Science.gov

Sample records for energy non-high level

  1. State-Level Benefits of Energy Efficiency

    SciTech Connect

    Tonn, Bruce Edward

    2007-02-01

    This report describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20 to 30% energy savings in homes and plants, respectively. Over a 20 year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Benefit-cost ratios of effective energy efficiency programs typically exceed 3 to 1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies.

  2. Energy Levels of Hydrogen and Deuterium

    National Institute of Standards and Technology Data Gateway

    SRD 142 Energy Levels of Hydrogen and Deuterium (Web, free access)   This database provides theoretical values of energy levels of hydrogen and deuterium for principle quantum numbers n = 1 to 200 and all allowed orbital angular momenta l and total angular momenta j. The values are based on current knowledge of the revelant theoretical contributions including relativistic, quantum electrodynamic, recoil, and nuclear size effects.

  3. Energy levels for F-16 (Fluorine-16)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of Subvolume C `Tables of Excitations of Proton- and Neutron-rich Unstable Nuclei' of Volume 19 `Nuclear States from Charged Particle Reactions' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides energy levels for atomic nuclei of the isotope F-16 (fluorine, atomic number Z = 9, mass number A = 16).

  4. Fermi level stabilization energy in cadmium oxide

    SciTech Connect

    Speaks, D. T.; Mayer, M. A.; Yu, K. M.; Mao, S. S.; Haller, E. E.; Walukiewicz, W.

    2010-04-08

    We have studied the effects of high concentrations of native point defects on the electrical and optical properties of CdO. The defects were introduced by irradiation with high energy He+, Ne+, Ar+ and C+ ions. Increasing the irradiation damage with particles heavier than He+ increases the electron concentration until a saturation level of 5x1020 cm-3 is reached. In contrast, due to the ionic character and hence strong dynamic annealing of CdO, irradiation with much lighter He+ stabilizes the electron concentration at a much lower level of 1.7x1020 cm-3. A large shift of the optical absorption edge with increasing electron concentration in irradiated samples is explained by the Burstein-Moss shift corrected for electron-electron and electron-ion interactions. The saturation of the electron concentration and the optical absorption edge energy are consistent with a defect induced stabilization of the Fermi energy at 1 eV above the conduction band edge. The result is in a good agreement with previously determined Fermi level pinning energies on CdO surfaces. The results indicate that CdO shares many similarities with InN, as both materials exhibit extremely large electron affinities and an unprecedented propensity for n-type conductivity.

  5. Automated drawing system of quantum energy levels

    NASA Astrophysics Data System (ADS)

    Stampoultzis, M.; Sinatkas, J.; Tsakstara, V.; Kosmas, T. S.

    2014-03-01

    The purpose of this work is to derive an automated system that provides advantageous drawings of energy spectra for quantum systems (nuclei, atoms, molecules, etc.) required in various physical sciences. The automation involves the development of appropriate computational code and graphical imaging system based on raw data insertion, theoretical calculations and experimental or bibliographic data insertion. The system determines the appropriate scale to depict graphically with the best possible way in the available space. The presently developed code operates locally and the results are displayed on the screen and can be exported to a PostScript file. We note its main features to arrange and visualize in the available space the energy levels with their identity, taking care the existence in the final diagram the least auxiliary deviations. Future improvements can be the use of Java and the availability on the Internet. The work involves the automated plotting of energy levels in molecules, atoms, nuclei and other types of quantized energy spectra. The automation involves the development of an appropriate computational code and graphical imaging system.

  6. Defect energy levels from current transient recording

    NASA Astrophysics Data System (ADS)

    Momayezi, Michael

    1991-07-01

    Silicon detectors are widely used in high energy physics in vertexing and calorimetry applications. The radiative environment will introduce defects with energy levels in the bandgap into the crystals. At the high levels of radiation present at proton accelerators the defect concentration will easily approach or exceed the doping concentration of the usual high ohmic material. DLTS, the most common technique for defect characterization is known to fail under these conditions. To study heavy radiation damage in silicon detectors a new method has been developed. Using a DLTS-like pulser setup, the current transient from trap emptying is recorded on a fast digital scope being read out by a microcomputer. This is repeatedly done during a temperature scan. The time integral of the current transient equals the number of traps present and the activation enthalpy is found from the temperature dependence of the emission life time. If there is more than one energy level present the individual components may be extracted by a fitting procedure from the then multiexponential current transient. The sensitivity reached so far is, noise and systematics considered, ˜10 9 traps. Lifetimes between 5 μs and 5 ms are covered.

  7. Energy-level alignment at organic heterointerfaces

    PubMed Central

    Oehzelt, Martin; Akaike, Kouki; Koch, Norbert; Heimel, Georg

    2015-01-01

    Today’s champion organic (opto-)electronic devices comprise an ever-increasing number of different organic-semiconductor layers. The functionality of these complex heterostructures largely derives from the relative alignment of the frontier molecular-orbital energies in each layer with respect to those in all others. Despite the technological relevance of the energy-level alignment at organic heterointerfaces, and despite continued scientific interest, a reliable model that can quantitatively predict the full range of phenomena observed at such interfaces is notably absent. We identify the limitations of previous attempts to formulate such a model and highlight inconsistencies in the interpretation of the experimental data they were based on. We then develop a theoretical framework, which we demonstrate to accurately reproduce experiment. Applying this theory, a comprehensive overview of all possible energy-level alignment scenarios that can be encountered at organic heterojunctions is finally given. These results will help focus future efforts on developing functional organic interfaces for superior device performance. PMID:26702447

  8. Energy Flux in A-Level Electromagentism.

    ERIC Educational Resources Information Center

    Adams, S. F.

    1988-01-01

    Suggests an approach which treats the electric circuit as a channel through which energy flows and to which the application of energy conservation makes the distinction between electromotive force and potential difference unnecessary. Equations, examples, and visual representations are included. (RT)

  9. Ground Levels and Ionization Energies for the Neutral Atoms

    National Institute of Standards and Technology Data Gateway

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  10. Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook

    EIA Publications

    2016-01-01

    This paper presents average values of levelized costs for generating technologies entering service in 2018, 2022, and 2040 as represented in the National Energy Modeling System (NEMS) for the Annual Energy Outlook 2016 (AEO2016) Reference case.

  11. Quantum adiabatic evolution with energy degeneracy levels

    NASA Astrophysics Data System (ADS)

    Zhang, Qi

    2016-01-01

    A classical-kind phase-space formalism is developed to address the tiny intrinsic dynamical deviation from what is predicted by Wilczek-Zee theorem during quantum adiabatic evolution on degeneracy levels. In this formalism, the Hilbert space and the aggregate of degenerate eigenstates become the classical-kind phase space and a high-dimensional subspace in the phase space, respectively. Compared with the previous analogous study by a different method, the current result is qualitatively different in that the first-order deviation derived here is always perpendicular to the degeneracy subspace. A tripod-scheme Hamiltonian with two degenerate dark states is employed to illustrate the adiabatic deviation with degeneracy levels.

  12. Matching renewable energy systems to village-level energy needs

    SciTech Connect

    Ashworth, J.H.; Neuendorffer, J.W.

    1980-06-01

    This report provides a five step process for matching alternative renewable energy technologies with energy needs in rural villages of developing countries. Analytic tools are given for each of the five steps as well as information that can be expected. Twelve characterization criteria are developed to assist in the matching process. Three of these criteria, called discrimination criteria, are used for preliminary screening of technology possibilities for each need. The other criteria address site-specific temporal, climatic, social, cultural, and environmental characteristics of the energy need, technology, and cost considerations. To illustrate the matching process, seven basic human needs for energy are matched with seven potential renewable energy technologies. The final portion of the paper discusses the advantages of such a matching process and the resources required to initiate such an effort within a development project. Specific recommendations are given for field-testing this process and actions that could be taken immediately in basic research and development, applied research and technology modification, demonstrations, and commercialization to assist in the future diffusion of renewable energy technologies to rural areas of developing countries.

  13. ORNL takes energy-efficient housing to a new level

    SciTech Connect

    2008-12-19

    Oak Ridge National Laboratory, TVA and the Department of Energy are taking energy-saving research into a West Knox County neighborhood. In the Campbell Creek subdivision, ORNL researchers have helped builders to construct three homes with three different levels of energy-saving features.

  14. ORNL takes energy-efficient housing to a new level

    ScienceCinema

    None

    2016-07-12

    Oak Ridge National Laboratory, TVA and the Department of Energy are taking energy-saving research into a West Knox County neighborhood. In the Campbell Creek subdivision, ORNL researchers have helped builders to construct three homes with three different levels of energy-saving features.

  15. Calculation of Rydberg energy levels for the francium atom

    NASA Astrophysics Data System (ADS)

    Huang, Shi-Zhong; Chu, Jin-Min

    2010-06-01

    Based on the weakest bound electron potential model theory, the Rydberg energy levels and quantum defects of the np2Po1/2 (n = 7-50) and np2Po3/2 (n = 7-50) spectrum series for the francium atom are calculated. The calculated results are in excellent agreement with the 48 measured levels, and 40 energy levels for highly excited states are predicted.

  16. How to Draw Energy Level Diagrams in Excitonic Solar Cells.

    PubMed

    Zhu, X-Y

    2014-07-01

    Emerging photovoltaic devices based on molecular and nanomaterials are mostly excitonic in nature. The initial absorption of a photon in these materials creates an exciton that can subsequently dissociate in each material or at their interfaces to give charge carriers. Any attempt at mechanistic understanding of excitonic solar cells must start with drawing energy level diagrams. This seemingly elementary exercise, which is described in textbooks for inorganic solar cells, has turned out to be a difficult subject in the literature. The problem stems from conceptual confusion of single-particle energy with quasi-particle energy and the misleading practice of mixing the two on the same energy level diagram. Here, I discuss how to draw physically accurate energy diagrams in excitonic solar cells using only single-particle energies (ionization potentials and electron affinities) of both ground and optically excited states. I will briefly discuss current understanding on the electronic energy landscape responsible for efficient charge separation in excitonic solar cells.

  17. Theory of Energy Level Tuning in Quantum Dots by Surfactants

    NASA Astrophysics Data System (ADS)

    Zherebetskyy, Danylo; Wang, Lin-Wang; Materials Sciences Division, Lawrence Berkeley National Laboratory Team

    2015-03-01

    Besides quantum confinement that provides control of the quantum dot (QD) band gap, surface ligands allow control of the absolute energy levels. We theoretically investigate energy level tuning in PbS QD by surfactant exchange. We perform direct calculations of real-size QD with various surfactants within the frame of the density functional theory and explicitly analyze the influence of the surfactants on the electronic properties of the QD. This work provides a hint for predictable control of the absolute energy levels and their fine tuning within 3 eV range by modification of big and small surfactants that simultaneously passivate the QD surface.

  18. "Piekara's Chair": Mechanical Model for Atomic Energy Levels.

    ERIC Educational Resources Information Center

    Golab-Meyer, Zofia

    1991-01-01

    Uses the teaching method of models or analogies, specifically the model called "Piekara's chair," to show how teaching classical mechanics can familiarize students with the notion of energy levels in atomic physics. (MDH)

  19. Housing Electrons: Relating Quantum Numbers, Energy Levels, and Electron Configurations.

    ERIC Educational Resources Information Center

    Garofalo, Anthony

    1997-01-01

    Presents an activity that combines the concepts of quantum numbers and probability locations, energy levels, and electron configurations in a concrete, hands-on way. Uses model houses constructed out of foam board and colored beads to represent electrons. (JRH)

  20. Calibration of Electric Field Induced Energy Level Shifts in Argon

    NASA Astrophysics Data System (ADS)

    Hebner, Greg

    1999-10-01

    Argon is a commonly used gas in a number of discharges. As such it is an ideal candidate for spectroscopic based electric field measurements within the sheath and bulk discharge regions. Recently, measurements demonstrated the use of the Stark induced shifts of high lying energy levels in Argon to make spatially and temporally resolved electric field measurements [1]. However, that method relied on the cross calibration of known and calculable shifts in helium discharges to calibrate, in-situ, the energy level shifts in Argon. This poster shows the use of an atomic beam system to calibrate the electric field induced shift of high lying energy levels directly. In addition, data on very high lying argon levels, up to the 20 F manifold, were obtained. Comparison of our electric field induced energy level shift calibration curves with previous work will be shown. The possibility of using this system to calibrate energy level shifts in other gases of technological interest to the microelectronics and lighting industry will be discussed. [1]. J. B. Kim, K. Kawamura, Y. W. Choi, M. D. Bowden, K. Muraoka and V. Helbig, IEEE Transactions on Plasma Science, 26(5), 1556 (1998). This work was performed at Sandia National Laboratories and supported by the United States Department of Energy (DE-AC04-94AL85000).

  1. Temperature dependent energy levels of methylammonium lead iodide perovskite

    SciTech Connect

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J. E-mail: mgupta@virginia.edu; Sun, Keye; Gupta, Mool C. E-mail: mgupta@virginia.edu; Saidi, Wissam A.; Scudiero, Louis E-mail: mgupta@virginia.edu

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  2. Study of the crossing of quasi-energy levels in a four-level system

    SciTech Connect

    Arushanyan, S; Melikyan, A; Saakyan, S

    2011-05-31

    It was shown previously that in taking into account only dipole transitions, the crossing of quasi-energy levels is possible in the system if any of the transitions forms a closed loop. It followed herefrom that for the analysis of the crossing conditions, it is necessary to consider a system which has at least four levels. In this paper we show that we can uniquely specify which quasi-energy levels cross at the given values of the parameters of the atomic system and radiation field, without solving an algebraic quartic equation. It was found that the most suitable system for the implementation of the crossing is the group of energy levels {sup 5}S{sub 1/2}, {sup 5}P{sub 1/2}, {sup 5}P{sub 3/2} and {sup 5}D{sub 3/2} of a rubidium atom. The performed calculations of the laser field intensity and frequency values at which crossing takes place in this system show that they are easily attainable. It turned out that in this system there occur crossing of quasi-energy levels corresponding to the excited atomic levels. (intersection of quasi-energy levels)

  3. First principle prediction of shallow defect level binding energies and deep level nonradiative recombination rates

    NASA Astrophysics Data System (ADS)

    Wang, Linwang

    2014-03-01

    Accurate calculation of defect level energies in semiconductors and their carrier capturing rate is an important issue in ab initio prediction of semiconductor properties. In this talk, I will present our result work in ab initio shallow level calculation and deep level caused nonradiative recombination rate calculation. In the shallow acceptor level calculation, a large system up to 64,000 atoms needs to be used to properly describe the weakly bounded hole wave functions. The single particle Hamiltonian of that system is patched from bulk potential and central potential. Furthermore, GW calculation is used to correct the one site potential of the impurity atom. The resulting binding energy agrees excellently with the experiments within 10 meV. To calculate the nonradiative decay rate, the electron-phonon coupling constants in the defect system are calculated all at once using a new variational algorithm. Multiphonon process formalism is used to calculate the nonradiative decay rate. It is found that the transition is induced by the electron and the optical phonon coupling, but the energy conservation is mostly satisfied by the acoustic phonons. The new algorithm allows fast calculation of such nonradiative decay rate for any defect levels, as well as other multiphonon processes in nanostructures. This work was supported by the Director, Office of Science (SC), Basic Energy Science (BES)/Materials Science and Engineering Division (MSED) of the U.S. Department of Energy (DOE) under the contract No. DE-AC02-05CH11231.

  4. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  5. Energy levels, lifetimes and radiative data of Ba XXVI

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Goyal, Arun; Khatri, Indu; Aggarwal, Sunny; Sharma, Rinku; Mohan, Man

    2016-05-01

    We report an extensive and an elaborate theoretical study of atomic data for Ba XXVI by considering Singlet, Doublet and Triplet (SDT) electron excitations within N-shell and single excitations from N-shell to O-shell. We have calculated energy levels and lifetimes for lowest 110 fine structure levels by using Multi-configuration Dirac-Fock method (MCDF). We have also considered Quantum Electrodynamics (QED) and Breit corrections in our calculations. We have presented the radiative data for electric and magnetic dipole (E1, M1) and quadrupole (E2, M2) transitions among lowest 110 levels. We have made comparisons of our calculated excitation energies and EUV (Extreme Ultraviolet) transition wavelengths with experimentally observed energy levels and wavelengths and achieved good agreement. We have also computed energy levels by performing similar relativistic distorted wave calculations using Flexible Atomic Code (FAC). Additionally, we have provided new atomic data for Ba XXVI which are not published elsewhere in the literature. We believe that our results may be beneficial in fusion plasma research and astrophysical investigations and applications.

  6. Management of non-high-density lipoprotein abnormalities.

    PubMed

    Rosenson, Robert S

    2009-12-01

    Epidemiological evidence supports the use of non-high-density lipoprotein cholesterol (non-HDL-C), apolipoprotein B-100 (apoB), and low-density lipoprotein particles as markers of atherogenic risk. Treatment guidelines also identify these as additional targets of lipid-modifying intervention in patients with elevated triglycerides (TG). Even when TG are only moderately elevated, many patients on statin monotherapy who have achieved targets for low-density lipoprotein cholesterol (LDL-C) fail to reach non-HDL-C treatment goals, and even fewer reach apoB goals. Combination lipid-modifying therapy is therefore indicated for comprehensive lipid management, particularly in patients with type 2 diabetes and metabolic syndrome in whom LDL-C levels are often considered 'optimal'. Of the available options, adding either a niacin, fibrate or omega-3 fatty acids provides greater opportunity to achieve non-HDL-C and apoB targets, given complementary profiles of lipid-modifying activity and supported by evidence from clinical studies. Improvement in lipid control and reduction in atherogenic risk could be anticipated to translate to benefits in clinical outcomes. PMID:19545870

  7. Efficiencies of thermodynamics when temperature-dependent energy levels exist.

    PubMed

    Yamano, Takuya

    2016-03-14

    Based on a generalized form of the second law of thermodynamics, in which the temperature-dependent energy levels of a system are appropriately included in entropy generation, we show that the effect reasonably appears in efficiencies of thermodynamic processes. PMID:26890276

  8. Degeneracy of energy levels of pseudo-Gaussian oscillators

    SciTech Connect

    Iacob, Theodor-Felix; Iacob, Felix; Lute, Marina

    2015-12-07

    We study the main features of the isotropic radial pseudo-Gaussian oscillators spectral properties. This study is made upon the energy levels degeneracy with respect to orbital angular momentum quantum number. In a previous work [6] we have shown that the pseudo-Gaussian oscillators belong to the class of quasi-exactly solvable models and an exact solution has been found.

  9. Mo uc(v) Energy Levels and f values

    NASA Astrophysics Data System (ADS)

    Pan, Lin; Beck, Donald R.

