The inability of the laser to completely obliterate microbial colonies was likely due to: depth of energy penetration, difficulty in precisely overlapping beam focal spots, irregular beam profile, and presence of microbes at the periphery of the beam focal spot. The threshold energy density for bacterial obliteration was determined to be 11 J/cm2 and that for root damage was 41 J/cm2. Root damage was evident by charring, crater formation, melt-down and resolidification surface mineral, and increasing surface porosity. The results of this in vitro study indicate that when used at an energy density between 11 and 41 J/cm2 the CO2 laser may destroy microbial colonies without inflicting undue damage to the tooth root surface.

  15. Determination of nuclear symmetry energy in the Cornwall-Jackiw-Tomboulis approach

    SciTech Connect

    Tran Huu Phat; Nguyen Tuan Anh; Nguyen Van Long

    2008-05-15

    Within the Cornwall-Jackiw-Tomboulis (CJT) approach a general formalism is established for the study of asymmetric nuclear matter (ANM) described by the four-nucleon interactions. Restricting ourselves to the double-bubble approximation (DBA), we determine the bulk properties of ANM, in particular, the density dependence of the nuclear symmetry energy, which is in good agreement with data of recent analyses.

  16. Direct determination of resonance energy transfer in photolyase: structural alignment for the functional state.

    PubMed

    Tan, Chuang; Guo, Lijun; Ai, Yuejie; Li, Jiang; Wang, Lijuan; Sancar, Aziz; Luo, Yi; Zhong, Dongping

    2014-11-13

    Photoantenna is essential to energy transduction in photoinduced biological machinery. A photoenzyme, photolyase, has a light-harvesting pigment of methenyltetrahydrofolate (MTHF) that transfers its excitation energy to the catalytic flavin cofactor FADH¯ to enhance DNA-repair efficiency. Here we report our systematic characterization and direct determination of the ultrafast dynamics of resonance energy transfer from excited MTHF to three flavin redox states in E. coli photolyase by capturing the intermediates formed through the energy transfer and thus excluding the electron-transfer quenching pathway. We observed 170 ps for excitation energy transferring to the fully reduced hydroquinone FADH¯, 20 ps to the fully oxidized FAD, and 18 ps to the neutral semiquinone FADH(•), and the corresponding orientation factors (κ(2)) were determined to be 2.84, 1.53 and 1.26, respectively, perfectly matching with our calculated theoretical values. Thus, under physiological conditions and over the course of evolution, photolyase has adopted the optimized orientation of its photopigment to efficiently convert solar energy for repair of damaged DNA.

  17. Determination of energies and sites of binding of PFOA and PFOS to human serum albumin.

    PubMed

    Salvalaglio, Matteo; Muscionico, Isabella; Cavallotti, Carlo

    2010-11-25

    Structure and energies of the binding sites of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) to human serum albumin (HSA) were determined through molecular modeling. The calculations consisted of a compound approach based on docking, followed by molecular dynamics simulations and by the estimation of the free binding energies adopting WHAM-umbrella sampling and semiempirical methodologies. The binding sites so determined are common either to known HSA fatty acids sites or to other HSA sites known to bind to pharmaceutical compounds such as warfarin, thyroxine, indole, and benzodiazepin. Among the PFOA binding sites, five have interaction energies in excess of -6 kcal/mol, which become nine for PFOS. The calculated binding free energy of PFOA to the Trp 214 binding site is the highest among the PFOA complexes, -8.0 kcal/mol, in good agreement with literature experimental data. The PFOS binding site with the highest energy, -8.8 kcal/mol, is located near the Trp 214 binding site, thus partially affecting its activity. The maximum number of ligands that can be bound to HSA is 9 for PFOA and 11 for PFOS. The calculated data were adopted to predict the level of complexation of HSA as a function of the concentration of PFOA and PFOS found in human blood for different levels of exposition. The analysis of the factors contributing to the complex binding energy permitted to outline a set of guidelines for the rational design of alternative fluorinated surfactants with a lower bioaccumulation potential.

  18. On the Immersion Liquid Evaporation Method Based on the Dynamic Sweep of Magnitude of the Refractive Index of a Binary Liquid Mixture: A Case Study on Determining Mineral Particle Light Dispersion.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik

    2017-01-01

    This is a feasibility study of a modified immersion liquid technique for determining the refractive index of micro-sized particles. The practical challenge of the traditional liquid immersion method is to find or produce a suitable host liquid whose refractive index equals that of a solid particle. Usually, the immersion liquid method uses a set of immersion liquids with different refractive indices or continuously mixes two liquids with different refractive indices, e.g., using a pumping system. Here, the phenomenon of liquid evaporation has been utilized in defining the time-dependent refractive index variation of the host liquid. From the spectral transmittance data measured during the evaporation process, the refractive index of a solid particle in the host liquid can be determined as a function of the wavelength. The method was tested using calcium fluoride (CaF2) particles with an immersion liquid mixed from diethyl ether and diffusion pump fluid. The dispersion data obtained were consistent with the literature values thus indicating the proper functioning of the proposed procedure.

  19. A comparison of methods for determining neutron detector efficiencies at medium energies

    NASA Astrophysics Data System (ADS)

    Watson, J. W.; Anderson, B. D.; Baldwin, A. R.; Lebo, C.; Flanders, B.; Pairsuwan, W.; Madey, R.; Foster, C. C.

    1983-10-01

    We compare the "Lithium Activation" (LiA) method and the "Isospin Clebsch-Gordan Ratio" (ICGR) method for determining detection efficiencies of neutrons between 100 and 160 MeV. Each method was used to determine the efficiency by relating a measured neutron yield to a cross section measured in another way: γ-ray activation cross sections for LiA; (p, p') cross sections from experiments at the Indiana University Cyclotron Facility for ICGR. Efficiencies determined by the two methods disagree substantially. Efficiencies calculated with the Monte Carlo code of Cecil et al. agree with the ICGR results. We conclude that the Lithium Activation method is inconsistent at these energies.

  20. Determination of the Exciton Binding Energy in CdSe Quantum Dots

    SciTech Connect

    Meulenberg, R; Lee, J; Wolcott, A; Zhang, J; Terminello, L; van Buuren, T

    2009-10-27

    The exciton binding energy (EBE) in CdSe quantum dots (QDs) has been determined using x-ray spectroscopy. Using x-ray absorption and photoemission spectroscopy, the conduction band (CB) and valence band (VB) edge shifts as a function of particle size have been determined and combined to obtain the true band gap of the QDs (i.e. without and exciton). These values can be compared to the excitonic gap obtained using optical spectroscopy to determine the EBE. The experimental EBE results are compared with theoretical calculations on the EBE and show excellent agreement.

  1. Moment Magnitude ( M W) and Local Magnitude ( M L) Relationship for Earthquakes in Northeast India

    NASA Astrophysics Data System (ADS)

    Baruah, Santanu; Baruah, Saurabh; Bora, P. K.; Duarah, R.; Kalita, Aditya; Biswas, Rajib; Gogoi, N.; Kayal, J. R.

    2012-11-01

    An attempt has been made to examine an empirical relationship between moment magnitude ( M W) and local magnitude ( M L) for the earthquakes in the northeast Indian region. Some 364 earthquakes that were recorded during 1950-2009 are used in this study. Focal mechanism solutions of these earthquakes include 189 Harvard-CMT solutions ( M W ≥ 4.0) for the period 1976-2009, 61 published solutions and 114 solutions obtained for the local earthquakes (2.0 ≤ M L ≤ 5.0) recorded by a 27-station permanent broadband network during 2001-2009 in the region. The M W- M L relationships in seven selected zones of the region are determined by linear regression analysis. A significant variation in the M W- M L relationship and its zone specific dependence are reported here. It is found that M W is equivalent to M L with an average uncertainty of about 0.13 magnitude units. A single relationship is, however, not adequate to scale the entire northeast Indian region because of heterogeneous geologic and geotectonic environments where earthquakes occur due to collisions, subduction and complex intra-plate tectonics.

  2. Effect of bolus fluid intake on energy expenditure values as determined by the doubly labeled water method

    NASA Technical Reports Server (NTRS)

    Drews, D.; Stein, T. P.

    1992-01-01

    The doubly labeled water (DLW, 2H(2)18O) method is a highly accurate method for measuring energy expenditure (EE). A possible source of error is bolus fluid intake before body water sampling. If there is bolus fluid intake immediately before body water sampling, the saliva may reflect the ingested water disproportionately, because the ingested water may not have had time to mix fully with the body water pool. To ascertain the magnitude of this problem, EE was measured over a 5-day period by the DLW method. Six subjects were dosed with 2H2(18)O. After the reference salivas for the two-point determination were obtained, subjects drank water (700-1,000 ml), and serial saliva samples were collected for the next 3 h. Expressing the postbolus saliva enrichments as a percentage of the prebolus value, we found 1) a minimum in the saliva isotopic enrichments were reached at approximately 30 min with the minimum for 2H (95.48 +/- 0.43%) being significantly lower than the minimum for 18O (97.55 +/- 0.44, P less than 0.05) and 2) EE values calculated using the postbolus isotopic enrichments are appreciably higher (19.9 +/- 7.5%) than the prebolus reference values. In conclusion, it is not advisable to collect saliva samples for DLW measurements within approximately 1 h of bolus fluid intake.

  3. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, H.W.; Kaita, R.

    1983-09-26

    Objects of the present invention are provided for a particle beam having a full energy component at least as great as 25 keV, which is directed onto a beamstop target, such that Rutherford backscattering, preferably near-surface backscattering occurs. The geometry, material composition and impurity concentration of the beam stop are predetermined, using any suitable conventional technique. The energy-yield characteristic response of backscattered particles is measured over a range of angles using a fast ion electrostatic analyzer having a microchannel plate array at its focal plane. The knee of the resulting yield curve, on a plot of yield versus energy, is analyzed to determine the energy species components of various beam particles having the same mass.

  4. Primary electron spectrometer, 18:63 UE: Electrostatic analyzer description and energy spectrum determination

    NASA Technical Reports Server (NTRS)

    Pongratz, M. B.

    1973-01-01

    The primary electron spectrometer used to detect auroral electrons on sounding rocket 18:63 UE is described. The spectrometer used exponentially decaying positive and negative voltages applied to spherical deflection plates for energy analysis. A method for determining the analyzer response which does not require the assumptions that the ratio of plate separation to mean radius, the entrance or the exit apertures are small is described. By comparison with experiment it is shown that the effect of neither entrance nor exit collimation can be ignored. The experimental and calculated values of the limiting orbits agree well. A non-iterative technique of unfolding the electron differential energy spectrum is described. This method does not require the usual assumption of a flat or histogram-type energy spectrum. The unfolded spectra using both this technique and one which assumes a flat spectrum are compared to actual input spectra. This technique is especially useful in analyzing peaked auroral electron energy spectra.

  5. LDEF (Flight), M0002-01 : Trapped-Proton Energy Spectrum Determination, Tray G12

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The flight photograph was taken from the Orbiter aft flight deck during the LDEF retrieval prior to berthing the LDEF in the Orbiter cargo bay. The Trapped Proton Energy Spectrum Determination Experiment is one of four experiments located in a three (3) inch deep LDEF end center tray. Additional Trapped Proton Energy Experi ments are located in peripheral LDEF integrated experiment tray in the D03 and D09 tray loca tions. The Trapped Proton Energy experiment, located in the upper left quadrant of the integrated tray, appears to be intact with with no visible damage. A brown discoloration is visible on the Trapped Proton Energy experiment detector housings and along the upper surfaces of the experiment sup port structure. The discoloration around the outer edges of the experiment mounting plate appears to be a much lighter tan color. The sub-experiments are intact and secure with no visible dam age.

  6. Determination of lipid asymmetry in human red cells by resonance energy transfer

    SciTech Connect

    Connor, J.; Schroit, A.J.

    1987-08-11

    This report describes the application of a resonance energy transfer assay to determine the transbilayer distribution of /sup 125/I-labelled 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD)-labelled lipid analogues. The validity of this technique was established by determining the relationship between the distance of separation of lissamine rhodamine B labeled phosphatidylethanolamine (N-Rho-PE) acceptor lipid and NBD-labeled donor lipid and energy transfer efficiency. By determination of the distance between probes at 50% transfer efficiency (R/sub 0/), the distance between fluorophores distributed symmetrically (outer leaflet label) and asymmetrically in artificially generated vesicles was determined. Calculation of the average distance between probes revealed a 14-A difference between NBD-lipid and N-Rho-PE localized in the same leaflet and in opposing leaflets, respectively. Application of this technique to the study of the transbilayer distribution of NBD-lipid in human red blood cells (RBC) showed that exogenously supplied NBD-phosphatidylserine (NBD-PS) was selectively transported to the inner leaflet, whereas NBD-phosphatidylcholine remained in outer leaflet. In contrast, pretreatment of the RBC with diamide (a SH cross-linking reagent) blocked the transport of NBD-PS. The absence or presence of NBD-PS in the outer leaflet was independently verified by employing back-exchange, trinitrobenzenesulfonic acid derivatization, and decarboxylation with PS decarboxylase experiments. These control experiments yielded results which confirmed the lipid distributions determined by the resonance energy transfer assay.

  7. Determination of the Solar Energy Microclimate of the United States Using Satellite Data

    NASA Technical Reports Server (NTRS)

    Vonderharr, T. H.; Ellis, J. S.

    1978-01-01

    The determination of total solar energy reaching the ground over the United States using measurements from meteorological satellites as the basic data set is examined. The methods of satellite data processing are described. Uncertainty analysis and comparison of results with well calibrated surface pyranometers are used to estimate the probable error in the satellite-based determination of ground insolation. It is 10 to 15 percent for daily information, and about 5 percent for monthly values. However, the natural space and time variability of insolation is much greater than the uncertainty in the method. The most important aspect of the satellite-based technique is the ability to determine the solar energy reaching the ground over small areas where no other measurements are available. Thus, it complements the widely spaced solar radiation measurement network of ground stations.

  8. The albedo, effective temperature, and energy balance of Neptune, as determined from Voyager data

    NASA Technical Reports Server (NTRS)

    Pearl, J. C.; Conrath, B. J.

    1991-01-01

    Data from the Voyager infrared spectrometer and radiometer (IRIS) investigation are used in determining the albedo, effective temperature, and energy balance of Neptune. From broadband radiometric observations made at phase angles of 14 deg and 134 deg, together with measurements at intermediate phase angles from the literature, an orbital mean value of 0.290 +/-0.067 is obtained for the bolometric Bond albedo. This yields an equilibrium temperature Teq = 46.6 +/-1.1 K. From thermal spectra obtained over latitudes from pole to pole an effective temperature Teff = 59.3 +/-0.8 K is derived. This represents a substantial improvement over previously determined values. The energy balance of Neptune is therefore E = 2.61 +/-0.28, which is in agreement with previous results. The reduced uncertainty in this value is due to the improved determination of the effective temperature.

  9. Novel validated spectrofluorimetric methods for the determination of taurine in energy drinks and human urine.

    PubMed

    Sharaf El Din, M K; Wahba, M E K

    2015-03-01

    Two sensitive, selective, economic and validated spectrofluorimetric methods were developed for the determination of taurine in energy drinks and spiked human urine. Method Ι is based on fluorimetric determination of the amino acid through its reaction with Hantzsch reagent to form a highly fluorescent product measured at 490 nm after excitation at 419 nm. Method ΙΙ is based on the reaction of taurine with tetracyanoethylene yielding a fluorescent charge transfer complex, which was measured at λex /em of (360 nm/450 nm). The proposed methods were subjected to detailed validation procedures, and were statistically compared with the reference method, where the results obtained were in good agreement. Method Ι was further applied to determine taurine in energy drinks and spiked human urine giving promising results. Moreover, the stoichiometry of the reactions was studied, and reaction mechanisms were postulated.

  10. Developmental Foundations of Children's Fraction Magnitude Knowledge.

    PubMed

    Mou, Yi; Li, Yaoran; Hoard, Mary K; Nugent, Lara D; Chu, Felicia W; Rouder, Jeffrey N; Geary, David C

    2016-01-01

    The conceptual insight that fractions represent magnitudes is a critical yet daunting step in children's mathematical development, and the knowledge of fraction magnitudes influences children's later mathematics learning including algebra. In this study, longitudinal data were analyzed to identify the mathematical knowledge and domain-general competencies that predicted 8(th) and 9(th) graders' (n=122) knowledge of fraction magnitudes and its cross-grade gains. Performance on the fraction magnitude measures predicted 9(th) grade algebra achievement. Understanding and fluently identifying the numerator-denominator relation in 7(th) grade emerged as the key predictor of later fraction magnitudes knowledge in both 8(th) and 9(th) grades. Competence at using fraction procedures, knowledge of whole number magnitudes, and the central executive contributed to 9(th) but not 8(th) graders' fraction magnitude knowledge, and knowledge of whole number magnitude contributed to cross-grade gains. The key results suggest fluent processing of numerator-denominator relations presages students' understanding of fractions as magnitudes and that the integration of whole number and fraction magnitudes occurs gradually.

  11. Determining the Magnitude of Neutron and Galactic Cosmic Ray (GCR) Fluxes at the Moon using the Lunar Exploration Neutron Detector during the Historic Space-Age Era of High GCR Flux

    NASA Astrophysics Data System (ADS)

    Chin, G.; Sagdeev, R.; Boynton, W. V.; Mitrofanov, I. G.; Milikh, G. M.; Su, J. J.; Livengood, T. A.; McClanahan, T. P.; Evans, L.; Starr, R. D.; litvak, M. L.; Sanin, A.

    2013-12-01

    The Lunar Reconnaissance Orbiter (LRO) was launched June 18, 2009 during an historic space-age era of minimum solar activity [1]. The lack of solar sunspot activity signaled a complex set of heliospheric phenomena [2,3,4] that also gave rise to a period of unprecedentedly high Galactic Cosmic Ray (GCR) flux [5]. These events coincided with the primary mission of the Lunar Exploration Neutron Detector (LEND, [6]), onboard LRO in a nominal 50-km circular orbit of the Moon [7]. Methods to calculate the emergent neutron albedo population using Monte Carlo techniques [8] rely on an estimate of the GCR flux and spectra calibrated at differing periods of solar activity [9,10,11]. Estimating the actual GCR flux at the Moon during the LEND's initial period of operation requires a correction using a model-dependent heliospheric transport modulation parameter [12] to adjust the GCR flux appropriate to this unique solar cycle. These corrections have inherent uncertainties depending on model details [13]. Precisely determining the absolute neutron and GCR fluxes is especially important in understanding the emergent lunar neutrons measured by LEND and subsequently in estimating the hydrogen/water content in the lunar regolith [6]. LEND is constructed with a set of neutron detectors to meet differing purposes [6]. Specifically there are two sets of detector systems that measure the flux of epithermal neutrons: a) the uncollimated Sensor for Epi-Thermal Neutrons (SETN) and b) the Collimated Sensor for Epi-Thermal Neutrons (CSETN). LEND SETN and CSETN observations form a complementary set of simultaneous measurements that determine the absolute scale of emergent lunar neutron flux in an unambiguous fashion and without the need for correcting to differing solar-cycle conditions. LEND measurements are combined with a detailed understanding of the sources of instrumental back-ground, and the performance of CSETN and SETN. This comparison allows us to calculate a constant scale factor

  12. Induced earthquake magnitudes are as large as (statistically) expected

    NASA Astrophysics Data System (ADS)

    Elst, Nicholas J.; Page, Morgan T.; Weiser, Deborah A.; Goebel, Thomas H. W.; Hosseini, S. Mehran

    2016-06-01

    A major question for the hazard posed by injection-induced seismicity is how large induced earthquakes can be. Are their maximum magnitudes determined by injection parameters or by tectonics? Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. However, if induced earthquakes occur on tectonic faults oriented favorably with respect to the tectonic stress field, then they may be limited only by the regional tectonics and connectivity of the fault network. In this study, we show that the largest magnitudes observed at fluid injection sites are consistent with the sampling statistics of the Gutenberg-Richter distribution for tectonic earthquakes, assuming no upper magnitude bound. The data pass three specific tests: (1) the largest observed earthquake at each site scales with the log of the total number of induced earthquakes, (2) the order of occurrence of the largest event is random within the induced sequence, and (3) the injected volume controls the total number of earthquakes rather than the total seismic moment. All three tests point to an injection control on earthquake nucleation but a tectonic control on earthquake magnitude. Given that the largest observed earthquakes are exactly as large as expected from the sampling statistics, we should not conclude that these are the largest earthquakes possible. Instead, the results imply that induced earthquake magnitudes should be treated with the same maximum magnitude bound that is currently used to treat seismic hazard from tectonic earthquakes.

  13. A Bayesian perspective on magnitude estimation.

    PubMed

    Petzschner, Frederike H; Glasauer, Stefan; Stephan, Klaas E

    2015-05-01

    Our representation of the physical world requires judgments of magnitudes, such as loudness, distance, or time. Interestingly, magnitude estimates are often not veridical but subject to characteristic biases. These biases are strikingly similar across different sensory modalities, suggesting common processing mechanisms that are shared by different sensory systems. However, the search for universal neurobiological principles of magnitude judgments requires guidance by formal theories. Here, we discuss a unifying Bayesian framework for understanding biases in magnitude estimation. This Bayesian perspective enables a re-interpretation of a range of established psychophysical findings, reconciles seemingly incompatible classical views on magnitude estimation, and can guide future investigations of magnitude estimation and its neurobiological mechanisms in health and in psychiatric diseases, such as schizophrenia.

  14. Evaporation determined by the energy-budget method for Mirror Lake, New Hampshire

    USGS Publications Warehouse

    Winter, T.C.; Buso, D.C.; Rosenberry, D.O.; Likens, G.E.; Sturrock, A.M.; Mau, D.P.

    2003-01-01

    Evaporation was determined by the energy-budget method for Mirror Lake during the open water periods of 1982-1987. For all years, evaporation rates were low in spring and fall and highest during the summer. However, the times of highest evaporation rates varied during the 6 yr. Evaporation reached maximum rates in July for three of the years, in June for two of the years, and in August for one of the years. The highest evaporation rate during the 6-yr study was 0.46 cm d-1 during 27 May-4 June 1986 and 15-21 July 1987. Solar radiation and atmospheric radiation input to the lake and long-wave radiation emitted from the lake were by far the largest energy fluxes to and from the lake and had the greatest effect on evaporation rates. Energy advected to and from the lake by precipitation, surface water, and ground water had little effect on evaporation rates. In the energy-budget method, average evaporation rates are determined for energy-budget periods, which are bounded by the dates of thermal surveys of the lake. Our study compared evaporation rates calculated for short periods, usually ???1 week, with evaporation rates calculated for longer periods, usually ???2 weeks. The results indicated that the shorter periods showed more variability in evaporation rates, but seasonal patterns, with few exceptions, were similar.

  15. Tactical approach for determining impact of energy development on wildlife in Wyoming: special report number 1

    USGS Publications Warehouse

    Keenlyne, Kent D.

    1977-01-01

    The U.S. Fish and Wildlife Service, within the Department of Interior, is responsible for providing national leadership in the management and protection of the nation's fish and wildlife resources, their habitat, and environment. Specifically, the Office of Biological Services obtains and assimilates biological and environmental data and identifies additional informational needs and means necessary to provide biological input into major natural resource decisions. The Wyoming Coal Coordinator for the U.S Fish and Wildlife Service is assigned the duty of becoming attuned to the ramifications of energy development within the State and its potential impact upon wildlife. In order for the Coal Coordinator to fulfill his obligations in becoming an "energy expert" for the Fish and Wildlife Service in Wyoming, it will be necessary for him to develop a means of obtaining an overview of the energy development situation. Similarly, in order for him to identify those area of critical concern to wildlife resources, it will be necessary that he determine or predict where energy development will occur, the nature of this development, and the cumulative effects of energy development upon wildlife. Likewise, in order to identify where wildlife data gaps occur and to determine future wildlife information needs, it will be necessary for him to compile and synthesize relevant existing data resources. It therefore becomes apparent that a need exists for him to gather and interpret pertinent information in a systematic way to meet these ends. The following is an account of the tactical number in which the Wyoming Coal Coordinator intends to approach the duties outlined above the rationale to be followed in meeting these needs. First, a general discussion on assessing impacts on wildlife is provided to form a basis for obtaining an overview. Secondly, a series of reports which will be generated to summarize existing information and to help identify potential problem areas is outlined

  16. What Is the Meaning of the Physical Magnitude "Work"?

    ERIC Educational Resources Information Center

    Kanderakis, Nikos

    2014-01-01

    Usually, in physics textbooks, the physical magnitude "work" is introduced as the product of a force multiplied by its displacement, in relation to the transfer of energy. In other words, "work" is presented as an internal affair of physics theory, while its relation to the world of experience, that is its empirical meaning, is…

  17. Determination of the area density and composition of alloy film using dual alpha particle energy loss

    NASA Astrophysics Data System (ADS)

    Ma, Xiaojun; Li, Bo; Gao, Dangzhong; Xu, Jiayun; Tang, Yongjian

    2017-02-01

    A novel method based on dual α-particles energy loss (DAEL) is proposed for measuring the area density and composition of binary alloy films. In order to obtain a dual-energy α-particles source, an ingenious design that utilizes the transmitted α-particles traveling the thin film as a new α-particles source is presented. Using the DAEL technique, the area density and composition of Au/Cu film are determined accurately with an uncertainty of better than 10%. Finally, some measures for improving the combined uncertainty are discussed.

  18. Proposed Molecular Beam Determination of Energy Partition in the Photodissociation of Polyatomic Molecules

    DOE R&D Accomplishments Database

    Zare, P. N.; Herschbach, D. R.

    1964-01-29

    Conventional photochemical experiments give no information about the partitioning of energy between translational recoil and internal excitation of the fragment molecules formed in photodissociation of a polyatomic molecule. In a molecular beam experiment, it becomes possible to determine the energy partition from the form of the laboratory angular distribution of one of the photodissociation products. A general kinematic analysis is worked out in detail, and the uncertainty introduced by the finite angular resolution of the apparatus and the velocity spread in the parent beam is examined. The experimental requirements are evaluated for he photolysis of methyl iodide by the 2537 angstrom Hg line.

  19. Determination of solar proton fluxes and energies at high solar latitudes by UV radiation measurements

    NASA Technical Reports Server (NTRS)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The latitudinal variation of the solar proton flux and energy causes a density increase at high solar latitudes of the neutral gas penetrating the heliosphere. Measurements of the neutral density by UV resonance radiation observations from interplanetary spacecraft thus permit deductions on the dependence of the solar proton flux on heliographic latitude. Using both the results of Mariner 10 measurements and of other off-ecliptic solar wind observations, the values of the solar proton fluxes and energies at polar heliographic latitudes are determined for several cases of interest. The Mariner 10 analysis, together with IPS results, indicate a significant decrease of the solar proton flux at polar latitudes.

  20. Some energy considerations in gamma ray burst location determinations by an anisotropic array of detectors

    NASA Technical Reports Server (NTRS)

    Young, J. H.

    1986-01-01

    The anisotropic array of detectors to be used in the Burst and Transient Experiment (BATSE) for locating gamma ray burst sources is examined with respect to its ability to locate those sources by means of the relative response of its eight detectors. It was shown that the energy-dependent attenuation effects of the aluminum window covering each detector has a significant effect on source location determinations. Location formulas were derived as a function of detector counts and gamma ray energies in the range 50 to 150 keV. Deviation formulas were derived and serve to indicate the location error that would be cuased by ignoring the influence of the passive absorber.

  1. Households' pro-environmental habits and investments in water and energy consumption: determinants and relationships.

    PubMed

    Martínez-Espiñeira, Roberto; García-Valiñas, María A; Nauges, Céline

    2014-01-15

    Economic instruments have received a lot of attention in the literature dealing with water and energy demand management. However factors driving households' behaviour/habits and investment in water-saving and energy-saving equipment have been seldom studied. The main purpose of this article is to contribute to this literature by analysing the main determinants of a set of households' conservation habits and pro-environmental investment decisions. Using household-level data from Spain, we show that conservation habits and the purchase of resource-efficient appliances are not independent.

  2. Determining the energy distribution of traps in insulating thin films using the thermally stimulated current technique

    NASA Astrophysics Data System (ADS)

    Miller, S. L.; Fleetwood, D. M.; McWhorter, P. J.

    1992-08-01

    We have developed a simple method to analyze and predict the thermally stimulated current (TSC) of charged insulating thin films experiencing arbitrary time-dependent thermal environments and high electric fields. The method allows greater flexibility in experimental conditions than previous work, and includes the effect of field-induced barrier lowering on the trap energy scale. Trap distributions for irradiated metal-SiO2-Si capacitors were accurately determined from TSC measurements spanning a factor of 50 in heating rate, providing an improved estimate of trapped-hole energies in SiO2 (peak ~1.8 eV).

  3. Pitch-angle Scattering of Energetic Charged Particles in Nearly Constant Magnitude Magnetic Turbulence

    NASA Astrophysics Data System (ADS)

    Sun, P.; Jokipii, J. R.; Giacalone, J.

    2016-08-01

    We use a method developed by Roberts that optimizes the phase angles of an ensemble of plane waves with amplitudes determined from a Kolmogorov-like power spectrum, to construct magnetic field vector fluctuations having nearly constant magnitude and large variances in its components. This is a representation of the turbulent magnetic field consistent with that observed in the solar wind. Charged-particle pitch-angle diffusion coefficients are determined by integrating the equations of motion for a large number of charged particles moving under the influence of forces from our predefined magnetic field. We tested different cases by varying the kinetic energy of the particles (E p) and the turbulent magnetic field variance ({σ }B2). For each combination of E p and {σ }B2, we tested three different models: (1) the so-called “slab” model, where the turbulent magnetic field depends on only one spatial coordinate and has significant fluctuations in its magnitude (b=\\sqrt{δ {B}x2(z)+δ {B}y2(z)+{B}02}) (2) the slab model optimized with nearly constant magnitude b; and (3) the slab model turbulent magnetic field with nearly constant magnitude plus a “variance-conserving” adjustment. In the last case, this model attempts to conserve the variance of the turbulent components ({σ }{Bx}2+{σ }{By}2), which is found to decrease during the optimization with nearly constant magnitude. We found that there is little or no effect on the pitch-angle diffusion coefficient {D}μ μ between models 1 and 2. However, the result from model 3 is significantly different. We also introduce a new method to accurately determine the pitch-angle diffusion coefficients as a function of μ.

  4. Energy determination of gamma-ray induced air showers observed by an extensive air shower array

    NASA Astrophysics Data System (ADS)

    Kawata, K.; Sako, T. K.; Ohnishi, M.; Takita, M.; Nakamura, Y.; Munakata, K.

    2017-03-01

    We propose a new energy estimator to determine the energies of gamma-ray induced air showers based on the lateral distribution of extensive air showers in the energy range between 10 TeV and 1000 TeV. We carry out a detailed Monte Carlo simulation assuming the Tibet air shower array located at an altitude of 4,300 m above sea level. We define S50, which denotes the particle density at 50 m from the air shower axis, as a new energy estimator. Using S50, the energy resolution is estimated to be approximately 16 % at 100 TeV in the range of the zenith angle 𝜃 < 20∘. We find S50 giving a better energy resolution than 27 % for the air shower size (N e) and 30 % for the sum of detected particles ( \\sum ρ ), which have been used so far, at 100 TeV. We also compare the reconstructed age distributions of gamma-ray induced air showers and hadronic cosmic-ray induced air showers. The age parameter may help to discriminate between primary gamma rays and hadronic cosmic rays.

  5. Providing for energy efficiency in homes and small buildings. Part II. Determining amount of energy lost or gained in a building

    SciTech Connect

    1980-06-01

    The training program is designed to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy-efficient buildings. There are 3 parts to the training program. They are entitled: Understanding and Practicing Energy Conservation in Buildings; Determining Amount of Energy Lost or Gained in a Building; and Determining Which Practices Are Most Efficient and Installing Materials. For Part Two, it is recommended that cooling and heating load calculation manual (GRP 158) ASHRAE, 1979, be used. Specific subjects covered in Part II are: Terms Used to Measure Energy in Buildings; Understanding Heat Losses and Gains in Buildings; Estimating Heating Loads in Buildings; Special Applications for Estimating Cooling Loads in Buildings; Estimating Cooling Loads in Buildings; and Determining Cost Benefits of Using Energy-Saving Practices.

