Science.gov

Sample records for energy management solutions

  1. Wireless Sensor Network for Advanced Energy Management Solutions

    SciTech Connect

    Peter J. Theisen; Bin Lu, Charles J. Luebke

    2009-09-23

    Eaton has developed an advanced energy management solution that has been deployed to several Industries of the Future (IoF) sites. This demonstrated energy savings and reduced unscheduled downtime through an improved means for performing predictive diagnostics and energy efficiency estimation. Eaton has developed a suite of online, continuous, and inferential algorithms that utilize motor current signature analysis (MCSA) and motor power signature analysis (MPSA) techniques to detect and predict the health condition and energy usage condition of motors and their connect loads. Eaton has also developed a hardware and software platform that provided a means to develop and test these advanced algorithms in the field. Results from lab validation and field trials have demonstrated that the developed advanced algorithms are able to detect motor and load inefficiency and performance degradation. Eaton investigated the performance of Wireless Sensor Networks (WSN) within various industrial facilities to understand concerns about topology and environmental conditions that have precluded broad adoption by the industry to date. A Wireless Link Assessment System (WLAS), was used to validate wireless performance under a variety of conditions. Results demonstrated that wireless networks can provide adequate performance in most facilities when properly specified and deployed. Customers from various IoF expressed interest in applying wireless more broadly for selected applications, but continue to prefer utilizing existing, wired field bus networks for most sensor based applications that will tie into their existing Computerized Motor Maintenance Systems (CMMS). As a result, wireless technology was de-emphasized within the project, and a greater focus placed on energy efficiency/predictive diagnostics. Commercially available wireless networks were only utilized in field test sites to facilitate collection of motor wellness information, and no wireless sensor network products were

  2. Energy Solutions

    ERIC Educational Resources Information Center

    Sobieski, Jeff

    2010-01-01

    Education facilities managers are faced with a daunting set of challenges: They must find new ways to reduce energy consumption and carry out greener energy policies. HVAC typically accounts for more than 30% of a building's electricity costs, so there is a clear incentive to eliminate unnecessary heating and cooling of unoccupied rooms. With more…

  3. Energy Management.

    ERIC Educational Resources Information Center

    Bete, Tim, Ed.

    1998-01-01

    Presents the opinions of three energy experts on the issue of school facility energy management. The experts respond to the following questions: will energy deregulation occur in all 50 states and will it provide real savings; and will the majority of districts hire ESCOs to manage their energy needs? (GR)

  4. Energy Management Needs; A Project to Develop Solutions for Higher Education's Energy Problems in the 1980's.

    ERIC Educational Resources Information Center

    Coldren, Sharon L.; Mitchell, Cecilia

    Current patterns of energy management within higher education institutions and energy-related information and services that are needed by senior administrators and others to develop and improve energy management and planning on campus were studied. The findings and recommendations will be used to help develop a new research and action program for…

  5. Energy management

    SciTech Connect

    Glenn, J.

    1991-10-01

    This paper is a review of the Department of Energy's (DOE) Contractor Purchasing System Review (CPSR) Program, which oversees the extensive subcontracting activities of the Department's management and operating (M and O) contractors. This review is part of a special GAO audit effort to help ensure that areas vulnerable to fraud, waste, abuse, and mismanagement are identified and that adequate corrective actions are taken. This effort focuses on 16 areas, one of which is DOE contractor oversight. This report describes the subcontracting deficiencies occurring at DOE, identifies shortcomings in DOE's CPSR Program, and discusses the corrective actions that DOE has committed to take in its CPSR Program in response to these findings.

  6. Piezoelectric Energy Harvesting Solutions

    PubMed Central

    Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria

    2014-01-01

    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions. PMID:24618725

  7. Energy management

    SciTech Connect

    Dingell, J.D.

    1991-10-01

    In January 1990 GAO began implementing a special audit effort to help ensure that areas vulnerable to fraud, waste, abuse, and mismanagement are identified and that appropriate corrective actions are taken. This effort focuses on 16 areas, one of which is the Department of Energy's (DOE) contracting practices. As part of this effort, the authors determined if contract audits for monitoring and overseeing DOE's contracting process were being performed and that we identify the impact or potential impact to the government when contract audits were not performed. Specifically, this paper discusses audit coverage of DOE's management and operating (M and O) contractors and DOE contracts, the problems that may occur when contract audit activity is not performed, and factors that have impeded contract audit coverage.

  8. Residential Energy Management Education.

    ERIC Educational Resources Information Center

    Mecca, Stephen J.; Robertshaw, Joseph E.

    1980-01-01

    Describes two formal programs in the area of energy management education: a Residential Energy Management Summer Institute (part of a faculty development program funded by the Department of Energy), and a Residential Energy Management curriculum for Energy Auditors. (CS)

  9. Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

    SciTech Connect

    Peffer, Therese; Blumstein, Carl; Culler, David; Modera, Mark; Meier, Alan

    2015-09-10

    The Project uses state-of-the-art computer science to extend the benefits of Building Automation Systems (BAS) typically found in large buildings (>100,000 square foot) to medium-sized commercial buildings (<50,000 sq ft). The BAS developed in this project, termed OpenBAS, uses an open-source and open software architecture platform, user interface, and plug-and-play control devices to facilitate adoption of energy efficiency strategies in the commercial building sector throughout the United States. At the heart of this “turn key” BAS is the platform with three types of controllers—thermostat, lighting controller, and general controller—that are easily “discovered” by the platform in a plug-and-play fashion. The user interface showcases the platform and provides the control system set-up, system status display and means of automatically mapping the control points in the system.

  10. Clean Energy Solutions Center Services

    SciTech Connect

    2016-03-01

    The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  11. Manage Energy with Computers.

    ERIC Educational Resources Information Center

    American School and University, 1982

    1982-01-01

    Computerized energy management at Drew University (New Jersey) is accomplished by direct digital control in which microprocessor controllers control, monitor, and carry out energy management functions at the equipment level. (Author/MLF)

  12. Alternative Energy Solutions

    SciTech Connect

    Cowley, David E.; Berman, Marc J.; Breinlinger, Helmut; Gilly, Ladina; Graves, Sam; Kovatch, Patricia; Kulesza, Pete; Martinez, Dave; Minyard, Tommy; Prucnal, Dave; Seager, Mark; Vadgama, Ash

    2011-03-19

    How can HPC centers reduce cost and environmental impact by making creative use of local natural resources? Energy efficiency inside the data center is only part of the story. In keeping with the principle of reduce, reuse, recycle, we should be able to take advantage of local resources to increase efficiency either at new or existing locations. Are there creative ways to reduce PUE below 1? Is a more meaningful way needed to express and measure the environmental effects of operating HPC centers? We will explore approaches such as sustainable energy sources, use of ambient external air or water temperatures, and reuse of "waste" heat.

  13. Clean Energy Solutions Center (Presentation)

    SciTech Connect

    Reategui, S.

    2012-07-01

    The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

  14. Solar Energy - Solution or Pipedream?

    ERIC Educational Resources Information Center

    Polk, Joyce

    This series of lessons and class activities is designed for presentation in a sequence of nine class days. The collection is intended to provide the student in advanced science classes with awareness of the possibilities and limitations of solar energy as a potential solution to the energy crisis. Included are discussion of the following: (1)…

  15. Energy Management Plan.

    ERIC Educational Resources Information Center

    Tasmania Dept. of Education, Hobart (Australia). Facilities Services Section.

    This report presents an overview of the energy management plan for Tasmanian schools designed to minimize the costs of all forms of energy usage within these facilities. The policy and objectives of the plan are provided along with details of the plan itself and its current status. Appendices contain an extract from Asset Management Plan for Real…

  16. Process energy management

    SciTech Connect

    1994-12-31

    In many facilities, energy management is simply a matter of managing the energy required for lighting and space conditioning. In many others, however, energy management is much more complex and involves large motors and controls, industrial insulation, complex combustion monitoring, unique steam distribution problems, significant amounts of waste heat, etc. Typical facilities offering large energy management opportunities include industrial facilities, large office and commercial operations, government institutions such as schools, hospitals and prisons. Such facilities generally have specialized industrial, commercial or institutional processes that incorporate many of the concepts covered in other chapters. These processes require thorough analytical evaluations to determine the appropriate energy-saving measures. This chapter provides some examples. In this chapter the authors present a suggested procedure for process energy improvement. Then, motors and controls are discussed since they form an integral part of most processes. Next, some sample case studies of process energy management opportunities are provided. Finally, the authors outline some common process activities where better energy management can be practiced. Air compressors are also discussed.

  17. Does gasification and biochar amendment provide a viable solution to balance greenhouse gas emissions, energy requirements and orchard residue management?

    NASA Astrophysics Data System (ADS)

    Pereira, Engil; Suddick, Emma; Six, Johan

    2015-04-01

    By converting biomass residue to biochar, we can generate power cleanly and sequester carbon resulting in overall greenhouse gas (GHG) savings when compared to typical fossil fuel burning and waste disposal. This on-farm research study provides a long-term and high frequency assessment of GHG emissions from biochar amended-soils in an organic walnut orchard in the Central Valley of California, USA. We also estimated the GHG offsets from the conversion of walnut residue into energy through gasification at the on-site walnut processing plant. Soil fluxes of carbon dioxide (CO2) and nitrous oxide (N2O) were monitored over 29 months in a 3.6 ha walnut orchard following management and precipitation events. We compared four treatments: control, biochar, compost, and biochar combined with compost. Events involving resource inputs such as fertilization or cover crop mowing induced the largest N2O peaks with average 0.13 kg N2O-N ha-1 day-1, while precipitation events produced the highest CO2 fluxes in average 0.124 Mg CO2-C ha-1 day-1. Biochar alone decreased N2O fluxes in two out of 23 measured events, however, not with enough significant magnitude to modify annual or seasonal totals. This indicates that biochar-induced decreases in N2O fluxes may occasionally occur without significant changes in total emissions. Additionally, biochar alone or in combination with compost did not alter annual or seasonal cumulative CO2 emissions. For this particular study, the conversion of orchard waste into energy and C sequestration through biochar amendment offset 100.3 Mg CO2-Ceq year-1. Thus, given that biochar did not alter cumulative GHG emissions from soils, we conclude that, in the scenario of this study, the use of biochar as a strategy to decrease farm-level GHG emissions is obtained through the gasification of orchard residue into energy and through biochar C sequestration, and not as a tool to decrease soil CO2 and N2O emissions.

  18. Energy and Water Management

    NASA Technical Reports Server (NTRS)

    Valek, Susan E.

    2008-01-01

    Energy efficiency isn't just a good idea; it's a necessity, both for cost reasons and to meet federal regulatory requirements. First, rising energy unit costs continue to erode NASA's mission budget. NASA spent roughly $156M on facility energy in FY 2007. Although that represents less than one per cent of NASA's overall annual budget, the upward trend in energy costs concerns the agency. While NASA reduced consumption 13%, energy unit costs have risen 63%. Energy cost increases counteract the effects of energy conservation, which results in NASA buying less yet spending more. The second factor is federal energy legislation. The National Energy Conservation Policy Act, as amended by the Energy Policy Act of 2005, Executive Order (EO) 13423 (January, 2007), and the Energy Independence and Security Act (December, 2007), mandates energy/water conservation goals for all federal agencies, including NASA. There are also reporting requirements associated with this legislation. The Energy/Water Management Task was created to support NASA Headquarters Environmental Management Division (HO EMD) in meeting these requirements. With assistance from TEERM, HQ EMD compiled and submitted the NASA Annual Report to the Department of Energy FY 2007. The report contains information on how NASA is meeting federally mandated energy and water management goals. TEERM monitored input for timeliness, errors, and conformity to the new energy/water reporting guidelines and helped compile the information into the final report. TEERM also assists NASA Energy/Water Management with proposal and award calls, updates to the energy/water management database, and facilitating communication within the energy/water management community. TEERM is also supporting NASA and the Interagency Working Group (IWG) on Hydrogen and Fuel Cells. Established shortly after the President announced the Hydrogen Fuel Initiative in 2003, this IWG serves as the mechanism for collaboration among the Federal agencies

  19. Campus Energy Management Projects.

    ERIC Educational Resources Information Center

    Welzenbach, Lanora, Ed.

    This publication is a compilation of data concerning energy conservation measures at more than 60 colleges and universities in the United States and Canada. The data are presented for the information of all who are interested in the variety of ways in which institutions of higher education are managing energy. Project descriptions are divided into…

  20. Clean Energy Solutions Center Services (Fact Sheet)

    SciTech Connect

    Not Available

    2014-04-01

    The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  1. Blazing the energy trail: The Municipal Energy Management Program

    SciTech Connect

    Not Available

    1994-12-01

    The Urban Consortium Energy Task Force pioneers energy and environmental solutions for US cities and counties. When local officials participate in the task force, they open the door to many resources for their communities. The US is entering a period of renewed interest in energy management. Improvements in municipal energy management allow communities to free up energy operating funds to meet other needs. These improvements can even keep energy dollars in the community through the purchase of services and products used to save energy. With this idea in mind, the US Department of Energy Municipal Energy Management Program has funded more than 250 projects that demonstrate innovative energy technologies and management tools in cities and counties through the Urban Consortium Energy Task Force (UCETF). UCETF helps the US Department of Energy foster municipal energy management through networks with cities and urbanized counties and through links with three national associations of local governments. UCETF provides funding for projects that demonstrate innovative and realistic technologies, strategies, and methods that help urban America become more energy efficient and environmentally responsible. The task force provides technical support to local jurisdictions selected for projects. UCETF also shares information about successful energy management projects with cities and counties throughout the country via technical reports and project papers. The descriptions included here capsulize a sample of UCETF`s demonstration projects around the country.

  2. Clean Energy Solutions Center Services (Vietnamese Translation)

    SciTech Connect

    2016-03-01

    This is a Vietnamese translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  3. Clean Energy Solutions Center Services (Portuguese Translation)

    SciTech Connect

    2016-03-01

    This is a Portuguese translation of the Clean Energy Solutions Center Services fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  4. Clean Energy Solutions Center Services (Chinese Translation)

    SciTech Connect

    2016-03-01

    This is a Mandarin translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  5. Clean Energy Solutions Center Services (French Translation)

    SciTech Connect

    2016-03-01

    This is a French translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  6. Clean Energy Solutions Center Services (Arabic Translation)

    SciTech Connect

    2016-03-01

    This is an Arabic translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  7. Energy Conservation Management in Schools.

    ERIC Educational Resources Information Center

    Bourassa, A. A.

    1980-01-01

    Outlines an energy management program to be presented at the annual meeting of the Association of School Business Officials. The program is based on the Carleton Board of Education (Ontario) energy management program. (Author/MLF)

  8. Energy management and recovery

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1989-01-01

    Energy management is treated by first exploring the energy requirements for a cryogenic tunnel. The requirement is defined as a function of Mach number, Reynolds number, temperature, and tunnel size. A simple program and correlation is described which allow calculation of the energy required. Usage of energy is also addressed in terms of tunnel control and research operation. The potential of a new wet expander is outlined in terms of cost saved by reliquefying a portion of the exhaust. The expander is described as a potentially more efficient way of recovering a fraction of the cold nitrogen gas normally exhausted to the atmosphere from a cryogenic tunnel. The role of tunnel insulation systems is explored in terms of requirements, safety, cost, maintenance, and efficiency. A detailed description of two external insulation systems is given. One is a rigid foam with a fiber glass and epoxy shell. The other is composed of glass fiber mats with a flexible outer vapor barrier; this system is nitrogen purged. The two systems are compared with the purged system being judged superior.

  9. Sustainable-energy managment practices in an energy economy

    NASA Astrophysics Data System (ADS)

    Darkwa, K.

    2001-10-01

    The economic survival of any nation depends upon its ability to produce and manage sufficient supplies of low-cost safe energy. The world's consumption of fossil fuel resources currently increasing at 3% per annum is found to be unsustainable. Projections of this trend show that mankind will exhaust all known reserves in the second half of the coming century. Governments, industrialists, commercial organizations, public sector departments and the general public have now become aware of the urgent requirements for the efficient management of resources and energy-consuming activities. Most organizations in the materials, manufacturing and retail sectors and in the service industries have also created energy management departments, or have employed consultants, to monitor energy consumption and to reduce wastage. Conversely, any sustained attempt to reduce rates of energy consumption even by as little as 0.1% per annum ensures relatively an eternal future supply as well as reduction on environmental and ecological effect. Thus, there is no long- term solution to energy flow problem other than systematic and effective energy management and the continuous application of the techniques of energy management. Essential energy management strategies in support of a sustainable energy- economy are discussed.

  10. Relativistic solutions to directed energy

    NASA Astrophysics Data System (ADS)

    Kulkarni, Neeraj; Lubin, Philip M.; Zhang, Qicheng

    2016-09-01

    This paper analyses the nature and feasibility of using directed energy to propel probes through space at relativistic speeds. Possible mission scenarios are considered by varying the spacecraft mass, thickness of the sail and power of the directed energy array. We calculate that gram-scaled probes are capable of achieving relativistic speeds and reaching Alpha Centauri well within a human lifetime. A major drawback is the diffraction of the beam which reduces the incident power on the sail resulting in a terminal velocity for the probes. Various notions of efficiency are discussed and we conclude that directed energy propulsion provides a viable direction for future space exploration.

  11. Energy Management in Municipal Buildings.

    ERIC Educational Resources Information Center

    Massachusetts State Dept. of Community Affairs, Boston. Energy Conservation Project.

    This manual is written for the manager or supervisor responsible for instituting an energy management program for municipal buildings. An introduction discusses the management issues facing municipal government in dealing with the need to reduce energy consumption. The guide reviews methods for central coordination of activity to ensure that…

  12. Electrofuels: Versatile Transportation Energy Solutions

    SciTech Connect

    2010-07-01

    Electrofuels Project: ARPA-E’s Electrofuels Project is using microorganisms to create liquid transportation fuels in a new and different way that could be up to 10 times more energy efficient than current biofuel production methods. ARPA-E is the only U.S. government agency currently funding research on Electrofuels.

  13. Energy Management Guide for Building Management. Electricity.

    ERIC Educational Resources Information Center

    Consolidated Edison Co., Brooklyn, NY.

    This guide is intended for use by commercial building management and operating staffs to encourage energy conservation. The measures suggested are meant to allow building operation at optimum efficiency while minimizing energy waste. Though mainly applicable to multistory buildings, the suggested energy conservation measures are also adaptable to…

  14. ISO 50001 Energy Management Standard

    SciTech Connect

    2013-08-12

    This powerful standard from the International Organization for Standardization (ISO) provides an internationally recognized framework for organizations to voluntarily implement an energy management system.

  15. Black Plane Solutions and Localized Gravitational Energy

    PubMed Central

    Roberts, Jennifer

    2015-01-01

    We explore the issue of gravitational energy localization for static plane-symmetric solutions of the Einstein-Maxwell equations in 3+1 dimensions with asymptotic anti-de Sitter behavior. We apply three different energy-momentum complexes, the Einstein, Landau-Lifshitz, and Møller prescriptions, to the metric representing this category of solutions and determine the energy distribution for each. We find that the three prescriptions offer identical energy distributions, suggesting their utility for this type of model. PMID:27347499

  16. Managing neurocysticercosis: challenges and solutions

    PubMed Central

    Fogang, Yannick Fogoum; Savadogo, Abdoul Aziz; Camara, Massaman; Toffa, Dènahin Hinnoutondji; Basse, Anna; Sow, Adjaratou Djeynabou; Ndiaye, Mouhamadou Mansour

    2015-01-01

    Taenia solium neurocysticercosis (NCC) is a major cause of neurological morbidity in the world. Variability in the neuropathology and clinical presentation of NCC often make it difficult to diagnose and manage. Diagnosis of NCC can be challenging especially in endemic and resource-limited countries where laboratory and imaging techniques are often lacking. NCC management can also be challenging as current treatment options are limited and involve symptomatic agents, antiparasitic agents, or surgery. Although antiparasitic treatment probably reduces the number of active lesions and long-term seizure frequency, its efficacy is limited and strategies to improve treatment regimens are warranted. Treatment decisions should be individualized in relation to the type of NCC. Initial measures should focus on symptomatic management, with antiparasitic therapy only to be considered later on, when appropriate. Symptomatic treatment remains the cornerstone in NCC management which should not only focuses on epilepsy, but also on other manifestations that cause considerable burden (recurrent headaches, cognitive decline). Accurate patients’ categorization, better antiparasitic regimens, and definition of new clinical outcomes for trials on NCC could improve management quality and prognosis of NCC. Prevention strategies targeting tapeworm carriers and infected pigs are yielding good results in local models. If local elimination of transmission is confirmed and replicated, this will open the door to cysticercosis eradication efforts worldwide. PMID:26527895

  17. Phosphorescence and Energy Transfer in Rigid Solutions.

    ERIC Educational Resources Information Center

    Enciso, E.; Cabello, A.

    1980-01-01

    Describes an experiment which illustrates the general aspects of intermolecular energy transfer between triplet states in rigid solutions of organic compounds solved in an ethanol-ether mixture. Measurements of quenching and energy transfer processes are made using the chemicals of benzophenone and naphthalene. (CS)

  18. Energy Management Controls. Course Syllabus.

    ERIC Educational Resources Information Center

    Bergen County Vocational-Technical High School, Hackensack, NJ.

    This course is one of four in a solar systems and energy management program developed by the Bergen County Vocational-Technical Schools to help tradespeople (heating, ventilation, and air conditioning; mechanics; plumbers; and electricians) to develop an awareness of alternate energy sources and to gain skills in the areas of solar installations…

  19. Clean Energy Solutions Center Services (Arabic Translation) (Fact Sheet)

    SciTech Connect

    Not Available

    2014-06-01

    This is the Arabic translation of the Clean Energy Solutions Center Services fact sheet. The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  20. Optimal Energy Management for Microgrids

    NASA Astrophysics Data System (ADS)

    Zhao, Zheng

    Microgrid is a recent novel concept in part of the development of smart grid. A microgrid is a low voltage and small scale network containing both distributed energy resources (DERs) and load demands. Clean energy is encouraged to be used in a microgrid for economic and sustainable reasons. A microgrid can have two operational modes, the stand-alone mode and grid-connected mode. In this research, a day-ahead optimal energy management for a microgrid under both operational modes is studied. The objective of the optimization model is to minimize fuel cost, improve energy utilization efficiency and reduce gas emissions by scheduling generations of DERs in each hour on the next day. Considering the dynamic performance of battery as Energy Storage System (ESS), the model is featured as a multi-objectives and multi-parametric programming constrained by dynamic programming, which is proposed to be solved by using the Advanced Dynamic Programming (ADP) method. Then, factors influencing the battery life are studied and included in the model in order to obtain an optimal usage pattern of battery and reduce the correlated cost. Moreover, since wind and solar generation is a stochastic process affected by weather changes, the proposed optimization model is performed hourly to track the weather changes. Simulation results are compared with the day-ahead energy management model. At last, conclusions are presented and future research in microgrid energy management is discussed.

  1. Contingency Base Energy Management System

    SciTech Connect

    2016-06-09

    CB-EMS is the latest implementation of DSOM (Decision Support for Operations and Maintenance), which was previously patented by PNNL. CB-EMS WAS specifically designed for contingency bases for the US Army. It is a software package that is designed to monitor energy consumption at an Army contingency base to alert the camp manager when the systems are wasting energy. It's main feature that separates it from DSOM is it's ability to add systems using a plug and play menu system.

  2. Affordable Energy-Efficient New Housing Solutions

    SciTech Connect

    Chandra, Subrato; Widder, Sarah H.; Bartlett, Rosemarie; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen; Abbott, , K.; Fonorow, Ken; Eklund, Ken; Lubliner, Michael; Salzberg, Emily; Peeks, B.; Hewes, T.; Kosar, D.

    2012-05-31

    Since 2010, the U.S. Department of Energy’s Building America has sponsored research at PNNL to investigate cost-effective, energy-saving home-building technologies and to demonstrate how high-performance homes can deliver lower utility bills, increased comfort, and improved indoor air quality, while maintaining accessibility for low-income homeowners. PNNL and its contractors have been investigating 1) cost-effective whole-house solutions for Habitat for Humanity International (HFHI) and specific HFH affiliates in hot-humid and marine climates; 2) cost-effective energy-efficiency improvements for heating, ventilation, and air-conditioning (HVAC) systems in new, stick-built and manufactured homes; and 3) energy-efficient domestic hot-water systems.

  3. Clean Energy Solutions Center Services (Chinese Translation) (Fact Sheet)

    SciTech Connect

    Not Available

    2014-04-01

    This is the Chinese language translation of the Clean Energy Solutions Center (Solutions Center) fact sheet. The Solutions Center helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  4. Clean Energy Solutions Center Services (Vietnamese Translation) (Fact Sheet)

    SciTech Connect

    Not Available

    2014-11-01

    This is the Vietnamese language translation of the Clean Energy Solutions Center (Solutions Center) fact sheet. The Solutions Center helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  5. Energy planning and management plan

    SciTech Connect

    1996-01-01

    This paper contains printed copies of 60FR 53181, October 12, 1995 and 60 FR 54151. This is a record of decision concerning the Western Area Power Administration`s final draft and environmental impact statement, and Energy Planning and Management Program.

  6. Integrating Variable Renewable Energy: Challenges and Solutions

    SciTech Connect

    Bird, L.; Milligan, M.; Lew, D.

    2013-09-01

    In the U.S., a number of utilities are adopting higher penetrations of renewables, driven in part by state policies. While power systems have been designed to handle the variable nature of loads, the additional supply-side variability and uncertainty can pose new challenges for utilities and system operators. However, a variety of operational and technical solutions exist to help integrate higher penetrations of wind and solar generation. This paper explores renewable energy integration challenges and mitigation strategies that have been implemented in the U.S. and internationally, including forecasting, demand response, flexible generation, larger balancing areas or balancing area cooperation, and operational practices such as fast scheduling and dispatch.

  7. Linac Energy Management for LCLS

    SciTech Connect

    Chu, Chungming; Iverson, Richard; Krejcik, Patrick; Rogind, Deborah; White, Greg; Woodley, Mark; /SLAC

    2012-07-05

    Linac Energy Management (LEM) is a control system program that scales magnet field set-point settings following a change in beam energy. LEM is necessary because changes in the number, phase, and amplitude of the active klystrons change the beam's rigidity, and therefore, to maintain constant optics, one has to change focusing gradients and bend fields accordingly. This paper describes the basic process, the control system application programs we developed for LEM, and some of the implementation lessons learned at the Linac Coherent Light Source (LCLS).

  8. Cooperative Solutions for Sustainable Resource Management.

    PubMed

    Lejano; Davos

    1999-09-01

    / Many environmental management issues can be defined as allocation problems, e.g., the allocation of rights to use common-pool resources or the allocation of the cost of regional resource development projects. The allocation methods developed in the area of cooperative n-person game theory are most appropriate for these problems because they focus on the conditions for engendering and sustaining the necessary cooperation among the involved stakeholders. These solution concepts seek to ensure that the allocation is based on some norm of equity and, most often, also to minimize the incentive for any player to defect from the cooperative venture. We illustrate these solution concepts with an application to a water resource project in Southern California. We argue how the rigorous mathematical nature of these solution concepts should not hinder their application to actual situations and how, with the use of heuristic rules and inexact notions of comparable worths, we can employ these concepts even in approximate fashion. We remind ourselves that the goal of such an endeavor is to convince stakeholders of the equity of a proposed solution and, in so doing, maximize the prospect of sustained cooperation. The alternative to cooperation, on the other hand, may be endless stalemate.KEY WORDS: Core; Game theory; Equity; Common-pool resources; Sustainabilityhttp://link.springer-ny.com/link/service/journals/00267/bibs/24n2p167.html

  9. Graphene for energy solutions and its industrialization

    NASA Astrophysics Data System (ADS)

    Wei, Di; Kivioja, Jani

    2013-10-01

    Graphene attracts intensive interest globally across academia and industry since the award of the Nobel Prize in Physics 2010. Within the last half decade, there has been an explosion in the number of scientific publications, patents and industry projects involved in this topic. On the other hand, energy is one of the biggest challenges of this century and related to the global sustainable economy. There are many reviews on graphene and its applications in various devices, however, few of the review articles connect the intrinsic properties of graphene with its energy. The IUPAC definition of graphene refers to a single carbon layer of graphite structure and its related superlative properties. A lot of scientific results on graphene published to date are actually dealing with multi-layer graphenes or reduced graphenes from insulating graphene oxides (GO) which contain defects and contaminants from the reactions and do not possess some of the intrinsic physical properties of pristine graphene. In this review, the focus is on the most recent advances in the study of pure graphene properties and novel energy solutions based on these properties. It also includes graphene metrology and analysis of both intellectual property and the value chain for the existing and forthcoming graphene industry that may cause a new `industry revolution' with the strong and determined support of governments and industries across the European Union, U. S., Asia and many other countries in the world.

  10. Graphene for energy solutions and its industrialization.

    PubMed

    Wei, Di; Kivioja, Jani

    2013-11-07

    Graphene attracts intensive interest globally across academia and industry since the award of the Nobel Prize in Physics 2010. Within the last half decade, there has been an explosion in the number of scientific publications, patents and industry projects involved in this topic. On the other hand, energy is one of the biggest challenges of this century and related to the global sustainable economy. There are many reviews on graphene and its applications in various devices, however, few of the review articles connect the intrinsic properties of graphene with its energy. The IUPAC definition of graphene refers to a single carbon layer of graphite structure and its related superlative properties. A lot of scientific results on graphene published to date are actually dealing with multi-layer graphenes or reduced graphenes from insulating graphene oxides (GO) which contain defects and contaminants from the reactions and do not possess some of the intrinsic physical properties of pristine graphene. In this review, the focus is on the most recent advances in the study of pure graphene properties and novel energy solutions based on these properties. It also includes graphene metrology and analysis of both intellectual property and the value chain for the existing and forthcoming graphene industry that may cause a new 'industry revolution' with the strong and determined support of governments and industries across the European Union, U. S., Asia and many other countries in the world.

  11. Energy manager design for microgrids

    SciTech Connect

    Firestone, Ryan; Marnay, Chris

    2005-01-01

    On-site energy production, known as distributed energy resources (DER), offers consumers many benefits, such as bill savings and predictability, improved system efficiency, improved reliability, control over power quality, and in many cases, greener electricity. Additionally, DER systems can benefit electric utilities by reducing congestion on the grid, reducing the need for new generation and transmission capacity, and offering ancillary services such as voltage support and emergency demand response. Local aggregations of distributed energy resources (DER) that may include active control of on-site end-use energy devices can be called microgrids. Microgrids require control to ensure safe operation and to make dispatch decisions that achieve system objectives such as cost minimization, reliability, efficiency and emissions requirements, while abiding by system constraints and regulatory rules. This control is performed by an energy manager (EM). Preferably, an EM will achieve operation reasonably close to the attainable optimum, it will do this by means robust to deviations from expected conditions, and it will not itself incur insupportable capital or operation and maintenance costs. Also, microgrids can include supervision over end-uses, such as curtailing or rescheduling certain loads. By viewing a unified microgrid as a system of supply and demand, rather than simply a system of on-site generation devices, the benefits of integrated supply and demand control can be exploited, such as economic savings and improved system energy efficiency.

  12. Electric vehicle energy management system

    NASA Astrophysics Data System (ADS)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  13. Energy management and vehicle synthesis

    NASA Technical Reports Server (NTRS)

    Czysz, P.; Murthy, S. N. B.

    1995-01-01

    The major drivers in the development of launch vehicles for the twenty-first century are reduction in cost of vehicles and operations, continuous reusability, mission abort capability with vehicle recovery, and readiness. One approach to the design of such vehicles is to emphasize energy management and propulsion as being the principal means of improvements given the available industrial capability and the required freedom in selecting configuration concept geometries. A methodology has been developed for the rational synthesis of vehicles based on the setting up and utilization of available data and projections, and a reference vehicle. The application of the methodology is illustrated for a single stage to orbit (SSTO) with various limits for the use of airbreathing propulsion.

  14. Research on Factors Influencing Individual's Behavior of Energy Management

    NASA Astrophysics Data System (ADS)

    Fan, Yanfeng

    With the rapid rise of distributed generation, Internet of Things, and mobile Internet, both U.S. and European smart home manufacturers have developed energy management solutions for individual usage. These applications help people manage their energy consumption more efficiently. Domestic manufacturers have also launched similar products. This paper focuses on the factors influencing Energy Management Behaviour (EMB) at the individual level. By reviewing academic literature, conducting surveys in Beijing, Shanghai and Guangzhou, the author builds an integrated behavioural energy management model of the Chinese energy consumers. This paper takes the vague term of EMB and redefines it as a function of two separate behavioural concepts: Energy Management Intention (EMI), and the traditional Energy Saving Intention (ESI). Secondly, the author conducts statistical analyses on these two behavioural concepts. EMI is the main driver behind an individual's EMB. EMI is affected by Behavioural Attitudes, Subjective Norms, and Perceived Behavioural Control (PBC). Among these three key factors, PBC exerts the strongest influence. This implies that the promotion of the energy management concept is mainly driven by good application user experience (UX). The traditional ESI also demonstrates positive influence on EMB, but its impact is weaker than the impacts arising under EMI's three factors. In other words, the government and manufacturers may not be able to change an individual's energy management behaviour if they rely solely on their traditional promotion strategies. In addition, the study finds that the government may achieve better promotional results by launching subsidies to the manufacturers of these kinds of applications and smart appliances.

  15. Primary urban energy-management-planning methodology

    SciTech Connect

    Revis, Joseph; Meador, Toni

    1980-11-01

    Metropolitan Dade County, Florida, developed a pragmatic, transferable methodology to assist local governments in attempts to develop and implement energy management plans. A summary of that work is presented and suggestions are provided to guide the application and refinement of a Primary Urban Energy Management Planning Methodology. The methodology provides local governments with the systematic approach for dealing with short and intermediate-term urban energy management problems while at the same time laying the groundwork for the formulation of long-term energy management activities. The five tasks of the methodology summarized are: organizing for the PEP process; performing an energy use and supply inventory; formulating energy management goals and objectives; developing strategies to achieve the energy management objectives; and monitoring and evaluation. (MCW)

  16. Managing Energy in Your Educational Facility.

    ERIC Educational Resources Information Center

    2001

    This booklet explains how to develop and implement a plan to manage energy in educational facilities. It can be used to identify energy savings opportunities and implement a plan to reduce energy costs. It discusses the following steps for creating an effective energy-use plan: (1) get started and organize for success; (2) look at energy use and…

  17. Energy Management. A Guide for School Districts.

    ERIC Educational Resources Information Center

    Wisconsin Association of School Boards, Winneconne.

    A successful energy management program in a single school or a school district requires an energy audit or survey. The audit identifies how much energy is being consumed, as well as where it is going. Furthermore, it shows opportunities for energy conservation. The walk-through energy conservation survey is the method that has the best prospect…

  18. Energy management subsystem. Final report

    SciTech Connect

    Wightman, C.W.

    1997-03-01

    In todays environment-conscious world, increasing levels of automotive emissions have been recognized as a major source of pollutants and greenhouse gases. Despite increasingly stringent tailpipe emission standards, the increased use of the automobile has more than offset the lowered per-vehicle emissions. Consequently, there is a great deal of interest in so-called zero-emission vehicles, such as electric and hybrid-electric automobiles. Although very attractive in terms of emissions, these vehicle present some design challenges which are not generally part of conventional automotive design. One such challenge is the development of an effective energy management strategy for the vehicle. While a conventional automobile has an engine whose power output far exceeds the average vehicle needs, hybrid electric vehicles generally have very limited energy reserves and efficiency in the use of these reserves is paramount if acceptable overall performance is to be achieved. Man aspects of the vehicle design (such as aerodynamics, powertrain design, gross weight, etc.) strongly influence the overall vehicle efficiency. However, the actual performance achieved by any given driver is strongly dependent on his or her driving skills. One way to reduce the effect of differences in driving skills is to provide for automatic accelerator control, permitting the vehicle to be driven in an efficient manner without necessitating extensive driver training. This report describes an accelerator/brake control systems developed for use on the Zia Roadrunner New Mexico Tech`s entry in the 1993 Sunrayce for solar-electric hybrid vehicles.

  19. Lighting Energy Management for Colleges and Universities.

    ERIC Educational Resources Information Center

    National Lighting Bureau, Washington, DC.

    Colleges and universities probably rely on more types of lighting than do other facilities. This booklet is intended to help administrators achieve the goal of lighting energy management--gaining maximum benefit from illumination systems while minimizing energy waste. The development of a lighting energy management plan requires knowledge of the…

  20. 75 FR 76962 - Application To Export Electric Energy; MAG Energy Solutions, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Application To Export Electric Energy; MAG Energy Solutions, Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application. SUMMARY: MAG Energy Solutions, Inc. (MAG...

  1. Sustainable solutions for solid waste management in Southeast Asian countries.

    PubMed

    Ngoc, Uyen Nguyen; Schnitzer, Hans

    2009-06-01

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  2. Sustainable solutions for solid waste management in Southeast Asian countries

    SciTech Connect

    Uyen Nguyen Ngoc Schnitzer, Hans

    2009-06-15

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  3. Energy management study for lunar oxygen production

    NASA Technical Reports Server (NTRS)

    Fazzolare, R. A.; Wong-Swanson, B. G.

    1989-01-01

    Energy management opportunities in the process of hydrogen reduction of ilmenite for lunar oxygen production are being investigated. An optimal energy system to supply the power requirements for the process will be determined.

  4. Thermal energy management process experiment

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.

    1984-01-01

    The thermal energy management processes experiment (TEMP) will demonstrate that through the use of two-phase flow technology, thermal systems can be significantly enhanced by increasing heat transport capabilities at reduced power consumption while operating within narrow temperature limits. It has been noted that such phenomena as excess fluid puddling, priming, stratification, and surface tension effects all tend to mask the performance of two-phase flow systems in a 1-g field. The flight experiment approach would be to attack the experiment to an appropriate mounting surface with a 15 to 20 meter effective length and provide a heat input and output station in the form of heaters and a radiator. Using environmental data, the size, location, and orientation of the experiment can be optimized. The approach would be to provide a self-contained panel and mount it to the STEP through a frame. A small electronics package would be developed to interface with the STEP avionics for command and data handling. During the flight, heaters on the evaporator will be exercised to determine performance. Flight data will be evaluated against the ground tests to determine any anomalous behavior.

  5. Saving Energy. Managing School Facilities, Guide 3.

    ERIC Educational Resources Information Center

    Department for Education and Employment, London (England). Architects and Building Branch.

    This guide offers information on how schools can implement an energy saving action plan to reduce their energy costs. Various low-cost energy-saving measures are recommended covering heating levels and heating systems, electricity demand reduction and lighting, ventilation, hot water usage, and swimming pool energy management. Additional…

  6. Formula management: in search of magic solutions.

    PubMed

    McConnell, C R

    1997-12-01

    Formula management is the unjustified reliance on a set of rules or prescribed behaviors--a management formula, fad, or "flavor-of-the-month"--as the answer to an organization's needs. It is the manifestation of a tendency to believe that the essence of management can be proceduralized, that the art of management can be replaced with an expanding science of management. This tendency has been repeatedly demonstrated in the application of concepts such as management by objectives (MBO) and the variants of total quality management (TQM). All of management's "formulas" have their place; however, none of them provide all of management's needed answers. To view any of the specifically delineated "kinds of management"--all of which are highly susceptible to misapplication and resistance to change both blatant and subtle--as a cure-all is fully as inappropriate as denying their value out of hand. Formula or not, organizational results will continue to depend on the practice of the art, as well as the science, of management.

  7. Principles of light energy management

    NASA Technical Reports Server (NTRS)

    Davis, N.

    1994-01-01

    Six methods used to minimize excess energy effects associated with lighting systems for plant growth chambers are reviewed in this report. The energy associated with wall transmission and chamber operating equipment and the experimental requirements, such as fresh air and internal equipment, are not considered here. Only the energy associated with providing and removing the energy for lighting is considered.

  8. A linear scaling study of solvent-solute interaction energy of drug molecules in aqua solution.

    PubMed

    Bondesson, Laban; Rudberg, Elias; Luo, Yi; Sałek, Paweł

    2007-08-30

    Solvent-solute interaction energies for three well-known drug molecules in water solution are computed at the Hartree-Fock and B3LYP density functional theory levels using a linear scaling technique, which allows one to explicitly include in the model water molecules up to 14 A away from the solute molecule. The dependence of calculated interaction energies on the amount of included solvent has been examined. It is found that it is necessary to account for water molecules within an 8 A radius around the drug molecule to reach the saturated solvent interaction level. Effects of electron correlation and basis set on solvent-solute interaction energies are discussed.

  9. Energy Management Technician Curriculum Development. Final Report.

    ERIC Educational Resources Information Center

    Sarvis, Robert E.

    This document is the result of an effort to develop a comprehensive curriculum to train community college students as energy management technicians. The main body of the document contains the energy management technician training curriculum and course content for the proposed courses in the two-year sequence; a report of how the curriculum was…

  10. Electric load management and energy conservation

    NASA Technical Reports Server (NTRS)

    Kheir, N. A.

    1976-01-01

    Electric load management and energy conservation relate heavily to the major problems facing power industry at present. The three basic modes of energy conservation are identified as demand reduction, increased efficiency and substitution for scarce fuels. Direct and indirect load management objectives are to reduce peak loads and have future growth in electricity requirements in such a manner to cause more of it to fall off the system's peak. In this paper, an overview of proposed and implemented load management options is presented. Research opportunities exist for the evaluation of socio-economic impacts of energy conservation and load management schemes specially on the electric power industry itself.

  11. Financing renewable energy: Obstacles and solutions

    SciTech Connect

    Brown, M.H.

    1994-06-01

    The majority of renewable energy technology projects now being developed use long term project financing to raise capital. The financial community scrutinizes renewables more closely than some conventionally fueled electric generation facilities because it perceives renewables as risky and expensive. Renewables pay for this perceived risk through higher interest charges and other more restrictive loan covenants. Risks that are not eliminated in the power sales agreement or through some other means generally result in higher project costs during financing. In part, this situation is a product of the private placement market and project finance process in which renewable energy facilities must function. The project finance process attracts banks and institutional lenders as well as equity investors (often pension funds) who do not want to place their capital at great risk. Energy project finance exists on the basis of a secure revenue stream and a thorough understanding of electric generation technology. Renewables, like all energy projects, operating in uncertain regulatory environments are often difficult to finance. In the uncertain regulatory environment in which renewables now operate, investors and lenders are nervous about challenges to existing contracts between independent power producers and utilities. Challenges to existing contracts could foretell challenges to contracts in the future. Investors and lenders now look to state regulatory environments as an indicator of project risk. Renewable energy technology evolves quickly. Yet, often the information about technological evolution is not available to those who invest in the energy projects. Or, those who have invested in new renewable energy technology in the past have lost money and are nervous about doing so in the future - even though technology may have improved. Inadequate or unfavorable information is a barrier to the development of renewables.

  12. Dynamic management of integrated residential energy systems

    NASA Astrophysics Data System (ADS)

    Muratori, Matteo

    This study combines principles of energy systems engineering and statistics to develop integrated models of residential energy use in the United States, to include residential recharging of electric vehicles. These models can be used by government, policymakers, and the utility industry to provide answers and guidance regarding the future of the U.S. energy system. Currently, electric power generation must match the total demand at each instant, following seasonal patterns and instantaneous fluctuations. Thus, one of the biggest drivers of costs and capacity requirement is the electricity demand that occurs during peak periods. These peak periods require utility companies to maintain operational capacity that often is underutilized, outdated, expensive, and inefficient. In light of this, flattening the demand curve has long been recognized as an effective way of cutting the cost of producing electricity and increasing overall efficiency. The problem is exacerbated by expected widespread adoption of non-dispatchable renewable power generation. The intermittent nature of renewable resources and their non-dispatchability substantially limit the ability of electric power generation of adapting to the fluctuating demand. Smart grid technologies and demand response programs are proposed as a technical solution to make the electric power demand more flexible and able to adapt to power generation. Residential demand response programs offer different incentives and benefits to consumers in response to their flexibility in the timing of their electricity consumption. Understanding interactions between new and existing energy technologies, and policy impacts therein, is key to driving sustainable energy use and economic growth. Comprehensive and accurate models of the next-generation power system allow for understanding the effects of new energy technologies on the power system infrastructure, and can be used to guide policy, technology, and economic decisions. This

  13. Energy Decisions: Is Solar Power the Solution?

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2011-01-01

    People around the world are concerned about affordable energy. It is needed to power the global economy. Petroleum-based transportation and coal-fired power plants are economic prime movers fueling the global economy, but coal and gasoline are also the leading sources of air pollution. Both of these sources produce greenhouse gases and toxins.…

  14. Data Management for the Internet of Things: Design Primitives and Solution

    PubMed Central

    Abu-Elkheir, Mervat; Hayajneh, Mohammad; Ali, Najah Abu

    2013-01-01

    The Internet of Things (IoT) is a networking paradigm where interconnected, smart objects continuously generate data and transmit it over the Internet. Much of the IoT initiatives are geared towards manufacturing low-cost and energy-efficient hardware for these objects, as well as the communication technologies that provide objects interconnectivity. However, the solutions to manage and utilize the massive volume of data produced by these objects are yet to mature. Traditional database management solutions fall short in satisfying the sophisticated application needs of an IoT network that has a truly global-scale. Current solutions for IoT data management address partial aspects of the IoT environment with special focus on sensor networks. In this paper, we survey the data management solutions that are proposed for IoT or subsystems of the IoT. We highlight the distinctive design primitives that we believe should be addressed in an IoT data management solution, and discuss how they are approached by the proposed solutions. We finally propose a data management framework for IoT that takes into consideration the discussed design elements and acts as a seed to a comprehensive IoT data management solution. The framework we propose adapts a federated, data- and sources-centric approach to link the diverse Things with their abundance of data to the potential applications and services that are envisioned for IoT. PMID:24240599

  15. Data management for the internet of things: design primitives and solution.

    PubMed

    Abu-Elkheir, Mervat; Hayajneh, Mohammad; Ali, Najah Abu

    2013-11-14

    The Internet of Things (IoT) is a networking paradigm where interconnected, smart objects continuously generate data and transmit it over the Internet. Much of the IoT initiatives are geared towards manufacturing low-cost and energy-efficient hardware for these objects, as well as the communication technologies that provide objects interconnectivity. However, the solutions to manage and utilize the massive volume of data produced by these objects are yet to mature. Traditional database management solutions fall short in satisfying the sophisticated application needs of an IoT network that has a truly global-scale. Current solutions for IoT data management address partial aspects of the IoT environment with special focus on sensor networks. In this paper, we survey the data management solutions that are proposed for IoT or subsystems of the IoT. We highlight the distinctive design primitives that we believe should be addressed in an IoT data management solution, and discuss how they are approached by the proposed solutions. We finally propose a data management framework for IoT that takes into consideration the discussed design elements and acts as a seed to a comprehensive IoT data management solution. The framework we propose adapts a federated, data- and sources-centric approach to link the diverse Things with their abundance of data to the potential applications and services that are envisioned for IoT.