    2004-05-01

    Relativistic Configuration Interaction (RCI) calculations have been done for the lowest 12 J=0 even parity levels, and the lowest 30 J=1 odd parity levels of Mo uc(v.) For the J=0 4d^2 and 4d 5d energy differences, the average error is 229 cm-1 ( M. I. Cabeza, F. G. Meijer, and L. Iglesias, Phys. Scr. 34), 223 (1986). For the other J=0 levels, the average difference with experiment (A. Tauheed, M. S. Z. Chaghtai, and K. Rahimullah, Phys. Scr. 31), 369 (1985) is considerably greater. Our average energy errors for the 11 known ^2 J=1 levels is 233 cm-1, excluding the 5s 5p ^1 P level, which is 1580 cm-1 higher than observed ^2. We predict positions of 19 4p^5 4d^3 levels, as well as f values for the 360 transitions between the calculated levels. Gauge agreements are good for transitions with f > .01. Details of the methodology have been published elsewhere (D. R. Beck and L. Pan, Phys. Scr. 69), 91 (2004).

  10. Interaction Determined Electron Energy Levels in One-Dimension

    NASA Astrophysics Data System (ADS)

    Pepper, Michael; Kumar, Sanjeev; Thomas, Kalarikad; Smith, Luke; Creeth, Graham; Farrer, Ian; Ritchie, David; Jones, Geraint; Jonathan, Griffiths; UCL Collaboration; Cavendish Laboratory Collaboration

    2015-03-01

    We have investigated electron transport in a quasi-one dimensional electron gas in the GaAs-AlGaAs heterostructure designed so that the confinement potential can be progressively weakened. This causes the energy levels to decrease in energy relative to each other, however this decrease occurs at different rates, a feature attributed to the energy being determined by both confinement and the electron-electron repulsion which varies with the shape of the wavefunction. It is found that the initial ground state crosses the higher levels so resulting in missing plateaux of quantised conductance. A change in the nature of the ground state to a more extended form causes an increase in the capacitance between the confining gates and the electrons. Both crossings and anti-crossings of the levels are found and these will be discussed along with other consequences of the form of the level interactions. The effects of level crossing on the spin dependent 0.7 structure will be presented. Supported by EPSRC (UK).

  11. Energy levels of double triangular graphene quantum dots

    SciTech Connect

    Liang, F. X.; Jiang, Z. T. Zhang, H. Y.; Li, S.; Lv, Z. T.

    2014-09-28

    We investigate theoretically the energy levels of the coupled double triangular graphene quantum dots (GQDs) based on the tight-binding Hamiltonian model. The double GQDs including the ZZ-type, ZA-type, and AA-type GQDs with the two GQDs having the zigzag or armchair boundaries can be coupled together via different interdot connections, such as the direct coupling, the chains of benzene rings, and those of carbon atoms. It is shown that the energy spectrum of the coupled double GQDs is the amalgamation of those spectra of the corresponding two isolated GQDs with the modification triggered by the interdot connections. The interdot connection is inclined to lift up the degeneracies of the energy levels in different degree, and as the connection changes from the direct coupling to the long chains, the removal of energy degeneracies is suppressed in ZZ-type and AA-type double GQDs, which indicates that the two coupled GQDs are inclined to become decoupled. Then we consider the influences on the spectra of the coupled double GQDs induced by the electric fields applied on the GQDs or the connection, which manifests as the global spectrum redistribution or the local energy level shift. Finally, we study the symmetrical and asymmetrical energy spectra of the double GQDs caused by the substrates supporting the two GQDs, clearly demonstrating how the substrates affect the double GQDs' spectrum. This research elucidates the energy spectra of the coupled double GQDs, as well as the mechanics of manipulating them by the electric field and the substrates, which would be a significant reference for designing GQD-based devices.

  12. Energy levels of exciton in a gapped graphene sheet

    NASA Astrophysics Data System (ADS)

    Fallah, Farhang; Esmaeilzadeh, Mahdi

    2013-08-01

    A theory is presented for exciton formation in a graphene sheet using the center-of-mass approximation. The energy levels and wavefunctions of exciton are calculated analytically which show that the exciton can form if the band gap of graphene is not zero. We show that the energy gap of graphene plays the role of the mass which if not zero, leads to formation of the excitons. It is shown that the main quantum number of the exciton ground state changes with the graphene dielectric constant. Also, all of the states are found to be four-fold degenerate. The binding energy of exciton can reach as high as 1/4 of the energy gap of graphene which is notable among the conventional quasi-2D systems. This result can play an important rule in the photonics of graphene.

  13. Levelized cost of energy for a Backward Bent Duct Buoy

    DOE PAGESBeta

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; Copping, Andrea E.; Copeland, Guild

    2016-07-18

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publicly available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied withinmore » the Reference Model Project. Furthermore, comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.« less

  14. Core level binding energies of functionalized and defective graphene.

    PubMed

    Susi, Toma; Kaukonen, Markus; Havu, Paula; Ljungberg, Mathias P; Ayala, Paola; Kauppinen, Esko I

    2014-01-01

    X-ray photoelectron spectroscopy (XPS) is a widely used tool for studying the chemical composition of materials and it is a standard technique in surface science and technology. XPS is particularly useful for characterizing nanostructures such as carbon nanomaterials due to their reduced dimensionality. In order to assign the measured binding energies to specific bonding environments, reference energy values need to be known. Experimental measurements of the core level signals of the elements present in novel materials such as graphene have often been compared to values measured for molecules, or calculated for finite clusters. Here we have calculated core level binding energies for variously functionalized or defected graphene by delta Kohn-Sham total energy differences in the real-space grid-based projector-augmented wave density functional theory code (GPAW). To accurately model extended systems, we applied periodic boundary conditions in large unit cells to avoid computational artifacts. In select cases, we compared the results to all-electron calculations using an ab initio molecular simulations (FHI-aims) code. We calculated the carbon and oxygen 1s core level binding energies for oxygen and hydrogen functionalities such as graphane-like hydrogenation, and epoxide, hydroxide and carboxylic functional groups. In all cases, we considered binding energy contributions arising from carbon atoms up to the third nearest neighbor from the functional group, and plotted C 1s line shapes by using experimentally realistic broadenings. Furthermore, we simulated the simplest atomic defects, namely single and double vacancies and the Stone-Thrower-Wales defect. Finally, we studied modifications of a reactive single vacancy with O and H functionalities, and compared the calculated values to data found in the literature.

  15. Sleep and brain energy levels: ATP changes during sleep.

    PubMed

    Dworak, Markus; McCarley, Robert W; Kim, Tae; Kalinchuk, Anna V; Basheer, Radhika

    2010-06-30

    Sleep is one of the most pervasive biological phenomena, but one whose function remains elusive. Although many theories of function, indirect evidence, and even common sense suggest sleep is needed for an increase in brain energy, brain energy levels have not been directly measured with modern technology. We here report that ATP levels, the energy currency of brain cells, show a surge in the initial hours of spontaneous sleep in wake-active but not in sleep-active brain regions of rat. The surge is dependent on sleep but not time of day, since preventing sleep by gentle handling of rats for 3 or 6 h also prevents the surge in ATP. A significant positive correlation was observed between the surge in ATP and EEG non-rapid eye movement delta activity (0.5-4.5 Hz) during spontaneous sleep. Inducing sleep and delta activity by adenosine infusion into basal forebrain during the normally active dark period also increases ATP. Together, these observations suggest that the surge in ATP occurs when the neuronal activity is reduced, as occurs during sleep. The levels of phosphorylated AMP-activated protein kinase (P-AMPK), well known for its role in cellular energy sensing and regulation, and ATP show reciprocal changes. P-AMPK levels are lower during the sleep-induced ATP surge than during wake or sleep deprivation. Together, these results suggest that sleep-induced surge in ATP and the decrease in P-AMPK levels set the stage for increased anabolic processes during sleep and provide insight into the molecular events leading to the restorative biosynthetic processes occurring during sleep.

  16. Framework for State-Level Renewable Energy Market Potential Studies

    SciTech Connect

    Kreycik, C.; Vimmerstedt, L.; Doris, E.

    2010-01-01

    State-level policymakers are relying on estimates of the market potential for renewable energy resources as they set goals and develop policies to accelerate the development of these resources. Therefore, accuracy of such estimates should be understood and possibly improved to appropriately support these decisions. This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study, including what supporting data are needed and what types of assumptions need to be made. The report distinguishes between goal-oriented studies and other types of studies, and explains the benefits of each.

  17. Quantum Mechanics on a Mobius Strip: Energy Levels, Symmetries, and Level Splitting in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Li, Zehao; Ram-Mohan, Ramdas

    2012-02-01

    We investigate the energy levels of an electron on a M"obius strip. Schr"odinger's equation on this curved surface is shown to have terms that do not have invariance under parity transformation in parameter space for the strip. The double degeneracy of energy levels that exists for flat cylindrical rings is shown to be removed for the pairs of energies in the M"obius strip due to parity symmetry breaking. The orbital angular momentum is found to have approximately not only integer but also half-integer values of . The splitting of the energy levels in an external magnetic field is displayed. The effects of multiple twists are investigated to further clarify that the parity symmetry breaking is the effect of the curved geometry, while the appearance of half-integer angular momentum states is a topological effect. The implications for twisted rings composed of graphene will be discussed, and carrier transport through the M"obius strip will be considered. This work was supported by AFLR/DARPA under grant FA8650-10-1-7046.

  18. Department of Energy low-level radioactive waste disposal concepts

    SciTech Connect

    Ozaki, C.; Page, L.; Morreale, B.; Owens, C.

    1990-01-01

    The Department of Energy (DOE) manages its low-level waste (LLW), regulated by DOE Order 5820.2A by using an overall systems approach. This systems approach provides an improved and consistent management system for all DOE LLW waste, from generation to disposal. This paper outlines six basic disposal concepts used in the systems approach, discusses issues associated with each of the concepts, and outlines both present and future disposal concepts used at six DOE sites. 3 refs., 9 figs.

  19. Examining the energy cost and intensity level of prenatal yoga

    PubMed Central

    Peters, Nathan Anthony; Schlaff, Rebecca A

    2016-01-01

    Context: A popular form of pregnancy physical activity (PA) is prenatal yoga. However, little is known about the intensity and energy cost of this practice. Aims: To examine the energy cost and intensity level of prenatal yoga. Methods: Pregnant women in a prenatal yoga class (n = 19) wore a Sense Wear Armband during eleven 60 min classes each, and self-reported demographic variables, height and weight, prepregnancy weight, and PA behaviors and beliefs. Sense Wear Armband data included kilocalories, metabolic equivalent (MET) values, and time spent in various intensities. Descriptive statistics and frequencies were utilized to describe energy expenditure and intensity. Results: Energy expenditure averaged 109 ± 8 kcals, and the average MET value was 1.5 ± 0.02. On average, 93% and 7% of classes were sedentary and moderate intensity PA, respectively. Conclusions: Time spent in a prenatal yoga class was considered to be primarily a sedentary activity. Future research should utilize larger samples, practice type, and skill level to increase generalizability. PMID:26865776

  20. Energy levels scheme simulation of divalent cobalt doped bismuth germanate

    NASA Astrophysics Data System (ADS)

    Andreici, Emiliana-Laura; Petkova, Petya; Avram, Nicolae M.

    2015-12-01

    The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr2+ system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of doped BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.

  1. Energy levels scheme simulation of divalent cobalt doped bismuth germanate

    SciTech Connect

    Andreici, Emiliana-Laura; Petkova, Petya; Avram, Nicolae M.

    2015-12-07

    The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr{sup 2+} system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of doped BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.

  2. Self-energy shift of the energy levels of atomic hydrogen in photonic crystal medium

    NASA Astrophysics Data System (ADS)

    Gainutdinov, R. Kh; Khamadeev, M. A.; Steryakov, O. V.; Ziyatdinova, K. A.; Salakhov, M. Kh

    2016-05-01

    Corrections to the average kinetic energy of atomic electrons caused by the change in electron mass in the photonic crystal medium are investigated. Corresponding shift of energy levels of atoms placed in a photonic crystal is shown to be of order of the ordinary Lamb shift.

  3. Energy levels and radiative rates for transitions in Ga XXIV

    SciTech Connect

    El-Sayed, Fatma

    2012-07-15

    Energy levels, transition probabilities, oscillator strengths, line strengths, and lifetimes have been calculated for Oxygen-like Gallium, Ga XXIV. The configurations 2s{sup 2}2p{sup 4}, 2s2p{sup 5}, 2p{sup 6}, 2s2p{sup 4}3 Script-Small-L , 2s{sup 2}2p{sup 3}3 Script-Small-L , and 2p{sup 5}3 Script-Small-L were used in calculations and 226 fine-structure levels were obtained. The fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 226 levels of Ga XXIV, belonging to the n{<=}3 configurations. Comparisons have been made with earlier available theoretical and experimental results.

  4. Energy level control: toward an efficient hot electron transport

    NASA Astrophysics Data System (ADS)

    Jin, Xiao; Li, Qinghua; Li, Yue; Chen, Zihan; Wei, Tai-Huei; He, Xingdao; Sun, Weifu

    2014-08-01

    Highly efficient hot electron transport represents one of the most important properties required for applications in photovoltaic devices. Whereas the fabrication of efficient hot electron capture and lost-cost devices remains a technological challenge, regulating the energy level of acceptor-donor system through the incorporation of foreign ions using the solution-processed technique is one of the most promising strategies to overcome this obstacle. Here we present a versatile acceptor-donor system by incorporating MoO3:Eu nanophosphors, which reduces both the `excess' energy offset between the conduction band of acceptor and the lowest unoccupied molecular orbital of donor, and that between the valence band and highest occupied molecular orbital. Strikingly, the hot electron transfer time has been shortened. This work demonstrates that suitable energy level alignment can be tuned to gain the higher hot electron/hole transport efficiency in a simple approach without the need for complicated architectures. This work builds up the foundation of engineering building blocks for third-generation solar cells.

  5. Vintage-level energy and environmental performance of manufacturing establishments

    SciTech Connect

    Boyd, G.A.; Bock, M.J.; Neifer, M.J.; Karlson, S.H.; Ross, M.H.

    1994-05-01

    This report examines the relationship between an industrial plant`s vintage and its energy and environmental performance. Basic questions related to defining vintage and measuring the effects of the manufacturing industry`s vintage distribution of plant-level capacity and energy intensity are explored in general for six energy-intensive sectors (paper, chlorine, nitrogenous fertilizer, aluminum, steel, and cement) at the four-digit standard industrial classification (SIC) level and in detail for two sectors (steel and cement). Results show that greenfield (i.e., newly opened) plants in the paper, steel, and cement industries exhibit low fossil fuel intensities. These results are consistent with expectations. New plants in the paper and steel industries, where processes are undergoing electrification, exhibit high electricity intensities. An analysis of a subsector of the steel industry -- minimills that use scrap-based, electric arc furnaces -- reveals a decline in electricity intensity of 6.2 kilowatt-hours per ton for each newer year of installed vintage. This estimate is consistent with those of engineering studies and raises confidence that analyses of vintage effects in other industries could be conducted. When a vintage measure is assigned on the basis of investment data rather than trade association data, the vintage/performance relationship results for the cement industry are reasonably robust; thus, the analysis of vintage and performance could be extended to sectors for which only US Bureau of the Census data are available.

  6. Energy level control: toward an efficient hot electron transport.

    PubMed

    Jin, Xiao; Li, Qinghua; Li, Yue; Chen, Zihan; Wei, Tai-Huei; He, Xingdao; Sun, Weifu

    2014-08-07

    Highly efficient hot electron transport represents one of the most important properties required for applications in photovoltaic devices. Whereas the fabrication of efficient hot electron capture and lost-cost devices remains a technological challenge, regulating the energy level of acceptor-donor system through the incorporation of foreign ions using the solution-processed technique is one of the most promising strategies to overcome this obstacle. Here we present a versatile acceptor-donor system by incorporating MoO3:Eu nanophosphors, which reduces both the 'excess' energy offset between the conduction band of acceptor and the lowest unoccupied molecular orbital of donor, and that between the valence band and highest occupied molecular orbital. Strikingly, the hot electron transfer time has been shortened. This work demonstrates that suitable energy level alignment can be tuned to gain the higher hot electron/hole transport efficiency in a simple approach without the need for complicated architectures. This work builds up the foundation of engineering building blocks for third-generation solar cells.

  7. Non-chiral 2d CFT with integer energy levels

    NASA Astrophysics Data System (ADS)

    Ashrafi, M.; Loran, F.

    2016-09-01

    The partition function of 2d conformal field theory is a modular invariant function. It is known that the partition function of a holomorphic CFT whose central charge is a multiple of 24 is a polynomial in the Klein function. In this paper, by using the medium temperature expansion we show that every modular invariant partition function can be mapped to a holomorphic partition function whose structure can be determined similarly. We use this map to study partition function of CFTs with half-integer left and right conformal weights. We show that the corresponding left and right central charges are necessarily multiples of 4. Furthermore, the degree of degeneracy of high-energy levels can be uniquely determined in terms of the degeneracy in the low energy states.

  8. Characterizing and modeling subarea-level energy transactions.

    SciTech Connect

    Kavicky, J. A.

    1998-03-05

    This paper describes the application of an electrical network characterization method to an optimization model that is designed to simulate subarea-level energy transactions. The network characterization method determines subarea clusters of system buses that electrically respond to perturbations in a very similar manner. The method produces a reduced number of transmission constraints and preserves parallel path representations. The least-cost, linear programming (LP) formulation takes advantage of data reduction techniques to simplify model transmission constraints, while supporting parallel path system characteristics and energy tagging of subarea transactions. An overview of the proposed method describes the problem domain and key model features. The paper then presents two model applications that illustrate generator siting and line overload screening analyses.

  9. Accurate energy levels for singly ionized platinum (Pt II)

    NASA Technical Reports Server (NTRS)

    Reader, Joseph; Acquista, Nicolo; Sansonetti, Craig J.; Engleman, Rolf, Jr.

    1988-01-01

    New observations of the spectrum of Pt II have been made with hollow-cathode lamps. The region from 1032 to 4101 A was observed photographically with a 10.7-m normal-incidence spectrograph. The region from 2245 to 5223 A was observed with a Fourier-transform spectrometer. Wavelength measurements were made for 558 lines. The uncertainties vary from 0.0005 to 0.004 A. From these measurements and three parity-forbidden transitions in the infrared, accurate values were determined for 28 even and 72 odd energy levels of Pt II.