  6. Estimation of the magnitudes and epicenters of Philippine historical earthquakes

    NASA Astrophysics Data System (ADS)

    Bautista, Maria Leonila P.; Oike, Kazuo

    2000-02-01

    The magnitudes and epicenters of Philippine earthquakes from 1589 to 1895 are estimated based on the review, evaluation and interpretation of historical accounts and descriptions. The first step involves the determination of magnitude-felt area relations for the Philippines for use in the magnitude estimation. Data used were the earthquake reports of 86, recent, shallow events with well-described effects and known magnitude values. Intensities are assigned according to the modified Mercalli intensity scale of I to XII. The areas enclosed by Intensities III to IX [ A(III) to A(IX)] are measured and related to magnitude values. The most robust relations are found for magnitudes relating to A(VI), A(VII), A(VIII) and A(IX). Historical earthquake data are obtained from primary sources in libraries in the Philippines and Spain. Most of these accounts were made by Spanish priests and officials stationed in the Philippines during the 15th to 19th centuries. More than 3000 events are catalogued, interpreted and their intensities determined by considering the possible effects of local site conditions, type of construction and the number and locations of existing towns to assess completeness of reporting. Of these events, 485 earthquakes with the largest number of accounts or with at least a minimum report of damage are selected. The historical epicenters are estimated based on the resulting generalized isoseismal maps augmented by information on recent seismicity and location of known tectonic structures. Their magnitudes are estimated by using the previously determined magnitude-felt area equations for recent events. Although historical epicenters are mostly found to lie on known tectonic structures, a few, however, are found to lie along structures that show not much activity during the instrumented period. A comparison of the magnitude distributions of historical and recent events showed that only the period 1850 to 1900 may be considered well-reported in terms of

  7. CLUST - EVAP Monte Carlo Simulation Applications for Determining Effective Energy Deposition in Silicon by High Energy Protons

    NASA Technical Reports Server (NTRS)

    ONeill, Pat M.

    2000-01-01

    The CLUST-EVAP is a Monte Carlo simulation of the interaction of high energy (25 - 400 MeV) protons with silicon nuclei. The initial nuclear cascade stage is modeled using the CLUST model developed by Indiana University over 30 years ago. The second stage, in which the excited nucleus evaporates particles in random directions, is modeled according to the evaporation algorithm provided by H. H. K. Tang of IBM. Using the CLUST-EVAP code to model fragment produ6tion and the Vavilov-Landau theory to model fluctuations in direct ionization in thin silicon layers, we have predicted energy deposition in silicon components for various geometrical configurations. We have compared actual measurements with model predictions for geometry's such as single, thin silicon particle detectors, telescopic particle detectors flown in space to measure the environment, and thin sensitive volumes of modern micro-electronic components. We have recently compared the model predictions with actual measurements made by the DOSTEL spectrometer flown in the Shuttle payload bay on STS-84. The model faithfully reproduces the features and aids in interpretation of flight results of this instrument. We have also applied the CLUST-EVAP model to determine energy deposition in the thin sensitive volumes of modern micro-electronic components. We have accessed the ability of high energy (200 MeV) protons to induce latch-up in certain devices that are known to latch up in heavy ion environments. However, some devices are not nearly as susceptible to proton induced latch-up as expected according to their measured heavy ion latch-up cross sections. The discrepancy is believed to be caused by the limited range of the proton-silicon interaction fragments. The CLUST-EV AP model was used to determine a distribution of these fragments and their range and this is compared to knowledge of the ranges required based on the known device structure. This information is especially useful in accessing the risk to on

  8. Threshold magnitude for Ionospheric TEC response to earthquakes

    NASA Astrophysics Data System (ADS)

    Perevalova, N. P.; Sankov, V. A.; Astafyeva, E. I.; Zhupityaeva, A. S.

    2014-02-01

    We have analyzed ionospheric response to earthquakes with magnitudes of 4.1-8.8 which occurred under quiet geomagnetic conditions in different regions of the world (the Baikal region, Kuril Islands, Japan, Greece, Indonesia, China, New Zealand, Salvador, and Chile). This investigation relied on measurements of total electron content (TEC) variations made by ground-based dual-frequency GPS receivers. To perform the analysis, we selected earthquakes with permanent GPS stations installed close by. Data processing has revealed that after 4.1-6.3-magnitude earthquakes wave disturbances in TEC variations are undetectable. We have thoroughly analyzed publications over the period of 1965-2013 which reported on registration of wave TIDs after earthquakes. This analysis demonstrated that the magnitude of the earthquakes having a wave response in the ionosphere was no less than 6.5. Based on our results and on the data from other researchers, we can conclude that there is a threshold magnitude (near 6.5) below which there are no pronounced earthquake-induced wave TEC disturbances. The probability of detection of post-earthquake TIDs with a magnitude close to the threshold depends strongly on geophysical conditions. In addition, reliable identification of the source of such TIDs generally requires many GPS stations in an earthquake zone. At low magnitudes, seismic energy is likely to be insufficient to generate waves in the neutral atmosphere which are able to induce TEC disturbances observable at the level of background fluctuations.

  9. A probabilistic neural network for earthquake magnitude prediction.

    PubMed

    Adeli, Hojjat; Panakkat, Ashif

    2009-09-01

    A probabilistic neural network (PNN) is presented for predicting the magnitude of the largest earthquake in a pre-defined future time period in a seismic region using eight mathematically computed parameters known as seismicity indicators. The indicators considered are the time elapsed during a particular number (n) of significant seismic events before the month in question, the slope of the Gutenberg-Richter inverse power law curve for the n events, the mean square deviation about the regression line based on the Gutenberg-Richter inverse power law for the n events, the average magnitude of the last n events, the difference between the observed maximum magnitude among the last n events and that expected through the Gutenberg-Richter relationship known as the magnitude deficit, the rate of square root of seismic energy released during the n events, the mean time or period between characteristic events, and the coefficient of variation of the mean time. Prediction accuracies of the model are evaluated using three different statistical measures: the probability of detection, the false alarm ratio, and the true skill score or R score. The PNN model is trained and tested using data for the Southern California region. The model yields good prediction accuracies for earthquakes of magnitude between 4.5 and 6.0. The PNN model presented in this paper complements the recurrent neural network model developed by the authors previously, where good results were reported for predicting earthquakes with magnitude greater than 6.0.

  10. Evaluation on determination of iodine in coal by energy dispersive X-ray fluorescence

    USGS Publications Warehouse

    Wang, B.; Jackson, J.C.; Palmer, C.; Zheng, B.; Finkelman, R.B.

    2005-01-01

    A quick and inexpensive method of relative high iodine determination from coal samples was evaluated. Energy dispersive X-ray fluorescence (EDXRF) provided a detection limit of about 14 ppm (3 times of standard deviations of the blank sample), without any complex sample preparation. An analytical relative standard deviation of 16% was readily attainable for coal samples. Under optimum conditions, coal samples with iodine concentrations higher than 5 ppm can be determined using this EDXRF method. For the time being, due to the general iodine concentrations of coal samples lower than 5 ppm, except for some high iodine content coal, this method can not effectively been used for iodine determination. More work needed to meet the requirement of determination of iodine from coal samples for this method. Copyright ?? 2005 by The Geochemical Society of Japan.

  11. Determination of carrier yields for neutron activation analysis using energy dispersive X-ray spectrometry

    USGS Publications Warehouse

    Johnson, R.G.; Wandless, G.A.

    1984-01-01

    A new method is described for determining carrier yield in the radiochemical neutron activation analysis of rare-earth elements in silicate rocks by group separation. The method involves the determination of the rare-earth elements present in the carrier by means of energy-dispersive X-ray fluorescence analysis, eliminating the need to re-irradiate samples in a nuclear reactor after the gamma ray analysis is complete. Results from the analysis of USGS standards AGV-1 and BCR-1 compare favorably with those obtained using the conventional method. ?? 1984 Akade??miai Kiado??.

  12. Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications.

    PubMed

    Cardona, Claudia M; Li, Wei; Kaifer, Angel E; Stockdale, David; Bazan, Guillermo C

    2011-05-24

    Narrow bandgap conjugated polymers in combination with fullerene acceptors are under intense investigation in the field of organic photovoltaics (OPVs). The open circuit voltage, and thereby the power conversion efficiency, of the devices is related to the offset of the frontier orbital energy levels of the donor and acceptor components, which are widely determined by cyclic voltammetry. Inconsistencies have appeared in the use of the ferrocenium/ferrocene (Fc + /Fc) redox couple, as well as the values used for the absolute potentials of standard electrodes, which can complicate the comparison of materials properties and determination of structure/property relationships.

  13. Determination of the QCD Λ Parameter and the Accuracy of Perturbation Theory at High Energies.

    PubMed

    Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2016-10-28

    We discuss the determination of the strong coupling α_{MS[over ¯]}(m_{Z}) or, equivalently, the QCD Λ parameter. Its determination requires the use of perturbation theory in α_{s}(μ) in some scheme s and at some energy scale μ. The higher the scale μ, the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ parameter in three-flavor QCD, we perform lattice computations in a scheme that allows us to nonperturbatively reach very high energies, corresponding to α_{s}=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a 3% error in the Λ parameter, while data around α_{s}≈0.2 are clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  14. Transition energy and half-life determinations of photonuclear reaction products of erbium nuclei

    NASA Astrophysics Data System (ADS)

    Bayram, Tuncay; Akkoyun, Serkan; Uruk, Serhat; Dapo, Haris; Dulger, Fatih; Boztosun, Ismail

    Photon induced reactions are called as photonuclear reactions and used in many research fields of nuclear science and nuclear physics. The photonuclear data are used in many nuclear applications such as radiation shielding and protection, radiation transport analyses, reactor core design, activation analysis and nuclear waste transmutation. In the past, many studies had been devoted to extract photonuclear data covering the isotopic chart. However, there is still lack of existing data. In the present study, we have performed photonuclear reactions on erbium (Er) target by using clinical electron linear accelerators (cLINAC). By using measured residual activity of photonuclear reaction products of Er nuclei, we have determined the half-life of 161Er nucleus and transition energies of 161Ho nucleus. Also, new measurements on gamma-ray energies of the products have been determined accurately. Furthermore, this study shows that repurposed cLINAC with limited budget can contribute to the global nuclear science knowledge.

  15. Determination of the shape factor of (90)Sr by means of the cutoff energy yield method.

    PubMed

    Grau Carles, A; Kossert, K; Grau Malonda, A

    2008-01-01

    Usually, Kurie plots are used to analyze beta-spectra shape-factor functions measured by means of semiconductor and magnetic spectrometers. A drawback of these techniques is the occurrence of self-absorption within the samples through which the emission spectrum is altered. In liquid-scintillation samples self-absorption does not occur, but the poor energy resolution makes the analysis of the spectra difficult. To overcome this problem, two resolution-invariant observables are used for determining the shape-factor function of (90)Sr: (1) the maximum point energy and (2) the cutoff energy yield. The measured shape-factor function of (90)Sr agrees with the one which is predicted by theory for the first-forbidden unique transition.

  16. LDEF (Postflight), M0002-01 : Trapped-Proton Energy Spectrum Determination, Tray G12

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The postflight photograph was taken in SAEF II at KSC after the experiment tray was removed from the LDEF. The Trapped Proton Energy Spectrum Determination Experiment is one of four experiments located in a three (3) inch deep LDEF end center tray. Additional Trapped Proton Energy Experiments are located in periph eral LDEF integrated experiment trays in the D03 and D09 tray locations. The Trapped Proton Energy experiment, located in the upper left quadrant of the integrated tray, appears to be intact with no apparent physical damage. The brown discoloration appears to be much lighter in this photograph than in the flight photograph, however, the postflight photograph of the individual experiment verifies the darker discoloration in the flight photograph. The light ing angle and intensity appear to have washed out the colors in the upper half of the integrated tray. The sub experiments appear to be intact and secure.

  17. Decoding Group Vocalizations: The Acoustic Energy Distribution of Chorus Howls Is Useful to Determine Wolf Reproduction

    PubMed Central

    López-Bao, José Vicente; Llaneza, Luis; Fernández, Carlos; Font, Enrique

    2016-01-01

    Population monitoring is crucial for wildlife management and conservation. In the last few decades, wildlife researchers have increasingly applied bioacoustics tools to obtain information on several essential ecological parameters, such as distribution and abundance. One such application involves wolves (Canis lupus). These canids respond to simulated howls by emitting group vocalizations known as chorus howls. These responses to simulated howls reveal the presence of wolf litters during the breeding period and are therefore often used to determine the status of wolf populations. However, the acoustic structure of chorus howls is complex and discriminating the presence of pups in a chorus is sometimes difficult, even for experienced observers. In this study, we evaluate the usefulness of analyses of the acoustic energy distribution in chorus howls to identify the presence of pups in a chorus. We analysed 110 Iberian wolf chorus howls with known pack composition and found that the acoustic energy distribution is concentrated at higher frequencies when there are pups vocalizing. We built predictive models using acoustic energy distribution features to determine the presence of pups in a chorus, concluding that the acoustic energy distribution in chorus howls can be used to determine the presence of wolf pups in a pack. The method we outline here is objective, accurate, easily implemented, and independent of the observer's experience. These advantages are especially relevant in the case of broad scale surveys or when many observers are involved. Furthermore, the analysis of the acoustic energy distribution can be implemented for monitoring other social canids that emit chorus howls such as jackals or coyotes, provides an easy way to obtain information on ecological parameters such as reproductive success, and could be useful to study other group vocalizations. PMID:27144887

  18. Decoding Group Vocalizations: The Acoustic Energy Distribution of Chorus Howls Is Useful to Determine Wolf Reproduction.

    PubMed

    Palacios, Vicente; López-Bao, José Vicente; Llaneza, Luis; Fernández, Carlos; Font, Enrique

    2016-01-01

    Population monitoring is crucial for wildlife management and conservation. In the last few decades, wildlife researchers have increasingly applied bioacoustics tools to obtain information on several essential ecological parameters, such as distribution and abundance. One such application involves wolves (Canis lupus). These canids respond to simulated howls by emitting group vocalizations known as chorus howls. These responses to simulated howls reveal the presence of wolf litters during the breeding period and are therefore often used to determine the status of wolf populations. However, the acoustic structure of chorus howls is complex and discriminating the presence of pups in a chorus is sometimes difficult, even for experienced observers. In this study, we evaluate the usefulness of analyses of the acoustic energy distribution in chorus howls to identify the presence of pups in a chorus. We analysed 110 Iberian wolf chorus howls with known pack composition and found that the acoustic energy distribution is concentrated at higher frequencies when there are pups vocalizing. We built predictive models using acoustic energy distribution features to determine the presence of pups in a chorus, concluding that the acoustic energy distribution in chorus howls can be used to determine the presence of wolf pups in a pack. The method we outline here is objective, accurate, easily implemented, and independent of the observer's experience. These advantages are especially relevant in the case of broad scale surveys or when many observers are involved. Furthermore, the analysis of the acoustic energy distribution can be implemented for monitoring other social canids that emit chorus howls such as jackals or coyotes, provides an easy way to obtain information on ecological parameters such as reproductive success, and could be useful to study other group vocalizations.

  19. Determining Regional Sensitivity to Energy-Related Water Withdrawals in Minnesota

    NASA Astrophysics Data System (ADS)

    McCulloch, A.; Brauman, K. A.

    2015-12-01

    Minnesota has abundant freshwater resources, yet concerns about water-impacts of energy and mining development are increasing. Statewide, total annual water withdrawals have increased, and, in some watersheds, withdrawals make up a large fraction of available water. The energy and mining sectors play a critical role in determining water availability, as water is used to irrigate biofuel feedstock crops, cool thermoelectric plants, and process and transport fuels and iron ore. We evaluated the Minnesota Department of Natural Resources (DNR) Water and Reporting System (MPARS) dataset (1988-2014) to identify regions where energy and mining-related water withdrawals are high or where they are increasing. The energy and mining sectors account for over 65 percent of total water extractions in Minnesota, but this percentage is greater in some regions. In certain southern and northeastern Minnesota watersheds, these extractions account for 90 percent of total water demand. Sensitivity to these demands is not dependent on total water demand alone, and is also not uniform among watersheds. We identified and evaluated factors influencing sensitivity, including population, extraction type (surface water or groundwater), percentage of increased demand, and whether withdrawals are consumptive or not. We determined that southern Minnesota is particularly sensitive to increased water demands, because of growing biofuel and sand extraction industries (the products of which are used in hydraulic fracturing). In the last ten years, ethanol production in Minnesota has increased by 440 percent, and over fifteen refineries (each with a capacity over 1.1 billion gallons), have been built. These users primarily extract from surface water bodies within a few watersheds, compromising local supplies. As these energy-related industries continue to grow, so will the demand for freshwater resources. Determining regional sensitivity to increased demands will allow policy-makers to manage the

  20. Weighing the evidence: energy determinations across the spectrum of kidney disease.

    PubMed

    Byham-Gray, Laura D

    2006-01-01

    Evidence based guidelines for medical nutrition therapy (MNT) in chronic kidney disease (CKD) recommend a range of caloric levels, dependent on age and level of kidney function. Recent literature has explored whether current research findings still support these earlier conclusions, and if new energy determinations for CKD are warranted. This review will take a brief look at the history of the controversy, examine the research evidence at the time of practice guideline development, investigate emerging research, and discuss implications for additional scientific inquiry.

  1. Determining the Importance of Energy Transfer between Magnetospheric Regions via MHD Waves using Constellations of Spacecraft

    NASA Technical Reports Server (NTRS)

    Cattell, Cynthia A.

    2004-01-01

    This grant was focused on research in two specific areas: (1) development of new techniques and software for assimilation, analysis and visualization of data from multiple satellites making in-situ measurements; and (2) determination of the role of MHD waves in energy transport during storms and substorms. Results were obtained in both areas and presented at national meetings and in publications. The talks and papers that were supported in part or fully by this grant are listed in this paper.

  2. Representations of the Magnitudes of Fractions

    ERIC Educational Resources Information Center

    Schneider, Michael; Siegler, Robert S.

    2010-01-01

    We tested whether adults can use integrated, analog, magnitude representations to compare the values of fractions. The only previous study on this question concluded that even college students cannot form such representations and instead compare fraction magnitudes by representing numerators and denominators as separate whole numbers. However,…

  3. Reward Magnitude Effects on Temporal Discrimination

    ERIC Educational Resources Information Center

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2010-01-01

    Changes in reward magnitude or value have been reported to produce effects on timing behavior, which have been attributed to changes in the speed of an internal pacemaker in some instances and to attentional factors in other cases. The present experiments therefore aimed to clarify the effects of reward magnitude on timing processes. In Experiment…

  4. Magnitude Anomalies and Propagation of Local Phases

    DTIC Science & Technology

    1983-01-31

    statistically significant variation of magnitude anomalies versus one of this above parameters. A contrario, we observed a significant dependance between...enough to demand a more detailed analysis. III - Local dependance of magnitude anomalies. A smoothing of our data on all quakes originating in the same

  5. Determination of Energy Band Alignment in Ultrathin Hf-based Oxide/Pt System

    NASA Astrophysics Data System (ADS)

    Ohta, A.; Murakami, H.; Higashi, S.; Miyazaki, S.

    2013-03-01

    Effect of incorporating a third element into HfO2 on the electronic structures has been studied by high resolution x-ray photoelectron spectroscopy (XPS). Hf-IIIa (La, Y, Gd, and Dy) oxide and Hf-Ti oxide films were deposited on a Pt layer by metal organic chemical vapor deposition (MOCVD) and co-sputtering and followed by post-deposition annealing in O2 ambience at 500°C. The energy bandgap (Eg) of these Hf-based oxide films was determined by analyzing the energy loss spectra of O 1s photoelectrons in consideration of the overlap with Hf 4s core-line signals. From analyses of the valence band signals and the cut-off energy for photoelectrons, the valence band offset between the Hf based-oxide, and the Pt electrode and the work function value of the Pt layer were evaluated. By combining the oxide bandgap values, the valence band line-ups, and the Pt work function value, the energy band profile of the Hf-based oxide/Pt has been determined.

  6. Adsorption energies and prefactor determination for CH3OH adsorption on graphite.

    PubMed

    Doronin, M; Bertin, M; Michaut, X; Philippe, L; Fillion, J-H

    2015-08-28

    In this paper, we have studied adsorption and thermal desorption of methanol CH3OH on graphite surface, with the specific aim to derive from experimental data quantitative parameters that govern the desorption, namely, adsorption energy Eads and prefactor ν of the Polanyi-Wigner law. In low coverage regime, these two values are interconnected and usually the experiments can be reproduced with any couple (Eads, ν), which makes intercomparison between studies difficult since the results depend on the extraction method. Here, we use a method for determining independently the average adsorption energy and a prefactor value that works over a large range of incident methanol coverage, from a limited set of desorption curves performed at different heating rates. In the low coverage regime the procedure is based on a first order kinetic law, and considers an adsorption energy distribution which is not expected to vary with the applied heating rate. In the case of CH3OH multilayers, Eads is determined as 430 meV with a prefactor of 5 × 10(14) s(-1). For CH3OH submonolayers on graphite, adsorption energy of 470 ± 30 meV and a prefactor of (8 ± 3) × 10(16) s(-1) have been found. These last values, which do not change between 0.09 ML and 1 ML initial coverage, suggest that the methanol molecules form island-like structure on the graphite even at low coverage.

  7. What are the clinical determinants of early energy expenditure in critically injured adults?

    PubMed

    Boulanger, B R; Nayman, R; McLean, R F; Phillips, E; Rizoli, S B

    1994-12-01

    The clinical determinants of energy expenditure in critically injured adults require definition. Among adult blunt trauma victims who required mechanical ventilation, the resting energy expenditure was calculated with the Harris-Benedict equation (HBEE) and the early (< or = 5 days postinjury) energy expenditure was measured by indirect calorimetry (MEE) (n = 115). The MEE was 2052 +/- 531 kcal/day and MEE/HBEE ("stress factor") was 1.24 +/- 0.2. The MEE was correlated with HBEE, age, height, weight, sex, temperature, and paralytic agents (p < 0.01). However, MEE did not correlate with ISS, admission GCS score, admission base deficit, initial systolic blood pressure, or the number of units of packed red blood cells transfused in the first 24 hours after injury (p = NS). Temperature and paralysis correlated with MEE/HBEE (p < 0.01). A regression model of MEE was developed with the clinical variables HBEE, temperature, and the presence or absence of paralytic agents (r2 = 0.62; p < 0.001): MEE (kcal/d) = 1.4(HBEE) + 71.4(temperature) + 274(paralytics; + = 1, - = 2) - 3485. In mechanically ventilated trauma victims, both the early energy expenditure and the stress factor are determined by host factors but are independent of the severity of the anatomic and physiologic insult. The degree of hypermetabolism observed in this population was less than previously reported.

  8. Comparison of magnetic probe calibration at nano and millitesla magnitudes.

    PubMed

    Pahl, Ryan A; Rovey, Joshua L; Pommerenke, David J

    2014-01-01

    Magnetic field probes are invaluable diagnostics for pulsed inductive plasma devices where field magnitudes on the order of tenths of tesla or larger are common. Typical methods of providing a broadband calibration of [Formula: see text] probes involve either a Helmholtz coil driven by a function generator or a network analyzer. Both calibration methods typically produce field magnitudes of tens of microtesla or less, at least three and as many as six orders of magnitude lower than their intended use. This calibration factor is then assumed constant regardless of magnetic field magnitude and the effects of experimental setup are ignored. This work quantifies the variation in calibration factor observed when calibrating magnetic field probes in low field magnitudes. Calibration of two [Formula: see text] probe designs as functions of frequency and field magnitude are presented. The first [Formula: see text] probe design is the most commonly used design and is constructed from two hand-wound inductors in a differential configuration. The second probe uses surface mounted inductors in a differential configuration with balanced shielding to further reduce common mode noise. Calibration factors are determined experimentally using an 80.4 mm radius Helmholtz coil in two separate configurations over a frequency range of 100-1000 kHz. A conventional low magnitude calibration using a vector network analyzer produced a field magnitude of 158 nT and yielded calibration factors of 15 663 ± 1.7% and 4920 ± 0.6% [Formula: see text] at 457 kHz for the surface mounted and hand-wound probes, respectively. A relevant magnitude calibration using a pulsed-power setup with field magnitudes of 8.7-354 mT yielded calibration factors of 14 615 ± 0.3% and 4507 ± 0.4% [Formula: see text] at 457 kHz for the surface mounted inductor and hand-wound probe, respectively. Low-magnitude calibration resulted in a larger calibration factor, with an average difference of 9.7% for the surface

  9. Comparison of magnetic probe calibration at nano and millitesla magnitudes

    NASA Astrophysics Data System (ADS)

    Pahl, Ryan A.; Rovey, Joshua L.; Pommerenke, David J.

    2014-01-01

    Magnetic field probes are invaluable diagnostics for pulsed inductive plasma devices where field magnitudes on the order of tenths of tesla or larger are common. Typical methods of providing a broadband calibration of dot{{B}} probes involve either a Helmholtz coil driven by a function generator or a network analyzer. Both calibration methods typically produce field magnitudes of tens of microtesla or less, at least three and as many as six orders of magnitude lower than their intended use. This calibration factor is then assumed constant regardless of magnetic field magnitude and the effects of experimental setup are ignored. This work quantifies the variation in calibration factor observed when calibrating magnetic field probes in low field magnitudes. Calibration of two dot{{B}} probe designs as functions of frequency and field magnitude are presented. The first dot{{B}} probe design is the most commonly used design and is constructed from two hand-wound inductors in a differential configuration. The second probe uses surface mounted inductors in a differential configuration with balanced shielding to further reduce common mode noise. Calibration factors are determined experimentally using an 80.4 mm radius Helmholtz coil in two separate configurations over a frequency range of 100-1000 kHz. A conventional low magnitude calibration using a vector network analyzer produced a field magnitude of 158 nT and yielded calibration factors of 15 663 ± 1.7% and 4920 ± 0.6% {T}/{V {s}} at 457 kHz for the surface mounted and hand-wound probes, respectively. A relevant magnitude calibration using a pulsed-power setup with field magnitudes of 8.7-354 mT yielded calibration factors of 14 615 ± 0.3% and 4507 ± 0.4% {T}/{V {s}} at 457 kHz for the surface mounted inductor and hand-wound probe, respectively. Low-magnitude calibration resulted in a larger calibration factor, with an average difference of 9.7% for the surface mounted probe and 12.0% for the hand-wound probe. The

  10. Determination of Wetting Behavior, Spread Activation Energy, and Quench Severity of Bioquenchants

    NASA Astrophysics Data System (ADS)

    Prabhu, K. Narayan; Fernandes, Peter

    2007-08-01

    An investigation was conducted to study the suitability of vegetable oils such as sunflower, coconut, groundnut, castor, cashewnut shell (CNS), and palm oils as quench media (bioquenchants) for industrial heat treatment by assessing their wetting behavior and severity of quenching. The relaxation of contact angle was sharp during the initial stages, and it became gradual as the system approached equilibrium. The equilibrium contact angle decreased with increase in the temperature of the substrate and decrease in the viscosity of the quench medium. A comparison of the relaxation of the contact angle at various temperatures indicated the significant difference in spreading of oils having varying viscosity. The spread activation energy was determined using the Arrhenius type of equation. Oils with higher viscosity resulted in lower cooling rates. The quench severity of various oil media was determined by estimating heat-transfer coefficients using the lumped capacitance method. Activation energy for spreading determined using the wetting behavior of oils at various temperatures was in good agreement with the severity of quenching assessed by cooling curve analysis. A high quench severity is associated with oils having low spread activation energy.

  11. To determine the end point of wet granulation by measuring powder energies and thermal properties.

    PubMed

    Dave, Rutesh H; Wu, Stephen H; Contractor, Labdhi D

    2012-04-01

    Wet granulation has been widely used in pharmaceutical industry as a tablet manufacturing process. However, end-point determination of wet granulation process has always remained a challenge. Many traditional methods are available for end-point determination, yet accuracy and reproducibility still remain a challenge. Microcrystalline cellulose, widely used as an excipient in pharmaceutical industry, was granulated using water. Wet mass was passed through sieve # 12 and dried till constant percentage loss on drying was obtained and dried granules were obtained. Wet and dried granules collected were subjected to basic flow energy, specific energy, bulk density, pressure drop, differential scanning calorimetry and effusivity measurements. Analysis of data revealed various stages of granule growth from initial seed formation by adding 200-400 g of water, granule growth was observed by adding 600-800 g of water and over wetting was observed at 1155 g of water. In this work, we have justified our work to properly identify and utilize this technique for practical purpose to correctly identify the end-point determination of microcrystalline cellulose and explain various principles underlying energies associated with powder and thermal measurements.

  12. Reward magnitude effects on temporal discrimination

    PubMed Central

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2014-01-01

    Changes in reward magnitude or value have been reported to produce effects on timing behavior, which have been attributed to changes in the speed of an internal pacemaker in some instances and to attentional factors in other cases. The present experiments therefore aimed to clarify the effects of reward magnitude on timing processes. In Experiment 1, rats were trained to discriminate a short (2 s) vs. a long (8 s) signal followed by testing with intermediate durations. Then, the reward on short or long trials was increased from 1 to 4 pellets in separate groups. Experiment 2 measured the effect of different reward magnitudes associated with the short vs. long signals throughout training. Finally, Experiment 3 controlled for satiety effects during the reward magnitude manipulation phase. A general flattening of the psychophysical function was evident in all three experiments, suggesting that unequal reward magnitudes may disrupt attention to duration. PMID:24965705

  13. Local magnitudes of small contained explosions.

    SciTech Connect

    Chael, Eric Paul

    2009-12-01

    The relationship between explosive yield and seismic magnitude has been extensively studied for underground nuclear tests larger than about 1 kt. For monitoring smaller tests over local ranges (within 200 km), we need to know whether the available formulas can be extrapolated to much lower yields. Here, we review published information on amplitude decay with distance, and on the seismic magnitudes of industrial blasts and refraction explosions in the western U. S. Next we measure the magnitudes of some similar shots in the northeast. We find that local magnitudes ML of small, contained explosions are reasonably consistent with the magnitude-yield formulas developed for nuclear tests. These results are useful for estimating the detection performance of proposed local seismic networks.

  14. Microscopic energy transfer spectroscopy to determine mitochondrial malfunction in human myotubes

    NASA Astrophysics Data System (ADS)

    Gschwend, Michael H.; Strauss, Wolfgang S. L.; Brinkmeier, H.; Ruedel, R.; Steiner, Rudolf W.; Schneckenburger, Herbert

    1996-12-01

    A microscopic equipment is reported for examination of cellular autofluorescence and determination of energy transfer in vitro, which is proposed to be an appropriate tool to investigate mitochondrial malfunction. The method includes fluorescence microscopy combined with time-gated (nanosecond) fluorescence emission spectroscopy and is presently used to study mitochondrial metabolism of human myotube primary cultures Enzyme complexes of the respiratory chain, located at the inner mitochondrial membrane, were inhibited by various drugs, and fluorescence of the mitochondrial coenzyme nicotinamide adenine dinucleotide (NADH) as well as of the mitochondrial marker rhodamine 123 (R123) was examined. After inhibition of enzyme complex I (NADH-coenzyme Q reductase) by rotenone or enzyme complex III (coenzyme QH2-cytochrome c reductase) by antimycin a similar or increased NADH fluorescence was observed. In addition, energy transfer from excited states of NADH (energy donor) to R123 (energy acceptor) was deduced from a decrease of NADH fluorescence after coincubation with these inhibitors and R123. Application of microscopic energy transfer spectroscopy for diagnosis of congenital mitochondrial deficiencies is currently in preparation.

  15. Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography.

    PubMed

    Peng, Yucheng; Gardner, Douglas J; Han, Yousoo; Cai, Zhiyong; Tshabalala, Mandla A

    2013-09-01

    Research and development of the renewable nanomaterial cellulose nanofibrils (CNFs) has received considerable attention. The effect of drying on the surface energy of CNFs was investigated. Samples of nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC) were each subjected to four separate drying methods: air-drying, freeze-drying, spray-drying, and supercritical-drying. The surface morphology of the dried CNFs was examined using a scanning electron microscope. The surface energy of the dried CNFs was determined using inverse gas chromatography at infinite dilution and column temperatures: 30, 40, 50, 55, and 60 °C. Surface energy measurements of supercritical-dried NFCs were performed also at column temperatures: 70, 75, and 80 °C. Different drying methods produced CNFs with different morphologies which in turn significantly influenced their surface energy. Supercritical-drying resulted in NFCs having a dispersion component of surface energy of 98.3±5.8 mJ/m(2) at 30 °C. The dispersion component of surface energy of freeze-dried NFCs (44.3±0.4 mJ/m(2) at 30 °C) and CNCs (46.5±0.9 mJ/m(2) at 30 °C) were the lowest among all the CNFs. The pre-freezing treatment during the freeze-drying process is hypothesized to have a major impact on the dispersion component of surface energy of the CNFs. The acid and base parameters of all the dried CNFs were amphoteric (acidic and basic) although predominantly basic in nature.