  16. Fossil energy waste management. Technology status report

    SciTech Connect

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  17. Modeling the Energy of Stringy Black Hole Solutions

    NASA Astrophysics Data System (ADS)

    Radinschi, Irina; Ciobanu, Brindusa

    2008-05-01

    The localization of energy has attracted attention as one of the most intricate issues and is the subject of many studies since the outset of general relativity. In this paper we compute the energy distribution of a dual dilatonic solution in low-energy string theory using the Landau-Lifshitz, Weinberg and Mo/ller prescriptions. We also point out the connections between the expressions for energy computed in these prescriptions, study some particular cases, and model the energetic properties of this solution using the Maple and Mathematica programs.

  18. Modeling the energy of stringy black hole solutions

    SciTech Connect

    Radinschi, Irina; Ciobanu, Brindusa

    2008-05-29

    The localization of energy has attracted attention as one of the most intricate issues and is the subject of many studies since the outset of general relativity. In this paper we compute the energy distribution of a dual dilatonic solution in low-energy string theory using the Landau-Lifshitz, Weinberg and Moeller prescriptions. We also point out the connections between the expressions for energy computed in these prescriptions, study some particular cases, and model the energetic properties of this solution using the Maple and Mathematica programs.

  19. Providing Solutions To Energy and Environmental Problems

    SciTech Connect

    1998-04-01

    The Jointly Sponsored Research Program emphasizes technology commercialization and continues to be highly successful and supported strongly and enthusiastically by WRI's industrial clientele. All of the available Department of Energy (USDOE) funding for each of the first seven years has been committed to projects. All available FY 97 funding was obligated in June 1997. The demand for funds continues to outstrip available monies and an additional $3 million per year in USDOE funding could easily be accommodated. As summarized in Table 1, since the program's inception in 1990, $19,140,754 in USDOE funds have been obligated and committed against an industrial match of $25,446,281.

  20. Porous polymers: enabling solutions for energy applications.

    PubMed

    Thomas, Arne; Kuhn, Pierre; Weber, Jens; Titirici, Maria-Magdalena; Antonietti, Markus

    2009-02-18

    A new generation of porous polymers was made for various energy-related applications, e.g., as fuel cell membranes, as electrode materials for batteries, for gas storage, partly from renewable resources. This review intends to catch this emerging field by reporting on a variety of different approaches to make high performing polymers porous. This includes template techniques, polymers with inherent microporosity, polymer frameworks by ionothermal polymerization, and the polymerization of carbon from appropriate precursors and by hydrothermal polymerization. In this process, we try to not only identify the current status of the field, but also point to open question and tasks to identify the potentially relevant progress.

  1. Energy Management for Automatic Monitoring Stations in Arctic Regions

    NASA Astrophysics Data System (ADS)

    Pimentel, Demian

    Automatic weather monitoring stations deployed in arctic regions are usually installed in hard to reach locations. Most of the time they run unsupervised and they face severe environmental conditions: very low temperatures, ice riming, etc. It is usual practice to use a local energy source to power the equipment. There are three main ways to achieve this: (1) a generator whose fuel has to be transported to the location at regular intervals (2) a battery and (3) an energy harvesting generator that exploits a local energy source. Hybrid systems are very common. Polar nights and long winters are typical of arctic regions. Solar radiation reaching the ground during this season is very low or non-existent, depending on the geographical location. Therefore, solar power generation is not very effective. One straightforward, but expensive and inefficient solution is the use of a large bank of batteries that is recharged during sunny months and discharged during the winter. The main purpose of the monitoring stations is to collect meteorological data at regular intervals; interruptions due to a lack of electrical energy can be prevented with the use of an energy management subsystem. Keeping a balance between incoming and outgoing energy flows, while assuring the continuous operation of the station, is the delicate task of energy management strategies. This doctoral thesis explores alternate power generation solutions and intelligent energy management techniques for equipment deployed in the arctic. For instance, harvesting energy from the wind to complement solar generation is studied. Nevertheless, harvested energy is a scarce resource and needs to be used efficiently. Genetic algorithms, fuzzy logic, and common sense are used to efficiently manage energy flows within a simulated arctic weather station.

  2. Energy Management Contract Saves Money.

    ERIC Educational Resources Information Center

    School Business Affairs, 1983

    1983-01-01

    An energy service contract offered to educational institutions by a commercial company guarantees a specific reduction in energy consumption over a stated term of years. The company pays for equipment upgrading, staff training, repairs, a maintenance program, and capital improvements. (MLF)

  3. Quantitative ionization energies and work functions of aqueous solutions.

    PubMed

    Olivieri, Giorgia; Goel, Alok; Kleibert, Armin; Cvetko, Dean; Brown, Matthew A

    2016-10-26

    Despite the ubiquitous nature of aqueous solutions across the chemical, biological and environmental sciences our experimental understanding of their electronic structure is rudimentary-qualitative at best. One of the most basic and seemingly straightforward properties of aqueous solutions-ionization energies-are (qualitatively) tabulated at the water-air interface for a mere handful of solutes, and the manner in which these results are obtained assume the aqueous solutions behave like a gas in the photoelectron experiment (where the vacuum levels of the aqueous solution and of the photoelectron analyzer are equilibrated). Here we report the experimental measure of a sizeable offset (ca. 0.6 eV) between the vacuum levels of an aqueous solution (0.05 M NaCl) and that of our photoelectron analyzer, indicating a breakdown of the gas-like vacuum level alignment assumption for the aqueous solution. By quantifying the vacuum level offset as a function of solution chemical composition our measurements enable, for the first time, quantitative determination of ionization energies in liquid solutions. These results reveal that the ionization energy of liquid water is not independent of the chemical composition of the solution as is usually inferred in the literature, a finding that has important ramifications as measured ionization energies are frequently used to validate theoretical models that posses the ability to provide microscopic insight not directly available by experiment. Finally, we derive the work function, or the electrochemical potential of the aqueous solution and show that it too varies with the chemical composition of the solution.

  4. A marketing solution: managed care woes?

    PubMed

    MacStravic, Scott

    2004-01-01

    Two interrelated problems are included among the causes of managed care woes: the dramatic increase in unhealthy lifestyles together with the results these have had on health services utilization and expenditures; and the dramatic increase in consumer demand for "lifestyle" or quality of life (QoL) enhancing products and services. Together these are helping to drive managed care toward a crisis, in both commercial and government-sponsored insurance survival prospects. Aside from the frequently mentioned problem of our aging population and the shifting balance between the number of healthy young workers paying in, vs. unhealthy or older workers spending out, these problems greatly exacerbate the double-digit inflation that has become a recurring characteristic of health insurance premiums, and threaten the very existence of managed care.

  5. Rotating black hole solutions with quintessential energy

    NASA Astrophysics Data System (ADS)

    Toshmatov, Bobir; Stuchlík, Zdeněk; Ahmedov, Bobomurat

    2017-02-01

    Quintessential dark energy with density ρ and pressure p is governed by an equation of state of the form p=ωqρ with the quintessential parameter ω_qin (-1;-1/3). We derive the geometry of quintessential rotating black holes, generalizing thus the Kerr spacetimes. Then we study the quintessential rotating black hole spacetimes with the special value of ωq = -2/3 when the resulting formulae are simple and easily tractable. We show that such special spacetimes can exist for the dimensionless quintessential parameter c < 1/6 and determine the critical rotational parameter a0 separating the black hole and naked singularity spacetime in dependence on the quintessential parameter c . For the spacetimes with ωq = -2/3 we give all the black hole characteristics and demonstrate local thermodynamical stability. We present the integrated geodesic equations in separated form and study in details the circular geodetical orbits. We give radii and parameters of the photon circular orbits, marginally bound and marginally stable orbits. We stress that the outer boundary on the existence of circular geodesics, given by the so-called static radius where the gravitational attraction of the black hole is balanced by the cosmic repulsion, does not depend on the dimensionless spin of the rotating black hole, similarly to the case of the Kerr-de Sitter spacetimes with vacuum dark energy. We also give restrictions on the dimensionless parameters c and a of the spacetimes allowing for existence of stable circular geodesics. Finally, using numerical methods we generalize the discussion of the circular geodesics to the black holes with arbitrary quintessential parameter ωq.

  6. Sustainable Energy Solutions for Rural Alaska

    SciTech Connect

    Allen, Riley; Brutkoski, Donna; Farnsworth, David; Larsen, Peter

    2016-04-22

    The state of Alaska recognizes the challenges these rural communities face and provides financial support via the Power Cost Equalization (PCE) program. The PCE subsidizes the electricity prices paid by customers of these high-cost utilities. The PCE program is designed to spread the benefits of Alaska’s natural resources more evenly throughout the state. Yet even with this subsidy, electricity is still much more expensive for these rural customers. And beyond the PCE, other forms of assistance to rural utilities are becoming scarce given the state’s current fiscal environment. Nearly 90 percent of Alaska’s unrestricted budget funds in recent years have been tied to oil royalties—a sector experiencing significant declines in production and oil prices. Consequently, as Alaska looks to tighten budgets, the challenge of lowering rural utility costs, while encouraging self-sufficiency, has become more urgent.This study examines reliability, capital and strategic planning, management, workforce development, governance, financial performance and system efficiency in the various communities visited by the research team. Using those attributes, a tier system was developed to categorize rural Alaska utilities into Leading and Innovating Systems (Tier I), Advanced Diesel Systems (Tier II), Basic Systems (Tier III), and Underperforming Systems (Tier IV). The tier approach is not meant to label specific utilities, but rather to provide a general set of benchmarks and guideposts for improvement.

  7. 1995 Department of Energy Records Management Conference

    SciTech Connect

    1995-07-01

    The Department of Energy (DOE) Records Management Group (RMG) provides a forum for DOE and its contractor personnel to review and discuss subjects, issues, and concerns of common interest. This forum will include the exchange of information, and interpretation of requirements, and a dialog to aid in cost-effective management of the DOE Records Management program. Issues addressed by the RMG may result in recommendations for DOE-wide initiatives. Proposed DOE-wide initiatives shall be, provided in writing by the RMG Steering Committee to the DOE Records Management Committee and to DOE`s Office of ERM Policy, Records, and Reports Management for appropriate action. The membership of the RMG is composed of personnel engaged in Records Management from DOE Headquarters, Field sites, contractors, and other organizations, as appropriate. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  8. Energy resource management for energy-intensive manufacturing industries

    SciTech Connect

    Brenner, C.W.; Levangie, J.

    1981-10-01

    A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

  9. Management of orbital fractures: challenges and solutions

    PubMed Central

    Boyette, Jennings R; Pemberton, John D; Bonilla-Velez, Juliana

    2015-01-01

    Many specialists encounter and treat orbital fractures. The management of these fractures is often challenging due to the impact that they can have on vision. Acute treatment involves a thorough clinical examination and management of concomitant ocular injuries. The clinical and radiographic findings for each individual patient must then be analyzed for the need for surgical intervention. Deformity and vision impairment can occur from these injuries, and while surgery is intended to prevent these problems, it can also create them. Therefore, surgical approach and implant selection should be carefully considered. Accurate anatomic reconstruction requires complete assessment of fracture margins and proper implant contouring and positioning. The implementation of new technologies for implant shaping and intraoperative assessment of reconstruction will hopefully lead to improved patient outcomes. PMID:26604678

  10. Management of exfoliative glaucoma: challenges and solutions.

    PubMed

    Holló, Gábor; Katsanos, Andreas; Konstas, Anastasios Gp

    2015-01-01

    Exfoliative glaucoma is the most common type of secondary open-angle glaucoma worldwide. It is characterized by high intraocular pressure (IOP) and worse 24-hour IOP characteristics. In order to minimize progression, treatment of exfoliative glaucoma has to provide a low long-term mean IOP and good 24-hour IOP control. To achieve these goals, fixed-dose combination eye drops, argon and selective laser trabeculoplasty, and various forms of surgery (trabeculectomy, deep sclerectomy, viscocanalostomy, ab interno trabeculotomy, trabecular aspiration, and cataract surgery) all need to be considered during the long-term management of the disease. Since exfoliative glaucoma is a disease of the elderly, and is frequently associated with systemic vascular disease, interdisciplinary consultations are of great clinical importance. These management aspects and the current medical, laser, and surgical results are covered in this review, with a special focus on the needs of the general ophthalmologist.

  11. Management of exfoliative glaucoma: challenges and solutions

    PubMed Central

    Holló, Gábor; Katsanos, Andreas; Konstas, Anastasios GP

    2015-01-01

    Exfoliative glaucoma is the most common type of secondary open-angle glaucoma worldwide. It is characterized by high intraocular pressure (IOP) and worse 24-hour IOP characteristics. In order to minimize progression, treatment of exfoliative glaucoma has to provide a low long-term mean IOP and good 24-hour IOP control. To achieve these goals, fixed-dose combination eye drops, argon and selective laser trabeculoplasty, and various forms of surgery (trabeculectomy, deep sclerectomy, viscocanalostomy, ab interno trabeculotomy, trabecular aspiration, and cataract surgery) all need to be considered during the long-term management of the disease. Since exfoliative glaucoma is a disease of the elderly, and is frequently associated with systemic vascular disease, interdisciplinary consultations are of great clinical importance. These management aspects and the current medical, laser, and surgical results are covered in this review, with a special focus on the needs of the general ophthalmologist. PMID:26045655

  12. 1994 Department of Energy Records Management Conference

    SciTech Connect

    Not Available

    1994-09-01

    The Department of Energy (DOE) Records Management Group (RMG) provides a forum for DOE and its contractor personnel to review and discuss subjects, issues, and concerns of common interest. This forum will include the exchange of information, and interpretation of requirements, and a dialog to aid in cost-effective management of the DOE Records Management program. This report contains the contributions from this forum.

  13. Solution synthesis of metal oxides for electrochemical energy storage applications.

    PubMed

    Xia, Xinhui; Zhang, Yongqi; Chao, Dongliang; Guan, Cao; Zhang, Yijun; Li, Lu; Ge, Xiang; Bacho, Ignacio Mínguez; Tu, Jiangping; Fan, Hong Jin

    2014-05-21

    This article provides an overview of solution-based methods for the controllable synthesis of metal oxides and their applications for electrochemical energy storage. Typical solution synthesis strategies are summarized and the detailed chemical reactions are elaborated for several common nanostructured transition metal oxides and their composites. The merits and demerits of these synthesis methods and some important considerations are discussed in association with their electrochemical performance. We also propose the basic guideline for designing advanced nanostructure electrode materials, and the future research trend in the development of high power and energy density electrochemical energy storage devices.

  14. Community Energy Management Programs for Commercial Building Owners and Managers.

    ERIC Educational Resources Information Center

    Chick, Walter S.

    1987-01-01

    A voluntary program in Ontario encourages the private sector to reduce its energy consumption in commercial buildings by experimenting with innovative building operation techniques. Charts and tables illustrate the outstanding results achieved by program participants. Yearly energy management forums are convened in Toronto and Ottawa. (MLF)

  15. Future World Energy Constraints and the Direction for Solutions

    SciTech Connect

    Lightfoot, H.D.

    2004-09-12

    This paper was originally written in response to the concern that rising levels of CO2 in the atmosphere caused by burning of fossil fuels will ultimately contribute to global warming. Now we are beginning to see evidence of coming problems in the supply of fuels for transportation. This paper describes the benefits of adequate energy supply and the problems of future energy supply. Partial solutions are suggested for immediate application as well as longer term solutions to address both of these concerns. To evaluate the situation and solutions we must understand: (1) how much primary energy is currently used world-wide and might be needed in 2100, (2) how important energy is to the welfare of people, (3) the forms of energy sources and end uses and (4) where new sources may come from. The major portion of world primary energy demand is provided by fossil fuels. This portion dropped from 93% in 1970 to 85% in 1995, mainly because of the increased use of nuclear energy. How ever, since the mid-1990s fossil fuels have maintained their 85% share of world energy supply. The importance of the relationship between per capita energy consumption and per capita income for the world is discussed. The limits of conservation, energy efficiency and renewable energies are examined. The contribution of renewable energies is compared to 41 different views of world energy demand in 2100. Without new technology for large scale storage of intermittent electricity from wind and solar the contribution of renewable energies is not likely to grow significantly beyond the current level of 7-8%. The paper offers conclusions and partial solutions that we can work on immediately. Examination of the forms of energy supplied by the sun, which is powered by nuclear fusion, and the way in which nuclear fission currently supplies energy to the world sets the research framework for longer term solutions. This framework points towards two possible longer term complementary res earch projects which

  16. Guide to Energy Management in Schools.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    This guide has been prepared to assist Oklahoma school officials in developing an energy management plan. It consists of a compilation of materials drawn from a number of local, state, and federal resources. A model organizational structure is shown that could be adapted by each district in organizing an energy plan. The necessity of an energy…

  17. Energy Management and the Infrastructure System.

    ERIC Educational Resources Information Center

    Blackburn, James M.

    1998-01-01

    Describes a state-of-the-art energy management program at Wake Forest University (North Carolina) designed to include all on-campus property, and explores the various aspects of cost/benefit analysis in its development. A campus profile, electrical and thermal energy analyses, and a summary table of utility budget data are included. (GR)

  18. 76 FR 13666 - Pitney Bowes, Inc., Mailing Solutions Management, Global Engineering Group, Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... Solutions Management Division, Engineering Quality Assurance, Shelton, Connecticut. The Department's Notice... Employment and Training Administration Pitney Bowes, Inc., Mailing Solutions Management, Global Engineering... firm worker group should read: Pitney Bowes, Inc., Mailing Solutions Management, Global...

  19. Trends in Energy Management Technology - Part 3: State of Practiceof Energy Management, Control, and Information Systems

    SciTech Connect

    Yee, Gaymond; Webster, Tom

    2004-02-01

    In this report, the third in a series, we provide an evaluation of several products that exemplify the current state of practice of Energy Management, Control, and Information Systems (EMCIS). The available features for these products are summarized and analyzed with regard to emerging trends in EMCIS and potential benefits to the federal sector. The first report [1] covered enabling technologies for emerging energy management systems. The second report [2] serves as a basic reference for building control system (BCS) networking fundamentals and includes an assessment of current approaches to open communications. Part 4 of this series will discuss applications software from a user's perspective. It is important for energy managers in the Federal sector to have a high level of knowledge and understanding of these complex energy management systems. This series of reports provides energy practitioners with some basic informational and educational tools to help make decisions relative to energy management systems design, specification, procurement, and energy savings potential.

  20. Corporate solutions to caseload management -- an evaluation.

    PubMed

    Hoskins, Robert; Gow, Ann; McDowell, Joan

    2007-09-01

    This paper describes an evaluation of a change in health visiting service delivery from GP caseload management to corporate caseload working, in one inner city health centre located in a deprived area of Glasgow. The aim of the study was to identify if moving to corporate caseload working provides the reported benefits cited in the limited literature available. A purposive sample consisting of ten health visitors, one GP, one manager and three clients volunteered to participate in this mixed methods evaluation study. Data were collected by means of a stress questionnaire, public health nursing diary, focus groups and semi-structured interviews. Findings show that immediate improvements were seen in team working, staff communication, sharing practice, enhanced clinical reflection and standards of documentation. However, corporate caseload working did not appear to reduce staff stress levels, increase public health nursing activity or improve quality of client service. Further research conducted over a longer time period with a full staffing complement is needed to validate these findings.

  1. Energy efficient link layer security solution for wireless LANs

    NASA Astrophysics Data System (ADS)

    Ozdemir, Suat

    2006-04-01

    For the last couple of years people have become too reliant on Wireless LAN (WLAN) for information exchange. As wireless technology has no inherent physical protection, WLANs introduce new serious security threats to the personal information of individuals and organizations. Unfortunately, much of the growth has not been accompanied with an appropriate level of security for most corporate networks. The broadcast nature of wireless networks promote casual eavesdropping of data traffic with possible security threats including unauthorized use of networks, and denial of service attacks etc. Therefore, as in any environment where data is transmitted over untreated media, in order to protect the data, certain safeguards must be in place and effectively managed. To this end, this paper introduces a wireless link layer security protocol for WLANs that provides the users of IEEE 802.11 WLAN a security level close to the security level of wired networks. The proposed security protocol consists of three components: WLAN clients (STAs), WLAN Access Points (APs), and Authentication and Accounting Server (AAS). Before an STA can access the network, the user who uses the STA must be authenticated to the AP. AP must be authenticated to the STA as well, so that there is no rogue AP in the network. Finally, the communication between STAs and APs, as well as between APs and AAS are protected and defended from any kind of interception, modification and fabrication. We performed extensive simulations to evaluate the security and energy consumption performance of the proposed security protocol. The cryptographic primitives are selected based on their security and power consumption to make proposed protocol scalable and a manageable solution for low power wireless clients, such as PDAs.

  2. Energy management and attitude control for spacecraft

    NASA Astrophysics Data System (ADS)

    Costic, Bret Thomas

    2001-07-01

    This PhD dissertation describes the design and implementation of various control strategies centered around spacecraft applications: (i) an attitude control system for spacecraft, (ii) flywheels used for combined attitude and energy tracking, and (iii) an adaptive autobalancing control algorithm. The theory found in each of these sections is demonstrated through simulation or experimental results. An introduction to each of these three primary chapters can be found in chapter one. The main problem addressed in the second chapter is the quaternion-based, attitude tracking control of rigid spacecraft without angular velocity measurements and in the presence of an unknown inertia matrix. As a stepping-stone, an adaptive, full-state feedback controller that compensates for parametric uncertainty while ensuring asymptotic attitude tracking errors is designed. The adaptive, full-state feedback controller is then redesigned such that the need for angular velocity measurements is eliminated. The proposed adaptive, output feedback controller ensures asymptotic attitude tracking. This work uses a four-parameter representation of the spacecraft attitude that does not exhibit singular orientations as in the case of the previous three-parameter representation-based results. To the best of my knowledge, this represents the first solution to the adaptive, output feedback, attitude tracking control problem for the quaternion representation. Simulation results are included to illustrate the performance of the proposed output feedback control strategy. The third chapter is devoted to the use of multiple flywheels that integrate the energy storage and attitude control functions in space vehicles. This concept, which is referred to as an Integrated Energy Management and Attitude Control (IEMAC) system, reduces the space vehicle bus mass, volume, cost, and maintenance requirements while maintaining or improving the space vehicle performance. To this end, two nonlinear IEMAC strategies

  3. Lead By Example with Smart Energy Management (Brochure)

    SciTech Connect

    Not Available

    2009-07-01

    Brochure outlining the mission and activities of the Department of Energy's Federal Energy Management Program, which facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship.

  4. 77 FR 20019 - FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM Interconnection, L.L.C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM... Practice and Procedure, 18 CFR 385.206 and 206(h), FirstEnergy Solutions Corp. (FirstEnergy Solutions)...

  5. Formal Validation of Fault Management Design Solutions

    NASA Technical Reports Server (NTRS)

    Gibson, Corrina; Karban, Robert; Andolfato, Luigi; Day, John

    2013-01-01

    The work presented in this paper describes an approach used to develop SysML modeling patterns to express the behavior of fault protection, test the model's logic by performing fault injection simulations, and verify the fault protection system's logical design via model checking. A representative example, using a subset of the fault protection design for the Soil Moisture Active-Passive (SMAP) system, was modeled with SysML State Machines and JavaScript as Action Language. The SysML model captures interactions between relevant system components and system behavior abstractions (mode managers, error monitors, fault protection engine, and devices/switches). Development of a method to implement verifiable and lightweight executable fault protection models enables future missions to have access to larger fault test domains and verifiable design patterns. A tool-chain to transform the SysML model to jpf-Statechart compliant Java code and then verify the generated code via model checking was established. Conclusions and lessons learned from this work are also described, as well as potential avenues for further research and development.

  6. Integrated energy management study. Energy efficient transport program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Integrated Energy Management (IEM) Study investigated the practicality and feasibility of a closed-loop energy management system for transport aircraft. The study involved: (1) instrumentation and collection of in-flight data for a United Airlines 727-200 flying 80 revenue flights throughout the United Airlines network,(2) analysis of the in-flight data to select representative city pairs and establish operational procedures employed in flying a reference flight profile, (3) simulation of the reference profile in a fast-time model to verify the model and establish performance values against which to measure IEM benefits, (4) development of IEM algorithms, and (5) assessment of the IEM concept.

  7. On finite energy monopole solutions in Weinberg-Salam model

    NASA Astrophysics Data System (ADS)

    Pak, D. G.; Zhang, P. M.; Zou, L. P.

    2015-09-01

    We study the problem of existence of finite energy monopole solutions in the Weinberg-Salam model starting with the most general ansatz for static axially-symmetric electroweak magnetic fields. The ansatz includes an explicit construction of field configurations with various topologies described by the monopole and Hopf charges. We introduce a unique SU(2) gauge invariant definition for the electromagnetic field. It has been proved that the magnetic charge of any finite energy monopole solution must be screened at far distance. This implies nonexistence of finite energy monopole solutions with a nonzero total magnetic charge. In the case of a special axially-symmetric Dashen-Hasslacher-Neveu ansatz, we revise the structure of the sphaleron solution and show that sphaleron represents a nontrivial system of monopole and antimonopole with their centers located in one point. This is different from the known interpretation of the sphaleron as a monopole-antimonopole pair like Nambu’s “dumb-bell.” In general, the axially-symmetric magnetic field may admit a helical structure. We conjecture that such a solution exists and estimate an upper bound for its energy, Ebound = 4.65TeV.

  8. Ophthalmic regional blocks: management, challenges, and solutions

    PubMed Central

    Palte, Howard D

    2015-01-01

    In the past decade ophthalmic anesthesia has witnessed a major transformation. The sun has set on the landscape of ophthalmic procedures performed under general anesthesia at in-hospital settings. In its place a new dawn has ushered in the panorama of eye surgeries conducted under regional and topical anesthesia at specialty eye care centers. The impact of the burgeoning geriatric population is that an increasing number of elderly patients will present for eye surgery. In order to accommodate increased patient volumes and simultaneously satisfy administrative initiatives directed at economic frugality, administrators will seek assistance from anesthesia providers in adopting measures that enhance operating room efficiency. The performance of eye blocks in a holding suite meets many of these objectives. Unfortunately, most practicing anesthesiologists resist performing ophthalmic regional blocks because they lack formal training. In future, anesthesiologists will need to block eyes and manage common medical conditions because economic pressures will eliminate routine preoperative testing. This review addresses a variety of topical issues in ophthalmic anesthesia with special emphasis on cannula and needle-based blocks and the new-generation antithrombotic agents. In a constantly evolving arena, the sub-Tenon’s block has gained popularity while the deep angulated intraconal (retrobulbar) block has been largely superseded by the shallower extraconal (peribulbar) approach. Improvements in surgical technique have also impacted anesthetic practice. For example, phacoemulsification techniques facilitate the conduct of cataract surgery under topical anesthesia, and suture-free vitrectomy ports may cause venous air embolism during air/fluid exchange. Hyaluronidase is a useful adjuvant because it promotes local anesthetic diffusion and hastens block onset time but it is allergenic. Ultrasound-guided eye blocks afford real-time visualization of needle position and local

  9. Ophthalmic regional blocks: management, challenges, and solutions.

    PubMed

    Palte, Howard D

    2015-01-01

    In the past decade ophthalmic anesthesia has witnessed a major transformation. The sun has set on the landscape of ophthalmic procedures performed under general anesthesia at in-hospital settings. In its place a new dawn has ushered in the panorama of eye surgeries conducted under regional and topical anesthesia at specialty eye care centers. The impact of the burgeoning geriatric population is that an increasing number of elderly patients will present for eye surgery. In order to accommodate increased patient volumes and simultaneously satisfy administrative initiatives directed at economic frugality, administrators will seek assistance from anesthesia providers in adopting measures that enhance operating room efficiency. The performance of eye blocks in a holding suite meets many of these objectives. Unfortunately, most practicing anesthesiologists resist performing ophthalmic regional blocks because they lack formal training. In future, anesthesiologists will need to block eyes and manage common medical conditions because economic pressures will eliminate routine preoperative testing. This review addresses a variety of topical issues in ophthalmic anesthesia with special emphasis on cannula and needle-based blocks and the new-generation antithrombotic agents. In a constantly evolving arena, the sub-Tenon's block has gained popularity while the deep angulated intraconal (retrobulbar) block has been largely superseded by the shallower extraconal (peribulbar) approach. Improvements in surgical technique have also impacted anesthetic practice. For example, phacoemulsification techniques facilitate the conduct of cataract surgery under topical anesthesia, and suture-free vitrectomy ports may cause venous air embolism during air/fluid exchange. Hyaluronidase is a useful adjuvant because it promotes local anesthetic diffusion and hastens block onset time but it is allergenic. Ultrasound-guided eye blocks afford real-time visualization of needle position and local

  10. Telecommunications delivers a message for energy management

    SciTech Connect

    Not Available

    1981-01-01

    Centralized energy management system use is growing in the U.S. Building automation systems (BAS), the most complex and costly, are offered either as on-site or time-shared. Now, a new BAS that incorporates telecommunications technology, is being offered. The system was developed by American Telephone and Telegraph as a compatible feature of its DIMENSION family of PBXs (private branch exchanges) available to facilities with 400 to 2000 telephone lines. With the energy management feature, the DIMENSION PBX's microprocessor does double-duty by taking over the day-to-day management of a facility's energy consumpion. The Bell Energy Communication Service (ECS) is acquired as part of the overall telecommunications system. ECS has been installed successfully in several environments. For example, at a large steel plant in Pennsylvania, the energy feature is projected to trim off more than /300,000 of the plant's mammoth /32-million annual electric bill. ECS will accomplish this by applying demand management to 14 pieces of equipment peripheral to the steel-making process. Demand charges had accounted for a significant portion of the plant's utility bills. Now when the plant approaches a peak in demand, ECS will idle 500 to 600 HP air compressors for up to three minutes, utilize back-up steam turbines for additional energy production, and halt conveyors unloading coal from barges for a few minutes.

  11. Solutions in radiology services management: a literature review*

    PubMed Central

    Pereira, Aline Garcia; Vergara, Lizandra Garcia Lupi; Merino, Eugenio Andrés Díaz; Wagner, Adriano

    2015-01-01

    Objective The present study was aimed at reviewing the literature to identify solutions for problems observed in radiology services. Materials and Methods Basic, qualitative, exploratory literature review at Scopus and SciELO databases, utilizing the Mendeley and Illustrator CC Adobe softwares. Results In the databases, 565 papers – 120 out of them, pdf free – were identified. Problems observed in the radiology sector are related to procedures scheduling, humanization, lack of training, poor knowledge and use of management techniques, and interaction with users. The design management provides the services with interesting solutions such as Benchmarking, CRM, Lean Approach, ServiceBlueprinting, continued education, among others. Conclusion Literature review is an important tool to identify problems and respective solutions. However, considering the small number of studies approaching management of radiology services, this is a great field of research for the development of deeper studies. PMID:26543281

  12. Energy Smart Management of Scientific Data

    SciTech Connect

    Otoo, Ekow; Rotem, Dron; Tsao, Shih-Chiang

    2009-04-12

    Scientific data centers comprised of high-powered computing equipment and large capacity disk storage systems consume considerable amount of energy. Dynamic power management techniques (DPM) are commonly used for saving energy in disk systems. These involve powering down disks that exhibit long idle periods and placing them in standby mode. A file request from a disk in standby mode will incur both energy and performance penalties as it takes energy (and time) to spin up the disk before it can serve a file. For this reason, DPM has to make decisions as to when to transition the disk into standby mode such that the energy saved is greater than the energy needed to spin it up again and the performance penalty is tolerable. The length of the idle period until the DPM decides to power down a disk is called idlenessthreshold. In this paper, we study both analytically and experimentally dynamic power management techniques that save energy subject to performance constraints on file access costs. Based on observed workloads of scientific applications and disk characteristics, we provide a methodology for determining file assignment to disks and computing idleness thresholds that result in significant improvements to the energy saved by existing DPMsolutions while meeting response time constraints. We validate our methods with simulations that use traces taken from scientific applications.

  13. Managing the urban water-energy nexus

    NASA Astrophysics Data System (ADS)

    Escriva-Bou, Alvar; Pulido-Velazquez, Manuel; Lund, Jay R.

    2016-04-01

    Water use directly causes a significant amount of energy use in cities. In this paper we assess energy and greenhouse emissions related with each part of the urban water cycle and the consequences of several changes in residential water use for customers, water and energy utilities, and the environment. First, we develop an hourly model of urban water uses by customer category including water-related energy consumption. Next, using real data from East Bay Municipal Utility District in California, we calibrate a model of the energy used in water supply, treatment, pumping and wastewater treatment by the utility. Then, using data from the California Independent System Operator, we obtain hourly costs of energy for the energy utility. Finally, and using emission factors reported by the energy utilities we estimate greenhouse gas emissions for the entire urban water cycle. Results of the business-as-usual scenario show that water end uses account for almost 95% of all water-related energy use, but the 5% managed by the utility is still worth over 12 million annually. Several simulations analyze the potential benefits for water demand management actions showing that moving some water end-uses from peak to off-peak hours such as outdoor use, dishwasher or clothes washer use have large benefits for water and energy utilities, especially for locations with a high proportion of electric water heaters. Other interesting result is that under the current energy rate structures with low or no fixed charges, energy utilities burden most of the cost of the conservation actions.

  14. Simulation of Energy Management Systems in EnergyPlus

    SciTech Connect

    Ellis, P. G.; Torcellini, P. A.; Crawley, D.

    2008-01-01

    An energy management system (EMS) is a dedicated computer that can be programmed to control all of a building's energy-related systems, including heating, cooling, ventilation, hot water, interior lighting, exterior lighting, on-site power generation, and mechanized systems for shading devices, window actuators, and double facade elements. Recently a new module for simulating an EMS was added to the EnergyPlus whole-building energy simulation program. An essential part of the EMS module is the EnergyPlus Runtime Language (ERL), which is a simple programming language that is used to specify the EMS control algorithms. The new EMS controls and the flexibility of ERL allow EnergyPlus to simulate many novel control strategies that are not possible with the previous generation of building energy simulation programs. This paper surveys the standard controls in EnergyPlus, presents the new EMS features, describes the implementation of the module, and explores some of the possible applications for the new EMS capabilities in EnergyPlus.

  15. Renewable energy technologies adoption in Kazakhstan: potentials, barriers and solutions

    NASA Astrophysics Data System (ADS)

    Karatayev, Marat; Marazza, Diego; Contin, Andrea

    2015-04-01

    The growth in environmental pollution alongside an increasing demand for electricity in Kazakhstan calls for a higher level of renewable energy penetration into national power systems. Kazakhstan has great potential for renewable energies from wind, solar, hydro and biomass resources that can be exploited for electricity production. In 2013, the Kazakhstani Ministry of Energy initiated a new power development plan, which aims to bring the share of renewable energy to 3% by 2020 rising to 30% by 2030 and 50% by 2050. The current contribution of renewable energy resources in the national electricity mix, however, is less than 1%. As a developing country, Kazakhstan has faced a number of barriers to increase renewable energy use, which have to be analysed and translated into a comprehensive renewable energy policy framework. This study presents an overview of the current conditions of renewable energy development in Kazakhstan. Secondly, it identifies and describes the main barriers that prevent diffusion of renewable energy technologies in Kazakhstan. Finally, the paper provides solutions to overcome specific barriers in order to successfully develop a renewable energy technology sector in Kazakhstan.

  16. Energy Management Checklist for the Home.

    ERIC Educational Resources Information Center

    Pifer, Glenda

    This booklet contains a checklist of equipment and activities for the individual's use in home energy management. The categories covered include: (1) insulation; (2) windows; (3) temperature control; (4) lighting; (5) heating water; (6) laundry; (7) cleaning and maintenance; (8) cooking; (9) refrigeration; (10) dishwashing; (11) recreation; and…

  17. The College and University Energy Management Workbook.

    ERIC Educational Resources Information Center

    Burns, Josh; And Others

    An energy management workbook for colleges is presented by a task force composed of representatives of the American Council on Education, the National Association of College and University Business Officers, and the Association of Physical Plant Administrators of Colleges and Universities. In addition to worksheets and exercises, information is…

  18. Drowning in PC Management: Could a Linux Solution Save Us?

    ERIC Educational Resources Information Center

    Peters, Kathleen A.

    2004-01-01

    Short on funding and IT staff, a Western Canada library struggled to provide adequate public computing resources. Staff turned to a Linux-based solution that supports up to 10 users from a single computer, and blends Web browsing and productivity applications with session management, Internet filtering, and user authentication. In this article,…

  19. 77 FR 32994 - Bureau of Ocean Energy Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... Bureau of Ocean Energy Management Geological and Geophysical Exploration on the Atlantic Outer Continental Shelf; Draft Programmatic Environmental Impact Statement AGENCY: Bureau of Ocean Energy Management... and gas exploration and development; renewable energy; and marine minerals. BOEM is extending...

  20. Energy aspects of solid waste management: Proceedings

    SciTech Connect

    Not Available

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  1. Energy aspects of solid waste management: Proceedings

    SciTech Connect

    Not Available

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  2. Energy management analysis of lunar oxygen production

    NASA Technical Reports Server (NTRS)

    Fazzolari, R.; Wong-Swanson, B. G.

    1990-01-01

    Energy load models in the process of hydrogen reduction of ilmenite for lunar oxygen production are being developed. The load models will be used as a first step to ultimately determine the optimal energy system needed to supply the power requirements for the process. The goal is to determine the energy requirements in the process of hydrogen reduction of ilmenite to produce oxygen. The general approach is shown, and the objectives are to determine the energy loads of the processes in the system. Subsequent energy management studies will be made to minimize the system losses (irreversibilities) and to design optimal energy system power requirements. A number of processes are being proposed as possible candidates for lunar application and some detailed experimental efforts are being conducted within this project at the University of Arizona. Priorities are directed toward developing the energy models for each of the proposed processes being considered. The immediate goals are to identify the variables that would impact energy requirements and energy sources of supply.

  3. Energy monitoring and managing for electromobility purposes

    NASA Astrophysics Data System (ADS)

    Slanina, Zdenek; Docekal, Tomas

    2016-09-01

    This paper describes smart energy meter design and implementation focused on using in charging stations (stands) for electric vehicle (follows as EV) charging support and possible embedding into current smart building technology. In this article there are included results of research of commercial devices available in Czech republic for energy measuring for buildings as well as analysis of energy meter for given purposes. For example in described module there was required measurement of voltage, electric current and frequency of power network. Finally there was designed a communication module with common interface to energy meter for standard communication support between charging station and electric car. After integration into smart buildings (home automation, parking houses) there are pros and cons of such solution mentioned1,2.

  4. Services du Centre de Solutions Pour Les Energies Propres (Fact Sheet)

    SciTech Connect

    Not Available

    2014-05-01

    This is the French translation of the Clean Energy Solutions Center services fact sheet. The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  5. 77 FR 790 - FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM Interconnection, L.L.C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM...) Rules of Practice and Procedures, 18 CFR 385.206, FirstEnergy Solutions Corp., Allegheny Energy...

  6. Deep Energy Retrofit Guidance for the Building America Solutions Center

    SciTech Connect

    Less, Brennan; Walker, Iain

    2015-01-01

    The U.S. DOE Building America program has established a research agenda targeting market-relevant strategies to achieve 40% reductions in existing home energy use by 2030. Deep Energy Retrofits (DERs) are part of the strategy to meet and exceed this goal. DERs are projects that create new, valuable assets from existing residences, by bringing homes into alignment with the expectations of the 21st century. Ideally, high energy using, dated homes that are failing to provide adequate modern services to their owners and occupants (e.g., comfortable temperatures, acceptable humidity, clean, healthy), are transformed through comprehensive upgrades to the building envelope, services and miscellaneous loads into next generation high performance homes. These guidance documents provide information to aid in the broader market adoption of DERs. They are intended for inclusion in the online resource the Building America Solutions Center (BASC). This document is an assemblage of multiple entries in the BASC, each of which addresses a specific aspect of Deep Energy Retrofit best practices for projects targeting at least 50% energy reductions. The contents are based upon a review of actual DERs in the U.S., as well as a mixture of engineering judgment, published guidance from DOE research in technologies and DERs, simulations of cost-optimal DERs, Energy Star and Consortium for Energy Efficiency (CEE) product criteria, and energy codes.

  7. Systemic solutions for multi-benefit water and environmental management.

    PubMed

    Everard, Mark; McInnes, Robert

    2013-09-01

    The environmental and financial costs of inputs to, and unintended consequences arising from narrow consideration of outputs from, water and environmental management technologies highlight the need for low-input solutions that optimise outcomes across multiple ecosystem services. Case studies examining the inputs and outputs associated with several ecosystem-based water and environmental management technologies reveal a range from those that differ little from conventional electro-mechanical engineering techniques through methods, such as integrated constructed wetlands (ICWs), designed explicitly as low-input systems optimising ecosystem service outcomes. All techniques present opportunities for further optimisation of outputs, and hence for greater cumulative public value. We define 'systemic solutions' as "…low-input technologies using natural processes to optimise benefits across the spectrum of ecosystem services and their beneficiaries". They contribute to sustainable development by averting unintended negative impacts and optimising benefits to all ecosystem service beneficiaries, increasing net economic value. Legacy legislation addressing issues in a fragmented way, associated 'ring-fenced' budgets and established management assumptions represent obstacles to implementing 'systemic solutions'. However, flexible implementation of legacy regulations recognising their primary purpose, rather than slavish adherence to detailed sub-clauses, may achieve greater overall public benefit through optimisation of outcomes across ecosystem services. Systemic solutions are not a panacea if applied merely as 'downstream' fixes, but are part of, and a means to accelerate, broader culture change towards more sustainable practice. This necessarily entails connecting a wider network of interests in the formulation and design of mutually-beneficial systemic solutions, including for example spatial planners, engineers, regulators, managers, farming and other businesses, and

  8. 49 CFR 238.403 - Crash energy management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash...

  9. 49 CFR 238.403 - Crash energy management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash...

  10. 49 CFR 238.403 - Crash energy management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash...

  11. 49 CFR 238.403 - Crash energy management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash...

  12. 49 CFR 238.403 - Crash energy management.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash...

  13. Energy efficiency through integrated environmental management.

    PubMed

    Benromdhane, Souad Ahmed

    2015-05-01

    Integrated environmental management became an economic necessity after industrial development proved to be unsustainable without consideration of environmental direct and indirect impacts. Energy dependency and air pollution along with climate change grew into major challenges facing developed and developing countries alike. Thus, a new global market structure emerged and changed the way we do trade. The search intensified for alternatives to petroleum. However, scientists, policy makers, and environmental activists agreed to focus on strategic conservation and optimization of energy use. Environmental concerns will remain partially unaddressed with the current pace of consumption because greenhouse gas emissions will continue to rise with economic growth. This paper discusses energy efficiency, steady integration of alternative sources, and increased use of best available technologies. Energy criteria developed for environmental labeling certification are presented. Our intention is to encourage manufacturers and service providers to supply consumers with less polluting and energy-consuming goods and services, inform consumers of the environmental and energy impacts, and thereby instill sustainable and responsible consumption. As several programs were initiated in developed countries, environmental labeling requirements created barriers to many exports manufactured in developing countries, affecting current world trade and putting more pressure on countries to meet those requirements. Defining an institutional and legal framework of environmental labeling is a key challenge in implementing such programs for critical economic sectors like tourism, textiles, and food production where energy needs are the most important aspect to control. A case study of Tunisia and its experience with eco-labeling is presented.

  14. Manage your energy, not your time.

    PubMed

    Schwartz, Tony

    2007-10-01

    As the demands of the workplace keep rising, many people respond by putting in ever longer hours, which inevitably leads to burnout that costs both the organization and the employee. Meanwhile, people take for granted what fuels their capacity to work--their energy. Increasing that capacity is the best way to get more done faster and better. Time is a finite resource, but energy is different. It has four wellsprings--the body, emotions, mind, and spirit--and in each, it can be systematically expanded and renewed. In this article, Schwartz, founder of the Energy Project, describes how to establish rituals that will build energy in the four key dimensions. For instance, harnessing the body's ultradian rhythms by taking intermittent breaks restores physical energy. Rejecting the role of a victim and instead viewing events through three hopeful lenses defuses energy-draining negative emotions. Avoiding the constant distractions that technology has introduced increases mental energy. And participating in activities that give you a sense of meaning and purpose boosts the energy of the spirit. The new workday rituals succeed only if leaders support their adoption, but when that happens, the results can be powerful. A group of Wachovia Bank employees who went through an energy management program outperformed a control group on important financial metrics like loans generated, and they reported substantially improved customer relationships, productivity, and personal satisfaction. These findings corroborated anecdotal evidence gathered about the effectiveness of this approach at other companies, including Ernst & Young, Sony, and Deutsche Bank. When organizations invest in all dimensions of their employees' lives, individuals respond by bringing all their energy wholeheartedly to work -and both companies and their people grow in value.

  15. Human factors by descent energy management

    NASA Technical Reports Server (NTRS)

    Curry, R. E.

    1979-01-01

    This paper describes some of the results of a human factors study of energy management during descent using standard aircraft displays. Discussions with pilots highlighted the practical constraints involved and the techniques (algorithms) used to accomplish the descent. The advantages and disadvantages of these algorithms are examined with respect to workload and their sensitivity to disturbances. Vertical navigation and flight performance computers are discussed in terms of the information needed for effective pilot monitoring and takeover

  16. Space shuttle entry terminal area energy management

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.

    1991-01-01

    A historical account of the development for Shuttle's Terminal Area Energy Management (TAEM) is presented. A derivation and explanation of logic and equations are provided as a supplement to the well documented guidance computation requirements contained within the official Functional Subsystem Software Requirements (FSSR) published by Rockwell for NASA. The FSSR contains the full set of equations and logic, whereas this document addresses just certain areas for amplification.

  17. Financial arrangement selection for energy management projects

    NASA Astrophysics Data System (ADS)

    Woodroof, Eric Aubrey

    Scope and method of study. The purpose of this study was to develop a model (E-FUND) to help facility managers select financial arrangements for energy management projects (EMPs). The model was developed with the help of a panel of expert financiers. The panel also helped develop a list of key objectives critical to the decision process. The E-FUND model was tested by a population of facility managers in four case studies. Findings and conclusions. The results may indicate that having a high economic benefit (from an EMP) is not overwhelmingly important, when compared to other qualitative objectives. The results may also indicate that the true lease and performance contract may be the most applicable financial arrangements for EMPs.

  18. Integrated computational and conceptual solutions for complex environmental information management

    NASA Astrophysics Data System (ADS)

    Rückemann, Claus-Peter

    2016-06-01

    This paper presents the recent results of the integration of computational and conceptual solutions for the complex case of environmental information management. The solution for the major goal of creating and developing long-term multi-disciplinary knowledge resources and conceptual and computational support was achieved by implementing and integrating key components. The key components are long-term knowledge resources providing required structures for universal knowledge creation, documentation, and preservation, universal multi-disciplinary and multi-lingual conceptual knowledge and classification, especially, references to Universal Decimal Classification (UDC), sustainable workflows for environmental information management, and computational support for dynamical use, processing, and advanced scientific computing with Integrated Information and Computing System (IICS) components and High End Computing (HEC) resources.

  19. Interfacial Free Energy of Cu-Co Solid Solutions

    NASA Astrophysics Data System (ADS)

    Zhevnenko, S. N.