  10. Public budgets for energy RD&D and the effects on energy intensity and pollution levels.

    PubMed

    Balsalobre, Daniel; Álvarez, Agustín; Cantos, José María

    2015-04-01

    This study, based on the N-shaped cubic model of the environmental Kuznets curve, analyzes the evolution of per capita greenhouse gas emissions (GHGpc) using not just economic growth but also public budgets dedicated to energy-oriented research development and demonstration (RD&D) and energy intensity. The empirical evidence, obtained from an econometric model of fixed effects for 28 OECD countries during 1994-2010, suggests that energy innovations help reduce GHGpc levels and mitigate the negative impact of energy intensity on environmental quality. When countries develop active energy RD&D policies, they can reduce both the rates of energy intensity and the level of GHGpc emissions. This paper incorporates a moderating variable to the econometric model that emphasizes the effect that GDP has on energy intensity. It also adds a variable that reflects the difference between countries that have made a greater economic effort in energy RD&D, which in turn corrects the GHG emissions resulting from the energy intensity of each country.

  11. Public budgets for energy RD&D and the effects on energy intensity and pollution levels.

    PubMed

    Balsalobre, Daniel; Álvarez, Agustín; Cantos, José María

    2015-04-01

    This study, based on the N-shaped cubic model of the environmental Kuznets curve, analyzes the evolution of per capita greenhouse gas emissions (GHGpc) using not just economic growth but also public budgets dedicated to energy-oriented research development and demonstration (RD&D) and energy intensity. The empirical evidence, obtained from an econometric model of fixed effects for 28 OECD countries during 1994-2010, suggests that energy innovations help reduce GHGpc levels and mitigate the negative impact of energy intensity on environmental quality. When countries develop active energy RD&D policies, they can reduce both the rates of energy intensity and the level of GHGpc emissions. This paper incorporates a moderating variable to the econometric model that emphasizes the effect that GDP has on energy intensity. It also adds a variable that reflects the difference between countries that have made a greater economic effort in energy RD&D, which in turn corrects the GHG emissions resulting from the energy intensity of each country. PMID:24910313

  12. Potential energy surface and rovibrational energy levels of the H2-CS van der Waals complex.

    PubMed

    Denis-Alpizar, Otoniel; Stoecklin, Thierry; Halvick, Philippe; Dubernet, Marie-Lise; Marinakis, Sarantos

    2012-12-21

    Owing to its large dipole, astrophysicists use carbon monosulfide (CS) as a tracer of molecular gas in the interstellar medium, often in regions where H(2) is the most abundant collider. Predictions of the rovibrational energy levels of the weakly bound complex CS-H(2) (not yet observed) and also of rate coefficients for rotational transitions of CS in collision with H(2) should help to interpret the observed spectra. This paper deals with the first goal, i.e., the calculation of the rovibrational energy levels. A new four-dimensional intermolecular potential energy surface for the H(2)-CS complex is presented. Ab initio potential energy calculations were carried out at the coupled-cluster level with single and double excitations and a perturbative treatment of triple excitations, using a quadruple-zeta basis set and midbond functions. The potential energy surface was obtained by an analytic fit of the ab initio data. The equilibrium structure of the H(2)-CS complex is found to be linear with the carbon pointing toward H(2) at the intermolecular separation of 8.6 a(o). The corresponding well depth is -173 cm(-1). The potential was used to calculate the rovibrational energy levels of the para-H(2)-CS and ortho-H(2)-CS complexes. The present work provides the first theoretical predictions of these levels. The calculated dissociation energies are found to be 35.9 cm(-1) and 49.9 cm(-1), respectively, for the para and ortho complexes. The second virial coefficient for the H(2)-CS pair has also been calculated for a large range of temperature. These results could be used to assign future experimental spectra and to check the accuracy of the potential energy surface.

  13. Rotational Energies in Various Torsional Levels of CH_2DOH

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.; Hilali, A. El; Margulès, L.; Motiyenko, R. A.; Klee, S.

    2012-06-01

    Using an approach accounting for the hindered internal rotation of a monodeuterated methyl group, an analysis of the torsional spectrum of the monodeuterated species of methanol CH_2DOH has been carried out recently and led to the assignment of 76 torsional subbands in its microwave, FIR, and IR spectra. Although this approach also allowed us to account for subband centers, the rotational structure of the torsional subbands is not well understood yet. In this paper, we will deal with the rotational energies of CH_2DOH. Analyses of the rotational structure of the available subbands^b have been performed using the polynomial-type expansion introduced in the case of the normal species of methanol. For each subband, FIR or IR transitions and a-type microwave lines, within the lower torsional level, were fitted. The frequencies of the latters were taken from previous investigations or from new measurements carried out from 50 to 950 GHz with the submillimeterwave solid state spectrometer in Lille. Subbands involving lower levels with v_t=0 and K ≥ 3 could be satisfactorily analyzed. For levels characterized by lower K-values, the expansion fails. In the case of the K=1, v_t=1 level, the frequencies of a-type microwave transitions involving the lower member of the K-type doublet cannot be well reproduced. For K=0 levels with v_t=1 and 2, a large number of terms is needed in the expansion. We will try to understand why the rotational energies of these levels cannot be reproduced. The results of the analyses will be compared to those obtained with a global approach based on the rotation-torsion Hamiltonian of the molecule. [2] El Hilali, Coudert, Konov, and Klee, J. Chem. Phys. 135 (2011) 194309. [3] Ioli, Moruzzi, Riminucci, Strumia, Moraes, Winnewisser, and Winnewisser, J. Mol. Spec. 171 (1995) 130. [4] Quade and Suenram, J. Chem. Phys. 73 (1980) 1127; and Su and Quade, J. Mol. Spec. 134 (1989) 290. [5] Lauvergnat, Coudert, Klee, and Smirnov, J. Mol. Spec. 256 (2009

  14. Identifying Energy-Efficient Concurrency Levels using Machine Learning

    SciTech Connect

    Curtis-Maury, M; Singh, K; Blagojevic, F; Nikolopoulos, D S; de Supinski, B R; Schulz, M; McKee, S A

    2007-07-23

    Multicore microprocessors have been largely motivated by the diminishing returns in performance and the increased power consumption of single-threaded ILP microprocessors. With the industry already shifting from multicore to many-core microprocessors, software developers must extract more thread-level parallelism from applications. Unfortunately, low power-efficiency and diminishing returns in performance remain major obstacles with many cores. Poor interaction between software and hardware, and bottlenecks in shared hardware structures often prevent scaling to many cores, even in applications where a high degree of parallelism is potentially available. In some cases, throwing additional cores at a problem may actually harm performance and increase power consumption. Better use of otherwise limitedly beneficial cores by software components such as hypervisors and operating systems can improve system-wide performance and reliability, even in cases where power consumption is not a main concern. In response to these observations, we evaluate an approach to throttle concurrency in parallel programs dynamically. We throttle concurrency to levels with higher predicted efficiency from both performance and energy standpoints, and we do so via machine learning, specifically artificial neural networks (ANNs). One advantage of using ANNs over similar techniques previously explored is that the training phase is greatly simplified, thereby reducing the burden on the end user. Using machine learning in the context of concurrency throttling is novel. We show that ANNs are effective for identifying energy-efficient concurrency levels in multithreaded scientific applications, and we do so using physical experimentation on a state-of-the-art quad-core Xeon platform.

  15. The molecular potential energy surface and vibrational energy levels of methyl fluoride. Part II.

    PubMed

    Manson, Steven A; Law, Mark M; Atkinson, Ian A; Thomson, Grant A

    2006-06-28

    New analytical bending and stretching, ground electronic state, potential energy surfaces for CH(3)F are reported. The surfaces are expressed in bond-length, bond-angle internal coordinates. The four-dimensional stretching surface is an accurate, least squares fit to over 2000 symmetrically unique ab initio points calculated at the CCSD(T) level. Similarly, the five-dimensional bending surface is a fit to over 1200 symmetrically unique ab initio points. This is an important first stage towards a full nine-dimensional potential energy surface for the prototype CH(3)F molecule. Using these surfaces, highly excited stretching and (separately) bending vibrational energy levels of CH(3)F are calculated variationally using a finite basis representation method. The method uses the exact vibrational kinetic energy operator derived for XY(3)Z systems by Manson and Law (preceding paper, Part I, Phys. Chem. Chem. Phys., 2006, 8, DOI: 10.1039/b603106d). We use the full C(3v) symmetry and the computer codes are designed to use an arbitrary potential energy function. Ultimately, these results will be used to design a compact basis for fully coupled stretch-bend calculations of the vibrational energy levels of the CH(3)F system.

  16. Energy transfer and energy level decay processes of Er3+ in water-free tellurite glass

    NASA Astrophysics Data System (ADS)

    Gomes, Laercio; Rhonehouse, Daniel; Nguyen, Dan T.; Zong, Jie; Chavez-Pirson, Arturo; Jackson, Stuart D.

    2015-12-01

    This report details the fundamental spectroscopic properties of a new class of water-free tellurite glasses studied for future applications in mid-infrared light generation. The fundamental excited state decay processes relating to the 4I11/2 → 4I13/2 transition in singly Er3+-doped Tellurium Zinc Lanthanum glass have been investigated using time-resolved fluorescence spectroscopy. The excited state dynamics was analyzed for Er2O3 concentrations between 0.5 mol% and 4 mol%. Selective laser excitation of the 4I11/2 energy level at 972 nm and selective laser excitation of the 4I13/2 energy level at 1485 nm has established that in a similar way to other Er3+-doped glasses, a strong energy-transfer upconversion by way of a dipole-dipole interaction between two excited erbium ions in the 4I13/2 level populates the 4I11/2 upper laser level of the 3 μm transition. The 4I13/2 and 4I11/2 energy levels emitted luminescence with peaks located at 1532 nm and 2734 nm respectively with luminescence efficiencies of 100% and 8% for the higher (4 mol.%) concentration sample. Results from numerical simulations showed that a population inversion is reached at a threshold pumping intensity of ∼57 kW cm-2 for a CW laser pump at 976 nm for [Er2O3] = 2 mol.%.

  17. Radiative lifetime and energy of the low-energy isomeric level in 229Th

    NASA Astrophysics Data System (ADS)

    Tkalya, E. V.; Schneider, Christian; Jeet, Justin; Hudson, Eric R.

    2015-11-01

    We estimate the range of the radiative lifetime and energy of the anomalous, low-energy 3 /2+(7.8 ±0.5 eV) state in the 229Th nucleus. Our phenomenological calculations are based on the available experimental data for the intensities of M 1 and E 2 transitions between excited levels of the 229Th nucleus in the Kπ[N nZΛ ] =5 /2+[633 ] and 3 /2+[631 ] rotational bands. We also discuss the influence of certain branching coefficients, which affect the currently accepted measured energy of the isomeric state. From this work, we establish a favored region, 0.66 ×106seV3/ω3≤τ ≤2.2 ×106seV3/ω3 , where the transition lifetime τ as a function of transition energy ω should lie at roughly the 95% confidence level. Together with the result of Beck et al. [LLNL-PROC-415170 (2009)], we establish a favored area where transition lifetime and energy should lie at roughly the 90% confidence level. We also suggest new nuclear physics measurements, which would significantly reduce the ambiguity in the present data.

  18. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    NASA Astrophysics Data System (ADS)

    Santarius, Tilman

    2015-03-01

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may `eat up' parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential `psychological rebound effects.' It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough "rule of thumb", in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  19. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    SciTech Connect

    Santarius, Tilman

    2015-03-30

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may ‘eat up’ parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential ‘psychological rebound effects.’ It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough “rule of thumb”, in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  20. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    SciTech Connect

    Steward, D.; Zuboy, J.

    2014-10-01

    Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

  1. Department of Energy pretreatment of high-level and low-level wastes

    SciTech Connect

    McGinnis, C.P.; Hunt, R.D.

    1995-12-31

    The remediation of the 1 {times} 10{sup 8} gal of highly radioactive waste in the underground storage tanks (USTs) at five US Department of Energy (DOE) sites is one of DOE`s greatest challenges. Therefore, the DOE Office of Environmental Management has created the Tank Focus Area (TFA) to manage an integrated technology development program that results in the safe and efficient remediation of UST waste. The TFA has divided its efforts into five areas, which are safety, characterization, retrieval/closure, pretreatment, and immobilization. All DOE pretreatment activities are integrated by the Pretreatment Technical Integration Manager of the TFA. For FY 1996, the 14 pretreatment tasks are divided into 3 systems: supernate separations, sludge treatment, and solid/liquid separation. The plans and recent results of these TFA tasks, which include two 25,000-gal demonstrations and two former TFA tasks on Cs removal, are presented. The pretreatment goals are to minimize the volume of high-level waste and the radioactivity in low-level waste.

  2. Energy Conservation Guidelines - 1: District Level Plan for Conservation.

    ERIC Educational Resources Information Center

    Peterson, Irving M., Ed.; Colavita, Leon J., Ed.

    Presented are suggestions written to help local school districts develop an energy conservation program in order to minimize budget problems brought about by rising energy costs. Program areas covered include formation of the district energy conservation team, assignment of duties, operation of energy audit systems, and evaluation procedures. To…

  3. THE HIGH-ENERGY IMPULSIVE GROUND-LEVEL ENHANCEMENT

    SciTech Connect

    McCracken, K. G.; Moraal, H.; Shea, M. A.

    2012-12-20

    We have studied short-lived (21 minute average duration), highly anisotropic pulses of cosmic rays that constitute the first phase of 10 large ground-level enhancements (GLEs), and which extend to rigidities in the range 5-20 GV. We provide a set of constraints that must be met by any putative acceleration mechanism for this type of solar-energetic-particle (SEP) event. The pulses usually have very short rise-times (three to five minutes) at all rigidities, and exhibit the remarkable feature that the intensity drops precipitously by 50% to 70% from the maximum within another three to five minutes. Both the rising and falling phases exhibit velocity dispersion, which indicates that there are particles with rigidities in the range 1 < P (GV) < 3 in the beam, and the evidence is that there is little scattering en route from the Sun. We name these events the high-energy impulsive ground-level enhancement (HEI GLE). We argue that the time-dependence observed at Earth at {approx}5 GV is a close approximation to that of the SEP pulse injected into the open heliospheric magnetic field in the vicinity of the Sun. We conclude that the temporal characteristics of the HEI GLE impose nine constraints on any putative acceleration process. Two of the HEI GLEs are preceded by short-lived, fast-rising neutron and >90 MeV gamma-ray bursts, indicating that freshly accelerated SEPs had impinged on higher-density matter in the chromosphere prior to the departure of the SEP pulse for Earth. This study was based on an updated archive of the 71 GLEs in the historic record, which is now available for public use.

  4. Steering quantum transitions between three crossing energy levels

    SciTech Connect

    Ivanov, S. S.; Vitanov, N. V.

    2008-02-15

    We calculate the propagator and the transition probabilities for a coherently driven three-state quantum system. The energies of the three states change linearly in time, whereas the interactions between them are pulse shaped. We derive a highly accurate analytic approximation by assuming independent pairwise Landau-Zener transitions occurring instantly at the relevant avoided crossings, and adiabatic evolution elsewhere. Quantum interferences are identified, which occur due to different possible evolution paths in Hilbert space between an initial and a final state. A detailed comparison with numerical results for Gaussian-shaped pulses demonstrates a remarkable accuracy of the analytic approximation. We use the analytic results to derive estimates for the half-width of the excitation profile, and for the parameters required for creation of a maximally coherent superposition of the three states. These results are of potential interest in ladder climbing in alkali-metal atoms by chirped laser pulses, in quantum rotors, in transitions between Zeeman sublevels of a J=1 level in a magnetic field, and in control of entanglement of a pair of spin-1/2 particles. The results for the three-state system can be generalized, without essential difficulties, to higher dimensions.

  5. Economic evaluations of solar thermal energy systems using a levelized energy cost approach

    SciTech Connect

    Williams, T.A.; Dirks, J.A.

    1985-11-01

    This paper discusses a Levelized Energy Cost (LEC) approach to economic evaluations of solar thermal power plants. Levelized Energy Costs are life cycle costs that include a plant's capital cost, total operation and maintenance cost, taxes, interest, and return on investment. A LEC approach provides an economically correct treatment of these costs and allows an evaluation of alternative solar thermal power systems. In this paper, general economic principals relating to LEC calculations such as the time value of money, discount rate, net present value, and annualized cost are defined and explained. The use of LEC analyses in choosing between alternatives is discussed. Then the simplified approach for calculating an LEC using the standard economic assumptions for solar thermal applications is presented. Finally, a way to easily carry out the LEC calculation on a microcomputer is given.

  6. Interacting Electrons in Parabolic Quantum Dots:. Energy Levels, Addition Energies, and Charge Distributions

    NASA Astrophysics Data System (ADS)

    Schreiber, Michael; Siewert, Jens; Vojta, Thomas

    We investigate the properties of interacting electrons in a parabolic confinement. To this end we numerically diagonalize the Hamiltonian using the Hartree-Fock based diagonalization method which is related to the configuration interaction approach. We study different types of interactions, Coulomb as well as short range. In addition to the ground state energy we calculate the spatial charge distribution and compare the results to those of the classical calculation. We find that a sufficiently strong screened Coulomb interaction produces energy level bunching for classical as well as for quantum-mechanical dots. Bunching in the quantum-mechanical system occurs due to an interplay of kinetic and interaction energy, moreover, it is observed well before reaching the limit of a Wigner crystal. It also turns out that the shell structure of classical and quantum mechanical spatial charge distributions is quite similar.

  7. Interacting Electrons in Parabolic Quantum Dots:. Energy Levels, Addition Energies, and Charge Distributions

    NASA Astrophysics Data System (ADS)

    Schreiber, Michael; Siewert, Jens; Vojta, Thomas

    2001-08-01

    We investigate the properties of interacting electrons in a parabolic confinement. To this end we numerically diagonalize the Hamiltonian using the Hartree-Fock based diagonalization method which is related to the configuration interaction approach. We study different types of interactions, Coulomb as well as short range. In addition to the ground state energy we calculate the spatial charge distribution and compare the results to those of the classical calculation. We find that a sufficiently strong screened Coulomb interaction produces energy level bunching for classical as well as for quantum-mechanical dots. Bunching in the quantum-mechanical system occurs due to an interplay of kinetic and interaction energy, moreover, it is observed well before reaching the limit of a Wigner crystal. It also turns out that the shell structure of classical and quantum mechanical spatial charge distributions is quite similar.

  8. Myocardial signal density levels and beam-hardening artifact attenuation using dual-energy computed tomography.

    PubMed

    Rodriguez-Granillo, Gaston A; Carrascosa, Patricia; Cipriano, Silvina; de Zan, Macarena; Deviggiano, Alejandro; Capunay, Carlos; Cury, Ricardo C

    2015-01-01

    The assessment of myocardial perfusion using single-energy (SE) imaging is influenced by beam-hardening artifacts (BHA). We sought to explore the ability of dual-energy (DE) imaging to attenuate the presence of BHA. Myocardial signal density (SD) was evaluated in 2240 myocardial segments (112 for each energy level) and in 320 American Heart Association segments among the SE group. Compared to DE reconstructions at the best energy level, SE acquisitions showed no significant differences overall regarding myocardial SD or signal-to-noise ratio. The segments most commonly affected by BHA showed significantly lower myocardial SD at the lowest energy levels, progressively normalizing at higher energy levels.