  16. Mathematical methods for restricted domain ternary liquid mixture free energy determination using light scattering.

    PubMed

    Wahle, Chris W; Ross, David S; Thurston, George M

    2013-09-28

    We extend methods of solution of a light scattering partial differential equation for the free energy of mixing to apply to connected, isotropic ternary liquid composition domains that do not touch all three binary axes. To do so we mathematically analyze the problem of inferring needed Dirichlet boundary data, and solving for the free energy, with use of hypothetical static light scattering measurements that correspond to dielectric composition gradient vectors that have distinct directions. The physical idea behind the technique is that contrasting absorption properties of mixture components can result in such distinctly directed dielectric composition gradient vectors, due to their differing wavelength dependences of dielectric response. At suitably chosen wavelengths, contrasting light scattering efficiency patterns in the ternary composition triangle can then correspond to the same underlying free energy, and enlarge the scope of available information about the free energy, as shown here. We show how to use distinctly directed dielectric gradients to measure the free energy on both straight lines and curves within the ternary composition triangle, so as to provide needed Dirichlet conditions for light scattering partial differential equation solution. With use of Monte Carlo simulations of noisy light scattering data, we provide estimates of the overall system measurement time and sample spacing needed to determine the free energy to a desired degree of accuracy, for various angles between the assumed dielectric gradient vectors, and indicate how the measurement time depends on instrumental throughput parameters. The present analysis methods provide a way to use static light scattering to measure, directly, mixing free energies of many systems that contain such restricted liquid domains, including aqueous solutions of biological macromolecules, micellar mixtures and microemulsions, and many small molecule systems that are important in separation technology.

  17. Mathematical methods for restricted domain ternary liquid mixture free energy determination using light scattering

    NASA Astrophysics Data System (ADS)

    Wahle, Chris W.; Ross, David S.; Thurston, George M.

    2013-09-01

    We extend methods of solution of a light scattering partial differential equation for the free energy of mixing to apply to connected, isotropic ternary liquid composition domains that do not touch all three binary axes. To do so we mathematically analyze the problem of inferring needed Dirichlet boundary data, and solving for the free energy, with use of hypothetical static light scattering measurements that correspond to dielectric composition gradient vectors that have distinct directions. The physical idea behind the technique is that contrasting absorption properties of mixture components can result in such distinctly directed dielectric composition gradient vectors, due to their differing wavelength dependences of dielectric response. At suitably chosen wavelengths, contrasting light scattering efficiency patterns in the ternary composition triangle can then correspond to the same underlying free energy, and enlarge the scope of available information about the free energy, as shown here. We show how to use distinctly directed dielectric gradients to measure the free energy on both straight lines and curves within the ternary composition triangle, so as to provide needed Dirichlet conditions for light scattering partial differential equation solution. With use of Monte Carlo simulations of noisy light scattering data, we provide estimates of the overall system measurement time and sample spacing needed to determine the free energy to a desired degree of accuracy, for various angles between the assumed dielectric gradient vectors, and indicate how the measurement time depends on instrumental throughput parameters. The present analysis methods provide a way to use static light scattering to measure, directly, mixing free energies of many systems that contain such restricted liquid domains, including aqueous solutions of biological macromolecules, micellar mixtures and microemulsions, and many small molecule systems that are important in separation technology.

  18. Local magnitude calibration of the Hellenic Unified Seismic Network

    NASA Astrophysics Data System (ADS)

    Scordilis, E. M.; Kementzetzidou, D.; Papazachos, B. C.

    2016-01-01

    A new relation is proposed for accurate determination of local magnitudes in Greece. This relation is based on a large number of synthetic Wood-Anderson (SWA) seismograms corresponding to 782 regional shallow earthquakes which occurred during the period 2007-2013 and recorded by 98 digital broad-band stations. These stations are installed and operated by the following: (a) the National Observatory of Athens (HL), (b) the Department of Geophysics of the Aristotle University of Thessaloniki (HT), (c) the Seismological Laboratory of the University of Athens (HA), and (d) the Seismological Laboratory of the Patras University (HP). The seismological networks of the above institutions constitute the recently (2004) established Hellenic Unified Seismic Network (HUSN). These records are used to calculate a refined geometrical spreading factor and an anelastic attenuation coefficient, representative for Greece and surrounding areas, proper for accurate calculation of local magnitudes in this region. Individual station corrections depending on the crustal structure variations in their vicinity and possible inconsistencies in instruments responses are also considered in order to further ameliorate magnitude estimation accuracy. Comparison of such calculated local magnitudes with corresponding original moment magnitudes, based on an independent dataset, revealed that these magnitude scales are equivalent for a wide range of values.

  19. Determination of high-energy x-ray spectra by photoactivation.

    PubMed

    Nath, R; Schulz, R J

    1976-01-01

    The determination of high-energy x-ray spectra has required scintillation spectrometers with massive shielding, neutron time-of-flight spectrometers, or the tedious counting of electron tracks in nuclear emulsions. A new approach has been developed which takes advantage of the energy dependence of photoactivation cross sections. Radioactivity is produced in a small packet of C, Cu, Co, Y, Zr, and Au foils by approximately 5000 rad (tissue). Since the amount of radioactivity produced in each foil is given by the integral of the product of photonuclear cross section and differential photon fluence, a numerical method for unfolding the spectrum is required, and the orthonormal expansion has been employed for this purpose. The photoactivation method has been used to determine the x-ray spectra produced by 30-MeV electrons incident upon thin and thick tungsten targets, and filtered by equivalent amounts of lead and aluminum. These spectra have been compared to calculated thin-target spectra as well as to those determined by a neutron time-of-flight spectrometer. The central-axis and off-axis x-ray spectra produced by a 33-MeV betatron have also been determined.

  20. Determination of energy and protein requirements for crossbred Holstein × Gyr preweaned dairy calves.

    PubMed

    Silva, A L; Marcondes, M I; Detmann, E; Campos, M M; Machado, F S; Filho, S C Valadares; Castro, M M D; Dijkstra, J

    2017-02-01

    The objective was to quantify the energy and protein nutritional requirements of Holstein × Gyr crossbred preweaned dairy calves until 64 d of age. Thirty-nine Holstein × Gyr crossbred male calves with an average initial live weight (mean ± SEM; for all next values) of 36 ± 1.0 kg were used. Five calves were slaughtered at 4 d of life to estimate the animals' initial body composition (reference group). The remaining 34 calves were distributed in a completely randomized design in a 3 × 2 factorial arrangement consisting of 3 levels of milk (2, 4, or 8 L/d) and 2 levels of starter feed (presence or absence in diet). At 15 and 45 d of life, 4 animals from each treatment were subjected to digestibility trials with total collection of feces (for 72 h) and urine (for 24 h). At 64 d of age, all animals were slaughtered, their gastro-intestinal tract was washed to determine the empty body weight (EBW; kg), and their body tissues were sampled for subsequent analyses. The net energy requirement for maintenance was estimated using an exponential regression between metabolizable energy intake and heat production (both in Mcal/EBW(0.75) per d) and was 74.3 ± 5.7 kcal/EBW(0.75) per d, and was not affected by inclusion of starter feed in the diet. The metabolizable energy requirement for maintenance was determined at the point of zero energy retention in the body and was 105.2 ± 5.8 kcal/EBW(0.75) per d. The net energy for gain was estimated using the EBW and the empty body gain (EBG; kg/d) as 0.0882 ± 0.0028 × EBW(0.75) × EBG(0.9050±0.0706). The metabolizable energy efficiency for gain (kg) of the milk was 57.4 ± 3.45%, and the kg of the starter feed was 39.3 ± 2.09%. The metabolizable protein requirement for maintenance was 3.52 ± 0.34 g/BW(0.75) per d. The net protein required for each kilogram gained was estimated as 119.1 ± 32.9 × EBW(0.0663±0.059). The metabolizable protein efficiency for gain was 77 ± 8.5% and was not affected by inclusion of starter feed

  1. Polynomial potentials determined from the energy spectrum and transition dipole moments that give the largest hyperpolarizabilities

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Kuzyk, Mark G.

    2016-12-01

    We attempt to get a polynomial solution to the inverse problem, that is, to determine the form of the mechanical Hamiltonian when given the energy spectrum and transition dipole moment matrix. Our approach is to determine the potential in the form of a polynomial by finding an approximate solution to the inverse problem, then to determine the hyperpolarizability for that system's Hamiltonian. We find that the largest hyperpolarizabilities approach the apparent limit of previous potential optimization studies, but we do not find real potentials for the parameter values necessary to exceed this apparent limit. We also explore half potentials with positive exponent, which cannot be expressed as a polynomial except for integer powers. This yields a simple closed potential with only one parameter that scans nearly the full range of the intrinsic hyperpolarizability. The limiting case of vanishing exponent yields the largest intrinsic hyperpolarizability.

  2. Determination of Interfacial Free Energy of Goethite Nanoparticles using Diffraction-based Method

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Fernando, S.; Baynes, M.; Chen, B.; Banfield, J. F.

    2011-12-01

    Goethite nanoparticles with equivalent crystal sizes of ~ 9 - 38 nm were synthesized via reactions of ferric nitrate with potassium / sodium hydroxide in aqueous solutions. Silicon internal standard was used in determination of the lattice parameters of the synthesized samples at ambient conditions. The lattice parameters were derived from Rietveld analyses. Synchrotron high-pressure XRD (HPXRD) was used to determine the bulk modulus of selected goethite samples. Size-dependent bulk modulus is used for deduction of size-dependent surface stress and surface free energy. A sample was loaded into a diamond anvil cell and compressed to a required pressure (up to tens of GPa) for XRD at ALS 12.2.2 synchrotron beamline station. Data were collected and analyzed to get the lattice parameters of nano-goethite at different pressures. From fits to the Birch-Murnaghan equation of state, the bulk modulus of nano-goethite was obtained. Ambient XRD shows that as the particle size decreases, the goethite unit cell (Pnma space group) contracts in the two long sides a and c, but expands in the short side b. Overall, the unit cell volume decreases with decreasing particle size. The higher surface stress exerting on smaller nanoparticles causes the larger shrink in the unit cell, which is used for derivation of the surface stress. HPXRD measurements showed that the bulk modulus of nano-goethite increases as the particle size decreases, probably due to pressure-induced enhancement of dislocation contents in fine nanoparticles. Intervene of dislocations near nanoparticle surface and gain boundaries can make the nanoparticles stiffer. From the determined unit cell volume and bulk modulus as a function of particle size, both the surface stress and the surface free energy of goethite nanoparticles as a function of particle size were derived using equations derived previously (Zhang et al., Phys. Chem. Chem. Phys. 2009, 11, 2553). The two quantities exhibit maximum at a certain size. Above

  3. Macro creatine kinase: determination and differentiation of two types by their activation energies

    SciTech Connect

    Stein, W.; Bohner, J.; Steinhart, R.; Eggstein, M.

    1982-01-01

    Determination of the MB isoenzyme of creatine kinase in patients with acute myocardial infarction may be disturbed by the presence of macro creatine kinase. The relative molecular mass of this form of creatine kinase in human serum is at least threefold that of the ordinary enzyme, and it is more thermostable. Here we describe our method for determination of macro creatine kinases and an easy-to-perform test for differentiating two forms of macro creatine kinase, based on their distinct activation energies. The activation energies of serum enzymes are mostly in the range of 40-65 kJ/mol of substrate. Unlike normal cytoplasmatic creatine kinases and IgG-linked CK-BB (macro creatine kinase type 1) a second form of macro creatine kinase (macro creatine kinase type 2) shows activation energies greater than 80 kJ/mol of substrate. The exact composition of macro creatine kinase type 2 is still unknown, but there is good reason to believe that it is of mitochondrial origin.

  4. Experimental determination of the deuterium binding energy with vacancies in tungsten

    NASA Astrophysics Data System (ADS)

    Zibrov, M.; Ryabtsev, S.; Gasparyan, Yu.; Pisarev, A.

    2016-08-01

    Deuterium (D) interaction with vacancies in tungsten (W) was studied using thermal desorption spectroscopy (TDS). In order to obtain a TDS spectrum with a prominent peak corresponding to D release from vacancies, a special procedure comprising damaging of a recrystallized W sample by low fluences of 10 keV/D ions, its annealing, and subsequent low-energy ion implantation, was utilized. This experimental sequence was performed several times in series; the only difference was the TDS heating rate that varied in the range of 0.15-4 K/s. The sum of the D binding energy (Eb) with vacancies and the activation energy for D diffusion (ED) in W was then directly determined from the slope of the Arrhenius-like plot ln(β / Tm2) versus 1/Tm, where β - heating rate and Tm - position of the respective peak in the TDS spectrum. The determined value of Eb + ED was 1.56 ± 0.06 eV.

  5. Quantum Mechanical Determination of Potential Energy Surfaces for TiO and H2O

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.

    1996-01-01

    We discuss current ab initio methods for determining potential energy surfaces, in relation to the TiO and H2O molecules, both of which make important contributions to the opacity of oxygen-rich stars. For the TiO molecule we discuss the determination of the radiative lifetimes of the excited states and band oscillator strengths for both the triplet and singlet band systems. While the theoretical radiative lifetimes for TiO agree well with recent measurements, the band oscillator strengths differ significantly from those currently employed in opacity calculations. For the H2O molecule we discuss the current results for the potential energy and dipole moment ground state surfaces generated at NASA Ames. We show that it is necessary to account for such effects as core-valence Correlation energy to generate a PES of near spectroscopic accuracy. We also describe how we solve the ro-vibrational problem to obtain the line positions and intensities that are needed for opacity sampling.

  6. First determination of the (re)crystallization activation energy of an irradiated olivine-type silicate

    NASA Astrophysics Data System (ADS)

    Djouadi, Z.; D'Hendecourt, L.; Leroux, H.; Jones, A. P.; Borg, J.; Deboffle, D.; Chauvin, N.

    2005-09-01

    To study the evolution of silicate dust in different astrophysical environments we simulate, in the laboratory, interstellar and circumstellar ion irradiation and thermal annealing processes. An experimental protocol that follows different steps in the dust life-cycle was developed. Using the silicate 10 μm band as an indicator, the evolution of the structural properties of an ion-irradiated olivine-type silicate sample, as a function of temperature, is investigated and an activation energy for crystallization is determined. The obtained value of {E_a}/k = 41 700 ± 2400 K is in good agreement with previous determinations of the activation energies of crystallization reported for non-ion-irradiated, amorphous silicates. This implies that the crystallization process is independent of the history of the dust. In particular, the defect concentration due to irradiation appears not to play a major role in stimulating, or hindering, crystallization at a given temperature. This activation energy is an important thermodynamical parameter that must be used in theoretical models which aim to explain the dust evolution from its place of birth in late type stars to its incorporation into young stellar environments, proto-stellar discs and proto-planetary systems after long passage through the interstellar medium.

  7. Determination of Duty Cycle for Energy Storage Systems in a PV Smoothing Application

    SciTech Connect

    Schoenwald, David A.; Ellison, James

    2016-04-01

    This report supplements the document, "Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems," issued in a revised version in April 2016 (see [4]), which will include the photovoltaic (PV) smoothing application for an energy storage system (ESS). This report provides the background and documentation associated with the determination of a duty cycle for an ESS operated in a PV smoothing application for the purpose of measuring and expressing ESS performance in accordance with the ESS performance protocol. ACKNOWLEDGEMENTS The authors gratefully acknowledge the support of Dr. Imre Gyuk, program manager for the DOE Energy Storage Systems Program. The authors would also like to express their appreciation to all the stakeholders who participated as members of the PV Smoothing Subgroup. Without their thoughtful input and recommendations, the definitions, metrics, and duty cycle provided in this report would not have been possible. A complete listing of members of the PV Smoothing Subgroup appears in the first chapter of this report. Special recognition should go to the staffs at Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories (SNL) in collaborating on this effort. In particular, Mr. David Conover and Dr. Vish Viswanathan of PNNL and Dr. Summer Ferreira of SNL were especially helpful in their suggestions for the determination of a duty cycle for the PV Smoothing application.

  8. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics

    NASA Astrophysics Data System (ADS)

    Lau, Gabriel V.; Hunt, Patricia A.; Müller, Erich A.; Jackson, George; Ford, Ian J.

    2015-12-01

    Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the "mitosis" or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.

  9. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics

    SciTech Connect

    Lau, Gabriel V.; Müller, Erich A.; Jackson, George; Hunt, Patricia A.; Ford, Ian J.

    2015-12-28

    Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the “mitosis” or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.

  10. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics.

    PubMed

    Lau, Gabriel V; Hunt, Patricia A; Müller, Erich A; Jackson, George; Ford, Ian J

    2015-12-28

    Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the "mitosis" or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.

  11. Determination of the displacement energy of O, Si and Zr under electron beam irradiation

    SciTech Connect

    Edmondson, Philip D; Weber, William J; Namavar, Fereydoon; Zhang, Yanwen

    2012-01-01

    The response of nanocrystalline, stabilizer-free cubic zirconia thin films on a Si substrate to electron beam irradiation with energies of 4, 110 and 200 keV and fluences up to {approx}1.5 x 10{sup 22} e m{sup -2} has been studied to determine the displacement energies. The 110 and 200 keV irradiations were performed in situ using a transmission electron microscope; the 4 keV irradiations were performed ex situ using an electron gun. In all three irradiations, no structural modification of the zirconia was observed, despite the high fluxes and fluences. However the Si substrate on which the zirconia film was deposited was amorphized under the 200 keV electron irradiation. Examination of the electron-solid interactions reveals that the kinetic energy transfer from the 200 keV electrons to the silicon lattice is sufficient to cause atomic displacements, resulting in amorphization. The kinetic energy transfer from the 200 keV electrons to the oxygen sub-lattice of the zirconia may be sufficient to induce defect production, however, no evidence of defect production was observed. The displacement cross-section value of Zr was found to be {approx}400 times greater than that of O indicating that the O atoms are effectively screened from the electrons by the Zr atoms, and, therefore, the displacement of O is inefficient.

  12. Determination of the Displacement Energies of O, Si and Zr Under Electron Beam Irradiation

    SciTech Connect

    Edmondson, P. D.; Weber, William J.; Namavar, Fereydoon; Zhang, Yanwen

    2012-03-01

    The response of nanocrystalline, stabilizer-free cubic zirconia thin films on a Si substrate to electron beam irradiation with energies of 4, 110 and 200 keV and fluences up to ~1.5 x 10²²e m² has been studied to determine the displacement energies. The 110 and 200 keV irradiations were performed in situ using a transmission electron microscope; the 4 keV irradiations were performed ex situ using an electron gun. In all three irradiations, no structural modification of the zirconia was observed, despite the high fluxes and fluences. However the Si substrate on which the zirconia film was deposited was amorphized under the 200 keV electron irradiation. Examination of the electron–solid interactions reveals that the kinetic energy transfer from the 200 keV electrons to the silicon lattice is sufficient to cause atomic displacements, resulting in amorphization. The kinetic energy transfer from the 200 keV electrons to the oxygen sub-lattice of the zirconia may be sufficient to induce defect production, however, no evidence of defect production was observed. The displacement cross-section value of Zr was found to be ~400 times greater than that of O indicating that the O atoms are effectively screened from the electrons by the Zr atoms, and, therefore, the displacement of O is inefficient.

  13. A classical determination of vibrationally adiabatic barriers and wells of a collinear potential energy surface

    NASA Astrophysics Data System (ADS)

    Pollak, Eli

    1981-05-01

    A necessary and sufficient condition for the existence of a classical vibrationally adiabatic barrier or well in collinear systems is the existence of periodic orbit dividing surfaces. Knowledge of all pods immediately provides all adiabatic barriers and wells. Furthermore, the classical equation connecting the barriers and wells to the masses and potential energy surface of the system is shown, under mild conditions, to be identical in form to the corresponding quantal equation. The only difference is in the determination of the vibrational state which is obtained by WKB quantization classically. The classical barriers and wells can therefore be used to analyze quantal computations. Such analysis is provided for the hydrogen exchange reaction and the F+HH system. A novel result is the existence of vibrationally adiabatic barriers even where no saddle point exists on the static potential energy surface. These barriers are an outcome of competition between the increase of potential energy and decrease of vibrational force constant along the reaction coordinate. Their existence is therefore of general nature — not limited to the specific structure of a given potential energy surface. The experimental significance of these barriers is discussed. The implications on the use of forward or reverse quasiclassical computations is analyzed. A definite conclusion is that one should not average over initial vibrational action in such calculations.

  14. Lateral distribution and the energy determination of showers along the ankle

    NASA Astrophysics Data System (ADS)

    Ros, G.; Medina-Tanco, G.A.; De Donato, C.; del Peral, L.; Rodríguez-Frías, D.; D'Olivo, J.C.; Valdés-Galicia, J.F.; Arqueros, F.

    The normalization constant of the lateral distribution function (LDF) of an extensive air shower is a monotonous (almost linear) increasing function of the energy of the primary, as well as a monotonous decreasing function of the distance from the shower core. Therefore, the interpolated signal at some fixed distance from the core can be calibrated to estimate the energy of the shower. There is, somehow surprisingly, a reconstructed optimal distance, r_opt, at which the effects on the inferred signal, S(r_opt), of the uncertainties on true core location, LDF functional form and shower-to-shower fluctuations are minimized. We calculate the value of r_opt and study the robustness of the method as a function of surface detector separation (400 m to 1500 m), energy (0.1 EeV to 10 EeV) and zenith angle (0 to 60 deg) for a realistic distribution of core determination errors along the space parameter used. We also investigate the effects of silent and saturated stations and give a rough estimate of the systematic errors introduced by varying cosmic ray composition inside the considered energy range.

  15. B1-based specific energy absorption rate determination for nonquadrature radiofrequency excitation.

    PubMed

    Katscher, Ulrich; Findeklee, Christian; Voigt, Tobias

    2012-12-01

    The current gold standard to estimate local and global specific energy absorption rate for MRI involves numerically modeling the patient and the transmit radiofrequency coil. Recently, a patient-individual method was presented, which estimated specific energy absorption rate from individually measured B(1) maps. This method, however, was restricted to quadrature volume coils due to difficulties distinguishing phase contributions from radiofrequency transmission and reception. In this study, a method separating these two phase contributions by comparing the electric conductivity reconstructed from different transmit channels of a parallel radiofrequency transmission system is presented. This enables specific energy absorption rate estimation not only for quadrature excitation but also for the nonquadrature excitation of the single elements of the transmit array. Though the contributions of the different phases are known, unknown magnetic field components and tissue boundary artifacts limit the technique. Nevertheless, the high agreement between simulated and experimental results found in this study is promising. B(1)-based specific energy absorption rate determination might become possible for arbitrary radiofrequency excitation on a patient-individual basis.

  16. A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree.

    PubMed

    Cai, Junmeng; Chen, Siyu

    2009-10-01

    The conventional linear integral isoconversional methods may lead to important errors in the determination of the activation energy when the significant variation of the activation energy with the conversion degree occurs. Vyazovkin proposed an advanced nonlinear isoconversional method, which allows the activation energy to be accurately determined [Vyazovkin, J Comput Chem 2001, 22, 178]. However, the use of the Vyazovkin method raises the problem of the time-consuming minimization without derivatives. A new iterative linear integral isoconversional method for the determination of the activation energy as a function of the conversion degree has been proposed, which is capable of providing valid values of the activation energy even if the latter strongly varies with the conversion degree. Also, the new method leads to the correct values of the activation energy in much less time than the Vyazovkin method. The application of the new method is illustrated by processing of theoretically simulated data of a strongly varying activation energy process.

  17. Improved morphed potentials for Ar-HBr including scaling to the experimentally determined dissociation energy.

    PubMed

    Wang, Z; McIntosh, A L; McElmurry, B A; Walton, J R; Lucchese, R R; Bevan, J W

    2005-09-15

    A lead salt diode infrared laser spectrometer has been employed to investigate the rotational predissociation in Ar-HBr for transitions up to J' = 79 in the v(1) HBr stretching vibration of the complex using a slit jet and static gas phase. Line-shape analysis and modeling of the predissociation lifetimes have been used to determine a ground-state dissociation energy D(0) of 130(1) cm(-1). In addition, potential energy surfaces based on ab initio calculations are scaled, shifted, and dilated to generate three-dimensional morphed potentials for Ar-HBr that reproduce the measured value of D(0) and that have predictive capabilities for spectroscopic data with nearly experimental uncertainty. Such calculations also provide a basis for making a comprehensive comparison of the different morphed potentials generated using the methodologies applied.

  18. Structure of a micropipette-aspirated vesicle determined from the bending-energy model.

    PubMed

    Chen, Jeff Z Y

    2012-10-01

    The structure of the system consisting of an aspirating pipette and an aspirated vesicle is investigated with fixed total vesicle volume, total vesicle surface area, and aspirated volume fraction, based on the bending-energy model. Through an energetic consideration, the usage of an aspirated volume fraction can be converted to the aspirating pressure for the determination of a phase diagram; the procedure identifies a first-order transition, between a weakly aspirated state and the strongly aspirated state, as the pressure increases. The physical properties of the system are obtained from minimization of the bending energy by an implementation of the simulated annealing Monte Carlo procedure, which searches for a minimum in a multivariable space. An analysis of the hysteresis effects indicates that the experimentally observed aspirating and releasing critical pressures are related to the location of the spinodal points.

  19. The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data

    SciTech Connect

    Pearl, J.C.; Conrath, B.J.; Hanel, R.A.; Pirraglia, J.A.; Coustenis, A. Paris, Observatoire, Meudon )

    1990-03-01

    The albedo, T(eff), and energy balance of Uranus are presently derived from Voyager IR Spectrometer and Radiometer data. By obtaining the absolute phase curve of Uranus, it has become possible to evaluate the Bond albedo without making separate determinations of the geometric albedo and phase integral. An orbital mean value for the bolometric Bond albedo of 0.3 + or - 0.049 yields an equilibrium temperature of 58.2 + or - 1.0 K. Thermal spectra from pole-to-pole latitude coverage establish a T(eff) of 59.1 + or - 0.3 K, leading to an energy balance of 1.06 + or - 0.08 for Uranus. 39 refs.

  20. The energy landscape of modular repeat proteins: topology determines folding mechanism in the ankyrin family.

    PubMed

    Ferreiro, Diego U; Cho, Samuel S; Komives, Elizabeth A; Wolynes, Peter G

    2005-12-02

    Proteins consisting of repeating amino acid motifs are abundant in all kingdoms of life, especially in higher eukaryotes. Repeat-containing proteins self-organize into elongated non-globular structures. Do the same general underlying principles that dictate the folding of globular domains apply also to these extended topologies? Using a simplified structure-based model capturing a perfectly funneled energy landscape, we surveyed the predicted mechanism of folding for ankyrin repeat containing proteins. The ankyrin family is one of the most extensively studied classes of non-globular folds. The model based only on native contacts reproduces most of the experimental observations on the folding of these proteins, including a folding mechanism that is reminiscent of a nucleation propagation growth. The confluence of simulation and experimental results suggests that the folding of non-globular proteins is accurately described by a funneled energy landscape, in which topology plays a determinant role in the folding mechanism.

  1. The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data

    NASA Technical Reports Server (NTRS)

    Pearl, J. C.; Conrath, B. J.; Hanel, R. A.; Pirraglia, J. A.; Coustenis, A.

    1990-01-01

    The albedo, T(eff), and energy balance of Uranus are presently derived from Voyager IR Spectrometer and Radiometer data. By obtaining the absolute phase curve of Uranus, it has become possible to evaluate the Bond albedo without making separate determinations of the geometric albedo and phase integral. An orbital mean value for the bolometric Bond albedo of 0.3 + or - 0.049 yields an equilibrium temperature of 58.2 + or - 1.0 K. Thermal spectra from pole-to-pole latitude coverage establish a T(eff) of 59.1 + or - 0.3 K, leading to an energy balance of 1.06 + or - 0.08 for Uranus.

  2. Non-Economic Determinants of Energy Use in Rural Areas of South Africa

    SciTech Connect

    Annecke, W.

    1999-03-29

    This project will begin to determine the forces and dimensions in rural energy-use patterns and begin to address policy and implementation needs for the future. This entails: Forecasting the social and economic benefits that electrification is assumed to deliver regarding education and women's lives; Assessing negative perceptions of users, which have been established through the slow uptake of electricity; Making recommendations as to how these perceptions could be addressed in policy development and in the continuing electrification program; Making recommendations to policy makers on how to support and make optimal use of current energy-use practices where these are socio-economically sound; Identifying misinformation and wasteful practices; and Other recommendations, which will significantly improve the success of the rural electrification program in a socio-economically sound manner, as identified in the course of the work.

  3. Origin of limiting magnitude counting triangles and squares

    NASA Astrophysics Data System (ADS)

    Roggemans, Paul

    2010-08-01

    Meteor astronomers worldwide struggled for over a century with the problem of how to calibrate visual meteor counts. Although the effect of variable sky conditions was already recognized in the earliest studies of meteor counts, it took until the end of the 1940s before the limiting magnitude was commonly considered as the parameter to calibrate the sky conditions. The brilliant idea to use counting areas in the sky for limiting magnitude determination was proposed by Hugo van Woerden in the 1950s. This method is still used today and helped the IMO to fulfill the expectations of Hugo van Woerden many years after it was first published.

  4. Nonlinear Susceptibility Magnitude Imaging of Magnetic Nanoparticles.

    PubMed

    Ficko, Bradley W; Giacometti, Paolo; Diamond, Solomon G

    2015-03-15

    This study demonstrates a method for improving the resolution of susceptibility magnitude imaging (SMI) using spatial information that arises from the nonlinear magnetization characteristics of magnetic nanoparticles (mNPs). In this proof-of-concept study of nonlinear SMI, a pair of drive coils and several permanent magnets generate applied magnetic fields and a coil is used as a magnetic field sensor. Sinusoidal alternating current (AC) in the drive coils results in linear mNP magnetization responses at primary frequencies, and nonlinear responses at harmonic frequencies and intermodulation frequencies. The spatial information content of the nonlinear responses is evaluated by reconstructing tomographic images with sequentially increasing voxel counts using the combined linear and nonlinear data. Using the linear data alone it is not possible to accurately reconstruct more than 2 voxels with a pair of drive coils and a single sensor. However, nonlinear SMI is found to accurately reconstruct 12 voxels (R(2) = 0.99, CNR = 84.9) using the same physical configuration. Several time-multiplexing methods are then explored to determine if additional spatial information can be obtained by varying the amplitude, phase and frequency of the applied magnetic fields from the two drive coils. Asynchronous phase modulation, amplitude modulation, intermodulation phase modulation, and frequency modulation all resulted in accurate reconstruction of 6 voxels (R(2) > 0.9) indicating that time multiplexing is a valid approach to further increase the resolution of nonlinear SMI. The spatial information content of nonlinear mNP responses and the potential for resolution enhancement with time multiplexing demonstrate the concept and advantages of nonlinear SMI.

  5. Timing and magnitude of peak height velocity and peak tissue velocities for early, average, and late maturing boys and girls.

    PubMed

    Iuliano-Burns, S; Mirwald, R L; Bailey, D A

    2001-01-01

    Height, weight, and tissue accrual were determined in 60 male and 53 female adolescents measured annually over six years using standard anthropometry and dual-energy X-ray absorptiometry (DXA). Annual velocities were derived, and the ages and magnitudes of peak height and peak tissue velocities were determined using a cubic spline fit to individual data. Individuals were rank ordered on the basis of sex and age at peak height velocity (PHV) and then divided into quartiles: early (lowest quartile), average (middle two quartiles), and late (highest quartile) maturers. Sex- and maturity-related comparisons in ages and magnitudes of peak height and peak tissue velocities were made. Males reached peak velocities significantly later than females for all tissues and had significantly greater magnitudes at peak. The age at PHV was negatively correlated with the magnitude of PHV in both sexes. At a similar maturity point (age at PHV) there were no differences in weight or fat mass among maturity groups in both sexes. Late maturing males, however, accrued more bone mineral and lean mass and were taller at the age of PHV compared to early maturers. Thus, maturational status (early, average, or late maturity) as indicated by age at PHV is inversely related to the magnitude of PHV in both sexes. At a similar maturational point there are no differences between early and late maturers for weight and fat mass in boys and girls.

  6. Determination of Energy-Transfer Distributions in Ionizing Ion-Molecule Collisions.

    PubMed

    Maclot, S; Delaunay, R; Piekarski, D G; Domaracka, A; Huber, B A; Adoui, L; Martín, F; Alcamí, M; Avaldi, L; Bolognesi, P; Díaz-Tendero, S; Rousseau, P

    2016-08-12

    The ionization and fragmentation of the nucleoside thymidine in the gas phase has been investigated by combining ion collision with state-selected photoionization experiments and quantum chemistry calculations. The comparison between the mass spectra measured in both types of experiments allows us to accurately determine the distribution of the energy deposited in the ionized molecule as a result of the collision. The relation of two experimental techniques and theory shows a strong correlation between the excited states of the ionized molecule with the computed dissociation pathways, as well as with charge localization or delocalization.