    2013-06-01

    The surface energies of Cu-Co solid solutions in hydrogen atmosphere were measured. The measurements were performed on pure copper and copper alloys containing 0.45, 0.7, 1.4, 2.25, 2.50, and 2.8 at. pct Co and 4.1 at. pct Co for the temperature range 1245 K to 1349 K (972 °C to 1076 °C). The experiments were conducted using the zero creep method for 18 mcm foils. The modified method allowed " in situ" determining of the surface energy. It was shown that the surface energy increases as the concentration increases up to 1.4 at. pct Co and then decreases. Such extreme behavior was obtained by the direct method for the first time in a solid metallic system.

  20. 78 FR 12750 - FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM Interconnection, L.L.C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM... sections 206 and 306 of the Federal Power Act, 16 U.S.C. 824(e) and 825(e), FirstEnergy Solutions Corp....

  1. Urban energy management: a course on the administration of public energy programs. An instructor's guide

    SciTech Connect

    Mandelbaum, Dr., Len; Olsen, Dr., Marvin; Hyman, Dr., Barry; Sheridan, Mimi; Dahlberg, Judy; O'Brien, Jeremy

    1980-12-01

    The course provides local government administrators, staff, and students with the background knowledge to deal with a broad range of energy management concerns and is not to train technical energy conservation specialists. Section II contains the Instructor's Guide and Section III provides the Student Outlines and Handouts on the following subjects: The Energy Problem; National Energy Politics and Programs; State and Local Energy Programs; Techniques of Energy Planning; Techniques of Energy Conservation; Techniques of Renewable Energy Production; Strategies for Voluntary Energy Management; Strategies for Finan. Energy Management; and Strategies for Mandatory Energy Management. (MCW)

  2. Household energy management strategies in Bulgaria's transitioning energy sector

    NASA Astrophysics Data System (ADS)

    Carper, Mark Daniel Lynn

    Recent transition literature of post-socialist states has addressed the shortcomings of a rapid blanket implementation of neo-liberal policies and practices placed upon a landscape barren of the needed institutions and experiences. Included in these observations are the policy-making oversight of spatial socioeconomic variations and their individual and diverse methods of coping with their individual challenges. Of such literature addressing the case of Bulgaria, a good portion deals with the spatial consequences of restructuring as well as with embedded disputes over access to and control of resources. With few exceptions, studies of Bulgaria's changing energy sector have largely been at the state level and have not been placed within the context of spatial disparities of socioeconomic response. By exploring the variations of household energy management strategies across space, my dissertation places this resource within such a theoretical context and offers analysis based on respective levels of economic and human development, inherited material infrastructures, the organization and activities of institutions, and fuel and technological availability. A closed survey was distributed to explore six investigational themes across four geographic realms. The investigational themes include materials of housing construction, methods of household heating, use of electrical appliances, energy conservation strategies, awareness and use of energy conservation technologies, and attitudes toward the transitioning energy sector. The geographic realms include countrywide results, the urban-rural divide, regional variations, and urban divisions of the capital city, Sofia. Results conclude that, indeed, energy management strategies at the household level have been shaped by multiple variables, many of which differ across space. These variables include price sensitivity, degree of dependence on remnant technologies, fuel and substitute availability, and level of human and

  3. Ocean Thermal Energy Conversion Program Management Plan

    SciTech Connect

    Combs, R E

    1980-01-01

    The Office of the Associate Laboratory Director for Energy and Environmental Technology has established the OTEC Program Management Office to be responsible for the ANL-assigned tasks of the OTEC Program under DOE's Chicago Operations and Regional Office (DOE/CORO). The ANL OTEC Program Management Plan is essentially a management-by-objective plan. The principal objective of the program is to provide lead technical support to CORO in its capacity as manager of the DOE power-system program. The Argonne OTEC Program is divided into three components: the first deals with development of heat exchangers and other components of OTEC power systems, the second with development of biofouling counter-measures and corrosion-resistant materials for these components in seawater service, and the third with environmental and climatic impacts of OTEC power-system operation. The essential points of the Management Plan are summarized, and the OTEC Program is described. The organization of the OTEC Program at ANL is described including the functions, responsibilities, and authorities of the organizational groupings. The system and policies necessary for the support and control functions within the organization are discussed. These functions cross organizational lines, in that they are common to all of the organization groups. Also included are requirements for internal and external reports.

  4. Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing maximizing thermal efficiency and optimizing energy management through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems.

  5. Bioenergy in Energy Transformation and Climate Management

    SciTech Connect

    Rose, Steven K.; Kriegler, Elmar; Bibas, Ruben; Calvin, Katherine V.; Popp, Alexander; van Vuuren, Detlef; Weyant, John

    2014-04-01

    Unlike fossil fuels, biomass is a renewable resource that can sequester carbon during growth, be converted to energy, and then re-grown. Biomass is also a flexible fuel that can service many end-uses. This paper explores the importance of bioenergy to potential future energy transformation and climate change management. Using a model comparison of fifteen models, we characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectives—reducing radiative forcing to 3.7 and 2.8 W/m2 in 2100 (approximately 550 and 450 ppm carbon dioxide equivalent atmospheric concentrations). Model scenarios project, by 2050, bioenergy growth of 2 to 10% per annum reaching 5 to 35 percent of global primary energy, and by 2100, bioenergy becoming 15 to 50 percent of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 percent of regional electricity from biopower by 2050, and up to 70 percent of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation costs and world consumption. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels. We also find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. Overall, further evaluation of the viability of global large-scale bioenergy is merited.

  6. Optimal energy management in grain drying.

    PubMed

    Gunasekaran, S

    1986-01-01

    Grain drying is very specific to the geographic location, kind of drying system, and the type of grain. Under a given set of conditions, the optimal system can be selected based on careful evaluation. However, a good choice of drying systems, procedures, and management practices can be made from the information already available. The review of several grain-drying procedures has provided some insight in making a quick evaluation of the process and arriving at the most suitable system for a particular application. Despite extensive research efforts, the present knowledge of grain drying is yet insufficient to optimally design each drying process with respect to capacity, quality, and energy requirement. There is a need for incorporating grain and air parameters more accurately. It is also important to develop comprehensive drying simulation models to encompass agronomic practices, such as planting and harvesting. Recent efforts indicate a strong influence of planting and harvesting strategies on optimal drying and storage system selection. Results of the varietal trials at Ohio State University indicate that it is now possible to select midseason varieties, which dry down rapidly, without sacrificing yield. Also, low moisture at harvest is important to the energy management process because it affects total drying time and energy required. It is also important from a quality standpoint because kernel damage increases rapidly at harvesting moisture levels above 25%. The trend in grain-dryer design has shifted from focusing on drying capacity and operation reliability to energy consumption. The development in design of energy efficient continuous-flow dryers has been significant. Multistage concurrentflow dryers are excellent examples. Various aspects of dryer staging for efficient operation and control are yet to be determined. Recirculation of the exhaust air is a proven method of improving energy efficiency. Likewise, in batch-in-bin systems, stirring and

  7. Climate Leadership webinar on Integrating Energy and Climate Risk Management

    EPA Pesticide Factsheets

    Allergan, a multi-specialty healthcare company and pharmaceutical manufacturer, discusses how it manages climate and energy risks, how these areas are linked, and how energy and climate management strategies pervade critical business decisions.

  8. Energy estimate and fundamental solution for degenerate hyperbolic Cauchy problems

    NASA Astrophysics Data System (ADS)

    Ascanelli, Alessia; Cicognani, Massimo

    The aim of this paper is to give an uniform approach to different kinds of degenerate hyperbolic Cauchy problems. We prove that a weakly hyperbolic equation, satisfying an intermediate condition between effective hyperbolicity and the C∞ Levi condition, and a strictly hyperbolic equation with non-regular coefficients with respect to the time variable can be reduced to first-order systems of the same type. For such a kind of systems, we prove an energy estimate in Sobolev spaces (with a loss of derivatives) which gives the well-posedness of the Cauchy problem in C∞. In the strictly hyperbolic case, we also construct the fundamental solution and we describe the propagation of the space singularities of the solution which is influenced by the non-regularity of the coefficients with respect to the time variable.

  9. Operational management of offshore energy assets

    NASA Astrophysics Data System (ADS)

    Kolios, A. J.; Martinez Luengo, M.

    2016-02-01

    Energy assets and especially those deployed offshore are subject to a variety of harsh operational and environmental conditions which lead to deterioration of their performance and structural capacity over time. The aim of reduction of CAPEX in new installations shifts focus to operational management to monitor and assess performance of critical assets ensuring their fitness for service throughout their service life and also to provide appropriate and effective information towards requalification or other end of life scenarios, optimizing the OPEX. Over the last decades, the offshore oil & gas industry has developed and applied various approaches in operational management of assets through Structural Health and Condition Monitoring (SHM/CM) systems which can be, at a certain level, transferable to offshore renewable installations. This paper aims to highlight the key differences between offshore oil & gas and renewable energy assets from a structural integrity and reliability perspective, provide a comprehensive overview of different approaches that are available and applicable, and distinguish the benefits of such systems in the efficient operation of offshore energy assets.

  10. Selected Energy Management Options for Small Business and Local Government.

    ERIC Educational Resources Information Center

    Wert, Jonathan M.; Worthington, Barry K.

    This document is a checklist of 257 energy management options for small business and local government. The energy management options are categorized under: (1) Energy management strategies; (2) Buildings; (3) Lighting; (4) Water; (5) Waste operations; (6) Equipment; (7) Transportation; and (8) Food preparation. To select options for…

  11. Energy efficient wireless sensor networks by using a fuzzy-based solution

    NASA Astrophysics Data System (ADS)

    Tirrito, Salvatore; Nicolosi, Giuseppina

    2016-12-01

    Wireless Sensor Networks are characterized by a distributed architecture realized by a set of autonomous electronic devices able to sense data from the surrounding environment and to communicate among them. These devices are battery powered since they may be used even to monitor hazardous events in inaccessible areas. As a consequence, it is preferable to assure the adoption of energy management solutions in order to extend the WSN lifetime, as far as possible. Moreover, it is crucial to guarantee that the nodes receive the transmitted data correctly. It is clear that trading off power optimization and quality of service has become one the most important concerns when dealing with modern systems based on WSNs. This paper introduces a solution based on a Fuzzy Logic Controller (FLC) focusing on the minimization of energy consumption of wireless sensor nodes. This is made possible because the sleeping time of these nodes is dynamically regulated by a FLC.

  12. Solid-solution nanocrystallite formation by high-energy milling.

    PubMed

    Kwon, Hanjung; Jung, Suna; Cho, Sung-Wook; Kil, Dae-Sup; Roh, Ki-Min; Lim, Jae-Won

    2013-09-01

    Solid-solution nanocrystalline powders were prepared by the high-energy milling of Ti alloys with graphite. The B1 structure (NaCl-like structure) phases, (Ti, Cr)C and (Ti, Al)C, were formed during the milling process of Ti-Cr + graphite and Ti-Al + graphite, and the synthetic procedures were investigated in terms of the phase evolution from XRD data. The (Ti, Al)C phase was obtained after milling for 20 hr at BPR = 40:1 (under a more severe condition), while the (Ti, Cr)C phase formed after milling for 20 hr at BPR = 20:1 (a relatively soft condition). The difference in the tendency to create a solid solution with Ti in the B1 structure caused a difference in the synthetic behavior of (Ti, Al)C and (Ti, Cr)C. In other words, (Ti, Cr)C is formed earlier than (Ti, Al)C during milling because the atomic size of Cr (0.166 nm) is similar to that of Ti (0.176 nm), which leads to the straightforward formation of the solid-solution (Ti, Cr)C as compared to when (Ti, Al)C is used. As a result, the crystallite size of the (Ti, Al)C phase (2-3 nm) synthesized at a later stage becomes smaller than that of the (Ti, Cr)C phase (5 10 nm) formed at an earlier stage during milling.

  13. Technology Solutions Case Study: Southern Energy Homes, First DOE Zero Energy Ready Manufactured Home

    SciTech Connect

    2016-03-01

    The country’s first Zero Energy Ready manufactured home that is certified by the U.S. Department of Energy (DOE) is up and running in Russellville, Alabama. The manufactured home was built by a partnership between Southern Energy Homes and the Advanced Residential Integrated Energy Solutions Collaborative (ARIES), which is a DOE Building America team. The effort was part of a three-home study including a standard-code manufactured home and an ENERGY STAR® manufactured home. Cooling-season results showed that the building used half the space-conditioning energy of a manufactured home built to the U.S. Department of Housing and Urban Development’s (HUD’s) Manufactured Home Construction and Safety Standards. These standards are known collectively as the HUD Code, which is the building standard for all U.S. manufactured housing.

  14. 75 FR 39678 - Meeting of Energy Services Companies and the Federal Energy Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... ESPC policies. Using the Best Commercially Available Energy-Efficient Technology. Using New and... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Meeting of Energy Services Companies and the Federal Energy Management Program AGENCY: Department...

  15. Security issues at the Department of Energy and records management

    SciTech Connect

    NUSBAUM,ANNA W.

    2000-03-13

    In order to discuss the connection between security issues within the Department of Energy and records management, the author covers a bit of security history and talks about what she calls ``the Amazing Project''. Initiated in late May 1999, it was to be a tri-laboratory (Lawrence Livermore National Laboratory of Livermore, California, Los Alamos National Laboratory of Los Alamos, New Mexico, and Sandia National Laboratories of Albuquerque, New Mexico, and Livermore, California) project. The team that formed was tasked to develop the best set of security solutions that still enabled weapon mission work to get done and the security solutions were to be the same set for everyone. The amazing project was called ''The Integrated Security Management Project'', or ''ISecM' for short. She'll describe why she thinks this project was so amazing and what it accomplished. There's a bit of sad news about the project, but then she'll move onto discuss what was learned at Sandia as a result of the project and what they're currently doing in records management.

  16. Smart EV Energy Management System to Support Grid Services

    NASA Astrophysics Data System (ADS)

    Wang, Bin

    Under smart grid scenarios, the advanced sensing and metering technologies have been applied to the legacy power grid to improve the system observability and the real-time situational awareness. Meanwhile, there is increasing amount of distributed energy resources (DERs), such as renewable generations, electric vehicles (EVs) and battery energy storage system (BESS), etc., being integrated into the power system. However, the integration of EVs, which can be modeled as controllable mobile energy devices, brings both challenges and opportunities to the grid planning and energy management, due to the intermittency of renewable generation, uncertainties of EV driver behaviors, etc. This dissertation aims to solve the real-time EV energy management problem in order to improve the overall grid efficiency, reliability and economics, using online and predictive optimization strategies. Most of the previous research on EV energy management strategies and algorithms are based on simplified models with unrealistic assumptions that the EV charging behaviors are perfectly known or following known distributions, such as the arriving time, leaving time and energy consumption values, etc. These approaches fail to obtain the optimal solutions in real-time because of the system uncertainties. Moreover, there is lack of data-driven strategy that performs online and predictive scheduling for EV charging behaviors under microgrid scenarios. Therefore, we develop an online predictive EV scheduling framework, considering uncertainties of renewable generation, building load and EV driver behaviors, etc., based on real-world data. A kernel-based estimator is developed to predict the charging session parameters in real-time with improved estimation accuracy. The efficacy of various optimization strategies that are supported by this framework, including valley-filling, cost reduction, event-based control, etc., has been demonstrated. In addition, the existing simulation-based approaches do

  17. Utilizing an Energy Management System with Distributed Resources to Manage Critical Loads and Reduce Energy Costs

    DTIC Science & Technology

    2014-09-01

    Systems with Electric Power Systems,” IEEE std 1547.4–2011, IEEE , 2011. [3] Department of the Navy, “Department of the Navy’s Energy Program for...Providing Improved Power Quality in Microgrids,” IEEE Industry Applications Magazine , pp. 34–43, September– October 2014. [27] A. Julian, N. Peck...and G. Oriti, “ Power electronics enabled energy management systems,” in Proceedings of IEEE Applied Power Electronics Conference, Long Beach, CA

  18. Energy Conservation Manual for School Food Service Managers.

    ERIC Educational Resources Information Center

    Messersmith, Ann M.; Wheeler, George; Rousso, Victoria

    Energy cost management is important in all school food service operations, particularly at times when rising energy costs threaten budgets. This document is designed as a reference manual on energy and provides information about monitoring energy use and developing energy improvement and conservation plans. The manual offers energy conservation…

  19. Management of chronic pain in osteoporosis: challenges and solutions

    PubMed Central

    Paolucci, Teresa; Saraceni, Vincenzo Maria; Piccinini, Giulia

    2016-01-01

    Osteoporosis (OP) is a pathological condition that manifests clinically as pain, fractures, and physical disability, resulting in the loss of independence and the need for long-term care. Chronic pain is a multidimensional experience with sensory, affective, and cognitive aspects. Age can affect each of these dimensions and the pain that is experienced. In OP, chronic pain appears to have sensory characteristics and properties of nociceptive and neuropathic pain. Its evaluation and treatment thus require a holistic approach that focuses on the specific characteristics of this population. Pain management must therefore include pharmacological approaches, physiotherapy interventions, educational measures, and, in rare cases, surgical treatment. Most rehabilitative treatments in the management of patients with OP do not evaluate pain or physical function, and there is no consensus on the effects of rehabilitation therapy on back pain or quality of life in women with OP. Pharmacological treatment of pain in patients with OP is usually insufficient. The management of chronic pain in patients with OP is complicated with regard to its diagnosis, the search for reversible secondary causes, the efficacy and duration of oral bisphosphonates, and the function of calcium and vitamin D. The aim of this review is to discuss the most appropriate solutions in the management of chronic pain in OP. PMID:27099529

  20. Management of chronic pain in osteoporosis: challenges and solutions.

    PubMed

    Paolucci, Teresa; Saraceni, Vincenzo Maria; Piccinini, Giulia

    2016-01-01

    Osteoporosis (OP) is a pathological condition that manifests clinically as pain, fractures, and physical disability, resulting in the loss of independence and the need for long-term care. Chronic pain is a multidimensional experience with sensory, affective, and cognitive aspects. Age can affect each of these dimensions and the pain that is experienced. In OP, chronic pain appears to have sensory characteristics and properties of nociceptive and neuropathic pain. Its evaluation and treatment thus require a holistic approach that focuses on the specific characteristics of this population. Pain management must therefore include pharmacological approaches, physiotherapy interventions, educational measures, and, in rare cases, surgical treatment. Most rehabilitative treatments in the management of patients with OP do not evaluate pain or physical function, and there is no consensus on the effects of rehabilitation therapy on back pain or quality of life in women with OP. Pharmacological treatment of pain in patients with OP is usually insufficient. The management of chronic pain in patients with OP is complicated with regard to its diagnosis, the search for reversible secondary causes, the efficacy and duration of oral bisphosphonates, and the function of calcium and vitamin D. The aim of this review is to discuss the most appropriate solutions in the management of chronic pain in OP.

  1. Continuing Developments in PV Risk Management: Strategies, Solutions, and Implications

    SciTech Connect

    Lowder, T.; Mendelsohn, M.; Speer, B.; Hill, R.

    2013-02-01

    As the PV industry matures, successful risk management practices will become more imperative to ensure investor confidence, control costs, and facilitate further growth. This report discusses several key aspects of risk management during the commercial- and utility-scale project life cycle, from identification of risks, to the process of mitigating and allocating those risks among project parties, to transferring those risks through insurance. The report also explores novel techniques in PV risk management, options to offload risks onto the capital markets, and innovative insurance policies (namely warranty policies) that address risks unique to the PV sector. One of the major justifications for robust risk management in the PV industry is the cost-reduction opportunities it affords. If the PV industry can demonstrate the capability to successfully manage its risks, thereby inspiring confidence in financiers, it may be able to obtain a lower cost of capital in future transactions. A lower cost of capital translates to a lower cost of energy, which will in turn enhance PV?s competitiveness at a time when it will have to rely less on subsidies to support its market penetration.

  2. Vehicle to grid: electric vehicles as an energy storage solution

    NASA Astrophysics Data System (ADS)

    McGee, Rodney; Waite, Nicholas; Wells, Nicole; Kiamilev, Fouad E.; Kempton, Willett M.

    2013-05-01

    With increased focus on intermittent renewable energy sources such as wind turbines and photovoltaics, there comes a rising need for large-scale energy storage. The vehicle to grid (V2G) project seeks to meet this need using electric vehicles, whose high power capacity and existing power electronics make them a promising energy storage solution. This paper will describe a charging system designed by the V2G team that facilitates selective charging and backfeeding by electric vehicles. The system consists of a custom circuit board attached to an embedded linux computer that is installed both in the EVSE (electric vehicle supply equipment) and in the power electronics unit of the vehicle. The boards establish an in-band communication link between the EVSE and the vehicle, giving the vehicle internet connectivity and the ability to make intelligent decisions about when to charge and discharge. This is done while maintaining compliance with existing charging protocols (SAEJ1772, IEC62196) and compatibility with standard "nonintelligent" cars and chargers. Through this system, the vehicles in a test fleet have been able to successfully serve as portable temporary grid storage, which has implications for regulating the electrical grid, providing emergency power, or supplying power to forward military bases.

  3. INL Site Executable Plan for Energy and Transportation Fuels Management

    SciTech Connect

    Ernest L. Fossum

    2008-11-01

    It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

  4. Managing Written Directives: A Software Solution to Streamline Workflow.

    PubMed

    Wagner, Robert H; Savir-Baruch, Bital; Gabriel, Medhat Sam; Halama, James; Bova, Davide

    2017-03-09

    retrieve active and prior completed directives at any stage of completion and at time. Conclusion: A software solution for the management of WDs streamlines and structures the workflow in the department. Implementation of this solution saves time, centralizes the information for all staff to share and decreases any confusion surrounding the creation, completion, filing, and retrieval of WDs.

  5. Papapetrou Energy-Momentum Complex for a Stringy Black Hole Solution

    SciTech Connect

    Radinschi, I.; Ciobanu, B.

    2007-09-10

    The aim of this paper is to evaluate the energy distribution of a stringy black hole solution with the Papapetrou energy-momentum complex. The space-time under consideration describes the dual solution known as the magnetic black hole solution. The energy distribution depends on the mass M and charge Q of the magnetic black hole.

  6. Decision exploration lab: a visual analytics solution for decision management.

    PubMed

    Broeksema, Bertjan; Baudel, Thomas; Telea, Arthur G; Crisafulli, Paolo

    2013-12-01

    We present a visual analytics solution designed to address prevalent issues in the area of Operational Decision Management (ODM). In ODM, which has its roots in Artificial Intelligence (Expert Systems) and Management Science, it is increasingly important to align business decisions with business goals. In our work, we consider decision models (executable models of the business domain) as ontologies that describe the business domain, and production rules that describe the business logic of decisions to be made over this ontology. Executing a decision model produces an accumulation of decisions made over time for individual cases. We are interested, first, to get insight in the decision logic and the accumulated facts by themselves. Secondly and more importantly, we want to see how the accumulated facts reveal potential divergences between the reality as captured by the decision model, and the reality as captured by the executed decisions. We illustrate the motivation, added value for visual analytics, and our proposed solution and tooling through a business case from the car insurance industry.

  7. Facilitating Sound, Cost-Effective Federal Energy Management (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The Federal Government, as the nation's largest energy consumer, has a tremendous opportunity and acknowledged responsibility to lead by example. The U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) plays a critical role in this effort. FEMP facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. FEMP does this by focusing on the needs of its Federal customers, delivering an array of services across a variety of program areas.

  8. SHARING AND DEPLOYING INNOVATIVE INFORMATION TECHNOLOGY SOLUTIONS TO MANAGE WASTE ACROSS THE DOE COMPLEX

    SciTech Connect

    Crolley, R.; Thompson, M.

    2011-01-31

    There has been a need for a faster and cheaper deployment model for information technology (IT) solutions to address waste management needs at US Department of Energy (DOE) complex sites for years. Budget constraints, challenges in deploying new technologies, frequent travel, and increased job demands for existing employees have prevented IT organizations from staying abreast of new technologies or deploying them quickly. Despite such challenges, IT organizations have added significant value to waste management handling through better worker safety, tracking, characterization, and disposition at DOE complex sites. Systems developed for site-specific missions have broad applicability to waste management challenges and in many cases have been expanded to meet other waste missions. Radio frequency identification (RFID) and global positioning satellite (GPS)-enabled solutions have reduced the risk of radiation exposure and safety risks. New web-based and mobile applications have enabled precision characterization and control of nuclear materials. These solutions have also improved operational efficiencies and shortened schedules, reduced cost, and improved regulatory compliance. Collaboration between US Department of Energy (DOE) complex sites is improving time to delivery and cost efficiencies for waste management missions with new information technologies (IT) such as wireless computing, global positioning satellite (GPS), and radio frequency identification (RFID). Integrated solutions developed at separate DOE complex sites by new technology Centers of Excellence (CoE) have increased material control and accountability, worker safety, and environmental sustainability. CoEs offer other DOE sister sites significant cost and time savings by leveraging their technology expertise in project scoping, implementation, and ongoing operations.

  9. 75 FR 62852 - Notice of Availability of the Record of Decision for the Chevron Energy Solutions Lucerne Valley...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... Bureau of Land Management Notice of Availability of the Record of Decision for the Chevron Energy Solutions Lucerne Valley Solar Project, California and the Approved Plan Amendment to the California Desert...)/Approved Plan Amendment (PA) to the California Desert Conservation Area (CDCA) Plan for the Chevron...

  10. Spinning gas clouds: III. Solutions of minimal energy with precession

    NASA Astrophysics Data System (ADS)

    Gaffet, B.

    2003-05-01

    We consider the model of rotating and expanding gas cloud originally proposed by Ovsiannikov (1956 Dokl. Akad. Nauk SSSR 111 47) and Dyson (1968 J. Math. Mech. 18 91). Under the restricting assumptions of an adiabatic index gamma = 5/3 and of vorticity-free motion, this has been shown (Gaffet 2001 J. Phys. A: Math. Gen. 34 2097) to be a Liouville integrable Hamiltonian system. In the present work, we consider the precessing solutions where the cloud does not retain a fixed rotation axis. Choosing for definiteness a particular set of constants of motion (which corresponds to a minimum of the energy), we show that a separation of variables occurs, and that the equations of motion are reducible to the form of a Riccati equation, whose integration merely involves an elliptic integral.

  11. An Energy Management Programme for Grande Prairie Public School District. Energy Conservation: Energy Management.

    ERIC Educational Resources Information Center

    Calgary Univ. (Alberta).

    This report describes a pilot energy conservation project in Grande Prairie (Alberta) School District No. 2357. Extensive data collection and analysis were undertaken to provide a sound, quantitative basis for evaluation of the program. Energy conserving measures requiring capital outlays were not considered. During the project, electric demand…

  12. 1998 federal energy and water management award winners

    SciTech Connect

    1998-10-28

    Energy is a luxury that no one can afford to waste, and many Federal Government agencies are becoming increasingly aware of the importance of using energy wisely. Thoughtful use of energy resources is important, not only to meet agency goals, but because energy efficiency helps improve air quality. Sound facility management offers huge savings that affect the agency`s bottom line, the environment, and workplace quality. In these fiscally-modest times, pursuing sound energy management programs can present additional challenges for energy and facility managers. The correct path to take is not always the easiest. Hard work, innovation, and vision are characteristic of those who pursue energy efficiency. That is why the Department of energy, Federal Energy Management Program (FEMP) is proud to salute the winners of the 1998 Federal Energy and Water Management Award. The 1998 winners represent the kind of 21st century thinking that will help achieve widespread Federal energy efficiency. In one year, the winners, through a combination of public and private partnerships, saved more than $222 million and 10.5 trillion Btu by actively identifying and implementing energy efficiency, water conservation, and renewable energy projects. Through their dedication, hard work, ingenuity, and success, the award winners have also inspired others to increase their own efforts to save energy and water and to more aggressively pursue the use of renewable energy sources. The Federal Energy and Water Management Awards recognize the winners` contributions and ability to inspire others to take action.

  13. Practical Materials for Teaching. Resource File: Edition I. Energy Management.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This directory lists energy education programs directed at increasing the energy conservation awareness of scientists, engineers, managers, and technicians working in fields where they are responsible for managing energy consumption. The resource is prepared to help with the process of identifying, selecting, and obtaining materials for promoting…

  14. Energy management: total program considers all building's systems.

    PubMed

    Blan, G J; Browne, K H

    1978-09-16

    Managing energy consumption, containing fuel usage, and preparing for alternate fuel sources are immediate areas for concern and action for all health care providers. The authors describe how they are meeting the challenge of increased energy costs and reduced availability while maintaining high-quality care by applying the concept of total energy management.

  15. Water Resources Management for Shale Energy Development

    NASA Astrophysics Data System (ADS)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  16. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    SciTech Connect

    Shipley, Anna; Hampson, Anne; Hedman, Bruce; Garland, Patti; Bautista, Paul

    2008-12-01

    This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future—as an: environmental solution, significantly reducing CO2 emissions through greater energy efficiency; competitive business solution, increasing efficiency, reducing business costs, and creating green-collar jobs; local energy solution, deployable throughout the United States; and infrastructure modernization solution, relieving grid congestion and improving energy security.

  17. 75 FR 45111 - Electric Quarterly Reports; Strategic Energy Management Corp.; Solaro Energy Marketing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ...] Electric Quarterly Reports; Strategic Energy Management Corp.; Solaro Energy Marketing Corporation; Notice... Order, the Commission directed Strategic Energy Management Corp. and Solaro Energy Marketing Corporation... compliance with the June 25 Order has elapsed. The two companies identified in the June 25 Order...

  18. 2008 Federal Energy Management Program (FEMP) Market Report

    SciTech Connect

    Tremper, C.

    2009-07-01

    This report assesses the market for Federal Energy Management Program (FEMP) services as it existed in FY 2008. It discusses Federal energy management goal progress in FY 2008, and examines the environment in which agencies implemented energy management projects over the last three years. The report also discusses some recent events that will increase the market for FEMP services, and outlines FEMP's major strategies to address these changes in FY 2009 and beyond.

  19. EnergySolution's Clive Disposal Facility Operational Research Model - 13475

    SciTech Connect

    Nissley, Paul; Berry, Joanne

    2013-07-01

    EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operated waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying

  20. Medical management of epileptic seizures: challenges and solutions

    PubMed Central

    Sarma, Anand K; Khandker, Nabil; Kurczewski, Lisa; Brophy, Gretchen M

    2016-01-01

    Epilepsy is one of the most common neurologic illnesses. This condition afflicts 2.9 million adults and children in the US, leading to an economic impact amounting to $15.5 billion. Despite the significant burden epilepsy places on the population, it is not very well understood. As this understanding continues to evolve, it is important for clinicians to stay up to date with the latest advances to provide the best care for patients. In the last 20 years, the US Food and Drug Administration has approved 15 new antiepileptic drugs (AEDs), with many more currently in development. Other advances have been achieved in terms of diagnostic modalities like electroencephalography technology, treatment devices like vagal nerve and deep-brain stimulators, novel alternate routes of drug administration, and improvement in surgical techniques. Specific patient populations, such as the pregnant, elderly, those with HIV/AIDS, and those with psychiatric illness, present their own unique challenges, with AED side effects, drug interactions, and medical–psychiatric comorbidities adding to the conundrum. The purpose of this article is to review the latest literature guiding the management of acute epileptic seizures, focusing on the current challenges across different practice settings, and it discusses studies in various patient populations, including the pregnant, geriatric, those with HIV/AIDS, comatose, psychiatric, and “pseudoseizure” patients, and offers possible evidence-based solutions or the expert opinion of the authors. Also included is information on newer AEDs, routes of administration, and significant AED-related drug-interaction tables. This review has tried to address only some of these issues that any practitioner who deals with the acute management of seizures may encounter. The document also highlights the numerous avenues for new research that would help practitioners optimize epilepsy management. PMID:26966367

  1. Crystalline free energies of micelles of diblock copolymer solutions.

    PubMed

    D'Adamo, Giuseppe; Pierleoni, Carlo

    2010-11-28

    We report a characterization of the relative stability and structural behavior of various micellar crystals of an athermal model of AB-diblock copolymers in solution. We adopt a previously developed coarse-graining representation of the chains which maps each copolymer on a soft dumbbell. Thanks to this strong reduction of degrees of freedom, we are able to investigate large aggregated systems and for a specific length ratio of the blocks f = M(A)∕(M(A) + M(B)) = 0.6, to locate the order-disorder transition of the system of micelles. Above the transition, mechanical and thermal properties are found to depend on the number of particles per lattice site in the simulation box, and the application of a recent methodology for multiple occupancy crystals [B. M. Mladek et al., Phys. Rev. Lett. 99, 235702 (2007)] is necessary to correctly define the equilibrium state. Within this scheme we have performed free energy calculations at two reduced density ρ∕ρ∗ = 4, 5 and for several cubic structures such as fcc, bcc, and A15. At both densities, the bcc symmetry is found to correspond to the minimum of the unconstrained free energy, that is to the stable symmetry among the few considered, while the A15 structure is almost degenerate, indicating that the present system prefers to crystallize in less packed structures. At ρ∕ρ∗ = 4 close to melting, the Lindemann ratio is fairly high (∼0.29) and the concentration of vacancies is roughly 6%. At ρ∕ρ∗ = 5 the mechanical stability of the stable bcc structure increases and the concentration of vacancies accordingly decreases. The ratio of the corona layer thickness to the core radius is found to be in good agreement with experimental data for poly(styrene-b-isoprene)(22-12) in isoprene selective solvent which is also reported to crystallize in the bcc structure.

  2. Facilitating Sound, Cost-Effective Federal Energy Management

    SciTech Connect

    FEMP

    2016-07-01

    Fact sheet offers an overview of the Federal Energy Management Program (FEMP), which provides agencies and organizations with the information, tools, and assistance they need to achieve their energy-related requirements and goals through specialized initiatives.

  3. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    SciTech Connect

    Worrell, Ernst; Angelini, Tana; Masanet, Eric

    2010-07-27

    In the United States, industry spends over $100 billion annually to power its manufacturing plants. Companies also spend on maintenance, capital outlay, and energy services. Improving energy efficiency is vital to reduce these costs and increase earnings. Many cost-effective opportunities to reduce energy consumption are available, and this Energy Guide discusses energy-efficiency practices and energy-efficient technologies that can be applied over a broad spectrum of companies. Strategies in the guide address hot water and steam, compressed air, pumps, motors, fans, lighting, refrigeration, and heating, ventilation, and air conditioning. This guide includes descriptions of expected energy and cost savings, based on real-world applications, typical payback periods, and references to more detailed information. The information in this Energy Guide is intended to help energy and plant managers achieve cost-effective energy reductions while maintaining product quality. Further research on the economics of all measures--as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  4. Electric power emergency management mechanism considering the access of new energy and renewable energy

    NASA Astrophysics Data System (ADS)

    Zhang, Baoqun; Ma, Longfei; Gong, Cheng; Jiao, Ran; Shi, Rui; Chi, Zhongjun; Ding, Yifeng

    2017-01-01

    Scholars at home and abroad have had a thorough research about the theory system and the frame of emergency management on the background of traditional grid, but for the improvement of the emergency mechanism when new energy and renewable energy access the grid, more work should be done. This paper will summarize the predecessors' work on emergency management, discuss the impact of emergency management while new energy and renewable energy access the grid and some suggestions are given.

  5. Integrating Energy and Environmental Management in Wood Furniture Industry

    PubMed Central

    Babić, Milun; Jelić, Dubravka; Konćalović, Davor; Vukašinović, Vladimir

    2014-01-01

    As energy costs continue to rise, industrial plants (even those of energy nonintensive industries such as furniture industry) need effective way to reduce the amount of energy they consume. Besides, there are a number of economic and environmental reasons why a company should consider environmental management initiatives. This paper provides a detailed guideline for implementing joint energy and environmental management system in wood furniture industrial company. It covers in detail all essential aspects of the system: initial system assessment, organization, policy development, energy and environmental auditing, action plan development, system promotion, checking system performance, and management review. PMID:24587734

  6. Integrating energy and environmental management in wood furniture industry.

    PubMed

    Gordić, Dušan; Babić, Milun; Jelić, Dubravka; Konćalović, Davor; Vukašinović, Vladimir

    2014-01-01

    As energy costs continue to rise, industrial plants (even those of energy nonintensive industries such as furniture industry) need effective way to reduce the amount of energy they consume. Besides, there are a number of economic and environmental reasons why a company should consider environmental management initiatives. This paper provides a detailed guideline for implementing joint energy and environmental management system in wood furniture industrial company. It covers in detail all essential aspects of the system: initial system assessment, organization, policy development, energy and environmental auditing, action plan development, system promotion, checking system performance, and management review.

  7. Energy Management System Lowers U.S. Navy Energy Costs Through PV System Interconnection (Fact Sheet)

    SciTech Connect

    Not Available

    2014-04-01

    To meet the U.S. Navy's energy goals, the National Renewable Energy Laboratory (NREL) and the Naval Facilities Engineering Command (NAVFAC) spent two years collaborating on demonstrations that tested market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - an energy management system - was identified as a promising method for reducing energy use and costs, and can contribute to increasing energy security.

  8. Conical intersections of free energy surfaces in solution: Effect of electron correlation on a protonated Schiff base in methanol solution

    SciTech Connect

    Mori, Toshifumi; Nakano, Katsuhiro; Kato, Shigeki

    2010-08-14

    The minimum energy conical intersection (MECI) optimization method with taking account of the dynamic electron correlation effect [T. Mori and S. Kato, Chem. Phys. Lett. 476, 97 (2009)] is extended to locate the MECI of nonequilibrium free energy surfaces in solution. A multistate electronic perturbation theory is introduced into the nonequilibrium free energy formula, which is defined as a function of solute and solvation coordinates. The analytical free energy gradient and interstate coupling vectors are derived, and are applied to locate MECIs in solution. The present method is applied to study the cis-trans photoisomerization reaction of a protonated Schiff base molecule (PSB3) in methanol (MeOH) solution. It is found that the effect of dynamic electron correlation largely lowers the energy of S{sub 1} state. We also show that the solvation effect strongly stabilizes the MECI obtained by twisting the terminal C=N bond to become accessible in MeOH solution, whereas the conical intersection is found to be unstable in gas phase. The present study indicates that both electron correlation and solvation effects are important in the photoisomerization reaction of PSB3. The effect of counterion is also examined, and seems to be rather small in solution. The structures of free energy surfaces around MECIs are also discussed.

  9. CRC Clinical Trials Management System (CTMS): An Integrated Information Management Solution for Collaborative Clinical Research

    PubMed Central

    Payne, Philip R.O.; Greaves, Andrew W.; Kipps, Thomas J.

    2003-01-01

    The Chronic Lymphocytic Leukemia (CLL) Research Consortium (CRC) consists of 9 geographically distributed sites conducting a program of research including both basic science and clinical components. To enable the CRC’s clinical research efforts, a system providing for real-time collaboration was required. CTMS provides such functionality, and demonstrates that the use of novel data modeling, web-application platforms, and management strategies provides for the deployment of an extensible, cost effective solution in such an environment. PMID:14728471

  10. Trends in Energy Management Technology - Part 4: Review ofAdvanced Applications in Energy Management, Control, and InformationSystems

    SciTech Connect

    Yee, Gaymond; Webster, Tom

    2003-08-01

    In this article, the fourth in a series, we provide a review of advanced applications in Energy Management, Control, and Information Systems (EMCIS). The available features for these products are summarized and analyzed with regard to emerging trends in EMCIS and potential benefits to the Federal sector. The first article [1] covered enabling technologies for emerging energy management systems. The second article [2] serves as a basic reference for building control system (BCS) networking fundamentals and includes an assessment of current approaches to open communications. The third article [3] evaluated several products that exemplify the current state of practice in EMCIS. It is important for energy managers in the Federal sector to have a high level of knowledge and understanding of these complex energy management systems. This series of articles provides energy practitioners with some basic informational and educational tools to help make decisions relative to energy management systems design, specification, procurement, and energy savings potential.

  11. Advanced Communication and Control Solutions of Distributed Energy Resources (DER)

    SciTech Connect

    Asgeirsson, Haukur; Seguin, Richard; Sherding, Cameron; de Bruet, Andre, G.; Broadwater, Robert; Dilek, Murat

    2007-01-10

    need business model and an independent energy aggregator-business model. The approach of developing two group models of DER energy participation in the market is unique. The Detroit Edison (DECo, Utility)-led team includes: DTE Energy Technologies (Dtech, DER provider), Electrical Distribution Design (EDD, Virginia Tech company supporting EPRI’s Distribution Engineering Workstation, DEW), Systems Integration Specialists Company (SISCO, economic scheduling and real-time protocol integrator), and OSIsoft (PI software system for managing real-time information). This team is focused on developing the application engineering, including software systems necessary for DER’s integration, control and sale into the market place. Phase II Highlights Installed and tested an ICCP link with SSL (security) between DECo, the utility, and DTE Energy Technologies (DTECH), the aggregator, making DER data available to the utility for both monitoring and control. Installed and tested PI process book with circuit & DER operational models for DECo SOC/ROC operator’s use for monitoring of both utility circuit and customer DER parameters. The PI Process Book models also included DER control for the DECo SOC/ROC operators, which was tested and demonstrated control. The DER Tagging and Operating Procedures were developed, which allowed that control to be done in a safe manner, were modified for required MOC/MISO notification procedures. The Distribution Engineering Workstation (DEW) was modified to include temperature normalized load research statistics, using a 30 hour day-ahead weather feed. This allowed day-ahead forecasting of the customer load profile and the entire circuit to determine overload and low voltage problems. This forecast at the point of common coupling was passed to DTech DR SOC for use in their economic dispatch algorithm. Standard Work Instructions were developed for DER notification, sale, and operation into the MISO market. A software mechanism consisting of a suite

  12. Institutional Manager's Guide to Energy Conservation.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of State and Local Programs.

    The information provided in this guidebook is based on a field evaluation of grantees in the Institutional Conservation Program (ICP). The ICP, authorized by the National Energy Conservation Policy Act of 1978 and administered by the Department of Energy, provides energy audits and 50 percent matching grants for detailed energy analyses and for…

  13. EMERGING TECHNOLOGY BULLETIN: REMOVAL OF PHENOL FROM AQUEOUS SOLUTIONS USING HIGH ENERGY ELECTRON BEAM IRRADIATION

    EPA Science Inventory

    Irradiation of aqueous solutions with high-energy electrons results in the formation of the aqueous electron, hydrogen radical, H-, and the hydroxyl radical, OH-. These reactive transient species initiate chemical reactions capable of destroying organic compounds in aqueous solut...

  14. Topology optimisation for energy management in underwater sensor networks

    NASA Astrophysics Data System (ADS)

    Jha, Devesh K.; Wettergren, Thomas A.; Ray, Asok; Mukherjee, Kushal

    2015-09-01

    In general, battery-powered sensors in a sensor network are operable as long as they can communicate sensed data to a processing node. In this context, a sensor network has two competing objectives: (1) maximisation of the network performance with respect to the probability of successful search for a specified upper bound on the probability of false alarms, and (2) maximisation of the network's operable life. As both sensing and communication of data consume battery energy at the sensing nodes of the sensor network, judicious use of sensing power and communication power is needed to improve the lifetime of the sensor network. This paper presents an adaptive energy management policy that will optimally allocate the available energy between sensing and communication at each sensing node to maximise the network performance subject to specified constraints. Under the assumptions of fixed total energy allocation for a sensor network operating for a specified time period, the problem is reduced to synthesis of an optimal network topology that maximises the probability of successful search (of a target) over a surveillance region. In a two-stage optimisation, a genetic algorithm-based meta-heuristic search is first used to efficiently explore the global design space, and then a local pattern search algorithm is used for convergence to an optimal solution. The results of performance optimisation are generated on a simulation test bed to validate the proposed concept. Adaptation to energy variations across the network is shown to be manifested as a change in the optimal network topology by using sensing and communication models for underwater environment. The approximate Pareto-optimal surface is obtained as a trade-off between network lifetime and probability of successful search over the surveillance region.

  15. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    SciTech Connect

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  16. Energy Management Lesson Plans for Vocational Agriculture Instructors.

    ERIC Educational Resources Information Center

    Hedges, Lowell E., Ed.; Miller, Larry E., Ed.

    This notebook provides vocational agricultural teachers with 10 detailed lesson plans on the major topic of energy management in agriculture. The lesson plans present information about energy and the need to manage it wisely, using a problem-solving approach. Each lesson plan follows this format: lesson topic, lesson performance objectives,…

  17. Energy management system for a rotary machine and method therefor

    DOEpatents

    Bowman, Michael John; Sinha, Gautam; Sheldon, Karl Edward

    2004-11-09

    In energy management system is provided for a power generating device having a working fluid intake in which the energy management system comprises an electrical dissipation device coupled to the power generating device and a dissipation device cooling system configured to direct a portion of a working fluid to the electrical dissipation device so as to provide thermal control to the electrical dissipation device.

  18. Energy Distribution of the Bianchi Type i Solution

    NASA Astrophysics Data System (ADS)

    Radinschi, Irina

    We calculate the energy of an anisotropic model of universe based on the Bianchi type I metric in the Mo ller prescription. The total energy due to the matter and gravitational field is zero. This result supports the importance of the energy-momentum complexes in the localization of energy.

  19. The Dark Energy Survey Data Management System

    SciTech Connect

    Mohr, Joseph J.; Barkhouse, Wayne; Beldica, Cristina; Bertin, Emmanuel; Dora Cai, Y.; Nicolaci da Costa, Luiz A.; Darnell, J.Anthony; Daues, Gregory E.; Jarvis, Michael; Gower, Michelle; Lin, Huan; /Fermilab /Rio de Janeiro Observ.

    2008-07-01

    The Dark Energy Survey (DES) collaboration will study cosmic acceleration with a 5000 deg2 griZY survey in the southern sky over 525 nights from 2011-2016. The DES data management (DESDM) system will be used to process and archive these data and the resulting science ready data products. The DESDM system consists of an integrated archive, a processing framework, an ensemble of astronomy codes and a data access framework. We are developing the DESDM system for operation in the high performance computing (HPC) environments at the National Center for Supercomputing Applications (NCSA) and Fermilab. Operating the DESDM system in an HPC environment offers both speed and flexibility. We will employ it for our regular nightly processing needs, and for more compute-intensive tasks such as large scale image coaddition campaigns, extraction of weak lensing shear from the full survey dataset, and massive seasonal reprocessing of the DES data. Data products will be available to the Collaboration and later to the public through a virtual-observatory compatible web portal. Our approach leverages investments in publicly available HPC systems, greatly reducing hardware and maintenance costs to the project, which must deploy and maintain only the storage, database platforms and orchestration and web portal nodes that are specific to DESDM. In Fall 2007, we tested the current DESDM system on both simulated and real survey data. We used TeraGrid to process 10 simulated DES nights (3TB of raw data), ingesting and calibrating approximately 250 million objects into the DES Archive database. We also used DESDM to process and calibrate over 50 nights of survey data acquired with the Mosaic2 camera. Comparison to truth tables in the case of the simulated data and internal crosschecks in the case of the real data indicate that astrometric and photometric data quality is excellent.