  9. Energy transfer and energy level decay processes in Tm{sup 3+}-doped tellurite glass

    SciTech Connect

    Gomes, Laercio; Lousteau, Joris; Milanese, Daniel; Scarpignato, Gerardo C.; Jackson, Stuart D.

    2012-03-15

    The primary excited state decay and energy transfer processes in singly Tm{sup 3+}-doped TeO{sub 2}:ZnO:Bi{sub 2}O{sub 3}:GeO{sub 2} (TZBG) glass relating to the {sup 3}F{sub 4}{yields}{sup 3}H{sub 6}{approx}1.85 {mu}m laser transition have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the {sup 3}H{sub 4} manifold at 794 nm, the {sup 3}H{sub 5} manifold at 1220 nm, and {sup 3}F{sub 4} manifold at 1760 nm has established that the {sup 3}H{sub 5} manifold is entirely quenched by multiphonon relaxation in tellurite glass. The luminescence from the {sup 3}H{sub 4} manifold with an emission peak at 1465 nm suffers strong suppression due to cross relaxation that populates the {sup 3}F{sub 4} level with a near quadratic dependence on the Tm{sup 3+} concentration. The {sup 3}F{sub 4} lifetime becomes longer as the Tm{sup 3+} concentration increases due to energy migration and decreases to 2.92 ms when [Tm{sup 3+}] = 4 mol. % as a result of quasi-resonant energy transfer to free OH{sup -} radicals present in the glass at concentrations between 1 x 10{sup 18} cm{sup -3} and 2 x 10{sup 18} cm{sup -3}. Judd-Ofelt theory in conjunction with absorption measurements were used to obtain the radiative lifetimes and branching ratios of the energy levels located below 25 000 cm{sup -1}. The spectroscopic parameters, the cross relaxation and Tm{sup 3+}({sup 3}F{sub 4}) {yields} OH{sup -} energy transfer rates were used in a numerical model for laser transitions emitting at 2335 nm and 1865 nm.

  10. Analytic energy-level densities of separable harmonic oscillators including approximate hindered rotor corrections

    NASA Astrophysics Data System (ADS)

    Döntgen, M.

    2016-09-01

    Energy-level densities are key for obtaining various chemical properties. In chemical kinetics, energy-level densities are used to predict thermochemistry and microscopic reaction rates. Here, an analytic energy-level density formulation is derived using inverse Laplace transformation of harmonic oscillator partition functions. Anharmonic contributions to the energy-level density are considered approximately using a literature model for the transition from harmonic to free motions. The present analytic energy-level density formulation for rigid rotor-harmonic oscillator systems is validated against the well-studied CO+O˙ H system. The approximate hindered rotor energy-level density corrections are validated against the well-studied H2O2 system. The presented analytic energy-level density formulation gives a basis for developing novel numerical simulation schemes for chemical processes.

  11. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  12. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts.

  13. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts. PMID:26802538

  14. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    SciTech Connect

    David Wenzhong Gao

    2012-09-30

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An

  15. Hadron intensity and energy spectrum at 4380 m above level

    NASA Technical Reports Server (NTRS)

    Cananov, S. D.; Chadranyan, E. K.; Khizanishvili, L. A.; Ladaria, N. K.; Roinishvili, N. N.

    1985-01-01

    The flux value of hadrons with E (sup gamma) h or = 5 TeV, where E (sup gamma) h or = is the energy transferred into electromagnetic component is presented. It is shown that the energy spectrum slope beta of hadrons with E h or = 20 TeV is equal to 1.9.

  16. Highlands County Energy Education Activities--High School Level.

    ERIC Educational Resources Information Center

    Allen, Rodney F., Ed.

    Presented are five instructional units, developed by the Tri-County Teacher Education Center, for the purpose of educating secondary school students on Florida's unique energy problems. Unit one provides a series of value clarification and awareness activities as an introduction to energy. Unit two uses mathematics exercises to examine energy…

  17. Clean Energy Policy Analyses. Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    SciTech Connect

    Busche, S.

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  18. Clean Energy Policy Analyses: Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    SciTech Connect

    Busche, S.

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  19. New energy levels of atomic niobium by laser induced fluorescence spectroscopy in the near infrared

    NASA Astrophysics Data System (ADS)

    Öztürk, I. K.; Başar, Gö; Er, A.; Güzelçimen, F.; Başar, Gü; Kröger, S.

    2015-01-01

    Laser-induced fluorescence spectroscopy was applied in order to find new energy levels of the niobium atom. A continuous wave tuneable titanium-sapphire laser in the wavelength range from 750 to 865 nm and a hollow-cathode lamp were used. We discovered four energy levels of even parity, three lying levels below 19 000 cm-1 and one at much higher energy. Additionally hyperfine structure data of six levels of odd parity were determined.

  20. City-Level Energy Decision Making. Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities

    SciTech Connect

    Aznar, Alexandra; Day, Megan; Doris, Elizabeth; Mathur, Shivani; Donohoo-Vallett, Paul

    2015-07-08

    The Cities-LEAP technical report, City-Level Energy Decision Making: Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities, explores how a sample of cities incorporates data into making energy-related decisions. This report provides the foundation for forthcoming components of the Cities-LEAP project that will help cities improve energy decision making by mapping specific city energy or climate policies and actions to measurable impacts and results.

  1. ORECCL-Oak Ridge energy crop county level database

    SciTech Connect

    Graham, R.L.; Allison, L.J.; Becker, D.A.

    1996-12-31

    A database on energy crop potential is being developed. This database will provide, for every county in the United States, information on the availability and cost of cropland and the yields, production costs and projected prices of energy crops. The database will be an EXCEL{copyright} spreadsheet that can be downloaded from an Internet site. The 35 variables in the database are described in the paper.

  2. Energy Levels and the de Broglie Relationship for High School Students

    ERIC Educational Resources Information Center

    Gianino, Concetto

    2008-01-01

    In this article, four examples of possible lessons on energy levels for high school are described: a particle in a box, a finite square well, the hydrogen atom and a harmonic oscillator. The energy levels are deduced through the use of the steady-state condition and the de Broglie relationship. In particular, the harmonic oscillator energy levels…

  3. Training courses on ''alternative energy technologies'' for middle level workers

    SciTech Connect

    Jagadeesh, A.

    1983-12-01

    The Government of India has given priority to energy in the Sixth Plan. The Department of Non-Conventional Sources of Energy under Government of India and State Units connected with Alternative Energy Sources are taking all possible steps to promote the cause and use of Alternative Energy Sources like Solar, Wind, Biogas etc.. Besides several private Engineering concerns like Central Electronics Ltd., Shahibabad; Solaren Technologz Pvt. Ltd., Bombay; Avanti Fastners Ltd., New Delhi; Jyoti Ltd., Baroda; Voltas Ltd., Bombay; Institute of Engineering and Rural Technology, Allahabad; ORP Ltd., Gazipur etc. are either manufacturing or marketing alternative energy sources products like Solar Cookers, Solar heating systems, Windmills, Windturbines etc.. Kahdi and Village Industries Commission is already involved in a big way in installing Biogas Plants throughout the Country. As the use of Alternative Energy Sources is on the increase, the needfor qualified technical personnel to undertake maintenance and repairs is necessary. There are hundreds of Polytechnic offering Diploma Courses in traditional disciplines like Electrical, Mechanical, Civil etc.. Also Industrial Training Institutes (ITIs) offer Certificate Courses in branches like Fitter, Welder, Draftsman etc..

  4. Non-High-Density Lipoprotein Cholesterol in Children with Diabetes: Proposed Treatment Recommendations Based on Glycemic Control, Body Mass Index, Age, Sex, and Generally Accepted Cut Points.

    PubMed

    Schwab, K Otfried; Doerfer, Jürgen; Hungele, Andreas; Scheuing, Nicole; Krebs, Andreas; Dost, Axel; Rohrer, Tilman R; Hofer, Sabine; Holl, Reinhard W

    2015-12-01

    Percentile-based non-high-density lipoprotein cholesterol levels were analyzed by glycemic control, weight, age, and sex of children with type 1 diabetes (n = 26,358). Ten percent of all children and 25% of overweight adolescent girls require both immediate lipid-lowering medication and lifestyle changes to achieve non-high-density lipoprotein cholesterol levels <120 mg/dL and cardiovascular risk reduction.

  5. How Does Energy Intake Influence the Levels of Certain Steroids?

    PubMed

    Rácz, Beáta; Dušková, Michaela; Jandíková, Hana; Hill, Martin; Vondra, Karel; Stárka, Luboslav

    2015-01-01

    The influence of steroid hormones on food intake is well described. However, there are only a few studies on the effect of food intake on steroid levels. The study involved eight non-smoker women (average age 29.48±2.99 years; average BMI 21.3±1.3 kg/m2); they did not use any kind of medication affecting steroidogenesis. We analysed the influence of four various stimuli on the levels of steroid hormones and melatonin. During their follicular phase of menstrual cycle, each woman had an oral glucose tolerance test (OGTT), intravenous glucose tolerance test (IVGTT), a standard breakfast and psyllium (a non-caloric fibre). Cortisol declined during each test, which is a physiological decline in the morning hours. In all tests (except of the application of the non-caloric fibre, psyllium), however, this decline was modified. After the standard breakfast there was an increase in cortisol at 40th minute. The OGTT and IVGTT tests led to a plateau in cortisol levels. Testosterone levels and those of other steroid hormones showed no relationships to tested stimulations. Oral and intravenous glucose have influenced physiological decline of melatonin levels. During the IVGTT test, melatonin levels started to increase at 20th minute, reaching a maximum at 40th minute. The OGTT test led to a delayed increase in melatonin levels, compared to IVGTT. Despite the fact that we performed the tests in the morning hours, when steroid hormone levels physiologically start to change due to their diurnal rhythm, we still found that food intake influences some of the hormone levels. PMID:26654802

  6. Energy Levels of the Nitrate Radical Below 2000 CM-1

    NASA Astrophysics Data System (ADS)

    Stanton, J. F.; Simmons, C. S.

    2012-06-01

    Highly sophisticated quantum chemistry techniques have been employed to build a three-state diabatic Hamiltonian for the nitrate radical (NO_3). Eigenvalues of this Hamiltonian (which includes effects beyond the Born-Oppenheimer approximation) are consistent with the known ``vibrational'' levels of NO_3 up to ca. 2100 cm-1 above the zero-point level; with a small empirical adjustment of the diabatic coupling strength, calculated levels are within 20 cm-1 of the measured level positions for those that have been observed experimentally. Of the eleven states with e' symmetry calculated below 2000 cm-1, nine of these have been observed either in the gas phase by Hirota and collaborators as well as Neumark and Johnston, or in frozen argon by Jacox. However, the Hamiltonian produces two levels that have not been seen experimentally: one calculated to lie at 1075 cm-1 (which is the third e' state, above ν_4 and 2ν_4) and another at 1640 cm-1 which is best assigned as one of the two e' sublevels of 4ν_4. A significant result is that the state predicted at 1075 cm-1 is not far enough above the predicted 2ν_4 level (777 cm-1 v. ca. 760 cm-1 from experiment) to be plausibly assigned as 3ν_4 (which is at 1155 cm-1: experimental position: 1173 cm-1), nor is its nodal structure consistent with such an idea. Rather, it is quite unambiguously the ν_3 level. Given the fidelity of the results generated by this model Hamiltonian as compared to experiment, it can safely be concluded that the prominent infrared band seen at 1492 cm-1 (corresponding to a calculated level at 1500 cm-1) is not ν_3, but rather a multiquantum state best viewed as a sublevel of the ν_3 + ν_4 combination.

  7. A Quantum Model of Atoms (the Energy Levels of Atoms).

    ERIC Educational Resources Information Center

    Rafie, Francois

    2001-01-01

    Discusses the model for all atoms which was developed on the same basis as Bohr's model for the hydrogen atom. Calculates the radii and the energies of the orbits. Demonstrates how the model obeys the de Broglie's hypothesis that the moving electron exhibits both wave and particle properties. (Author/ASK)

  8. Orbital Energy Levels in Molecular Hydrogen. A Simple Approach.

    ERIC Educational Resources Information Center

    Willis, Christopher J.

    1988-01-01

    Described are the energetics involved in the formation of molecular hydrogen using concepts that should be familiar to students beginning the study of molecular orbital theory. Emphasized are experimental data on ionization energies. Included are two-electron atomic and molecular systems. (CW)

  9. Teaching Field Concept and Potential Energy at A-Level.

    ERIC Educational Resources Information Center

    Poon, C. H.

    1986-01-01

    Argues for a greater emphasis on the reality of fields in electronics and gravitation instruction. Advocates that the potential energy in a system be regarded as stored in the field rather than in the material bodies of the system. Provides a rationale and examples for this position. (ML)

  10. Decreased energy levels can cause and sustain obesity.

    PubMed

    Wlodek, Danuta; Gonzales, Michael

    2003-11-01

    Obesity has reached epidemic proportions and has become one of the major health problems in developed countries. Current theories consider obesity a result of overeating and sedentary life style and most efforts to treat or prevent weight gain concentrate on exercise and food intake. This approach does not improve the situation as may be seen from the steep increase in the prevalence of obesity. This encouraged us to reanalyse existing information and look for biochemical basis of obesity. Our approach was to ignore current theories and concentrate on experimental data which are described in scientific journals and are available from several databases. We developed and applied a Knowledge Discovery in Databases procedure to analyse metabolic data. We began with the contradictory information: in obesity, more calories are consumed than used up, suggesting that obese people should have excess energy. On the other side, obese people experience fatigue and decreased physical endurance that indicates diminished energy supply in the body. The result of our work is a chain of metabolic events leading to obesity. The crucial event is the inhibition of the TCA cycle at the step of aconitase. It disturbs energy metabolism and results in ATP deficiency with simultaneous fat accumulation. Further steps in obesity development are the consequences of diminished energy supply: inhibition of beta-oxidation, leptin resistance, increase in appetite and food intake and a decrease in physical activity. Thus, our theory shows that obesity does not have to be caused by overeating and sedentary life-style but may be the result of the "obese" change in metabolism which is forcing people to overeat and save energy to sustain metabolic functions of cells. This "obese" change is caused by environmental factors that activate chronic low-grade inflammatory process in the body linking obesity with the environment of developed countries. PMID:14559057

  11. Quantum mechanics on a Möbius ring: Energy levels, symmetry, optical transitions, and level splitting in a magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Zehao; Ram-Mohan, L. R.

    2012-05-01

    We investigate the quantum mechanical energy levels of an electron constrained to motion on a nanoscale Möbius ring by solving the Schrödinger equation on the curved surface. The dimensions of the ring in terms of the lateral and transverse parameters {u,v} for the Möbius ring allow us to identify the quantum numbers for the levels by (nu,nv). We show that the energy levels can still be labeled using the quantum numbers of the cylindrical ring of the same dimensions. While the Hamiltonian has invariance under parity in parameter space, the rotational symmetry about any axis in configuration space is lost, so that the double degeneracy of energy levels for azimuthal quantum number nu≥1, that exists in cylindrical rings, is lifted by a small amount in the Möbius ring. The pattern of level splitting has been identified in terms of the number of twists σ to be 2nu=sσ where s is an integer. The scaling properties of the energy levels with respect to the dimensions of the ring are derived; using these properties, our numerical results which are given for a specific geometry can be extended to rings of other commensurate dimensions. The absence of rotational invariance for the Möbius ring manifests itself through the orbital angular momentum Lz not commuting with the Hamiltonian. Its expectation values are found to have nearly integral as well as half-integral values of ℏ, and its variances are small. The energy levels with half-integral azimuthal quantum numbers (nu) are also close to the approximate formula for the equivalent cylindrical ring, provided such half-integral quantum numbers are allowed for the cylindrical geometry. The Zeeman splitting of the energy levels in an external magnetic field is displayed, together with wave functions at a level anticrossing. The optical transitions between electronic states on the Möbius ring are obtained, and a table of oscillator strengths is provided. The results for energy levels for rings with multiple twists are

  12. Energy levels of isoelectronic impurities by large scale LDA calculations

    SciTech Connect

    Li, Jingbo; Wang, Lin-Wang

    2002-11-22

    Isoelectronic impurity states are localized states induced by stoichiometric single atom substitution in bulk semiconductor. Photoluminescence spectra indicate deep impurity levels of 0.5 to 0.9eV above the top of valence band for systems like: GaN:As, GaN:P, CdS:Te, ZnS:Te. Previous calculations based on small supercells seemingly confirmed these experimental results. However, the current ab initio calculations based on thousand atom supercells indicate that the impurity levels of the above systems are actually much shallower(0.04 to 0.23 eV), and these impurity levels should be compared with photoluminescence excitation spectra, not photoluminescence spectra.

  13. Atomic level spatial variations of energy states along graphene edges.

    PubMed

    Warner, Jamie H; Lin, Yung-Chang; He, Kuang; Koshino, Masanori; Suenaga, Kazu

    2014-11-12

    The local atomic bonding of carbon atoms around the edge of graphene is examined by aberration-corrected scanning transmission electron microscopy (STEM) combined with electron energy loss spectroscopy (EELS). High-resolution 2D maps of the EELS combined with atomic resolution annular dark field STEM images enables correlations between the carbon K-edge EELS and the atomic structure. We show that energy states of graphene edges vary across individual atoms along the edge according to their specific C-C bonding, as well as perpendicular to the edge. Unique spectroscopic peaks from the EELS are assigned to specific C atoms, which enables unambiguous spectroscopic fingerprint identification for the atomic structure of graphene edges with unprecedented detail.