  7. A new method to determine optimum temperature and activation energies for enzymatic reactions.

    PubMed

    Wojcik, M; Miłek, J

    2016-08-01

    A new method for determination of the optimum temperature and activation energies based on an idea of the average rate of enzymatic reaction has been developed. A mathematical model describing the effect of temperature on a dimensionless activity for enzyme deactivation following the first-order kinetics has been derived. The necessary condition for existence of the function extreme of the optimal temperature has been applied in the model. The developed method has been verified using the experimental data for inulinase from Kluyveromyces marxianus.

  8. Providing for energy efficiency in homes and small buildings. Part III. Determining which practices are most effective and installing materials

    SciTech Connect

    1980-06-01

    The training program is designed to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy-efficient buildings. A teacher guide and student workbook are available to supplement the basic manual. Subjects covered in Part III are: determining which practices are most efficient and economical; installing energy-saving materials; and improving efficiency of equipment.

  9. Probable Maximum Earthquake Magnitudes for the Cascadia Subduction

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Jackson, D. D.; Magistrale, H.; Goldfinger, C.

    2013-12-01

    The concept of maximum earthquake magnitude (mx) is widely used in seismic hazard and risk analysis. However, absolute mx lacks a precise definition and cannot be determined from a finite earthquake history. The surprising magnitudes of the 2004 Sumatra and the 2011 Tohoku earthquakes showed that most methods for estimating mx underestimate the true maximum if it exists. Thus, we introduced the alternate concept of mp(T), probable maximum magnitude within a time interval T. The mp(T) can be solved using theoretical magnitude-frequency distributions such as Tapered Gutenberg-Richter (TGR) distribution. The two TGR parameters, β-value (which equals 2/3 b-value in the GR distribution) and corner magnitude (mc), can be obtained by applying maximum likelihood method to earthquake catalogs with additional constraint from tectonic moment rate. Here, we integrate the paleoseismic data in the Cascadia subduction zone to estimate mp. The Cascadia subduction zone has been seismically quiescent since at least 1900. Fortunately, turbidite studies have unearthed a 10,000 year record of great earthquakes along the subduction zone. We thoroughly investigate the earthquake magnitude-frequency distribution of the region by combining instrumental and paleoseismic data, and using the tectonic moment rate information. To use the paleoseismic data, we first estimate event magnitudes, which we achieve by using the time interval between events, rupture extent of the events, and turbidite thickness. We estimate three sets of TGR parameters: for the first two sets, we consider a geographically large Cascadia region that includes the subduction zone, and the Explorer, Juan de Fuca, and Gorda plates; for the third set, we consider a narrow geographic region straddling the subduction zone. In the first set, the β-value is derived using the GCMT catalog. In the second and third sets, the β-value is derived using both the GCMT and paleoseismic data. Next, we calculate the corresponding mc

  10. Apparatus and method for determining the position of a radiant energy source

    NASA Technical Reports Server (NTRS)

    Schaefer, G. J. (Inventor)

    1981-01-01

    The position of a terrestrial RF source is determined from a geostationary, synchronous satellite by scanning the beam of a narrow beam width antenna in first and second orthogonal directions over a region including the source. The peak level of energy transduced by the antenna in each of the scanning directions is detected and correlated with the scanning position of the beam by feeding the output of a detector responsive to the transduced signal to an indicator of an X-Y recorder. The X and Y axes of the recorder are scanned in synchronism with the beam being respectively scanned in the first and second directions to form X and Y traces on which are indicated the detected peak position in each of the scanning directions. The source position is determined from an intersection of lines drawn parallel to the X and Y axes and including the detected peak position of each trace.

  11. Zero Magnitude Effect for the Productivity of Triggered Tsunami Sources

    NASA Astrophysics Data System (ADS)

    Geist, E. L.

    2013-12-01

    The Epidemic Type Aftershock Sequence (ETAS) model is applied to tsunami events to explain previously observed temporal clustering of tsunami sources. Tsunami events are defined by National Geophysical Data Center (NGDC) tsunami database. For the ETAS analysis, the earthquake magnitude associated with each tsunami event in the NGDC database is replaced by the primary magnitude listed in the Centennial catalog up until 1976 and in the Global CMT catalog from 1976 through 2010. Tsunamis with a submarine landslide or volcanic component are included if they are accompanied by an earthquake, which is most often the case. Tsunami size is used as a mark for determining a tsunami-generating event, according to a minimum completeness level. The tsunami catalog is estimated to be complete for tsunami sizes greater than 1 m since 1900 and greater than 0.1 m since 1960. Of the five parameters in the temporal ETAS model (Ogata, 1988), the parameter that scales the magnitude dependence in the productivity of triggered events is the one that is most different from ETAS parameters derived from similar earthquake catalogs. Maximum likelihood estimates of this magnitude effect parameter is essentially zero, within 95% confidence, for both the 0.1 m and 1.0 m tsunami completeness levels. To explain this result, parameter estimates are determined for the Global CMT catalog under three tsunamigenic conditions: (1) M≥7 and focal depth ≤50 km, (2) submarine location, and (3) dominant component of dip slip. Successive subcatalogs are formed from the Global CMT catalog according to each of these conditions. The high magnitude threshold for tsunamigenesis alone (subcatalog 1) does not explain the zero magnitude effect. The zero magnitude effect also does not appear to be caused the smaller number of tsunamigenic events analyzed in comparison to earthquake catalogs with a similar magnitude threshold. ETAS parameter estimates from the subcatalog (3) with all three tsunamigenic conditions

  12. Limiting Maximum Magnitude by Fault Dimensions (Invited)

    NASA Astrophysics Data System (ADS)

    Stirling, M. W.

    2010-12-01

    A standard practise of seismic hazard modeling is to combine fault and background seismicity sources to produce a multidisciplinary source model for a region. Background sources are typically modeled with a Gutenberg-Richter magnitude-frequency distribution developed from historical seismicity catalogs, and fault sources are typically modeled with earthquakes that are limited in size by the mapped fault rupture dimensions. The combined source model typically exhibits a Gutenberg-Richter-like distribution due to there being many short faults relative to the number of longer faults. The assumption that earthquakes are limited by the mapped fault dimensions therefore appears to be consistent with the Gutenberg-Richter relationship, one of the fundamental laws of seismology. Recent studies of magnitude-frequency distributions for California and New Zealand have highlighted an excess of fault-derived earthquakes relative to the log-linear extrapolation of the Gutenberg-Richter relationship from the smaller magnitudes (known as the “bulge”). Relaxing the requirement of maximum magnitude being limited by fault dimensions is a possible solution for removing the “bulge” to produce a perfectly log-linear Gutenberg-Richter distribution. An alternative perspective is that the “bulge” does not represent a significant departure from a Gutenberg-Richter distribution, and may simply be an artefact of a small earthquake dataset relative to the more plentiful data at the smaller magnitudes. In other words the uncertainty bounds of the magnitude-frequency distribution at the moderate-to-large magnitudes may be far greater than the size of the “bulge”.

  13. Estimation of continuous object distributions from limited Fourier magnitude measurements

    NASA Astrophysics Data System (ADS)

    Byrne, Charles L.; Fiddy, Michael A.

    1987-01-01

    From finite complex spectral data one can construct a continuous object with a given support that is consistent with the data. Given Fourier magnitude data only, one can choose the phases arbitrarily in the above construction. The energy in the extrapolated spectrum is phase-dependent and provides a cost function to be used in phase retrieval. The minimization process is performed iteratively, using an algorithm that can be viewed as a combination of Gerchberg-Papoulis and Fienup error reduction.

  14. Free energy for blue copper protein unfolding determined by electrospray ionisation mass spectrometry.

    PubMed

    Cunsolo, V; Foti, S; La Rosa, C; Saletti, R; Canters, G W; Verbeet, M P

    2001-01-01

    An electrospray ionisation (ESI) mass spectrometric method for the determination of the free energy (DeltaG) of unfolding of proteins is described. The method was tested using three blue copper proteins: wild type azurin, Cys-3Ala/Cys-26Ala (C3A/C26A) azurin mutant and wild-type amicyanin. The time course of the denaturation process of the proteins dissolved in methanol/water (50:50, v/v, pH 3.5) was followed by recording ESI mass spectra at time intervals. The spectra showed two series of peaks, corresponding to the native holo-protein and the unfolded apo-protein. From the intensity ratio of these two series of peaks at increasing time and at equilibrium, the free energy for the unfolding process for the three proteins could be determined. To evaluate the reliability of the thermodynamic data obtained by the ESI mass spectrometric approach, the denaturation process was followed by UV-VIS spectroscopy. The two sets of data obtained by these independent methods were in good agreement indicating that the ESI-MS approach can be used to obtain reliable quantitative information about the protein unfolding process. In principle, this approach can be applied to other proteins and requires very low amounts of sample, due to the intrinsic sensitivity of mass spectrometry. This may prove particularly useful when the amount of sample available prevents the use of current methods.

  15. Determining national greenhouse gas emissions from waste-to-energy using the Balance Method.

    PubMed

    Schwarzböck, Therese; Rechberger, Helmut; Cencic, Oliver; Fellner, Johann

    2016-03-01

    Different directives of the European Union require operators of waste-to-energy (WTE) plants to report the amount of electricity that is produced from biomass in the waste feed, as well as the amount of fossil CO2 emissions generated by the combustion of fossil waste materials. This paper describes the application of the Balance Method for determining the overall amount of fossil and thus climate relevant CO2 emissions from waste incineration in Austria. The results of 10 Austrian WTE plants (annual waste throughput of around 2,300 kt) demonstrate large seasonal variations in the specific fossil CO2 emissions of the plants as well as large differences between the facilities (annual means range from 32±2 to 51±3 kg CO(2,foss)/GJ heating value). An overall amount of around 924 kt/yr of fossil CO2 for all 10 WTE plants is determined. In comparison biogenic (climate neutral) CO2 emissions amount to 1,187 kt/yr, which corresponds to 56% of the total CO2 emissions from waste incineration. The total energy input via waste feed to the 10 facilities is about 22,500 TJ/yr, of which around 48% can be assigned to biogenic and thus renewable sources.

  16. LDEF (Prelaunch), M0002-01 : Trapped-Proton Energy Spectrum Determination, Tray G12

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The prelaunch photograph was taken in SAEF II at KSC prior to installation of the integrated tray on the LDEF. The Trapped Proton Energy Spectrum Determination Experiment is one of four (4) experiments located in a three (3) inch deep LDEF end center tray. Additional Trapped Proton Energy Experiments are located in peripheral LDEF integrated experiment trays in the D03 and D09 tray locations. The identifica tion plate on the lower right corner of the experiment mounting plate identifies the experiments location and orientation in the experiment tray. The Trapped Proton Energy experiment, located in the upper left quadrant of the integrated tray, consist of a primary experiment and three (3) sub experiments mounted on an aluminum mount ing plate. The primary experiment components include six (6) stacks of CR-39 passive detectors in individual aluminum housings and an aluminum mounting structure, configured to provide the desired exposure for the detector stacks. The secondary experiments consist of the Neutron and Proton Activation experiment that expose metal samples to the ambient flux throughout the mis sion, the Microsphere Dosimetry experiment housed in a cylindrical aluminum container and the Flux Measurement by Ion Trapping experiment consisting of a variety of sample materials that are exposed to the space environment for the total mission. The exterior surfaces of the mounting plate, the experiment housings and the support structure are coated with IITRI S13G-LO white paint.The experiment is assembled using non-magnetic stainless steel fasteners and safety wire.

  17. Energy Loss Calculations for Target Thickness Determinations using SRIM and Excel

    NASA Astrophysics Data System (ADS)

    Pawlak, A. S.; Greene, J. P.

    2011-10-01

    The thickness of a thin target foil can be determined by measuring the energy loss of alpha particles that travel through it. In the Target Laboratory of the Physics Division at Argonne National Laboratory (ANL), this is accomplished by measuring the energy loss of the 5812 keV alpha particles emitted by a 2 49 Cf source using a silicon detector set-up. The energy loss is translated into the target foil thickness using the stopping power for 4He in the target material obtained from the stopping/range tables provided by SRIM. This calculation has until recently been carried out using a program developed for this purpose, ``ENELOSS.'' This program uses the stopping/range tables from the original work published by Ziegler. Additionally, due to its design, ENELOSS is unable to easily accommodate targets made from compounds. In order to perform theses measurements using the most recent SRIM data, and to better calculate the thickness of compound targets, we have developed a ``Thickness Calculation'' spreadsheet using Microsoft Excel. This spreadsheet approach is not limited to elemental targets and employs stopping/range tables from the most recent edition of SRIM available on the web. The calculations obtained allow for more accurate target thicknesses and automates the process conveniently for repetitive measurements. This work was supported by the U.S. DoE, Nuclear Physics Division, under Contract No. W-31-109-Eng-38.

  18. Sample thickness determination by scanning transmission electron microscopy at low electron energies.

    PubMed

    Volkenandt, Tobias; Müller, Erich; Gerthsen, Dagmar

    2014-02-01

    Sample thickness is a decisive parameter for any quantification of image information and composition in transmission electron microscopy. In this context, we present a method to determine the local sample thickness by scanning transmission electron microscopy at primary energies below 30 keV. The image intensity is measured with respect to the intensity of the incident electron beam and can be directly compared with Monte Carlo simulations. Screened Rutherford and Mott scattering cross-sections are evaluated with respect to fitting experimental data with simulated image intensities as a function of the atomic number of the sample material and primary electron energy. The presented method is tested for sample materials covering a wide range of atomic numbers Z, that is, fluorenyl hexa-peri-hexabenzocoronene (Z = 3.5), carbon (Z = 6), silicon (Z = 14), gallium nitride (Z = 19), and tungsten (Z = 74). Investigations were conducted for two primary energies (15 and 30 keV) and a sample thickness range between 50 and 400 nm.

  19. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities.

    PubMed

    Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2017-02-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria's waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria's waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap(-1). In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap(-1) a(-1) for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita.

  20. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities

    PubMed Central

    Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2016-01-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria’s waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria’s waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap-1. In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap-1 a-1 for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita. PMID:27474393

  1. Improving Children's Knowledge of Fraction Magnitudes.

    PubMed

    Fazio, Lisa K; Kennedy, Casey A; Siegler, Robert S

    2016-01-01

    We examined whether playing a computerized fraction game, based on the integrated theory of numerical development and on the Common Core State Standards' suggestions for teaching fractions, would improve children's fraction magnitude understanding. Fourth and fifth-graders were given brief instruction about unit fractions and played Catch the Monster with Fractions, a game in which they estimated fraction locations on a number line and received feedback on the accuracy of their estimates. The intervention lasted less than 15 minutes. In our initial study, children showed large gains from pretest to posttest in their fraction number line estimates, magnitude comparisons, and recall accuracy. In a more rigorous second study, the experimental group showed similarly large improvements, whereas a control group showed no improvement from practicing fraction number line estimates without feedback. The results provide evidence for the effectiveness of interventions emphasizing fraction magnitudes and indicate how psychological theories and research can be used to evaluate specific recommendations of the Common Core State Standards.

  2. Representations of the magnitudes of fractions.

    PubMed

    Schneider, Michael; Siegler, Robert S

    2010-10-01

    We tested whether adults can use integrated, analog, magnitude representations to compare the values of fractions. The only previous study on this question concluded that even college students cannot form such representations and instead compare fraction magnitudes by representing numerators and denominators as separate whole numbers. However, atypical characteristics of the presented fractions might have provoked the use of atypical comparison strategies in that study. In our 3 experiments, university and community college students compared more balanced sets of single-digit and multi-digit fractions and consistently exhibited a logarithmic distance effect. Thus, adults used integrated, analog representations, akin to a mental number line, to compare fraction magnitudes. We interpret differences between the past and present findings in terms of different stimuli eliciting different solution strategies.

  3. Magnitude and frequency of floods in Alabama

    USGS Publications Warehouse

    Atkins, J. Brian

    1996-01-01

    Methods of estimating flood magnitudes for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years are described for rural streams in Alabama that are not affected by regulation or urbanization. Flood-frequency characteristics are presented for 198 gaging stations in Alabama having 10 or more years of record through September 1991, that are used in the regional analysis. Regression relations were developed using generalized least-squares regression techniques to estimate flood magnitude and frequency on ungaged streams as a function of the drainage area of a basin. Sites on gaged streams should be weighted with gaging station data that are presented in the report. Graphical relations of peak discharges to drainage areas are also presented for sites along the Alabama, Black Warrior, Cahaba, Choctawhatchee, Conecub, and Tombigbee Rivers. Equations for estimating flood magnitudes on ungaged urban streams (taken from a previous report) that use drainage area and percentage of impervious cover as independent variables also are given.

  4. Quantitative determination and classification of energy drinks using near-infrared spectroscopy.

    PubMed

    Rácz, Anita; Héberger, Károly; Fodor, Marietta

    2016-09-01

    Almost a hundred commercially available energy drink samples from Hungary, Slovakia, and Greece were collected for the quantitative determination of their caffeine and sugar content with FT-NIR spectroscopy and high-performance liquid chromatography (HPLC). Calibration models were built with partial least-squares regression (PLSR). An HPLC-UV method was used to measure the reference values for caffeine content, while sugar contents were measured with the Schoorl method. Both the nominal sugar content (as indicated on the cans) and the measured sugar concentration were used as references. Although the Schoorl method has larger error and bias, appropriate models could be developed using both references. The validation of the models was based on sevenfold cross-validation and external validation. FT-NIR analysis is a good candidate to replace the HPLC-UV method, because it is much cheaper than any chromatographic method, while it is also more time-efficient. The combination of FT-NIR with multidimensional chemometric techniques like PLSR can be a good option for the detection of low caffeine concentrations in energy drinks. Moreover, three types of energy drinks that contain (i) taurine, (ii) arginine, and (iii) none of these two components were classified correctly using principal component analysis and linear discriminant analysis. Such classifications are important for the detection of adulterated samples and for quality control, as well. In this case, more than a hundred samples were used for the evaluation. The classification was validated with cross-validation and several randomization tests (X-scrambling). Graphical Abstract The way of energy drinks from cans to appropriate chemometric models.

  5. A second type of magnitude effect: Reinforcer magnitude differentiates delay discounting between substance users and controls.

    PubMed

    Mellis, Alexandra M; Woodford, Alina E; Stein, Jeffrey S; Bickel, Warren K

    2017-01-01

    Basic research on delay discounting, examining preference for smaller-sooner or larger-later reinforcers, has demonstrated a variety of findings of considerable generality. One of these, the magnitude effect, is the observation that individuals tend to exhibit greater preference for the immediate with smaller magnitude reinforcers. Delay discounting has also proved to be a useful marker of addiction, as demonstrated by the highly replicated finding of greater discounting rates in substance users compared to controls. However, some research on delay discounting rates in substance users, particularly research examining discounting of small-magnitude reinforcers, has not found significant differences compared to controls. Here, we hypothesize that the magnitude effect could produce ceiling effects at small magnitudes, thus obscuring differences in delay discounting between groups. We examined differences in discounting between high-risk substance users and controls over a broad range of magnitudes of monetary amounts ($0.10, $1.00, $10.00, $100.00, and $1000.00) in 116 Amazon Mechanical Turk workers. We found no significant differences in discounting rates between users and controls at the smallest reinforcer magnitudes ($0.10 and $1.00) and further found that differences became more pronounced as magnitudes increased. These results provide an understanding of a second form of the magnitude effect: That is, differences in discounting between populations can become more evident as a function of reinforcer magnitude.

  6. Calibration of magnitude scales for earthquakes of the Mediterranean

    NASA Astrophysics Data System (ADS)

    Gardini, Domenico; di Donato, Maria; Boschi, Enzo

    In order to provide the tools for uniform size determination for Mediterranean earthquakes over the last 50-year period of instrumental seismology, we have regressed the magnitude determinations for 220 earthquakes of the European-Mediterranean region over the 1977-1991 period, reported by three international centres, 11 national and regional networks and 101 individual stations and observatories, using seismic moments from the Harvard CMTs. We calibrate M(M0) regression curves for the magnitude scales commonly used for Mediterranean earthquakes (ML, MWA, mb, MS, MLH, MLV, MD, M); we also calibrate static corrections or specific regressions for individual observatories and we verify the reliability of the reports of different organizations and observatories. Our analysis shows that the teleseismic magnitudes (mb, MS) computed by international centers (ISC, NEIC) provide good measures of earthquake size, with low standard deviations (0.17-0.23), allowing one to regress stable regional calibrations with respect to the seismic moment and to correct systematic biases such as the hypocentral depth for MS and the radiation pattern for mb; while mb is commonly reputed to be an inadequate measure of earthquake size, we find that the ISC mb is still today the most precise measure to use to regress MW and M0 for earthquakes of the European-Mediterranean region; few individual observatories report teleseismic magnitudes requiring specific dynamic calibrations (BJI, MOS). Regional surface-wave magnitudes (MLV, MLH) reported in Eastern Europe generally provide reliable measures of earthquake size, with standard deviations often in the 0.25-0.35 range; the introduction of a small (±0.1-0.2) static station correction is sometimes required. While the Richter magnitude ML is the measure of earthquake size most commonly reported in the press whenever an earthquake strikes, we find that ML has not been computed in the European-Mediterranean in the last 15 years; the reported local

  7. Measurement of the moments of the photon energy spectrum in B→Xsγ decays and determination of |Vcb| and mb at Belle

    NASA Astrophysics Data System (ADS)

    Schwanda, C.; Urquijo, P.; Barberio, E.; Limosani, A.; Adachi, I.; Aihara, H.; Arinstein, K.; Aushev, T.; Bahinipati, S.; Bakich, A. M.; Balagura, V.; Bedny, I.; Belous, K.; Bitenc, U.; Bondar, A.; Bozek, A.; Bračko, M.; Chang, M.-C.; Chen, A.; Chen, W. T.; Cheon, B. G.; Chistov, R.; Cho, I.-S.; Choi, Y.; Dalseno, J.; Dash, M.; Drutskoy, A.; Eidelman, S.; Golob, B.; Ha, H.; Haba, J.; Hara, T.; Hayasaka, K.; Hayashii, H.; Hazumi, M.; Heffernan, D.; Hoshi, Y.; Hou, W.-S.; Hyun, H. J.; Inami, K.; Ishikawa, A.; Ishino, H.; Itoh, R.; Iwasaki, M.; Iwasaki, Y.; Kah, D. H.; Kang, J. H.; Kapusta, P.; Katayama, N.; Kichimi, H.; Kim, H. J.; Kim, Y. J.; Kinoshita, K.; Korpar, S.; Kozakai, Y.; Križan, P.; Krokovny, P.; Kumar, R.; Kuo, C. C.; Kuroki, Y.; Kuzmin, A.; Kwon, Y.-J.; Lee, J. S.; Lee, M. J.; Lee, S. E.; Lesiak, T.; Li, J.; Liu, C.; Liventsev, D.; Mandl, F.; Matyja, A.; McOnie, S.; Medvedeva, T.; Mitaroff, W.; Miyake, H.; Miyata, H.; Miyazaki, Y.; Mizuk, R.; Moloney, G. R.; Nakano, E.; Nakao, M.; Natkaniec, Z.; Nishida, S.; Nitoh, O.; Noguchi, S.; Nozaki, T.; Ogawa, S.; Ohshima, T.; Okuno, S.; Pakhlov, P.; Pakhlova, G.; Palka, H.; Park, C. W.; Park, H.; Peak, L. S.; Pestotnik, R.; Piilonen, L. E.; Sahoo, H.; Sakai, Y.; Schneider, O.; Schümann, J.; Seidl, R.; Sekiya, A.; Senyo, K.; Sevior, M. E.; Shapkin, M.; Shibuya, H.; Shiu, J.-G.; Shwartz, B.; Somov, A.; Stanič, S.; Starič, M.; Sumiyoshi, T.; Takasaki, F.; Tanaka, M.; Taylor, G. N.; Teramoto, Y.; Tikhomirov, I.; Trabelsi, K.; Uehara, S.; Unno, Y.; Uno, S.; Varner, G.; Varvell, K. E.; Vervink, K.; Villa, S.; Wang, C. H.; Wang, P.; Watanabe, Y.; Wedd, R.; Won, E.; Yabsley, B. D.; Yamamoto, H.; Yamashita, Y.; Zhang, Z. P.; Zupanc, A.

    2008-08-01

    Using the previous Belle measurement of the inclusive photon energy in B→Xsγ decays, we determine the first and second moments of this spectrum for minimum photon energies in the B meson rest frame ranging from 1.8 to 2.3 GeV. Combining these measurements with recent Belle data on the lepton energy and hadronic mass moments in B→Xcℓν decays, we perform fits to theoretical expressions derived in the 1S and kinetic mass schemes and extract the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element Vcb, the b-quark mass, and other nonperturbative parameters. In the 1S scheme analysis we find |Vcb|=(41.56±0.68(fit)±0.08(τB))×10-3 and mb1S=(4.723±0.055)GeV. In the kinetic scheme, we obtain |Vcb|=(41.58±0.69(fit)±0.08(τB)±0.58(th))×10-3 and mbkin=(4.543±0.075)GeV.

  8. Improving Children's Knowledge of Fraction Magnitudes

    ERIC Educational Resources Information Center

    Fazio, Lisa K.; Kennedy, Casey A.; Siegler, Robert S.

    2016-01-01

    We examined whether playing a computerized fraction game, based on the integrated theory of numerical development and on the Common Core State Standards' suggestions for teaching fractions, would improve children's fraction magnitude understanding. Fourth and fifth-graders were given brief instruction about unit fractions and played "Catch…

  9. Color and magnitude dependence of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Müller, Volker

    2016-10-01

    A quantitative study of the clustering properties of galaxies in the cosmic web as a function of absolute magnitude and colour is presented using the SDSS Data Release 7 galaxy redshift survey. We compare our results with mock galaxy samples obtained with four different semi-analytical models of galaxy formation imposed on the merger trees of the Millenium simulation.

  10. Incentive theory: IV. Magnitude of reward

    PubMed Central

    Killeen, Peter R.

    1985-01-01

    Incentive theory is successfully applied to data from experiments in which the amount of food reward is varied. This is accomplished by assuming that incentive value is a negatively accelerated function of reward duration. The interaction of the magnitude of a reward with its delay is confirmed, and the causes and implications of this interaction are discussed. PMID:16812421

  11. Surface Energy Determined by Inverse Gas Chromatography as a Tool to Investigate Particulate Interactions in Dry Powder Inhalers.

    PubMed

    Das, Shyamal C; Tucker, Ian G; Stewart, Peter J

    2015-01-01

    Dry powder inhalers (DPIs) usually contain drug particles <6 µm which agglomerate and/ or adhere on the surfaces of large carriers particles. The detachment of drug particles from carriers and de-agglomeration of drug particles into primary particles is essential for drug deposition in the deep lung. These processes are influenced by the surface energy of particles. Inverse gas chromatography (IGC) has been used to determine the surface energy of powder particles used in DPI to characterize materials and to understand aerosolization behaviour. Early studies used an infinite dilution technique to determine nonpolar surface energy and free energy of adsorption for polar interactions separately. Although some correlations were observed with the change in nonpolar surface energy before and after micronization, milling and storage, a lack of consistency in the change of free energy of adsorption was common. Moreover, a consistent relationship between complex de-agglomeration behaviour and surface energy has not been established and there are even some examples of negative correlation. In fact, nonpolar surface energy at infinite dilution is an incomplete representation of powder surface characteristics. The techniques for measuring polar surface energy, total surface energy and surface energy distribution have provided more revealing information about surface energetics of powders. Surface energy distributions determined by IGC or surface energy analyser have been successfully used to understand energetic heterogeneity of surfaces, characterize different polymorphs and understand changes due to micronization, structural relaxation, dry coating and storage. Efforts have been made to utilize surface energy distribution data to calculate powder strength distribution and to explain complex de-agglomeration behaviour of DPI formulations.

  12. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    DOE PAGES

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making processmore » regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.« less

  13. ANSI/ASHRAE/IES Standard 90.1-2013 Determination of Energy Savings: Quantitative Analysis

    SciTech Connect

    Halverson, Mark A.; Athalye, Rahul A.; Rosenberg, Michael I.; Xie, YuLong; Wang, Weimin; Hart, Philip R.; Zhang, Jian; Goel, Supriya; Mendon, Vrushali V.

    2014-09-04

    This report provides a final quantitative analysis to assess whether buildings constructed according to the requirements of ANSI/ASHRAE/IES Standard 90.1-2013 would result in improved energy efficiency in commercial buildings. The final analysis considered each of the 110 addenda to Standard 90.1-2010 that were included in Standard 90.1-2013. PNNL reviewed all addenda included by ASHRAE in creating Standard 90.1-2013 from Standard 90.1-2010, and considered their combined impact on a suite of prototype building models across all U.S. climate zones. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE’s final determination. However, out of the 110 total addenda, 30 were identified as having a measureable and quantifiable impact.

  14. Comparative binding energy COMBINE analysis for understanding the binding determinants of type II dehydroquinase inhibitors.

    PubMed

    Peón, Antonio; Coderch, Claire; Gago, Federico; González-Bello, Concepción

    2013-05-01

    Herein we report comparative binding energy (COMBINE) analyses to derive quantitative structure-activity relationship (QSAR) models that help rationalize the determinants of binding affinity for inhibitors of type II dehydroquinase (DHQ2), the third enzyme of the shikimic acid pathway. Independent COMBINE models were derived for Helicobacter pylori and Mycobacterium tuberculosis DHQ2, which is an essential enzyme in both these pathogenic bacteria that has no counterpart in human cells. These studies quantify the importance of the hydrogen bonding interactions between the ligands and the water molecule involved in the DHQ2 reaction mechanism. They also highlight important differences in the ligand interactions with the interface pocket close to the active site that could provide guides for future inhibitor design.

  15. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    SciTech Connect

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making process regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.

  16. Determination of Unfiltered Radiances from the Clouds and the Earth's Radiant Energy System (CERES) Instrument

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Priestley, K. J.; Kratz, D. P.; Geier, E. B.; Green, R. N.; Wielicki, B. A.; Hinton, P. OR.; Nolan, S. K.

    2001-01-01

    A new method for determining unfiltered shortwave (SW), longwave (LW) and window (W) radiances from filtered radiances measured by the Clouds and the Earth's Radiant Energy System (CERES) satellite instrument is presented. The method uses theoretically derived regression coefficients between filtered and unfiltered radiances that are a function of viewing geometry, geotype and whether or not cloud is present. Relative errors in insta.ntaneous unfiltered radiances from this method are generally well below 1% for SW radiances (approx. 0.4% 1(sigma) or approx.l W/sq m equivalent flux), < 0.2% for LW radiances (approx. 0.1% 1(sigma) or approx.0.3 W/sq m equivalent flux) and < 0.2% (approx. 0.1% 1(sigma) for window channel radiances.

  17. Energy system contributions and determinants of performance in sprint cross-country skiing.

    PubMed

    Andersson, E; Björklund, G; Holmberg, H-C; Ørtenblad, N

    2017-04-01

    To improve current understanding of energy contributions and determinants of sprint-skiing performance, 11 well-trained male cross-country skiers were tested in the laboratory for VO2max , submaximal gross efficiency (GE), maximal roller skiing velocity, and sprint time-trial (STT) performance. The STT was repeated four times on a 1300-m simulated sprint course including three flat (1°) double poling (DP) sections interspersed with two uphill (7°) diagonal stride (DS) sections. Treadmill velocity and VO2 were monitored continuously during the four STTs and data were averaged. Supramaximal GE during the STT was predicted from the submaximal relationships for GE against velocity and incline, allowing computation of metabolic rate and O2 deficit. The skiers completed the STT in 232 ± 10 s (distributed as 55 ± 3% DP and 45 ± 3% DS) with a mean power output of 324 ± 26 W. The anaerobic energy contribution was 18 ± 5%, with an accumulated O2 deficit of 45 ± 13 mL/kg. Block-wise multiple regression revealed that VO2 , O2 deficit, and GE explained 30%, 15%, and 53% of the variance in STT time, respectively (all P < 0.05). This novel GE-based method of estimating the O2 deficit in simulated sprint-skiing has demonstrated an anaerobic energy contribution of 18%, with GE being the strongest predictor of performance.

  18. The Spectrophotometric Method of Determining the Transmission of Solar Energy in Salt Gradient Solar Ponds

    NASA Technical Reports Server (NTRS)

    Giulianelli, J.