  20. Clean Energy Solutions Center and SE4All: Partnering to Support Country Actions

    SciTech Connect

    2016-05-01

    Since 2012, the Clean Energy Solutions Center (Solutions Center) and Sustainable Energy for All (SE4All) have partnered to deliver information, knowledge and expert assistance to policymakers and practitioners in countries actively working to achieve SE4All objectives. Through SE4All efforts, national governments are implementing integrated country actions to strategically transform their energy markets. This fact sheet details the Solutions Center and SE4All partnership and available areas of technical assistance.

  1. Utilising integrated urban water management to assess the viability of decentralised water solutions.

    PubMed

    Burn, Stewart; Maheepala, Shiroma; Sharma, Ashok

    2012-01-01

    Cities worldwide are challenged by a number of urban water issues associated with climate change, population growth and the associated water scarcity, wastewater flows and stormwater run-off. To address these problems decentralised solutions are increasingly being considered by water authorities, and integrated urban water management (IUWM) has emerged as a potential solution to most of these urban water challenges, and as the key to providing solutions incorporating decentralised concepts at a city wide scale. To incorporate decentralised options, there is a need to understand their performance and their impact on a city's total water cycle under alternative water and land management options. This includes changes to flow, nutrient and sediment regimes, energy use, greenhouse gas emissions, and the impacts on rivers, aquifers and estuaries. Application of the IUWM approach to large cities demands revisiting the fundamental role of water system design in sustainable city development. This paper uses the extended urban metabolism model (EUMM) to expand a logical definition for the aims of IUWM, and discusses the role of decentralised systems in IUWM and how IUWM principles can be incorporated into urban water planning.

  2. Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort (Brochure)

    SciTech Connect

    Not Available

    2012-01-01

    Brochure on Vehicle Testing and Integration Facility, featuring the Vehicle Modification Facility, Vehicle Test Pad and ReCharge Integrated Demonstration System. Plug-in electric vehicles (PEVs) offer the opportunity to shift transportation energy demands from petroleum to electricity, but broad adoption will require integration with other systems. While automotive experts work to reduce the cost of PEVs, fossil fueled cars and trucks continue to burn hundreds of billions of gallons of petroleum each year - not only to get from point A to point B, but also to keep passengers comfortable with air conditioning and heat. At the National Renewable Energy Laboratory (NREL), three installations form a research laboratory known as the Vehicle Testing and Integration Facility (VTIF). At the VTIF, engineers are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle-grid integration and minimizing fuel consumption related to vehicle climate control. Part of NREL's Center for Transportation Technologies and Systems (CTTS), the VTIF is dedicated to renewable and energy efficient solutions. This facility showcases technology and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for electric vehicle (EV) components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies and industry partners. Research conducted at the VTIF examines the interaction of building energy systems, utility grids, renewable energy sources and PEVs, integrating energy management solutions, and maximizing potential greenhouse gas (GHG) reduction, while smoothing the transition and reducing costs for EV owners. NREL's collaboration with automakers, charging station manufacturers, utilities and fleet operators to assess technologies using VTIF resources is

  3. 1993 Department of Energy Records Management Conference

    SciTech Connect

    1993-12-31

    This document consists of viewgraphs from the presentations at the conference. Topics included are: DOE records management overview, NIRMA and ARMA resources, NARA records management training, potential quality assurance records, filing systems, organizing and indexing technical records, DOE-HQ initiatives, IRM reviews, status of epidemiologic inventory, disposition of records and personal papers, inactive records storage, establishing administrative records, managing records at Hanford, electronic mail -- legal and records issues, NARA-GAO reports status, consultive selling, automated indexing, decentralized approach to scheduling at a DOE office, developing specific records management programs, storage and retrieval at Savannah River Plant, an optical disk case study, and special interest group reports.

  4. Reactive Power Compensation Using an Energy Management System

    DTIC Science & Technology

    2014-09-01

    Power electronics enabled energy management systems,” in Proceedings of IEEE Applied Power Electronics Conference, Long Beach, CA, Mar. 2013, pp...DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE REACTIVE POWER COMPENSATION USING AN ENERGY MANAGEMENT SYSTEM 5. FUNDING NUMBERS 6. AUTHOR(S...efficiency is the reactive power demand on the grid. Inductive power demand reduces power factor, increases energy losses during transmission, limits real

  5. Leading by Example with Smart Energy Management (Fact Sheet)

    SciTech Connect

    Not Available

    2008-12-01

    The Federal Energy Management Program facilitates the Federal Government?s implementation of sound, cost-effective energy management and investment practices to enhance the nation?s energy security and environmental stewardship. FEMP does this by focusing on the needs of its Federal customers, delivering an array of products grouped into project transaction services, applied technology services, and decision support services. This document outlines FEMP services and programs.

  6. Comparative management of offshore posidonia residues: composting vs. energy recovery.

    PubMed

    Cocozza, Claudio; Parente, Angelo; Zaccone, Claudio; Mininni, Carlo; Santamaria, Pietro; Miano, Teodoro

    2011-01-01

    Residues of the marine plant posidonia (Posidonia oceanica, PO) beached in tourist zones represent a great environmental, economical, social and hygienic problem in the Mediterranean Basin, in general, and in the Apulia Region in particular, because of the great disturb to the bathers and population, and the high costs that the administrations have to bear for their removal and disposal. In the present paper, Authors determined the heating values of leaves and fibres of PO, the main offshore residues found on beaches, and, meantime, composted those residues with mowing and olive pruning wood. The final composts were characterized for pH, electrical conductivity, elemental composition, dynamic respiration index, phytotoxicity, fluorescence and infrared spectroscopic fingerprints. The aim of the paper was to investigate the composting and energy recovery of PO leaves and fibres in order to suggest alternative solutions to the landfill when offshore residues have to be removed from recreational beaches. The fibrous portion of PO residues showed heating values close to those of other biofuels, thus suggesting a possible utilization as source of energy. At the same time, compost obtained from both PO wastes showed high quality features on condition that the electrical conductivity and Na content are lowered by a correct management of wetting during the composting.

  7. Basic Energy Conservation and Management--Part 2: HVAC

    ERIC Educational Resources Information Center

    Krueger, Glenn

    2012-01-01

    Reducing school district energy expenditures has become a universal goal, and new technologies have brought greater energy efficiencies to the school environment. In Part 1 of this two-part series, the author discussed the steps required to establish an energy conservation and management program with an emphasis on lighting. In this article, he…

  8. Water and energy as inseparable twins for sustainable solutions.

    PubMed

    Hofman, Jan; Hofman-Caris, Roberta; Nederlof, Maarten; Frijns, Jos; van Loosdrecht, Mark

    2011-01-01

    Although the water cycle is only a minor contributor to the energy demand in society, it is a matter of good housekeeping to minimize the energy need within a sustainable water cycle. Wastewater treatment should not only be applied to purify the water, but also recover the energy present in this water, as well as to recover essential elements like nitrogen and phosphorus. From an energy analysis of the Dutch water cycle it is concluded that creating an energy neutral water cycle by using the heat content or by making use of the organic load of wastewater is within hands.

  9. Energy Management Workbook for Local Governments : Workbook 1, Electrical Energy, 1981.

    SciTech Connect

    1981-02-01

    Descriptions are presented for 20 major categories of energy actions providing background information needed for communities to implement energy management programs and explaining where financial and technical help may be available. Chapter 1 provides background on the energy problem, discusses Federal, state and local roles, and outlines the planning process. Chapter 2 is a list of 20 questions to help identify a range of potential actions that could become part of the energy management plan. Chapter 3 will help evaluate each of the twenty potential activities, and chapters 4 and 5 discuss implementing and monitoring the energy management plan. (MCW)

  10. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    SciTech Connect

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    2014-07-01

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

  11. Department of Energy Project Management System

    SciTech Connect

    Not Available

    1981-01-08

    This manual provides guidance to all appropriate personnel for implementation of DOE Project Management Policy. It sets forth the principles and requirements that govern the development, approval, and execution of DOE's outlay programs as embodied within the Project Management System (PMS). Its primary goal is to assure application of sound management principles providing a disciplined, systematic, and coordinated approach resulting in efficient planning, organization, coordination, budgeting, management, review, and control of DOE projects. The provisions of this manual are mandatory for the Department's Major Systems Acquisitions (MSA's) and Major Projects and will be used for other projects to the extent practicable. Department's project-management task is over 250 projects, with a total estimated cost in excess of $24 billion at completion. This diverse array of project activities requires a broad spectrum of scientific, engineering, and management skills to assure that they meet planned technical and other objectives and are accomplished on schedule, within cost and scope, and that they serve the purposes intended. In recognition of these requirements and the Department's ever-increasing magnitude of responsibilities, an interim Project Management System was established and has been in use for over a year. This manual constitutes an update of the system based on the experience gained and lessons learned during this initial period.

  12. Nonlinear predictive energy management of residential buildings with photovoltaics & batteries

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Sun, Fengchun; Moura, Scott J.

    2016-09-01

    This paper studies a nonlinear predictive energy management strategy for a residential building with a rooftop photovoltaic (PV) system and second-life lithium-ion battery energy storage. A key novelty of this manuscript is closing the gap between building energy management formulations, advanced load forecasting techniques, and nonlinear battery/PV models. Additionally, we focus on the fundamental trade-off between lithium-ion battery aging and economic performance in energy management. The energy management problem is formulated as a model predictive controller (MPC). Simulation results demonstrate that the proposed control scheme achieves 96%-98% of the optimal performance given perfect forecasts over a long-term horizon. Moreover, the rate of battery capacity loss can be reduced by 25% with negligible losses in economic performance, through an appropriate cost function formulation.

  13. Helping Students Manage Their Energy: Taking Their Pulse with the Energy Audit

    ERIC Educational Resources Information Center

    Spreitzer, Gretchen M.; Grant, Traci

    2012-01-01

    This article introduces a tool to help students learn to better manage their energy. The tool asks students to assess their energy levels for each waking hour over at least 2 days in order to identify patterns of activities associated with high energy and with depleted energy. The article describes how to use the tool in the classroom by…

  14. Chinese hotel general managers' perspectives on energy-saving practices

    NASA Astrophysics Data System (ADS)

    Zhu, Yidan

    As hotels' concern about sustainability and budget-control is growing steadily, energy-saving issues have become one of the important management concerns hospitality industry face. By executing proper energy-saving practices, previous scholars believed that hotel operation costs can decrease dramatically. Moreover, they believed that conducting energy-saving practices may eventually help the hotel to gain other benefits such as an improved reputation and stronger competitive advantage. The energy-saving issue also has become a critical management problem for the hotel industry in China. Previous research has not investigated energy-saving in China's hotel segment. To achieve a better understanding of the importance of energy-saving, this document attempts to present some insights into China's energy-saving practices in the tourist accommodations sector. Results of the study show the Chinese general managers' attitudes toward energy-saving issues and the differences among the diverse hotel managers who responded to the study. Study results indicate that in China, most of the hotels' energy bills decrease due to the implementation of energy-saving equipments. General managers of hotels in operation for a shorter period of time are typically responsible for making decisions about energy-saving issues; older hotels are used to choosing corporate level concerning to this issue. Larger Chinese hotels generally have official energy-saving usage training sessions for employees, but smaller Chinese hotels sometimes overlook the importance of employee training. The study also found that for the Chinese hospitality industry, energy-saving practices related to electricity are the most efficient and common way to save energy, but older hotels also should pay attention to other ways of saving energy such as water conservation or heating/cooling system.

  15. Energy consumption quota management of Wanda commercial buildings in China

    NASA Astrophysics Data System (ADS)

    Sun, D. B.; Xiao, H.; Wang, X.; Liu, J. J.; Wang, X.; Jin, X. Q.; Wang, J.; Xie, X. K.

    2016-08-01

    There is limited research of commercial buildings’ energy use data conducted based on practical analysis in China nowadays. Some energy consumption quota tools like Energy Star in U.S or VDI 3807 in Germany have limitation in China's building sector. This study introduces an innovative methodology of applying energy use quota model and empirical management to commercial buildings, which was in accordance of more than one hundred opened shopping centers of a real estate group in China. On the basis of statistical benchmarking, a new concept of “Modified coefficient”, which considers weather, occupancy, business layout, operation schedule and HVAC efficiency, is originally introduced in this paper. Our study shows that the average energy use quota increases from north to south. The average energy use quota of sample buildings is 159 kWh/(m2.a) of severe cold climate zone, 179 kWh/(m2.a) of cold zone, 188 kWh/(m2.a) of hot summer and cold winter zone, and 200 kWh/(m2.a) of hot summer and warm winter zone. The energy use quota model has been validated in the property management for year 2016, providing a new method of commercial building energy management to the industry. As a key result, there is 180 million energy saving potential based on energy quota management in 2016, equals to 6.2% saving rate of actual energy use in 2015.

  16. Energy Management at the University of Melbourne.

    ERIC Educational Resources Information Center

    Marginson, R. D.

    1980-01-01

    A program to reduce energy consumption and limit fuel expenditures at the University of Melbourne involved a study of consumption and facility usage, installation of a central energy monitoring system, and a university and public relations effort to enlist student and staff help. (MSE)

  17. Energy Management: Money in the Bank.

    ERIC Educational Resources Information Center

    Have, Pete van der

    2001-01-01

    Discusses how the University of Utah developed a new chiller plant that could handle the existing and future loads of energy requirements while being totally financed via the implementation of energy saving retrofits, but not benefitting from the operations savings generated by their implementation. (GR)

  18. Plasmon-assisted radiolytic energy conversion in aqueous solutions

    PubMed Central

    Kim, Baek Hyun; Kwon, Jae W.

    2014-01-01

    The field of conventional energy conversion using radioisotopes has almost exclusively focused on solid-state materials. Herein, we demonstrate that liquids can be an excellent media for effective energy conversion from radioisotopes. We also show that free radicals in liquid, which are continuously generated by beta radiation, can be utilized for electrical energy generation. Under beta radiation, surface plasmon obtained by the metallic nanoporous structures on TiO2 enhanced the radiolytic conversion via the efficient energy transfer between plasmons and free radicals. This work introduces a new route for the development of next-generation power sources. PMID:24918356

  19. Least energy sign-changing solutions for a class of nonlocal Kirchhoff-type problems.

    PubMed

    Cheng, Bitao

    2016-01-01

    In this paper, we consider the existence of least energy sign-changing solutions for a class of Kirchhoff-type problem [Formula: see text]where [Formula: see text] is a bounded domain in [Formula: see text], [Formula: see text], with a smooth boundary [Formula: see text], [Formula: see text] and [Formula: see text]. By using variational approach and some subtle analytical skills, the existence of the least energy sign-changing solutions of [Formula: see text] is obtained successfully. Moreover, we prove that the energy of any sign-changing solutions is larger than twice that of the ground state solutions of [Formula: see text].

  20. Public sector energy management: A strategy for catalyzing energy efficiency in Malaysia

    NASA Astrophysics Data System (ADS)

    Roy, Anish Kumar

    To date the public sector role in facilitating the transition to a sustainable energy future has been envisaged mainly from a regulatory perspective. In such a role, the public sector provides the push factors---enforcing regulations and providing incentives---to correct market imperfections that impede energy transitions. An alternative and complementary role of the public sector that is now gaining increasing attention is that of catalyzing energy transitions through public sector energy management initiatives. This dissertation offers a conceptual framework to rationalize such a role for the public sector by combining recent theories of sustainable energy transition and public management. In particular, the framework identifies innovative public management strategies (such as performance contracting and procurement) for effectively implementing sustainable energy projects in government facilities. The dissertation evaluates a model of sustainable public sector energy management for promoting energy efficiency in Malaysia. The public sector in Malaysia can be a major player in leading and catalyzing energy efficiency efforts as it is not only the largest and one of the most influential energy consumers, but it also plays a central role in setting national development strategy. The dissertation makes several recommendations on how a public sector energy management strategy can be implemented in Malaysia. The US Federal Energy Management Program (FEMP) is used as a practical model. The analysis, however, shows that in applying the FEMP model to the Malaysian context, there are a number of limitations that will have to be taken into consideration to enable a public sector energy management strategy to be effectively implemented. Overall the analysis of this dissertation contributes to a rethinking of the public sector role in sustainable energy development that can strengthen the sector's credibility both in terms of governance and institutional performance. In

  1. Total Energy Management: A Practical Handbook on Energy Conservation and Management. For Use of Owners and Managers of Office Buildings and Small Retail Stores. 2nd Edition.

    ERIC Educational Resources Information Center

    National Electrical Contractors Association, Washington, DC.

    Described in this guide for owners and managers of office buildings and small retail stores, is a program entitled Total Energy Management (TEM). The TEM program approach rests on the premise that buildings should be examined in terms of total energy consumption, rather than prescribing energy budgets for a building's separate systems. The…

  2. Energy implications of integrated solid waste management systems. Final report

    SciTech Connect

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  3. Department of Defense Energy Management Plan, 1980

    DTIC Science & Technology

    1980-07-01

    turbines using low Btu gas produced from coal. o Lignite fired boilers . Goal: Obtain an increasing percentage of total installation energy from...systems - Computer programs to - Advanced technolo- determine building gies to burn coal energy characteristics in fixed facilities - Wood- fired boilers ...economically than conventional coal fired boilers with pollution control equipment. A t 111-21 0 0 0 T 00 00T0 0 -n 0 4 ON In C) -T u N ,n 0 D00Nl c- Q

  4. Power Contro Energy Management and Market Systems

    SciTech Connect

    Tom Addison; Andrew Stanbury

    2005-12-15

    More efficient use of the nation's electrical energy infrastructure will result in minimizing the cost of energy to the end user. Using real time electrical market information coupled with defined rules, market opportunities can be identified that provide economic benefit for both users and marketers of electricity. This report describes the design of one such system and the features a fully functional system would provide. This report documents several investigated methods of controlling load diversity or shifting.

  5. Downstream Benefits of Energy Management Systems

    DTIC Science & Technology

    2015-12-01

    on the installation. Although this comparison has not provided any conclusions on its own, it serves to identify buildings where heating systems may...building’s heating system . Additionally, Abbott described how he used the EMS to address the issue immediately, by programming a different temperature... efficiency at MCBP. a. Optimizing Energy Systems The interviewees noted the episode with the 30 kVa transformer. The VSG model will allow MCBP energy

  6. Optimizing resource and energy recovery for materials and waste management

    EPA Science Inventory

    Decisions affecting materials management today are generally based on cost and a presumption of favorable outcomes without an understanding of the environmental tradeoffs. However, there is a growing demand to better understand and quantify the net environmental and energy trade-...

  7. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei

    2007-01-01

    Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  8. The unavoidable uncertainty of renewable energy and its management

    NASA Astrophysics Data System (ADS)

    Koutsoyiannis, Demetris

    2016-04-01

    Conventional energy systems gave the luxury of a fully controllable and deterministically manageable energy production. Renewable energies are uncertain and often unavailable at the time of demand. Wind and solar energies are highly variable, dependent on atmospheric and climatic conditions and unpredictable. The related uncertainty is much higher than commonly thought, as both the wind and sunshine duration processes exhibit Hurst-Kolmogorov behaviour. Lack of proper modelling of this behaviour results in overestimation of wind and solar energy potentials, and frequent "surprises" of persisting low (or high) production. Proper modelling of the uncertainty is a necessary step for renewable energy management. This latter requires both structural measures - in particular integration with pumped storage hydropower systems - and optimization methodologies for the operation of large-scale hybrid renewable energy systems. These key ideas are illustrated with a case study for a big district of Greece.

  9. Energy Management and Control System: Desired Capabilities and Functionality

    SciTech Connect

    Hatley, Darrel D.; Meador, Richard J.; Katipamula, Srinivas; Brambley, Michael R.; Wouden, Carl

    2005-04-29

    This document discusses functions and capabilities of a typical building/facility energy management and control systems (EMCS). The overall intent is to provide a building operator, manager or engineer with basic background information and recommended functions, capabilities, and good/best practices that will enable the control systems to be fully utilized/optimized, resulting in improved building occupant quality of life and more reliable, energy efficient facilities.

  10. Towards Novel Energy Solutions - an Electronic/Atomistic Simulation Approach

    NASA Astrophysics Data System (ADS)

    Dong, Rui

    This thesis focuses on computer modeling and multi-scale simulations of new materials that can potentially be used in novel energy applications, i.e., the dye molecules in dye-sensitizedsolar- cells and polymers for the capacitive energy storage. The aim is to understand physical properties of existing materials and then to find ways to improve them. (Abstract shortened by ProQuest.).

  11. Multi-source energy harvester power management

    NASA Astrophysics Data System (ADS)

    Schlichting, Alexander D.; Tiwari, Rashi; Garcia, Ephrahim

    2011-03-01

    Much of the work on improving energy harvesting systems currently focuses on tasks beyond geometric optimization and has shifted to using complex feedback control circuitry. While the specific technique and effectiveness of the circuits have varied, an important goal is still out of reach for many desired applications: to produce sufficient and sustained power. This is due in part to the power requirements of the control circuits themselves. One method for increasing the robustness and versatility of energy harvesting systems which has started to receive some attention would be to utilize multiple energy sources simultaneously. If some or all of the present energy sources were harvested, the amount of constant power which could be provided to the system electronics would increase dramatically. This work examines two passive circuit topologies, parallel and series, for combining multiple piezoelectric energy harvesters onto a single storage capacitor using an LTspice simulation. The issue of the relative phase between the two piezoelectric signals is explored to show that the advantages of both configurations are significantly affected by increased relative phase values.

  12. Coordination of energy and air quality management

    SciTech Connect

    Not Available

    1992-12-01

    The project had two goals: first, to demonstrate industrial firms can improve plant energy efficiency as air pollution emissions are reduced; second, to demonstrate that both Seattle City Light and PSAPCA could more effectively accomplish their individual objectives through mutual cooperation, even though the two agencies have very different missions. The cooperative efforts promised benefits for all the parties involved. Seattle City Light hoped that PSAPCA`s knowledge of the likely developments in air pollution controls would help the utility better target energy conservation opportunities among its industrial customers. PSAPCA hoped that the financial assistance offer by Seattle City Light through its conservation programs would make industry less resistant to PSAPCA enforcement of new air pollution control regulations. Finally, individual industrial firms could mitigate some of the cost of meeting the new air pollution control standards. The results of the project were mixed. CEAM did demonstrate that industrial plants can improve energy efficiency as they reduce air pollution emissions, but the relationship between air pollution reduction and energy consumption is complicated; and the project was less successful in meeting its second goal. The project design did not include a measure by which results could be compared against what the two agencies would have accomplished had they not collaborated. Moreover, the project could have benefited substantially from a more complete implementation plan and the production of data quantifying the energy conservation potential resulting from the development of more stringent air pollution control regulations for each of Seattle`s major industries.

  13. Energy Management in Higher Education: Value for Money Study.

    ERIC Educational Resources Information Center

    Scottish Higher Education Funding Council, Edinburgh.

    This Value for Money project provides an update of the 1996 "Energy Management Study in the Higher Education Sector: National Report." It reviews the management arrangement for utilities in the higher education (HE) sector, and it identifies key actions and future issues that must be addressed by HE institutions in developing a strategic…

  14. Energy conservation in rental housing: landlords' perceptions of problems and solutions

    SciTech Connect

    Levine, A.; Raab, J.; Astrein, B.; Bernstein, S.; Piernot, C.; Strahs, S.

    1982-03-01

    Rental housing owners have had little incentive to invest in energy conservation measures for their buildings. As the cost of energy continues to rise, market incentives increase. This research explores the decision processes and criteria of a purposive sample of landlords in four cities: Boston, Chicago, Denver, and San Francisco. The report outlines landlords' reasons for investing or not investing in energy conservation measures, the barriers they perceive to energy conservation, and their perceived solutions to energy problems in rental housing.

  15. Energy management during the space shuttle transition.

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.

    1972-01-01

    An approach to calculating optimal, gliding flight paths of the type associated with the space shuttle's transition from entry to cruising flight is presented. Kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations, reducing the dimension and complexity of the problem. The capability for treating integral and terminal penalties (as well as Mach number effects) is retained in the numerical optimization; hence, stability and control boundaries can be observed as trajectories to the desired final energy, flight path angle, and range are determined. Numerical results show that the 'jump' to the 'front-side of the L/D curve' need not be made until the end of the transition and that the dynamic model provides a conservative range estimate. Alternatives for real-time trajectory control are discussed.

  16. Energy management during the space shuttle transition

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.

    1972-01-01

    An approach to calculating optimal, gliding flight paths of the type associated with the space shuttle's transition from entry to cruising flight is presented. Kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations, reducing the dimension and complexity of the problem. The capability for treating integral and terminal penalties (as well as Mach number effects) is retained in the numerical optimization; hence, stability and control boundaries can be observed as trajectories to the desired final energy, flight path angle, and range are determined. Numerical results show that the jump to the front-side of the L/D curve need not be made until the end of the transition and that the dynamic model provides a conservative range estimate. Alternatives for real time trajectory control are discussed.

  17. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    PubMed Central

    Paritosh, Kunwar; Kushwaha, Sandeep K.; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches. PMID:28293629

  18. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling.

    PubMed

    Paritosh, Kunwar; Kushwaha, Sandeep K; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash; Vivekanand, Vivekanand

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  19. Biomass energy: Sustainable solution for greenhouse gas emission

    NASA Astrophysics Data System (ADS)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    Biomass is part of the carbon cycle. Carbon dioxide is produced after combustion of biomass. Over a relatively short timescale, carbon dioxide is renewed from atmosphere during next generation of new growth of green vegetation. Contribution of renewable energy including hydropower, solar, biomass and biofuel in total primary energy consumption in world is about 19%. Traditional biomass alone contributes about 13% of total primary energy consumption in the world. The number of traditional biomass energy users expected to rise from 2.5 billion in 2004 to 2.6 billion in 2015 and to 2.7 billion in 2030 for cooking in developing countries. Residential biomass demand in developing countries is projected to rise from 771 Mtoe in 2004 to 818 Mtoe in 2030. The main sources of biomass are wood residues, bagasse, rice husk, agro-residues, animal manure, municipal and industrial waste etc. Dedicated energy crops such as short-rotation coppice, grasses, sugar crops, starch crops and oil crops are gaining importance and market share as source of biomass energy. Global trade in biomass feedstocks and processed bioenergy carriers are growing rapidly. There are some drawbacks of biomass energy utilization compared to fossil fuels viz: heterogeneous and uneven composition, lower calorific value and quality deterioration due to uncontrolled biodegradation. Loose biomass also is not viable for transportation. Pelletization, briquetting, liquefaction and gasification of biomass energy are some options to solve these problems. Wood fuel production is very much steady and little bit increase in trend, however, the forest land is decreasing, means the deforestation is progressive. There is a big challenge for sustainability of biomass resource and environment. Biomass energy can be used to reduce greenhouse emissions. Woody biomass such as briquette and pellet from un-organized biomass waste and residues could be used for alternative to wood fuel, as a result, forest will be saved and

  20. Activation energy and entropy for viscosity of wormlike micelle solutions.

    PubMed

    Chandler, H D

    2013-11-01

    The viscosities of two surfactant solutions which form wormlike micelles (WLMs) were studied over a range of temperatures and strain rates. WLM solutions appear to differ from many other shear thinning systems in that, as the shear rate increases, stress-shear rate curves tend to converge with temperature rather than diverge and this can sometimes lead to higher temperature curves crossing those at lower. Behaviour was analysed in terms of activation kinetics. It is suggested that two mechanisms are involved: Newtonian flow, following an Arrhenius law superimposed on a non-Newtonian flow described by a stress assisted kinetic law, this being a more general form of the Arrhenius law. Anomalous flow is introduced into the kinetic equation via a stress dependent activation entropy term.

  1. Effect of Cracow program elimination of low emission sources upon the energy management system in Cracow

    SciTech Connect

    Friedberg, J.; Goerlich, K.; Glowacki, K.

    1995-12-31

    At the end of the 1980s, the energy management at the local level-like the whole set of such utility services-was based upon respective enterprises subject to a certain supervision of the establishing body and to a control of the District Inspectorate of Energy Management. Those enterprises that deal with generation and supply of heat energy to the local market, with distribution of heat, natural gas and electricity, operated as state companies; the last two branches made a part of either regional or national companies. Irrespective of the aforesaid, the co-generation power plants existed usually outside the heat generation and supply system. The business economics of these enterprises was not subject to any market rules whatsoever, the prices were controlled and the customers had no right of choice of the energy supplier. From the very beginning the low emission elimination program assumed to have commercial rules introduced in the energy management. Thus, it turned out necessary to prepare the market - to draw up inventory of the conditions and needs related with heat supply and to take up market solutions as well. The management system, and in particular the items specified below, is discussed. The co-operation of energy distribution enterprises has been based upon a voluntary agreement (The Team for Energy Suppliers) so as to agree upon the basic actions of the respective partners; joint actions have been taken up more and more willingly.

  2. Stalk model of membrane fusion: solution of energy crisis.

    PubMed Central

    Kozlovsky, Yonathan; Kozlov, Michael M

    2002-01-01

    Membrane fusion proceeds via formation of intermediate nonbilayer structures. The stalk model of fusion intermediate is commonly recognized to account for the major phenomenology of the fusion process. However, in its current form, the stalk model poses a challenge. On one hand, it is able to describe qualitatively the modulation of the fusion reaction by the lipid composition of the membranes. On the other, it predicts very large values of the stalk energy, so that the related energy barrier for fusion cannot be overcome by membranes within a biologically reasonable span of time. We suggest a new structure for the fusion stalk, which resolves the energy crisis of the model. Our approach is based on a combined deformation of the stalk membrane including bending of the membrane surface and tilt of the hydrocarbon chains of lipid molecules. We demonstrate that the energy of the fusion stalk is a few times smaller than those predicted previously and the stalks are feasible in real systems. We account quantitatively for the experimental results on dependence of the fusion reaction on the lipid composition of different membrane monolayers. We analyze the dependence of the stalk energy on the distance between the fusing membranes and provide the experimentally testable predictions for the structural features of the stalk intermediates. PMID:11806930

  3. Federal Government Energy Management and Conservation Programs Fiscal Year 2008

    SciTech Connect

    None, None

    2014-03-01

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energy Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).

  4. Plant Profiles - Industrial Energy Management in Action

    SciTech Connect

    2001-02-01

    This 24-page brochure profiles industrial manufacturing firms who are achieving significant energy savings in their plants. The DOE Office of Industrial Technologies six plant-of-the-year nominees are featured, and an additional 10 projects from other companies are also highlighted. Information on OIT's awards and recognition process, and information on OIT and BestPractices is also included.

  5. Indoor Air Pollution: An Energy Management Problem?

    ERIC Educational Resources Information Center

    Cousins, David M.; Kulba, John W.

    1987-01-01

    Energy conservation measures have led to airtight buildings and reduced levels of ventilation resulting in indoor air pollution. Five kinds of contaminants--tobacco smoke, combustion products, microorganisms, organic compounds, and radon--are described, their hazards considered, and countermeasures outlined. (MLF)

  6. Creative Energy Management Can Save Money.

    ERIC Educational Resources Information Center

    Rose, Patricia

    1984-01-01

    Schools can launch energy conservation programs with simple money-saving measures like improving boiler maintenance, recalibrating utility meters, and obtaining preferred utility rates. Becoming more assertive in the marketplace and using "creative financing" when needed, they can then reinvest their savings in more extensive projects. (MCG)

  7. Energy Management Can Save More than Wattage.

    ERIC Educational Resources Information Center

    Ringel, Robert F.

    1982-01-01

    The value of lighting benefits often exceeds the value of the energy savings. Campus security was enhanced at Central Michigan University by the installation of high pressure sodium lamps with wattages that greatly increased existing lighting levels, which permitted reduced security patrols. (Author/MLF)

  8. 3 CFR - Federal Leadership on Energy Management

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... consensus-based, industry-standard Green Button data access system (Green Button) and the Environmental... web-based tracking system established under section 543(f)(7)(B) of NECPA (42 U.S.C. 8253(f)(7)(B... data access system” or “Green Button” means the system developed by the North American Energy...

  9. Deep Energy Retrofit Guidance for the Building America Solutions Center

    SciTech Connect

    Less, Brennan; Walker, Iain

    2015-01-01

    The U.S. DOE Building America program has established a research agenda targeting market-relevant strategies to achieve 40% reductions in existing home energy use by 2030. Deep Energy Retrofits (DERs) are part of the strategy to meet and exceed this goal. DERs are projects that create new, valuable assets from existing residences, by bringing homes into alignment with the expectations of the 21st century. Ideally, high energy using, dated homes that are failing to provide adequate modern services to their owners and occupants (e.g., comfortable temperatures, acceptable humidity, clean, healthy), are transformed through comprehensive upgrades to the building envelope, services and miscellaneous loads into next generation high performance homes. These guidance documents provide information to aid in the broader market adoption of DERs.

  10. Closing the Loop--Improving Energy Management in Schools. Energy Research Group Report.

    ERIC Educational Resources Information Center

    Isaacs, Nigel; Donn, Michael

    A study of the energy savings potential in New Zealand schools demonstrates that considerable reductions in energy costs can be achieved through energy management. An initial examination of available 1985 light, heat, and water expenditures for 268 secondary schools (84 percent of the secondary schools in New Zealand) is followed by the selection…

  11. Energy Management for Human Service Agencies. Second Edition.

    ERIC Educational Resources Information Center

    Academy for Educational Development, Washington, DC.

    Concerned about the effect rising energy costs would have on their local affiliates, building consultants for national social welfare agencies have been advocating the initiation of energy management and conservation programs. This manual, a three-part educational and planning tool, is a key element in a program developed to help local agencies…

  12. Ermod: fast and versatile computation software for solvation free energy with approximate theory of solutions.

    PubMed

    Sakuraba, Shun; Matubayasi, Nobuyuki

    2014-08-05

    ERmod is a software package to efficiently and approximately compute the solvation free energy using the method of energy representation. Molecular simulation is to be conducted at two condensed-phase systems of the solution of interest and the reference solvent with test-particle insertion of the solute. The subprogram ermod in ERmod then provides a set of energy distribution functions from the simulation trajectories, and another subprogram slvfe determines the solvation free energy from the distribution functions through an approximate functional. This article describes the design and implementation of ERmod, and illustrates its performance in solvent water for two organic solutes and two protein solutes. Actually, the free-energy computation with ERmod is not restricted to the solvation in homogeneous medium such as fluid and polymer and can treat the binding into weakly ordered system with nano-inhomogeneity such as micelle and lipid membrane. ERmod is available on web at http://sourceforge.net/projects/ermod.

  13. Privatizing policy: Market solutions to energy and environmental problems

    SciTech Connect

    Stroup, R.

    1995-12-31

    This paper discusses how and why privatization can improve policy, not only in terms of managing production, but also in terms of regulation. Three major aspects of privatization are discussed. The importance for the environment of economic efficiency and prosperity is examined. The role of private law and a rights-based policy for controlling pollution is considered. Finally the claim that privatization would replace farsighted government decisions with shortsighted decisions by owners is examined. 83 refs., 2 figs.

  14. Energy management strategy based on fuzzy logic for a fuel cell hybrid bus

    NASA Astrophysics Data System (ADS)

    Gao, Dawei; Jin, Zhenhua; Lu, Qingchun

    Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus.

  15. The Energy Crisis in the Public Schools; Alternative Solutions.

    ERIC Educational Resources Information Center

    Grossbach, Wilmar; Shaffer, William

    One hundred and eighty school personnel held a workshop with representatives of the petroleum, natural gas, and electrical power industries. The objectives of the workshop were (1) to provide participants with a common body of knowledge and a common understanding of the energy crisis and its implications for the public schools, (2) to delineate…

  16. Energy storage management system with distributed wireless sensors

    DOEpatents

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  17. Fuzzy-Logic Subsumption Controller for Home Energy Management Systems

    SciTech Connect

    Ainsworth, Nathan; Johnson, Brian; Lundstrom, Blake

    2015-10-06

    Home Energy Management Systems (HEMS) are controllers that manage and coordinate the generation, storage, and loads in a home. These controllers are increasingly necessary to ensure that increasing penetrations of distributed energy resources are used effectively and do not disrupt the operation of the grid. In this paper, we propose a novel approach to HEMS design based on behavioral control methods, which do not require accurate models or predictions and are very responsive to changing conditions. We develop a proof-of-concept behavioral HEMS controller and show by simulation on an example home energy system that it capable of making context-dependent tradeoffs between goals under challenging conditions.

  18. Freescale Semiconductor Successfully Implements an Energy Management System

    SciTech Connect

    2011-06-30

    Through the Superior Energy Performance (SEP) plant certification program, Freescale Semiconductor implemented projects at the company's Oak Hill Fab plant that reduced annual energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than $2 million each year. The plant is now certified at the SEP silver level, and has a management system in place to proactively manage the facility's energy resources in the future.

  19. SPS Energy Conversion Power Management Workshop

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Energy technology concerning photovoltaic conversion, solar thermal conversion systems, and electrical power distribution processing is discussed. The manufacturing processes involving solar cells and solar array production are summarized. Resource issues concerning gallium arsenides and silicon alternatives are reported. Collector structures for solar construction are described and estimates in their service life, failure rates, and capabilities are presented. Theories of advanced thermal power cycles are summarized. Power distribution system configurations and processing components are presented.

  20. Measuring and Managing Cleanroom Energy Use

    SciTech Connect

    Tschudi, William; Mills, Evan; Xu, Tenfang; Rumsey, Peter

    2005-11-15

    Combining high air-recirculation rates and energy-intensive processes, cleanrooms are 20 to 100 times as costly to operate on a per-square-foot basis as conventional commercial buildings. Additionally, they operate 24 hr a day, seven days a week, which means their electricity demand always is contributing to peak utility-system demand, an important fact given increasing reliance on time-dependent tariffs.

  1. Energy Management Programs at the John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Huang, Jeffrey H.

    2011-01-01

    The Energy Management internship over the summer of 2011 involved a series of projects related to energy management on the John. F. Kennedy Space Center (KSC). This internship saved KSC $14.3 million through budgetary projections, saved KSC $400,000 through implementation of the recycling program, updated KSC Environmental Management System's (EMS) water and energy-related List of Requirements (LoR) which changed 25.7% of the list, provided a incorporated a 45% design review of the Ordnance Operations Facility (OOF) which noted six errors within the design plans, created a certification system and timeline for implementation regarding compliance to the federal Guiding Principles, and gave off-shore wind as the preferred alternative to on-site renewable energy generation.

  2. Energy management study: A proposed case of government building

    NASA Astrophysics Data System (ADS)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    2015-05-01

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.

  3. Energy management study: A proposed case of government building

    SciTech Connect

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    2015-05-15

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.

  4. Efficiency Mode of Energy Management based on Optimal Flight Path

    NASA Astrophysics Data System (ADS)

    Yang, Ling-xiao

    2016-07-01

    One new method of searching the optimal flight path in target function is put forward, which is applied to energy section for reentry flight vehicle, and the optimal flight path in which the energy is managed to decline rapidly, is settled by this design. The research for energy management is meaningful for engineering, it can also improve the applicability and flexibility for vehicle. The angle-of-attack and the bank angle are used to regulate energy and range at unpowered reentry flight as control variables. Firstly, the angle-of-attack section for minimum lift-to-drag ratio is ensured by the relation of range and lift-to-drag ratio. Secondly, build the secure boundary for flight corridor by restrictions in flight. Thirdly, the D-e section is optimized for energy expending in corridor by the influencing rule of the D-e section and range. Finally, compare this design method with the traditional Pseudo-spectral method. Moreover, energy-managing is achieved by cooperating lateral motion, and the optimized D-e section is tracked to prove the practicability of programming flight path with energy management.

  5. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    SciTech Connect

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  6. Wormhole solutions in f(R) gravity satisfying energy conditions

    NASA Astrophysics Data System (ADS)

    Mazharimousavi, S. Habib; Halilsoy, M.

    2016-10-01

    Without reference to exotic sources construction of viable wormholes in Einstein’s general relativity remained ever a myth. With the advent of modified theories, however, specifically the f(R) theory, new hopes arose for the possibility of such objects. From this token, we construct traversable wormholes in f(R) theory supported by a fluid source which respects at least the weak energy conditions. We provide an example (Example 1) of asymptotically flat wormhole in f(R) gravity without ghosts.

  7. Microgrid Enabled Distributed Energy Solutions (MEDES) - Fort Bliss Military Reservation

    DTIC Science & Technology

    2014-04-01

    timed, and tested thoroughly to ensure no conflicts of authority. Although not a major issue, separate data loggers were used to collect baseline...from the data loggers approximately quarterly. The complete pool of data was sufficient to assess the performance objectives. 5.4.2 Technology...RESULTS The baseline characterization data was collected by energy meters and associated data loggers , described in more detail in the Microgrid

  8. TechSolutions 11: An Introduction to Power and Energy

    DTIC Science & Technology

    2009-01-01

    AMMTIAC and WSTIAC, respectively), which are operated by Alion Science and Technology. He has authored numerous technical papers, reports , and...comprehensive, but it does provide a solid background for many of the technical areas of power and energy presented in the other articles in this...publication. http://wstiac.alionscience.com/quarterly http://wstiac.alionscience.com/quarterly Report Documentation Page Form ApprovedOMB No. 0704-0188

  9. Power management for energy harvesting wireless sensors

    NASA Astrophysics Data System (ADS)

    Arms, S. W.; Townsend, C. P.; Churchill, D. L.; Galbreath, J. H.; Mundell, S. W.

    2005-05-01

    The objective of this work was to demonstrate smart wireless sensing nodes capable of operation at extremely low power levels. These systems were designed to be compatible with energy harvesting systems using piezoelectric materials and/or solar cells. The wireless sensing nodes included a microprocessor, on-board memory, sensing means (1000 ohm foil strain gauge), sensor signal conditioning, 2.4 GHz IEEE 802.15.4 radio transceiver, and rechargeable battery. Extremely low power consumption sleep currents combined with periodic, timed wake-up was used to minimize the average power consumption. Furthermore, we deployed pulsed sensor excitation and microprocessor power control of the signal conditioning elements to minimize the sensors" average contribution to power draw. By sleeping in between samples, we were able to demonstrate extremely low average power consumption. At 10 Hz, current consumption was 300 microamps at 3 VDC (900 microwatts); at 5 Hz: 400 microwatts, at 1 Hz: 90 microwatts. When the RF stage was not used, but data were logged to memory, consumption was further reduced. Piezoelectric strain energy harvesting systems delivered ~2000 microwatts under low level vibration conditions. Output power levels were also measured from two miniature solar cells; which provided a wide range of output power (~100 to 1400 microwatts), depending on the light type & distance from the source. In summary, system power consumption may be reduced by: 1) removing the load from the energy harvesting & storage elements while charging, 2) by using sleep modes in between samples, 3) pulsing excitation to the sensing and signal conditioning elements in between samples, and 4) by recording and/or averaging, rather than frequently transmitting, sensor data.

  10. Optimization-Based Management of Energy Systems

    DTIC Science & Technology

    2011-05-11

    initial cost with renewable usage constraints NC CO OK NY TX Grid Yes, unlimited Yes, unlimited Yes, unlimited Yes, unlimited Yes, unlimited Solar PV (KW...35 MW 0 0 0 20 MW Wind turbines(kW) 65 MW 70 MW 65 MW 55 MW 50 MW CHP (microturbines+absChiller) 5 MW microturbines 17.5 MW microturbines 35 MW...optimized 0 0.5 1 1.5 2 2.5 3 3.5 4 x 10 6 Total Cost Grid Energy Cost Grid Demand Cost Heating Cost CHP Natural Gas Cost Diesel Cost Annual Cost

  11. 10 CFR 905.1 - What are the purposes of the Energy Planning and Management Program?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... supporting customer integrated resource planning (IRP); demand-side management (DSM), including energy... Management Program? 905.1 Section 905.1 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM General Provisions § 905.1 What are the purposes of the Energy Planning and Management Program?...

  12. Merging nitrogen management and renewable energy needs.

    PubMed

    Wilson, E; Chapman, P J; McDonald, A

    2001-11-22

    The ARBRE (ARable Biomass Renewable Energy) project, the first large-scale wood-fueled electricity generating plant in the U.K., represents a significant development in realising British and European policy objectives on renewable energy. The plant is fueled by a mix of wood from short rotation coppice (SRC) and forest residues. Where feasible, composted/conditioned sewage sludge is applied to coppice sites to increase yields and improve soil structure. In the Yorkshire Water region, typical total N:P:K composition of composted/conditioned sludge is 2.9:3.8:0.3, respectively. Sludge application is calculated on the basis of total nitrogen (N) content to achieve 750 kg N ha(-1), for 3 years" requirement. Willow coppice forms a dense, widely spaced, root network, which, with its long growing season, makes it an effective user of nutrients. This, in combination with willow"s use as a nonfood, nonfodder crop, makes it an attractive route for the recycling of sewage sludge in the absence of sea disposal, banned under the EC Urban Waste Water Treatment Directive (UWWTD). Further work is required on the nutritional requirements of SRC in order to understand better the quantities of sludge that can be applied to SRC without having a detrimental impact on the environment. This paper suggests the source of N rerouting under the UWWTD and suggests the likely expansion of SRC as an alternative recycling pathway.

  13. Optimal Management and Design of Energy Systems under Atmospheric Uncertainty

    NASA Astrophysics Data System (ADS)

    Anitescu, M.; Constantinescu, E. M.; Zavala, V.

    2010-12-01

    The generation and distpatch of electricity while maintaining high reliability levels are two of the most daunting engineering problems of the modern era. This was demonstrated by the Northeast blackout of August 2003, which resulted in the loss of 6.2 gigawatts that served more than 50 million people and which resulted in economic losses on the order of $10 billion. In addition, there exist strong socioeconomic pressures to improve the efficiency of the grid. The most prominent solution to this problem is a substantial increase in the use of renewable energy such as wind and solar. In turn, its uncertain availability—which is due to the intrinsic weather variability—will increase the likelihood of disruptions. In this endeavors of current and next-generation power systems, forecasting atmospheric conditions with uncertainty can and will play a central role, at both the demand and the generation ends. User demands are strongly correlated to physical conditions such as temperature, humidity, and solar radiation. The reason is that the ambient temperature and solar radiation dictate the amount of air conditioning and lighting needed in residential and commercial buildings. But these potential benefits would come at the expense of increased variability in the dynamics of both production and demand, which would become even more dependent on weather state and its uncertainty. One of the important challenges for energy in our time is how to harness these benefits while “keeping the lights on”—ensuring that the demand is satisfied at all times and that no blackout occurs while all energy sources are optimally used. If we are to meet this challenge, accounting for uncertainty in the atmospheric conditions is essential, since this will allow minimizing the effects of false positives: committing too little baseline power in anticipation of demand that is underestimated or renewable energy levels that fail to materialize. In this work we describe a framework for the

  14. Smart Energy Management of Multiple Full Cell Powered Applications

    SciTech Connect

    Mohammad S. Alam

    2007-04-23

    In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.

  15. GD Friend, Inc. d/b/a Everlast Home Energy Solutions Information Sheet

    EPA Pesticide Factsheets

    GD Friend, Inc. d/b/a Everlast Home Energy Solutions (the Company) is located in Anaheim, California. The settlement involves renovation activities conducted at properties constructed prior to 1978, located in Anaheim and La Verne, California.