  14. Enzymatic versus inorganic oxygen reduction catalysts: comparison of the energy levels in a free-energy scheme.

    PubMed

    Kjaergaard, Christian H; Rossmeisl, Jan; Nørskov, Jens K

    2010-04-19

    In this paper, we present a method to directly compare the energy levels of intermediates in enzymatic and inorganic oxygen reduction catalysts. We initially describe how the energy levels of a Pt(111) catalyst, operating at pH = 0, are obtained. By a simple procedure, we then convert the energy levels of cytochrome c oxidase (CcO) models obtained at physiological pH = 7 to the energy levels at pH = 0, which allows for comparison. Furthermore, we illustrate how different bias voltages will affect the free-energy landscapes of the catalysts. This allows us to determine the so-called theoretical overpotential of each system, which is shown to be significantly lower for the enzymatic catalysts compared to the inorganic Pt(111) catalyst. Finally, we construct theoretical polarization curves for the CcO models, in order to illustrate the effect of the low overpotentials on turnover rates per site. PMID:20380458

  15. Quantum Monte Carlo : not just for energy levels.

    SciTech Connect

    Nollett, K. M.; Physics

    2007-01-01

    Quantum Monte Carlo and realistic interactions can provide well-motivated vertices and overlaps for DWBA analyses of reactions. Given an interaction in vaccum, there are several computational approaches to nuclear systems, as you have been hearing: No-core shell model with Lee-Suzuki or Bloch-Horowitz for Hamiltonian Coupled clusters with G-matrix interaction Density functional theory, granted an energy functional derived from the interaction Quantum Monte Carlo - Variational Monte Carlo Green's function Monte Carlo. The last two work directly with a bare interaction and bare operators and describe the wave function without expanding in basis functions, so they have rather different sets of advantages and disadvantages from the others. Variational Monte Carlo (VMC) is built on a sophisticated Ansatz for the wave function, built on shell model like structure modified by operator correlations. Green's function Monte Carlo (GFMC) uses an operator method to project the true ground state out of a reasonable guess wave function.

  16. Radon and radon daughter levels in energy efficient housing.

    PubMed

    McGregor, R G; Walker, W B; Létourneau, E G

    1985-10-01

    Radon and radon daughter concentrations have been measured in 33 "energy-efficient" homes in a small subdivision in Kanata, Ontario. Integrated radon measurements were determined over three month periods for a year using solid state nuclear track detectors. Radon and radon daughter grab sample determinations were made during corresponding periods and confirm the distributions of the integrated radon measurements. Annual average individual home radon concentrations show an 8 fold concentration range between homes. This variability in radon concentrations is not reflected in the range of air exchange rates for the homes. A distinct seasonal variation is noted for the median values of the radon and radon daughter concentrations and the equilibrium factor F in the dwellings.

  17. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that are... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban...

  18. Quantifying the Level of Cross-State Renewable Energy Transactions (Presentation)

    SciTech Connect

    Heeter, J.; Beiter, P.; Flores, F.; Hurlbut, D.; Liu, C.

    2015-02-01

    This presentation and associated spreadsheet examine the level of cross-state renewable energy transactions. Most state renewable portfolio standard (RPS) policies allow for out-of-state renewable energy or renewable energy certificates to count towards compliance. This analysis focuses on compliance for 2012 and provides stakeholders with an understanding of the extent to which RPSs are being met.

  19. North Dakota Industrial Arts Teachers Handbook. Energy/Power Curriculum Guide, Level I.

    ERIC Educational Resources Information Center

    Mugan, Don

    This handbook provides teachers with support material to more fully implement the North Dakota Energy and Power Curriculum Guide, Level I. It first presents the body of knowledge for Energy/Power Technology as taken from the curriculum guide. The guide is then addressed unit by unit, topic by topic. These seven units are covered: Energy/Power…

  20. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that...

  1. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that...

  2. Ab-inito calculation of energy level alignment and vacuum level shift at CuPc/C60 interfaces

    NASA Astrophysics Data System (ADS)

    Sai, Na; Zhu, Xiaoyang; Chelikowsky, James; Leung, Kevin

    2012-02-01

    The alignment of the donor and acceptor enegy levels is of crucial importance for organic photovotaic performance. We investigate the interfaical electronic structure and energy level alignment of copper phthalocyanine (CuPc)/fullerene (C60) using ab-inito density functional theory calculations including van der Waals interactions and hybrid density functionals. We show that energy level alignment critically depends on the standing-up and lying-down orientation of the CuPc molecules relative to C60 at the interface. We calculate the magnitude of the interface dipole at different molecular orientations and compare them to the vacuum level shift observed in photoemission spectroscopy. The validity of existing theoretical models which invoke charge transfer on this organic interface will be discussed in light of our predictions. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deparment of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Treatment of Electronic Energy Level Transition and Ionization Following the Particle-Based Chemistry Model

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark

    2010-01-01

    A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.

  4. ENERGY LEVELS AND SPECTRAL LINES OF SINGLY IONIZED MANGANESE (Mn II)

    SciTech Connect

    Kramida, Alexander; Sansonetti, Jean E.

    2013-04-01

    This compilation revises the previously recommended list of energy levels of singly ionized manganese (Mn II) and provides a comprehensive list of observed spectral lines and transition probabilities in this spectrum. The new level optimization takes into account critically assessed uncertainties of measured wavelengths and includes about a hundred high-precision wavelengths determined by laser spectroscopy and Fourier transform techniques. Uncertainties of 63% of energy levels and 74% of Ritz wavelengths are reduced by a factor of three on average.

  5. Energy level modification in lead sulfide quantum dot thin films through ligand exchange.

    PubMed

    Brown, Patrick R; Kim, Donghun; Lunt, Richard R; Zhao, Ni; Bawendi, Moungi G; Grossman, Jeffrey C; Bulović, Vladimir

    2014-06-24

    The electronic properties of colloidal quantum dots (QDs) are critically dependent on both QD size and surface chemistry. Modification of quantum confinement provides control of the QD bandgap, while ligand-induced surface dipoles present a hitherto underutilized means of control over the absolute energy levels of QDs within electronic devices. Here, we show that the energy levels of lead sulfide QDs, measured by ultraviolet photoelectron spectroscopy, shift by up to 0.9 eV between different chemical ligand treatments. The directions of these energy shifts match the results of atomistic density functional theory simulations and scale with the ligand dipole moment. Trends in the performance of photovoltaic devices employing ligand-modified QD films are consistent with the measured energy level shifts. These results identify surface-chemistry-mediated energy level shifts as a means of predictably controlling the electronic properties of colloidal QD films and as a versatile adjustable parameter in the performance optimization of QD optoelectronic devices.

  6. Energy Efficiency Policy in the United States: Overview of Trends at Different Levels of Government

    SciTech Connect

    Doris, E.; Cochran, J.; Vorum, M.

    2009-12-01

    This report catalogs by sector--buildings, transportation, industrial, and power--energy efficiency policies at the federal, state, and local levels, and identifies some prominent policy trends. Four key findings emerged from this report: 1) leadership on energy efficiency is necessary--and is found--at each level of government; 2) there is no widely accepted methodology for evaluating energy efficiency policies; 3) coordination among the three levels of government--and across sectors--is increasingly important, and there are opportunities to significantly improve policy performance through a unified strategy; and 4) there are efficiencies to be gained by informing policies in one sector with experience from others.

  7. Energy Efficiency Policy in the United States. Overview of Trends at Different Levels of Government

    SciTech Connect

    Doris, Elizabeth; Cochran, Jaquelin; Vorum, Martin

    2009-12-01

    This report catalogs by sector--buildings, transportation, industrial, and power--energy efficiency policies at the federal, state, and local levels, and identifies some prominent policy trends. Four key findings emerged from this report: 1) leadership on energy efficiency is necessary--and is found--at each level of government; 2) there is no widely accepted methodology for evaluating energy efficiency policies; 3) coordination among the three levels of government--and across sectors--is increasingly important, and there are opportunities to significantly improve policy performance through a unified strategy; and 4) there are efficiencies to be gained by informing policies in one sector with experience from others.

  8. Energy Level Alignment at Aqueous GaN and ZnO Interfaces

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark S.; Kharche, Neerav; Muckerman, James T.

    2014-03-01

    Electronic energy level alignment at semiconductor-electrolyte interfaces is fundamental to electrochemical activity. Motivated in particular by the search for new materials that can be more efficient for photocatalysis, we develop a first principles method to calculate this alignment at aqueous interfaces and demonstrate it for the specific case of non-polar GaN and ZnO interfaces with water. In the first step, density functional theory (DFT) based molecular dynamics is used to sample the physical interface structure and to evaluate the electrostatic potential step at the interface. In the second step, the GW approach is used to evaluate the reference electronic energy level separately in the bulk semiconductor (valence band edge energy) and in bulk water (the 1b1 energy level), relative to the internal electrostatic energy reference. Use of the GW approach naturally corrects for errors inherent in the use of Kohn-Sham energy eigenvalues to approximate the electronic excitation energies in each material. With this predicted interface alignment, specific redox levels in water, with potentials known relative to the 1b1 level, can then be compared to the semiconductor band edge positions. Our results will be discussed in the context of experiments in which photoexcited GaN and ZnO drive the hydrogen evolution reaction. Research carried out at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.

  9. NEW Fe I LEVEL ENERGIES AND LINE IDENTIFICATIONS FROM STELLAR SPECTRA

    SciTech Connect

    Peterson, Ruth C.; Kurucz, Robert L.

    2015-01-01

    The spectrum of the Fe I atom is critical to many areas of astrophysics and beyond. Measurements of the energies of its high-lying levels remain woefully incomplete, however, despite extensive laboratory and solar analysis. In this work, we use high-resolution archival absorption-line ultraviolet and optical spectra of stars whose warm temperatures favor moderate Fe I excitation. We derive the energy for a particular upper level in Kurucz's semiempirical calculations by adopting a trial value that yields the same wavelength for a given line predicted to be about as strong as that of a strong unidentified spectral line observed in the stellar spectra, then checking the new wavelengths of other strong predicted transitions that share the same upper level for coincidence with other strong observed unidentified lines. To date, this analysis has provided the upper energies of 66 Fe I levels. Many new energy levels are higher than those accessible to laboratory experiments; several exceed the Fe I ionization energy. These levels provide new identifications for over 2000 potentially detectable lines. Almost all of the new levels of odd parity include UV lines that were detected but unclassified in laboratory Fe I absorption spectra, providing an external check on the energy values. We motivate and present the procedure, provide the resulting new energy levels and their uncertainties, list all the potentially detectable UV and optical new Fe I line identifications and their gf values, point out new lines of astrophysical interest, and discuss the prospects for additional Fe I energy level determinations.

  10. Wind energy development in the United States: Can state-level policies promote efficient development of wind energy capacity?

    NASA Astrophysics Data System (ADS)

    Goldstein, Blair S.

    In the absence of strong U.S. federal renewable energy policies, state governments have taken the lead in passing legislation to promote wind energy. Studies have shown that many of these policies, including Renewable Portfolio Standards (RPS), have aided in the development of wind energy capacity nationwide. This paper seeks to analyze whether these state-level policies have led to an efficient development of U.S. wind energy. For the purposes of this paper, wind energy development is considered efficient if competitive markets enable wind capacity to be built in the most cost effective manner, allowing states to trade wind energy between high wind potential states and low wind potential states. This concept is operationalized by analyzing how state policies that incentivize the in-state development of wind energy impact where wind capacity is developed. A multivariate regression model examining wind capacity in the 48 contiguous United States that had some wind capacity between 1999 and 2008 found these in-state policies are associated with increased wind capacity, controlling for states' wind potential. The results suggest that state-level policies are distorting where wind is developed. These findings support the enactment of a more comprehensive federal energy policy, such as a national RPS, a cap-and-trade program, or a targeted federal transmission policy. These federal policies could spur national markets that would result in the more efficient development of U.S. wind energy.

  11. Impact behaviour of Napier/polyester composites under different energy levels

    NASA Astrophysics Data System (ADS)

    Fahmi, I.; Majid, M. S. Abdul; Afendi, M.; Haslan, M.; Helmi E., A.; M. Haameem J., A.

    2016-07-01

    The effects of different energy levels on the impact behaviour of Napier fibre/polyester reinforced composites were investigated. Napier fibre was extracted using traditional water retting process to be utilized as reinforcing materials in polyester composite laminates. 25% fibre loading composite laminates were prepared and impacted at three different energy levels; 2.5,5 and 7.5 J using an instrumented drop weight impact testing machine (IMATEK IM10). The outcomes show that peak force and contact time increase with increased impact load. The energy absorption was then calculated from the force displacement curve. The results indicated that the energy absorption decreases with increasing energy levels of the impact. Impacted specimens were observed visually for fragmentation fracture using an optical camera to identify the failure mechanisms. Fracture fragmentation pattern from permanent dent to perforation with radial and circumferential was observed.

  12. Effect of energy and protein levels on nutrient utilization and their requirements in growing Murrah buffaloes.

    PubMed

    Prusty, Sonali; Kundu, Shivlal Singh; Mondal, Goutam; Sontakke, Umesh; Sharma, Vijay Kumar

    2016-04-01

    To evaluate different levels of energy and protein for optimum growth of Murrah male buffalo calves, a growth trial (150 days) was conducted on 30 calves (body weight 202.5 ± 6.8 kg). Six diets were formulated to provide 90, 100 and 110% protein level and 90 and 110% energy level requirements for buffalo calves, derived from ICAR 2013 recommendations for buffaloes. The crude protein (CP) intake was increased with higher dietary CP, whereas no effect of energy levels or interaction between protein and energy was observed on CP intake. There were significant effects (P < 0.01) of the interaction between protein and energy (P < 0.05) on metabolizable energy (ME) intake. The digestibility of dry matter (DM), organic matter (OM) and non-fibrous carbohydrate (NFC) was higher (P < 0.0001) in high-energy groups compared to low-energy groups. The CP digestibility increased with the increased CP and ME of the rations. The absorbed N was improved linearly with an increased level of dietary CP, whereas the N retention was similar among all the groups distributed as per different energy or protein levels. The nutrient intake (protein or energy) per kg body weight (BW)(0.75) at various fortnight intervals was regressed linearly from the average daily gain (ADG) per kg BW(0.75). By setting the average daily gain at zero in the developed regression equation, a maintenance requirement was obtained, i.e. 133.1 kcal ME, 6.45 g CP and 3.95 g metabolizable protein (MP) per kg BW(0.75). Requirement for growth was 6.12 kcal ME, 0.46 g CP and 0.32 g MP per kg BW(0.75) per day. Metabolizable amino acid requirement was estimated from partitioning of MP intake and ADG. The ME requirements were lower, whereas the MP requirement of Murrah buffaloes was higher than ICAR (2013) recommendations. PMID:26970972

  13. Building Energy Use Modeling at the U.S. State Level Under Climate Change

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Eom, J.; Clarke, L.; Kyle, P.

    2012-12-01

    Climate change plays an important role in building energy use for heating and cooling. As global building energy use accounts for as much as about 32% of global final energy consumption in 2005, the impact of climate change on greenhouse gas emissions may also be significant. As long-term socioeconomic transformation and energy service expansion show large spatial heterogeneity, advanced understanding of climate impact on building energy use at the sub-national level will offer useful insights into regional energy system planning. In this study, we have developed a detailed building energy model with U.S. 50-state representation, embedded in an integrated assessment framework (Global Change Assessment Model). The climate change impact on heating and cooling demand is measured through estimating heating and cooling degree days (HDD/CDDs) derived from MIT Integrated Global System Model (IGSM) climate data and linking the estimates to the building energy model. Having the model calibrated against historical data at the U.S. state level, we estimated the building energy use in the 21st century at the U.S. state level and analyzed its spatial pattern. We have found that the total building energy use (heating and cooling) in U.S. states is over- or under-estimated without having climate feedback taken into account, and that the difference with and without climate feedback at the state level varies from -25% to 25% in reference scenario and -15% to 10% in climate mitigation scenario. The result not only confirms earlier finding that global warming leads to increased cooling and decreased heating energy use, it also indicates that climate change has a different impact on total building energy use at national and state level, exhibiting large spatial heterogeneity across states (Figure 1). The scale impact in building energy use modeling emphasizes the importance of developing a building energy model that represents socioeconomic development, energy service expansion, and

  14. Chemical control over the energy-level alignment in a two-terminal junction

    NASA Astrophysics Data System (ADS)

    Yuan, Li; Franco, Carlos; Crivillers, Núria; Mas-Torrent, Marta; Cao, Liang; Sangeeth, C. S. Suchand; Rovira, Concepció; Veciana, Jaume; Nijhuis, Christian A.

    2016-07-01

    The energy-level alignment of molecular transistors can be controlled by external gating to move molecular orbitals with respect to the Fermi levels of the source and drain electrodes. Two-terminal molecular tunnelling junctions, however, lack a gate electrode and suffer from Fermi-level pinning, making it difficult to control the energy-level alignment of the system. Here we report an enhancement of 2 orders of magnitude of the tunnelling current in a two-terminal junction via chemical molecular orbital control, changing chemically the molecular component between a stable radical and its non-radical form without altering the supramolecular structure of the junction. Our findings demonstrate that the energy-level alignment in self-assembled monolayer-based junctions can be regulated by purely chemical modifications, which seems an attractive alternative to control the electrical properties of two-terminal junctions.

  15. Chemical control over the energy-level alignment in a two-terminal junction.

    PubMed

    Yuan, Li; Franco, Carlos; Crivillers, Núria; Mas-Torrent, Marta; Cao, Liang; Sangeeth, C S Suchand; Rovira, Concepció; Veciana, Jaume; Nijhuis, Christian A

    2016-07-26

    The energy-level alignment of molecular transistors can be controlled by external gating to move molecular orbitals with respect to the Fermi levels of the source and drain electrodes. Two-terminal molecular tunnelling junctions, however, lack a gate electrode and suffer from Fermi-level pinning, making it difficult to control the energy-level alignment of the system. Here we report an enhancement of 2 orders of magnitude of the tunnelling current in a two-terminal junction via chemical molecular orbital control, changing chemically the molecular component between a stable radical and its non-radical form without altering the supramolecular structure of the junction. Our findings demonstrate that the energy-level alignment in self-assembled monolayer-based junctions can be regulated by purely chemical modifications, which seems an attractive alternative to control the electrical properties of two-terminal junctions.

  16. Chemical control over the energy-level alignment in a two-terminal junction.

    PubMed

    Yuan, Li; Franco, Carlos; Crivillers, Núria; Mas-Torrent, Marta; Cao, Liang; Sangeeth, C S Suchand; Rovira, Concepció; Veciana, Jaume; Nijhuis, Christian A

    2016-01-01

    The energy-level alignment of molecular transistors can be controlled by external gating to move molecular orbitals with respect to the Fermi levels of the source and drain electrodes. Two-terminal molecular tunnelling junctions, however, lack a gate electrode and suffer from Fermi-level pinning, making it difficult to control the energy-level alignment of the system. Here we report an enhancement of 2 orders of magnitude of the tunnelling current in a two-terminal junction via chemical molecular orbital control, changing chemically the molecular component between a stable radical and its non-radical form without altering the supramolecular structure of the junction. Our findings demonstrate that the energy-level alignment in self-assembled monolayer-based junctions can be regulated by purely chemical modifications, which seems an attractive alternative to control the electrical properties of two-terminal junctions. PMID:27456200

  17. Chemical control over the energy-level alignment in a two-terminal junction

    PubMed Central

    Yuan, Li; Franco, Carlos; Crivillers, Núria; Mas-Torrent, Marta; Cao, Liang; Sangeeth, C. S. Suchand; Rovira, Concepció; Veciana, Jaume; Nijhuis, Christian A.