    1984-01-01

    In order to predict the thermal efficiency of a solar pond it is necessary to know total average solar energy reaching the storage layer. One method for determining this energy for water containing dissolved colored species is based upon spectral transmission measurements using a laboratory spectrophotometer. This method is examined and some of the theoretical ground work needed to discuss the measurement of transmission of light water. Results of in situ irradiance measurements from oceanography research are presented and the difficulties inherent in extrapolating laboratory data obtained with ten centimeter cells to real three dimensional pond situations is discussed. Particular emphasis is put on the need to account for molecular and particulate scattering in measurements done on low absorbing solutions. Despite these considerations it is expected that attenuation calculations based upon careful measurements using a dual beam spectrophotometer technique combined with known attenuation coefficients will be useful in solar pond modeling and monitoring for color buildup. Preliminary results using the CSM method are presented.

  19. Experimental determination of in situ utilization of lunar regolith for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Richter, Scott W.

    A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister which contains simulated lunar regolith, a heater, nine heat shields, a heat transfer cold jacket, and 19 type-B platinum rhodium thermocouples. The simulated lunar regolith is a basalt that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith, which include melt temperature, specific heat thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative and conductive heat transfer. A finite differencing SINDA model was developed at NASA Lewis Research Center to predict the performance of the LUTHER experiment. The code will predict the effects of vacuum, particle size, and density has on the heat transfer to the simulated regolith.

  20. Electronic spectra of jet-cooled isoindoline: Spectroscopic determination of energy difference between conformational isomers

    NASA Astrophysics Data System (ADS)

    Tanaka, Sei'ichi; Okuyama, Katsuhiko

    2010-04-01

    The electronic spectra of jet-cooled isoindoline between the electronic ground (S0) state and the ππ ∗ lowest-excited singlet state (S1) were observed by the fluorescence excitation and single-vibronic-level dispersed fluorescence methods. The low-frequency progression due to the puckering vibration appeared in both spectra. Analysis of dispersed spectra together with geometry optimization at the level of B3LYP/6-311+G(d) indicated the presence of conformational isomers possessing axial and equatorial N-H bonds with respect to the molecular plane. The 0-0 bands of the axial and equatorial conformers were measured at 37 022 and 36 761 cm-1, respectively. Three common levels in the S1 state accessible from the respective S0-state zero levels were observed. From their transition frequencies, the S0-state energy difference between the isomers was determined to be 47.7±0.2 cm-1, where the axial conformer was more stable. In the S1 state, the energy difference was 213.7±0.2 cm-1, and the equatorial conformer was more stable. The cause of switching from a stable conformation upon excitation is discussed in terms of the electron conjugation between the π∗ orbital in benzene and the lone pair orbital of nitrogen.

  1. Experimental determination of in situ utilization of lunar regolith for thermal energy storage

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1992-01-01

    A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister which contains simulated lunar regolith, a heater, nine heat shields, a heat transfer cold jacket, and 19 type-B platinum rhodium thermocouples. The simulated lunar regolith is a basalt that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith, which include melt temperature, specific heat thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative and conductive heat transfer. A finite differencing SINDA model was developed at NASA Lewis Research Center to predict the performance of the LUTHER experiment. The code will predict the effects of vacuum, particle size, and density has on the heat transfer to the simulated regolith.

  2. Determination of color-octet matrix elements from e+e- processes at low energies

    NASA Astrophysics Data System (ADS)

    Yuan, Feng; Qiao, Cong-Feng; Chao, Kuang-Ta

    1997-08-01

    We present an analysis of the preliminary experimental data of direct J/ψ production in e+e- processes at low energies. We find that the color-octet contributions are crucially important to the cross section in this energy region, and their inclusion produces a good description of the data. By fitting to the data, we extract the individual values of two color-octet matrix elements: ~1.1×10-2 GeV3; /m2c~7.4×10-3 GeV3. We discuss the allowed range of the two matrix elements constrained by the theoretical uncertainties. We find that is poorly determined because it is sensitive to the variation of the choice of mc, αs and . However, /m2c is quite stable [about (6-9)×10-3 GeV3] when the parameters vary in reasonable ranges. The uncertainties due to large experimental errors are also discussed.

  3. Determination of critical energy criteria for hexanitrostilbene using laser-driven flyer plates

    NASA Astrophysics Data System (ADS)

    Bowden, Mike D.; Maisey, Matthew P.

    2008-08-01

    Laser-driven flyer plates comprise of one or more thin layers forming a foil coated onto a transparent substrate. Irradiation of the foil/substrate interface with a Q-switched laser pulse produces a plasma, the expansion of which forms a flyer plate, which can reach velocities in excess of 5 km/s. These plates impart shocks in excess of 50 GPa, with duration of less than a nanosecond. This shock is sufficient to initiate secondary explosives such as Hexanitrostilbene (HNS) and Pentaerythritol Tetranitrate (PETN). Thresholds of detonators based on laser-driven flyer plates are typically measured in terms of energy. By using a Photonic Doppler Velocimeter (PDV) we measure the velocity of the flyer plate at the threshold energy. This allows calculation of the shock pressure and duration imparted to the explosive. By initiating HNS with a variety of flyer thicknesses, from 3 to 5 μm, we are able to evaluate Pnτ in this extreme shock regime. The calculated value of n is compared to published values and discussed for similar systems. We are also able to use the James Criterion to analyze the initiation, with values of Ec and Σc being determined from experimental data, providing a predictive capability to model other configurations such as different flyer thicknesses and materials.

  4. Feasibility of determining diffuse ultra-high energy cosmic neutrino flavor ratio through ARA neutrino observatory

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Hao; Chen, Pisin; Nam, Jiwoo; Huang, Melin

    2013-11-01

    The flavor composition of ultra-high energy cosmic neutrinos (UHECN) carries precious information about the physical properties of their sources, the nature of neutrino oscillations and possible exotic physics involved during the propagation. Since UHECN with different incoming directions would propagate through different amounts of matter in Earth and since different flavors of charged leptons produced in the neutrino-nucleon charged-current (CC) interaction would have different energy-loss behaviors in the medium, measurement of the angular distribution of incoming events by a neutrino observatory can in principle be employed to help determine the UHECN flavor ratio. In this paper we report on our investigation of the feasibility of such an attempt. Simulations were performed, where the detector configuration was based on the proposed Askaryan Radio Array (ARA) Observatory at the South Pole, to investigate the expected event-direction distribution for each flavor. Assuming νμ-ντ symmetry and invoking the standard oscillation and the neutrino decay scenarios, the probability distribution functions (PDF) of the event directions are utilized to extract the flavor ratio of cosmogenic neutrinos on Earth. The simulation results are summarized in terms of the probability of flavor ratio extraction and resolution as functions of the number of observed events and the angular resolution of neutrino directions. We show that it is feasible to constrain the UHECN flavor ratio using the proposed ARA Observatory.

  5. Self-consistent determination of fullerene binding energies BE (C+n-C2), n=58ṡ ṡ ṡ44

    NASA Astrophysics Data System (ADS)

    Wörgötter, R.; Dünser, B.; Scheier, P.; Märk, T. D.; Foltin, M.; Klots, C. E.; Laskin, J.; Lifshitz, C.

    1996-01-01

    Using recently measured accurate relative partial ionization cross section functions for production of the C60 fragment ions C+58 through C+44 by electron impact ionization, we have determined the respective binding energies BE(C+n-C2), with n=58,...,44, using a novel self-consistent procedure. Appearance energies were determined from ionization efficiency curves. Binding energies were calculated from the corresponding appearance energies with the help of the finite heat bath theory. Then using these binding energies we calculated with transition state theory (TST), the corresponding breakdown curves, and compared these calculated ones with the ones derived from the measured cross sections. The good agreement between these breakdown curves proves the consistency of this multistep calculation scheme. As the only free parameter in this procedure is the binding energy C+58-C2, we studied the influence of different transition states chosen in the determination of this binding energy via TST theory and iterative comparison with breakdown curve measurements. Based on this study we can conclude that extremely loose transition states can be confidently excluded, and that somewhat looser transition states than those used earlier result in an upward change of the binding energy of less than 10% yielding an upper limit for the binding energy C+58-C2 of approximately 7.6 eV.

  6. Fast GPU-based absolute intensity determination for energy-dispersive X-ray Laue diffraction

    NASA Astrophysics Data System (ADS)

    Alghabi, F.; Send, S.; Schipper, U.; Abboud, A.; Pietsch, U.; Kolb, A.

    2016-01-01

    This paper presents a novel method for fast determination of absolute intensities in the sites of Laue spots generated by a tetragonal hen egg-white lysozyme crystal after exposure to white synchrotron radiation during an energy-dispersive X-ray Laue diffraction experiment. The Laue spots are taken by means of an energy-dispersive X-ray 2D pnCCD detector. Current pnCCD detectors have a spatial resolution of 384 × 384 pixels of size 75 × 75 μm2 each and operate at a maximum of 400 Hz. Future devices are going to have higher spatial resolution and frame rates. The proposed method runs on a computer equipped with multiple Graphics Processing Units (GPUs) which provide fast and parallel processing capabilities. Accordingly, our GPU-based algorithm exploits these capabilities to further analyse the Laue spots of the sample. The main contribution of the paper is therefore an alternative algorithm for determining absolute intensities of Laue spots which are themselves computed from a sequence of pnCCD frames. Moreover, a new method for integrating spectral peak intensities and improved background correction, a different way of calculating mean count rate of the background signal and also a new method for n-dimensional Poisson fitting are presented.We present a comparison of the quality of results from the GPU-based algorithm with the quality of results from a prior (base) algorithm running on CPU. This comparison shows that our algorithm is able to produce results with at least the same quality as the base algorithm. Furthermore, the GPU-based algorithm is able to speed up one of the most time-consuming parts of the base algorithm, which is n-dimensional Poisson fitting, by a factor of more than 3. Also, the entire procedure of extracting Laue spots' positions, energies and absolute intensities from a raw dataset of pnCCD frames is accelerated by a factor of more than 3.

  7. Toward Reconciling Magnitude Discrepancies Estimated from Paleoearthquake Data

    SciTech Connect

    N. Seth Carpenter; Suzette J. Payne; Annette L. Schafer

    2012-06-01

    We recognize a discrepancy in magnitudes estimated for several Basin and Range, U.S.A. faults. For example, magnitudes predicted for the Wasatch (Utah), Lost River (Idaho), and Lemhi (Idaho) faults from fault segment lengths (L{sub seg}) where lengths are defined between geometrical, structural, and/or behavioral discontinuities assumed to persistently arrest rupture, are consistently less than magnitudes calculated from displacements (D) along these same segments. For self-similarity, empirical relationships (e.g. Wells and Coppersmith, 1994) should predict consistent magnitudes (M) using diverse fault dimension values for a given fault (i.e. M {approx} L{sub seg}, should equal M {approx} D). Typically, the empirical relationships are derived from historical earthquake data and parameter values used as input into these relationships are determined from field investigations of paleoearthquakes. A commonly used assumption - grounded in the characteristic-earthquake model of Schwartz and Coppersmith (1984) - is equating L{sub seg} with surface rupture length (SRL). Many large historical events yielded secondary and/or sympathetic faulting (e.g. 1983 Borah Peak, Idaho earthquake) which are included in the measurement of SRL and used to derive empirical relationships. Therefore, calculating magnitude from the M {approx} SRL relationship using L{sub seg} as SRL leads to an underestimation of magnitude and the M {approx} L{sub seg} and M {approx} D discrepancy. Here, we propose an alternative approach to earthquake magnitude estimation involving a relationship between moment magnitude (Mw) and length, where length is L{sub seg} instead of SRL. We analyze seven historical, surface-rupturing, strike-slip and normal faulting earthquakes for which segmentation of the causative fault and displacement data are available and whose rupture included at least one entire fault segment, but not two or more. The preliminary Mw {approx} L{sub seg} results are strikingly consistent

  8. Determination of the energy dependence of the BC-408 plastic scintillation detector in medium energy x-ray beams

    NASA Astrophysics Data System (ADS)

    Yücel, H.; Çubukçu, Ş.; Uyar, E.; Engin, Y.

    2014-11-01

    The energy dependence of the response of BC-408 plastic scintillator (PS), an approximately water-equivalent material, has been investigated by employing standardized x-ray beams. IEC RQA and ISO N series x-ray beam qualities, in the range of 40-100 kVp, were calibrated using a PTW-type ionization chamber. The energy response of a thick BC-408 PS detector was measured using the multichannel pulse height analysis method. The response of BC-408 PS increased gradually with increasing energy in the energy range of 40-80 kVp and then showed a flat behavior at about 80 to 120 kVp. This might be due to the self-attenuation of scintillation light by the scintillator itself and may also be partly due to the ionization quenching, leading to a reduction in the intensity of the light output from the scintillator. The results indicated that the sensitivity drop in BC-408 PS material at lower photon energies may be overcome by adding some high-Z elements to its polyvinyltoluene (PVT) base. The material modification may compensate for the drop in the response at lower photon energies. Thus plastic scintillation dosimetry is potentially suitable for applications in diagnostic radiology.

  9. A RAPID SPECTROSCOPIC TECHNIQUE FOR DETERMINING THE POTENTIAL ALPHA ENERGY CONCENTRATION OF RADON DECAY PRODUCTS

    SciTech Connect

    Revzan, K. L.; Nazaroff, W. W.

    1981-07-01

    We consider the application of alpha spectroscopy to the rapid determination of the potential alpha energy concentration (PAEC) of radon decay products indoors. Two count totals are obtained after a single counting period. The PAEC is then estimated by a linear combination of the count totals, the two coefficients being determined by analysis of the dependence of the statistical and procedural errors on the equilibrium conditions and the sampling, delay, and counting times. For a total measurement time of 11 min, the procedural error is unlikely to exceed 20% for equilibrium conditions commonly found indoors; the statistical error is less than 20% at a PAEC of 0.005 WL, assuming a product of detector efficiency and flow rate of at least 1.0 l/min. An analysis is made of techniques based on a total alpha count, and the results are compared with those obtained with the rapid spectroscopic technique; the latter is clearly preferable when the measurement time does not exceed 15 min.

  10. Bond-Specific Dissociation Following Excitation Energy Transfer for Distance Constraint Determination in the Gas Phase

    PubMed Central

    2015-01-01

    Herein, we report chemistry that enables excitation energy transfer (EET) to be accurately measured via action spectroscopy on gaseous ions in an ion trap. It is demonstrated that EET between tryptophan or tyrosine and a disulfide bond leads to excited state, homolytic fragmentation of the disulfide bond. This phenomenon exhibits a tight distance dependence, which is consistent with Dexter exchange transfer. The extent of fragmentation of the disulfide bond can be used to determine the distance between the chromophore and disulfide bond. The chemistry is well suited for the examination of protein structure in the gas phase because native amino acids can serve as the donor/acceptor moieties. Furthermore, both tyrosine and tryptophan exhibit unique action spectra, meaning that the identity of the donating chromophore can be easily determined in addition to the distance between donor/acceptor. Application of the method to the Trpcage miniprotein reveals distance constraints that are consistent with a native-like fold for the +2 charge state in the gas phase. This structure is stabilized by several salt bridges, which have also been observed to be important previously in proteins that retain native-like structures in the gas phase. The ability of this method to measure specific distance constraints, potentially at numerous positions if combined with site-directed mutagenesis, significantly enhances our ability to examine protein structure in the gas phase. PMID:25174489

  11. Bond-specific dissociation following excitation energy transfer for distance constraint determination in the gas phase.

    PubMed

    Hendricks, Nathan G; Lareau, Nichole M; Stow, Sarah M; McLean, John A; Julian, Ryan R

    2014-09-24

    Herein, we report chemistry that enables excitation energy transfer (EET) to be accurately measured via action spectroscopy on gaseous ions in an ion trap. It is demonstrated that EET between tryptophan or tyrosine and a disulfide bond leads to excited state, homolytic fragmentation of the disulfide bond. This phenomenon exhibits a tight distance dependence, which is consistent with Dexter exchange transfer. The extent of fragmentation of the disulfide bond can be used to determine the distance between the chromophore and disulfide bond. The chemistry is well suited for the examination of protein structure in the gas phase because native amino acids can serve as the donor/acceptor moieties. Furthermore, both tyrosine and tryptophan exhibit unique action spectra, meaning that the identity of the donating chromophore can be easily determined in addition to the distance between donor/acceptor. Application of the method to the Trpcage miniprotein reveals distance constraints that are consistent with a native-like fold for the +2 charge state in the gas phase. This structure is stabilized by several salt bridges, which have also been observed to be important previously in proteins that retain native-like structures in the gas phase. The ability of this method to measure specific distance constraints, potentially at numerous positions if combined with site-directed mutagenesis, significantly enhances our ability to examine protein structure in the gas phase.

  12. Wool Base determination using dual energy X-ray absorptiometry (DEXA).

    PubMed

    Kröger, Chris; Murray Bartle, C; West, John G; van Rensburg, Brendon

    2006-12-01

    An industry grade dual energy X-ray absorptiometry (DEXA) scanner was calibrated for Wool Base determination. The calibration used 201 Crossbred and Merino wool samples, and a further 72 samples to validate the calibration. The prediction correlation had the smallest residual standard deviation (RSD) when the independently measured mean fibre diameter (MFD) was included in the multiple regression analysis. Best results were achieved when separate calibrations were used for individual wool breeds. The RSD for the Merino calibration set of 44 samples was 1.88, when the MFD was included in the regression, and 2.1 without. The RSD for 144 Crossbred samples was 1.73 including the MFD, and 2.59 without. The validation trial with 46 Crossbred and 24 Merino wool samples resulted in RSD of 2.35 and 2.23, respectively. An excellent DEXA repeatability was achieved at a standard deviation of approximately 0.2%. Improvement of the calibration is expected from concurrent laboratory testing and scanning. The research shows the promising potential for DEXA as a tool to determine Wool Base.

  13. To determine ice layer thickness of Europa by high energy neutrino

    NASA Astrophysics Data System (ADS)

    Shoji, D.; Kurita, K.; Tanaka, H. K.

    2010-12-01

    Europa, the second closest Galilean satellite is one of the targets which are suspected to have an internal ocean. Detection and characterization of the internal ocean is one of the main subjects for Europa orbiter exploration. Although the gravitational data has shown the thickness of the surface H2O layer of 80-170km[1], it can not determine the phase of H2O. The variations in the magnetic field associated with the induced current in the internal ocean can determine the thickness of the layer of ice if satellite's orbits satisfy the required conditions. Observations of tidal amplitude forced by Jupiter can also resolve the thickness of the surface lithosphere[2]. At moment because of the lack of observational constraints there exist two contrasting models:thick ice layer model and thin model. Here we propose new method to detect the ocean directly based on the radiation by high energy neutrino interacted with matter. Schaefer et al[3] have proposed a similar method to determine ice layer thickness. We will focus on the detection of internal ocean for Europa and present the method is suitable for actual situations of Europa exploration by numerical simulations. Neutrino is famous for its traveling at long distance without any interaction with matter. When high energy neutrinos traverse in Europa hadronic showers are produced by the weak interaction with the nucleons that makes the body of Europa. These hadronic showers induces excess electrons. Because of these excess electrons, Cherenkov photons are emitted. When this radiation occurs in the ice layer, radiations whose wave length is over 10cm should be coherent because the scale of the shower becomes small (a few cm) in the ice, which is called as Askaryan effect[3]. Thus, the intensity of the radiation whose frequency is a few GHz should be enhanced. Since ice has a much longer attenuation length than water, the radiations which occur in the surface ice layer could be detected by the antenna outside Europa but

  14. From 'sense of number' to 'sense of magnitude' - The role of continuous magnitudes in numerical cognition.

    PubMed

    Leibovich, Tali; Katzin, Naama; Harel, Maayan; Henik, Avishai

    2016-08-17

    In this review, we are pitting two theories against each other: the more accepted theory-the 'number sense' theory-suggesting that a sense of number is innate and non-symbolic numerosity is being processed independently of continuous magnitudes (e.g., size, area, density); and the newly emerging theory suggesting that (1) both numerosities and continuous magnitudes are processed holistically when comparing numerosities, and (2) a sense of number might not be innate. In the first part of this review, we discuss the 'number sense' theory. Against this background, we demonstrate how the natural correlation between numerosities and continuous magnitudes makes it nearly impossible to study non-symbolic numerosity processing in isolation from continuous magnitudes, and therefore the results of behavioral and imaging studies with infants, adults and animals can be explained, at least in part, by relying on continuous magnitudes. In the second part, we explain the 'sense of magnitude' theory and review studies that directly demonstrate that continuous magnitudes are more automatic and basic than numerosities. Finally, we present outstanding questions. Our conclusion is that there is not enough convincing evidence to support the number sense theory anymore. Therefore, we encourage researchers not to assume that number sense is simply innate, but to put this hypothesis to the test, and to consider if such an assumption is even testable in light of the correlation of numerosity and continuous magnitudes.

  15. On generating and derived magnitudes of stellar magnetic fields

    NASA Astrophysics Data System (ADS)

    Gerth, E.; Glagolevskij, Yu. V.

    2004-10-01

    The structure of the stellar surface magnetic field is covered from direct observation by many mixing processes. The discovery of the topographic surface structure requires an inversion procedure but does not reveal the origin of the magnetic field. Modelling of magnetic stars, however, has to start from the generating magnitudes and is a matter of construction by a strategy of forward calculation. The model of the star is fitted to the observed appearance of the real object by variation of parameters and optimizing. The magnetic field strength on the surface of the star -- including the magnetic poles -- is a derived magnitude, which should not be taken as a parameter for modeling. At the present time two versions of magnetic modeling are discussed: 1) expansion of spherical harmonics, 2) magnetic charge distribution. Both methods claim for the application of parameters, which determine the magnetic field. In this paper the question is investigated, what the generating and the derived magnitudes of the magnetic field are. Tracing back the observed spherical distribution of the magnetic field to its origin, one is led to the eigen values as the solution of Legendre's differential equation. We regard the eigen values as the generating magnitudes of the magnetic field, the physical quantities of which are the constituents of any vector field, namely the sources and vortices, from which the field originates. This interpretation is substantiated by graphical representations of magnetic maps with topographical features like poles -- derived from the field-generating sources: the virtual magnetic charges.

  16. A Comparison of the 2003 and 2006 International Energy Conservation Codes to Determine the Potential Impact on Residential Building Energy Efficiency

    SciTech Connect

    Stovall, Therese K; Baxter, Van D

    2008-03-01

    The IECC was updated in 2006. As required in the Energy Conservation and Production Act of 1992, Title 3, DOE has a legislative requirement to "determine whether such revision would improve energy efficiency in residential buildings" within 12 months of the latest revision. This requirement is part of a three-year cycle of regular code updates. To meet this requirement, an independent review was completed using personnel experienced in building science but not involved in the code development process.

  17. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  18. 16 CFR 305.5 - Determinations of estimated annual energy consumption, estimated annual operating cost, and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... procedures contained in the ENERGY STAR Version 4.2 test, which is comprised of the ENERGY STAR Program... and 19 hours in sleep (standby) mode per day. These ENERGY STAR requirements are incorporated by... inspected or obtained at the United States Environmental Protection Agency, ENERGY STAR Hotline...

  19. 16 CFR 305.5 - Determinations of estimated annual energy consumption, estimated annual operating cost, and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... procedures contained in the EnergyStar Version 4.2 test, which is comprised of the ENERGY STAR Program... and 19 hours in sleep (standby) mode per day. These ENERGY STAR requirements are incorporated by... inspected or obtained at the United States Environmental Protection Agency, ENERGY STAR Hotline...

  20. 16 CFR 305.5 - Determinations of estimated annual energy consumption, estimated annual operating cost, and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... procedures contained in the EnergyStar Version 4.2 test, which is comprised of the ENERGY STAR Program... and 19 hours in sleep (standby) mode per day. These ENERGY STAR requirements are incorporated by... inspected or obtained at the United States Environmental Protection Agency, ENERGY STAR Hotline...

  1. The Determination of Cognitive Structure of Candidate Teachers about Energy Centrals

    ERIC Educational Resources Information Center

    Karatekin, Kadir; Topçu, Ersin; Aydinli, Bahattin

    2016-01-01

    Energy is the vital essence of every biotic and abiotic process. Energy is also in central position in human civilization. The famous energy centrals are the major way for production of energy with many diverse effects on environment. Therefore, the mitigation of these effects is extremely important and one of its way is education in this…

  2. Maximum magnitude earthquakes induced by fluid injection

    NASA Astrophysics Data System (ADS)

    McGarr, A.

    2014-02-01

    Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.

  3. Local magnitude scale for earthquakes in Turkey

    NASA Astrophysics Data System (ADS)

    Kılıç, T.; Ottemöller, L.; Havskov, J.; Yanık, K.; Kılıçarslan, Ö.; Alver, F.; Özyazıcıoğlu, M.

    2017-01-01

    Based on the earthquake event data accumulated by the Turkish National Seismic Network between 2007 and 2013, the local magnitude (Richter, Ml) scale is calibrated for Turkey and the close neighborhood. A total of 137 earthquakes (Mw > 3.5) are used for the Ml inversion for the whole country. Three Ml scales, whole country, East, and West Turkey, are developed, and the scales also include the station correction terms. Since the scales for the two parts of the country are very similar, it is concluded that a single Ml scale is suitable for the whole country. Available data indicate the new scale to suffer from saturation beyond magnitude 6.5. For this data set, the horizontal amplitudes are on average larger than vertical amplitudes by a factor of 1.8. The recommendation made is to measure Ml amplitudes on the vertical channels and then add the logarithm scale factor to have a measure of maximum amplitude on the horizontal. The new Ml is compared to Mw from EMSC, and there is almost a 1:1 relationship, indicating that the new scale gives reliable magnitudes for Turkey.

  4. Simultaneous Determination of Caffeine and Vitamin B6 in Energy Drinks by High-Performance Liquid Chromatography (HPLC)

    ERIC Educational Resources Information Center

    Leacock, Rachel E.; Stankus, John J.; Davis, Julian M.

    2011-01-01

    A high-performance liquid chromatography experiment to determine the concentration of caffeine and vitamin B6 in sports energy drinks has been developed. This laboratory activity, which is appropriate for an upper-level instrumental analysis course, illustrates the standard addition method and simultaneous determination of two species. (Contains 1…

  5. Magnitude and frequency of floods in Arkansas

    USGS Publications Warehouse

    Hodge, Scott A.; Tasker, Gary D.

    1995-01-01

    Methods are presented for estimating the magnitude and frequency of peak discharges of streams in Arkansas. Regression analyses were developed in which a stream's physical and flood characteristics were related. Four sets of regional regression equations were derived to predict peak discharges with selected recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years on streams draining less than 7,770 square kilometers. The regression analyses indicate that size of drainage area, main channel slope, mean basin elevation, and the basin shape factor were the most significant basin characteristics that affect magnitude and frequency of floods. The region of influence method is included in this report. This method is still being improved and is to be considered only as a second alternative to the standard method of producing regional regression equations. This method estimates unique regression equations for each recurrence interval for each ungaged site. The regression analyses indicate that size of drainage area, main channel slope, mean annual precipitation, mean basin elevation, and the basin shape factor were the most significant basin and climatic characteristics that affect magnitude and frequency of floods for this method. Certain recommendations on the use of this method are provided. A method is described for estimating the magnitude and frequency of peak discharges of streams for urban areas in Arkansas. The method is from a nationwide U.S. Geeological Survey flood frequency report which uses urban basin characteristics combined with rural discharges to estimate urban discharges. Annual peak discharges from 204 gaging stations, with drainage areas less than 7,770 square kilometers and at least 10 years of unregulated record, were used in the analysis. These data provide the basis for this analysis and are published in the Appendix of this report as supplemental data. Large rivers such as the Red, Arkansas, White, Black, St. Francis, Mississippi, and

  6. Experimental determination of in situ utilization of lunar regolith for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Richter, Scott W.

    1993-01-01

    A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister (25.4 cm diameter by 45.7 cm length) which contains simulated lunar regolith, a heater (either radiative or conductive), 9 heat shields, a heat transfer cold jacket, and 19 type B platinum rhodium thermocouples. The simulated lunar regolith is a basalt, mined and processed by the University of Minnesota, that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith. The properties include melt temperature (range), specific heat, thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative and conductive heat transfer. The physical characteristics of the melt pattern, material compatibility of the molten regolith, and the volatile gas emission will be investigated by heating a portion of the lunar regolith to its melting temperature (1435 K) in a 10(exp -4) pascal vacuum chamber, equipped with a gas spectrum analyzer. A finite differencing SINDA model was developed at NASA Lewis Research Center to predict the performance of the LUTHER experiment. The analytical results of the code will be compared with the experimental data generated by the LUTHER experiment. The code will predict the effects of vacuum, particle size, and density has on the heat transfer to the simulated regolith.

  7. Experimental Determination of in Situ Utilization of Lunar Regolith for Thermal Energy Storage

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1993-01-01

    A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister (25.4 cm diameter by 45.7 cm length) which contains simulated lunar regolith, a heater (either radiative or conductive), 9 heat shields, a heat transfer cold jacket, and 19 type B platinum rhodium thermocouples. The simulated lunar regolith is a basalt, mined and processed by the University of Minnesota, that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith. The properties include melt temperature (range), specific heat, thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative and conductive heat transfer. The physical characteristics of the melt pattern, material compatibility of the molten regolith, and the volatile gas emission will be investigated by heating a portion of the lunar regolith to its melting temperature (1435 K) in a 10(exp -4) pascal vacuum chamber, equipped with a gas spectrum analyzer. A finite differencing SINDA model was developed at NASA Lewis Research Center to predict the performance of the LUTHER experiment. The analytical results of the code will be compared with the experimental data generated by the LUTHER experiment. The code will predict the effects of vacuum, particle size, and density has on the heat transfer to the simulated regolith.

  8. Determining Risk - How to Evaluate the Environmental Effects of Marine and Hydrokinetic Energy Development

    NASA Astrophysics Data System (ADS)

    Copping, A. E.; Blake, K.; Zdanski, L.

    2011-12-01

    As marine and hydrokinetic (MHK) energy development projects progress towards early deployments in the U.S., the process of determining the risks to aquatic animals, habitats, and ecosystem processes from these engineered systems continues to be a significant barrier to efficient siting and permitting. Understanding the risk of MHK installations requires that the two elements of risk - consequence and probability - be evaluated. However, standard risk assessment methodologies are not easily applied to MHK interactions with marine and riverine environment as there are few data that describe the interaction of stressors (MHK devices, anchors, foundations, mooring lines and power cables) and receptors (aquatic animals, habitats and ecosystem processes). The number of possible combinations and permutations of stressors and receptors in MHK systems is large: there are many different technologies designed to harvest energy from the tides, waves and flowing rivers; each device is planned for a specific waterbody that supports an endemic ecosystem of animals and habitats, tied together by specific physical and chemical processes. With few appropriate analogue industries in the oceans and rivers, little information on the effects of these technologies on the living world is available. Similarly, without robust data sets of interactions, mathematical probability models are difficult to apply. Pacific Northwest National Laboratory scientists are working with MHK developers, researchers, engineers, and regulators to rank the consequences of planned MHK projects on living systems, and exploring alternative methodologies to estimate probabilities of these encounters. This paper will present the results of ERES, the Environmental Risk Evaluation System, which has been used to rank consequences for major animal groups and habitats for five MHK projects that are in advanced stages of development and/or early commercial deployment. Probability analyses have been performed for high

  9. Tevatron Combination of Single-Top-Quark Cross Sections and Determination of the Magnitude of the Cabibbo-Kobayashi-Maskawa Matrix Element Vtb

    SciTech Connect

    Aaltonen, T.; Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Askew, A.; Atkins, S.; Auerbach, B.; Augsten, K.; Aurisano, A.; Avila, C.; Azfar, F.; Badaud, F.; Badgett, W.; Bae, T.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barbaro-Galtieri, A.; Barberis, E.; Baringer, P.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartlett, J. F.; Bartos, P.; Bassler, U.; Bauce, M.; Bazterra, V.; Bean, A.; Bedeschi, F.; Begalli, M.; Behari, S.; Bellantoni, L.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Bhatti, A.; Bland, K. R.; Blazey, G.; Blessing, S.; Bloom, K.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bortoletto, D.; Borysova, M.; Boudreau, J.; Boveia, A.; Brandt, A.; Brandt, O.; Brigliadori, L.; Brock, R.; Bromberg, C.; Bross, A.; Brown, D.; Brucken, E.; Bu, X. B.; Budagov, J.; Budd, H. S.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buszello, C. P.; Butti, P.; Buzatu, A.; Calamba, A.; Camacho-Pérez, E.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Casey, B. C. K.; Castilla-Valdez, H.; Castro, A.; Catastini, P.; Caughron, S.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Cho, S. W.; Choi, S.; Chokheli, D.; Choudhary, B.; Cihangir, S.; Claes, D.; Clark, A.; Clarke, C.; Clutter, J.; Convery, M. E.; Conway, J.; Cooke, M.; Cooper, W. E.; Corbo, M.; Corcoran, M.; Cordelli, M.; Couderc, F.; Cousinou, M. -C.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; Cutts, D.; Das, A.; d’Ascenzo, N.; Datta, M.; Davies, G.; de Barbaro, P.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Demortier, L.; Deninno, M.; Denisov, D.; Denisov, S. P.; D’Errico, M.; Desai, S.; Deterre, C.; DeVaughan, K.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dittmann, J. R.; Dominguez, A.; Donati, S.; D’Onofrio, M.; Dorigo, M.; Driutti, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Ebina, K.; Edgar, R.; Edmunds, D.; Elagin, A.; Ellison, J.; Elvira, V. D.; Enari, Y.; Erbacher, R.; Errede, S.; Esham, B.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Farrington, S.; Fauré, A.; Feng, L.; Ferbel, T.; Fernández Ramos, J. P.; Fiedler, F.; Field, R.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Flanagan, G.; Forrest, R.; Fortner, M.; Fox, H.; Franklin, M.; Freeman, J. C.; Frisch, H.; Fuess, S.; Funakoshi, Y.; Galloni, C.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Garfinkel, A. F.; Garosi, P.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gerberich, H.; Gerchtein, E.; Gershtein, Y.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Ginther, G.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gogota, O.; Gold, M.; Goldin, D.; Golossanov, A.; Golovanov, G.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grosso-Pilcher, C.; Group, R. C.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Guimaraes da Costa, J.; Gutierrez, G.; Gutierrez, P.; Hahn, S. R.; Haley, J.; Han, J. Y.; Han, L.; Happacher, F.; Hara, K.; Harder, K.; Hare, M.; Harel, A.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hauptman, J. M.; Hays, C.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinrich, J.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herndon, M.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hocker, A.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Hong, Z.; Hopkins, W.; Hou, S.; Howley, I.; Hubacek, Z.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Introzzi, G.; Iori, M.; Ito, A. S.; Ivanov, A.; Jabeen, S.; Jaffré, M.; James, E.; Jang, D.; Jayasinghe, A.; Jayatilaka, B.; Jeon, E. J.; Jeong, M. S.; Jesik, R.; Jiang, P.; Jindariani, S.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jones, M.; Jonsson, P.; Joo, K. K.; Joshi, J.; Jun, S. Y.; Jung, A. W.; Junk, T. R.; Juste, A.; Kajfasz, E.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Karmanov, D.; Kasmi, A.; Kato, Y.; Katsanos, I.