  16. Characterizing multiple solutions to the time-energy canonical commutation relation via internal symmetries

    SciTech Connect

    Caballar, Roland Cristopher F.; Ocampo, Leonard R.; Galapon, Eric A.

    2010-06-15

    Internal symmetries can be used to classify multiple solutions to the time-energy canonical commutation relation (TE-CCR). The dynamical behavior of solutions to the TE-CCR possessing particular internal symmetries involving time reversal differ significantly from solutions to the TE-CCR without those particular symmetries, implying a connection between the internal symmetries of a quantum system, its internal unitary dynamics, and the TE-CCR.

  17. Energy Technology Solutions: Public-Private Partnerships Transforming Industry - December 2010

    SciTech Connect

    none,

    2010-12-01

    AMO's research and development partnerships with industry have resulted in more than 220 technologies and other solutions that can be purchased today. This document includes a description of each solution, its benefits, and vendor contact information. The document also identifies emerging technologies and other resources to help industry save energy.

  18. Managing Your Home's Energy Dollar: An Energy Management Workbook for the Homeowner.

    ERIC Educational Resources Information Center

    Energy Information Associates, Inc., Littleton, CO.

    This workbook is intended to teach the homeowner some actions to be taken in the home to conserve energy and reduce energy-related costs. The workbook is arranged around five steps: (1) read utility meters, (2) study utility bills, (3) "tune-up" home energy systems, (4) make informed decisions about energy conservation products, and (5)…

  19. Improving energy efficiency via smart building energy management systems. A comparison with policy measures

    SciTech Connect

    Rocha, Paula; Siddiqui, Afzal; Stadler, Michael

    2014-12-09

    In this study, to foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end, we present an integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures.

  20. Decreasing Stress among Nurse Managers: A Long-Term Solution.

    ERIC Educational Resources Information Center

    Judkins, Sharon K.; Ingram, Melba

    2002-01-01

    Hospital nursing managers (n=31) in a rural Texas hospital completed a self-paced module on stress and hardiness (beliefs related to control, commitment, and challenge). Pre/posttest scores showed the module had a significant effect on understanding of stress and coping and increased their hardiness levels. (Contains 25 references.) (SK)

  1. Managing an outpatient parenteral antibiotic therapy team: challenges and solutions

    PubMed Central

    Halilovic, Jenana; Christensen, Cinda L; Nguyen, Hien H

    2014-01-01

    Outpatient parenteral antimicrobial therapy (OPAT) programs should strive to deliver safe, cost effective, and high quality care. One of the keys to developing and sustaining a high quality OPAT program is to understand the common challenges or barriers to OPAT delivery. We review the most common challenges to starting and managing an OPAT program and give practical advice on addressing these issues. PMID:24971015

  2. Technology Solutions Case Study: Moisture Management of High-Walls

    SciTech Connect

    2013-12-01

    Moisture management of high-R walls is important to ensure optimal performance. This case study, developed by Building America team Building Science Corporation, focuses on how eight high-R walls handle the three main sources of moisture—construction moisture, air leakage condensation, and bulk water leaks.

  3. Sustainable Energy Solutions Task 5.1: Expand the Number of Faculty Working in Wind Energy: Wind Energy Storage

    SciTech Connect

    Twomey, Janet M.

    2010-03-01

    Energy storage to reduce peak-load demands on utilities is emerging as an important way to address the intermittency of renewable energy resources. Wind energy produced in the middle of the night may be wasted unless it can be stored, and conversely, solar energy production could be used after the sun goes down if we had an efficient way to store it. It is uses an electrochemical process to convert hydrogen gas into electricity. The role of fuel cells in energy storage is a very important criteria and it is compared with regular batteries for the advantages of fuel cells over the latter. For this reason fuel cells can be employed. PEM fuel cells can be effectively used for this reason. But the performance and durability of PEM fuel cells are significantly affected by the various components used in a PEM cell. Several parameters affect the performance and durability of fuel cells. They are water management, degradation of components, cell contamination, reactant starvation and thermal management. Water management is the parameter which plays a major role in the performance of a fuel cell. Based on the reviews, improvement of condensation on the cathode side of a fuel cell is expected to improve the performance of the fuel cell by reducing cathode flooding. Microchannels and minichannels can enhance condensation on the cathode side of a fuel cell. Computational fluid dynamics (CFD) analysis was performed to evaluate and compare the condensation of steam in mini and microchannels with hydraulic diameter of 2mm, 2.66mm, 200µm and 266µm respectively. The simulation was run at various mass flux values ranging from 0.5 kg/m2s and 4 kg/m2s. The length of the mini and microchannels were in the range of 20 mm to 100 mm. CFD software’s GAMBIT and FLUENT were used for simulating the condensation process through the mini and microchannels. Steam flowed through the channels, whose walls were cooled by natural convection of air at room temperature. The

  4. Energy dispersive X-Ray fluorescence determination of thorium in phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Mirashi, N. N.; Dhara, Sangita; Kumar, S. Sanjay; Chaudhury, Satyajeet; Misra, N. L.; Aggarwal, S. K.

    2010-07-01

    Energy dispersive X-ray fluorescence studies on determination of thorium (in the range of 7 to 137 mg/mL) in phosphoric acid solutions obtained by dissolution of thoria in autoclave were made. Fixed amounts of Y internal standard solutions, after dilution with equal amount of phosphoric acid, were added to the calibration as well as sample solutions. Solution aliquots of approximately 2-5 µL were deposited on thick absorbent sheets to absorb the solutions and the sheets were presented for energy dispersive X-ray fluorescence measurements. A calibration plot was made between intensity ratios (Th Lα/Y Kα) against respective amounts of thorium in the calibration solutions. Thorium amounts in phosphoric acid samples were determined using their energy dispersive X-ray fluorescence spectra and the above calibration plot. The energy dispersive X-ray fluorescence results, thus obtained, were compared with the corresponding gamma ray spectrometry results and were found to be within average deviation of 2.6% from the respective gamma ray spectrometry values. The average precision obtained in energy dispersive X-ray fluorescence determinations was found to be 4% (1 σ). The energy dispersive X-ray fluorescence method has an advantage over gamma ray spectrometry for thorium determination as the amount of sample required and measurement time is far less compared to that required in gamma ray spectrometry.

  5. Keynote address: Reinventing fire: Physics + markets = energy solutions

    SciTech Connect

    Lovins, Amory B.

    2015-03-30

    Rocky Mountain Institute's multi-year, 61-author, peer-reviewed Reinventing Fire synthesis showed how the U.S. can realistically run a 2.6× bigger U.S. economy in 2050 with no oil, coal, or nuclear energy, one-third less natural gas, tripled efficiency, and 74% renewable supplies (80% for electricity). This transition, at historically reasonable rates, could be led by business for profit, applying normal rates of return, with some innovative subnational and administrative policies but no Acts of Congress. Excluding carbon emissions and all other externalities, the net present value would be $5 trillion more favorable than business-as-usual, averaging a 14% Internal Rate of Return.

  6. Keynote address: Reinventing fire: Physics + markets = energy solutions

    NASA Astrophysics Data System (ADS)

    Lovins, Amory B.

    2015-03-01

    Rocky Mountain Institute's multi-year, 61-author, peer-reviewed Reinventing Fire synthesis showed how the U.S. can realistically run a 2.6× bigger U.S. economy in 2050 with no oil, coal, or nuclear energy, one-third less natural gas, tripled efficiency, and 74% renewable supplies (80% for electricity). This transition, at historically reasonable rates, could be led by business for profit, applying normal rates of return, with some innovative subnational and administrative policies but no Acts of Congress. Excluding carbon emissions and all other externalities, the net present value would be 5 trillion more favorable than business-as-usual, averaging a 14% Internal Rate of Return.

  7. Advanced Energy Storage Management in Distribution Network

    SciTech Connect

    Liu, Guodong; Ceylan, Oguzhan; Xiao, Bailu; Starke, Michael R; Ollis, T Ben; King, Daniel J; Irminger, Philip; Tomsovic, Kevin

    2016-01-01

    With increasing penetration of distributed generation (DG) in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative mixed integer quadratic constrained quadratic programming model to optimize the operation of a three phase unbalanced distribution system with high penetration of Photovoltaic (PV) panels, DG and energy storage (ES) is developed. The proposed model minimizes not only the operating cost, including fuel cost and purchasing cost, but also voltage deviations and power loss. The optimization model is based on the linearized sensitivity coefficients between state variables (e.g., node voltages) and control variables (e.g., real and reactive power injections of DG and ES). To avoid slow convergence when close to the optimum, a golden search method is introduced to control the step size and accelerate the convergence. The proposed algorithm is demonstrated on modified IEEE 13 nodes test feeders with multiple PV panels, DG and ES. Numerical simulation results validate the proposed algorithm. Various scenarios of system configuration are studied and some critical findings are concluded.

  8. E-Learning Barriers and Solutions to Knowledge Management and Transfer

    ERIC Educational Resources Information Center

    Oye, Nathaniel David; Salleh, Mazleena

    2013-01-01

    This paper present a systematic overview of barriers and solutions of e-learning in knowledge management (KM) and knowledge transfer (KT) with more focus on organizations. The paper also discusses KT in organizational settings and KT in the field of e-learning. Here, an e-learning initiative shows adaptive solutions to overcome knowledge transfer…

  9. Scalable Deployment of Advanced Building Energy Management Systems

    DTIC Science & Technology

    2013-05-01

    January 2011, respectively. These savings were smaller compared with savings opportunities in the cooling season because of the cold weather during the...FINAL REPORT Scalable Deployment of Advanced Building Energy Management Systems ESTCP Project EW-201015 MAY 2013 Veronica Adetola... Management Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER

  10. Management of systemic lupus erythematosus during pregnancy: challenges and solutions

    PubMed Central

    Knight, Caroline L; Nelson-Piercy, Catherine

    2017-01-01

    Systemic lupus erythematosus (SLE) is a chronic, multisystem autoimmune disease predominantly affecting women, particularly those of childbearing age. SLE provides challenges in the prepregnancy, antenatal, intrapartum, and postpartum periods for these women, and for the medical, obstetric, and midwifery teams who provide their care. As with many medical conditions in pregnancy, the best maternal and fetal–neonatal outcomes are obtained with a planned pregnancy and a cohesive multidisciplinary approach. Effective prepregnancy risk assessment and counseling includes exploration of factors for poor pregnancy outcome, discussion of risks, and appropriate planning for pregnancy, with consideration of discussion of relative contraindications to pregnancy. In pregnancy, early referral for hospital-coordinated care, involvement of obstetricians and rheumatologists (and other specialists as required), an individual management plan, regular reviews, and early recognition of flares and complications are all important. Women are at risk of lupus flares, worsening renal impairment, onset of or worsening hypertension, preeclampsia, and/or venous thromboembolism, and miscarriage, intrauterine growth restriction, preterm delivery, and/or neonatal lupus syndrome (congenital heart block or neonatal lupus erythematosus). A cesarean section may be required in certain obstetric contexts (such as urgent preterm delivery for maternal and/or fetal well-being), but vaginal birth should be the aim for the majority of women. Postnatally, an ongoing individual management plan remains important, with neonatal management where necessary and rheumatology followup. This article explores the challenges at each stage of pregnancy, discusses the effect of SLE on pregnancy and vice versa, and reviews antirheumatic medications with the latest guidance about their use and safety in pregnancy. Such information is required to effectively and safely manage each stage of pregnancy in women with SLE

  11. Management of systemic lupus erythematosus during pregnancy: challenges and solutions.

    PubMed

    Knight, Caroline L; Nelson-Piercy, Catherine

    2017-01-01

    Systemic lupus erythematosus (SLE) is a chronic, multisystem autoimmune disease predominantly affecting women, particularly those of childbearing age. SLE provides challenges in the prepregnancy, antenatal, intrapartum, and postpartum periods for these women, and for the medical, obstetric, and midwifery teams who provide their care. As with many medical conditions in pregnancy, the best maternal and fetal-neonatal outcomes are obtained with a planned pregnancy and a cohesive multidisciplinary approach. Effective prepregnancy risk assessment and counseling includes exploration of factors for poor pregnancy outcome, discussion of risks, and appropriate planning for pregnancy, with consideration of discussion of relative contraindications to pregnancy. In pregnancy, early referral for hospital-coordinated care, involvement of obstetricians and rheumatologists (and other specialists as required), an individual management plan, regular reviews, and early recognition of flares and complications are all important. Women are at risk of lupus flares, worsening renal impairment, onset of or worsening hypertension, preeclampsia, and/or venous thromboembolism, and miscarriage, intrauterine growth restriction, preterm delivery, and/or neonatal lupus syndrome (congenital heart block or neonatal lupus erythematosus). A cesarean section may be required in certain obstetric contexts (such as urgent preterm delivery for maternal and/or fetal well-being), but vaginal birth should be the aim for the majority of women. Postnatally, an ongoing individual management plan remains important, with neonatal management where necessary and rheumatology followup. This article explores the challenges at each stage of pregnancy, discusses the effect of SLE on pregnancy and vice versa, and reviews antirheumatic medications with the latest guidance about their use and safety in pregnancy. Such information is required to effectively and safely manage each stage of pregnancy in women with SLE.

  12. Management Architecture and Solutions for French Tactical Systems

    DTIC Science & Technology

    2006-10-01

    automated processes that can last no more than a few seconds, possibly minutes in semi-automatic modes. The principle relies on Autonomous ...Finally, the MBs is at the core element of an Autonomous Reconfiguration Management (ARM) and is able to compute the new configuration to be applied...with IP Crypto and DMZ) TOC: Operational Center (Central Mgt & Services) MC VPN NS VPN CNRCNR Secured CNR Network Vehicule LAN CNR Low capacity Radio

  13. Mixed addenda polyoxometalate "solutions" for stationary energy storage.

    PubMed

    Pratt, Harry D; Anderson, Travis M

    2013-11-28

    A series of redox flow batteries utilizing mixed addenda (vanadium and tungsten), phosphorus-based polyoxometalates (A-α-PV3W9O40(6-), B-α-PV3W9O40(6-), and P2V3W15O62(9-)) were prepared and tested. Cyclic voltammetry and bulk electrolysis experiments on the Keggin compounds (A-α-PV3W9O40(6-) and B-α-PV3W9O40(6-)) established that the vanadium centers of these compounds could be used as the positive electrode (PV(IV)3W(VI)9O40(9-)/PV(V)3W(VI)9O40(6-)), and the tungsten centers could be used as the negative electrode (PV(IV)3W(VI)9O40(9-)/PV(IV)3W(V)3W(VI)6O40(12-)) since these electrochemical processes are separated by about 1 V. The results showed that A-α-PV3W9O40(6-) (where A indicates adjacent, corner-sharing vanadium atoms) had coulombic efficiencies (charge in divided by charge out) above 80%, while the coulombic efficiency of B-α-PV3W9O40(6-) (where B indicates adjacent edge-sharing vanadium atoms) fluctuated between 50% and 70% during cycling. The electrochemical yield, a measurement of the actual charge or discharge observed in comparison with the theoretical charge, was between 40% and 50% for A-α-PV3W9O40(6-), and (31)P NMR showed small amounts of PV2W10O40(5-) and PVW11O40(4-) formed with cycling. The electrochemical yield for B-α-PV3W9O40(6-) decreased from 90% to around 60% due to precipitation of the compound on the electrode, but there were no decomposition products detected in the solution by (31)P NMR, and infrared data on the electrode suggested that the cluster remained intact. Testing of P2V3W15O62(9-) (Wells-Dawson structure) suggested higher charge density clusters were not as suitable as the Keggin structures for a redox flow battery due to the poor stability and inaccessibility of the highly reduced materials.

  14. Automated lettuce nutrient solution management using an array of ion-selective electrodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Automated sensing and control of macronutrients in hydroponic solutions would allow more efficient management of nutrients for crop growth in closed systems. This paper describes the development and evaluation of a computer-controlled nutrient management system with an array of ion-selective electro...

  15. Managing state energy conservation programs - The Minnesota experience

    NASA Astrophysics Data System (ADS)

    Hirst, E.; Armstrong, J. R.

    1980-11-01

    The development and operation of energy conservation programs in the Minnesota Energy Agency (MEA) are discussed. The MEA has responsibility for voluntary conservation efforts, regulating energy efficient devices, and grant programs to audit and retrofit public buildings. The MEA has developed the plan under which the Minnesota utilities will provide conservation services to residential customers, including an on-site home energy audit. The relation between the Department of Energy (DOE) and state energy offices in implementing programs is considered. The DOE has provided technical assistance to the states through the development of a model audit. Steps are discussed to reduce the burdens imposed on the states by program planning, funding, and management responsibilities, including the consolidation of several existing state conservation programs. Improved policy analysis is suggested to correct inefficiencies in government programs.

  16. Environmental Management Assessment of the National Renewable Energy Laboratory (NREL)

    SciTech Connect

    Not Available

    1993-09-01

    This report documents the results of the environmental management assessment performed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. The onsite portion of the assessment was conducted from September 14 through September 27, 1993, by DOE`s Office of Environmental Audit (EH-24) located within the Office of the Assistant Secretary for Environment, Safety, and Health (EH-1). During this assessment, the activities conducted by the assessment team included reviews of internal documents and reports from previous audits and assessments; interviews with US Department of Energy (DOE) and NREL contractor personnel; and inspections and observations of selected facilities and operations. The environmental management assessment of NREL focused on the adequacy of environmental management systems and assessed the formality of programs employing an approach that recognizes the level of formality implementing environmental programs may vary commensurate with non-nuclear research and development operations. The Assessment Team evaluated environmental monitoring, waste management and National Environmental Policy Act (NEPA) activities at NREL, from a programmatic standpoint. The results of the evaluation of these areas are contained in the Environmental Protection Programs section of this report. The scope of the NREL Environmental Management Assessment was comprehensive and included all areas of environmental management. At the same time, environmental monitoring, waste management, and NEPA activities were evaluated to develop a programmatic understanding of these environmental disciplines, building upon the results of previous appraisals, audits, and reviews performed at the NREL.

  17. A systems approach to energy management and policy in commuter rail transportation

    NASA Astrophysics Data System (ADS)

    Owan, Ransome Egimine

    1998-12-01

    This research is motivated by a recognition of energy as a significant part of the transportation problem. Energy is a long-term variable cost that is controllable. The problem is comprised of: the limited supply of energy, chronic energy deficits and oil imports, energy cost, poor fuel substitution, and the undesirable environmental effects of transportation fuels (Green House Gases and global warming). Mass transit systems are energy intensive networks and energy is a direct constraint to the supply of affordable transportation. Commuter railroads are also relatively unresponsive to energy price changes due to travel demand patterns, firm power needs and slow adoption of efficient train technologies. However, the long term energy demand is lacking in existing transportation planning philosophy. In spite of the apparent oversight, energy is as important as urban land use, funding and congestion, all of which merit explicit treatment. This research was conducted in the form of a case study of New Jersey Transit in an attempt to broaden the understanding of the long-term effects of energy in a transportation environment. The systems approach method that is driven by heuristic models was utilized to investigate energy usage, transit peer group efficiency, energy management regimes, and the tradeoffs between energy and transportation, a seldom discussed topic in the field. Implicit in systems thinking is the methodological hunt for solutions. The energy problem was divided into thinking is the methodological hunt for solutions. The energy problem was divided into smaller parts that in turn were simpler to solve. The research presented five heuristic models: Transit Energy Aggregation Model, Structural Energy Consumption Model, Traction Power Consumption Model, Conjunctive Demand Model, and a Managerial Action Module. A putative relationship was established between traction energy, car-miles, seasonal and ambient factors, without inference of direct causality. The co

  18. Energy Management Control Systems: Tools for Energy Savings and Environmental Protection

    NASA Technical Reports Server (NTRS)

    Zsebik, Albin; Zala, Laszlo F.

    2002-01-01

    The change in the price of energy has encouraged the increase of energy efficiency. This report will discuss a tool to promote energy efficiency in intelligent buildings, energy management control systems (EMCS). In addition to the online control of energy production, supply, and consumption, the function of the EMCS is to support short- and long-term planning of the system operation as well as to collect, store, and regularly evaluate operation data. The strategies behind planning and implementing the EMCS as well as the manipulating the resulting data are discussed in this report.

  19. Provenance In Sensor Data Management: A Cohesive, Independent Solution

    SciTech Connect

    Hensley, Zachary P; Sanyal, Jibonananda; New, Joshua Ryan

    2014-01-01

    In today's information-driven workplaces, data is constantly undergoing transformations and being moved around. The typical business-as-usual approach is to use email attachments, shared network locations, databases, and now, the cloud. More often than not, there are multiple versions of the data sitting in different locations and users of this data are confounded by the lack of metadata describing its provenance, or in other words, its lineage. Our project is aimed to solve this issue in the context of sensor data. The Oak Ridge National Laboratory's Building Technologies Research and Integration Center has reconfigurable commercial buildings deployed on the Flexible Research Platforms (FRPs). These FRPs are instrumented with a large number of sensors which measure a number of variables such as HVAC efficiency, relative humidity, and temperature gradients across doors, windows, and walls. Sub-minute resolution data from hundreds of channels is acquired. This sensor data, traditionally, was saved to a shared network location which was accessible to a number of scientists for performing complicated simulation and analysis tasks. The sensor data also participates in elaborate quality assurance exercises as a result of inherent faults. Sometimes, faults are induced to observe building behavior. It became apparent that proper scientific controls required not just managing the data acquisition and delivery, but to also manage the metadata associated with temporal subsets of the sensor data. We built a system named ProvDMS, or Provenance Data Management System for the FRPs, which would both allow researchers to retrieve data of interest as well as trace data lineage. This provides researchers a one-stop shop for comprehensive views of various data transformation allowing researchers to effectively trace their data to its source so that experiments, and derivations of experiments, may be reused and reproduced without much overhead of the repeatability of experiments that

  20. Reaction Pathway and Free Energy Barrier for Urea Elimination in Aqueous Solution

    PubMed Central

    Yao, Min; Chen, Xi; Zhan, Chang-Guo

    2015-01-01

    To accurately predict the free energy barrier for urea elimination in aqueous solution, we examined the reaction coordinates for the direct and water-assisted elimination pathways, and evaluated the corresponding free energy barriers by using the surface and volume polarization for electrostatics (SVPE) model-based first-principles electronic-structure calculations. Based on the computational results, the water-assisted elimination pathway is dominant for urea elimination in aqueous solution, and the corresponding free energy barrier is 25.3 kcal/mol. The free energy barrier of 25.3 kcal/mol predicted for the dominant reaction pathway of urea elimination in aqueous solution is in good agreement with available experimental kinetic data. PMID:25821238

  1. Analytical solution and optimal design for galloping-based piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Tan, T.; Yan, Z.

    2016-12-01

    The performance of the galloping-based piezoelectric energy harvester is usually investigated numerically. Instead of performing case studies by numerical simulations, analytical solutions of the nonlinear distributed parameter model are derived to capture the intrinsic effects of the physical parameters on the performance of such energy harvesters. The analytical solutions are confirmed with the numerical solutions. Optimal performance of such energy harvesters is therefore revealed theoretically. The electric damping due to the electromechanical coupling is defined. The design at the optimal electrical damping with smaller onset speed to galloping, higher harvested power, and acceptable tip displacement is superior than the design at the maximal electrical damping, as long as the optimal electrical damping can be achieved. Otherwise, the design at the maximal electrical damping should be then adopted. As the wind speed and aerodynamic empirical coefficients increase, the tip displacement and harvested power increase. This study provides a theoretical design and optimization procedure for galloping-based piezoelectric energy harvesters.

  2. Technology Solutions for New Homes Case Study: Multifamily Zero Energy Ready Home Analysis

    SciTech Connect

    2016-04-01

    AvalonBay Communities, which is a large multifamily developer, was developing a three-building complex in Elmsford, New York. The buildings were planned to be certified to the ENERGY STAR® Homes Version 3 program. This plan led to AvalonBay partnering with the Advanced Residential Integrated Solutions (ARIES) collaborative, which is a U.S. Department of Energy Building America team. ARIES worked with AvalonBay to redesign the project to comply with Zero Energy Ready Home (ZERH) criteria.

  3. The Solutions Project: Educating the Public and Policy Makers About Solutions to Global Warming, Air Pollution, and Energy Security

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2015-12-01

    Three major global problems of our times are global warming, air pollution mortality and morbidity, and energy insecurity. Whereas, policy makers with the support of the public must implement solutions to these problems, it is scientists and engineers who are best equipped to evaluate technically sound, optimal, and efficient solutions. Yet, a disconnect exists between information provided by scientists and engineers and policies implemented. Part of the reason is that scientific information provided to policy makers and the public is swamped out by information provided by lobbyists and another part is the difficulty in providing information to the hundreds of millions of people who need it rather than to just a few thousand. What other ways are available, aside from issuing press releases on scientific papers, for scientists to disseminate information? Three growing methods are through social media, creative media, and storytelling. The Solutions Project is a non-profit non-governmental organization whose goal is to bring forth scientific information about 100% clean, renewable energy plans to the public, businesses, and policy makers using these and related tools. Through the use of social media, the development of engaging internet and video content, and storytelling, the group hopes to increase the dissemination of information for social good. This talk discusses the history and impacts to date of this group and its methods. Please see www.thesolutionsproject.org and 100.org for more information.

  4. Optimal management of night eating syndrome: challenges and solutions

    PubMed Central

    Kucukgoncu, Suat; Midura, Margaretta; Tek, Cenk

    2015-01-01

    Night Eating Syndrome (NES) is a unique disorder characterized by a delayed pattern of food intake in which recurrent episodes of nocturnal eating and/or excessive food consumption occur after the evening meal. NES is a clinically important disorder due to its relationship to obesity, its association with other psychiatric disorders, and problems concerning sleep. However, NES often goes unrecognized by both health professionals and patients. The lack of knowledge regarding NES in clinical settings may lead to inadequate diagnoses and inappropriate treatment approaches. Therefore, the proper diagnosis of NES is the most important issue when identifying NES and providing treatment for this disorder. Clinical assessment tools such as the Night Eating Questionnaire may help health professionals working with populations vulnerable to NES. Although NES treatment studies are still in their infancy, antidepressant treatments and psychological therapies can be used for optimal management of patients with NES. Other treatment options such as melatonergic medications, light therapy, and the anticonvulsant topiramate also hold promise as future treatment options. The purpose of this review is to provide a summary of NES, including its diagnosis, comorbidities, and treatment approaches. Possible challenges addressing patients with NES and management options are also discussed. PMID:25834450

  5. Optimal management of night eating syndrome: challenges and solutions.

    PubMed

    Kucukgoncu, Suat; Midura, Margaretta; Tek, Cenk

    2015-01-01

    Night Eating Syndrome (NES) is a unique disorder characterized by a delayed pattern of food intake in which recurrent episodes of nocturnal eating and/or excessive food consumption occur after the evening meal. NES is a clinically important disorder due to its relationship to obesity, its association with other psychiatric disorders, and problems concerning sleep. However, NES often goes unrecognized by both health professionals and patients. The lack of knowledge regarding NES in clinical settings may lead to inadequate diagnoses and inappropriate treatment approaches. Therefore, the proper diagnosis of NES is the most important issue when identifying NES and providing treatment for this disorder. Clinical assessment tools such as the Night Eating Questionnaire may help health professionals working with populations vulnerable to NES. Although NES treatment studies are still in their infancy, antidepressant treatments and psychological therapies can be used for optimal management of patients with NES. Other treatment options such as melatonergic medications, light therapy, and the anticonvulsant topiramate also hold promise as future treatment options. The purpose of this review is to provide a summary of NES, including its diagnosis, comorbidities, and treatment approaches. Possible challenges addressing patients with NES and management options are also discussed.

  6. Dental management in patients with hypertension: challenges and solutions

    PubMed Central

    Southerland, Janet H; Gill, Danielle G; Gangula, Pandu R; Halpern, Leslie R; Cardona, Cesar Y; Mouton, Charles P

    2016-01-01

    Hypertension is a chronic illness affecting more than a billion people worldwide. The high prevalence of the disease among the American population is concerning and must be considered when treating dental patients. Its lack of symptoms until more serious problems occur makes the disease deadly. Dental practitioners can often be on the frontlines of prevention of hypertension by evaluating preoperative blood pressure readings, performing risk assessments, and knowing when to consider medical consultation of a hypertensive patient in a dental setting. In addition, routine follow-up appointments and patients seen on an emergent basis, who may otherwise not be seen routinely, allow the oral health provider an opportunity to diagnose and refer for any unknown disease. It is imperative to understand the risk factors that may predispose patients to hypertension and to be able to educate them about their condition. Most importantly, the oral health care provider is in a pivotal position to play an active role in the management of patients presenting with a history of hypertension because many antihypertensive agents interact with pharmacologic agents used in the dental practice. The purpose of this review is to provide strategies for managing and preventing complications when treating the patient with hypertension who presents to the dental office. PMID:27799823

  7. Improved Energy Management System for Low-Voltage, Low-Power Energy Harvesting Sources

    NASA Astrophysics Data System (ADS)

    Newell, D.; Duffy, M.

    2016-11-01

    This paper focuses on improving the energy conversion process for low-voltage energy harvester powered wireless sensors by optimising the conversion stages for pulsed sensor operation. The proposed circuit has been designed to operate efficiently with both a low-voltage low-power energy harvester source and a low-power pulsed load. This ensures that continuous conversion losses are kept to a minimum and power is only delivered to the sensor when required. This has shown an increase in energy delivered to a sensor of up to 10% versus that of the best existing solution.

  8. Waste Material Management: Energy and materials for industry

    SciTech Connect

    Not Available

    1993-05-01

    This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

  9. Energy Management System Successful in Indiana Elementary School.

    ERIC Educational Resources Information Center

    School Business Affairs, 1984

    1984-01-01

    The new Oregon-Davis Elementary School in rural Indiana embodies state-of-the-art energy management. Its environmental systems include thorough insulation, dual heating and cooling equipment for flexible loads, and decentralized computer controls. A heat recovery unit and variable-air-volume discharge ducts also contribute to conservation. (MCG)

  10. Blueprint for Success: An Energy Education Unit Management Plan.

    ERIC Educational Resources Information Center

    National Energy Education Development Project, Reston, VA.

    This energy education unit contains activities and classroom management strategies that emphasize cooperative learning and peer teaching. The activities are designed to develop students' science, math, language arts, and social studies skills and knowledge. Students' critical thinking, leadership, and problem solving skills will be enhanced as…

  11. Managing nut-induced anaphylaxis: challenges and solutions

    PubMed Central

    Lomas, Jeanne M; Järvinen, Kirsi M

    2015-01-01

    The prevalence of peanut and tree nut allergy in the USA has increased, especially in the pediatric population. Nut allergy remains the leading cause of fatal anaphylactic reactions. Management of anaphylaxis includes not only treatment of symptoms during a reaction, but strict dietary avoidance and education on potential situations, which may place the patient at high risk for accidental exposure. Cross-reactivity between various nuts along with various cross-contamination sources should be discussed with all nut-allergic individuals. Exciting research continues to emerge on other potential treatments for patients allergic to nuts, including allergen immunotherapy. Results of such interventions have been encouraging, though further studies are needed regarding safety and long-term outcomes before these can be applied to clinical practice. PMID:26604803

  12. Managing drug-resistant epilepsy: challenges and solutions

    PubMed Central

    Dalic, Linda; Cook, Mark J

    2016-01-01

    Despite the development of new antiepileptic drugs (AEDs), ~20%–30% of people with epilepsy remain refractory to treatment and are said to have drug-resistant epilepsy (DRE). This multifaceted condition comprises intractable seizures, neurobiochemical changes, cognitive decline, and psychosocial dysfunction. An ongoing challenge to both researchers and clinicians alike, DRE management is complicated by the heterogeneity among this patient group. The underlying mechanism of DRE is not completely understood. Many hypotheses exist, and relate to both the intrinsic characteristics of the particular epilepsy (associated syndrome/lesion, initial response to AED, and the number and type of seizures prior to diagnosis) and other pharmacological mechanisms of resistance. The four current hypotheses behind pharmacological resistance are the “transporter”, “target”, “network”, and “intrinsic severity” hypotheses, and these are reviewed in this paper. Of equal challenge is managing patients with DRE, and this requires a multidisciplinary approach, involving physicians, surgeons, psychiatrists, neuropsychologists, pharmacists, dietitians, and specialist nurses. Attention to comorbid psychiatric and other diseases is paramount, given the higher prevalence in this cohort and associated poorer health outcomes. Treatment options need to consider the economic burden to the patient and the likelihood of AED compliance and tolerability. Most importantly, higher mortality rates, due to comorbidities, suicide, and sudden death, emphasize the importance of seizure control in reducing this risk. Overall, resective surgery offers the best rates of seizure control. It is not an option for all patients, and there is often a significant delay in referring to epilepsy surgery centers. Optimization of AEDs, identification and treatment of comorbidities, patient education to promote adherence to treatment, and avoidance of triggers should be periodically performed until further

  13. 77 FR 28594 - Southern Energy Solution Group, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Energy Solution Group, LLC; Supplemental Notice That Initial Market... in the above-referenced proceeding of Southern Energy Solution Group, LLC's application for...

  14. 77 FR 64980 - Noble Americas Energy Solutions LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Noble Americas Energy Solutions LLC; Supplemental Notice That Initial Market... in the above-referenced proceeding of Noble Americas Energy Solutions LLC's application for...

  15. Implicit Solution of Non-Equilibrium Radiation Diffusion Including Reactive Heating Source in Material Energy Equation

    SciTech Connect

    Shumaker, D E; Woodward, C S

    2005-05-03

    In this paper, the authors investigate performance of a fully implicit formulation and solution method of a diffusion-reaction system modeling radiation diffusion with material energy transfer and a fusion fuel source. In certain parameter regimes this system can lead to a rapid conversion of potential energy into material energy. Accuracy in time integration is essential for a good solution since a major fraction of the fuel can be depleted in a very short time. Such systems arise in a number of application areas including evolution of a star and inertial confinement fusion. Previous work has addressed implicit solution of radiation diffusion problems. Recently Shadid and coauthors have looked at implicit and semi-implicit solution of reaction-diffusion systems. In general they have found that fully implicit is the most accurate method for difficult coupled nonlinear equations. In previous work, they have demonstrated that a method of lines approach coupled with a BDF time integrator and a Newton-Krylov nonlinear solver could efficiently and accurately solve a large-scale, implicit radiation diffusion problem. In this paper, they extend that work to include an additional heating term in the material energy equation and an equation to model the evolution of the reactive fuel density. This system now consists of three coupled equations for radiation energy, material energy, and fuel density. The radiation energy equation includes diffusion and energy exchange with material energy. The material energy equation includes reaction heating and exchange with radiation energy, and the fuel density equation includes its depletion due to the fuel consumption.

  16. FEMP (Federal Energy Management Program) presents alternative financing guidance memoranda

    SciTech Connect

    1998-06-01

    Utility financing of energy efficient measures becomes easier to accomplish with the two new alternative financing guidance memoranda, released April 17, 1998, that address the use of utility incentives for Federal facilities. The memoranda have been approved by the Alternative Financing Guidance Committee on the Interagency Energy Management Task Force. The memoranda include: (1) Policy Statement No. 001: Authority to Sole Source Utility Service Contracts as Referenced in Section 152 of the Energy Policy Act (EPACT) of 1992; and (2) Policy Statement No. 002: Congressional Notification for Utility Projects Under the Authority of Section 152 of the Energy Policy Act (EPACT) of 1992. The purpose for developing the financing memoranda was to address specific issues within current Federal procurement regulations that require clarification or guidance. This new guidance will allow for increased use of utility incentives as a means of financing energy efficient and life cycle cost-effective projects in Federal facilities.

  17. Thermodynamic analysis of energy density in pressure retarded osmosis: The impact of solution volumes and costs

    SciTech Connect

    Reimund, Kevin K.; McCutcheon, Jeffrey R.; Wilson, Aaron D.

    2015-08-01

    A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy density of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.

  18. Barriers and solutions to diabetes management: An Indian perspective

    PubMed Central

    Wangnoo, Subhash K.; Maji, Debasish; Das, Ashok Kumar; Rao, P. V.; Moses, Anand; Sethi, Bipin; Unnikrishnan, Ambika Gopalakrishnan; Kalra, Sanjay; Balaji, V.; Bantwal, Ganapathi; Kesavadev, Jothydev; Jain, Sunil M.; Dharmalingam, Mala

    2013-01-01

    India, with one of the largest and most diverse populations of people living with diabetes, experiences significant barriers in successful diabetes care. Limitations in appropriate and timely use of insulin impede the achievement of good glycemic control. The current article aims to identify solutions to barriers in the effective use of insulin therapy viz. its efficacy and safety, impact on convenience and life-style and lack of awareness and education. Therapeutic modalities, which avoid placing an undue burden on patients’ life-style, must be built. These should incorporate patient-centric paradigms of diabetes care, team-based approach for life-style modification and monitoring of patients’ adherence to therapy. To address the issues in efficacy and safety, long-acting, flat profile basal insulin, which mimics physiological insulin and show fewer hypoglycemic events is needed. In addition, therapy must be linked to monitoring of blood glucose to enable effective use of insulin therapy. In conjunction, wide-ranging efforts must be made to remove negative perception of insulin therapy in the community. Patient- and physician – targeted programs to enhance awareness in various aspects of diabetes care must be initiated across all levels of health-care ensuring uniformity of information. To successfully address the challenges in facing diabetes care, partnerships between various stakeholders in the care process must be explored. PMID:23961474

  19. Solution-Processed Two-Dimensional Metal Dichalcogenide-Based Nanomaterials for Energy Storage and Conversion.

    PubMed

    Cao, Xiehong; Tan, Chaoliang; Zhang, Xiao; Zhao, Wei; Zhang, Hua

    2016-08-01

    The development of renewable energy storage and conversion devices is one of the most promising ways to address the current energy crisis, along with the global environmental concern. The exploration of suitable active materials is the key factor for the construction of highly efficient, highly stable, low-cost and environmentally friendly energy storage and conversion devices. The ability to prepare two-dimensional (2D) metal dichalcogenide (MDC) nanosheets and their functional composites in high yield and large scale via various solution-based methods in recent years has inspired great research interests in their utilization for renewable energy storage and conversion applications. Here, we will summarize the recent advances of solution-processed 2D MDCs and their hybrid nanomaterials for energy storage and conversion applications, including rechargeable batteries, supercapacitors, electrocatalytic hydrogen generation and solar cells. Moreover, based on the current progress, we will also give some personal insights on the existing challenges and future research directions in this promising field.

  20. An overview of the federal energy management toolkit

    SciTech Connect

    Currie, J.W.; Parker, G.; DeVine, K.D.

    1993-08-01

    The federal government is the single largest energy user in the US. The annual cost to the American taxpayer for supplying energy to buildings, facilities, and operations within the federal sector is $5 billion. Several estimates have been produced projecting that up to 40% of this annual cost could be saved through energy efficient actions. Pacific Northwest Laboratory (PNL) and other DOE laboratories provide technical assistance to the Department of Energy (DOE) Federal Energy Management Program (FEMP) and other federal agencies to identify, evaluate, and prioritize the most cost-effective actions to improve energy efficiency and reduce energy costs at federal installations. A key feature of this program is the development and application of a comprehensive set of software tools, analyses, procedures, operations and maintenance approaches, and the transfer of knowledge through technical assistance and demonstration activities. PNL and other federal laboratories are cooperating with FEMP and other federal agencies in applying these tools at over 50 federal sites containing over 60 central utility systems and more than 50,000 buildings and facilities. The overall approach employed by FEMP is fuel- and technology-neutral. This means that by applying the FEMP approach, the least-cost way to provide heat, cooling, and other energy services is identified without regard to whether or not the energy source is electricity, natural gas, or other fuel forms.

  1. Construction materials as a waste management solution for cellulose sludge

    SciTech Connect

    Modolo, R.; Rodrigues, M.; Coelho, I.

    2011-02-15

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.

  2. Seismic risk management solution for nuclear power plants

    SciTech Connect

    Coleman, Justin; Sabharwall, Piyush

    2014-12-01

    Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.

  3. Fluid management in cardiac surgery patients: pitfalls, challenges and solutions.

    PubMed

    Bignami, Elena; Guarnieri, Marcello; Gemma, Marco

    2017-01-17

    Fluid administration is a powerful tool for hemodynamic stabilization as it increases preload and improves cardiac function in fluid-responsive patients. However, there are various types of fluid to choose from. The use of colloids and crystalloids in non-cardiac Intensive Care Units (ICU) has been reported, showing controversial results. Many trials on sepsis in a non-cardiac ICU setting show that colloids, in particular hydroxyethyl starches and gelatins, might have a detrimental effect on kidney function, and on major outcomes such as mortality. Many small randomized clinical trials focusing on coagulation and bleeding show controversial results regarding fluid safety during the perioperative period in cardiac surgery, and in the cardiac ICU. No definitive data are available on the superiority of one fluid compared with another for fluid replacement after cardiac surgery. Only few data are available regarding the impact of fluids on kidney function in the cardiac ICU. On the other hand, there is much evidence showing that fluid administration requires strict protocols and close monitoring. Improved clinical outcomes are evident in protocols for goal-directed therapy. In conclusion, the application of a close monitoring and a pre-defined goal-directed protocol are far more important than the choice of a single fluid. This review examines the available evidence on fluid management in cardiac surgery and in the ICU, and analyzes the key steps of fluid strategy in these settings.

  4. Seismic risk management solution for nuclear power plants

    DOE PAGES

    Coleman, Justin; Sabharwall, Piyush

    2014-12-01

    Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefitmore » of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.« less

  5. Privacy Management and Networked PPD Systems - Challenges Solutions.

    PubMed

    Ruotsalainen, Pekka; Pharow, Peter; Petersen, Francoise

    2015-01-01

    Modern personal portable health devices (PPDs) become increasingly part of a larger, inhomogeneous information system. Information collected by sensors are stored and processed in global clouds. Services are often free of charge, but at the same time service providers' business model is based on the disclosure of users' intimate health information. Health data processed in PPD networks is not regulated by health care specific legislation. In PPD networks, there is no guarantee that stakeholders share same ethical principles with the user. Often service providers have own security and privacy policies and they rarely offer to the user possibilities to define own, or adapt existing privacy policies. This all raises huge ethical and privacy concerns. In this paper, the authors have analyzed privacy challenges in PPD networks from users' viewpoint using system modeling method and propose the principle "Personal Health Data under Personal Control" must generally be accepted at global level. Among possible implementation of this principle, the authors propose encryption, computer understandable privacy policies, and privacy labels or trust based privacy management methods. The latter can be realized using infrastructural trust calculation and monitoring service. A first step is to require the protection of personal health information and the principle proposed being internationally mandatory. This requires both regulatory and standardization activities, and the availability of open and certified software application which all service providers can implement. One of those applications should be the independent Trust verifier.

  6. Construction materials as a waste management solution for cellulose sludge.

    PubMed

    Modolo, R; Ferreira, V M; Machado, L M; Rodrigues, M; Coelho, I

    2011-02-01

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.

  7. Proton and hydride transfers in solution: hybrid QMmm/MM free energy perturbation study

    SciTech Connect

    Ho, L. Lawrence |; Bash, P.A.; Kerell, A.D., Jr

    1996-03-01

    A hybrid quantum and molecular mechanical (QM/MM) free energy perturbation (FEP) method is implemented in the context of molecular dynamics (MD). The semiempirical quantum mechanical (QM) Hamiltonian (Austin Model 1) represents solute molecules, and the molecular mechanical (MM) CHARMM force field describes the water solvent. The QM/MM FEP method is used to calculate the free energy changes in aqueous solution for (1) a proton transfer from methanol to imidazole and (2) a hydride transfer from methoxide to nicotinamide. The QM/MM interaction energies between the solute and solvent arc calibrated to emulate the solute-solvent interaction energies determined at the Hartee-Fock 6-31G(d) level of ab initio theory. The free energy changes for the proton and hydride transfers are calculated to be 15.1 and {minus}6.3 kcal/mol, respectively, which compare favorably with the corresponding experimental values of 12.9 and {minus}7.4 kcal/mol. An estimate of the reliability of the calculations is obtained through the computation of the forward (15.1 and {minus}6.3 kcal/mol) and backward ({minus}14.1 and 9.1 kcal/mol)free energy changes. The reasonable correspondence between these two independent calculations suggests that adequate phase space sampling is obtained along the reaction pathways chosen to transform the proton and hydride systems between their respective reactant and product states.

  8. On Energy Trading Decision Methods in Distributed Energy Management Systems with Multiple Customers

    NASA Astrophysics Data System (ADS)

    Miyamoto, Toshiyuki; Sugimoto, Yohei; Mori, Kazuyuki; Kitamura, Shoichi; Yamamoto, Takaya

    This paper addresses an operation and energy purchase planning problem under the CO2 emissions regulation for corporate entities. Considering energy trading, more efficient energy consumption may be possible. We have studied an agent-based planning system, called Distributed Energy Management Systems (DEMSs), which intends to reduce energy consumption. In the DEMSs, CO2 emissions regulation is imposed on each corporate entity, and electrical and thermal energy trading among the entities are allowed. We have proposed an energy trading decision method based on the Market Oriented Programming (MOP). In this paper, we propose trading decision methods for the group composed of several customers and several suppliers. Experimental results show effectiveness of the proposed method.

  9. Masters Study in Advanced Energy and Fuels Management

    SciTech Connect

    Mondal, Kanchan

    2014-12-08

    There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternate energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both recent

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  11. US Department of Energy Automated Transportation Management System

    SciTech Connect

    Portsmouth, J.H.

    1994-01-01

    The U.S. Department of Energy (DOE) Transportation Management Division (TMD) is responsible for managing its various programs via a diverse combination of Government-Owned/Contractor-Operated facilities. TMD is seeking to update it automation capabilities in capturing and processing DOE transportation information. TMD`s Transportation Information Network (TIN) is an attempt to bring together transportation management, shipment tracking, research activities and software products in various stages of development. The TMD`s Automated Transportation Management System (ATMS) proposes to assist the DOE and its contractors in performing their daily transportation management activities and to assist the DOE Environmental Management Division in its waste management responsibilities throughout the DOE complex. The ATMS system will center about the storage, handling and documentation involved in the environmental clean-up of DOE sites. Waste shipments will be moved to approved Treatment, Storage and Disposal (TSD) facilities and/or nuclear material repositories. An additional investment in shipping samples to analytical laboratories also involves packaging and documentation according to all applicable U.S. Department of Transportation (DOT) or International Air Transport Association (IATA) regulations. The most immediate goal of effectively managing DOE transportation management functions during the 1990`s is an increase in automation capabilities of the DOE and its contractors. Subject-matter experts from various DOE site locations will be brought together to develop and refine these capabilities through the maximum use of computer applications. A major part of this effort will be the identification of the most economical modes of transportation and enhanced management reporting capabilities for transportation analysis. The ATMS system will also provide for increased strategic and shipment analysis during the 1990`s and beyond in support of the DOE environmental mission.

  12. Existence and uniqueness of solutions from the LEAP equilibrium energy-economy model

    SciTech Connect

    Oblow, E.M.