    2016-01-01

    The energy-level alignment of molecular transistors can be controlled by external gating to move molecular orbitals with respect to the Fermi levels of the source and drain electrodes. Two-terminal molecular tunnelling junctions, however, lack a gate electrode and suffer from Fermi-level pinning, making it difficult to control the energy-level alignment of the system. Here we report an enhancement of 2 orders of magnitude of the tunnelling current in a two-terminal junction via chemical molecular orbital control, changing chemically the molecular component between a stable radical and its non-radical form without altering the supramolecular structure of the junction. Our findings demonstrate that the energy-level alignment in self-assembled monolayer-based junctions can be regulated by purely chemical modifications, which seems an attractive alternative to control the electrical properties of two-terminal junctions. PMID:27456200

  18. Level sequence and splitting identification of closely spaced energy levels by angle-resolved analysis of fluorescence light

    NASA Astrophysics Data System (ADS)

    Wu, Z. W.; Volotka, A. V.; Surzhykov, A.; Dong, C. Z.; Fritzsche, S.

    2016-06-01

    The angular distribution and linear polarization of the fluorescence light following the resonant photoexcitation is investigated within the framework of density matrix and second-order perturbation theory. Emphasis has been placed on "signatures" for determining the level sequence and splitting of intermediate (partially) overlapping resonances, if analyzed as a function of photon energy of incident light. Detailed computations within the multiconfiguration Dirac-Fock method have been performed, especially for the 1 s22 s22 p63 s ,Ji=1 /2 +γ1→(1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 →1 s22 s22 p63 s ,Jf=1 /2 +γ2 photoexcitation and subsequent fluorescence emission of atomic sodium. A remarkably strong dependence of the angular distribution and linear polarization of the γ2 fluorescence emission is found upon the level sequence and splitting of the intermediate (1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 overlapping resonances owing to their finite lifetime (linewidth). We therefore suggest that accurate measurements of the angular distribution and linear polarization might help identify the sequence and small splittings of closely spaced energy levels, even if they cannot be spectroscopically resolved.

  19. Spectrum and energy levels of five-times ionized zirconium (Zr VI)

    NASA Astrophysics Data System (ADS)

    Reader, Joseph; Lindsay, Mark D.

    2016-02-01

    We carried out a new analysis of the spectrum of five-times-ionized zirconium Zr VI. For this we used sliding-spark discharges together with normal- and grazing-incidence spectrographs to observe the spectrum from 160 to 2000 Å. These observations showed that the analysis of this spectrum by Khan et al (1985 Phys. Scr. 31 837) contained a significant number of incorrect energy levels. We have now classified ˜420 lines as transitions between 23 even-parity levels 73 odd-parity levels. The 4s24p5, 4s4p6, 4s24p44d, 5s, 5d, 6s configurations are now complete, although a few levels of 4s24p45d are tentative. We determined Ritz-type wavelengths for ˜135 lines from the optimized energy levels. The uncertainties range from 0.0003 to 0.0020 Å. Hartree-Fock calculations and least-squares fits of the energy parameters to the observed levels were used to interpret the observed configurations. Oscillator strengths for all classified lines were calculated with the fitted parameters. The results are compared with values for the level energies, percentage compositions, and transition probabilities from recent ab initio theoretical calculations. The ionization energy was revised to 777 380 ± 300 cm-1 (96.38 ± 0.04 eV).

  20. Level-energy-dependent mean velocities of excited tungsten atoms sputtered by krypton-ion bombardment

    SciTech Connect

    Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Kenmotsu, Takahiro; Furuya, Kenji; Motohashi, Kenji

    2015-11-15

    Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.

  1. Growth and energy budget of juvenile lenok Brachymystax lenok in relation to ration level

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Zhongjie; Zhang, Tanglin; Yuan, Jing; Mou, Zhenbo; Liu, Jiashou

    2015-03-01

    We evaluated the effect of ration level (RL) on the growth and energy budget of lenok Brachymystax lenok. Juvenile lenok (initial mean body weight 3.06±0.13 g) were fed for 21 d at five different ration levels: starvation, 2%, 3%, 4% bwd (body weight per day, based on initial mean values), and apparent satiation. Feed consumption, apparent digestibility, and growth were directly measured. Specific growth rates in terms of wet weight, dry weight, protein, and energy increased logarithmically with an increase in ration levels. The relationship between specific growth rate in terms of wet weight (SGRw, %/d) and RL (%) was characterized by a decelerating curve: SGRw=-1.417+3.166ln(RL+1). The apparent digestibility coefficients of energy exhibited a decreasing pattern with increasing ration level, and there was a significant difference among different RLs. Body composition was significantly affected by ration size. The relationship between feed efficiency rate in terms of energy (FERe) and RL was: FERe=-14.167+23.793RL-3.367(RL)2, and the maximum FERe was observed at a 3.53% ration. The maintenance requirement for energy of juvenile lenok was 105.39 kJ BW (kg)-0.80/d, the utilization efficiency of DE for growth was 0.496. The energy budget equation at satiation was: 100IE=29.03FE+5.78(ZE+UE)+39.56 HE+25.63 RE, where IE is feed energy, FE is fecal energy, ZE+UE is excretory energy, HE is heat production, and RE is recovered energy. Our results suggest that the most suitable feeding rate for juvenile lenok aquaculture for wet weight growth is 2.89% bwd, whereas for energy growth, the suggested rate is 3.53% bwd at this growth stage.

  2. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint

    SciTech Connect

    Jenne, D. S.; Yu, Y. H.; Neary, V.

    2015-04-24

    In 2010 the U.S. Department of Energy initiated the development of six marine energy converter reference models. The reference models are point designs of well-known marine energy converters. Each device was designed to operate in a specific marine resource, instead of a generic device that can be deployed at any location. This method allows each device to be used as a benchmark for future reference model to benchmark future devices. The six designs consist of three current energy converters and three wave energy converters. The reference model project has generated both technical and economic data sets that are available in the public domain. The methodology to calculate the levelized cost of energy for the reference model project and an overall comparison of the cost of energy from these six reference-model designs are presented in this paper.

  3. Starch levels on performance, milk composition and energy balance of lactating dairy cows.

    PubMed

    Carmo, Carolina Almeida; Batistel, Fernanda; de Souza, Jonas; Martinez, Junio Cesar; Correa, Paulo; Pedroso, Alexandre Mendonça; Santos, Flávio Augusto Portela

    2015-01-01

    The objective of this experiment was to evaluate the effects of starch levels in diets with the replacement of citrus pulp for corn on milk yield, milk composition, and energy balance of lactating dairy cows. Twenty-eight multiparous Holstein cows were used in seven 4 × 4 Latin squares conducted concurrently, and each experimental period consisted of 20 days (16 days for adaptation and 4 days for sampling). The experimental treatments comprised four starch levels: 15, 20, 25, and 30% in the diet. The dry matter intake increased linearly with increasing starch levels. The milk yield and 3.5% fat-corrected milk yield showed quadratic response to increasing starch levels. The milk protein content and milk total solids content responded linearly to increasing starch levels. The feed efficiency, milk lactose content, milk urea nitrogen, plasma urea nitrogen, and plasma glucose concentration were not affected by starch levels. The estimated net energy for lactation (NEL) intake increased linearly as the starch level was raised. Although the milk NEL output per kilogram of milk was not affected by starch, the milk NEL output daily responded quadratically to starch levels. In addition, the NEL in body weight gain also responded quadratically to increasing starch levels. The efficiency of energy use for milk yield and the NEL efficiency for production also responded quadratically to increasing starch levels. Diets for mid-lactating dairy cows producing around 30 kg/day of milk should be formulated to provide around 25% starch to optimize performance.

  4. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the utility allowances in accordance with provisions in 24 CFR part 965, subpart E. The new allowance... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Utilities expense level: Incentives... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy...

  5. Ab initio ground-state potential energy function and vibration-rotation energy levels of imidogen, NH.

    PubMed

    Koput, Jacek

    2015-06-30

    The accurate ground-state potential energy function of imidogen, NH, has been determined from ab initio calculations using the multireference averaged coupled-pair functional (MR-ACPF) method in conjunction with the correlation-consistent core-valence basis sets up to octuple-zeta quality. The importance of several effects, including electron correlation beyond the MR-ACPF level of approximation, the scalar relativistic, adiabatic, and nonadiabatic corrections were discussed. Along with the large one-particle basis set, all of these effects were found to be crucial to attain "spectroscopic" accuracy of the theoretical predictions of vibration-rotation energy levels of NH.

  6. Inversion Vibrational Energy Levels of AsH3 + Studied by Zero-Kinetic Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mo, Yuxiang

    2016-06-01

    The rotational-resolved vibrational spectra of AsH3 + have been measured for the first time with vibrational energies up to 6000 wn above the ground state using zero-kinetic energy photoelectron spectroscopic method. The inversion vibrational energy levels (νb{2}) and the corresponding rotational constants for the νb{2} =0-16 have been determined. The tunneling splittings of the inversion vibration energy levels have been observed for the ground and the first excited vibrational states. The geometric parameters of AsH3 + as a function of inversion vibrational quantum states have been determined, indicating that the geometric structure of the cation changes from near planar structure to a pyramidal structure with more vibrational excitations. In addition to the experimental measurement, a two-dimensional theoretical calculation including the two symmetric vibrational modes was performed to determine the energy levels of the symmetric inversion and As-H stretching vibrations. The calculated vibrational energy levels are in good agreement with the experimental results. The first adiabatic ionization energy (IE) for AsH3 was also accurately determined. The result of this work will be compared with our published result on the PH3+.

  7. Probing Energy Levels of Large Array Quantum Dot Superlattice by Electronic Transport Measurement

    NASA Astrophysics Data System (ADS)

    Bisri, S. Z.; Degoli, E.; Spallanzani, N.; Krishnan, G.; Kooi, B.; Ghica, C.; Yarema, M.; Protesescu, L.; Heiss, W.; Kovalenko, M.; Pulci, O.; Ossicini, S.; Iwasa, Y.; Loi, M. A.

    2015-03-01

    Colloidal quantum dot superlattice (CQDS) emerges as new type of hybrid solids allowing easy fabrication of devices that exploits the quantum confinement properties of individual QD. This materials displays peculiar characters, making investigation of their transport properties nontrivial. Besides the bandgap variations, 0D nature of QD lead to the formation of discrete energy subbands. These subbands are crucial for multiple exciton generation (for efficient solar cell), thermoelectric material and multistate transistor. Full understanding of the CQDS energy level structure is vital to use them in complex devices. Here we show a powerful method to determine the CQDS electronic energy levels from their intrinsic charge transport characteristics. Via the use of ambipolar transistors with CQDS as active materials and gated using highly capacitive ionic liquid gating, Fermi energy can be largely tuned. It can access energy levels beyond QD's HOMO & LUMO. Ability to probe not only the bandgap, but also the discrete energy level from large assembly of QD at room temperature suggests the formation of energy minibands in this system.

  8. Wave energy level and geographic setting correlate with Florida beach water quality.

    PubMed

    Feng, Zhixuan; Reniers, Ad; Haus, Brian K; Solo-Gabriele, Helena M; Kelly, Elizabeth A

    2016-03-15

    Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment.

  9. Wave energy level and geographic setting correlate with Florida beach water quality.

    PubMed

    Feng, Zhixuan; Reniers, Ad; Haus, Brian K; Solo-Gabriele, Helena M; Kelly, Elizabeth A

    2016-03-15

    Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment. PMID:26892203

  10. Energy levels and transition probabilities in doubly-ionized erbium (Er III).

    NASA Astrophysics Data System (ADS)

    Wyart, J.-F.; Blaise, J.; Bidelman, W. P.; Cowley, C. R.

    1997-11-01

    The spectrum of Er III reported by Becher (1966) was reanalysed with the support of new predictions of energies and transition probabilities. The number of energy levels was increased from 45 to 115, including two levels of 4f117s and the levels 3F3, 3F2 and 1G4 of the ground configuration 4f12. All 470 classified lines are reported with transition probabilities for most of them. Several of these lines had not yet been attributed to Er III in the spectrum of the star HR 465.

  11. Energy levels of odd-even nuclei using broken pair model

    NASA Astrophysics Data System (ADS)

    Hamammu, I. M.; Haq, S.; Eldahomi, J. M.

    2012-09-01

    A method to calculate energy levels and wave functions of odd-even nuclei, in the frame work of the broken pair model have been developed. The accuracy of the model has been tested by comparing the shell model results of limiting cases in which the broken pair model exactly coincides with the shell model, where there are two-proton/neutron + one-neutron/proton in the valence levels. The model is then applied to calculate the energy levels of some nuclei in the Zirconium region. The model results compare reasonably well with the shell model as well as with the experimental data.

  12. Zone Level Occupant-Responsive Building Energy Systems at the GSA

    SciTech Connect

    Robinson, Alastair

    2014-03-01

    The General Services Administration (GSA) partnered with the U.S. Department of Energy (DOE) to develop and implement building energy system retrofits, aiming to reduce energy consumption of at least two building systems by a total of 30 percent or more, as part of DOE’s Commercial Building Partnership (CBP) Program. Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program, working with the GSA and a team of consultants. This case study reports expected energy savings from appropriate energy efficient design and operations modifications to lighting and heating, ventilating and air conditioning (HVAC) systems at the selected study sites. These retrofits comprised installation of new lighting systems with dimming capability and occupancy-sensor control at the individual light fixture level, and utilized lighting system occupancy sensor signals to continually readjust zone-level ventilation airflow according to the number of people present, down to minimum rates when vacant.

  13. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    SciTech Connect

    Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Florida Solar Energy Center; IBACOS; National Renewable Energy Laboratory

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  14. Examining student ideas about energy measurements on quantum states across undergraduate and graduate levels

    NASA Astrophysics Data System (ADS)

    Passante, Gina; Emigh, Paul J.; Shaffer, Peter S.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Energy measurements play a fundamental role in the theory of quantum mechanics, yet there is evidence that the underlying concepts are difficult for many students, even after all undergraduate instruction. We present results from an investigation into student ability to determine the possible energies that can be measured for a given wave function and Hamiltonian, to determine the probabilities of each energy measurement and how they depend on time, and to recognize how a measurement of energy affects the state. By analyzing student responses to open-ended questions, we identify five broad, interrelated sets of conceptual and reasoning difficulties related to energy measurements. Data are drawn from sophomore-, junior-, and graduate-level quantum mechanics courses. Particular attention is paid to incorrect ideas that persist across all levels.

  15. Low Levels of Energy Expenditure in Childhood Cancer Survivors: Implications for Obesity Prevention.

    PubMed

    Zhang, Fang Fang; Roberts, Susan B; Parsons, Susan K; Must, Aviva; Kelly, Michael J; Wong, William W; Saltzman, Edward

    2015-04-01

    Childhood cancer survivors are at an increased risk of obesity but causes for this elevated risk are uncertain. We evaluated total energy expenditure in childhood cancer survivors using the doubly labeled water method in a cross-sectional study of 17 survivors of pediatric leukemia or lymphoma (median age, 11.5 y). Mean total energy expenditure was 2073 kcal/d, which was nearly 500 kcal/d lower than estimated energy requirements with recommended levels of physical activity. This energy gap is likely to contribute to the risk of obesity in this population and future trials are needed to assess implications and potential treatment strategies.

  16. Relative atherogenicity and predictive value of non-high-density lipoprotein cholesterol for coronary heart disease.

    PubMed

    Miller, Michael; Ginsberg, Henry N; Schaefer, Ernst J

    2008-04-01

    Although low-density lipoprotein cholesterol (LDL-C) is a well-established atherogenic factor for coronary heart disease, it does not completely represent the risk associated with atherogenic lipoproteins in the presence of high triglyceride (TG) levels. Constituent lipoproteins constituting non-high-density lipoprotein cholesterol (non-HDL-C) include atherogenic TG-rich lipoproteins, cholesteryl ester-enriched remnants of TG-rich lipoproteins, and lipoprotein(a). Recent observational and intervention studies suggest that the predictive value of non-HDL-C for cardiovascular risk and mortality is better than low-density lipoprotein cholesterol and that non-HDL-C correlates highly with plasma apolipoprotein B levels. Currently, the National Cholesterol Education Program Adult Treatment Panel III guidelines identify non-HDL-C as a secondary target of therapy in patients with TG elevation (> or =200 mg/dl) after the attainment of LDL-C target goals. In patients with coronary heart disease or coronary heart disease risk equivalents, an optional non-HDL-C goal is <100 mg/dl. To achieve the non-HDL-C goal, statin therapy may be intensified or combined with ezetimibe, niacin, a fibrate, or omega-3 fatty acids. In conclusion, non-HDL-C remains an important target of therapy for patients with elevated TGs, although its widespread adoption has yet to gain a foothold among health care professionals treating patients with dyslipidemia. PMID:18359322

  17. First-Principles Approach to Energy Level Alignment at Aqueous Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark

    2015-03-01

    We have developed a first principles method to calculate the energy level alignment between semiconductor band edges and reference energy levels at aqueous interfaces. This alignment is fundamental to understand the electrochemical characteristics of any semiconductor electrode in general and the potential for photocatalytic activity in particular. For example, in the search for new photo-catalytic materials, viable candidates must demonstrate both efficient absorption of the solar spectrum and an appropriate alignment of the band edge levels in the semiconductor to the redox levels for the target reactions. In our approach, the interface-specific contribution to the electrostatic step across the interface is evaluated using density functional theory (DFT) based molecular dynamics to sample the physical interface structure and the corresponding change in the electrostatic potential at the interface. The reference electronic levels in the semiconductor and in the water are calculated using the GW approach, which naturally corrects for errors inherent in the use of Kohn-Sham energy eigenvalues to approximate the electronic excitation energies in each material. Taken together, our calculations provide the alignment of the semiconductor valence band edge to the centroid of the highest occupied 1b1 level in water. The known relationship of the 1b1 level to the normal hydrogen electrode completes the connection to electrochemical levels. We discuss specific results for GaN, ZnO, and TiO2. The effect of interface structural motifs, such as different degrees of water dissociation, and of dynamical characteristics, will be presented together with available experimental data. Work supported by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886.

  18. Developing Energy Literacy in US Middle-Level Students Using the Geospatial Curriculum Approach

    NASA Astrophysics Data System (ADS)

    Bodzin, Alec M.; Fu, Qiong; Peffer, Tamara E.; Kulo, Violet

    2013-06-01

    This quantitative study examined the effectiveness of a geospatial curriculum approach to promote energy literacy in an urban school district and examined factors that may account for energy content knowledge achievement. An energy literacy measure was administered to 1,044 eighth-grade students (ages 13-15) in an urban school district in Pennsylvania, USA. One group of students received instruction with a geospatial curriculum approach (geospatial technologies (GT)) and another group of students received 'business as usual' (BAU) curriculum instruction. For the GT students, findings revealed statistically significant gains from pretest to posttest (p < 0.001) on knowledge of energy resource acquisition, energy generation, storage and transport, and energy consumption and conservation. The GT students had year-end energy content knowledge scores significantly higher than those who learned with the BAU curriculum (p < 0.001; effect size being large). A multiple regression found that prior energy content knowledge was the only significant predictor to the year-end energy content knowledge achievement for the GT students (p < 0.001). The findings support that the implementation of a geospatial curriculum approach that employs learning activities that focus on the spatial nature of energy resources can improve the energy literacy of urban middle-level education students.