    2015-10-01

    Here, we present the final combination of CDF and D0 measurements of cross sections for single-top-quark production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb-1 per experiment. The t-channel cross section is measured to be σt=2.25+0.29-0.31 pb. We also present the combinations of the two-dimensional measurements of the s- vs t-channel cross section. In addition, we give the combination of the s+t channel cross section measurement resulting in σs+t=3.30+0.52-0.40 pb , without assuming the standard model value for the ratio σs/σt. Moreover, the resulting value of the magnitude of the top-to-bottom quark coupling is |Vtb|=1.02+0.06-0.05, corresponding to |Vtb|>0.92 at the 95% C.L.

  10. The volume and energy content of meals as determinants of gastric emptying.

    PubMed Central

    Hunt, J N; Stubbs, D F

    1975-01-01

    1. Results were collected from thirty-three published and unpublished studies of gastric emptying. The volumes of the meals ranged from 50 to 1250 ml., and composition varied from pure carbohydrates to ordinary food. 2. From the published composition of the meals, their nutritive density, as kcal/ml. (4-18 KJ/ml.) was computed: it ranged from zero to 2-3 kcal/ml. 3. The volume of each meal, or test meal, delivered to the duodenum in 30 min was determined, assuming that gastric emptying was exponential. 4. The greater the nutritive density of a meal, the less was the volume transferred to the duodenum in 30 min. The original volume of meal given was not a determinant of the rate of emptying (ml./min). 5. The slowing of gastric emptying with a meal of high nutritive density was not sufficient to prevent an increased rate of delivery of energy to the duodenum (nutritive density times volume delivered in unit time) with a meal of high nutritive density. 6. Assuming an appropriate relationship for the interaction of a stimulus (kcal/ml.) and duodenal receptors, it was possible to predict a rate of gastric emptying for each meal, given its nutritive density. Knowing the initial volume of the meal, it was possible to predict the mean half time for its emptying. 7. There were eight sets of anomalous results: in four the volumes of meal given were less than 200 ml.; explanations of the anomalies in the other four results could not be provided. 8. The results are consistent with equal slowing of gastric emptying by the duodenal action of the products of digestion of isocaloric amounts of fat, protein and carbohydrate, for example, 4 g fat or 9 g carbohydrate, both 36 kcal, taking carbohydrate and protein as 4 kcal/g and fat as 9 kcal/g. PMID:1127608

  11. Determination of dark energy by the Einstein Telescope: Comparing with CMB, BAO, and SNIa observations

    NASA Astrophysics Data System (ADS)

    Zhao, W.; van den Broeck, C.; Baskaran, D.; Li, T. G. F.

    2011-01-01

    A design study is currently in progress for a third-generation gravitational-wave (GW) detector called the Einstein Telescope (ET). An important kind of source for ET will be the inspiral and merger of binary neutron stars up to z˜2. If binary neutron star mergers are the progenitors of short-hard γ-ray bursts, then some fraction of them will be seen both electromagnetically and through GW, so that the luminosity distance and the redshift of the source can be determined separately. An important property of these “standard sirens” is that they are self-calibrating: the luminosity distance can be inferred directly from the GW signal, with no need for a cosmic distance ladder. Thus, standard sirens will provide a powerful independent check of the ΛCDM model. In previous work, estimates were made of how well ET would be able to measure a subset of the cosmological parameters (such as the dark energy parameter w0) it will have access to, assuming that the others had been determined to great accuracy by alternative means. Here we perform a more careful analysis by explicitly using the potential Planck cosmic microwave background data as prior information for these other parameters. We find that ET will be able to constrain w0 and wa with accuracies Δw0=0.099 and Δwa=0.302, respectively. These results are compared with projected accuracies for the JDEM baryon acoustic oscillations project and the SNAP type Ia supernovae observations.

  12. Determination of dark energy by the Einstein Telescope: Comparing with CMB, BAO, and SNIa observations

    SciTech Connect

    Zhao, W.; Baskaran, D.; Van Den Broeck, C.; Li, T. G. F.

    2011-01-15

    A design study is currently in progress for a third-generation gravitational-wave (GW) detector called the Einstein Telescope (ET). An important kind of source for ET will be the inspiral and merger of binary neutron stars up to z{approx}2. If binary neutron star mergers are the progenitors of short-hard {gamma}-ray bursts, then some fraction of them will be seen both electromagnetically and through GW, so that the luminosity distance and the redshift of the source can be determined separately. An important property of these 'standard sirens' is that they are self-calibrating: the luminosity distance can be inferred directly from the GW signal, with no need for a cosmic distance ladder. Thus, standard sirens will provide a powerful independent check of the {Lambda}CDM model. In previous work, estimates were made of how well ET would be able to measure a subset of the cosmological parameters (such as the dark energy parameter w{sub 0}) it will have access to, assuming that the others had been determined to great accuracy by alternative means. Here we perform a more careful analysis by explicitly using the potential Planck cosmic microwave background data as prior information for these other parameters. We find that ET will be able to constrain w{sub 0} and w{sub a} with accuracies {Delta}w{sub 0}=0.099 and {Delta}w{sub a}=0.302, respectively. These results are compared with projected accuracies for the JDEM baryon acoustic oscillations project and the SNAP type Ia supernovae observations.

  13. Energy.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    This issue focuses on the theme of "Energy," and describes several educational resources (Web sites, CD-ROMs and software, videos, books, activities, and other resources). Sidebars offer features on alternative energy, animal energy, internal combustion engines, and energy from food. Subthemes include harnessing energy, human energy, and…

  14. Apparent magnitude of earthshine: a simple calculation

    NASA Astrophysics Data System (ADS)

    Agrawal, Dulli Chandra

    2016-05-01

    The Sun illuminates both the Moon and the Earth with practically the same luminous fluxes which are in turn reflected by them. The Moon provides a dim light to the Earth whereas the Earth illuminates the Moon with somewhat brighter light which can be seen from the Earth and is called earthshine. As the amount of light reflected from the Earth depends on part of the Earth and the cloud cover, the strength of earthshine varies throughout the year. The measure of the earthshine light is luminance, which is defined in photometry as the total luminous flux of light hitting or passing through a surface. The expression for the earthshine light in terms of the apparent magnitude has been derived for the first time and evaluated for two extreme cases; firstly, when the Sun’s rays are reflected by the water of the oceans and secondly when the reflector is either thick clouds or snow. The corresponding values are -1.30 and -3.69, respectively. The earthshine value -3.22 reported by Jackson lies within these apparent magnitudes. This paper will motivate the students and teachers of physics to look for the illuminated Moon by earthlight during the waning or waxing crescent phase of the Moon and to reproduce the expressions derived here by making use of the inverse-square law of radiation, Planck’s expression for the power in electromagnetic radiation, photopic spectral luminous efficiency function and expression for the apparent magnitude of a body in terms of luminous fluxes.

  15. Resurgence and alternative-reinforcer magnitude.

    PubMed

    Craig, Andrew R; Browning, Kaitlyn O; Nall, Rusty W; Marshall, Ciara M; Shahan, Timothy A

    2017-03-01

    Resurgence is defined as an increase in the frequency of a previously reinforced target response when an alternative source of reinforcement is suspended. Despite an extensive body of research examining factors that affect resurgence, the effects of alternative-reinforcer magnitude have not been examined. Thus, the present experiments aimed to fill this gap in the literature. In Experiment 1, rats pressed levers for single-pellet reinforcers during Phase 1. In Phase 2, target-lever pressing was extinguished, and alternative-lever pressing produced either five-pellet, one-pellet, or no alternative reinforcement. In Phase 3, alternative reinforcement was suspended to test for resurgence. Five-pellet alternative reinforcement produced faster elimination and greater resurgence of target-lever pressing than one-pellet alternative reinforcement. In Experiment 2, effects of decreasing alternative-reinforcer magnitude on resurgence were examined. Rats pressed levers and pulled chains for six-pellet reinforcers during Phases 1 and 2, respectively. In Phase 3, alternative reinforcement was decreased to three pellets for one group, one pellet for a second group, and suspended altogether for a third group. Shifting from six-pellet to one-pellet alternative reinforcement produced as much resurgence as suspending alternative reinforcement altogether, while shifting from six pellets to three pellets did not produce resurgence. These results suggest that alternative-reinforcer magnitude has effects on elimination and resurgence of target behavior that are similar to those of alternative-reinforcer rate. Thus, both suppression of target behavior during alternative reinforcement and resurgence when conditions of alternative reinforcement are altered may be related to variables that affect the value of the alternative-reinforcement source.

  16. Orientation and Magnitude of Mars' Magnetic Field

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows the orientation and magnitude of the magnetic field measured by the MGS magnetometer as it sped over the surface of Mars during an early aerobraking pass (Day of the year, 264; 'P6' periapsis pass). At each point along the spacecraft trajectory we've drawn vectors in the direction of the magnetic field measured at that instant; the length of the line is scaled to show the relative magnitude of the field. Imagine traveling along with the MGS spacecraft, holding a string with a magnetized needle on one end: this essentially a compass with a needle that is free to spin in all directions. As you pass over the surface the needle would swing rapidly, first pointing towards the planet and then rotating quickly towards 'up' and back down again. All in a relatively short span of time, say a minute or two, during which time the spacecraft has traveled a couple of hundred miles. You've just passed over one of many 'magnetic anomalies' thus far detected near the surface of Mars. A second major anomaly appears a little later along the spacecraft track, about 1/4 the magnitude of the first - can you find it? The short scale length of the magnetic field signature locates the source near the surface of Mars, perhaps in the crust, a 10 to 75 kilometer thick outer shell of the planet (radius 3397 km).

    The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO. JPL is an operating division of California Institute of Technology (Caltech).

  17. Association of a novel preribosomal complex in Trypanosoma brucei determined by fluorescence resonance energy transfer.

    PubMed

    Wang, Lei; Ciganda, Martin; Williams, Noreen

    2013-02-01

    We have previously reported that the trypanosome-specific proteins P34 and P37 form a unique preribosomal complex with ribosomal protein L5 and 5S rRNA in the nucleoplasm. We hypothesize that this novel trimolecular complex is necessary for stabilizing 5S rRNA in Trypanosoma brucei and is essential for the survival of the parasite. In vitro quantitative analysis of the association between the proteins L5 and P34 is fundamental to our understanding of this novel complex and thus our ability to exploit its unique characteristics. Here we used in vitro fluorescence resonance energy transfer (FRET) to analyze the association between L5 and P34. First, we demonstrated that FRET can be used to confirm the association between L5 and P34. We then determined that the binding constant for L5 and P34 is 0.60 ± 0.03 μM, which is in the range of protein-protein binding constants for RNA binding proteins. In addition, we used FRET to identify the critical regions of L5 and P34 involved in the protein-protein association. We found that the N-terminal APK-rich domain and RNA recognition motif (RRM) of P34 and the L18 domain of L5 are important for the association of the two proteins with each other. These results provide us with the framework for the discovery of ways to disrupt this essential complex.

  18. Determination of neutral beam energy fractions from collisional radiative measurements on DIII-D

    SciTech Connect

    Thomas, D. M.; Van Zeeland, M. A.; Grierson, B. A.; Munoz Burgos, J. M.

    2012-10-15

    Neutral beams based on positive ion source technology are a key component of contemporary fusion research. An accurate assessment of the injected beam species mix is important for determining the actual plasma heating and momentum input as well as proper interpretation of beam-based diagnostics. On DIII-D, the main ion charge-exchange spectroscopy system is used to extract well-resolved intensity ratios of the Doppler-shifted D{sub {alpha}} emission from the full, half, and third energy beam components for a variety of beam operational parameters. In conjunction with accurate collisional-radiative modeling, these measurements indicate the assumed species mix and power fractions can vary significantly and should be regularly monitored and updated for the most accurate interpretation of plasma performance. In addition, if stable active control of the power fractions can be achieved through appropriate source tuning, the resulting control over the deposition profile can serve as an additional experimental knob for advanced tokamak studies, e.g., varying the off axis beam current drive without altering the beam trajectory.

  19. Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination.

    PubMed

    Wu, Xiaoli; Song, Yang; Yan, Xu; Zhu, Chengzhou; Ma, Yongqiang; Du, Dan; Lin, Yuehe

    2017-03-07

    Carbon quantum dots (CQDs) obtained from natural organics attract significant attention due to the abundance of carbon sources, varieties of heteroatom doping (such as N, S, P) and good biocompatibility of precursor. In this study, tunable fluorescence emission CQDs originated from chlorophyll were synthesized and characterized. The fluorescence emission can be effectively quenched by gold nanoparticles (Au NPs) via fluorescence resonance energy transfer (FRET). Thiocholine, which was produced from acetylthiocholine (ATC) by the hydrolysis of butyrylcholinesterase (BChE), could cause the aggregation of Au NPs and the corresponding recovery of FRET-quenched fluorescence emission. The catalytic activity of BChE could be irreversibly inhibited by organophosphorus pesticides (OPs), thus, the recovery effect was reduced. By evaluating the fluorescence emission intensity of CQDs, a FRET-based sensing platform for OPs determination was established. Paraoxon was studied as an example of OPs. The sensing platform displayed a linear relationship with the logarithm of the paraoxon concentrations in the range of 0.05-50μgL(-1) and the limit of detection (LOD) was 0.05μgL(-1). Real sample study in tap and river water revealed that this sensing platform was repeatable and accurate. The results indicate that the OP sensor is promising for applications in food safety and environmental monitoring.

  20. Methods to determine stratification efficiency of thermal energy storage processes - Review and theoretical comparison

    SciTech Connect

    Haller, Michel Y.; Streicher, Wolfgang; Andersen, Elsa; Furbo, Simon

    2009-10-15

    This paper reviews different methods that have been proposed to characterize thermal stratification in energy storages from a theoretical point of view. Specifically, this paper focuses on the methods that can be used to determine the ability of a storage to promote and maintain stratification during charging, storing and discharging, and represent this ability with a single numerical value in terms of a stratification efficiency for a given experiment or under given boundary conditions. Existing methods for calculating stratification efficiencies have been applied to hypothetical storage processes of charging, discharging and storing, and compared with the rate of entropy production caused by mixing calculated for the same experiments. The results depict that only one of the applied methods is in qualitative agreement with the rate of entropy production, however, none of the applied methods is in agreement with the rate of entropy production and also able to distinguish between the entropy production caused by mixing and the entropy changes due to heat losses. (author)

  1. Methods for the assessment of peripheral muscle fatigue and its energy and metabolic determinants in COPD.

    PubMed

    Rondelli, Rafaella Rezende; Dal Corso, Simone; Simões, Alexandre; Malaguti, Carla

    2009-11-01

    It has been well established that, in addition to the pulmonary involvement, COPD has systemic consequences that can lead to peripheral muscle dysfunction, with greater muscle fatigue, lower exercise tolerance and lower survival in these patients. In view of the negative repercussions of early muscle fatigue in COPD, the objective of this review was to discuss the principal findings in the literature on the metabolic and bioenergy determinants of muscle fatigue, its functional repercussions, as well as the methods for its identification and quantification. The anatomical and functional substrate of higher muscle fatigue in COPD appears to include lower levels of high-energy phosphates, lower mitochondrial density, early lactacidemia, higher serum ammonia and reduced muscle perfusion. These alterations can be revealed by contraction failure, decreased firing rates of motor units and increased recruitment of motor units in a given activity, which can be functionally detected by a reduction in muscle strength, power and endurance. This review article also shows that various types of muscle contraction regimens and protocols have been used in order to detect muscle fatigue in this population. With this understanding, rehabilitation strategies can be developed in order to improve the resistance to muscle fatigue in this population.

  2. Determination of actinide speciation in solution using high-energy X-ray scattering.

    PubMed

    Soderholm, L; Skanthakumar, S; Neuefeind, J

    2005-09-01

    High-energy X-ray scattering (HEXS) has been used to understand the coordination environment of the uranyl ion in a perchlorate solution. Assuming the two coordinating oxo ligands bound to U(VI) are represented in a peak in the pair distribution function (PDF) at 1.766(1) A, integration of the peak intensity is used to quantify the charge located on the oxygens. The dioxo ligands are essentially neutral, as predicted by numerous published calculations, with a charge of -16.4(8) electrons. The peak in the PDF at 2.420(1) A is consistent with equatorial ligating waters. The intensity of this peak is inconsistent with an integral coordination number and is used to propose a solution equilibrium of five and four waters coordinating to the uranyl(VI) ion favoring the five-coordinate species. This equilibrium is then used to experimentally determine that five-coordinate uranyl is 1.19+/-0.42 kcal/mol more stable than its four-coordinate counterpart under the conditions of the experiment. Further peaks in the Fourier transform of the scattering data at 4.50, 7, and 8.7 A are attributed to uranium-solvent correlations.

  3. Determination of neutral beam energy fractions from collisional radiative measurements on DIII-D.

    PubMed

    Thomas, D M; Grierson, B A; Muñoz Burgos, J M; Van Zeeland, M A

    2012-10-01

    Neutral beams based on positive ion source technology are a key component of contemporary fusion research. An accurate assessment of the injected beam species mix is important for determining the actual plasma heating and momentum input as well as proper interpretation of beam-based diagnostics. On DIII-D, the main ion charge-exchange spectroscopy system is used to extract well-resolved intensity ratios of the Doppler-shifted D(α) emission from the full, half, and third energy beam components for a variety of beam operational parameters. In conjunction with accurate collisional-radiative modeling, these measurements indicate the assumed species mix and power fractions can vary significantly and should be regularly monitored and updated for the most accurate interpretation of plasma performance. In addition, if stable active control of the power fractions can be achieved through appropriate source tuning, the resulting control over the deposition profile can serve as an additional experimental knob for advanced tokamak studies, e.g., varying the off axis beam current drive without altering the beam trajectory.

  4. Precise Relative Earthquake Magnitudes from Cross Correlation

    SciTech Connect

    Cleveland, K. Michael; Ammon, Charles J.

    2015-04-21

    We present a method to estimate precise relative magnitudes using cross correlation of seismic waveforms. Our method incorporates the intercorrelation of all events in a group of earthquakes, as opposed to individual event pairings relative to a reference event. This method works well when a reliable reference event does not exist. We illustrate the method using vertical strike-slip earthquakes located in the northeast Pacific and Panama fracture zone regions. Our results are generally consistent with the Global Centroid Moment Tensor catalog, which we use to establish a baseline for the relative event sizes.

  5. Magnitudes and timescales of total solar irradiance variability

    NASA Astrophysics Data System (ADS)

    Kopp, Greg

    2016-07-01

    The Sun's net radiative output varies on timescales of minutes to gigayears. Direct measurements of the total solar irradiance (TSI) show changes in the spatially- and spectrally-integrated radiant energy on timescales as short as minutes to as long as a solar cycle. Variations of ~0.01% over a few minutes are caused by the ever-present superposition of convection and oscillations with very large solar flares on rare occasion causing slightly-larger measurable signals. On timescales of days to weeks, changing photospheric magnetic activity affects solar brightness at the ~0.1% level. The 11-year solar cycle shows variations of comparable magnitude with irradiances peaking near solar maximum. Secular variations are more difficult to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Historical reconstructions of the Sun's irradiance based on indicators of solar-surface magnetic activity, such as sunspots, faculae, and cosmogenic isotope records, suggest solar brightness changes over decades to millennia, although the magnitudes of these variations have high uncertainties due to the indirect historical records on which they rely. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities. In this manuscript I summarize the Sun's variability magnitudes over different temporal regimes and discuss the irradiance record's relevance for solar and climate studies as well as for detections of exo-solar planets transiting Sun-like stars.

  6. 18 CFR 11.11 - Energy gains method of determining headwater benefits charges.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... most likely alternative source during the period for which the charge is assessed. ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Energy gains method of... ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL...

  7. 18 CFR 11.11 - Energy gains method of determining headwater benefits charges.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... most likely alternative source during the period for which the charge is assessed. ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Energy gains method of... ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL...

  8. 78 FR 65223 - Energy Conservation Program for Consumer Products: Proposed Determination of Miscellaneous...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AC51 Energy Conservation Program for Consumer Products...) established the ``Energy Conservation Program for Consumer Products Other Than Automobiles,'' which covers consumer products and certain commercial products (i.e. ``covered products'').\\1\\ \\1\\ Upon codification...

  9. 16 CFR 305.5 - Determinations of estimated annual energy consumption, estimated annual operating cost, and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... consumption, estimated annual operating cost, and energy efficiency rating, and of water use rate. 305.5... energy efficiency rating, and of water use rate. Link to an amendment published at 75 FR 41713, July 19... operating costs, the energy efficiency ratings, and the efficacy factors of the following covered...

  10. Adjusted and unadjusted energy usage rates both determine body fat and plasma leptin in male Fischer 344 rats.

    PubMed

    Greenberg, J A; Rahman, S; Saint-Preux, S; Owen, D R; Boozer, C N

    1999-10-01

    Previous studies of the relationship between plasma leptin and energy usage have yielded contradictory findings. The present study was therefore conducted to clearly distinguish and measure the energy usage rate and the energy usage rate adjusted for a surrogate of metabolically active tissue mass. We investigated the simultaneous relationships between these two measures of energy usage, leptin, and body fat in 21-month-old adult male Fischer 344 rats on three different long-term dietary regimens: (1) continuous ad libitum feeding (Ad-lib); (2) ad libitum feeding until early adulthood, and then continuous 60% caloric restriction (CR); and (3) ad libitum feeding until early adulthood, then 60% caloric restriction until 16 months, and then ad libitum feeding for 5 months (CR/Ad-lib). Two versions of the daily usage rate were measured: daily dietary caloric intake (DCI), and daily energy expenditure (EE) based on indirect calorimetry. Two versions of the metabolically active tissue mass were also measured: fat-free mass (FFM), and the sum of the weight of the heart, brain, liver, and kidneys. Energy usage rates were adjusted for these measures of metabolically active tissue mass to yield measures of the energy metabolic rate. Correlation, regression, and path analyses showed that both the energy usage rate and adjusted energy usage rate played important independent roles in determining body fat and plasma leptin, but only after multivariate techniques were used to account for the simultaneous interactions between variables. Increases in the energy usage rate were associated with increases in body fat and the adjusted energy usage rate. Increases in the adjusted energy usage rate were associated with decreases in body fat and plasma leptin. These findings suggest that differences in subjects adjusted energy usage rate could explain some of the apparently contradictory findings concerning the relationship between energy usage and plasma leptin in previously published

  11. A comparison of three methods of determination of energy density of elite figure skaters.

    PubMed

    Ziegler, Paula J; Nelson, Judith A; Tay, Chloe; Bruemmer, Barbara; Drewnowski, Adam

    2005-10-01

    Dietary energy density (kcal/g) is defined as available dietary energy per unit weight or volume of food. The consumption of energy-dense foods has been associated with increased obesity risk and with excessive weight gain. The objectives of this study were to compare how dietary energy density, calculated using three different methods relates to food choices and nutrient composition of the diets of elite figure skaters. Participants were 159 elite figure skaters attending training camps. Mean age was 18.4 y for boys (n = 79) and 15.9 y for girls (n = 80). Heights and weights were measured to calculate body-mass indices (BMI). Dietary intakes were based on 3-d food records analyzed using the Nutritionist IV program. Mean energy intakes were 2326 kcal/d for boys and 1545 kcal/d for girls. Dietary energy density,,based on foods and caloric beverages only, was 1.0 kcal/g. Dietary ED was positively associated with percent energy from fat and negatively with percent energy from sugar. The main sources of dietary energy in this group were baked goods, cereals, regular soda, low-fat milk, fruit juices, bagels and pizza. Percent energy from fast foods was associated with higher dietary energy density, whereas percent energy from dairy products, soft drinks, vegetables, and fruit was associated with lower dietary energy density. These results are consistent with past observations; higher energy density diets were higher in fat. In contrast, there was a negative relationship between sugar content and energy density of the diet.

  12. The density-of-states concept versus the experimentally determined distribution of activation energies

    SciTech Connect

    Adriaenssens, G.J.; Arkhipov, V.I.

    1996-12-31

    Random fluctuations of localized state energies will result in thermal release of carriers trapped in those states at shorter times than would be observed from a stationary distribution of the same energies. An experimentally observed distribution of activation energies will hence differ from the distribution of average energies of the states involved. It will also be temperature-dependent. In a-Si:H, low-frequency fluctuations with a spectrum comparable to the one of 1/f noise, can account for the measured temperature dependence of the distribution. They also explain the apparent shift in localized-state energy under steady-state illumination.

  13. Determination of a Magnetic Component to the Superconducting Condensation Energy for Fe1+δSexTe1-x

    NASA Astrophysics Data System (ADS)

    Leiner, Jonathan; Thampy, Vivek; Lumsden, Mark; Christianson, Andrew; Abernathy, Douglas; Sales, Brian; Sefat, Athena; Mao, Zhiqiang; Hu, Jin; Bao, Wei; Broholm, Collin

    2014-03-01

    A quantitative method to extract a magnetic component of the superconducting condensation energy from inelastic neutron scattering data is described and applied to Fe1+δSe0.4Te0.6. Based on the first moment sum-rule for the dynamic correlation function, the method is sensitive to changes in the inter-site magnetic correlation energy, ΔEij , associated with superconductivity. We find the length scale over which ΔEij is appreciable coincides with the superconducting coherence length as determined by Scanning Tunneling Microscopy. The overall change in inter-site magnetic correlation energy is compared to the superconducting condensation energy determined through specific heat measurements. Supported by ORNL LDRD funding.

  14. Determining energy balance in the flaring chromosphere from oxygen V line ratios

    NASA Astrophysics Data System (ADS)

    Graham, D. R.; Fletcher, L.; Labrosse, N.

    2015-12-01

    Context. The impulsive phase of solar flares is a time of rapid energy deposition and heating in the lower solar atmosphere, leading to changes in the temperature and density structure of the region. Aims: We use an O v density diagnostic formed from the λ192 /λ248 line ratio, provided by the Hinode/EIS instrument, to determine the density of flare footpoint plasma at O v formation temperatures of ~2.5 × 105 K, giving a constraint on the properties of the heated transition region. Methods: Hinode/EIS rasters from 2 small flare events in December 2007 were used. Raster images were co-aligned to identify and establish the footpoint pixels, multiple-component Gaussian line fitting of the spectra was carried out to isolate the density diagnostic pair, and the density was calculated for several footpoint areas. The assumptions of equilibrium ionisation and optically-thin radiation for the O v lines used were assessed and found to be acceptable. For one of the events, properties of the electron distribution were deduced from earlier RHESSI hard X-ray observations. These were used to calculate the plasma heating rate delivered by an electron beam for 2 semi-empirical atmospheres under collisional thick-target assumptions. The radiative loss rate for this plasma was also calculated for comparison with possible energy input mechanisms. Results: Electron number densities of up to 1011.9 cm-3 were measured during the flare impulsive phase using the O v λ192 /λ248 diagnostic ratio. The heating rate delivered by an electron beam was found to exceed the radiative losses at this density, corresponding to a height of 450 km, and when assuming a completely ionised target atmosphere far exceed the losses but at a height of 1450-1600 km. A chromospheric thickness of 70-700 km was found to be required to balance a conductive input to the O v-emitting region with radiative losses. Conclusions: Electron densities have been observed in footpoint sources at transition region

  15. Causality between expansion of seismic cloud and maximum magnitude of induced seismicity in geothermal field

    NASA Astrophysics Data System (ADS)

    Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus

    2016-04-01

    Occurrence of induced seismicity with large magnitude is critical environmental issues associated with fluid injection for shale gas/oil extraction, waste water disposal, carbon capture and storage, and engineered geothermal systems (EGS). Studies for prediction of the hazardous seismicity and risk assessment of induced seismicity has been activated recently. Many of these studies are based on the seismological statistics and these models use the information of the occurrence time and event magnitude. We have originally developed physics based model named "possible seismic moment model" to evaluate seismic activity and assess seismic moment which can be ready to release. This model is totally based on microseismic information of occurrence time, hypocenter location and magnitude (seismic moment). This model assumes existence of representative parameter having physical meaning that release-able seismic moment per rock volume (seismic moment density) at given field. Seismic moment density is to be estimated from microseismic distribution and their seismic moment. In addition to this, stimulated rock volume is also inferred by progress of microseismic cloud at given time and this quantity can be interpreted as the rock volume which can release seismic energy due to weakening effect of normal stress by injected fluid. Product of these two parameters (equation (1)) provide possible seismic moment which can be released from current stimulated zone as a model output. Difference between output of this model and observed cumulative seismic moment corresponds the seismic moment which will be released in future, based on current stimulation conditions. This value can be translated into possible maximum magnitude of induced seismicity in future. As this way, possible seismic moment can be used to have feedback to hydraulic stimulation operation in real time as an index which can be interpreted easily and intuitively. Possible seismic moment is defined as equation (1), where D

  16. Modelling Energy Loss Mechanisms and a Determination of the Electron Energy Scale for the CDF Run II W Mass Measurement

    SciTech Connect

    Riddick, Thomas

    2012-06-15

    The calibration of the calorimeter energy scale is vital to measuring the mass of the W boson at CDF Run II. For the second measurement of the W boson mass at CDF Run II, two independent simulations were developed. This thesis presents a detailed description of the modification and validation of Bremsstrahlung and pair production modelling in one of these simulations, UCL Fast Simulation, comparing to both geant4 and real data where appropriate. The total systematic uncertainty on the measurement of the W boson mass in the W → eve channel from residual inaccuracies in Bremsstrahlung modelling is estimated as 6.2 ±3.2 MeV/c2 and the total systematic uncertainty from residual inaccuracies in pair production modelling is estimated as 2.8± 2.7 MeV=c2. Two independent methods are used to calibrate the calorimeter energy scale in UCL Fast Simulation; the results of these two methods are compared to produce a measurement of the Z boson mass as a cross-check on the accuracy of the simulation.

  17. Binding Energy and Dissociation Barrier: Experimental Determination of the Key Parameters of the Potential Energy Curve of Diethyl Ether on Si(001).