    1982-10-01

    A study was made of the existence and uniqueness of solutions to the long-range, energy-economy model LEAP. The code is a large scale, long-range (50 year) equilibrium model of energy supply and demand in the US economy used for government and industrial forecasting. The study focused on the two features which distinguish LEAP from other equilibrium models - the treatment of product allocation and basic conversion of materials into an energy end product. Both allocation and conversion processes are modeled in a behavioral fashion which differs from classical economic paradigms. The results of the study indicate that while LEAP contains desirable behavioral features, these same features can give rise to non-uniqueness in the solution of allocation and conversion process equations. Conditions under which existence and uniqueness of solutions might not occur are developed in detail and their impact in practical applications are discussed.

  13. Exact solutions in a scalar-tensor model of dark energy

    SciTech Connect

    Granda, L.N.; Loaiza, E. E-mail: edwin.loaiza@correounivalle.edu.co

    2012-09-01

    We consider a model of scalar field with non minimal kinetic and Gauss Bonnet couplings as a source of dark energy. Based on asymptotic limits of the generalized Friedmann equation, we impose restrictions on the kinetic an Gauss-Bonnet couplings. This restrictions considerable simplify the equations, allowing for exact solutions unifying early time matter dominance with transitions to late time quintessence and phantom phases. The stability of the solutions in absence of matter has been studied.

  14. Solutions and reductions for radiative energy transport in laser-heated plasma

    SciTech Connect

    Broadbridge, P.; Ivanova, N. M.

    2015-01-15

    A full symmetry classification is given for models of energy transport in radiant plasma when the mass density is spatially variable and the diffusivity is nonlinear. A systematic search for conservation laws also leads to some potential symmetries and to an integrable nonlinear model. Classical point symmetries, potential symmetries, and nonclassical symmetries are used to effect variable reductions and exact solutions. The simplest time-dependent solution is shown to be stable and relevant to a closed system.

  15. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    SciTech Connect

    Shipley, Ms. Anna; Hampson, Anne; Hedman, Mr. Bruce; Garland, Patricia W; Bautista, Paul

    2008-12-01

    Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. Using CHP today, the United States already avoids more than 1.9 Quadrillion British thermal units (Quads) of fuel consumption and 248 million metric tons of carbon dioxide (CO{sub 2}) emissions annually compared to traditional separate production of electricity and thermal energy. This CO{sub 2} reduction is the equivalent of removing more than 45 million cars from the road. In addition, CHP is one of the few options in the portfolio of energy alternatives that combines environmental effectiveness with economic viability and improved competitiveness. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future as an: (1) Environmental Solution: Significantly reducing CO{sub 2} emissions through greater energy efficiency; (2) Competitive Business Solution: Increasing efficiency, reducing business costs, and creating green-collar jobs; (3) Local Energy Solution: Deployable throughout the US; and (4) Infrastructure Modernization Solution: Relieving grid congestion and improving energy security. CHP should be one of the first technologies deployed for near-term carbon reductions. The cost-effectiveness and near-term viability of widespread CHP deployment place the technology at the forefront of practical alternative energy solutions such as wind, solar, clean coal, biofuels, and nuclear power. Clear synergies exist between CHP and most other technologies that dominate the energy and environmental policy dialogue in the country today. As the Nation transforms how it produces, transports, and uses the many forms of energy, it must seize the clear opportunity afforded by CHP in terms of climate change, economic competitiveness, energy security, and infrastructure

  16. Energy efficiency of iron–boron–silicon metallic glasses in sulfuric acid solutions

    NASA Astrophysics Data System (ADS)

    Habib, K.; Jiang, W.; Rahman, B. M. A.; Grattan, K. T. V.

    2017-03-01

    A criterion of the energy efficiency of iron–boron–silicon metallic glasses in sulfuric acid solutions is proposed for the first time. The criterion has been derived based on calculating the limit of the ratio value of the conductivity of a metallic glass in aqueous solution to the conductivity of the metallic glass in air. In other words, the conductivity ratio of a metallic glass in aqueous solution to the conductivity of the metallic glass in air  = 1, was applied to determine the energy efficiency of the metallic glass in the aqueous solution when the conductivity of a metallic glass in air became equal (decreased) to the steady conductivity of the metallic glass in aqueous solution as a function of time of the exposure of the metallic glass to the aqueous solution. This criterion was not only used to determine the energy efficiency of different metallic glasses, but also, the criterion was used to determine the energy efficiency of metallic glasses exposed to a wide range of sulfuric acid concentrations. These conductivity values were determined by the electrochemical impedance spectroscopy (EIS). In addition, the criterion can be applied under diverse test conditions with a predetermined period of the operational life of the metallic glasses as functional materials. Furthermore, variations of the energy efficiency of the metallic glasses as a function of the acid concentration and time were produced by fitting the experimental data to a numerical model using a nonlinear regression method. The profiles of the metallic glasses exhibit a less conservative behavior of the energy efficiency than the proposed analytical criterion.

  17. Linking Continuous Energy Management and Open Automated Demand Response

    SciTech Connect

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2008-10-03

    Advances in communications and control technology, the strengthening of the Internet, and the growing appreciation of the urgency to reduce demand side energy use are motivating the development of improvements in both energy efficiency and demand response (DR) systems. This paper provides a framework linking continuous energy management and continuous communications for automated demand response (Auto-DR) in various times scales. We provide a set of concepts for monitoring and controls linked to standards and procedures such as Open Automation Demand Response Communication Standards (Open Auto-DR or OpenADR). Basic building energy science and control issues in this approach begin with key building components, systems, end-uses and whole building energy performance metrics. The paper presents a framework about when energy is used, levels of services by energy using systems, granularity of control, and speed of telemetry. DR, when defined as a discrete event, requires a different set of building service levels than daily operations. We provide examples of lessons from DR case studies and links to energy efficiency.

  18. Dynamic Energy Management System for a Smart Microgrid.

    PubMed

    Venayagamoorthy, Ganesh Kumar; Sharma, Ratnesh K; Gautam, Prajwal K; Ahmadi, Afshin

    2016-08-01

    This paper presents the development of an intelligent dynamic energy management system (I-DEMS) for a smart microgrid. An evolutionary adaptive dynamic programming and reinforcement learning framework is introduced for evolving the I-DEMS online. The I-DEMS is an optimal or near-optimal DEMS capable of performing grid-connected and islanded microgrid operations. The primary sources of energy are sustainable, green, and environmentally friendly renewable energy systems (RESs), e.g., wind and solar; however, these forms of energy are uncertain and nondispatchable. Backup battery energy storage and thermal generation were used to overcome these challenges. Using the I-DEMS to schedule dispatches allowed the RESs and energy storage devices to be utilized to their maximum in order to supply the critical load at all times. Based on the microgrid's system states, the I-DEMS generates energy dispatch control signals, while a forward-looking network evaluates the dispatched control signals over time. Typical results are presented for varying generation and load profiles, and the performance of I-DEMS is compared with that of a decision tree approach-based DEMS (D-DEMS). The robust performance of the I-DEMS was illustrated by examining microgrid operations under different battery energy storage conditions.

  19. A Multiple Period Problem in Distributed Energy Management Systems Considering CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Muroda, Yuki; Miyamoto, Toshiyuki; Mori, Kazuyuki; Kitamura, Shoichi; Yamamoto, Takaya

    Consider a special district (group) which is composed of multiple companies (agents), and where each agent responds to an energy demand and has a CO2 emission allowance imposed. A distributed energy management system (DEMS) optimizes energy consumption of a group through energy trading in the group. In this paper, we extended the energy distribution decision and optimal planning problem in DEMSs from a single period problem to a multiple periods one. The extension enabled us to consider more realistic constraints such as demand patterns, the start-up cost, and minimum running/outage times of equipment. At first, we extended the market-oriented programming (MOP) method for deciding energy distribution to the multiple periods problem. The bidding strategy of each agent is formulated by a 0-1 mixed non-linear programming problem. Secondly, we proposed decomposing the problem into a set of single period problems in order to solve it faster. In order to decompose the problem, we proposed a CO2 emission allowance distribution method, called an EP method. We confirmed that the proposed method was able to produce solutions whose group costs were close to lower-bound group costs by computational experiments. In addition, we verified that reduction in computational time was achieved without losing the quality of solutions by using the EP method.

  20. On-line energy management for HEV based on particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Caux, S.; Wanderley-Honda, D.; Hissel, D.; Fadel, M.

    2011-05-01

    This study considers a Hybrid Electrical Vehicle supplied by a Fuel Cell stack and supercapacitors used as Storage Element. In such an application, real time energy management is of paramount importance in order to increase autonomy and be able to deal on-line with perturbed power demand. Many offline power flow optimization principles are available but online algorithms are preferred and should be derived for optimal management of the instantaneous power splitting between the different available power sources. Based on particle swarm optimization algorithm, this study defines the parameters tuning of such algorithm. The final power splitting allows not only recovering energy braking but also is robust to some disturbances occurring during the trip. The solution provides good-quality and high-robustness results in a certain class of mission profile and power disturbance.

  1. Reducing energy costs at state agencies and institutions in Texas through the Governor's energy management center

    SciTech Connect

    White, J.A.

    1989-01-01

    The one year internship required for partial fulfillment of the Doctor of Engineering Degree was completed at the Governor's Energy Management Center in Austin, Texas. The intern worked for the State Agencies Department of the Energy Management Center. The intern was involved in a variety of projects, but the primary projects requiring the greatest time were the involvement with the design reviews for energy efficiency of new prisons being constructed in Texas, conducting energy management audits at 18 major state universities, and the technical and administrative assistance to the State Cogeneration Council. Other project involvement included managing the preliminary engineering design of the cogeneration facility at Austin State Hospital, responsibility for applying for a $1.4 million dollar crude oil refund on the behalf of all state agencies in Texas, and assisting in the planning and coordination of the $48 million Revolving Loan Program for the state of Texas. The internship taught many things about management and communications. The experience also provided a better understanding of how the state and federal government operate. The greatest contribution of the internship experience was the improvement of the intern's written and oral communication skills.

  2. An analytic solution to the Förster energy transfer problem in two dimensions.

    PubMed Central

    Wolber, P K; Hudson, B S

    1979-01-01

    An analytic solution of the Förster energy transfer problem in two dimensions is presented for the case in which the orientation factor is independent of the donor-acceptor distance, and both the donors and acceptors are randomly distributed in a plane. A general solution based on the method of Förster is possible since all distances are measured in units of R0. The analytic solution is extended to the cases of donors embedded in structures that exclude acceptors, and donors that bind acceptors. The validity of the analytic solutions is demonstrated by comparison with numerical simulation calculations. Numerical approximations to the exact solutions are given for ease of computation. Specific applications to the case of fluorescence quenching of a membrane-bound donor by membrane-bound acceptors are presented. PMID:262548

  3. Data of cost-optimality and technical solutions for high energy performance buildings in warm climate

    PubMed Central

    Zacà, Ilaria; D’Agostino, Delia; Maria Congedo, Paolo; Baglivo, Cristina

    2015-01-01

    The data reported in this article refers to input and output information related to the research articles entitled Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area by Zacà et al. (Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area, in press.) and related to the research article Cost-optimal analysis and technical comparison between standard and high efficient mono residential buildings in a warm climate by Baglivo et al. (Energy, 2015, 10.1016/j.energy.2015.02.062, in press). PMID:26217793

  4. Special Report Management Challenges at the Department of Energy

    SciTech Connect

    2008-12-01

    With an annual appropriation of approximately $24 billion, the Department of Energy (Department) is a multi-faceted agency that encompasses a broad range of national security, scientific, and environmental activities. Since the passage of the Department of Energy Organization Act in 1977, the Department has shifted its emphasis and priorities over time as the energy and security needs of the Nation have changed. In recent years, the Department has refocused its efforts in areas such as energy efficiency and conservation, environmental cleanup, nuclear nonproliferation, and weapons stewardship. In order to accomplish its mission, the Department employs approximately 110,000 Federal and contractor personnel and manages assets valued at more than $134 billion, including a complex of national laboratories.

  5. Process models: analytical tools for managing industrial energy systems

    SciTech Connect

    Howe, S O; Pilati, D A; Balzer, C; Sparrow, F T

    1980-01-01

    How the process models developed at BNL are used to analyze industrial energy systems is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for managing industrial energy systems.

  6. Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method

    SciTech Connect

    Zeng Xiancheng; Hu Hao; Hu Xiangqian; Yang Weitao

    2009-04-28

    A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids 'on-the-fly' QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions.

  7. Energy demand analysis via small scale hydroponic systems in suburban areas - An integrated energy-food nexus solution.

    PubMed

    Xydis, George A; Liaros, Stelios; Botsis, Konstantinos

    2017-03-28

    The study is a qualitative approach and looks into new ways for the effective energy management of a wind farm (WF) operation in a suburban or near-urban environment in order the generated electricity to be utilised for hydroponic farming purposes as well. Since soilless hydroponic indoor systems gain more and more attention one basic goal, among others, is to take advantage of this not typical electricity demand and by managing it, offering to the grid a less fluctuating electricity generation signal. In this paper, a hybrid business model is presented where the Distributed Energy Resources (DER) producer is participating in the electricity markets under competitive processes (spot market, real-time markets etc.) and at the same time acts as a retailer offering - based on the demand - to the hydroponic units for their mass deployment in an area, putting forward an integrated energy-food nexus approach.

  8. The middle manager role in energy company environmental efforts

    NASA Astrophysics Data System (ADS)

    Fischhoff, Maya E.

    2005-12-01

    This research examines the internal organizational processes determining corporate environmental action. Corporations have a tremendous environmental impact, yet relatively little is known about how employees within them view and work on these issues. The research focused on middle managers, a level of the company whose value is often questioned. Interviews were conducted with 70 middle managers at two energy companies (comprising utilities and unregulated businesses). Interviews examined the shape and significance of middle manager involvement in environmental issues, looking specifically at what issues middle managers deal with, what goals they pursue, and what approaches they use. The research finds middle managers' roles with respect to environmental issues to be far-reaching and complex. Much of their effort is focused on meeting regulatory requirements ("complying"). They are committed to compliance, in part for ethical reasons, but often find regulations frustrating and costly. Compliance is more challenging than commonly thought; it demands time, knowledge, and substantial creativity. In pursuing it, interviewees work with employees throughout the organization. This research shows middle managers interacting with those hierarchically above and below them in ways that greatly modify earlier portrayals of middle managers. Earlier portrayals often emphasized struggles for power within the organization. Here, middle managers work in ways best characterized as collaborative and supportive. Middle managers also have extensive involvement laterally within the company and with groups outside the company. These links have received modest attention in literature, yet are found to be terribly important. Middle managers' lateral efforts inside the company, often on teams, allow diverse expertise (e.g., from people in different functions) to be applied to environmental issues. Documenting middle managers' involvement externally, with governmental officials and sectors

  9. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys.

    PubMed

    Zhang, Yanwen; Stocks, G Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C; Wang, Lumin; Béland, Laurent K; Stoller, Roger E; Samolyuk, German D; Caro, Magdalena; Caro, Alfredo; Weber, William J

    2015-10-28

    A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications.

  10. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    PubMed Central

    Zhang, Yanwen; Stocks, G. Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C.; Wang, Lumin; Béland, Laurent K.; Stoller, Roger E.; Samolyuk, German D.; Caro, Magdalena; Caro, Alfredo; Weber, William J.

    2015-01-01

    A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications. PMID:26507943

  11. Web-based energy information systems for energy management and demand response in commercial buildings

    SciTech Connect

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS are

  12. Resource file: practical publications for energy management, edition III

    SciTech Connect

    Not Available

    1980-03-01

    The Resource File is an in-depth bibliography of 166 practical and action-oriented energy conservation publications and materials. It is a reference tool, designed for Federal, state, and local energy managers or people who are asked to recommend how-to conservation guides to the public. Each listing describes a publication's intended audience and provides a summary of its contents. Included are operations and maintenance manuals, life-cycle costing handbooks, home insulation manuals, films on fuel-saving driving techniques, and courses devoted exclusively to home weatherization. 166 items.

  13. Electric power processing, distribution, management and energy storage

    NASA Technical Reports Server (NTRS)

    Giudici, R. J.

    1980-01-01

    Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.

  14. Application of Harmony Search algorithm to the solution of groundwater management models

    NASA Astrophysics Data System (ADS)

    Tamer Ayvaz, M.

    2009-06-01

    This study proposes a groundwater resources management model in which the solution is performed through a combined simulation-optimization model. A modular three-dimensional finite difference groundwater flow model, MODFLOW is used as the simulation model. This model is then combined with a Harmony Search (HS) optimization algorithm which is based on the musical process of searching for a perfect state of harmony. The performance of the proposed HS based management model is tested on three separate groundwater management problems: (i) maximization of total pumping from an aquifer (steady-state); (ii) minimization of the total pumping cost to satisfy the given demand (steady-state); and (iii) minimization of the pumping cost to satisfy the given demand for multiple management periods (transient). The sensitivity of HS algorithm is evaluated by performing a sensitivity analysis which aims to determine the impact of related solution parameters on convergence behavior. The results show that HS yields nearly same or better solutions than the previous solution methods and may be used to solve management problems in groundwater modeling.

  15. Benchmark solutions for the galactic heavy-ion transport equations with energy and spatial coupling

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Lamkin, Stanley L.; Wilson, John W.

    1991-01-01

    Nontrivial benchmark solutions are developed for the galactic heavy ion transport equations in the straightahead approximation with energy and spatial coupling. Analytical representations of the ion fluxes are obtained for a variety of sources with the assumption that the nuclear interaction parameters are energy independent. The method utilizes an analytical LaPlace transform inversion to yield a closed form representation that is computationally efficient. The flux profiles are then used to predict ion dose profiles, which are important for shield design studies.

  16. Integration of energy management concepts into the flight deck

    NASA Technical Reports Server (NTRS)

    Morello, S. A.

    1981-01-01

    The rapid rise of fuel costs has become a major concern of the commercial aviation industry, and it has become mandatory to seek means by which to conserve fuel. A research program was initiated in 1979 to investigate the integration of fuel-conservative energy/flight management computations and information into today's and tomorrow's flight deck. One completed effort within this program has been the development and flight testing of a fuel-efficient, time-based metering descent algorithm in a research cockpit environment. Research flights have demonstrated that time guidance and control in the cockpit was acceptable to both pilots and ATC controllers. Proper descent planning and energy management can save fuel for the individual aircraft as well as the fleet by helping to maintain a regularized flow into the terminal area.

  17. Conceptual Architecture of Building Energy Management Open Source Software (BEMOSS)

    SciTech Connect

    Khamphanchai, Warodom; Saha, Avijit; Rathinavel, Kruthika; Kuzlu, Murat; Pipattanasomporn, Manisa; Rahman, Saifur; Akyol, Bora A.; Haack, Jereme N.

    2014-12-01

    The objective of this paper is to present a conceptual architecture of a Building Energy Management Open Source Software (BEMOSS) platform. The proposed BEMOSS platform is expected to improve sensing and control of equipment in small- and medium-sized buildings, reduce energy consumption and help implement demand response (DR). It aims to offer: scalability, robustness, plug and play, open protocol, interoperability, cost-effectiveness, as well as local and remote monitoring. In this paper, four essential layers of BEMOSS software architecture -- namely User Interface, Application and Data Management, Operating System and Framework, and Connectivity layers -- are presented. A laboratory test bed to demonstrate the functionality of BEMOSS located at the Advanced Research Institute of Virginia Tech is also briefly described.

  18. Real Time Energy Management Control Strategies for Hybrid Powertrains

    NASA Astrophysics Data System (ADS)

    Zaher, Mohamed Hegazi Mohamed

    In order to improve fuel efficiency and reduce emissions of mobile vehicles, various hybrid power-train concepts have been developed over the years. This thesis focuses on embedded control of hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real time energy management strategy for continuous operations. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, or the motion is driven by gravitational force, or load driven. There are three main concepts for regernerative energy storing devices in hybrid vehicles: electric, hydraulic, and flywheel. The real time control challenge is to balance the system power demand from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle, while making optimal use of the energy saving opportunities in a given operational, often repetitive cycle. In the worst case scenario, only engine is used and hybrid system completely disabled. A rule based control is developed and tuned for different work cycles and linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the machine and its position via GPS, and maps them to the gains.

  19. Energy management and control of active distribution systems

    NASA Astrophysics Data System (ADS)

    Shariatzadeh, Farshid

    Advancements in the communication, control, computation and information technologies have driven the transition to the next generation active power distribution systems. Novel control techniques and management strategies are required to achieve the efficient, economic and reliable grid. The focus of this work is energy management and control of active distribution systems (ADS) with integrated renewable energy sources (RESs) and demand response (DR). Here, ADS mean automated distribution system with remotely operated controllers and distributed energy resources (DERs). DER as active part of the next generation future distribution system includes: distributed generations (DGs), RESs, energy storage system (ESS), plug-in hybrid electric vehicles (PHEV) and DR. Integration of DR and RESs into ADS is critical to realize the vision of sustainability. The objective of this dissertation is the development of management architecture to control and operate ADS in the presence of DR and RES. One of the most challenging issues for operating ADS is the inherent uncertainty of DR and RES as well as conflicting objective of DER and electric utilities. ADS can consist of different layers such as system layer and building layer and coordination between these layers is essential. In order to address these challenges, multi-layer energy management and control architecture is proposed with robust algorithms in this work. First layer of proposed multi-layer architecture have been implemented at the system layer. Developed AC optimal power flow (AC-OPF) generates fair price for all DR and non-DR loads which is used as a control signal for second layer. Second layer controls DR load at buildings using a developed look-ahead robust controller. Load aggregator collects information from all buildings and send aggregated load to the system optimizer. Due to the different time scale at these two management layers, time coordination scheme is developed. Robust and deterministic controllers

  20. SPS energy conversion and power management workshop. Final report

    SciTech Connect

    Not Available

    1980-06-01

    In 1977 a four year study, the concept Development and Evaluation Program, was initiated by the US Department of Energy and the National Aeronautics and Space Administration. As part of this program, a series of peer reviews were carried out within the technical community to allow available information on SPS to be sifted, examined and, if need be, challenged. The SPS Energy Conversion and Power Management Workshop, held in Huntsville, Alabama, February 5 to 7, 1980, was one of these reviews. The results of studies in this particular field were presented to an audience of carefully selected scientists and engineers. This first report summarizes the results of that peer review. It is not intended to be an exhaustive treatment of the subject. Rather, it is designed to look at the SPS energy conversion and power management options in breadth, not depth, to try to foresee any troublesome and/or potentially unresolvable problems and to identify the most promising areas for future research and development. Topics include photovoltaic conversion, solar thermal conversion, and electric power distribution processing and power management. (WHK)

  1. Effective management of combined renewable energy resources in Tajikistan.

    PubMed

    Karimov, Khasan S; Akhmedov, Khakim M; Abid, Muhammad; Petrov, Georgiy N

    2013-09-01

    Water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between downstream countries that utilize water mostly for irrigation and those upstream countries, which use water for generation of electric power. At present Uzbekistan is blocking railway connection that is going to Tajikistan to interfere to transportation of the equipment and materials for construction of Rogun hydropower plant. In order to avoid conflicts between Tajikistan and Uzbekistan a number of measures for the utilization of water resources of the trans-boundary Rivers Amu-Darya and Sir-Darya are discussed. In addition, utilization of water with the supplement of wind and solar energy projects for proper and efficient management of water resources in Central Asia; export-import exchanges of electric energy in summer and winter time between neighboring countries; development of small hydropower project, modern irrigation system in main water consuming countries and large water reservoir hydropower projects for control of water resources for hydropower and irrigation are also discussed. It is also concluded that an effective management of water resources can be achieved by signing Water treaty between upstream and downstream countries, first of all between Tajikistan and Uzbekistan. In this paper management of water as renewable energy resource in Tajikistan and Central Asian Republics are presented.

  2. 78 FR 31986 - In the Matter of Energy Solutions Inc.; Order Approving Indirect Transfer of Import and Export...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    .... IW017, IW029, XW010, XW018, XW020, XCOM1211, XSOU8825] In the Matter of Energy Solutions Inc.; Order Approving Indirect Transfer of Import and Export Licenses I EnergySolutions Services, Inc. (ES Services... Energy Capital Partners II, LLC (ECP II). ES, Inc. represents that the indirect transfer will not...

  3. Heart of the Solution - Energy Frontiers (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Green, Peter F. (Director, Center for Solar and Thermal Energy Conversion, University of Michigan); CSTEC Staff

    2016-07-12

    'Heart of the Solution - Energy Frontiers' was submitted by the Center for Solar and Thermal Energy Conversion (CSTEC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was both the People's Choice Award winner and selected as one of five winners by a distinguished panel of judges for its 'exemplary explanation of the role of an Energy Frontier Research Center'. The Center for Solar and Thermal Energy Conversion is directed by Peter F. Green at the University of Michigan. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Solar and Thermal Energy Conversion is 'to study complex material structures on the nanoscale to identify key features for their potential use as materials to convert solar energy and heat to electricity.' Research topics are: solar photovoltaic, photonic, optics, solar thermal, thermoelectric, phonons, thermal conductivity, solar electrodes, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.

  4. Solutions Network Formulation Report. The Potential Contributions of the Global Precipitation Measurement Mission to Estuary Management in Acadia National Park

    NASA Technical Reports Server (NTRS)

    Anderson, Daniel; Hilbert, Kent; Lewis, David

    2007-01-01

    This candidate solution suggests the use of GPM precipitation observations to enhance the Acadia National Park NLERDSS. Simulated GPM data should provide measurements that would enable analysis of how precipitation affects runoff and nutrient load in the park?s wetlands. This solution benefits society by aiding park and resource managers in making predictions based on hypothetical changes and in identifying effective mitigation scenarios. This solution supports the Coastal Management, Water Management, and Ecological Forecasting National Applications.

  5. Improving energy efficiency via smart building energy management systems. A comparison with policy measures

    DOE PAGES

    Rocha, Paula; Siddiqui, Afzal; Stadler, Michael

    2014-12-09

    In this study, to foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end,more » we present an integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures.« less

  6. Modeling and energy management control design for a fuel cell hybrid passenger bus

    NASA Astrophysics Data System (ADS)

    Simmons, Kyle; Guezennec, Yann; Onori, Simona

    2014-01-01

    This paper presents the modeling and supervisory energy management design of a hybrid fuel cell/battery-powered passenger bus. With growing concerns about petroleum usage and greenhouse gas emissions in the transportation sector, finding alternative methods for vehicle propulsion is necessary. Proton Exchange Membrane (PEM) fuel cell systems are viable possibilities for energy converters due to their high efficiencies and zero emissions. It has been shown that the benefits of PEM fuel cell systems can be greatly improved through hybridization. In this work, the challenge of developing an on-board energy management strategy with near-optimal performance is addressed by a two-step process. First, an optimal control based on Pontryagin's Minimum Principle (PMP) is implemented to find the global optimal solution which minimizes fuel consumption, for different drive cycles, with and without grade. The optimal solutions are analyzed in order to aid in development of a practical controller suitable for on-board implementation, in the form of an Auto-Regressive Moving Average (ARMA) regulator. Simulation results show that the ARMA controller is capable of achieving fuel economy within 3% of the PMP controller while being able to limit the transient demand on the fuel cell system.

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  8. Wireless Sensors and Networks for Advanced Energy Management

    SciTech Connect

    Hardy, J.E.

    2005-05-06

    Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modeling investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.

  9. Adaptive Critic Neural Network-Based Terminal Area Energy Management and Approach and Landing Guidance

    NASA Technical Reports Server (NTRS)

    Grantham, Katie

    2003-01-01

    Reusable Launch Vehicles (RLVs) have different mission requirements than the Space Shuttle, which is used for benchmark guidance design. Therefore, alternative Terminal Area Energy Management (TAEM) and Approach and Landing (A/L) Guidance schemes can be examined in the interest of cost reduction. A neural network based solution for a finite horizon trajectory optimization problem is presented in this paper. In this approach the optimal trajectory of the vehicle is produced by adaptive critic based neural networks, which were trained off-line to maintain a gradual glideslope.

  10. Chemical process safety management within the Department of Energy

    SciTech Connect

    Piatt, J.A.

    1995-07-01

    Although the Department of Energy (DOE) is not well known for its chemical processing activities, the DOE does have a variety of chemical processes covered under OSHA`s Rule for Process Safety Management of Highly Hazardous Chemicals (the PSM Standard). DOE, like industry, is obligated to comply with the PSM Standard. The shift in the mission of DOE away from defense programs toward environmental restoration and waste management has affected these newly forming process safety management programs within DOE. This paper describes the progress made in implementing effective process safety management programs required by the PSM Standard and discusses some of the trends that have supported efforts to reduce chemical process risks within the DOE. In June of 1994, a survey of chemicals exceeding OSHA PSM or EPA Risk Management Program threshold quantities (TQs) at DOE sites found that there were 22 processes that utilized toxic or reactive chemicals over TQs; there were 13 processes involving flammable gases and liquids over TQs; and explosives manufacturing occurred at 4 sites. Examination of the survey results showed that 12 of the 22 processes involving toxic chemicals involved the use of chlorine for water treatment systems. The processes involving flammable gases and liquids were located at the Strategic Petroleum Reserve and Naval petroleum Reserve sites.

  11. Community energy auditing: experience with the comprehensive community energy management program

    SciTech Connect

    Moore, J.L.; Berger, D.A.; Rubin, C.B.; Hutchinson, P.A. Sr.; Griggs, H.M.

    1980-09-01

    The report provides local officials and staff with information on lessons from the audit, projection, and general planning experiences of the Comprehensive Community Energy Management Program (CCEMP) communities and provides ANL and US DOE with information useful to the further development of local energy management planning methods. In keeping with the objectives, the report is organized into the following sections: Section II presents the evaluation issues and key findings based on the communities' experiences from Spring of 1979 to approximately March of 1980; Section III gives an organized review of experience of communities in applying the detailed audit methodology for estimating current community energy consumption and projecting future consumption and supply; Section IV provides a preliminary assessment of how audit information is being used in other CCEMP tasks; Section V presents an organized review of preliminary lessons from development of the community planning processes; and Section VI provides preliminary conclusions on the audit and planning methodology. (MCW)

  12. A method for analyzing the vibrational energy flow in biomolecules in solution.

    PubMed

    Soler, Miguel Angel; Bastida, Adolfo; Farag, Marwa H; Zúñiga, José; Requena, Alberto

    2011-11-28

    A method is proposed to analyze the intra- and intermolecular vibrational energy flow occurring in biomolecules in solution during relaxation processes. It is based on the assumption that the total energy exchanged between the vibrational modes is minimal and the global process is essentially statistical. This statistical minimum flow method is shown to provide very useful information about the amount and the rate at which energy is transferred between the individual vibrations of the molecule. To demonstrate the performance of the method, an application is made to the relaxation of the amide I mode of N-methylacetamide-d in aqueous D(2)O solution which yields a detailed quantitative description of the process.

  13. Energy management and multi-layer control of networked microgrids

    NASA Astrophysics Data System (ADS)

    Zamora, Ramon

    Networked microgrids is a group of neighboring microgrids that has ability to interchange power when required in order to increase reliability and resiliency. Networked microgrid can operate in different possible configurations including: islanded microgrid, a grid-connected microgrid without a tie-line converter, a grid-connected microgrid with a tie-line converter, and networked microgrids. These possible configurations and specific characteristics of renewable energy offer challenges in designing control and management algorithms for voltage, frequency and power in all possible operating scenarios. In this work, control algorithm is designed based on large-signal model that enables microgrid to operate in wide range of operating points. A combination between PI controller and feed-forward measured system responses will compensate for the changes in operating points. The control architecture developed in this work has multi-layers and the outer layer is slower than the inner layer in time response. The main responsibility of the designed controls are to regulate voltage magnitude and frequency, as well as output power of the DG(s). These local controls also integrate with a microgrid level energy management system or microgrid central controller (MGCC) for power and energy balance for. the entire microgrid in islanded, grid-connected, or networked microgid mode. The MGCC is responsible to coordinate the lower level controls to have reliable and resilient operation. In case of communication network failure, the decentralized energy management will operate locally and will activate droop control. Simulation results indicate the superiority of designed control algorithms compared to existing ones.

  14. Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study.

    PubMed

    Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva

    2016-11-01

    Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution.

  15. Sustainable Energy Solutions Task 1.0: Networked Monitoring and Control of Small Interconnected Wind Energy Systems

    SciTech Connect

    edu, Janet. twomey@wichita.

    2010-04-30

    This report presents accomplishments, results, and future work for one task of five in the Wichita State University Sustainable Energy Solutions Project: To develop a scale model laboratory distribution system for research into questions that arise from networked control and monitoring of low-wind energy systems connected to the AC distribution system. The lab models developed under this task are located in the Electric Power Quality Lab in the Engineering Research Building on the Wichita State University campus. The lab system consists of four parts: 1. A doubly-fed induction generator 2. A wind turbine emulator 3. A solar photovoltaic emulator, with battery energy storage 4. Distribution transformers, lines, and other components, and wireless and wired communications and control These lab elements will be interconnected and will function together to form a complete testbed for distributed resource monitoring and control strategies and smart grid applications testing. Development of the lab system will continue beyond this project.

  16. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    PubMed

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental

  17. 75 FR 44276 - Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE); Cancellation of Oil and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... Ocean Energy Management, Regulation, and Enforcement, Interior. ACTION: Cancellation of Offshore... Horizon Oil Spill and Offshore Drilling, (the National Commission was established by Executive Order 13543... Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE); Cancellation of Oil and...

  18. Drum pressure the key to managing boiler stored energy

    SciTech Connect

    Leimbach, R.A.

    2007-06-15

    As steam plant designers cherry-pick the best parts of the venerable Direct Energy Balance control system developed by the now-defunct Leeds and Northrup they are confirming that relying on throttle pressure alone is inadequate for stable boiler and turbine control. Metso Automation, the successor to Leeds & Northrup's system division, has the sole rights to the original D-E-B solution and has introduced enhancements that will further improve its ability to control large coal-fired generating units. The D-E-B system is used on more than 900 large coal-fired units around the world, including 110 in China and 60 in India. 9 figs.

  19. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply.

    PubMed

    Klaysom, Chalida; Cath, Tazhi Y; Depuydt, Tom; Vankelecom, Ivo F J

    2013-08-21

    Osmotically driven membrane processes (ODMP) have gained renewed interest in recent years and they might become a potential solution for the world's most challenging problems of water and energy scarcity. Though the concept of utilizing osmotic pressure difference between high and low salinity streams across semipermeable membranes has been explored for several decades, lack of optimal membranes and draw solutions hindered competition between forward osmosis (FO) and pressure retarded osmosis (PRO) with existing water purification and power generation technologies, respectively. Driven by growing global water scarcity and by energy cost and negative environmental impacts, novel membranes and draw solutions are being developed for ODMPs, mass and heat transfer in osmotic process are becoming better understood, and new applications of ODMPs are emerging. Therefore, OMDPs might become promising green technologies to provide clean water and clean energy from abundantly available renewable resources. This review focuses primarily on new insights into osmotic membrane transport mechanisms and on novel membranes and draw solutions that are currently being developed. Furthermore, the effects of operating conditions on the overall performance of osmotic membranes will be highlighted and future perspectives will be presented.

  20. The Energy-Water Nexus: Managing the Links between Energy and Water for a Sustainable Future

    NASA Astrophysics Data System (ADS)

    Hussey, Karen; Petit, Carine

    2010-05-01

    Water and energy are both indispensable inputs to modern economies but currently both resources are under threat owing to the impacts of an ever-increasing population and associated demand, unsustainable practices in agriculture and manufacturing, and the implications of a changing climate. However, it is where water and energy rely on each other that pose the most complex challenges for policy-makers. Water is needed for mining coal, drilling oil, refining gasoline, and generating and distributing electricity; and, conversely, vast amounts of energy are needed to pump, transport, treat and distribute water, particularly in the production of potable water through the use of desalination plants and waste water treatment plants. Despite the links, and the urgency in both sectors for security of supply, in existing policy frameworks energy and water policies are developed largely in isolation from one another. Worse still, some policies designed to encourage alternative energy supplies give little thought to the resultant consequences on water resources, and, similarly, policies designed to secure water supplies pay little attention to the resultant consequences on energy use. The development of new technologies presents both opportunities and challenges for managing the energy-water nexus but a better understanding of the links between energy and water is essential in any attempt to formulate policies for more resilient and adaptable societies. The energy-water nexus must be adequately integrated into policy and decision-making or governments run the risk of contradicting their efforts, and therefore failing in their objectives, in both sectors. A series of COST Exploratory Workshops, drawing on on-going research in the energy-water nexus from a number of international teams, identified the implications of the energy-water nexus on the development of (i) energy policies (ii) water resource management policies and (iii) climate adaptation and mitigation policies. A

  1. Theory for solvent, momentum, and energy transfer between a surfactant solution and a vapor atmosphere.

    PubMed

    Fried, Eliot; Shen, Amy Q; Gurtin, Morton E

    2006-06-01

    We develop a complete set of equations governing the evolution of a sharp interface separating a volatile-solvent/nonvolatile-surfactant solution from a vapor atmosphere. In addition to a sorption isotherm equation and the conventional balances for mass, linear momentum, and energy, these equations include an alternative to the Hertz-Knudsen-Langmuir equation familiar from conventional theories of evaporation and condensation. This additional equation arises from a consideration of configurational forces within a thermodynamical framework. While the notion of configurational forces is well developed and understood for the description of materials that, like crystalline solids, possess natural reference configurations, very little has been done regarding their role in materials, such as viscous fluids, that do not possess preferred reference states. We therefore provide comprehensive developments of configurational forces, the balance of configurational momentum, and configurational thermodynamics. Our treatment does not require a choice of reference configuration. The general evolution equations arising from our theory account for the thermodynamic structure of the solution and the interface and for sources of dissipation related to the transport of surfactant, momentum, and heat in the solution and within the interface along with the transport of solute, momentum, kinetic energy, and heat across the interface. Moreover, the equations account for the Soret and Dufour effects in the solution and on the interface and for observed discontinuities of the temperature and chemical potential across the interface. Due to the complexity of these equations, we provide approximate equations which we compare to equations preexistent in the literature.

  2. City-scale analysis of water-related energy identifies more cost-effective solutions.

    PubMed

    Lam, Ka Leung; Kenway, Steven J; Lant, Paul A

    2017-02-01

    Energy and greenhouse gas management in urban water systems typically focus on optimising within the direct system boundary of water utilities that covers the centralised water supply and wastewater treatment systems, despite a greater energy influence by the water end use. This work develops a cost curve of water-related energy management options from a city perspective for a hypothetical Australian city. It is compared with that from the water utility perspective. The curves are based on 18 water-related energy management options that have been implemented or evaluated in Australia. In the studied scenario, the cost-effective energy saving potential from a city perspective (292 GWh/year) is far more significant than that from a utility perspective (65 GWh/year). In some cases, for similar capital cost, if regional water planners invested in end use options instead of utility options, a greater energy saving potential at a greater cost-effectiveness could be achieved in urban water systems. For example, upgrading a wastewater treatment plant for biogas recovery at a capital cost of $27.2 million would save 31 GWh/year with a marginal cost saving of $63/MWh, while solar hot water system rebates at a cost of $28.6 million would save 67 GWh/year with a marginal cost saving of $111/MWh. Options related to hot water use such as water-efficient shower heads, water-efficient clothes washers and solar hot water system rebates are among the most cost-effective city-scale opportunities. This study demonstrates the use of cost curves to compare both utility and end use options in a consistent framework. It also illustrates that focusing solely on managing the energy use within the utility would miss substantial non-utility water-related energy saving opportunities. There is a need to broaden the conventional scope of cost curve analysis to include water-related energy and greenhouse gas at the water end use, and to value their management from a city perspective. This

  3. Influence of the energy management on the sizing of Electrical Energy Storage Systems in an aircraft

    NASA Astrophysics Data System (ADS)

    Devillers, Nathalie; Péra, Marie-Cécile; Bienaimé, Daniel; Grojo, Marie-Laure

    2014-12-01

    In an aircraft, Electrical Energy Storage Systems (EESS) are used as support to other sources in few mission phases in order to ensure the energy availability. They are also used as electrical smoothing devices in order to guarantee the required levels of reliability, stability and quality for an embedded electrical network. This paper deals with the association of two EESS: supercapacitors and secondary battery, which exhibit complementary properties. In this paper, a sizing method for both EESS is developed by taking into account their hybridization and their characteristics (such as capacity or depth-of-discharge) so as to minimize the global storage system weight. Moreover, an energy management based on a frequency approach is implemented to dispatch the power between all the sources. The influence of this management on the sizing is studied. Indeed the cut-off frequency of the low-pass filter is used as a setting parameter of the sizing algorithm. Finally, the sizing validity is assessed and discussed according to temperature constraints. Although battery performances are reduced at low temperature, the sizing determined with the algorithm at 20 °C is still valid on all the temperature range thanks to an adaptation of the energy management parameter.

  4. Strategic Energy Management Plan For Fort Buchanan, Puerto Rico

    SciTech Connect

    Parker, Steven A.; Hunt, W. D.

    2001-10-31

    This document reports findings and recommendations as a result of a design assistance project with Fort Buchanan with the goals of developing a Strategic Energy Management Plan for the Site. A strategy has been developed with three major elements in mind: 1) development of a strong foundation from which to build, 2) understanding technologies that are available, and 3) exploring financing options to fund the implementation of improvements. The objective of this report is to outline a strategy that can be used by Fort Buchanan to further establish an effective energy management program. Once a strategy is accepted, the next step is to take action. Some of the strategies defined in this Plan may be implemented directly. Other strategies may require the development of a more sophisticated tactical, or operational, plan to detail a roadmap that will lead to successful realization of the goal. Similarly, some strategies are not single events. Rather, some strategies will require continuous efforts to maintain diligence or to change the culture of the Base occupants and their efforts to conserve energy resources.

  5. Non-minimal coupling of torsion-matter satisfying null energy condition for wormhole solutions

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Rani, Shamaila

    2016-12-01

    We explore wormhole solutions in a non-minimal torsion-matter coupled gravity by taking an explicit non-minimal coupling between the matter Lagrangian density and an arbitrary function of the torsion scalar. This coupling describes the transfer of energy and momentum between matter and torsion scalar terms. The violation of the null energy condition occurred through an effective energy-momentum tensor incorporating the torsion-matter non-minimal coupling, while normal matter is responsible for supporting the respective wormhole geometries. We consider the energy density in the form of non-monotonically decreasing function along with two types of models. The first model is analogous to the curvature-matter coupling scenario, that is, the torsion scalar with T-matter coupling, while the second one involves a quadratic torsion term. In both cases, we obtain wormhole solutions satisfying the null energy condition. Also, we find that the increasing value of the coupling constant minimizes or vanishes on the violation of the null energy condition through matter.

  6. DEPLOYMENT OF THE GUBKA TECHNOLOGY TO STABILIZE RADIOACTIVE STANDARD SOLUTIONS AT THE FERNALD ENVIRONMENTAL MANAGEMENT PROJECT

    SciTech Connect

    Chipman, N.A.; Knecht, D.A.; Meyer, A.; Aloy, A.; Anshits, A.G.; Tretyakov, A.A.

    2003-02-27

    This paper describes the deployment of the Gubka technology to stabilize liquid technical standards at the Fernald Environmental Management Project. Gubka, an open-cell glass crystalline porous material, was developed by a joint research program of Russian Institutes at St. Petersburg, Krasnoyarsk, and Zheleznogorsk and the Idaho National Engineering and Environmental Laboratory. Gubka technology can be applied in an active or a passive method to stabilize a solution. In both methods the result is the same, and the dried components of the solution are sorbed in the pores of the Gubka block while the liquid phase is evaporated. In this deployment Gubka blocks were passively floated in the solutions at ambient conditions. As the solutions evaporated, the non-volatile components were sorbed in the pores of the Gubka blocks. The waste-loaded Gubka blocks have been packaged for transportation and disposal at the Nevada Test site within an existing waste category.

  7. The effect of high-energy radiation on aqueous solution of Acid Red 1 textile dye

    NASA Astrophysics Data System (ADS)

    Földváry, Cs. M.; Wojnárovits, L.

    2007-08-01

    The effect of high-energy radiation on Acid Red 1 (AR1) azo-dye solution was investigated by UV-Vis spectroscopy and chemical oxygen demand (COD) measurements. Doses in the order of 10 kGy cause complete decolouration of the 10 -3-10 -4 mol dm -3 solutions; however, for complete mineralization doses higher by 1-2 order of magnitude are needed. Hydrated electrons and H rad atom are more effective in fading reaction, while the rad OH radicals have higher efficiency in mineralization. The HO 2•/O 2•- radical-radical anion pair is rather inefficient in fading reaction.

  8. Interrelationships between information and energy using knowledge management tools

    SciTech Connect

    Lizcano, D. E-mail: mariaaurora.martinez@udima.es; Martínez, A. María E-mail: mariaaurora.martinez@udima.es

    2014-10-06

    Edward Fredkin was an enthusiastic advocate of information-based theoretical physics, who, in the early 1980s, proposed a new theory of physics based on the idea that the universe is ultimately composed of software. According to Fredkin, reality should be considered as being composed not of particles, matter and forces or energy but of bits of data or information modified according to computational rules. Fredkin went on to demonstrate that, while energy is necessary for storing and retrieving information, it can be arbitrarily reduced in order to carry out any particular instance of information processing, and this operation does not have a lower bound. This implies that it is information rather than matter or energy that should be considered at the ultimate fundamental constituent of reality. This possibility had already been suggested by other scientists. Norbert Wiener heralded a fundamental shift from energy to information and suggested that the universe was founded essentially on the transformation of information, not energy. However, Konrad Zuse was the first, back in 1967, to defend the idea that a digital computer is computing the universe. Richard P. Feynman showed this possibility in a similar light in his reflections on how information related to matter and energy. Other pioneering research on the theory of digital physics was published by Kantor in 1977 and more recently by Stephen Wolfram in 2002, who thereby joined the host of voices upholding that it is patterns of information, not matter and energy, that constitute the cornerstones of reality. In this paper, we introduce the use of knowledge management tools for the purpose of analysing this topic.

  9. Interrelationships between information and energy using knowledge management tools

    NASA Astrophysics Data System (ADS)

    Lizcano, D.; Martínez, A. María

    2014-10-01

    Edward Fredkin was an enthusiastic advocate of information-based theoretical physics, who, in the early 1980s, proposed a new theory of physics based on the idea that the universe is ultimately composed of software. According to Fredkin, reality should be considered as being composed not of particles, matter and forces or energy but of bits of data or information modified according to computational rules. Fredkin went on to demonstrate that, while energy is necessary for storing and retrieving information, it can be arbitrarily reduced in order to carry out any particular instance of information processing, and this operation does not have a lower bound. This implies that it is information rather than matter or energy that should be considered at the ultimate fundamental constituent of reality. This possibility had already been suggested by other scientists. Norbert Wiener heralded a fundamental shift from energy to information and suggested that the universe was founded essentially on the transformation of information, not energy. However, Konrad Zuse was the first, back in 1967, to defend the idea that a digital computer is computing the universe. Richard P. Feynman showed this possibility in a similar light in his reflections on how information related to matter and energy. Other pioneering research on the theory of digital physics was published by Kantor in 1977 and more recently by Stephen Wolfram in 2002, who thereby joined the host of voices upholding that it is patterns of information, not matter and energy, that constitute the cornerstones of reality. In this paper, we introduce the use of knowledge management tools for the purpose of analysing this topic.