  19. Ab initio potential energy surface and vibration-rotation energy levels of silicon dicarbide, SiC2.

    PubMed

    Koput, Jacek

    2016-10-01

    The accurate ground-state potential energy surface of silicon dicarbide, SiC2 , has been determined from ab initio calculations using the coupled-cluster approach. Results obtained with the conventional and explicitly correlated coupled-cluster methods were compared. The core-electron correlation, higher-order valence-electron correlation, and scalar relativistic effects were taken into account. The potential energy barrier to the linear SiCC configuration was predicted to be 1782 cm(-1) . The vibration-rotation energy levels of the SiC2 , (29) SiC2 , (30) SiC2 , and SiC(13) C isotopologues were calculated using a variational method. The experimental vibration-rotation energy levels of the main isotopologue were reproduced to high accuracy. In particular, the experimental energy levels of the highly anharmonic vibrational ν3 mode of SiC2 were reproduced to within 6.7 cm(-1) , up to as high as the v3  = 16 state.

  20. Ab initio potential energy surface and vibration-rotation energy levels of silicon dicarbide, SiC2.

    PubMed

    Koput, Jacek

    2016-10-01

    The accurate ground-state potential energy surface of silicon dicarbide, SiC2 , has been determined from ab initio calculations using the coupled-cluster approach. Results obtained with the conventional and explicitly correlated coupled-cluster methods were compared. The core-electron correlation, higher-order valence-electron correlation, and scalar relativistic effects were taken into account. The potential energy barrier to the linear SiCC configuration was predicted to be 1782 cm(-1) . The vibration-rotation energy levels of the SiC2 , (29) SiC2 , (30) SiC2 , and SiC(13) C isotopologues were calculated using a variational method. The experimental vibration-rotation energy levels of the main isotopologue were reproduced to high accuracy. In particular, the experimental energy levels of the highly anharmonic vibrational ν3 mode of SiC2 were reproduced to within 6.7 cm(-1) , up to as high as the v3  = 16 state. PMID:27481562

  1. Quantifying Potential of Integrated Energy Systems with Varying Levels of Nationwide Deployment

    SciTech Connect

    Jalalzadeh-Azar, A.

    2002-11-01

    This study presents a parametric assessment of the energy-saving potential resulting from a nationwide deployment of DER/IES technologies for building applications. Three hypothetical IES scenarios are evaluated to demonstrate the sensitivity of the national energy consumption to the IES system configuration with respect to the buildings' electrical and thermal equipment compositions. A variable for implementation level of DER is incorporated to examine the impact of incremental transformation of the existing centralized energy resources to a fully decentralized model on the national primary energy consumption. To accommodate the continuing advancement of prime movers, a wide range of fuel-to-electricity conversion efficiency is considered for both centralized and decentralized power generation systems. The fact that the demands for electricity and thermal energy in buildings are not always congruent, and implementation of thermal energy storage technology is uncertain is acknowledged by incorporating a variable waste heat utilization index.

  2. Energy levels of one-dimensional systems satisfying the minimal length uncertainty relation

    NASA Astrophysics Data System (ADS)

    Bernardo, Reginald Christian S.; Esguerra, Jose Perico H.

    2016-10-01

    The standard approach to calculating the energy levels for quantum systems satisfying the minimal length uncertainty relation is to solve an eigenvalue problem involving a fourth- or higher-order differential equation in quasiposition space. It is shown that the problem can be reformulated so that the energy levels of these systems can be obtained by solving only a second-order quasiposition eigenvalue equation. Through this formulation the energy levels are calculated for the following potentials: particle in a box, harmonic oscillator, Pöschl-Teller well, Gaussian well, and double-Gaussian well. For the particle in a box, the second-order quasiposition eigenvalue equation is a second-order differential equation with constant coefficients. For the harmonic oscillator, Pöschl-Teller well, Gaussian well, and double-Gaussian well, a method that involves using Wronskians has been used to solve the second-order quasiposition eigenvalue equation. It is observed for all of these quantum systems that the introduction of a nonzero minimal length uncertainty induces a positive shift in the energy levels. It is shown that the calculation of energy levels in systems satisfying the minimal length uncertainty relation is not limited to a small number of problems like particle in a box and the harmonic oscillator but can be extended to a wider class of problems involving potentials such as the Pöschl-Teller and Gaussian wells.

  3. Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization

    NASA Astrophysics Data System (ADS)

    Subramani, Deepak N.; Lermusiaux, Pierre F. J.

    2016-04-01

    A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.

  4. Energy level realignment in weakly interacting donor-acceptor binary molecular networks.

    PubMed

    Zhong, Jian-Qiang; Qin, Xinming; Zhang, Jia-Lin; Kera, Satoshi; Ueno, Nobuo; Wee, Andrew Thye Shen; Yang, Jinlong; Chen, Wei

    2014-02-25

    Understanding the effect of intermolecular and molecule-substrate interactions on molecular electronic states is key to revealing the energy level alignment mechanism at organic-organic heterojunctions or organic-inorganic interfaces. In this paper, we investigate the energy level alignment mechanism in weakly interacting donor-acceptor binary molecular superstructures, comprising copper hexadecafluorophthalocyanine (F16CuPc) intermixed with copper phthalocyanine (CuPc), or manganese phthalocynine (MnPc) on graphite. The molecular electronic structures have been systematically studied by in situ ultraviolet photoelectron spectroscopy (UPS) and low-temperature scanning tunneling microscopy/spectroscopy (LT-STM/STS) experiments and corroborated by density functional theory (DFT) calculations. As demonstrated by the UPS and LT-STM/STS measurements, the observed unusual energy level realignment (i.e., a large downward shift in donor HOMO level and a corresponding small upward shift in acceptor HOMO level) in the CuPc-F16CuPc binary superstructures originates from the balance between intermolecular and molecule-substrate interactions. The enhanced intermolecular interactions through the hydrogen bonding between neighboring CuPc and F16CuPc can stabilize the binary superstructures and modify the local molecular electronic states. The obvious molecular energy level shift was explained by gap-state-mediated interfacial charge transfer. PMID:24433044

  5. Spectrum and energy levels of quadruply-ionized molybdenum (Mo V)

    NASA Astrophysics Data System (ADS)

    Reader, Joseph; Tauheed, Ahmad

    2015-07-01

    The spectrum of quadruply-ionized molybdenum Mo V was observed from 200 to 4700 Å with sliding spark discharges on 10.7 m normal- and grazing-incidence spectrographs. The existing analyses of this spectrum (Tauheed et al 1985 Phys. Scr. 31 369; Cabeza et al 1986 Phys. Scr. 34 223) were extended to include the 5s2, 5p2, 5s5d, 5s6s, 4d5f, and 4d5g configurations as well as the missing 3H6 level of 4d4f and about 75 levels of the core-excited configuration 4p54d3. The values of the 4d5d 1S0, 5s5p 1P1, and 4d6p 3P0 levels were revised. There are now about 900 lines classified as transitions between 66 even parity and 191 odd parity energy levels. Of these, about 600 lines and 130 levels are new. From the optimized energy level values, Ritz-type wavelengths were determined for about 380 lines, with uncertainties varying from 0.0003 to 0.002 Å. The observed configurations were theoretically interpreted by means of Hartree-Fock calculations and least-squares fits of the energy parameters to the observed levels. The fitted parameters were used to calculate oscillator strengths for all classified lines. A few unclassified lines and undesignated levels are also given. An improved value for the ionization energy was obtained by combining the observed energy of the 4d5g configuration with an ab initio calculation of its term value. The adopted value is 438 900 ± 150 cm-1 (54.417 ± 0.019 eV).

  6. Energy levels and radiative rates for transitions in Mg-like iron, cobalt and nickel

    SciTech Connect

    Aggarwal, K.M. . E-mail: k.aggarwal@qub.ac.uk; Tayal, Vikas; Gupta, G.P.; Keenan, F.P.

    2007-09-15

    Energy levels and radiative rates for electric dipole (E1) transitions among the lowest 141 levels of the (1s{sup 2}2s{sup 2}2p{sup 6}) 3l{sup 2}, 3l3l', and 3l4l configurations of Fe XV, Co XVI, and Ni XVII are calculated through the CIV3 code using extensive configuration-interaction (CI) wavefunctions. The important relativistic effects are included through the Breit-Pauli approximation. In order to keep the calculated energy splittings close to the experimental values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. The energy levels, including their orderings, are in excellent agreement with the available experimental results for all three ions. However, experimental energies are only available for a few levels. Since mixing among some levels is found to be very strong, it becomes difficult to identify these uniquely. Additionally, some discrepancies with other theoretical work (particularly for Ni XVII) are very large. Therefore, in order to confirm the level ordering as well as to assess the accuracy of energy levels and radiative rates, we have performed two other independent calculations using the GRASP and FAC codes. These codes are fully relativistic, but the CI in the calculations is limited to the basic (minimum) configurations only. This enables us to assess the importance of including elaborate CI for moderately charged ions. Additionally, we report results for electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions, and list lifetimes for all levels. Comparisons are made with other available experimental and theoretical results, and the accuracy of the present results is assessed.

  7. The analysis and kinetic energy balance of an upper-level wind maximum during intense convection

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Jedlovec, G. J.

    1982-01-01

    The purpose of this paper is to analyze the formation and maintenance of the upper-level wind maximum which formed between 1800 and 2100 GMT, April 10, 1979, during the AVE-SESAME I period, when intense storms and tornadoes were experienced (the Red River Valley tornado outbreak). Radiosonde stations participating in AVE-SESAME I are plotted (centered on Oklahoma). National Meteorological Center radar summaries near the times of maximum convective activity are mapped, and height and isotach plots are given, where the formation of an upper-level wind maximum over Oklahoma is the most significant feature at 300 mb. The energy balance of the storm region is seen to change dramatically as the wind maximum forms. During much of its lifetime, the upper-level wind maximum is maintained by ageostrophic flow that produces cross-contour generation of kinetic energy and by the upward transport of midtropospheric energy. Two possible mechanisms for the ageostrophic flow are considered.

  8. Controlling energy level offsets in organic/organic heterostructures using intramolecular polar bonds

    NASA Astrophysics Data System (ADS)

    Duhm, Steffen; Salzmann, Ingo; Heimel, Georg; Oehzelt, Martin; Haase, Anja; Johnson, Robert L.; Rabe, Jürgen P.; Koch, Norbert

    2009-01-01

    The impact of intramolecular polar bonds (IPBs) on the energy level alignment in layered systems of rodlike conjugated molecules standing on the substrate was investigated for pentacene (PEN) and perfluoropentacene (PFP) on SiO2 using ultraviolet photoelectron spectroscopy. A remarkably large energy offset of 1.75 eV was found between the highest occupied molecular orbital (HOMO) levels of PEN and PFP caused by IPBs at the surface of standing PFP layers. This large HOMO-level offset results in a narrow intermolecular energy gap of approximately 0.4 eV at the interface between PEN and PFP layers. However, the absence of significant spatial overlap of PEN and PFP electron wave functions across the layers suppresses interlayer optical transitions.

  9. Assessment of Energy Intake and Energy Expenditure of Male Adolescent Academy-Level Soccer Players during a Competitive Week.

    PubMed

    Briggs, Marc A; Cockburn, Emma; Rumbold, Penny L S; Rae, Glen; Stevenson, Emma J; Russell, Mark

    2015-10-02

    This study investigated the energy intake and expenditure of professional adolescent academy-level soccer players during a competitive week. Over a seven day period that included four training days, two rest days and a match day, energy intake (self-reported weighed food diary and 24-h recall) and expenditure (tri-axial accelerometry) were recorded in 10 male players from a professional English Premier League club. The mean macronutrient composition of the dietary intake was 318 ± 24 g·day(-1) (5.6 ± 0.4 g·kg(-1) BM) carbohydrate, 86 ± 10 g·day(-1) (1.5 ± 0.2 g·kg(-1) BM) protein and 70 ± 7 g·day(-1) (1.2 ± 0.1 g·kg(-1) BM) fats, representing 55% ± 3%, 16% ± 1%, and 29% ± 2% of mean daily energy intake respectively. A mean daily energy deficit of -1302 ± 1662 kJ (p = 0.035) was observed between energy intake (9395 ± 1344 kJ) and energy expenditure (10679 ± 1026 kJ). Match days (-2278 ± 2307 kJ, p = 0.012) and heavy training days (-2114 ± 2257 kJ, p = 0.016) elicited the greatest deficits between intake and expenditure. In conclusion, the mean daily energy intake of professional adolescent academy-level soccer players was lower than the energy expended during a competitive week. The magnitudes of these deficits were greatest on match and heavy training days. These findings may have both short and long term implications on the performance and physical development of adolescent soccer players.

  10. Assessment of Energy Intake and Energy Expenditure of Male Adolescent Academy-Level Soccer Players during a Competitive Week

    PubMed Central

    Briggs, Marc A.; Cockburn, Emma; Rumbold, Penny L. S.; Rae, Glen; Stevenson, Emma J.; Russell, Mark

    2015-01-01

    This study investigated the energy intake and expenditure of professional adolescent academy-level soccer players during a competitive week. Over a seven day period that included four training days, two rest days and a match day, energy intake (self-reported weighed food diary and 24-h recall) and expenditure (tri-axial accelerometry) were recorded in 10 male players from a professional English Premier League club. The mean macronutrient composition of the dietary intake was 318 ± 24 g·day−1 (5.6 ± 0.4 g·kg−1 BM) carbohydrate, 86 ± 10 g·day−1 (1.5 ± 0.2 g·kg−1 BM) protein and 70 ± 7 g·day−1 (1.2 ± 0.1 g·kg−1 BM) fats, representing 55% ± 3%, 16% ± 1%, and 29% ± 2% of mean daily energy intake respectively. A mean daily energy deficit of −1302 ± 1662 kJ (p = 0.035) was observed between energy intake (9395 ± 1344 kJ) and energy expenditure (10679 ± 1026 kJ). Match days (−2278 ± 2307 kJ, p = 0.012) and heavy training days (−2114 ± 2257 kJ, p = 0.016) elicited the greatest deficits between intake and expenditure. In conclusion, the mean daily energy intake of professional adolescent academy-level soccer players was lower than the energy expended during a competitive week. The magnitudes of these deficits were greatest on match and heavy training days. These findings may have both short and long term implications on the performance and physical development of adolescent soccer players. PMID:26445059

  11. Ionization energies of W I-LXXIV and critical compilation of spectra and energy levels of Ga I-XXX

    NASA Astrophysics Data System (ADS)

    Kramida, Alexander; Reader, Joseph

    2006-05-01

    Both tungsten and gallium are important materials for fusion energy research. In this work, a semi-empirical method is used to determine ionization energies (IE) of multiply charged W ions [A.E. Kramida, J. Reader, Ionization Energies of Tungsten Ions: W^2+ through W^71+, At. Data Nucl. Data Tables, 2006, in press]. The method is based on Hartree-Fock calculations of electron binding energies with empirical scale factors. Relative uncertainties vary from 1.7 % for W III^ to 0.015 % for W LXXII. Combined with previously known experimental or theoretical IE values for W I-II and LXXIII-LXXIV, these new semiempirical results allow us to build a complete table of IEs of tungsten in all stages of ionization. For gallium, all available experimental data on wavelengths and energy levels are critically compiled and evaluated [T. Shirai, J. Reader, A.E. Kramida, J. Sugar, Spectral Data for Gallium: Ga I through Ga XXXI, J. Phys. Chem. Ref. Data, 2006, in press]. Such data exist for spectra Ga I-VII, XIII-XXVI, and XXX. For Li-like Ga XXIX through H-like Ga XXXI, theoretical data on energy levels and line wavelengths are compiled. For Ga I-III, XV-XX, XXIII-XXVI, and XXX, radiative transition probabilities are included where available. The ground state configuration and term and a value of IE are included for each ion. This work was supported in part by the Office of Fusion Energy Sciences of the U. S. Department of Energy.

  12. Assessment of Energy Intake and Energy Expenditure of Male Adolescent Academy-Level Soccer Players during a Competitive Week.

    PubMed

    Briggs, Marc A; Cockburn, Emma; Rumbold, Penny L S; Rae, Glen; Stevenson, Emma J; Russell, Mark

    2015-10-01

    This study investigated the energy intake and expenditure of professional adolescent academy-level soccer players during a competitive week. Over a seven day period that included four training days, two rest days and a match day, energy intake (self-reported weighed food diary and 24-h recall) and expenditure (tri-axial accelerometry) were recorded in 10 male players from a professional English Premier League club. The mean macronutrient composition of the dietary intake was 318 ± 24 g·day(-1) (5.6 ± 0.4 g·kg(-1) BM) carbohydrate, 86 ± 10 g·day(-1) (1.5 ± 0.2 g·kg(-1) BM) protein and 70 ± 7 g·day(-1) (1.2 ± 0.1 g·kg(-1) BM) fats, representing 55% ± 3%, 16% ± 1%, and 29% ± 2% of mean daily energy intake respectively. A mean daily energy deficit of -1302 ± 1662 kJ (p = 0.035) was observed between energy intake (9395 ± 1344 kJ) and energy expenditure (10679 ± 1026 kJ). Match days (-2278 ± 2307 kJ, p = 0.012) and heavy training days (-2114 ± 2257 kJ, p = 0.016) elicited the greatest deficits between intake and expenditure. In conclusion, the mean daily energy intake of professional adolescent academy-level soccer players was lower than the energy expended during a competitive week. The magnitudes of these deficits were greatest on match and heavy training days. These findings may have both short and long term implications on the performance and physical development of adolescent soccer players. PMID:26445059

  13. Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level.

    PubMed

    Olsson, Martin A; Söderhjelm, Pär; Ryde, Ulf

    2016-06-30

    In this article, the convergence of quantum mechanical (QM) free-energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa-acid deep-cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158-224 atoms). We use single-step exponential averaging (ssEA) and the non-Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi-empirical PM6-DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free-energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  14. Method and system for in vivo measurement of bone tissue using a two level energy source

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.; Judy, P. F. (Inventor)

    1976-01-01

    Methods and apparatus are provided for radiologically determining the bone mineral content of living human bone tissue independently of the concurrent presence of adipose and other soft tissues. A target section of the body of the subject is irradiated with a beam of penetrative radiations of preselected energy to determine the attenuation of such beam with respect to the intensity of each of two radiations of different predetermined energy levels. The resulting measurements are then employed to determine bone mineral content.