    PubMed

    Reutzel, Marcel; Lipponer, Marcus; Dürr, Michael; Höfer, Ulrich

    2015-10-01

    The key parameters of the potential energy curve of organic molecules on semiconductor surfaces, binding energy of the intermediate state and dissociation barrier, were experimentally investigated for the model system of diethyl ether (Et2O) on Si(001). Et2O adsorbs via a datively bonded intermediate from which it converts via ether cleavage into a covalently attached final state. This thermally activated conversion into the final state was followed in real-time by means of optical second-harmonic generation (SHG) at different temperatures and the associated energy barrier ϵa = 0.38 ± 0.05 eV and pre-exponential factor νa = 10(4±1) s(-1) were determined. From molecular beam experiments on the initial sticking probability, the difference between the desorption energy ϵd and ϵa was extracted and thus the binding energy of the intermediate state was determined (0.62 ± 0.08 eV). The results are discussed in terms of general chemical trends as well as with respect to a wider applicability on adsorbate reactions on semiconductor surfaces.

  18. A rapid analytical technique for the determination of energy expenditure by the doubly labelled water method.

    PubMed

    Barrie, A; Coward, W A

    1985-09-01

    The doubly labelled water method involves the administration of water enriched in 2H and 18O followed by determination of the turnover rates of these isotopes. Since 18O is eliminated from the body as both CO2 and water, while 2H leaves only as water, the difference between the two turnover rates provides a measure of CO2 production and hence energy expenditure. Isotopic analysis by conventional stable isotope ratio analysis (SIRA) is labour intensive and time consuming, as it requires off-line conversion of water samples to gases (H2 and CO2) followed by sequential analysis for each of the two isotopes using the mass spectrometer. Lack of suitable automated instrumentation with the ability to process large numbers of samples has prevented routine application of the method. We describe here an automated technique in which body water samples (urine, saliva, breath water or milk) are analysed simultaneously for 2H and 18O. The single bench system comprises two mass spectrometer analysers, one for measuring 2H from H2 gas, the other for measuring 18O from the water vapour (masses 18, 20). Both analysers share a common heated inlet system into which microlitre quantities of the body fluids are injected from an autosampler (102 samples). The water vapour flows both directly to one analyser for 18O measurement and into a uranium reduction furnace for conversion to H2, prior to 2H measurement by the second analyser. Both analysers also share vacuum and electronic components, enabling savings in both space and cost. In this paper we present results illustrating performance characteristics and procedures for routine application to human subjects.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico.

    PubMed

    Kononova, Olga; Kholodov, Yaroslav; Theisen, Kelly E; Marx, Kenneth A; Dima, Ruxandra I; Ataullakhanov, Fazly I; Grishchuk, Ekaterina L; Barsegov, Valeri

    2014-12-10

    Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral noncovalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physicochemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multiscale computational modeling and nanoindentations in silico of a contiguous microtubule fragment. A close match between the simulated and experimental force-deformation spectra enabled us to correlate the microtubule biomechanics with dynamic structural transitions at the nanoscale. Our mechanical testing revealed that the compressed MT behaves as a system of rigid elements interconnected through a network of lateral and longitudinal elastic bonds. The initial regime of continuous elastic deformation of the microtubule is followed by the transition regime, during which the microtubule lattice undergoes discrete structural changes, which include first the reversible dissociation of lateral bonds followed by irreversible dissociation of the longitudinal bonds. We have determined the free energies of dissociation of the lateral (6.9 ± 0.4 kcal/mol) and longitudinal (14.9 ± 1.5 kcal/mol) tubulin-tubulin bonds. These values in conjunction with the large flexural rigidity of tubulin protofilaments obtained (18,000-26,000 pN·nm(2)) support the idea that the disassembling microtubule is capable of generating a large mechanical force to move chromosomes during cell division. Our computational modeling offers a comprehensive quantitative platform to link molecular tubulin characteristics with the physiological behavior of microtubules. The developed in silico nanoindentation method provides a powerful tool for the exploration of biomechanical properties of other cytoskeletal and multiprotein assemblies.

  20. Determinants of CO2 emissions in ASEAN countries using energy and mining indicators

    NASA Astrophysics Data System (ADS)

    Nordin, Sayed Kushairi Sayed; Samat, Khairul Fadzli; Ismail, Siti Fatimah; Hamzah, Khairum; Halim, Bushra Abdul; Kun, Sek Siok

    2015-05-01

    Carbon dioxide (CO2) is the main greenhouse gas emitted from human activities. Industrial revolution is one of the triggers to accelerate the quantity of CO2 in the atmosphere which lead to undesirable changes in the cycle of carbon. Like China and United States which are affected by the economic development growth, the atmospheric CO2 level in ASEAN countries is expected to be higher from year to year. This study focuses on energy and mining indicators, namely alternative and nuclear energy, energy production, combustible renewables and waste, fossil fuel energy consumption and the pump price for diesel fuel that contribute to CO2 emissions. Six ASEAN countries were examined from 1970 to 2010 using panel data approach. The result shows that model of cross section-fixed effect is the most appropriate model with the value of R-squared is about 86%. Energy production and fossil fuel energy consumption are found to be significantly influenced to CO2 emissions.

  1. Determination of renewable energy yield from mixed waste material from the use of novel image analysis methods.

    PubMed

    Wagland, S T; Dudley, R; Naftaly, M; Longhurst, P J

    2013-11-01

    Two novel techniques are presented in this study which together aim to provide a system able to determine the renewable energy potential of mixed waste materials. An image analysis tool was applied to two waste samples prepared using known quantities of source-segregated recyclable materials. The technique was used to determine the composition of the wastes, where through the use of waste component properties the biogenic content of the samples was calculated. The percentage renewable energy determined by image analysis for each sample was accurate to within 5% of the actual values calculated. Microwave-based multiple-point imaging (AutoHarvest) was used to demonstrate the ability of such a technique to determine the moisture content of mixed samples. This proof-of-concept experiment was shown to produce moisture measurement accurate to within 10%. Overall, the image analysis tool was able to determine the renewable energy potential of the mixed samples, and the AutoHarvest should enable the net calorific value calculations through the provision of moisture content measurements. The proposed system is suitable for combustion facilities, and enables the operator to understand the renewable energy potential of the waste prior to combustion.

  2. Determination of neutron energy spectra inside a water phantom irradiated by 64 MeV neutrons.

    PubMed

    Herbert, M S; Brooks, F D; Allie, M S; Buffler, A; Nchodu, M R; Makupula, S A; Jones, D T L; Langen, K M

    2007-01-01

    A NE230 deuterated liquid scintillator detector (25 mm diameter x 25 mm) has been used to investigate neutron energy spectra as a function of position in a water phantom under irradiation by a quasi-monoenergetic 64 MeV neutron beam. Neutron energy spectra are obtained from measurements of pulse height spectra by the NE230 detector using the Bayesian unfolding code MAXED. The experimentally measured energy spectra are compared with spectra calculated by Monte Carlo simulation using the code MCNPX.

  3. Verification of energy's role as a determinant of US economic activity

    SciTech Connect

    Santini, D.J.

    1987-10-01

    A series of single-equation dynamic regression models are constructed to test the hypotheses that both ''thermodynamic'' and economic-efficiency (t-efficiency and e-efficiency, respectively) configurations of lagged energy variables are statistically informative separately and jointly about subsequent changes in real gross national product (GNP) per capita and in unemployment rate. Separately, t-efficiency is based on quantity of energy used per unit of GNP, while e-efficiency is based on real price of tested energy variables. Used jointly, the two measure real energy cost per unit of real GNP. Tested subperiods are within the 1890-1985 period. Macroeconomic activity is found to be much less informative about energy variables that are energy variables about macroeconomic activity. One-way tests are conducted in which the informativeness of major e-efficiency (wholesale price) variables and budget-share variables about subsequent macroeconomic activity are compared to the informativeness of the e-efficiency energy variable and the combined e- and t-efficiencies energy variable respectively. The energy variables are found to represent the only major category of expenditure whose statistical tests for informativeness about subsequent macroeconomic activity result in coefficient signs that consistently imply a statistically significant negative effect on subsequent macroeconomic activity in the full 1890-1985 period. 64 refs., 14 tabs.

  4. 76 FR 36891 - Guidelines for Determining Probability of Causation Under the Energy Employees Occupational...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... proposing to treat chronic lymphocytic leukemia (CLL) as a radiogenic cancer under the Energy Employees... of proposed rulemaking, HHS would treat chronic lymphocytic leukemia (CLL) as a radiogenic...

  5. Indicators to determine winning renewable energy technologies with an application to photovoltaics.

    PubMed

    Grossmann, Wolf D; Grossmann, Iris; Steininger, Karl

    2010-07-01

    Several forms of renewable energy compete for supremacy or for an appropriate role in global energy supply. A form of renewable energy can only play an important role in global energy supply if it fulfills several basic requirements. Its capacity must allow supplying a considerable fraction of present and future energy demand, all materials for its production must be readily available, land demand must not be prohibitive, and prices must reach grid parity in the nearer future. Moreover, a renewable energy technology can only be acceptable if it is politically safe. We supply a collection of indicators which allow assessing competing forms of renewable energy and elucidate why surprise is still a major factor in this field, calling for adaptive management. Photovoltaics (PV) are used as an example of a renewable energy source that looks highly promising, possibly supplemented by solar thermal electricity production (ST). We also show why energy use will contribute to land use problems and discuss ways in which the right choice of renewables may be indispensible in solving these problems.

  6. The local magnitude of the 18 October 1989 Santa Cruz Mountains earthquake is M sub L =6. 9

    SciTech Connect

    McNally, K.C.; Yellin, J.; Protti-Quesada, M.; Malavassi, E.; Schillinger, W.; Terdiman, R.; Zhang, Z. ); Simila, G. )

    1990-09-01

    It is critical that local magnitudes, M{sub L} (Richter, 1935), be carefully determined for large earthquakes. M{sub L} is the calibration standard for many catalogs of historic earthquakes upon which other magnitude scales and measures of strong ground shaking are based. Also, M{sub L} is measured in the period range of 1-10 Hz, the most relevant for engineering and emergency response applications. The earthquake catalogs constitute the basis for both pure and applied research on statistical properties of earthquakes and earthquake processes. Despite the fact that they are most important in terms of energy release only a few large earthquakes are contained in the catalogs, however, because they are relatively rare. The authors find that the local magnitude, M{sub L}, of the 18 October 1989 (U.T.) earthquake is 6.9, not 7.0-7.1 as has been reported. This value agrees with the moment magnitude, M{sub w}=6.9, found by Kanamori and Satake (1990).

  7. AN ACCURATE NEW METHOD OF CALCULATING ABSOLUTE MAGNITUDES AND K-CORRECTIONS APPLIED TO THE SLOAN FILTER SET

    SciTech Connect

    Beare, Richard; Brown, Michael J. I.; Pimbblet, Kevin

    2014-12-20

    We describe an accurate new method for determining absolute magnitudes, and hence also K-corrections, that is simpler than most previous methods, being based on a quadratic function of just one suitably chosen observed color. The method relies on the extensive and accurate new set of 129 empirical galaxy template spectral energy distributions from Brown et al. A key advantage of our method is that we can reliably estimate random errors in computed absolute magnitudes due to galaxy diversity, photometric error and redshift error. We derive K-corrections for the five Sloan Digital Sky Survey filters and provide parameter tables for use by the astronomical community. Using the New York Value-Added Galaxy Catalog, we compare our K-corrections with those from kcorrect. Our K-corrections produce absolute magnitudes that are generally in good agreement with kcorrect. Absolute griz magnitudes differ by less than 0.02 mag and those in the u band by ∼0.04 mag. The evolution of rest-frame colors as a function of redshift is better behaved using our method, with relatively few galaxies being assigned anomalously red colors and a tight red sequence being observed across the whole 0.0 < z < 0.5 redshift range.

  8. THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET

    SciTech Connect

    Brown, Peter J.; Roming, Peter W. A.; Ciardullo, Robin; Gronwall, Caryl; Hoversten, Erik A.; Pritchard, Tyler; Milne, Peter; Bufano, Filomena; Mazzali, Paolo; Elias-Rosa, Nancy; Filippenko, Alexei V.; Li Weidong; Foley, Ryan J.; Hicken, Malcolm; Kirshner, Robert P.; Gehrels, Neil; Holland, Stephen T.; Immler, Stefan; Phillips, Mark M.; Still, Martin

    2010-10-01

    We examine the absolute magnitudes and light-curve shapes of 14 nearby (redshift z = 0.004-0.027) Type Ia supernovae (SNe Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way extinction law and one for the Large Magellanic Cloud that has been modified by circumstellar scattering. We find very different behavior in the near-UV filters (uvw1{sub rc} covering {approx}2600-3300 A after removing optical light, and u {approx} 3000-4000 A) compared to a mid-UV filter (uvm2 {approx}2000-2400 A). The uvw1{sub rc} - b colors show a scatter of {approx}0.3 mag while uvm2-b scatters by nearly 0.9 mag. Similarly, while the scatter in colors between neighboring filters is small in the optical and somewhat larger in the near-UV, the large scatter in the uvm2 - uvw1 colors implies significantly larger spectral variability below 2600 A. We find that in the near-UV the absolute magnitudes at peak brightness of normal SNe Ia in our sample are correlated with the optical decay rate with a scatter of 0.4 mag, comparable to that found for the optical in our sample. However, in the mid-UV the scatter is larger, {approx}1 mag, possibly indicating differences in metallicity. We find no strong correlation between either the UV light-curve shapes or the UV colors and the UV absolute magnitudes. With larger samples, the UV luminosity might be useful as an additional constraint to help determine distance, extinction, and metallicity in order to improve the utility of SNe Ia as standardized candles.

  9. 77 FR 5711 - Guidelines for Determining Probability of Causation Under the Energy Employees Occupational...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... judgment on evidence of an association between exposure to ionizing radiation and the risk of developing... the Energy Employees Occupational Illness Compensation Program Act of 2000; Revision of Guidelines on... radiogenic cancer under the Energy Employees Occupational Illness Compensation Program Act of 2000...

  10. Reaction mechanism interplay in determining the biological effectiveness of neutrons as a function of energy.

    PubMed

    Baiocco, G; Alloni, D; Babini, G; Mariotti, L; Ottolenghi, A

    2015-09-01

    Neutron relative biological effectiveness (RBE) is found to be energy dependent, being maximal for energies ∼1 MeV. This is reflected in the choice of radiation weighting factors wR for radiation protection purposes. In order to trace back the physical origin of this behaviour, a detailed study of energy deposition processes with their full dependences is necessary. In this work, the Monte Carlo transport code PHITS was used to characterise main secondary products responsible for energy deposition in a 'human-sized' soft tissue spherical phantom, irradiated by monoenergetic neutrons with energies around the maximal RBE/wR. Thereafter, results on the microdosimetric characterisation of secondary protons were used as an input to track structure calculations performed with PARTRAC, thus evaluating the corresponding DNA damage induction. Within the proposed simplified approach, evidence is suggested for a relevant role of secondary protons in inducing the maximal biological effectiveness for 1 MeV neutrons.

  11. Determination of Energy of a Clinical Electron Beam as Part of a Routine Quality Assurance and Audit System

    NASA Astrophysics Data System (ADS)

    Hernández-Bello, Jimmy; D'Souza, Derek; Rossenberg, Ivan

    2002-08-01

    A method to determine the electron beam energy and an electron audit based on the current IPEM electron Code of Practice has been devised. During the commissioning on the new Varian 2100CD linear accelerator in The Middlesex Hospital, two methods were devised for the determination of electron energy. The first method involves the use of a two-depth method, whereby the ratio of ionisation (presented as a percentage) measured by an ion chamber at two depths in solid water is used to compare against the baseline ionisation depth value for that energy. The second method involves the irradiation of an X-ray film in solid water to obtain a depth dose curve and, hence determine the half value depth and practical range of the electrons. The results showed that the two-depth method has a better accuracy, repeatability, reliability and consistency than the X-ray method. The results for the electron audit showed that electron absolute outputs are obtained from ionisation measurements in solid water, where the energy-range parameters such as practical range and the depth at which ionisation is 50% of that at the maximum for the depth-ionisation curve are determined.

  12. Efficient Method for the Determination of the Activation Energy of the Iodide-Catalyzed Decomposition of Hydrogen Peroxide

    ERIC Educational Resources Information Center

    Sweeney, William; Lee, James; Abid, Nauman; DeMeo, Stephen

    2014-01-01

    An experiment is described that determines the activation energy (E[subscript a]) of the iodide-catalyzed decomposition reaction of hydrogen peroxide in a much more efficient manner than previously reported in the literature. Hydrogen peroxide, spontaneously or with a catalyst, decomposes to oxygen and water. Because the decomposition reaction is…

  13. Assessment of Uncertainty in the Determination of Activation Energy for Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Darby, Stephania P.; Landrum, D. Brian; Coleman, Hugh W.

    1998-01-01

    An assessment of the experimental uncertainty in obtaining the kinetic activation energy from thermogravimetric analysis (TGA) data is presented. A neat phenolic resin, Borden SC1O08, was heated at three heating rates to obtain weight loss vs temperature data. Activation energy was calculated by two methods: the traditional Flynn and Wall method based on the slope of log(q) versus 1/T, and a modification of this method where the ordinate and abscissa are reversed in the linear regression. The modified method produced a more accurate curve fit of the data, was more sensitive to data nonlinearity, and gave a value of activation energy 75 percent greater than the original method. An uncertainty analysis using the modified method yielded a 60 percent uncertainty in the average activation energy. Based on this result, the activation energy for a carbon-phenolic material was doubled and used to calculate the ablation rate In a typical solid rocket environment. Doubling the activation energy increased surface recession by 3 percent. Current TGA data reduction techniques that use the traditional Flynn and Wall approach to calculate activation energy should be changed to the modified method.

  14. Experimentally Determined Binding Energies of Astrophysically Relevant Hydrocarbons in Pure and H2O-Layered Ices

    NASA Astrophysics Data System (ADS)

    Behmard, Aida; Graninger, Dawn; Fayolle, Edith; Oberg, Karin I.

    2017-01-01

    Small hydrocarbons represent an important organic reservoir in a variety of interstellar environments. Constraints on desorption temperatures and binding energies of hydrocarbons are thus necessary for accurate predictions of where and in which phase these molecules exist. Through a series of temperature programmed desorption experiments, we determined binding energies of 1, 2, and 3-carbon interstellar hydrocarbons (CH4, C2H2, C2H4, C2H6, C3H4, C3H6, and C3H8) in pure ices and in relation to water ice, the dominant ice constituent during star and planet formation. These empirically determined values can be used to inform observations and models of the molecular spatial distribution in protoplanetary disks, thus providing insight into planetesimal composition. In addition, knowledge of hydrocarbon binding energies will refine simulations of grain surface chemistry, allowing for better predictions of the chemical conditions that lead to the production of complex organic molecules vital for life.

  15. High energy neutron response characteristics of a passive survey instrument for the determination of cosmic radiation fields in aircraft.

    PubMed

    Bartlett, D T; Tanner, R J; Hager, L G

    2002-01-01

    A passive survey instrument has been developed for the determination of cosmic radiation fields in aircraft. The instrument contains 30 TLDs and 36 PADC etched track detectors in order to obtain the required precision and an isotropic response. Two active electronic personal dosemeters are included to record the time profile of the field intensity. The instrument is robust and reliable, and is particularly useful to verify values of route doses based on calculations. The energy of the neutron component of the field to be determined extends to over 500 MeV, but with the majority of the dose equivalent below 200 MeV. The results are reported of measurements at Uppsala University and Physikalisch-Technische Bundesanstalt of the response characteristics of the instrument to quasi-monoenergetic neutrons in the energy range 60 to 180 MeV and for monoenergetic neutrons of energy from 70 keV to 14.7 MeV.

  16. Predicting energy requirement with pedometer-determined physical-activity level in women with chronic obstructive pulmonary disease

    PubMed Central

    Farooqi, Nighat; Slinde, Frode; Carlsson, Maine; Håglin, Lena; Sandström, Thomas

    2015-01-01

    Background In clinical practice, in the absence of objective measures, simple methods to predict energy requirement in patients with chronic obstructive pulmonary disease (COPD) needs to be evaluated. The aim of the present study was to evaluate predicted energy requirement in females with COPD using pedometer-determined physical activity level (PAL) multiplied by resting metabolic rate (RMR) equations. Methods Energy requirement was predicted in 18 women with COPD using pedometer-determined PAL multiplied by six different RMR equations (Harris–Benedict; Schofield; World Health Organization; Moore; Nordic Nutrition Recommendations; Nordenson). Total energy expenditure (TEE) was measured by the criterion method: doubly labeled water. The predicted energy requirement was compared with measured TEE using intraclass correlation coefficient (ICC) and Bland–Altman analyses. Results The energy requirement predicted by pedometer-determined PAL multiplied by six different RMR equations was within a reasonable accuracy (±10%) of the measured TEE for all equations except one (Nordenson equation). The ICC values between the criterion method (TEE) and predicted energy requirement were: Harris–Benedict, ICC =0.70, 95% confidence interval (CI) 0.23–0.89; Schofield, ICC =0.71, 95% CI 0.21–0.89; World Health Organization, ICC =0.74, 95% CI 0.33–0.90; Moore, ICC =0.69, 95% CI 0.21–0.88; Nordic Nutrition Recommendations, ICC =0.70, 95% CI 0.17–0.89; and Nordenson, ICC =0.40, 95% CI −0.19 to 0.77. Bland–Altman plots revealed no systematic bias for predicted energy requirement except for Nordenson estimates. Conclusion For clinical purposes, in absence of objective methods such as doubly labeled water method and motion sensors, energy requirement can be predicted using pedometer-determined PAL and common RMR equations. However, for assessment of nutritional status and for the purpose of giving nutritional treatment, a clinical judgment is important regarding when

  17. Determining the Power and Energy Capacity of a Battery Energy Storage System Utilizing a Smoothing Feeder Profile to Accommodate High Photovoltaic Penetration on a Distribution Feeder

    NASA Astrophysics Data System (ADS)

    Mansour, Osama Mohammed Abbas Aly

    Electricity is a perishable commodity; once it is generated it needs to be consumed or stored. Electric energy storage provides both power and energy capacity. Power capacity applications reduce the need for generation, while energy capacity allows for energy consumption to be decoupled from generation. Previous research was done to develop an algorithm for determining the power (MW) and energy (MWh) capacities of a battery energy storage system (BESS) to mitigate the adverse impacts of high levels of photovoltaic (PV) generation. The algorithm used a flat feeder profile, and its performance was demonstrated on the equinoxes and solstices. Managing feeder power leads to fewer voltage fluctuations along the length of the feeder, potentially mitigating load management issues caused by variability of renewable generation and load profile. These issues include lighting flicker, compressor seizing, equipment shut-off, loss of motor torque (tau ∝ V2), frequent transformer tap changes and even voltage collapse due to loss of reactive power support (Q ∝ V2). The research described in this thesis builds on this algorithm by incorporating a smoothed feeder profile and testing it over an entire year. Incorporating a smoothing function reduces the requisite BESS energy capacity necessary to provide firming and shaping to accommodate the stochastic nature of PV. Specifically, this method is used to conduct a year-long study on a per second basis, as well as a one-minute basis, for a distribution feeder. Statistical analytical methods were performed to develop recommendations for appropriately sizing the BESS. This method may be used to determine the amount of PV generation that could be installed on a distribution feeder with a minimal investment in the BESS power and energy capacities that would be required to manage the distribution feeder power. Results are presented for PV penetration levels of 10%-50% of the distribution feeder capacity and show that the use of a

  18. Understanding high magnitude flood risk: evidence from the past

    NASA Astrophysics Data System (ADS)

    MacDonald, N.

    2009-04-01

    The average length of gauged river flow records in the UK is ~25 years, which presents a problem in determining flood risk for high-magnitude flood events. Severe floods have been recorded in many UK catchments during the past 10 years, increasing the uncertainty in conventional flood risk estimates based on river flow records. Current uncertainty in flood risk has implications for society (insurance costs), individuals (personal vulnerability) and water resource managers (flood/drought risk). An alternative approach is required which can improve current understanding of the flood frequency/magnitude relationship. Historical documentary accounts are now recognised as a valuable resource when considering the flood frequency/magnitude relationship, but little consideration has been given to the temporal and spatial distribution of these records. Building on previous research based on British rivers (urban centre): Ouse (York), Trent (Nottingham), Tay (Perth), Severn (Shrewsbury), Dee (Chester), Great Ouse (Cambridge), Sussex Ouse (Lewes), Thames (Oxford), Tweed (Kelso) and Tyne (Hexham), this work considers the spatial and temporal distribution of historical flooding. The selected sites provide a network covering many of the largest river catchments in Britain, based on urban centres with long detailed documentary flood histories. The chronologies offer an opportunity to assess long-term patterns of flooding, indirectly determining periods of climatic variability and potentially increased geomorphic activity. This research represents the first coherent large scale analysis undertaken of historical multi-catchment flood chronologies, providing an unparalleled network of sites, permitting analysis of the spatial and temporal distribution of historical flood patterns on a national scale.

  19. Magnitude-based scaling of tsunami propagation

    NASA Astrophysics Data System (ADS)

    Simanjuntak, M. Arthur; Greenslade, Diana J. M.

    2011-07-01

    Most current operational tsunami prediction systems are based upon databases of precomputed tsunami scenarios, where some form of linear scaling is applied to the precomputed model runs in order to represent specific earthquake magnitudes. This can introduce errors due to assumptions made about the rupture width and possible effects on dispersion. In this paper, we perform a series of numerical experiments on uniform depth domains, using the Method of Splitting Tsunamis (MOST) model, and develop estimates of the maximum error that an assumed discrepancy in the width of a rupture will produce in the resulting field of maximum tsunami amplitude. This estimate was produced from fitting the decay of maximum amplitude with normalized distance for various resolutions of the source widths to the grid size, resulting in a simple power law whose coefficients effectively vary with wavelength resolution. This provides a quantification of the effect that linear scaling of precomputed scenarios will have on forecasts of tsunami amplitude. This estimate of scaling bias is investigated in relation to the scenario database that is currently in use within the Joint Australian Tsunami Warning Centre.

  20. Estimating magnitude and duration of incident delays

    SciTech Connect

    Garib, A.; Radwan, A.E.; Al-Deek, H.

    1997-11-01

    Traffic congestion is a major operational problem on urban freeways. In the case of recurring congestion, travelers can plan their trips according to the expected occurrence and severity of recurring congestion. However, nonrecurring congestion cannot be managed without real-time prediction. Evaluating the efficiency of intelligent transportation systems (ITS) technologies in reducing incident effects requires developing models that can accurately predict incident duration along with the magnitude of nonrecurring congestion. This paper provides two statistical models for estimating incident delay and a model for predicting incident duration. The incident delay models showed that up to 85% of variation in incident delay can be explained by incident duration, number of lanes affected, number of vehicles involved, and traffic demand before the incident. The incident duration prediction model showed that 81% of variation in incident duration can be predicted by number of lanes affected, number of vehicles involved, truck involvement, time of day, police response time, and weather condition. These findings have implications for on-line applications within the context of advanced traveler information systems (ATIS).

  1. Apparatus, Method and Program Storage Device for Determining High-Energy Neutron/Ion Transport to a Target of Interest

    NASA Technical Reports Server (NTRS)

    Wilson, John W. (Inventor); Tripathi, Ram K. (Inventor); Badavi, Francis F. (Inventor); Cucinotta, Francis A. (Inventor)

    2012-01-01

    An apparatus, method and program storage device for determining high-energy neutron/ion transport to a target of interest. Boundaries are defined for calculation of a high-energy neutron/ion transport to a target of interest; the high-energy neutron/ion transport to the target of interest is calculated using numerical procedures selected to reduce local truncation error by including higher order terms and to allow absolute control of propagated error by ensuring truncation error is third order in step size, and using scaling procedures for flux coupling terms modified to improve computed results by adding a scaling factor to terms describing production of j-particles from collisions of k-particles; and the calculated high-energy neutron/ion transport is provided to modeling modules to control an effective radiation dose at the target of interest.

  2. DETERMINING MINIMUM IGNITION ENERGIES AND QUENCHING DISTANCES OF DIFFICULT-TO-IGNITE COMPOUNDS

    EPA Science Inventory

    Minimum spark energies and corresponding flat-plate electrode quenching distances required to initiate propagation of a combustion wave have been experimentally measured for four flammable hydrofluorocarbon (HFC) refrigerants and propane using ASTM (American Society for Testing a...

  3. The determination of energy transfer rates in the Ho:Tm:Cr:YAG laser material

    NASA Technical Reports Server (NTRS)

    Koker, Edmond B.

    1988-01-01

    Energy transfer processes occurring between atomic, ionic, or molecular systems are very widespread in nature. The applications of such processes range form radiation physics and chemistry to biology. In the field of laser physics, energy transfer processes have been used to extend the lasing range, increase the output efficiency, and influence the spectral and temporal characteristics of the output pulses of energy transfer dye lasers or solid-state laser materials. Thus in the development of solid state lasers, it is important to investigate the basic energy transfer (ET) mechanisms and processes in order to gain detailed knowledge so that successful technical utilization can be achieved. The aim of the present research is to measure the ET rate from a given manifold associated with the chromium sensitizer atom to a given manifold in the holmium activator atom via the thulium transfer atom, in the Ho:Cr:YAG laser material.

  4. Surface energy of microcrystalline cellulose determined by capillary intrusion and inverse gas chromatography.

    PubMed

    Steele, D Fraser; Moreton, R Christian; Staniforth, John N; Young, Paul M; Tobyn, Michael J; Edge, Stephen

    2008-09-01

    Surface energy data for samples of microcrystalline cellulose have been obtained using two techniques: capillary intrusion and inverse gas chromatography. Ten microcrystalline cellulose materials, studied using capillary intrusion, showed significant differences in the measured surface energetics (in terms of total surface energy and the acid-base characteristics of the cellulose surface), with variations noted between the seven different manufacturers who produced the microcrystalline cellulose samples. The surface energy data from capillary intrusion was similar to data obtained using inverse gas chromatography with the column maintained at 44% relative humidity for the three samples of microcrystalline cellulose studied. This suggests that capillary intrusion may be a suitable method to study the surface energy of pharmaceutical samples.

  5. Symbolic magnitude modulates perceptual strength in binocular rivalry.

    PubMed

    Paffen, Chris L E; Plukaard, Sarah; Kanai, Ryota

    2011-06-01

    Basic aspects of magnitude (such as luminance contrast) are directly represented by sensory representations in early visual areas. However, it is unclear how symbolic magnitudes (such as Arabic numerals) are represented in the brain. Here we show that symbolic magnitude affects binocular rivalry: perceptual dominance of numbers and objects of known size increases with their magnitude. Importantly, variations in symbolic magnitude acted like variations in luminance contrast: we found that an increase in numerical magnitude of adding one lead to an equivalent increase in perceptual dominance as a contrast increment of 0.32%. Our results support the claim that magnitude is extracted automatically, since the increase in perceptual dominance came about in the absence of a magnitude-related task. Our findings show that symbolic, acculturated knowledge about magnitude interacts with visual perception and affects perception in a manner similar to lower-level aspects of magnitude such as luminance contrast.

  6. SU-E-T-249: Determining the Sensitivity of Beam Profile Parameters for Detecting Energy Changes in Flattening Filter-Free Beams

    SciTech Connect

    Mooney, K; Yaddanapudi, S; Mutic, S; Goddu, S

    2015-06-15

    Purpose: To identify the beam profile parameters that can be used to detect energy changes in a flattening filter-free photon beams. Methods: Flattening filter-free beam profiles (inline, crossline, and diagonals) were measured for multiple field sizes (25×25cm and 10×10cm) at 6MV on a clinical system (Truebeam, Varian Medical Systems Palo Alto CA). Profiles were acquired for baseline energy and detuned beams by changing the bending magnet current (BMC), above and below baseline. The following profile parameters were measured: flatness (off-axis ratio at 80% of field size), symmetry, uniformity, slope, and the off-axis ratio (OAR) at several off-axis distances. Tolerance values were determined from repeated measurements. Each parameter was evaluated for sensitivity to the induced beam changes, and the minimum detectable BMC change was calculated for each parameter by calculating the change in BMC that would Result in a change in the parameter above the measurement tolerance. Results: Tolerance values for the parameters were-Flatness≤0.1%; Symmetry≤0.4%; Uniformity≤0.01%; Slope≤ 0.001%/mm. The measurements made with a field size of 25cm and a depth of d=1.5cm showed the greatest sensitivity to bending magnet current variations. Uniformity had the highest sensitivity, able to detect a change in BMC of BMC=0.02A. The OARs and slope were sensitive to the magnitude and direction of BMC change. The sensitivity in the flatness parameter was BMC=0.04A; slope was sensitive to BMC=0.05A. The sensitivity decreased for OARs measured closer to central axis-BMC(8cm)=0.23A; BMC(5cm)=0.47A; BMC(2cm)=1.35A. Symmetry was not sensitive to changes in BMC. Conclusion: These tests allow for better QA of FFF beams by setting tolerance levels to beam parameter baseline values which reflect variations in machine calibration. Uniformity is most sensitive to BMC changes, while OARs provide information about magnitude and direction of miscalibration. Research funding provided by

  7. Analysis of earthquake body wave spectra for potency and magnitude values: implications for magnitude scaling relations

    NASA Astrophysics Data System (ADS)

    Ross, Zachary E.; Ben-Zion, Yehuda; White, Malcolm C.; Vernon, Frank L.