  10. 'Part of the solution': Developing sustainable energy through co-operatives and learning

    NASA Astrophysics Data System (ADS)

    Duguid, Fiona C. B.

    and understanding of WindShare's role in sustainable energy. WindShare Co-operative provided the structure whereby members felt a part of the solution in terms of sustainable energy development. Policies and practices at all levels of government should encourage the advancement of green energy co-operatives to support Canada's efforts at public involvement in combating climate change and pollution.

  11. Waste to energy – key element for sustainable waste management

    SciTech Connect

    Brunner, Paul H. Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  12. Comparison of excitation energy transfer in cyanobacterial photosystem I in solution and immobilized on conducting glass.

    PubMed

    Szewczyk, Sebastian; Giera, Wojciech; D'Haene, Sandrine; van Grondelle, Rienk; Gibasiewicz, Krzysztof

    2017-05-01

    Excitation energy transfer in monomeric and trimeric forms of photosystem I (PSI) from the cyanobacterium Synechocystis sp. PCC 6803 in solution or immobilized on FTO conducting glass was compared using time-resolved fluorescence. Deposition of PSI on glass preserves bi-exponential excitation decay of ~4-7 and ~21-25 ps lifetimes characteristic of PSI in solution. The faster phase was assigned in part to photochemical quenching (charge separation) of excited bulk chlorophylls and in part to energy transfer from bulk to low-energy (red) chlorophylls. The slower phase was assigned to photochemical quenching of the excitation equilibrated over bulk and red chlorophylls. The main differences between dissolved and immobilized PSI (iPSI) are: (1) the average excitation decay in iPSI is about 11 ps, which is faster by a few ps than for PSI in solution due to significantly faster excitation quenching of bulk chlorophylls by charge separation (~10 ps instead of ~15 ps) accompanied by slightly weaker coupling of bulk and red chlorophylls; (2) the number of red chlorophylls in monomeric PSI increases twice-from 3 in solution to 6 after immobilization-as a result of interaction with neighboring monomers and conducting glass; despite the increased number of red chlorophylls, the excitation decay accelerates in iPSI; (3) the number of red chlorophylls in trimeric PSI is 4 (per monomer) and remains unchanged after immobilization; (4) in all the samples under study, the free energy gap between mean red (emission at ~710 nm) and mean bulk (emission at ~686 nm) emitting states of chlorophylls was estimated at a similar level of 17-27 meV. All these observations indicate that despite slight modifications, dried PSI complexes adsorbed on the FTO surface remain fully functional in terms of excitation energy transfer and primary charge separation that is particularly important in the view of photovoltaic applications of this photosystem.

  13. Solute Response To Arid-Climate Managed-River Flow During Storm Events

    NASA Astrophysics Data System (ADS)

    McLean, B.; Shock, E.

    2006-12-01

    Storm pulses are widely used in unmanaged, temperate and subtropical river systems to resolve in-stream surface and subsurface flow components. Resulting catchment-scale hydrochemical mixing models yield insight into mechanisms of solute transport. Managed systems are far more complicated due to the human need for high quality water resources, which drives processes that are superimposed on most, if not all, of the unmanaged components. As an example, an increasingly large portion of the water supply for the Phoenix metropolitan area is derived from multiple surface water sources that are impounded, diverted and otherwise managed upstream from the urban core that consumes the water and produces anthropogenic impacts. During large storm events this managed system is perturbed towards natural behavior as it receives inputs from natural hydrologic pathways in addition to impervious surfaces and storm water drainage channels. Our goals in studying managed river systems during this critical transition state are to determine how the well- characterized behavior of natural systems break down as the system responds then returns to its managed state. Using storm events as perturbations we can contrast an arid managed system with the unmanaged system it approaches during the storm event. In the process, we can extract geochemical consequences specifically related to unknown urban components in the form of chemical fingerprints. The effects of river management on solute behavior were assessed by taking advantage of several anomalously heavy winter storm events in late 2004 and early 2005 using a rigorous sampling routine. Several hundred samples collected between January and October 2005 were analyzed for major ion, isotopic, and trace metal concentrations with 78 individual measurements for each sample. The data are used to resolve managed watershed processes, mechanisms of solute transport and river mixing from anthropogenic inputs. Our results show that concentrations of

  14. Nuclear energy and waste management pyroprocess for system symbiosis

    NASA Astrophysics Data System (ADS)

    Ogawa, Toru; Minato, Kazuo; Okamoto, Yoshihiro; Nishihara, Kenji

    2007-01-01

    The actinide management has become a key issue in nuclear energy. Recovering and fissioning transuranium elements reduce the long-term proliferation risks and the environmental burden. The better way of waste management will be made by system symbiosis: a combination of light-water reactor and fast reactor and/or accelerator-driven transmutation system should be sought. The new recycling technology should be able to achieve good economy with smaller plants, which can process fuels from different types of reactors on a common technical basis. Ease in handling the higher heat load of transuranium nuclides is also important. Pyroprocesses with the use of molten salts are regarded as the strong candidate for such recycling technology. In JAEA, the first laboratory for the high-temperature chemistry of Am and Cm has been established. The fundamental data will be combined with the computer code for predicting the molten-salts electrolytic processes.

  15. Smart grids: A paradigm shift on energy generation and distribution with the emergence of a new energy management business model

    NASA Astrophysics Data System (ADS)

    Cardenas, Jesus Alvaro

    An energy and environmental crisis will emerge throughout the world if we continue with our current practices of generation and distribution of electricity. A possible solution to this problem is based on the Smart grid concept, which is heavily influenced by Information and Communication Technology (ICT). Although the electricity industry is mostly regulated, there are global models used as roadmaps for Smart Grids' implementation focusing on technologies and the basic generation-distribution-transmission model. This project aims to further enhance a business model for a future global deployment. It takes into consideration the many factors interacting in this energy provision process, based on the diffusion of technologies and literature surveys on the available documents in the Internet as well as peer-reviewed publications. Tariffs and regulations, distributed energy generation, integration of service providers, consumers becoming producers, self-healing devices, and many other elements are shifting this industry into a major change towards liberalization and deregulation of this sector, which has been heavily protected by the government due to the importance of electricity for consumers. We propose an Energy Management Business Model composed by four basic elements: Supply Chain, Information and Communication Technology (ICT), Stakeholders Response, and the resulting Green Efficient Energy (GEE). We support the developed model based on the literature survey, we support it with the diffusion analysis of these elements, and support the overall model with two surveys: one for peers and professionals, and other for experts in the field, based on the Smart Grid Carnegie Melon Maturity Model (CMU SEI SGMM). The contribution of this model is a simple path to follow for entities that want to achieve environmental friendly energy with the involvement of technology and all stakeholders.

  16. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008

    SciTech Connect

    Bush, S.

    2009-11-05

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5

  17. Mixed waste landfill cell construction at energy solutions LLC: a regulator's perspective

    SciTech Connect

    Lukes, G.C.; Willoughby, O.H.

    2007-07-01

    A small percentage of the property that EnergySolutions' (formerly Envirocare) operates at Clive, Utah is permitted by the State of Utah as a treatment, storage and disposal facility for mixed waste. Mixed Waste is defined as a hazardous waste (Title 40 Code of Federal Regulations Part 261.3) that also has a radioactive component. Typically, the waste EnergySolutions receives at its mixed waste facility is contaminated with heavy metals and organic compounds while also contaminated with radioactivity. For EnergySolutions, the largest generator of mixed waste is the United States Department of Energy. However, EnergySolutions also accepts a wide variety of mixed waste from other generators. For many wastes, EnergySolutions goes through the process of characterization and acceptance (if appropriate) of the waste, treating the waste (if necessary), confirmation that the waste meets Land Disposal Restriction, and disposal of the waste in its mixed waste landfill cell (MWLC). EnergySolutions originally received its State-issued Part B (RCRA) permit in 1990. The Permit allows a mixed waste landfill cell footprint that covers roughly 10 hectares and includes 20 individual 'sumps'. EnergySolutions chose to build small segments of the landfill cell as waste receipts dictated. Nearly 16 years later, EnergySolutions has just completed its Phase V construction project. 18 of the 20 sumps in the original design have been constructed. The last two sumps are anticipated to be its Phase VI construction project. Further expansion of its mixed waste disposal landfill capacity beyond the current design would require a permit modification request and approval by the Executive Secretary of the Utah Solid and Hazardous Waste Control Board. Construction of the landfill cell is governed by the Construction Quality Assurance/Quality Control manual of its State-issued Permit. The construction of each sump is made up of (from the bottom up): a foundation; three feet of engineered clay

  18. Data management in a fusion energy research experiment

    SciTech Connect

    Glad, A.; Drobnis, D.; McHarg, B.

    1981-07-01

    Present-day fusion research requires extensive support for the large amount of scientific data generated, bringing about three distinct problems computer systems must solve: (1) the processing of large amounts of data in very small time frames; (2) the archiving, analyzing and managing of the entire data output for the project's lifetime; (3) the standardization of data for the exchange of information between laboratories. The computer system supporting General Atomic's Doublet III tokamak, a project funded by the United States Department of Energy, is the first to encounter and address these problems through a system-wide data base structure.

  19. The 727 approach energy management system avionics specification (preliminary)

    NASA Technical Reports Server (NTRS)

    Jackson, D. O.; Lambregts, A. A.

    1976-01-01

    Hardware and software requirements for an Approach Energy Management System (AEMS) consisting of an airborne digital computer and cockpit displays are presented. The displays provide the pilot with a visual indication of when to manually operate the gear, flaps, and throttles during a delayed flap approach so as to reduce approach time, fuel consumption, and community noise. The AEMS is an independent system that does not interact with other navigation or control systems, and is compatible with manually flown or autopilot coupled approaches. Operational use of the AEMS requires a DME ground station colocated with the flight path reference.

  20. Adaptive Voltage Management Enabling Energy Efficiency in Nanoscale Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Shapiro, Alexander E.

    Battery powered devices emphasize energy efficiency in modern sub-22 nm CMOS microprocessors rendering classic power reduction solutions not sufficient. Classical solutions that reduce power consumption in high performance integrated circuits are superseded with novel and enhanced power reduction techniques to enable the greater energy efficiency desired in modern microprocessors and emerging mobile platforms. Dynamic power consumption is reduced by operating over a wide range of supply voltages. This region of operation is enabled by a high speed and power efficient level shifter which translates low voltage digital signals to higher voltages (and vice versa), a key component that enables communication among circuits operating at different voltage levels. Additionally, optimizing the wide supply voltage range of signals propagating across long interconnect enables greater energy savings. A closed-form delay model supporting wide voltage range is developed to enable this capability. The model supports an ultra-wide voltage range from nominal voltages to subthreshold voltages, and a wide range of repeater sizes. To mitigate the drawback of lower operating speed at reduced supply voltages, the high performance exhibited by MOS current mode logic technology is exploited. High performance and energy efficient circuits are enabled by combining this logic style with power efficient near threshold circuits. Many-core systems that operate at high frequencies and process highly parallel workloads benefit from this combination of MCML with NTC. Due to aggressive scaling, static power consumption can in some cases overshadow dynamic power. Techniques to lower leakage power have therefore become an important objective in modern microprocessors. To address this issue, an adaptive power gating technique is proposed. This technique utilizes high levels of granularity to save additional leakage power when a circuit is active as opposed to standard power gating that saves static

  1. Determination of Gibbs energies of formation in aqueous solution using chemical engineering tools.

    PubMed

    Toure, Oumar; Dussap, Claude-Gilles

    2016-08-01

    Standard Gibbs energies of formation are of primary importance in the field of biothermodynamics. In the absence of any directly measured values, thermodynamic calculations are required to determine the missing data. For several biochemical species, this study shows that the knowledge of the standard Gibbs energy of formation of the pure compounds (in the gaseous, solid or liquid states) enables to determine the corresponding standard Gibbs energies of formation in aqueous solutions. To do so, using chemical engineering tools (thermodynamic tables and a model enabling to predict activity coefficients, solvation Gibbs energies and pKa data), it becomes possible to determine the partial chemical potential of neutral and charged components in real metabolic conditions, even in concentrated mixtures.

  2. Energy solutions, neo-liberalism, and social diversity in Toronto, Canada.

    PubMed

    Teelucksingh, Cheryl; Poland, Blake

    2011-01-01

    In response to the dominance of green capitalist discourses in Canada's environmental movement, in this paper, we argue that strategies to improve energy policy must also provide mechanisms to address social conflicts and social disparities. Environmental justice is proposed as an alternative to mainstream environmentalism, one that seeks to address systemic social and spatial exclusion encountered by many racialized immigrants in Toronto as a result of neo-liberal and green capitalist municipal policy and that seeks to position marginalized communities as valued contributors to energy solutions. We examine Toronto-based municipal state initiatives aimed at reducing energy use while concurrently stimulating growth (specifically, green economy/green jobs and 'smart growth'). By treating these as instruments of green capitalism, we illustrate the utility of environmental justice applied to energy-related problems and as a means to analyze stakeholders' positions in the context of neo-liberalism and green capitalism, and as opening possibilities for resistance.

  3. Towards interprofessional networking in medication management of the aged: current challenges and potential solutions in Finland

    PubMed Central

    Kallio, Sonja; Kumpusalo-Vauhkonen, Anne; Järvensivu, Timo; Mäntylä, Antti; Pohjanoksa-Mäntylä, Marika; Airaksinen, Marja

    2016-01-01

    Objective The Finnish Medicines Agency (Fimea) initiated a programme in 2012 for enhancing interprofessional networking in the medication management of the aged. The goal is to develop national guidelines for interprofessional collaboration with respect to medication management. This study aims to explore the challenges and potential solutions experienced by existing health care teams in managing medication of the aged: (1) at the individual and team level (micro level), (2) organisational level (meso level) and (3) structural level (macro level). Design Group discussions (n = 10), pair (n = 3) and individual interviews (n = 2). Abductive content analysis combining data and theory was applied. Networking was used as a theoretical framework. Setting Meetings (n = 15) organised by Fimea in the formation phase of the interprofessional network in 2012. Subjects Health care professionals (n = 55). Main outcome measures Challenges and solutions in the medication management of the aged at the micro, meso and macro levels. Results Challenges in interprofessional collaboration, problems with patient record systems, and the organisation of work and lack of resources were present at all the levels contributing to patients’ medication problems. Participants suggested multiple potential solutions to improve interprofessional collaboration, sharing of tasks and responsibilities, better exploitation of pharmaceutical knowledge and developing tools as being the most commonly mentioned. Conclusions Optimising medication use of the aged requires new systemic solutions within and between different system levels. The main challenges can be solved by clarifying responsibilities, enhancing communication and applying operational models that involve pharmacists and the use of information technology in medication management. KEY POINTSAn interprofessional team approach has been suggested as a solution to promote rational medicine use among the aged.Fragmented health

  4. A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand

    PubMed Central

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times. PMID:25807384

  5. Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems

    SciTech Connect

    Twomey, Janet M.

    2010-03-01

    The benefits of wind energy had previously been captured in the literature at an overview level with relatively low transparency or ability to understand the basis for that information. This has limited improvement and decision-making to larger questions such as wind versus other electrical sources (such as coal-fired plants). This research project has established a substantially different approach which is to add modular, high granularity life cycle inventory (lci) information that can be used by a wide range of decision-makers, seeking environmental improvement. Results from this project have expanded the understanding and evaluation of the underlying factors that can improve both manufacturing processes and specifically wind generators. The use of life cycle inventory techniques has provided a uniform framework to understand and compare the full range of environmental improvement in manufacturing, hence the concept of green manufacturing. In this project, the focus is on 1. the manufacturing steps that transform materials and chemicals into functioning products 2. the supply chain and end-of-life influences of materials and chemicals used in industry Results have been applied to wind generators, but also impact the larger U.S. product manufacturing base. For chemicals and materials, this project has provided a standard format for each lci that contains an overview and description, a process flow diagram, detailed mass balances, detailed energy of unit processes, and an executive summary. This is suitable for integration into other life cycle databases (such as that at NREL), so that broad use can be achieved. The use of representative processes allows unrestricted use of project results. With the framework refined in this project, information gathering was initiated for chemicals and materials in wind generation. Since manufacturing is one of the most significant parts of the environmental domain for wind generation improvement, this project research has

  6. 76 FR 2710 - Pitney Bowes, Inc., Mailing Solutions Management Division Including On-Site Leased Workers of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... Employment and Training Administration Pitney Bowes, Inc., Mailing Solutions Management Division Including On.... working within the Mailing Solutions Management Division who are located in remote work sites, including... partially separated from employment on or after June 23, 2009, through September 10, 2010, and all...

  7. Online integrated solution to collect data, generate information and manage events in the human biomonitoring field.

    PubMed

    Reis, M Fátima; Tedim, João; Aguiar, Pedro; Miguel, J Pereira; Casteleyn, Ludwine; Joas, Reinhard; Van Tongelen, Birgit

    2007-05-01

    In the ambit of Work Package 1 of the ESBIO Project, an online integrated solution to collect data, to generate information, and to manage mainly information-sharing events related with human biomonitoring within Europe has been designed and is being implemented. The present paper summarises the methodological approaches used by the authors as proposers, general promoters and disseminators of this strategic concept, as well as the first outcomes and future actions to be taken, in the short and longer term, to face present and future challenges to make this innovative solution happen.

  8. Modeling Project Management Competences: An Ontology-Based Solution for Competency-Based Learning

    NASA Astrophysics Data System (ADS)

    Bodea, Constanţa-Nicoleta; Dascălu, Maria-Iuliana

    Due to growing requirements for skilled workers, the education should value the outcome and address students' real performance in life. A learning process turns out to be good when the degree of transformation made possible through that process is high or the degree of competences increases. Current paper indicates e-learning as a suitable activity for competences development. The authors also argue that a proper competences modeling solution would increase the efficiency of competence-based learning. Consequently, an ontology based solution is presented for project management domain.

  9. Design of New Power Management Circuit for Light Energy Harvesting System.

    PubMed

    Jafer, Issa; Stack, Paul; MacNamee, Kevin

    2016-02-23

    Nowadays, it can be observed that Wireless Sensors Networks (WSN) are taking increasingly vital roles in many applications, such as building energy monitoring and control, which is the focus of the work in this paper. However, the main challenging issue with adopting WSN technology is the use of power sources such as batteries, which have a limited lifetime. A smart solution that could tackle this problem is using Energy Harvesting technology. The work in this paper will be focused on proposing a new power management design through harvesting indoor light intensity. The new approach is inspired by the use of the Fractional Open Circuit Voltage based Maximum Power Point tracking (MPPT) concept for sub mw Photo Voltaic (PV) cells. The new design adopts two main features: First, it minimizes the power consumed by the power management section; and second, it maximizes the MPPT-converted output voltage and consequently improves the efficiency of the power conversion in the sub mw power level. The new experimentally-tested design showed an improvement of 81% in the efficiency of MPPT conversion using 0.5 mW input power in comparison with the other presented solutions that showed less efficiency with higher input power.

  10. Design of New Power Management Circuit for Light Energy Harvesting System

    PubMed Central

    Jafer, Issa; Stack, Paul; MacNamee, Kevin

    2016-01-01

    Nowadays, it can be observed that Wireless Sensors Networks (WSN) are taking increasingly vital roles in many applications, such as building energy monitoring and control, which is the focus of the work in this paper. However, the main challenging issue with adopting WSN technology is the use of power sources such as batteries, which have a limited lifetime. A smart solution that could tackle this problem is using Energy Harvesting technology. The work in this paper will be focused on proposing a new power management design through harvesting indoor light intensity. The new approach is inspired by the use of the Fractional Open Circuit Voltage based Maximum Power Point tracking (MPPT) concept for sub mw Photo Voltaic (PV) cells. The new design adopts two main features: First, it minimizes the power consumed by the power management section; and second, it maximizes the MPPT-converted output voltage and consequently improves the efficiency of the power conversion in the sub mw power level. The new experimentally-tested design showed an improvement of 81% in the efficiency of MPPT conversion using 0.5 mW input power in comparison with the other presented solutions that showed less efficiency with higher input power. PMID:26907300

  11. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    SciTech Connect

    Zhang, Yanwen; Stocks, George Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C.; Wang, Lumin; Béland, Laurent K.; Stoller, Roger E.; Samolyuk, German D.; Caro, Magdalena; Caro, Alfredo; Weber, William J.

    2015-10-28

    A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel to binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys.

  12. Finite element solution for energy conservation using a highly stable explicit integration algorithm

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1972-01-01

    Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.

  13. CFEST Coupled Flow, Energy & Solute Transport Version CFEST005 Theory Guide

    SciTech Connect

    Freedman, Vicky L.; Chen, Yousu; Gupta, Sumant K.

    2005-11-01

    This document presents the mathematical theory implemented in the CFEST (Coupled Flow, Energy, and Solute Transport) simulator. The simulator is a three-dimensional finite element model that can be used for evaluating flow and solute mass transport. Although the theory for thermal transport is presented in this guide, it has not yet been fully implemented in the simulator. The flow module is capable of simulating both confined and unconfined aquifer systems, as well as constant and variable density fluid flows. For unconfined aquifers, the model uses a moving boundary for the water table, deforming the numerical mesh so that the uppermost nodes are always at the water table. For solute transport, changes in concentration of a single dissolved chemical constituent are computed for advective and hydrodynamic transport, linear sorption represented by a retardation factor, and radioactive decay. Once fully implemented, transport of thermal energy in the groundwater and solid matrix of the aquifer can also be used to model aquifer thermal regimes. Mesh construction employs “collapsible”, hexahedral finite elements in a three-dimensional coordinate system. CFEST uses the Galerkin finite element method to convert the partial differential equations to algebraic form. To solve the coupled equations for momentum, solute and heat transport, either Picard or Newton-Raphson iterative schemes are used to treat nonlinearities. An upstream weighted residual finite-element method is used to solve the advective-dispersive transport and energy transfer equations, which circumvents problems of numerical oscillation problems. Matrix solutions of the flow and transport problems are performed using efficient iterative solvers available in ITPACK and PETSc, solvers that are available in the public domain. These solvers are based on the preconditioned conjugate gradient and ORTHOMIN methods for symmetric and a nonsymmetric matrices, respectively.

  14. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    SciTech Connect

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  15. Assistance Focus: Asia/Pacific Region; Clean Energy Solutions Center (CESC)

    SciTech Connect

    2015-05-11

    The Clean Energy Solutions Center Ask an Expert service connects governments seeking policy information and advice with one of more than 30 global policy experts who can provide reliable and unbiased quick-response advice and information. The service is available at no cost to government agency representatives from any country and the technical institutes assisting them. This publication presents summaries of assistance provided to governments in the Asia/Pacific region, including the benefits of that assistance.

  16. Material and energy recovery in integrated waste management systems: The potential for energy recovery

    SciTech Connect

    Consonni, Stefano; Vigano, Federico

    2011-09-15

    Highlights: > The amount of waste available for energy recovery is significantly higher than the Unsorted Residual Waste (URW). > Its energy potential is always higher than the complement to 100% of the Source Separation Level (SSL). > Increasing SSL has marginal effects on the potential for energy recovery. > Variations in the composition of the waste fed to WtE plants affect only marginally their performances. > A large WtE plant with a treatment capacity some times higher than a small plant achieves electric efficiency appreciably higher. - Abstract: This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on 'Material and energy recovery in Integrated Waste Management Systems (IWMS)'. An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy

  17. 75 FR 78231 - Management of Energy and Water Efficiency in Federal Buildings: Availability of Guidance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... of Energy Efficiency and Renewable Energy Management of Energy and Water Efficiency in Federal Buildings: Availability of Guidance AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... Subsection (f), Use of Energy and Water Efficiency Measures in Federal Buildings) is available at:...

  18. Office of Nuclear Energy Knowledge Management Program Situational Analysis Report

    SciTech Connect

    Kimberlyn C. Mousseau

    2011-12-01

    Knowledge management (KM) has been a high priority for the Department of Energy (DOE) Office of Nuclear Energy (NE) for the past several years. NE Programs are moving toward well-established knowledge management practices and a formal knowledge management program has been established. Knowledge management is being practiced to some level within each of the NE programs. Although it continues to evolve as NE programs evolve, a formal strategic plan that guides the implementation of KM has been developed. Despite the acceptance of KM within DOE NE, more work is necessary before the NE KM program can be considered fully successful. Per Dr. David J. Skyrme[1], an organization typically moves through the following evolutionary phases: (1) Ad-hoc - KM is being practiced to some level in some parts of the organization; (2) Formal - KM is established as a formal project or program; (3) Expanding - the use of KM as a discipline grows in practice across different parts of the organization; (4) Cohesive - there is a degree of coordination of KM; (5) Integrated - there are formal standards and approaches that give every individual access to most organizational knowledge through common interfaces; and (6) Embedded - KM is part-and-parcel of everyday tasks; it blends seamlessly into the background. According to the evolutionary phases, the NE KM program is operating at the two lower levels, Ad-hoc and Formal. Although KM is being practiced to some level, it is not being practiced in a consistent manner across the NE programs. To be fully successful, more emphasis must be placed on establishing KM standards and processes for collecting, organizing, sharing and accessing NE knowledge. Existing knowledge needs to be prioritized and gathered on a routine basis, its existence formally recorded in a knowledge inventory. Governance to ensure the quality of the knowledge being used must also be considered. For easy retrieval, knowledge must be organized according to a taxonomy that

  19. Strategies for Energy Efficient Resource Management of Hybrid Programming Models

    SciTech Connect

    Li, Dong; Supinski, Bronis de; Schulz, Martin; Nikolopoulos, Dimitrios S; Cameron, Kirk W.

    2013-01-01

    Many scientific applications are programmed using hybrid programming models that use both message-passing and shared-memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared-memory or message-passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74% on average and up to 13.8%) with some performance gain (up to 7.5%) or negligible performance loss.

  20. Co-Leadership – A Management Solution for Integrated Health and Social Care

    PubMed Central

    Hansson, Johan; Hasson, Henna; Sachs, Magna Andreen

    2016-01-01

    Introduction: Co-leadership has been identified as one approach to meet the managerial challenges of integrated services, but research on the topic is limited. In the present study, co-leadership, practised by pairs of managers – each manager representing one of the two principal organizations in integrated health and social care services – was explored. Aim: To investigate co-leadership in integrated health and social care, identify essential preconditions in fulfilling the management assignment, its operationalization and impact on provision of sustainable integration of health and social care. Method: Interviews with eight managers exercising co-leadership were analysed using directed content analysis. Respondent validation was conducted through additional interviews with the same managers. Results: Key contextual preconditions were an organization-wide model supporting co-leadership and co-location of services. Perception of the management role as a collective activity, continuous communication and lack of prestige were essential personal and interpersonal preconditions. In daily practice, office sharing, being able to give and take and support each other contributed to provision of sustainable integration of health and social care. Conclusion and discussion: Co-leadership promoted robust management by providing broader competence, continuous learning and joint responsibility for services. Integrated health and social care services should consider employing co-leadership as a managerial solution to achieve sustainability. PMID:27616963

  1. Perspectives of Urban Corner Store Owners and Managers on Community Health Problems and Solutions

    PubMed Central

    Young, Candace R.; Cannuscio, Carolyn C.; Karpyn, Allison; Kounaves, Sarah; Strupp, Emily; McDonough, Kevin; Shea, Judy A.

    2016-01-01

    Introduction Urban corner store interventions have been implemented to improve access to and promote purchase of healthy foods. However, the perspectives of store owners and managers, who deliver and shape these interventions in collaboration with nonprofit, government, and academic partners, have been largely overlooked. We sought to explore the views of store owners and managers on the role of their stores in the community and their beliefs about health problems and solutions in the community. Methods During 2013 and 2014, we conducted semistructured, in-depth interviews in Philadelphia, Pennsylvania, and Camden, New Jersey, with 23 corner store owners/managers who participated in the Healthy Corner Store Initiative spearheaded by The Food Trust, a nonprofit organization focused on food access in low-income communities. We oversampled high-performing store owners. Results Store owners/managers reported that their stores served multiple roles, including providing a convenient source of goods, acting as a community hub, supporting community members, working with neighborhood schools, and improving health. Owners/managers described many challenging aspects of running a small store, including obtaining high-quality produce at a good price and in small quantities. Store owners/managers believed that obesity, diabetes, high cholesterol, and poor diet are major problems in their communities. Some owners/managers engaged with customers to discuss healthy behaviors. Conclusion Our findings suggest that store owners and managers are crucial partners for healthy eating interventions. Corner store owners/managers interact with community members daily, are aware of community health issues, and are community providers of access to food. Corner store initiatives can be used to implement innovative programs to further develop the untapped potential of store owners/managers. PMID:27736054

  2. Waste to energy--key element for sustainable waste management.

    PubMed

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  3. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  4. Asymptotic behavior of the least-energy solutions of a semilinear elliptic equation with the Hardy-Sobolev critical exponent

    NASA Astrophysics Data System (ADS)

    Hashizume, Masato

    2017-02-01

    We investigate the existence, the non-existence and the asymptotic behavior of the least-energy solutions of a semilinear elliptic equation with the Hardy-Sobolev critical exponent. In the boundary singularity case, it is known that the mean curvature of the boundary at origin plays a crucial role on the existence of the least-energy solutions. In this paper, we study the relation between the asymptotic behavior of the solutions and the mean curvature at origin.

  5. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    SciTech Connect

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G.

    1997-10-01

    The Solution High-Energy Burst Assembly (SHEBA) was originally constructed during 1980 and was designed to be a clean free-field geometry, right-circular, cylindrically symmetric critical assembly employing U(5%)O{sub 2}F{sub 2} solution as fuel. A second version of SHEBA, employing the same fuel but equipped with a fuel pump and shielding pit, was commissioned in 1993. This report includes data and operating experience for the 1993 SHEBA only. Solution-fueled benchmark work focused on the development of experimental measurements of the characterization of SHEBA; a summary of the results are given. A description of the system and the experimental results are given in some detail in the report. Experiments were designed to: (1) study the behavior of nuclear excursions in a low-enrichment solution, (2) evaluate accidental criticality alarm detectors for fuel-processing facilities, (3) provide radiation spectra and dose measurements to benchmark radiation transport calculations on a low-enrichment solution system similar to centrifuge enrichment plants, and (4) provide radiation fields to calibrate personnel dosimetry. 15 refs., 37 figs., 10 tabs.

  6. Self-similar cosmological solutions with dark energy. II. Black holes, naked singularities, and wormholes

    SciTech Connect

    Maeda, Hideki; Harada, Tomohiro; Carr, B. J.

    2008-01-15

    We use a combination of numerical and analytical methods, exploiting the equations derived in a preceding paper, to classify all spherically symmetric self-similar solutions which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=({gamma}-1){mu} with 0<{gamma}<2/3. The expansion of the Friedmann universe is accelerated in this case. We find a one-parameter family of self-similar solutions representing a black hole embedded in a Friedmann background. This suggests that, in contrast to the positive pressure case, black holes in a universe with dark energy can grow as fast as the Hubble horizon if they are not too large. There are also self-similar solutions which contain a central naked singularity with negative mass and solutions which represent a Friedmann universe connected to either another Friedmann universe or some other cosmological model. The latter are interpreted as self-similar cosmological white hole or wormhole solutions. The throats of these wormholes are defined as two-dimensional spheres with minimal area on a spacelike hypersurface and they are all nontraversable because of the absence of a past null infinity.

  7. High energy supercapattery with an ionic liquid solution of LiClO4.

    PubMed

    Yu, Linpo; Chen, George Z

    2016-08-15

    A supercapattery combining an ideally polarized capacitor-like electrode and a battery-like electrode is demonstrated theoretically and practically using an ionic liquid electrolyte containing 1-butyl-1-methylpyrrolidinium tri(pentafluoroethyl)trifluorophosphate (BMPyrrFAP), gamma-butyrolactone (γ-GBL) and LiClO4. The electrochemical deposition and dissolution of lithium metal on a platinum and glass carbon electrode were investigated in this ionic liquid solution. The CVs showed that the fresh electrochemically deposited lithium metal was stable in the electrolyte, which encouraged the investigation of this ionic liquid solution in a supercapattery with a lithium battery negative electrode. The active material counted specific energy of the supercapattery based on a lithium negative electrode and an activated carbon (Act-C) positive electrode could reach 230 W h kg(-1) under a galvanostatic charge-discharge current density of 1 mA cm(-2). The positive electrode material (Act-C) was also investigated by CV, AC impedance, SEM and BET. The non-uniform particle size and micropores dominated porous structure of the Act-C enabled its electric double layer capacitor (EDLC) behavior in the ionic liquid solution. The measured specific capacitance of the Act-C in this ionic liquid solution is higher than the same Act-C in aqueous solution, which indicates the Act-C can also perform well in the ionic liquid electrolyte.

  8. Control and Size Energy Storage for Managing Energy balance of Variable Generation Resources

    SciTech Connect

    Ke, Xinda; Lu, Ning; Jin, Chunlian

    2015-01-01

    This paper presents control algorithms and sizing strategies for using energy storage to manage energy balance for variable generation resources. The control objective is to minimize the hourly generation imbalance between the actual and the scheduled generation of the wind farm. Three control algorithms are compared: tracking power imbalance, post-compensation, and pre-compensation. Measurement data from a wind farm located in South-central Washington State are used in the study. The results show that tracking power imbalance yields the best performance by keeping the hourly energy imbalances zero. However, the energy storage system (ESS) will be significantly oversized. Post-compensation reduces power rating of the ESS but the hourly imbalance may not be kept as zero when large and long-lasting energy imbalances occur. A linear regression forecasting algorithm is developed for the pre-compensation algorithm to pre-charge or pre-discharge the ESS based on predicted energy imbalances. The performance comparison shows that the pre-compensation method significantly reduces the size of the ESS while maintaining satisfactory performance.

  9. State energy office data management: the preliminary energy audit of the institutional buildings grants program

    SciTech Connect

    Blue, J.L.; Zuschneid, P.B.; Carney, J.H.; Hirst, E.

    1980-10-01

    This report reviews state energy office (SEO) activities related to data collection, verification, and analysis for the preliminary energy audit portion of the Institutional Buildings Grant Program (IBGP). A preliminary energy audit (PEA), a collection of basic data on the characteristics of buildings and their energy use, was performed. Individual building energy use data were collected in the PEA program for thousands of institutions in each state. Such detailed data are potentially valuable in a number of ways: program management, program evaluation, policy analysis, and energy model development. However, such data must be consistently collected, carefully verified, and fully documented to fill these needs. Our examination of the SEO data management processes for the PEA showed problems in all these areas. Many SEOs lacked the time and staff to design a form adequately. This, in turn, influenced the clarity of and simplicity of the questionnaire, the ease of question interpretation, and, finally, the quality of responses. Confusion over the meaning of the federal regulations compounded these problems. Once the PEA data were collected, SEOs encountered problems in storing, verifying, and analyzing the data. Almost half the states did not computerize their PEA data and instead attempted manual control of a data set containing hundreds of thousands of data elements. Data verification and analysis in these states have been limited. Even among those SEOs with computerized data files, the computer and staff time necessary for adequate verification and analysis of the PEA data has rarely been available. Cross-comparison among states was facilitated by development of a procedure to rank PEA processes. It appears that the most important determinant of a good PEA process is the presence of a highly motivated, well-trained staff.

  10. Smart Microgrid Energy Management Controls for Improved Energy Efficiency and Renewables Integration at DoD Installations

    DTIC Science & Technology

    2013-05-01

    excessive distribution losses. Microgrids are envisioned as local power networks that utilize DER and manage the local energy supply and demand. While...certified network communications) hardware and software tailored for the Twentynine Palms operation. GE can specify the technology transfer method...excessive distribution losses. Microgrids are envisioned as local power networks that utilize distributed energy resources (DER) and manage the local

  11. Structure optimization via free energy gradient method: Application to glycine zwitterion in aqueous solution

    NASA Astrophysics Data System (ADS)

    Okuyama-Yoshida, Naoto; Kataoka, Ken; Nagaoka, Masataka; Yamabe, Tokio

    2000-09-01

    The free energy gradient method was applied to the multidimensional geometry optimization of glycine zwitterion (ZW) in aqueous solution in order not only to demonstrate its applicability, but also to examine its efficiency. The method utilizes force on the free energy surface that can be directly calculated by the molecular dynamics method and the free energy perturbation theory. Then, the most stable ZW structure in aqueous solution was obtained within the tolerance assumed, and it was found that the free energy (FE) and enthalpy changes of stabilization from the initial geometry optimized in the gas phase are -0.9 and -3.5 kcal/mol, respectively, and the amino and carboxyl groups are spatially separated by each other due to their solvating with water molecules. Comparing the contributions of enthalpy and entropy to FE, the former is attributed to the main origin of FE stabilization during the optimization procedure, and it was found that solvation entropy prevents water molecules from solvating the ZW more strongly.

  12. A Bulk-Water-Dependent Desolvation Energy Model for Analyzing the Effects of Secondary Solutes on Biological Equilibria†

    PubMed Central

    Eggers, Daryl K.

    2011-01-01

    A new phenomenological model for interpreting solute effects on biological equilibria is presented. The model attributes changes in equilibria to differences in the desolvation energy of the reacting species which, in turn, reflect changes in the free energy of the bulk water on addition of secondary solutes. The desolvation approach differs notably from other solute models by treating the free energy of bulk water as a variable and by not ascribing the observed shifts in reaction equilibria to accumulation or depletion of solutes next to the surfaces of the reacting species. On the contrary, the partitioning of solutes is viewed as a manifestation of the different subpopulations of water that arise in response to the surface boundary conditions. A thermodynamic framework consistent with the proposed model is used to derive a relationship for a specific reaction, an aqueous solubility equilibrium, in two or more solutions. The resulting equation reconciles some potential issues with the transfer free energy model of Tanford. Application of the desolvation energy model to the analysis of a two-state protein folding equilibrium is discussed and contrasted to the application of two other solute models developed by Timasheff and by Parsegian. Future tabulation of solvation energies and bulk water energies may allow biophysical chemists to confirm the mechanism by which secondary solutes influence binding and conformational equilibria and may provide a common ground for experimentalists and theoreticians to compare and evaluate their results. PMID:21284393

  13. Challenges and solutions of remote sensing at offshore wind energy developments.

    PubMed

    Kelly, T A; West, T E; Davenport, J K

    2009-11-01

    Radar is becoming an important tool used to gather data on bird and bat activity at proposed and existing land-based wind energy sites. Radar will likely play an even more important role at the increasing development of wind energy offshore, given both the lack of knowledge about bird and bat activity offshore and the increased difficulty in obtaining offshore information. Most radar studies to date have used off-the-shelf or modified marine radars. However, there are several issues that continue to hinder the potential usefulness of radar at wind energy sites, with offshore sites providing a particular suite of challenges. We identify these challenges along with current or developing solutions.

  14. Energy Level Alignment at Metal/Solution-Processed Organic Semiconductor Interfaces.

    PubMed

    Atxabal, Ainhoa; Braun, Slawomir; Arnold, Thorsten; Sun, Xiangnan; Parui, Subir; Liu, Xianjie; Gozalvez, Cristian; Llopis, Roger; Mateo-Alonso, Aurelio; Casanova, Felix; Ortmann, Frank; Fahlman, Mats; Hueso, Luis E

    2017-03-15

    Energy barriers between the metal Fermi energy and the molecular levels of organic semiconductor devoted to charge transport play a fundamental role in the performance of organic electronic devices. Typically, techniques such as electron photoemission spectroscopy, Kelvin probe measurements, and in-device hot-electron spectroscopy have been applied to study these interfacial energy barriers. However, so far there has not been any direct method available for the determination of energy barriers at metal interfaces with n-type polymeric semiconductors. This study measures and compares metal/solution-processed electron-transporting polymer interface energy barriers by in-device hot-electron spectroscopy and ultraviolet photoemission spectroscopy. It not only demonstrates in-device hot-electron spectroscopy as a direct and reliable technique for these studies but also brings it closer to technological applications by working ex situ under ambient conditions. Moreover, this study determines that the contamination layer coming from air exposure does not play any significant role on the energy barrier alignment for charge transport. The theoretical model developed for this work confirms all the experimental observations.

  15. Data Management Solutions for Tracking Restoration Progress in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Ravi, S. R.; Johnston, M.; Sweeney, J.

    2014-12-01

    The decline of the Chesapeake Bay estuarine ecosystem due to agricultural and industrial activities has been a great concern, where excess of dissolved nutrients combined with global climate change has lead to increased storm surges, habitat destruction, and low dissolved oxygen, reduced water clarity, and increased algal growth. In 2010 The US Environmental Protection Agency established the Chesapeake Bay Total Maximum Daily Load (TMDL), which seeks to protect the Bay's living resources by reducing nutrient and sediment runoff to its waters, and sets pollution reduction targets for sediment, nitrogen and phosphorus across 64000 sq. miles watershed that includes parts of six states - Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia — and the entire District of Columbia. The Chesapeake Bay Program and the US EPA have developed a number of tools to track the progress of restoration. In this study we describe data management solutions, which were used in the integration of data such as land use, nutrient applications, management practices, policies among the bay jurisdictions, and a summary of a suite of tools that were developed and are being used to collect, process, and report data at various spatial scales for tracking the progress made by the seven Bay jurisdictions in achieving reductions in nutrient and sediment runoff. The described integration strategy and data management solutions can be used in the development and application of similar regulatory local or regional scale environmental management tools.

  16. Groundwater artificial recharge solutions for integrated management of watersheds and aquifer systems under extreme drought scenarios

    NASA Astrophysics Data System (ADS)

    Lobo-Ferreira, Joao-Paulo; Oliveira, Luís.; Diamantino, Catarina

    2010-05-01

    The paper addresses groundwater artificial recharge solutions for integrated management of watersheds and aquifer systems under extreme drought scenarios. The conceptual idea of Aquifer Storage and Recovery (ASR) is considered as one of the scientific based solutions towards scientific based mitigation measures to climate variability and change in many parts of the world. In Portugal two European Union sponsored 6th Framework Programme for Research Projects have been addressing this topic, namely GABARDINE Project on "Groundwater artificial recharge based on alternative sources of water: Advanced integrated technologies and management" and the Coordinated Action ASEMWATERNet, a "Multi-Stakeholder Platform for ASEM S&T Cooperation on Sustainable Water Use". An application of Aquifer Storage and Recovery methodologies aiming drought mitigation and Integrated Water Resource Management of the Algarve (Portugal). The technique of artificial recharge of groundwater is used in many parts of the world with several aims, e.g. water storing in appropriate aquifers for the mitigation of future water needs during droughts or as protection against pollution or even for the recovery of groundwater quality. Artificial recharge of the aquifer systems of Campina de Faro and Silves-Querença is addressed in this paper, proposed to be an alternative to decrease the vulnerability of the Algarve to a future drought. Integrated management of water resources in the Algarve is not a clear issue since the last decade, when groundwater resources that supplied almost all water needs, have been drastically replaced by surface water stored in new reservoirs.

  17. Energy management - a critical role in cancer induction?

    PubMed

    Garland, J

    2013-10-01

    universally exhibit a characteristic profile regardless of origin, whose progression is extremely predictable: increased proliferation, invasion and migration, loss in architectural integrity (anaplasticity), apoptotic inactivation etc. To understand this discrepancy, an extensive review was performed from the standpoint that since all oncogenes directly or indirectly alter enzyme pathways which control energy management, this may be a critical component of the induction process; alterations in management divert energy away from the construction and maintenance of stable complex structure into dynamic activity such as continuing replication, motility and migration, and architectural fluidity, ie. anaplasticity. This diversion would flow from the laws of thermodynamics which require energy to be dissipated (entropy). The review prompted a model (Fractal Entropy) whereby cellular entropic dissipation follows structure-independent fractal distributions rather than the linearly ordered, sequential pathways currently modelled for signal transduction. "Malignant" behaviour arises from disturbances which bias this fractal network to achieve maximum entropy. Because replication, motility and architectural plasticity all actively dissipate more energy through kinetic activity than by structure-building in which energy becomes "locked in", these routes are preferred eventually generating a universal malignant phenotype independent of the types of mutations and pathways initially affected. A proposed mechanism for the model is based on Chaos and Fractal theories illustrated in the Appendix. These present examples of dynamic fractal behaviour through Mandelbrot figures and of how Chaos theory can initiate and guide distribution of entropy fractals. This proposal accords fully with established physical laws and the most recent research, and reconciles many of the unresolved problems concerning genetic heterogeneity, the universality of malignant cell behaviour, cancer progression, and the

  18. Power Management Integrated Circuit for Indoor Photovoltaic Energy Harvesting System

    NASA Astrophysics Data System (ADS)

    Jain, Vipul

    In today's world, power dissipation is a main concern for battery operated mobile devices. Key design decisions are being governed by power rather than area/delay because power requirements are growing more stringent every year. Hence, a hybrid power management system is proposed, which uses both a solar panel to harvest energy from indoor lighting and a battery to power the load. The system tracks the maximum power point of the solar panel and regulates the battery and microcontroller output load voltages through the use of an on-chip switched-capacitor DC-DC converter. System performance is verified through simulation at the 180nm technology node and is made to be integrated on-chip with 0.25 second startup time, 79% efficiency, --8/+14% ripple on the load, an average 1micro A of quiescent current (3.7micro W of power) and total on-chip area of 1.8mm2 .

  19. Controls for Reusable Launch Vehicles During Terminal Area Energy Management

    NASA Technical Reports Server (NTRS)

    Driessen, Brian J.

    2005-01-01

    During the terminal energy management phase of flight (last of three phases) for a reusable launch vehicle, it is common for the controller to receive guidance commands specifying desired values for (i) the roll angle roll q(sub roll), (ii) the acceleration a(sub n) in the body negative z direction, -k(sub A)-bar, and (iii) omega(sub 3), the projection of onto the body-fixed axis k(sub A)-bar, is always indicated by guidance to be zero. The objective of the controller is to regulate the actual values of these three quantities, i.e make them close to the commanded values, while maintaining system stability.

  20. Catalog of selected heavy duty transport energy management models

    NASA Technical Reports Server (NTRS)

    Colello, R. G.; Boghani, A. B.; Gardella, N. C.; Gott, P. G.; Lee, W. D.; Pollak, E. C.; Teagan, W. P.; Thomas, R. G.; Snyder, C. M.; Wilson, R. P., Jr.

    1983-01-01

    A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle.