    2016-11-01

    We develop a simple methodology for reliable automated estimation of the low-frequency asymptote in seismic body wave spectra of small to moderate local earthquakes. The procedure corrects individual P- and S-wave spectra for propagation and site effects and estimates the seismic potency from a stacked spectrum. The method is applied to >11 000 earthquakes with local magnitudes 0 < ML < 4 that occurred in the Southern California plate-boundary region around the San Jacinto fault zone during 2013. Moment magnitude Mw values, derived from the spectra and the scaling relation of Hanks & Kanamori, follow a Gutenberg-Richter distribution with a larger b-value (1.22) from that associated with the ML values (0.93) for the same earthquakes. The completeness magnitude for the Mw values is 1.6 while for ML it is 1.0. The quantity (Mw - ML) linearly increases in the analysed magnitude range as ML decreases. An average earthquake with ML = 0 in the study area has an Mw of about 0.9. The developed methodology and results have important implications for earthquake source studies and statistical seismology.

  8. A method to determine mechanical energy conservation and efficiency in equine gait: a preliminary study.

    PubMed

    Preedy, D F; Colborne, G R

    2001-04-01

    Metabolic and mechanical energy costs of locomotion can be combined to calculate locomotor efficiency, which is the quotient of the mechanical energy and metabolic costs. The purpose of this pilot study was to evaluate the mechanical and metabolic energy costs of locomotion at a range of 7 trotting speeds (2.5 to 6.2 m/s) on a level treadmill. A single, sound Thoroughbred horse was modelled as a system of 15 linked segments incorporating all 4 limbs, head, neck and trunk. The horse performed a continuous incremental exercise test at increasing trotting speeds while VO2 was recorded using a breath-by-breath gas analysis system. Positional data were recorded concurrently at 100 Hz using a 2-camera infrared kinematic system. Mechanical energy cost was calculated for 3-6 strides per speed increment, and metabolic data were obtained during the last 15 s of each speed step. Mechanical energy cost increased linearly from 3.3 J/kg/m at 2.5 m/s to a value of 5.31 J/kg/m at 6.2 m/s, and the within-subject variability was low at each of the speed steps. This analysis accounted for the important energy-conserving mechanisms of energy exchange within and between segments of the link segment model. Within-segment energy conservation remained approximately constant as speed increased, whereas between-segment conservation increased from 1040 to 4502 J/stride. The combination of both metabolic and mechanical costs of locomotion yielded an inverted bell-shaped curve of 'apparent' efficiency across the speed increments, with the maximum value occurring when metabolic cost was lowest at 3.8 m/s.

  9. Cosmic Ray Energy Determination by the Reduced-Opening Angle Method

    NASA Technical Reports Server (NTRS)

    Smith, Arthur E.; Gregory, John C.

    1998-01-01

    Accurate measurement of the primary galactic cosmic ray species energy dependence in the regime beyond approx. 500 GeV/a is difficult due to the low flux and the limitations of energy measurement techniques. However, such observations are essential to resolve several questions of current interest such as: Is the enrichment of heavy species (Z greater that or equal to 6) cosmic rays first reported at higher energies by the proton satellite' and then later at lower energies real? The results from a previous deployment of the reduced opening angle technique are inconclusive but the authors do point to limitations in the previous techniques. Another intriguing puzzle is the energy dependence of silicon cosmic rays. Two independent experiments using different experimental techniques indicate that silicon is under-abundant. At present the observation is limited by statistics; it could still be a three sigma fluctuation. However, if confirmed the current models of acceleration and propagation which are species independent are seriously inadequate. To progress further the species and energy dependence must be accurately measured in a manner that is free from systematic uncertainty. In this report we show that the reduced opening angle method offers a simple and relatively inexpensive method to answer these questions. First we present the physics of the reduced opening angle and indicate the expected energy and charge resolution. The proposed detector design is then presented followed by the expected performance. Where ever possible simple phenomenological expressions that allow 'back of the envelope' estimates are given. More details are presented in the appendices. The limit of the energy resolution and the expected event rates for iron cosmic rays are calculated. Salient points are summarized in the conclusions.

  10. Physical activity and physical activity induced energy expenditure in humans: measurement, determinants, and effects.

    PubMed

    Westerterp, Klaas R

    2013-01-01

    Physical activity is defined as any bodily movement produced by skeletal muscles that results in energy expenditure. The doubly labeled water method for the measurement of total energy expenditure (TEE), in combination with resting energy expenditure, is the reference for physical activity under free-living conditions. To compare the physical activity level (PAL) within and between species, TEE is divided by resting energy expenditure resulting in a figure without dimension. The PAL for sustainable lifestyles ranges between a minimum of 1.1-1.2 and a maximum of 2.0-2.5. The average PAL increases from 1.4 at age 1 year to 1.7-1.8 at reproductive age and declines again to 1.4 at age 90 year. Exercise training increases PAL in young adults when energy balance is maintained by increasing energy intake. Professional endurance athletes can reach PAL values around 4.0. Most of the variation in PAL between subjects can be ascribed to predisposition. A higher weight implicates higher movement costs and less body movement but not necessarily a lower PAL. Changes in physical activity primarily affect body composition and to a lesser extent body weight. Modern man has a similar PAL as a wild mammal of a similar body size.

  11. Determinants of CO{sub 2} emissions in ASEAN countries using energy and mining indicators

    SciTech Connect

    Nordin, Sayed Kushairi Sayed; Samat, Khairul Fadzli; Ismail, Siti Fatimah; Hamzah, Khairum; Halim, Bushra Abdul; Kun, Sek Siok

    2015-05-15

    Carbon dioxide (CO{sub 2}) is the main greenhouse gas emitted from human activities. Industrial revolution is one of the triggers to accelerate the quantity of CO{sub 2} in the atmosphere which lead to undesirable changes in the cycle of carbon. Like China and United States which are affected by the economic development growth, the atmospheric CO{sub 2} level in ASEAN countries is expected to be higher from year to year. This study focuses on energy and mining indicators, namely alternative and nuclear energy, energy production, combustible renewables and waste, fossil fuel energy consumption and the pump price for diesel fuel that contribute to CO{sub 2} emissions. Six ASEAN countries were examined from 1970 to 2010 using panel data approach. The result shows that model of cross section-fixed effect is the most appropriate model with the value of R-squared is about 86%. Energy production and fossil fuel energy consumption are found to be significantly influenced to CO{sub 2} emissions.

  12. Determination of electron bunch shape using transition radiation and phase-energy measurements

    SciTech Connect

    Crosson, E.R.; Berryman, K.W.; Richman, B.A.

    1995-12-31

    We present data comparing microbunch temporal information obtained from electron beam phase-energy measurements with that obtained from transition radiation auto-correlation measurements. The data was taken to resolve some of the ambiguities in previous transition radiation results. By measuring the energy spectrum of the electron beam as a function of its phase relative to the accelerating field, phase-energy information was extracted. This data was analyzed using tomographic techniques to reconstruct the phase-space distribution assuming an electron energy dependence of E({var_phi}) = E{sub o} + E{sub acc}cos({var_phi}), where E{sub o} is the energy of an electron entering the field, E{sub acc} is the peak energy gain, and {var_phi} is the phase between the crest of the RF wave and an electron. Temporal information about the beam was obtained from the phase space distribution by taking the one dimensional projection along the time axis. We discuss the use of this technique to verify other transition radiation analysis methods.

  13. Does low magnitude earthquake ground shaking cause landslides?

    NASA Astrophysics Data System (ADS)

    Brain, Matthew; Rosser, Nick; Vann Jones, Emma; Tunstall, Neil

    2015-04-01

    displayed ductile behaviour under standard strain-controlled monotonic shear tests. We applied dynamic stresses of varying amplitude, frequency and sequence, and monitored the resultant strain response to determine which factors, when combined, create significant deviations from standard monotonic shear behaviour. Critically, we demonstrate that multiple dynamic stress/shaking events that are largely insufficient to cause permanent strain accumulation (and hence are conventionally deemed geomorphologically ineffective) can, under favourable though limited conditions, affect material stiffness such that the future behaviour of the sediment/landslide differs considerably from that observed in standard monotonic shear tests. In other words, low-magnitude ground shaking events can be effective precursory geomorphic processes. Our results have important implications for studies of long-term landscape evolution, in which modelled hillslopes are repeatedly subjected to multiple earthquake events but that currently lack appropriate empirically-constrained strength parameters.

  14. Determining a hopping polaron's bandwidth from its Seebeck coefficient: Measuring the disorder energy of a non-crystalline semiconductor

    SciTech Connect

    Emin, David

    2016-01-28

    Charge carriers that execute multi-phonon hopping generally interact strongly enough with phonons to form polarons. A polaron's sluggish motion is linked to slowly shifting atomic displacements that severely reduce the intrinsic width of its transport band. Here a means to estimate hopping polarons' bandwidths from Seebeck-coefficient measurements is described. The magnitudes of semiconductors' Seebeck coefficients are usually quite large (>k/|q| = 86 μV/K) near room temperature. However, in accord with the third law of thermodynamics, Seebeck coefficients must vanish at absolute zero. Here, the transition of the Seebeck coefficient of hopping polarons to its low-temperature regime is investigated. The temperature and sharpness of this transition depend on the concentration of carriers and on the width of their transport band. This feature provides a means of estimating the width of a polaron's transport band. Since the intrinsic broadening of polaron bands is very small, less than the characteristic phonon energy, the net widths of polaron transport bands in disordered semiconductors approach the energetic disorder experienced by their hopping carriers, their disorder energy.

  15. Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin; Schulze, Markus

    2016-11-01

    We analyze the energy spectra of single b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the "energy peak" as an observable to determine the top quark mass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it concerns higher-order QCD effects or new physics contributions. For a 1% jet energy scale uncertainty, the top quark mass can then be extracted using the energy peak of b-jets with an error ± (1.2 ({exp}) + 0.6({th})) { GeV}. In view of the dominant jet energy scale uncertainty in the measurement using b-jets, we also investigate the extraction of the top quark mass from the energy peak of the corresponding B-hadrons which, in principle, can be measured without this uncertainty. The calculation of the B-hadron energy spectrum is carried out using fragmentation functions at NLO. The dependence on the fragmentation scale turns out to be the largest theoretical uncertainty in this extraction of top quark mass.

  16. Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content.

    PubMed

    Vetter, J R; Perman, W H; Kalender, W A; Mazess, R B; Holden, J E

    1986-01-01

    A prototype dual-energy computed tomographic (CT) scanner (Siemens Somatom DR3) with rapid kVp switching and prereconstruction processing has been used to measure vertebral bone mineral density. With this approach misregistration and beam hardening inaccuracies can be reduced considerably. Basis material images of aluminum- and Lucite-equivalent density enable measurements of bone mineral density that are nearly independent of the amount of marrow fat. To simulate variable marrow fat, alcohol-water mixtures were used as media in calibration standards. A section of dried trabecular bone was also scanned immersed in varying alcohol-water mixtures. In both simulations it was shown that the dual-energy measurement is nearly independent of marrow composition whereas the single-energy measurement would be strongly influenced by marrow fat. Dual-energy CT was compared to dual-photon absorptiometry (153Gd) for the measurement of bone mineral mass of ten excised human vertebrae. There was a high degree of correlation between the two measurements (r = 0.97). Dual-energy and single-energy CT measurements on 17 patients with suspected metabolic bone disease strongly support the conclusion that the influence of fat can lead to significant errors in single-energy determinations of the mineral density of trabecular bone.

  17. Determination of conformational free energies of peptides by multidimensional adaptive umbrella sampling

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Gu, Yan; Liu, Haiyan

    2006-09-01

    We improve the multidimensional adaptive umbrella sampling method for the computation of conformational free energies of biomolecules. The conformational transition between the α-helical and β-hairpin conformational states of an alanine decapeptide is used as an example. Convergence properties of the weighted-histogram-analysis-based adaptive umbrella sampling can be improved by using multiple replicas in each adaptive iteration and by using adaptive updating of the bounds of the umbrella potential. Using positional root-mean-square deviations from structures of the α-helical and β-hairpin reference states as reaction coordinates, we obtained well-converged free energy surfaces of both the in-vacuum and in-solution decapeptide systems. From the free energy surfaces well-converged relative free energies between the two conformational states can be derived. Advantages and disadvantages of different methods for obtaining conformational free energies as well as implications of our results in studying conformational transitions of proteins and in improving force field are discussed.

  18. Proposal for determining the energy content of gravitational waves by using approximate symmetries of differential equations

    SciTech Connect

    Hussain, Ibrar; Qadir, Asghar; Mahomed, F. M.

    2009-06-15

    Since gravitational wave spacetimes are time-varying vacuum solutions of Einstein's field equations, there is no unambiguous means to define their energy content. However, Weber and Wheeler had demonstrated that they do impart energy to test particles. There have been various proposals to define the energy content, but they have not met with great success. Here we propose a definition using 'slightly broken' Noether symmetries. We check whether this definition is physically acceptable. The procedure adopted is to appeal to 'approximate symmetries' as defined in Lie analysis and use them in the limit of the exact symmetry holding. A problem is noted with the use of the proposal for plane-fronted gravitational waves. To attain a better understanding of the implications of this proposal we also use an artificially constructed time-varying nonvacuum metric and evaluate its Weyl and stress-energy tensors so as to obtain the gravitational and matter components separately and compare them with the energy content obtained by our proposal. The procedure is also used for cylindrical gravitational wave solutions. The usefulness of the definition is demonstrated by the fact that it leads to a result on whether gravitational waves suffer self-damping.

  19. π–π Interaction Energies as Determinants of the Photodimerization of Mono-, Di-, and Triazastilbenes

    PubMed Central

    2015-01-01

    We describe the quantitative [2 + 2] photocycloaddition of crystalline trans-2,4-dichloro-6-styrylpyrimidine to produce the corresponding htt r-ctt cyclobutane dimer, and we present 1H NMR analysis of the photolysis of this and six other mono-, di-, and triazastilbenes in solid and solution states. Density functional (M06-2X) and correlated ab initio (MP2) calculations were used to obtain interaction energies between two monomers of each azastilbene. These energies mirror the relative polarization of the stilbene moieties and can be quantitatively correlated with the rate of reaction and selective formation of the htt r-ctt dimers. In the solid state, poor correlation is observed between interaction energy and reactivity/selectivity. This lack of correlation is explained through X-ray analysis of the azastilbene monomers and is shown to be in accordance with the principles of Schmidt’s topochemical postulate. Conversely, in solution there is a strong positive correlation (R2 = 0.96) between interaction energies and formation of the htt r-ctt dimer. These results are the first to show this correlation and to demonstrate the utility of calculated interaction energies as a tool for the prediction of stereo- and regioselectivity in solution-state stilbene-type photocycloadditions. PMID:24837276

  20. Water binding energies of [Pb(amino acid-H)H2O]+ complexes determined by blackbody infrared radiative dissociation.

    PubMed

    Burt, Michael B; Decker, Sarah G A; Fridgen, Travis D

    2012-11-21

    The water binding energies (E(0)) of eight deprotonated Pb(2+)-amino acid (Aa) complexes of the form [Pb(Aa-H)H(2)O](+) (Aa = Gly, Ala, Val, Leu, Ile, Phe, Glu, and Lys) were determined using blackbody infrared radiative dissociation (BIRD). A Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer was used to trap ions generated by electrospray ionization (ESI) in a "zero"-pressure (~10(-10) torr) cell where dissociation can only occur by absorption of thermally generated photons. Since the [Pb(Aa-H)H(2)O](+) complexes have relatively few vibrational degrees of freedom (36-78) and are within the slow-exchange kinetic limit, the master equation was solved to extract meaningful threshold dissociation energies and thermal unimolecular dissociation rate constants (k(uni)). The master equation analysis uses variable reaction coordinate transition state theory (VRC-TST) to minimize the Rice-Ramsperger-Kassel-Marcus (RRKM) dissociation rate constants. The determined water binding energies range from 76.6 to 113.6 kJ mol(-1), and agree well with 0 K dissociation energies calculated using the B3LYP/6-31+G(d,p) and MP2(full)/6-311++G(2d,2p)//B3LYP/6-31+G(d,p) methods. The relative strengths of the binding energies reflect the known structural isomers (A-, B-, C-, and D-type) of these [Pb(Aa-H)H(2)O](+) complexes.

  1. Method of determining load in anisotropic non-crystalline materials using energy flux deviation

    NASA Technical Reports Server (NTRS)

    Prosser, William H. (Inventor); Kriz, Ronald D. (Inventor); Fitting, Dale W. (Inventor)

    1994-01-01

    An ultrasonic wave is applied to an anisotropic sample material in an initial direction and the intensity of the ultrasonic wave is measured on an opposite surface of the sample material by two adjacent receiving points located in an array of receiving points. A ratio is determined between the measured intensities of two adjacent receiving points, the ratio being indicative of an angle of flux deviation from the initial direction caused by an unknown applied load. This determined ratio is then compared to a plurality of ratios of a similarly tested, similar anisotropic reference material under a plurality of respective, known load conditions, whereby the load applied to the particular anisotropic sample material is determined. A related method is disclosed for determining the fiber orientation from known loads and a determined flux shift.

  2. Determination of primary energy and mass in the PeV region by Bayesian unfolding techniques

    NASA Astrophysics Data System (ADS)

    Roth, M.; Antoni, T.; Apela, W. D.; Badea, F.; Bekk, K.; Bercuci, A.; Blümera, H.; Bozdog, H.; Brancus, I. M.; Büttner, C.; Chilingarian, A.; Daumiller, K.; Doll, P.; Engler, J.; Feßler, F.; Gils, H. J.; Glasstetter, R.; Haeusler, R.; Haungs, A.; Heck, D.; Hörandel, J. R.; Iwan, A.; Kampert, K.-H.; Klages, H. O.; Maier, G.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Müller, M.; Obenland, R.; Oehlschläger, J.; Ostapchenkob, S.; Petcu, M.; Rebel, H.; Risse, M.; Schatz, G.; Schieler, H.; Scholz, J.; Thouw, T.; Ulrich, H.; Weber, J. H.; Weindl, A.; Wentz, J.; Wochele, J.; Zabierowski, J.

    2003-07-01

    The field detector array of the KASCADE experiment measures the electron and muon component of extensive air showers in the knee region with high precision. A baysian unfolding procedure is presented in which the two-dimensional shower size distribution ( Ne, Nμtr) is examined. On the arbitrary assumption that the chemical composition consists of five primary mass groups (hydrogen, helium, carbon, silicon and iron) the size distribution is deconvoluted to reconstruct the energy spectra of these mass groups in the energy range between 10 15 eV and 10 17 eV. The energy spectra of the lighter element groups result in a knee-like bending with a steepening above the knee. The topology of the individual knee positions suggest a rigidity dependence.

  3. Energy Yield Determination of Concentrator Solar Cells using Laboratory Measurements: Preprint

    SciTech Connect

    Geisz, John F.; Garcia, Ivan; McMahon, William E.; Steiner, Myles A.; Ochoa, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-09-14

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used to predict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted. temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted.

  4. Analytic computation of energy derivatives - Relationships among partial derivatives of a variationally determined function

    NASA Technical Reports Server (NTRS)

    King, H. F.; Komornicki, A.

    1986-01-01

    Formulas are presented relating Taylor series expansion coefficients of three functions of several variables, the energy of the trial wave function (W), the energy computed using the optimized variational wave function (E), and the response function (lambda), under certain conditions. Partial derivatives of lambda are obtained through solution of a recursive system of linear equations, and solution through order n yields derivatives of E through order 2n + 1, extending Puley's application of Wigner's 2n + 1 rule to partial derivatives in couple perturbation theory. An examination of numerical accuracy shows that the usual two-term second derivative formula is less stable than an alternative four-term formula, and that previous claims that energy derivatives are stationary properties of the wave function are fallacious. The results have application to quantum theoretical methods for the computation of derivative properties such as infrared frequencies and intensities.

  5. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions.

    PubMed

    Changlani, Hitesh J; Zheng, Huihuo; Wagner, Lucas K

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U(∗)/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.

  6. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.

    1993-01-01

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.

  7. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asokakumar, P.P.V.; Lynn, K.G.

    1993-04-06

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO[sub 2]/Si, MOS or other semiconductor devices.

  8. EMPIRICAL DETERMINATION OF THE ENERGY LOSS RATE OF ACCELERATED ELECTRONS IN A WELL-OBSERVED SOLAR FLARE

    SciTech Connect

    Torre, Gabriele; Pinamonti, Nicola; Guo, Jingnan; Piana, Michele; Emslie, A. Gordon; Massone, Anna Maria E-mail: pinamont@dima.unige.it E-mail: piana@dima.unige.it E-mail: annamaria.massone@cnr.it

    2012-06-01

    We present electron images of an extended solar flare source, deduced from RHESSI hard X-ray imaging spectroscopy data. We apply the electron continuity equation to these maps in order to determine empirically the form of the energy loss rate for the bremsstrahlung-emitting electrons. We show that this form is consistent with an energy transport model involving Coulomb collisions in a target with a temperature of about 2 Multiplication-Sign 10{sup 7} K, with a continuous injection of fresh deka-keV electrons at a rate of approximately 10{sup -2} electrons s{sup -1} per ambient electron.

  9. Determination of energy spectrum parameters for two-dimensional carriers from the quantum oscillation beating pattern

    NASA Astrophysics Data System (ADS)

    Dorozhkin, S. I.

    1990-02-01

    Recent experimental results of Das et al. and of Luo et al. on the Shubnikov-de Haas oscillation beatings in two-dimensional electron systems (2D ES) are quantitatively described in terms of a model based on the energy spectrum of a 2D ES with strong spin-orbit coupling. Values of the energy spectrum parameters, including the g factor, are obtained for two-dimensional electrons in InxGa1-xAs/In0.52Al0.48As (x~=0.6) heterostructures.

  10. Determination of Surface Energy of Natural Zeolite by Inverse Gas Chromatography

    NASA Astrophysics Data System (ADS)

    Bilgiç, Ceyda; Karakehya, Naile

    2016-10-01

    In this study, surface energy of natural zeolite was investigated using inverse gas chromatography (IGC). Purified zeolite was prepared from natural zeolite applying decantation and centrifugation process together. For IGC studies, retention time of n-octane, n-nonane and n-decane were measured at infinite dilution conditions, between 250 and 280 °C. Dispersive component of the surface energy (γd S)of purified zeolite was calculated. γd S values calculated using Schultz et al methods decrease with temperature.

  11. Methodology to determine the technical performance and value proposition for grid-scale energy storage systems :

    SciTech Connect

    Byrne, Raymond Harry; Loose, Verne William; Donnelly, Matthew K.; Trudnowski, Daniel J.

    2012-12-01

    As the amount of renewable generation increases, the inherent variability of wind and photovoltaic systems must be addressed in order to ensure the continued safe and reliable operation of the nation's electricity grid. Grid-scale energy storage systems are uniquely suited to address the variability of renewable generation and to provide other valuable grid services. The goal of this report is to quantify the technical performance required to provide di erent grid bene ts and to specify the proper techniques for estimating the value of grid-scale energy storage systems.

  12. Transition state determination of enzyme reaction on free energy surface: Application to chorismate mutase

    NASA Astrophysics Data System (ADS)

    Higashi, Masahiro; Hayashi, Shigehiko; Kato, Shigeki

    2007-04-01

    The transition state on the free energy surface for Claisen rearrangement of chorismate in Bacillus subtilis chorismate mutase is calculated with a method based on a linear response theory. The calculated activation free energy is 16.9 kcal/mol, which is in good agreement with the experimental one. The catalytic ability of the enzyme is examined by comparing the activation barrier with that in aqueous solution and found to be mainly attributed to the conformational restriction of the substrate. We also calculate the kinetic isotope effects, which are in accord with the experimental estimates.

  13. ANSI/ASHRAE/IES Standard 90.1-2013 Determination of Energy Savings: Qualitative Analysis

    SciTech Connect

    Halverson, Mark A.; Rosenberg, Michael I.; Hart, Philip R.; Richman, Eric E.; Athalye, Rahul A.; Winiarski, David W.

    2014-09-04

    This report provides a final qualitative analysis of all addenda to ANSI/ASHRAE/IES Standard 90.1-2010 (referred to as Standard 90.1-2010 or 2010 edition) that were included in ANSI/ASHRAE/IES Standard 90.1-2013 (referred to as Standard 90.1-2013 or 2013 edition). All addenda in creating Standard 90.1-2013 were evaluated for their projected impact on energy efficiency. Each addendum was characterized as having a positive, neutral, or negative impact on overall building energy efficiency.

  14. Stress drop in the sources of intermediate-magnitude earthquakes in northern Tien Shan

    NASA Astrophysics Data System (ADS)

    Sycheva, N. A.; Bogomolov, L. M.

    2014-05-01

    The paper is devoted to estimating the dynamical parameters of 14 earthquakes with intermediate magnitudes (energy class 11 to 14), which occurred in the Northern Tien Shan. For obtaining the estimates of these parameters, including the stress drop, which could be then applied in crustal stress reconstruction by the technique suggested by Yu.L. Rebetsky (Schmidt Institute of Physics of the Earth, Russian Academy of Sciences), we have improved the algorithms and programs for calculating the spectra of the seismograms. The updated products allow for the site responses and spectral transformations during the propagation of seismic waves through the medium (the effect of finite Q-factor). By applying the new approach to the analysis of seismograms recorded by the seismic KNET network, we calculated the radii of the sources (Brune radius), scalar seismic moment, and stress drop (release) for the studied 14 earthquakes. The analysis revealed a scatter in the source radii and stress drop even among the earthquakes that have almost identical energy classes. The stress drop by different earthquakes ranges from one to 75 bar. We have also determined the focal mechanisms and stress regime of the Earth's crust. It is worth noting that during the considered period, strong seismic events with energy class above 14 were absent within the segment covered by the KNET stations.

  15. Controllable magnitude and anisotropy of the electrical conductivity of Hf3C2O2 MXene

    NASA Astrophysics Data System (ADS)

    Zha, Xian-Hu; Zhou, Jie; Luo, Kan; Lang, Jiajian; Huang, Qing; Zhou, Xiaobing; Francisco, Joseph S.; He, Jian; Du, Shiyu

    2017-04-01

    Hf3C2O2, a new MXene member synthesized recently, was predicted to be a semi-metal with high mechanical strength. Based on the unique electronic structure, the energy bands and electrical conductivities of the MXene under various strains are comprehensively investigated in this paper. Biaxial and two orthogonal uniaxial strains in both compressive and tensile manners are studied. Results from this study suggest that Hf3C2O2 shows a transition between semi-metal and semi-conductor under both biaxial and uniaxial strains. A compressive strain generally induces a larger energy overlap between the conduction band minimum and the valance band maximum, while a tensile strain reduces the energy band overlap and even opens a band gap. As a consequence, the magnitude of electrical conductivity decreases drastically from compressive to tensile strains applied. Moreover, the uniaxial strains are determined to be efficient in manipulating the anisotropy of the electrical conductivity. These data imply that the Hf3C2O2 MXene is a promising candidate material for devices such as strain sensors.

  16. Best Practices in Determining the Impacts of Municipal Programs on Energy Use, Air Quality, and Other Ancillary Costs and Benefits (Poster)

    SciTech Connect

    Brown, E.; Mosey, G.

    2006-10-03

    This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, 2006 held in Boulder, Colorado, discusses best practices for determining the impacts of municipal programs on energy use, air quality, and other costs and benefits.

  17. Photon spectrometry for the determination of the dose-rate constant of low-energy photon-emitting brachytherapy sources.

    PubMed

    Chen, Zhe Jay; Nath, Ravinder

    2007-04-01

    Accurate determination of dose-rate constant (lambda) for interstitial brachytherapy sources emitting low-energy photons (< 50 keV) has remained a challenge in radiation dosimetry because of the lack of a suitable absolute dosimeter for accurate measurement of the dose rates near these sources. Indeed, a consensus value of lambda taken as the arithmetic mean of the dose-rate constants determined by different research groups and dosimetry techniques has to be used at present for each source model in order to minimize the uncertainties associated with individual determinations of lambda. Because the dosimetric properties of a source are fundamentally determined by the characteristics of the photons emitted by the source, a new technique based on photon spectrometry was developed in this work for the determination of dose-rate constant. The photon spectrometry technique utilized a high-resolution gamma-ray spectrometer to measure source-specific photon characteristics emitted by the low-energy sources and determine their dose-rate constants based on the measured photon-energy spectra and known dose-deposition properties of mono-energetic photons in water. This technique eliminates many of the difficulties arising from detector size, the energy dependence of detector sensitivity, and the use of non-water-equivalent solid phantoms in absolute dose rate measurements. It also circumvents the uncertainties that might be associated with the source modeling in Monte Carlo simulation techniques. It was shown that the estimated overall uncertainty of the photon spectrometry technique was less than 4%, which is significantly smaller than the reported 8-10% uncertainty associated with the current thermo-luminescent dosimetry technique. In addition, the photon spectrometry technique was found to be stable and quick in lambda determination after initial setup and calibration. A dose-rate constant can be determined in less than two hours for each source. These features make it

  18. What is the Meaning of the Physical Magnitude `Work'?

    NASA Astrophysics Data System (ADS)

    Kanderakis, Nikos

    2014-06-01

    Usually, in physics textbooks, the physical magnitude `work' is introduced as the product of a force multiplied by its displacement, in relation to the transfer of energy. In other words, `work' is presented as an internal affair of physics theory, while its relation to the world of experience, that is its empirical meaning, is missing. On the other hand, in the history of its creation, `work' was a concept that had empirical meaning from the start. It was constructed by engineers to measure the work (labor) of motor engines, men, and animals. Very soon however this initial meaning seems to vanish. In this article, it will be looked at how `work' is presented in physics textbooks, what was its initial meaning in the history of its formulation, under what circumstances this initial meaning faded, and how elements from the history of its creation can be used in the classroom to teach it.

  19. Determination of the solid-fluid coexistence of the n - 6 Lennard-Jones system from free energy calculations.

    PubMed

    Sousa, J M G; Ferreira, A L; Barroso, M A

    2012-05-07

    The solid-fluid coexistence properties of the n - 6 Lennard-Jones system, n from 7 to 12, are reported. The procedure relies on determining Helmholtz free energy curves as a function of volume for each phase independently, from several NVT simulations, and then connecting it to points of known absolute free energy. For n = 12 this requires connecting the simulated points to states of very low densities on the liquid phase, and to a harmonic crystal for the solid phase, which involves many extra simulations for each temperature. For the reference points of the remaining systems, however, the free energy at a given density and temperature can be calculated relative to the n = 12 system. The method presented here involves a generalization of the multiple histogram method to combine simulations performed with different potentials, provided they visit overlapping regions of the phase space, and allows for a precise calculation of relative free energies. The densities, free energies, average potential energies, pressure, and chemical potential at coexistence are presented for up to T∗ = 5.0 and new estimations of the triple points are given for the n - 6 Lennard-Jones system.

  20. Comparison of Imaging Characteristics of (124)I PET for Determination of Optimal Energy Window on the Siemens Inveon PET.

    PubMed

    Yu, A Ram; Kim, Hee-Joung; Lim, Sang Moo; Kim, Jin Su

    2016-01-01

    Purpose. (124)I has a half-life of 4.2 days, which makes it suitable for imaging over several days over its uptake and washout phases. However, it has a low positron branching ratio (23%), because of prompt gamma coincidence due to high-energy γ-photons (602 to 1,691 keV), which are emitted in cascade with positrons. Methods. In this study, we investigated the optimal PET energy window for (124)I PET based on image characteristics of reconstructed PET. Image characteristics such as nonuniformities, recovery coefficients (RCs), and the spillover ratios (SORs) of (124)I were measured as described in NEMA NU 4-2008 standards. Results. The maximum and minimum prompt gamma coincidence fraction (PGF) were 33% and 2% in 350~800 and 400~590 keV, respectively. The difference between best and worst uniformity in the various energy windows was less than 1%. The lowest SORs of (124)I were obtained at 350~750 keV in nonradioactive water compartment. Conclusion. Optimal energy window should be determined based on image characteristics. Our developed correction method would be useful for the correction of high-energy prompt gamma photon in (124)I PET. In terms of the image quality of (124)I PET, our findings indicate that an energy window of 350~750 keV would be optimal.