  1. Calculation of relative energies of permethylated oligosilane conformers in vapor and in alkane solution.

    PubMed

    Fogarty, Heather A; Ottosson, Henrik; Michl, Josef

    2006-12-21

    The geometries of 35 conformers of Me(SiMe2)nMe (n = 4, 1; n = 5, 2; n = 6, 3; n = 7, 4) were optimized at the MP2/VTDZ level, and CCSD(T) single-point calculations were done at three MP2/VTDZ conformer geometries of 1. The relative ground-state energies of the conformers of 1-4 in the gas phase were obtained from the MP2/VTDZ electronic energy, zero-point vibrational energy, and thermal corrections at 0, 77, and 298 K. Relative energies in an alkane solvent at 77 and 298 K were obtained by the addition of solvation energies, obtained from the SM5.42R model. The calculated energies of 26 of the conformers (n = 4-6) have been least-squares fitted to a set of 15 additive increments associated with each Si-Si bond conformation and each pair of adjacent bond conformations, with mean deviations of 0.06-0.20 kcal/mol. An even better fit for the energies of 24 conformers (mean deviations, 0.01-0.09 kcal/mol) has been obtained with a larger set of 19 increments, which also contained contributions from selected combinations of conformations of three adjacent bonds. The utility of the additive increments for the prediction of relative conformer energies in the gas phase and in solution has been tested on the remaining nine conformers (n = 6, 7). With the improved increment set, the average deviation from the SM5.42R//MP2 results for solvated conformers at 298 K was 0.18 kcal/mol, and the maximum error was 0.98 kcal/mol.

  2. Identifying low variance pathways for free energy calculations of molecular transformations in solution phase.

    PubMed

    Pham, Tri T; Shirts, Michael R

    2011-07-21

    Improving the efficiency of free energy calculations is important for many biological and materials design applications, such as protein-ligand binding affinities in drug design, partitioning between immiscible liquids, and determining molecular association in soft materials. We show that for any pair potential, moderately accurate estimation of the radial distribution function for a solute molecule is sufficient to accurately estimate the statistical variance of a sampling along a free energy pathway. This allows inexpensive analytical identification of low statistical error free energy pathways. We employ a variety of methods to estimate the radial distribution function (RDF) and find that the computationally cheap two-body "dilute gas" limit performs as well or better than 3D-RISM theory and other approximations for identifying low variance free energy pathways. With a RDF estimate in hand, we can search for pairwise interaction potentials that produce low variance. We give an example of a search minimizing statistical variance of solvation free energy over the entire parameter space of a generalized "soft core" potential. The free energy pathway arising from this optimization procedure has lower curvature in the variance and reduces the total variance by at least 50% compared to the traditional soft core solvation pathway. We also demonstrate that this optimized pathway allows free energies to be estimated with fewer intermediate states due to its low curvature. This free energy variance optimization technique is generalizable to solvation in any homogeneous fluid and for any type of pairwise potential and can be performed in minutes to hours, depending on the method used to estimate g(r).

  3. A Targeted Management of the Nutrient Solution in a Soilless Tomato Crop According to Plant Needs

    PubMed Central

    Signore, Angelo; Serio, Francesco; Santamaria, Pietro

    2016-01-01

    The adoption of closed soilless systems is useful in minimizing the environmental impact of the greenhouse crops. Instead, a significant problem in closed soilless systems is represented by the accumulation of ions in the recycled nutrient solution (NS), in particular the unabsorbed or poorly absorbed ones. To overcome such problem, we: (1) studied the effect of several values of the electrical conductivity (EC) of NS in a NFT (Nutrient Film Technique) system on a cherry type tomato crop, and (2) define a NS (called recovery solution), based on the concept of “uptake concentration” and transpiration–biomass ratio, that fits the real needs of the plant with respect to water and nutrients. Three levels of EC set point (SP), above which the NS was completely replaced (SP5, SP7.5, and SP10 for the EC limit of 5, 7.5, and 10 dS m-1, respectively), were established. The SP10 treatment yield was not different from other treatments, and it allowed a better quality of the berries (for dry matter and total soluble solids) and higher environmental sustainability due to a lower discharge of total nutrients into the environment (37 and 59% with respect to SP7.5 and SP5, respectively). The recovery solution used in the second trial allowed a more punctual NS management, by adapting to the real needs of the crop. Moreover, it allowed a lesser amount of water and nutrients to be discharged into the environment and a better use of brackish water, due to a more accurate management of the EC of the NS. The targeted management, based on transpiration–biomass ratio, indicates that, in some stages of the plant cycle, the NS used can be diluted, in order to save water and nutrients. With such management a closed cycle can be realized without affecting the yield, but improving the quality of the tomato berries. PMID:27242804

  4. Dynamics of liquid state chemical reactions: Vibrational energy relaxation of molecular iodine in liquid solution

    NASA Astrophysics Data System (ADS)

    Brooks, C. L., III; Balk, M. W.; Adelman, S. A.

    1983-07-01

    The dynamics of vibrational energy relaxation of highly excited molecular iodine in three monatomic solvents is studied via stochastic classical trajectory simulations based on the molecular timescale generalized Langevin equation (MTGLE) of motion for liquid state chemical reactions [S. A. Adelman, J. Chem. Phys. 73, 3145 (1980)]. Also presented for comparison purposes are parallel studies based on a matrix Langevin equation of motion characterized by friction coefficients which depend on the instantaneous I2 internuclear separation R. The qualitative features of the energy relaxation may be interpreted as effects arising from modifications of the solute dynamics due to molecular timescale correlations between its motion and that of its solvation shells. Such dynamical solvent effects are realistically described by the MTGLE equation of motion but not by the Langevin equation. Thus, for example, the marked slowdown of the rate of I2 energy relaxtion in simple solvents when the I2 vibrational quantum number drops below a solvent-dependent critical value, earlier predicted by Nesbitt and Hynes, is predicted by MTGLE dynamics but not by Langevin dynamics. Finally, practical algorithms for numerically constructing the MTGLE and Langevin equations for specific solute-solvent systems are presented.

  5. Technology Solutions Case Study: Stand-Off Furring in Deep Energy Retrofits

    SciTech Connect

    2014-05-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using "L" clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and "picture framing" the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing.

  6. Existing Whole-House Solutions Case Study: Evaluating Energy Savings in All-Electric Public Housing in the Pacific Northwest

    SciTech Connect

    2014-03-01

    This project analyzes the cost effectiveness of energy-saving measures installed by a large public housing authority in Salishan, and evaluates those solutions to improve efficiency of affordable housing for new and existing homes. Research focuses on the modeled and measured energy usage of the first six phases of construction, and compares the energy usage of those phases to phase 7.

  7. Energy Emergency Management Information System (EEMIS): functional requirements

    SciTech Connect

    Not Available

    1980-10-17

    This report deals with the functional requirements of the Energy Emergency Management Information System (EEMIS) as it is defined for State level use (EEMIS-S). This report provides a technical description of the EEMIS-S requirements. These guidelines state that in order to create the widest practicable competition the system's requirements, with few exceptions, must be expressed in functional terms without reference to specific hardware or software products, and that wherever exceptions are made a statement of justification must be provided. In addition, these guidelines set forth a recommended maximum threshold limit of annual contract value for schedule contract procurements. Section 2.0 presents a general overview of the EEMIS structure in terms of requirements for vendor support. The functional requirements for each component are developed by section as: Teleprocessing Monitor Requirements, Section 3.0; EEMIS File Requirements, Section 4.0; Data Base Management Requirements, Section 5.0; Application Program Requirements, Section 6.0; and Utility Program Requirements, Section 7.0. The final Section, 8.0, justifies the use of the GSA Teleprocessing Service Program - Multiple Award Schedule Contracts (TSP-MASC) procurement process. The intent of this section is to substantiate, in this instance, the desirability of obtaining time-sharing vendor services to support EEMIS under a schedule contract, even if certain TSP-MASC threshold limits might be exceeded.

  8. Benchmark solutions for the galactic ion transport equations: Energy and spatially dependent problems

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Wilson, John W.

    1989-01-01

    Nontrivial benchmark solutions are developed for the galactic ion transport (GIT) equations in the straight-ahead approximation. These equations are used to predict potential radiation hazards in the upper atmosphere and in space. Two levels of difficulty are considered: (1) energy independent, and (2) spatially independent. The analysis emphasizes analytical methods never before applied to the GIT equations. Most of the representations derived have been numerically implemented and compared to more approximate calculations. Accurate ion fluxes are obtained (3 to 5 digits) for nontrivial sources. For monoenergetic beams, both accurate doses and fluxes are found. The benchmarks presented are useful in assessing the accuracy of transport algorithms designed to accommodate more complex radiation protection problems. In addition, these solutions can provide fast and accurate assessments of relatively simple shield configurations.

  9. Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption.

    PubMed

    Qureshi, N; Hughes, S; Maddox, I S; Cotta, M A

    2005-07-01

    This article discusses the separation of butanol from aqueous solutions and/or fermentation broth by adsorption. Butanol fermentation is also known as acetone butanol ethanol (ABE) or solvent fermentation. Adsorbents such as silicalite, resins (XAD-2, XAD-4, XAD-7, XAD-8, XAD-16), bone charcoal, activated charcoal, bonopore, and polyvinylpyridine have been studied. Use of silicalite appears to be the more attractive as it can be used to concentrate butanol from dilute solutions (5 to 790-810 g L(-1)) and results in complete desorption of butanol (or ABE). In addition, silicalite can be regenerated by heat treatment. The energy requirement for butanol recovery by adsorption-desorption processes has been calculated to be 1,948 kcal kg(-1) butanol as compared to 5,789 kcal kg(-1) butanol by steam stripping distillation. Other techniques such as gas stripping and pervaporation require 5,220 and 3,295 kcal kg(-1) butanol, respectively.

  10. Sound energy decay in coupled spaces using a parametric analytical solution of a diffusion equation.

    PubMed

    Luizard, Paul; Polack, Jean-Dominique; Katz, Brian F G

    2014-05-01

    Sound field behavior in performance spaces is a complex phenomenon. Issues regarding coupled spaces present additional concerns due to sound energy exchanges. Coupled volume concert halls have been of increasing interest in recent decades because this architectural principle offers the possibility to modify the hall's acoustical environment in a passive way by modifying the coupling area. Under specific conditions, the use of coupled reverberation chambers can provide non-exponential sound energy decay in the main room, resulting in both high clarity and long reverberation which are antagonistic parameters in a single volume room. Previous studies have proposed various sound energy decay models based on statistical acoustics and diffusion theory. Statistical acoustics assumes a perfectly uniform sound field within a given room whereas measurements show an attenuation of energy with increasing source-receiver distance. While previously proposed models based on diffusion theory use numerical solvers, the present study proposes a heuristic model of sound energy behavior based on an analytical solution of the commonly used diffusion equation and physically justified approximations. This model is validated by means of comparisons to scale model measurements and numerical geometrical acoustics simulations, both applied to the same simple concert hall geometry.

  11. 10 CFR 905.1 - What are the purposes of the Energy Planning and Management Program?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... a minimum level of investment in energy efficiency and/or renewable energy, collecting a charge to support defined public benefits, or complying with a mandated energy efficiency and/or renewable energy... efficiency, conservation, and load management; and the use of renewable energy. Subpart B,...

  12. 10 CFR 905.1 - What are the purposes of the Energy Planning and Management Program?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... a minimum level of investment in energy efficiency and/or renewable energy, collecting a charge to support defined public benefits, or complying with a mandated energy efficiency and/or renewable energy... efficiency, conservation, and load management; and the use of renewable energy. Subpart B,...

  13. 10 CFR 905.1 - What are the purposes of the Energy Planning and Management Program?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... a minimum level of investment in energy efficiency and/or renewable energy, collecting a charge to support defined public benefits, or complying with a mandated energy efficiency and/or renewable energy... efficiency, conservation, and load management; and the use of renewable energy. Subpart B,...

  14. 10 CFR 905.1 - What are the purposes of the Energy Planning and Management Program?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... a minimum level of investment in energy efficiency and/or renewable energy, collecting a charge to support defined public benefits, or complying with a mandated energy efficiency and/or renewable energy... efficiency, conservation, and load management; and the use of renewable energy. Subpart B,...

  15. Coordinated train control and energy management control strategies

    SciTech Connect

    Gordon, S.P.; Lehrer, D.G.

    1998-05-01

    The Bay Area Rapid Transit (BART) system, in collaboration with Hughes Aircraft Company and Harmon Industries, as in the process of developing an Advanced Automatic Train Control (AATC) system to replace the current fixed-block automatic system. In the long run, the AATC system is expected to not only allow for safe short headway operation, but also to facilitate coordinated train control and energy management. This new system will employ spread spectrum radios, installed onboard trains, at wayside locations, and at control stations, to determine train locations and reliably transfer control information. Sandia National Laboratories has worked cooperatively with BART to develop a simulator of the train control and the power consumption of the AATC system. The authors are now in the process of developing enhanced train control algorithms to supplement the safety critical controller in order to smooth out train trajectories through coordinated control of multiple trains, and to reduce energy consumption and power infrastructure requirements. The control algorithms so far considered include (1) reducing peak power consumption to avoid voltage sags, especially during an outage or while clearing a backup, (2) rapid and smooth recovery from a backup, (3) avoiding oscillations due to train interference, (4) limiting needle peaks in power demand at substations to some specified level, (5) coasting, and (6) coordinating train movement, e.g., starts/stops and hills.

  16. 76 FR 23583 - Application of the Energy Planning and Management Program Power Marketing Initiative to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... Area Power Administration Application of the Energy Planning and Management Program Power Marketing... (Western), a Federal power marketing agency of the Department of Energy (DOE), will apply the Energy Planning and Management Program (Program) Power Marketing Initiative (PMI), as modified in this notice,...

  17. An SNMP-based solution to enable remote ISO/IEEE 11073 technical management.

    PubMed

    Lasierra, Nelia; Alesanco, Alvaro; García, José

    2012-07-01

    This paper presents the design and implementation of an architecture based on the integration of simple network management protocol version 3 (SNMPv3) and the standard ISO/IEEE 11073 (X73) to manage technical information in home-based telemonitoring scenarios. This architecture includes the development of an SNMPv3-proxyX73 agent which comprises a management information base (MIB) module adapted to X73. In the proposed scenario, medical devices (MDs) send information to a concentrator device [designated as compute engine (CE)] using the X73 standard. This information together with extra information collected in the CE is stored in the developed MIB. Finally, the information collected is available for remote access via SNMP connection. Moreover, alarms and events can be configured by an external manager in order to provide warnings of irregularities in the MDs' technical performance evaluation. This proposed SNMPv3 agent provides a solution to integrate and unify technical device management in home-based telemonitoring scenarios fully adapted to X73.

  18. Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Marshall Space Flight Center (MSFC) Engineering Directorate, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This briefing will demonstrate how the MSFC Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions and how that strategy aligns with the Agency and Center systems engineering policies and processes. Sustainable space exploration solutions demand that all lifecycle phases be optimized, and engineering the next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. Adopting PLM, which has been used by the aerospace and automotive industry for many years, for spacecraft applications provides a foundation for strong, disciplined systems engineering and accountable return on investment. PLM enables better solutions using fewer resources by making lifecycle considerations in an integrative decision-making process.

  19. Copper Oxide Thin Films through Solution Based Methods for Electrical Energy Conversion and Storage

    NASA Astrophysics Data System (ADS)

    Zhu, Changqiong

    Copper oxides (Cu2O and CuO), composed of non-toxic and earth abundant elements, are promising materials for electrical energy generation and storage devices. Solution based techniques for creating thin films of these materials, such as electrodeposition, are important to understand and develop because of their potential for realizing substantial energy savings compared to traditional fabrication methods. Cuprous oxide (Cu2O), with its direct band gap, is a p-type semiconductor that is well suited for creating solution-processed photovoltaic devices (solar cells); several key advancements made toward this application are the primary focus of this thesis. Electrodeposition of single-phase, crystalline Cu2O thin films is demonstrated using previously unexplored, acidic lactate/Cu2+ solutions, which has provided additional understanding of the impacts of growth solution chemistry on film formation. The influence of pH on the resulting Cu2O thin film properties is revealed by using the same ligand (sodium lactate) at various solution pH values. Cu2O films grown from acidic lactate solutions can exhibit a distinctive flowerlike, dendritic morphology, in contrast to the faceted, dense films obtained using alkaline lactate solutions. Relative speciation distributions of the various metal complex ions present under different growth conditions are calculated using reported equilibrium association constants and experimentally supported by UV-Visible absorption spectroscopy. Dependence of thin film morphology on the lactate/Cu2+ molar ratio and applied potential is described. Cu2O/eutectic gallium-indium Schottky junction devices are formed and devices are tested under monochromatic green LED illumination. Further surface examination of the Cu2O films using X-ray photoelectron spectroscopy (XPS) reveals the fact that films grown from acidic lactate solution with a small lactate/Cu2+ molar ratio, which exhibit improved photovoltaic performance compared to films grown from

  20. Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation.

    PubMed

    Rajeshwar, Krishnan; de Tacconi, Norma R

    2009-07-01

    In this tutorial review, we summarize recent research on the solution combustion synthesis of oxide semiconductors for applications related to photovoltaic solar energy conversion, photoelectrochemical hydrogen generation, and heterogeneous photocatalytic remediation of environmental pollutants. First, the advantages of combustion synthesis relative to other strategies for preparing oxide semiconductors are discussed followed by a summary of process variants in combustion synthesis. The possibility of in situ chemical modification of the oxide during its formation in the combustion environment is addressed. Morphological and crystal structure aspects of the combustion-synthesized products are discussed followed by a summary of trends in their photocatalytic activity relative to benchmark samples prepared by other methods.

  1. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    SciTech Connect

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  2. Dealloying of Cu-Based Metallic Glasses in Acidic Solutions: Products and Energy Storage Applications

    PubMed Central

    Wang, Zhifeng; Liu, Jiangyun; Qin, Chunling; Yu, Hui; Xia, Xingchuan; Wang, Chaoyang; Zhang, Yanshan; Hu, Qingfeng; Zhao, Weimin

    2015-01-01

    Dealloying, a famous ancient etching technique, was used to produce nanoporous metals decades ago. With the development of dealloying techniques and theories, various interesting dealloying products including nanoporous metals/alloys, metal oxides and composites, which exhibit excellent catalytic, optical and sensing performance, have been developed in recent years. As a result, the research on dealloying products is of great importance for developing new materials with superior physical and chemical properties. In this paper, typical dealloying products from Cu-based metallic glasses after dealloying in hydrofluoric acid and hydrochloric acid solutions are summarized. Several potential application fields of these dealloying products are discussed. A promising application of nanoporous Cu (NPC) and NPC-contained composites related to the energy storage field is introduced. It is expected that more promising dealloying products could be developed for practical energy storage applications. PMID:28347030

  3. A cryptographic key management solution for HIPAA privacy/security regulations.

    PubMed

    Lee, W-B; Lee, C-D

    2008-01-01

    The Health Insurance Portability and Accountability Act (HIPAA) privacy and security regulations are two crucial provisions in the protection of healthcare privacy. Privacy regulations create a principle to assure that patients have more control over their health information and set limits on the use and disclosure of health information. The security regulations stipulate the provisions implemented to guard data integrity, confidentiality, and availability. Undoubtedly, the cryptographic mechanisms are well defined to provide suitable solutions. In this paper, to comply with the HIPAA regulations, a flexible cryptographic key management solution is proposed to facilitate interoperations among the applied cryptographic mechanisms. In addition, case of consent exceptions intended to facilitate emergency applications and other possible exceptions can also be handled easily.

  4. Energy Solutions, Neo-Liberalism, and Social Diversity in Toronto, Canada

    PubMed Central

    Teelucksingh, Cheryl; Poland, Blake

    2011-01-01

    In response to the dominance of green capitalist discourses in Canada’s environmental movement, in this paper, we argue that strategies to improve energy policy must also provide mechanisms to address social conflicts and social disparities. Environmental justice is proposed as an alternative to mainstream environmentalism, one that seeks to address systemic social and spatial exclusion encountered by many racialized immigrants in Toronto as a result of neo-liberal and green capitalist municipal policy and that seeks to position marginalized communities as valued contributors to energy solutions. We examine Toronto-based municipal state initiatives aimed at reducing energy use while concurrently stimulating growth (specifically, green economy/green jobs and ‘smart growth’). By treating these as instruments of green capitalism, we illustrate the utility of environmental justice applied to energy-related problems and as a means to analyze stakeholders’ positions in the context of neo-liberalism and green capitalism, and as opening possibilities for resistance. PMID:21318023

  5. Electron transport and energy degradation in the ionosphere: Evaluation of the numerical solution, comparison with laboratory experiments and auroral observations

    NASA Technical Reports Server (NTRS)

    Lummerzheim, D.; Lilensten, J.

    1994-01-01

    Auroral electron transport calculations are a critical part of auroral models. We evaluate a numerical solution to the transport and energy degradation problem. The numerical solution is verified by reproducing simplified problems to which analytic solutions exist, internal self-consistency tests, comparison with laboratory experiments of electron beams penetrating a collision chamber, and by comparison with auroral observations, particularly the emission ratio of the N2 second positive to N2(+) first negative emissions. Our numerical solutions agree with range measurements in collision chambers. The calculated N(2)2P to N2(+)1N emission ratio is independent of the spectral characteristics of the incident electrons, and agrees with the value observed in aurora. Using different sets of energy loss cross sections and different functions to describe the energy distribution of secondary electrons that emerge from ionization collisions, we discuss the uncertainties of the solutions to the electron transport equation resulting from the uncertainties of these input parameters.

  6. 41 CFR 102-74.155 - What energy conservation policy must Federal agencies follow in the management of facilities?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What energy conservation... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Energy Conservation § 102-74.155 What energy conservation policy must Federal agencies follow in the management of...

  7. 41 CFR 102-74.155 - What energy conservation policy must Federal agencies follow in the management of facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What energy conservation... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Energy Conservation § 102-74.155 What energy conservation policy must Federal agencies follow in the management of...

  8. 41 CFR 102-74.155 - What energy conservation policy must Federal agencies follow in the management of facilities?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What energy conservation... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Energy Conservation § 102-74.155 What energy conservation policy must Federal agencies follow in the management of...

  9. 41 CFR 102-74.155 - What energy conservation policy must Federal agencies follow in the management of facilities?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What energy conservation... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Energy Conservation § 102-74.155 What energy conservation policy must Federal agencies follow in the management of...

  10. 41 CFR 102-74.155 - What energy conservation policy must Federal agencies follow in the management of facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What energy conservation... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Energy Conservation § 102-74.155 What energy conservation policy must Federal agencies follow in the management of...

  11. Air Force Civil Engineer Center Management of Energy Savings Performance Contracts Needs Improvement

    DTIC Science & Technology

    2016-05-04

    Force Civil Engineer Center Management of Energy Savings Performance Contracts Needs Improvement M A Y 4 , 2 0 1 6 Report No. DODIG-2016-087 Mission...Management of Energy Savings Performance Contracts Needs Improvement Visit us at www.dodig.mil Objective Our objective was to determine whether the Air...Force is effectively managing energy savings performance contracts (ESPCs). This report is the second in a series of audits on ESPCs. Finding The Air

  12. The Relationship between Environmental Turbulence, Management Support, Organizational Collaboration, Information Technology Solution Realization, and Process Performance, in Healthcare Provider Organizations

    ERIC Educational Resources Information Center

    Muglia, Victor O.

    2010-01-01

    The Problem: The purpose of this study was to investigate relationships between environmental turbulence, management support, organizational collaboration, information technology solution realization, and process performance in healthcare provider organizations. Method: A descriptive/correlational study of Hospital medical services process…

  13. Zebrafish Database: Customizable, Free, and Open-Source Solution for Facility Management.

    PubMed

    Yakulov, Toma Antonov; Walz, Gerd

    2015-12-01

    Zebrafish Database is a web-based customizable database solution, which can be easily adapted to serve both single laboratories and facilities housing thousands of zebrafish lines. The database allows the users to keep track of details regarding the various genomic features, zebrafish lines, zebrafish batches, and their respective locations. Advanced search and reporting options are available. Unique features are the ability to upload files and images that are associated with the respective records and an integrated calendar component that supports multiple calendars and categories. Built on the basis of the Joomla content management system, the Zebrafish Database is easily extendable without the need for advanced programming skills.

  14. Personal Genomic Information Management and Personalized Medicine: Challenges, Current Solutions, and Roles of HIM Professionals

    PubMed Central

    Alzu'bi, Amal; Zhou, Leming; Watzlaf, Valerie

    2014-01-01

    In recent years, the term personalized medicine has received more and more attention in the field of healthcare. The increasing use of this term is closely related to the astonishing advancement in DNA sequencing technologies and other high-throughput biotechnologies. A large amount of personal genomic data can be generated by these technologies in a short time. Consequently, the needs for managing, analyzing, and interpreting these personal genomic data to facilitate personalized care are escalated. In this article, we discuss the challenges for implementing genomics-based personalized medicine in healthcare, current solutions to these challenges, and the roles of health information management (HIM) professionals in genomics-based personalized medicine. PMID:24808804

  15. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    DOE PAGES

    Zhang, Yanwen; Stocks, George Malcolm; Jin, Ke; ...

    2015-10-28

    A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel tomore » binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys.« less

  16. Building America FY 2016 Annual Report: Building America Is Driving Real Solutions in the Race to Zero Energy Homes -- Appendix

    SciTech Connect

    Farrar, Sara; Rothgeb, Stacey; Polly, Ben; Earle, Lieko; Merrigan, Tim

    2017-01-01

    This document is a set of appendices presenting technical discussion and references as a companion to the 'Building America FY 2016 Annual Report: Building America Is Driving Real Solutions in the Race to Zero Energy Homes' publication.

  17. Air turbine - an interesting solution for straw energy conversion into electricity

    NASA Astrophysics Data System (ADS)

    Bălănescu, D. T.; Homutescu, V. M.; Atanasiu, M. V.

    2016-08-01

    Straw is a non-hazardous by-product of crop plants processing. Currently, it represent one of the most important biomass resource. The huge quantities of straw annually produced generate big problems in what concerns their disposal. The traditional field burning is no longer accepted, so another disposal solutions must be found and recycling is the most attractive. The paper refers to such a solution consisting in the conversion of the straw energy potential into electricity in a power plant based on an air turbine. This power system it is in fact an external combustion engine, derived from a gas turbine engine and operating with air as working fluid instead of combustion gases. In order to make possible the use of straw as fuel, the conventional combustion chamber is substituted by a hot air generator. Schematic of this power system and the results of its energetic analysis are presented in the paper. There are analysed the main performance indicators, namely thermal efficiency, output power, fuel consumption and specific fuel consumption. The results of the study indicate the analysed power system as an interesting solution for straw recycling.

  18. Solution structure and excitation energy transfer in phycobiliproteins of Acaryochloris marina investigated by small angle scattering.

    PubMed

    Golub, M; Combet, S; Wieland, D C F; Soloviov, D; Kuklin, A; Lokstein, H; Schmitt, F-J; Olliges, R; Hecht, M; Eckert, H-J; Pieper, J

    2017-04-01

    The structure of phycobiliproteins of the cyanobacterium Acaryochloris marina was investigated in buffer solution at physiological temperatures, i.e. under the same conditions applied in spectroscopic experiments, using small angle neutron scattering. The scattering data of intact phycobiliproteins in buffer solution containing phosphate can be well described using a cylindrical shape with a length of about 225Å and a diameter of approximately 100Å. This finding is qualitatively consistent with earlier electron microscopy studies reporting a rod-like shape of the phycobiliproteins with a length of about 250 (M. Chen et al., FEBS Letters 583, 2009, 2535) or 300Å (J. Marquart et al., FEBS Letters 410, 1997, 428). In contrast, phycobiliproteins dissolved in buffer lacking phosphate revealed a splitting of the rods into cylindrical subunits with a height of 28Å only, but also a pronounced sample aggregation. Complementary small angle neutron and X-ray scattering experiments on phycocyanin suggest that the cylindrical subunits may represent either trimeric phycocyanin or trimeric allophycocyanin. Our findings are in agreement with the assumption that a phycobiliprotein rod with a total height of about 225Å can accommodate seven trimeric phycocyanin subunits and one trimeric allophycocyanin subunit, each of which having a height of about 28Å. The structural information obtained by small angle neutron and X-ray scattering can be used to interpret variations in the low-energy region of the 4.5K absorption spectra of phycobiliproteins dissolved in buffer solutions containing and lacking phosphate, respectively.

  19. Design of RF energy harvesting platforms for power management unit with start-up circuits

    NASA Astrophysics Data System (ADS)

    Costanzo, Alessandra; Masotti, Diego

    2013-12-01

    In this contribution we discuss an unconventional rectifier design dedicated to RF energy harvesting from ultra-low sources, such as ambient RF sources which are typically of the order of few to few tens of μW. In such conditions unsuccessful results may occur if the rectenna is directly connected to its actual load since either the minimum power or the minimum activation voltage may not be simultaneously available. For this reason a double-branch rectifier topology is considered for the power management unit (PMU), instead of traditional single-branch one. The new PMU, interposed between the rectenna and application circuits, allows the system to operate with significantly lower input power with respect to the traditional solution, while preserving efficiency during steady-state power conversion.

  20. A System for Managing Replenishment of a Nutrient Solution Using an Electrical Conductivity Controller

    NASA Technical Reports Server (NTRS)

    Davis, D.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.

    1998-01-01

    Control of nutrient solution parameters is very important for the growth and development of plants grown hydroponically. Protocols involving different nutrient solution replenishment times (e.g. one-week, two-week, or two-day replenishment) provide manual periodic control of the nutrient solution's electrical conductivity (EC). Since plants take-up nutrients as they grow, manual control has a drawback in that EC is not held constant between replenishments. In an effort to correct this problem the Center for Food and Environmental Systems for Human Exploration of Space at Tuskegee University has developed a system for managing and controlling levels of EC over a plant's entire growing cycle. A prototype system is being tested on sweetpotato production using the nutrient film technique (NFT), and it is being compared to a system in which sweetpotatoes are grown using NFT with manual control. NASA has played an important role in the development of environmental control systems. They have become a forerunner in growing plants hydroponically with some control systems through the use of networked data acquisition and control using environmental growth chambers. Data acquisition systems which involve the use of real-time, calibration, set points, user panel, and graphical representation programming provide a good method of controlling nutrient solution parameters such as EC and pH [Bledsoe, 19931]. In NASA's Biomass Production Chamber (BPC) at Kennedy Space Center, control is provided by a programmable logic controller (PLC). This is an industrial controller which combines ladder computer logic which has the ability to handle various levels of electrical power. The controller controls temperature, light and other parameters that affect the plant's environment, in the BPC, the Nutrient Delivery System (NIX), a sub-system of the PLC, controls nutrient solution parameters such as EC, pH, and solution levels. When the nutrient EC measurement goes outside a preset range (120

  1. CFEST Coupled Flow, Energy & Solute Transport Version CFEST005 User’s Guide

    SciTech Connect

    Freedman, Vicky L.; Chen, Yousu; Gilca, Alex; Cole, Charles R.; Gupta, Sumant K.

    2006-07-20

    The CFEST (Coupled Flow, Energy, and Solute Transport) simulator described in this User’s Guide is a three-dimensional finite-element model used to evaluate groundwater flow and solute mass transport. Confined and unconfined aquifer systems, as well as constant and variable density fluid flows can be represented with CFEST. For unconfined aquifers, the model uses a moving boundary for the water table, deforming the numerical mesh so that the uppermost nodes are always at the water table. For solute transport, changes in concentra¬tion of a single dissolved chemical constituent are computed for advective and hydrodynamic transport, linear sorption represented by a retardation factor, and radioactive decay. Although several thermal parameters described in this User’s Guide are required inputs, thermal transport has not yet been fully implemented in the simulator. Once fully implemented, transport of thermal energy in the groundwater and solid matrix of the aquifer can also be used to model aquifer thermal regimes. The CFEST simulator is written in the FORTRAN 77 language, following American National Standards Institute (ANSI) standards. Execution of the CFEST simulator is controlled through three required text input files. These input file use a structured format of associated groups of input data. Example input data lines are presented for each file type, as well as a description of the structured FORTRAN data format. Detailed descriptions of all input requirements, output options, and program structure and execution are provided in this User’s Guide. Required inputs for auxillary CFEST utilities that aide in post-processing data are also described. Global variables are defined for those with access to the source code. Although CFEST is a proprietary code (CFEST, Inc., Irvine, CA), the Pacific Northwest National Laboratory retains permission to maintain its own source, and to distribute executables to Hanford subcontractors.

  2. Community-based telemonitoring for hypertension management: practical challenges and potential solutions.

    PubMed

    Hovey, Lauren; Kaylor, Mary Beth; Alwan, Majd; Resnick, Helaine E

    2011-10-01

    Older adults residing in rural areas often lack convenient, patient-centered, community-based approaches to facilitate receipt of routine care to manage common chronic conditions. Without adequate access to appropriate disease management resources, the risk of seniors' experiencing acute events related to these common conditions increases substantially. Further, poorly managed chronic conditions are costly and place seniors at increased risk of institutionalization and permanent loss of independence. Novel, telehealth-based approaches to management of common chronic conditions like hypertension may not only improve the health of older adults, but may also lead to substantial cost savings associated with acute care episodes and institutionalization. The aim of this report is to summarize practical considerations related to operations and logistics of a unique community-based telemonitoring pilot study targeting rural seniors who utilize community-based senior centers. This article reviews the technological challenges encountered during the study and proposes solutions relevant to future research and implementation of telehealth in community-based, congregate settings.

  3. Environmental and socio-economic methodologies and solutions towards integrated water resources management.

    PubMed

    Friesen, Jan; Rodriguez Sinobas, Leonor; Foglia, Laura; Ludwig, Ralf

    2017-03-01

    Semi-arid regions are facing the challenge of managing water resources under conditions of increasing scarcity and drought. These are recently pressured by the impact of climate change favoring the shifting from using surface water to groundwater without taking sustainability issues into account. Likewise, water scarcity raises the competition for water among users, increasing the risk of social conflicts, as the availability of fresh water in sufficient quality and quantity is already one of the major factors limiting socio-economic development. In terms of hydrology, semi-arid regions are characterized by very complex hydro- and hydrogeological systems. The complexity of the water cycle contrasts strongly with the poor data availability, (1) which limits the number of analysis techniques and methods available to researchers, (2) limits the accuracy of models and predictions, and (3) consequently challenges the capabilities to develop appropriate management measures to mitigate or adapt the environment to scarcity and drought conditions. Integrated water resources management is a holistic approach to focus on both environmental as well as on socio-economic factors influencing water availability and supply. The management approaches and solutions adopted, e.g. in form of decision support for specific water resources systems, are often highly specific for individual case studies.

  4. 76 FR 30147 - Application of the Energy Planning and Management Program Power Marketing Initiative to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... Area Power Administration Application of the Energy Planning and Management Program Power Marketing... Power Administration (Western), a Federal power marketing agency of the Department of Energy (DOE), is... General Consolidated Power Marketing Criteria or Regulations for Boulder City Area Projects...

  5. Getting the Most from Your On-Line Energy Management System.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    1997-01-01

    Describes the online energy management control system at San Diego State University, California. Tips for the smooth operation of systems already installed or those under consideration are presented. Following these tips can save campuses time, money, and energy. (RE)

  6. 77 FR 58424 - Drucker, Inc., DynaMotive Energy Systems Corp., and Gate to Wire Solutions, Inc., Order of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Drucker, Inc., DynaMotive Energy Systems Corp., and Gate to Wire Solutions, Inc., Order of... current and accurate information concerning the securities of Gate to Wire Solutions, Inc. because it...

  7. Free Energy and Equilibrium: The Basis of Change in G Degrees = -RT In K for Reactions in Solution.

    ERIC Educational Resources Information Center

    Barrow, Gordon M.

    1983-01-01

    Discusses the derivation of a thermodynamic relation. The relation is derived, for reactants in solution, from a treatment of the free energy of the reducing system as a function of the degree of advancement of the solution. Includes microcomputer figures/diagrams produced by programs developed to simulate this study. (JN)

  8. Creating an Energy Intelligent Campus: Data Integration Challenges and Solutions at a Large Research Campus

    SciTech Connect

    Cutler, Dylan; Frank, Stephen; Slovensky, Michelle; Sheppy, Michael; Petersen, Anya

    2016-08-26

    Rich, well-organized building performance and energy consumption data enable a host of analytic capabilities for building owners and operators, from basic energy benchmarking to detailed fault detection and system optimization. Unfortunately, data integration for building control systems is challenging and costly in any setting. Large portfolios of buildings--campuses, cities, and corporate portfolios--experience these integration challenges most acutely. These large portfolios often have a wide array of control systems, including multiple vendors and nonstandard communication protocols. They typically have complex information technology (IT) networks and cybersecurity requirements and may integrate distributed energy resources into their infrastructure. Although the challenges are significant, the integration of control system data has the potential to provide proportionally greater value for these organizations through portfolio-scale analytics, comprehensive demand management, and asset performance visibility. As a large research campus, the National Renewable Energy Laboratory (NREL) experiences significant data integration challenges. To meet them, NREL has developed an architecture for effective data collection, integration, and analysis, providing a comprehensive view of data integration based on functional layers. The architecture is being evaluated on the NREL campus through deployment of three pilot implementations.

  9. DIFFUSED SOLUTE-SOLVENT INTERFACE WITH POISSON-BOLTZMANN ELECTROSTATICS: FREE-ENERGY VARIATION AND SHARP-INTERFACE LIMIT.

    PubMed

    Li, B O; Liu, Yuan

    A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction energy, and the continuum electrostatic free energy described by the Poisson-Boltzmann theory. All these are expressed in terms of phase fields that, for low free-energy conformations, are close to one value in the solute phase and another in the solvent phase. A key property of the model is that the phase-field interpolation of dielectric coefficient has the vanishing derivative at both solute and solvent phases. The first variation of such an effective free-energy functional is derived. Matched asymptotic analysis is carried out for the resulting relaxation dynamics of the diffused solute-solvent interface. It is shown that the sharp-interface limit is exactly the variational implicit-solvent model that has successfully captured capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states of underlying biomolecular systems as found in experiment and molecular dynamics simulations. Our phase-field approach and analysis can be used to possibly couple the description of interfacial fluctuations for efficient numerical computations of biomolecular interactions.

  10. DIFFUSED SOLUTE-SOLVENT INTERFACE WITH POISSON–BOLTZMANN ELECTROSTATICS: FREE-ENERGY VARIATION AND SHARP-INTERFACE LIMIT

    PubMed Central

    LI, BO; LIU, YUAN

    2015-01-01

    A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction energy, and the continuum electrostatic free energy described by the Poisson–Boltzmann theory. All these are expressed in terms of phase fields that, for low free-energy conformations, are close to one value in the solute phase and another in the solvent phase. A key property of the model is that the phase-field interpolation of dielectric coefficient has the vanishing derivative at both solute and solvent phases. The first variation of such an effective free-energy functional is derived. Matched asymptotic analysis is carried out for the resulting relaxation dynamics of the diffused solute-solvent interface. It is shown that the sharp-interface limit is exactly the variational implicit-solvent model that has successfully captured capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states of underlying biomolecular systems as found in experiment and molecular dynamics simulations. Our phase-field approach and analysis can be used to possibly couple the description of interfacial fluctuations for efficient numerical computations of biomolecular interactions. PMID:26877556

  11. A Measurement Management Technology for Improving Energy Efficiency in Data Centers and Telecommunication Facilities

    SciTech Connect

    Hendrik Hamann, Levente Klein

    2012-06-28

    Data center (DC) electricity use is increasing at an annual rate of over 20% and presents a concern for the Information Technology (IT) industry, governments, and the society. A large fraction of the energy use is consumed by the compressor cooling to maintain the recommended operating conditions for IT equipment. The most common way to improve the DC efficiency is achieved by optimally provisioning the cooling power to match the global heat dissipation in the DC. However, at a more granular level, the large range of heat densities of today's IT equipment makes the task of provisioning cooling power optimized to the level of individual computer room air conditioning (CRAC) units much more challenging. Distributed sensing within a DC enables the development of new strategies to improve energy efficiency, such as hot spot elimination through targeted cooling, matching power consumption at rack level with workload schedule, and minimizing power losses. The scope of Measurement and Management Technologies (MMT) is to develop a software tool and the underlying sensing technology to provide critical decision support and control for DC and telecommunication facilities (TF) operations. A key aspect of MMT technology is integration of modeling tools to understand how changes in one operational parameter affect the overall DC response. It is demonstrated that reduced ordered models for DC can generate, in less than 2 seconds computational time, a three dimensional thermal model in a 50 kft{sup 2} DC. This rapid modeling enables real time visualization of the DC conditions and enables 'what if' scenarios simulations to characterize response to 'disturbances'. One such example is thermal zone modeling that matches the cooling power to the heat generated at a local level by identifying DC zones cooled by a specific CRAC. Turning off a CRAC unit can be simulated to understand how the other CRAC utilization changes and how server temperature responds. Several new sensing

  12. Special Report: Energy

    ERIC Educational Resources Information Center

    Cuscaden, Rob

    1976-01-01

    Presently available design techniques, technologies, and management practices can significantly reduce the energy requirements of new buildings. A two-part section discusses solutions to the energy problem in the commercial, institutional, and industrial fields. (Author/MLF)

  13. Dual-energy computed tomography for gout diagnosis and management.

    PubMed

    Dalbeth, Nicola; Choi, Hyon K

    2013-01-01

    The central feature of gout is deposition of monosodium urate crystals. Dual-energy computed tomography (DECT) is a recently developed advanced imaging method that enables visualisation of urate deposits by analysis of the chemical composition of the scanned materials. This review summarises recent research describing the use of DECT in gout management. This technology may assist in both diagnosis and monitoring of the disease. Studies of patients with established disease indicate diagnostic accuracy for gout is high. Excellent inter-reader agreement has been reported for detection of urate deposits by use of DECT. Automated volume assessment software also enables rapid and reproducible measurement of urate deposits within tophi, suggesting that this modality may be useful for monitoring the disease. Although several case reports indicate DECT can be used to reveal reduction in the size of urate deposits, the sensitivity to change in response to urate-lowering therapy has not yet been systematically reported. DECT images reveal variable urate deposition within tophi of the same physical size. The ability to visualise urate deposits in tissue may provide new insights into the pathology and mechanisms of gout.

  14. Singular Features of Trypanosomatids' Phosphotransferases Involved in Cell Energy Management

    PubMed Central

    Pereira, Claudio A.; Bouvier, León A.; Cámara, María de los Milagros; Miranda, Mariana R.

    2011-01-01

    Trypanosomatids are responsible for economically important veterinary affections and severe human diseases. In Africa, Trypanosoma brucei causes sleeping sickness or African trypanosomiasis, while in America, Trypanosoma cruzi is the etiological agent of Chagas disease. These parasites have complex life cycles which involve a wide variety of environments with very different compositions, physicochemical properties, and availability of metabolites. As the environment changes there is a need to maintain the nucleoside homeostasis, requiring a quick and regulated response. Most of the enzymes required for energy management are phosphotransferases. These enzymes present a nitrogenous group or a phosphate as acceptors, and the most clear examples are arginine kinase, nucleoside diphosphate kinase, and adenylate kinase. Trypanosoma and Leishmania have the largest number of phosphotransferase isoforms ever found in a single cell; some of them are absent in mammals, suggesting that these enzymes are required in many cellular compartments associated to different biological processes. The presence of such number of phosphotransferases support the hypothesis of the existence of an intracellular enzymatic phosphotransfer network that communicates the spatially separated intracellular ATP consumption and production processes. All these unique features make phosphotransferases a promising start point for rational drug design for the treatment of human trypanosomiasis. PMID:21603267

  15. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Li, Fa-Tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-10-01

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  16. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion.

    PubMed

    Li, Fa-tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-11-14

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  17. Material resources, energy, and nutrient recovery from waste: are waste refineries the solution for the future?

    PubMed

    Tonini, Davide; Martinez-Sanchez, Veronica; Astrup, Thomas Fruergaard

    2013-08-06

    Waste refineries focusing on multiple outputs of material resources, energy carriers, and nutrients may potentially provide more sustainable utilization of waste resources than traditional waste technologies. This consequential life cycle assessment (LCA) evaluated the environmental performance of a Danish waste refinery solution against state-of-the-art waste technology alternatives (incineration, mechanical-biological treatment (MBT), and landfilling). In total, 252 scenarios were evaluated, including effects from source-segregation, waste composition, and energy conversion pathway efficiencies. Overall, the waste refinery provided global warming (GW) savings comparable with efficient incineration, MBT, and bioreactor landfilling technologies. The main environmental benefits from waste refining were a potential for improved phosphorus recovery (about 85%) and increased electricity production (by 15-40% compared with incineration), albeit at the potential expense of additional toxic emissions to soil. Society's need for the outputs from waste, i.e., energy products (electricity vs transport fuels) and resources (e.g., phosphorus), and the available waste composition were found decisive for the selection of future technologies. On the basis of the results, it is recommended that a narrow focus on GW aspects should be avoided as most waste technologies may allow comparable performance. Rather, other environmental aspects such as resource recovery and toxic emissions should receive attention in the future.

  18. Co-management of Water, Energy, and Food Systems: Where Are We and What Does it Take for Implementation?

    NASA Astrophysics Data System (ADS)

    Akhbari, M.

    2015-12-01

    Water, energy, and food are closely bound in consumption and production patterns. To increase resource efficiency and productivity in a sustainable fashion, co-management of water, energy, and food resources is becoming inevitable. These co-management schemes require implementation of nexus-based approaches, which takes the interconnections of water, energy, and food systems into account and considers that development in one area may have major effects on others. While society, economy and environment are the action areas to implement a nexus approach, finance, governance, infrastructure and technology can create solutions. Existing obstacles in the action areas and challenges associated with creating solutions increase the complexities to develop nexus-based approaches and complicate their implementation. This study, identifies existing social, economic, and environmental obstacles, financial demands and constraints, shortcomings in governance, and infrastructure problems in the United States as the main challenges that need to be overcome. Then, it will be discussed how advanced technology could be employed to facilitate implementation of nexus-based approaches, followed by providing some recommendations to enable institutions to employ new technology, overcome existing obstacles, and address challenges in order to implement nexus-based management approaches.

  19. Asset Management: Roof Maintenance and Facility Energy Retrofits

    DTIC Science & Technology

    2012-03-01

    Online]. Available : http://www.srpnet.com/ energy /biztips.aspx [43] Cranston Public Schools Network. (2012). Energy Conservation and Building...costs forced the USAF to begin aggressively searching for new energy conservation measures. Although, the USAF made significant gains in the...developing the right combination of energy efficiency conservation measures (ECMs) for certain facility types [25]. These facts documented the

  20. Field-SEA: a model for computing the solvation free energies of nonpolar, polar, and charged solutes in water.

    PubMed

    Li, Libo; Fennell, Christopher J; Dill, Ken A

    2014-06-19

    Previous work describes a computational solvation model called semi-explicit assembly (SEA). The SEA water model computes the free energies of solvation of nonpolar and polar solutes in water with good efficiency and accuracy. However, SEA gives systematic errors in the solvation free energies of ions and charged solutes. Here, we describe field-SEA, an improved treatment that gives accurate solvation free energies of charged solutes, including monatomic and polyatomic ions and model dipeptides, as well as nonpolar and polar molecules. Field-SEA is computationally inexpensive for a given solute because explicit-solvent model simulations are relegated to a precomputation step and because it represents solvating waters in terms of a solute's free-energy field. In essence, field-SEA approximates the physics of explicit-model simulations within a computationally efficient framework. A key finding is that an atom's solvation shell inherits characteristics of a neighboring atom, especially strongly charged neighbors. Field-SEA may be useful where there is a need for solvation free-energy computations that are faster than explicit-solvent simulations and more accurate than traditional implicit-solvent simulations for a wide range of solutes.