  15. Effect of a metallic gate on the energy levels of a shallow donor

    SciTech Connect

    Slachmuylders, A. F.; Partoens, B.; Peeters, F. M.; Magnus, W.

    2008-02-25

    We have investigated the effect of a metallic gate on the bound states of a shallow donor located near the gate. We calculate the energy spectrum as a function of the distance between the metallic gate and the donor and find an anticrossing behavior in the energy levels for certain distances. We show how a transverse electric field can tune the average position of the electron with respect to the metallic gate and the impurity.

  16. Serum leptin and insulin levels in lactating protein-restricted rats: implications for energy balance.

    PubMed

    Ferreira, C L P; Macêdo, G M; Latorraca, M Q; Arantes, V C; Veloso, R V; Carneiro, E M; Boschero, A C; Nascimento, C M O; Gaíva, M H

    2007-01-01

    The present study analysed the effect of protein restriction on serum insulin and leptin levels and their relationship with energy balance during lactation. Four groups of rats received isocaloric diets containing 170 g protein/kg or 60 g protein/kg from pregnancy until the 14th day of lactation: control non-lactating, control lactating (both fed a control diet), low-protein non-lactating and low-protein lactating. Energy intake, body composition, energy balance, serum insulin and leptin concentrations and the relationship between these hormones and several factors related to obesity were analysed. Low-protein-intake lactating rats exhibited hypoinsulinaemia, hyperleptinaemia, hypophagia and decreased energy expenditure compared with control lactating rats. The protein level in the carcasses was lower in the low-protein lactating group than in the control lactating group, resulting in a higher fat content in the first group compared with the latter. Body fat correlated inversely with serum insulin and positively with serum leptin level. There was a significant negative correlation between serum leptin and energy intake, and a positive relationship between energy intake and serum insulin level in lactating rats and in the combined data from both groups. Energy expenditure was correlated positively with serum insulin and negatively with serum leptin in lactating rats and when data from control non-lactating and lactating rats were pooled. Lactating rats submitted to protein restriction, compared with lactating control rats, showed that maternal reserves were preserved owing to less severe negative energy balance. This metabolic adaptation was obtained, at least in part, by hypoinsulinaemia that resulted in increased insulin sensitivity favouring enhanced fat deposition, hyperleptinaemia and hypophagia. PMID:17217557

  17. Intrinsic deep hole trap levels in Cu2O with self-consistent repulsive Coulomb energy

    NASA Astrophysics Data System (ADS)

    Huang, Bolong

    2016-03-01

    The large error of the DFT+U method on full-filled shell metal oxides is due to the residue of self-energy from the localized d orbitals of cations and p orbitals of the anions. U parameters are selfconsistently found to achieve the analytical self-energy cancellation. The improved band structures based on relaxed lattices of Cu2O are shown based on minimization of self-energy error. The experimentally reported intrinsic p-type trap levels are contributed by both Cu-vacancy and the O-interstitial defects in Cu2O. The latter defect has the lowest formation energy but contributes a deep hole trap level while the Cuvacancy has higher energy cost but acting as a shallow acceptor. Both present single-particle levels spread over nearby the valence band edge, consistent to the trend of defects transition levels. By this calculation approach, we also elucidated the entanglement of strong p-d orbital coupling to unravel the screened Coulomb potential of fully filled shells.

  18. Energy levels, radiative rates, and lifetimes for transitions in W LVIII

    SciTech Connect

    Aggarwal, Kanti M. Keenan, Francis P.

    2014-11-15

    Energy levels and radiative rates are reported for transitions in Cl-like W LVIII. Configuration interaction (CI) has been included among 44 configurations (generating 4978 levels) over a wide energy range up to 363 Ryd, and the general-purpose relativistic atomic structure package (GRASP) adopted for the calculations. Since no other results of comparable complexity are available, calculations have also been performed with the flexible atomic code (FAC), which help in assessing the accuracy of our results. Energies are listed for the lowest 400 levels (with energies up to ∼98 Ryd), which mainly belong to the 3s{sup 2}3p{sup 5}, 3s3p{sup 6}, 3s{sup 2}3p{sup 4}3d, 3s{sup 2}3p{sup 3}3d{sup 2}, 3s3p{sup 4}3d{sup 2}, 3s{sup 2}3p{sup 2}3d{sup 3}, and 3p{sup 6}3d configurations, and radiative rates are provided for four types of transitions, i.e. E1, E2, M1, and M2. Our energy levels are assessed to be accurate to better than 0.5%, whereas radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

  19. Energy levels and multipole transition properties of C4+ ion in Debye plasmas

    NASA Astrophysics Data System (ADS)

    Xie, L. Y.; Wang, J. G.; Janev, R. K.; Qu, Y. Z.; Dong, C. Z.

    2012-05-01

    Plasma screening effects on the energy structure and radiative transition properties of helium-like C4+ ions embedded in Debye plasmas are investigated by using the multi-configuration Dirac-Hartree-Fock method incorporating the Debye-Hückel potential for both the electron-nucleus and electron-electron interactions. Seventeen fine-structure energy levels of the low-lying 1 s 2, 1 s2 l( l = s,p) and 1 s3 l'( l' = s,p,d) configurations, as well as the electric-dipole ( E1), magnetic-dipole ( M1) and magnetic-quadrupole ( M2) transition probabilities and oscillator strengths between these levels have been calculated over a wide range of screening parameters. It is found that the plasma screening leads to a decrease of excitation energies and alters the energy levels remarkably. For Δn ≠ 0 transitions, the spontaneous decay spectra are red-shifted and their oscillator strengths and transition probabilities decrease with increasing the interaction screening, while those for the Δn = 0 transitions exhibit opposite patterns. The influence of electron-nucleus and electron-electron screened interactions on the changes of energy levels and transition properties are analyzed. Comparison is made of present results with other data available in the literature for this ion.

  20. Energy level modification in lead sulfide quantum dot photovoltaics through ligand exchange

    NASA Astrophysics Data System (ADS)

    Brown, Patrick; Kim, Donghun; Lunt, Richard; Bawendi, Moungi; Grossman, Jeffrey; Bulovic, Vladimir

    2014-03-01

    The electronic properties of lead sulfide colloidal quantum dots (PbS QDs) can be controlled through modification of QD size and surface chemistry. Novel surface passivation techniques involving organic or inorganic ligands have contributed to a rapid rise in the efficiency of QD photovoltaics, yet the influence of ligand-induced surface dipoles on PbS QD energy levels and photovoltaic device operation is not yet completely understood. Here, the valence band energies of PbS QDs treated with twelve different ligands are measured using ultraviolet photoelectron spectroscopy (UPS), and a valence band shift of up to 0.75 eV is observed between different ligand treatments. Atomistic simulations of ligand binding to pristine PbS(100) and PbS(111) slabs qualitatively reproduce the measured energy level shifts. 1,2-benzenedithiol and 1,3-benzendithiol treatments, which result in valence band energies differing by ~ 0.2 eV, are employed for PbS QDs in three different solar cell architectures, and changes in device performance are correlated with the measured energy level shift. These findings complement the known bandgap-tunability of colloidal QDs and highlight an additional level of control over the electronic properties of PbS QDs.

  1. Energy Use and Power Levels in New Monitors and Personal Computers

    SciTech Connect

    Roberson, Judy A.; Homan, Gregory K.; Mahajan, Akshay; Nordman, Bruce; Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla; Koomey, Jonathan G.

    2002-07-23

    Our research was conducted in support of the EPA ENERGY STAR Office Equipment program, whose goal is to reduce the amount of electricity consumed by office equipment in the U.S. The most energy-efficient models in each office equipment category are eligible for the ENERGY STAR label, which consumers can use to identify and select efficient products. As the efficiency of each category improves over time, the ENERGY STAR criteria need to be revised accordingly. The purpose of this study was to provide reliable data on the energy consumption of the newest personal computers and monitors that the EPA can use to evaluate revisions to current ENERGY STAR criteria as well as to improve the accuracy of ENERGY STAR program savings estimates. We report the results of measuring the power consumption and power management capabilities of a sample of new monitors and computers. These results will be used to improve estimates of program energy savings and carbon emission reductions, and to inform rev isions of the ENERGY STAR criteria for these products. Our sample consists of 35 monitors and 26 computers manufactured between July 2000 and October 2001; it includes cathode ray tube (CRT) and liquid crystal display (LCD) monitors, Macintosh and Intel-architecture computers, desktop and laptop computers, and integrated computer systems, in which power consumption of the computer and monitor cannot be measured separately. For each machine we measured power consumption when off, on, and in each low-power level. We identify trends in and opportunities to reduce power consumption in new personal computers and monitors. Our results include a trend among monitor manufacturers to provide a single very low low-power level, well below the current ENERGY STAR criteria for sleep power consumption. These very low sleep power results mean that energy consumed when monitors are off or in active use has become more important in terms of contribution to the overall unit energy consumption (UEC

  2. Control of Electronic Symmetry and Rectification through Energy Level Variations in Bilayer Molecular Junctions.

    PubMed

    Bayat, Akhtar; Lacroix, Jean-Christophe; McCreery, Richard L

    2016-09-21

    Two layers of molecular oligomers were deposited on flat carbon electrode surfaces by electrochemical reduction of diazonium reagents, then a top contact applied to complete a solid-state molecular junction containing a molecular bilayer. The structures and energy levels of the molecular layers included donor molecules with relatively high energy occupied orbitals and acceptors with low energy unoccupied orbitals. When the energy levels of the two molecular layers were similar, the device had electronic characteristics similar to a thick layer of a single molecule, but if the energy levels differed, the current voltage behavior exhibited pronounced rectification. Higher current was observed when the acceptor molecule was biased negatively in eight different bilayer combinations, and the direction of rectification was reversed if the molecular layers were also reversed. Rectification persisted at very low temperature (7 K), and was activationless between 7 and 100 K. The results are a clear example of a "molecular signature" in which electronic behavior is directly affected by molecular structure and orbital energies. The rectification mechanism is discussed, and may provide a basis for rational design of electronic properties by variation of molecular structure.

  3. Control of Electronic Symmetry and Rectification through Energy Level Variations in Bilayer Molecular Junctions.

    PubMed

    Bayat, Akhtar; Lacroix, Jean-Christophe; McCreery, Richard L

    2016-09-21

    Two layers of molecular oligomers were deposited on flat carbon electrode surfaces by electrochemical reduction of diazonium reagents, then a top contact applied to complete a solid-state molecular junction containing a molecular bilayer. The structures and energy levels of the molecular layers included donor molecules with relatively high energy occupied orbitals and acceptors with low energy unoccupied orbitals. When the energy levels of the two molecular layers were similar, the device had electronic characteristics similar to a thick layer of a single molecule, but if the energy levels differed, the current voltage behavior exhibited pronounced rectification. Higher current was observed when the acceptor molecule was biased negatively in eight different bilayer combinations, and the direction of rectification was reversed if the molecular layers were also reversed. Rectification persisted at very low temperature (7 K), and was activationless between 7 and 100 K. The results are a clear example of a "molecular signature" in which electronic behavior is directly affected by molecular structure and orbital energies. The rectification mechanism is discussed, and may provide a basis for rational design of electronic properties by variation of molecular structure. PMID:27563739

  4. Level Density of COBALT-57 in the Energy Region 1 Mev to 14 Mev

    NASA Astrophysics Data System (ADS)

    Mishra, Vivek

    The level density of ^{57 }Co is studied in the energy region of 1-14 MeV using three experimental techniques. Levels are counted in the resolved region, evaporation spectra are measured in the resolved to continuum region, and the coherence width is measured in the region of level overlap. Use of Hauser-Feshbach fits to the evaporation cross sections requires level densities of the residual nucleus. A two -parameter based Fermi gas form is used for the calculation of level density as a function of the nuclear excitation energy. This procedure enables level density calculation beyond the energy region in which the two fixed parameters provide the best fits to the data. A comparison is made between the level density obtained from the above described methods and the predictions of the microscopic model in an energy range of 1-20 MeV. This model utilizes a BCS pairing Hamiltonian and specific sets of single particle states and calculates numerical values of the level density. Comparisons are also made with level density of ^{57 }Co obtained in various other studies. Both the resolved level studies and the fits to the evaporation spectra were conducted using the ^{56}Fe(d,n)^{57 }Co and ^{57}Fe(p,n) ^{57}Co reactions. Standard neutron time-of-flight techniques including pulse shape discrimination for elimination of gamma -rays were employed. An energy resolution as good as 6 keV at 1-1.5 MeV neutron energy was obtained for high resolution measurements. For Ericson fluctuation measurements, the excitation functions corresponding to the ground state and the first two excited states of the residual nucleus in the ^{56}Fe(p,n) ^{56}Co reaction were obtained for lab angles between 0^circ and 150^circ. The ^{56}Fe(d,n) ^{57}Co reaction proves to be very selective in populating resolved states and includes substantial contributions from mechanisms other than the compound nuclear. The ^{57 }Fe(p,n)^{57}Co reaction populated 14 previously unknown levels. The fits to the

  5. The influence of interfacial energies and gravitational levels on the directionally solidified structures in hypermonotectic alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. B.; Curreri, P. A.; Sandlin, A. C.

    1988-01-01

    Various Cu-Pb-Al alloys were directionally solidified under 1-g conditions and alternating high-g/low-g conditions (achieved using NSAS's KC-135 aircraft) as a means of studying the influence of interfacial energies and gravitational levels on the resulting microstructures. Directional solidification of low Al content alloys was found to result in samples with coarser more irregular microstructures than in alloys with high Al contents under all the gravity conditions considered. Structures are correlated with interfacial energies, growth rates, and gravitational levels.

  6. Low Levels of Energy Expenditure in Childhood Cancer Survivors: Implications for Obesity Prevention

    PubMed Central

    Zhang, Fang Fang; Roberts, Susan B.; Parsons, Susan K.; Must, Aviva; Kelly, Michael J.; Wong, William W.; Saltzman, Edward

    2014-01-01

    Childhood cancer survivors are at an increased risk of obesity but causes for this elevated risk are uncertain. We evaluated total energy expenditure (TEE) in childhood cancer survivors using the doubly labeled water method in a cross-sectional study of 17 survivors of pediatric leukemia or lymphoma (median age 11.5 years). Mean TEE was 2,073 kcal/day, which was nearly 500 kcal/day lower than estimated energy requirements with recommended levels of physical activity. This energy gap is likely to contribute to the risk of obesity in this population and future trials are needed to assess implications and potential treatment strategies. PMID:25197775

  7. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

    NASA Astrophysics Data System (ADS)

    Delahaye, Thibault; Nikitin, Andrei; Rey, Michaël; Szalay, Péter G.; Tyuterev, Vladimir G.

    2014-09-01

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C2H4 obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C2H4 molecule was obtained with a RMS(Obs.-Calc.) deviation of 2.7 cm-1 for fundamental bands centers and 5.9 cm-1 for vibrational bands up to 7800 cm-1. Large scale vibrational and rotational calculations for 12C2H4, 13C2H4, and 12C2D4 isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm-1 are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of 13C2H4 and 12C2D4 and rovibrational levels of 12C2H4.

  8. Energy level alignment of single-wall carbon nanotubes on metal surfaces

    NASA Astrophysics Data System (ADS)

    Clair, Sylvain; Kim, Yousoo; Kawai, Maki

    2011-06-01

    We studied the electronic configuration of single-wall carbon nanotubes adsorbed on well-defined Au(111) and Cu(111) surfaces. We found opposite behaviors for their energy-level alignment with metal: nanotubes are p-doped on Au(111) and n-doped on Cu(111). The doping level is not uniquely defined for a particular metal surface but rather exhibits a distribution depending on several uncontrolled factors such as nanotube geometry and adsorption configuration.

  9. Model for describing non-equilibrium helium plasma energy level population

    NASA Astrophysics Data System (ADS)

    Kavyrshin, D. I.; Chinnov, V. F.; Ageev, A. G.

    2015-11-01

    A new method for calculating the population of excited levels of helium atoms and ions is suggested. The method is based on direct solution of a system of balance equations for all energy levels for which it was possible to obtain process speed constants. The equations include terms for the processes of particle loss and income by excitation and deexcitation, ionization and recombination as well as losses due to diffusion and radiation. The challenge of solution of such large system is also discussed.

  10. Energy level alignment at hybridized organic-metal interfaces from a GW projection approach

    NASA Astrophysics Data System (ADS)

    Chen, Yifeng; Tamblyn, Isaac; Quek, Su Ying

    Energy level alignments at organic-metal interfaces are of profound importance in numerous (opto)electronic applications. Standard density functional theory (DFT) calculations generally give incorrect energy level alignments and missing long-range polarization effects. Previous efforts to address this problem using the many-electron GW method have focused on physisorbed systems where hybridization effects are insignificant. Here, we use state-of-the-art GW methods to predict the level alignment at the amine-Au interface, where molecular levels do hybridize with metallic states. This non-trivial hybridization implies that DFT result is a poor approximation to the quasiparticle states. However, we find that the self-energy operator is approximately diagonal in the molecular basis, allowing us to use a projection approach to predict the level alignments. Our results indicate that the metallic substrate reduces the HOMO-LUMO gap by 3.5 4.0 eV, depending on the molecular coverage/presence of Au adatoms. Our GW results are further compared with those of a simple image charge model that describes the level alignment in physisorbed systems. Syq and YC acknowledge Grant NRF-NRFF2013-07 and the medium-sized centre program from the National Research Foundation, Singapore.

  11. Energy Related Technology Programs at the Non-Baccalaureate Postsecondary Level.

    ERIC Educational Resources Information Center

    Brooking, Walter J.

    Guidelines are presented for institution administrators considering the initiation of programs to train energy-related technicians at the associate degree level. Two essential preliminary steps are outlined: Acquiring and analyzing all available information about the proposed field including national legislation and surveying the probable need for…

  12. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Utilities expense level: Incentives for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development REGULATIONS RELATING TO HOUSING AND URBAN DEVELOPMENT (CONTINUED) OFFICE OF ASSISTANT SECRETARY FOR PUBLIC...

  13. Exploring Learners' Conceptual Resources: Singapore a Level Students' Explanations in the Topic of Ionisation Energy

    ERIC Educational Resources Information Center

    Taber, Keith S.; Tan, Kim Chwee Daniel

    2007-01-01

    This paper describes findings from a study to explore Singapore A-level (Grades 11 and 12, 16-19 yr old) students' understanding of ionisation energy, an abstract and complex topic that is featured in school chemistry courses. Previous research had reported that students in the United Kingdom commonly use alternative notions based on the perceived…

  14. Energy Levels in Helium and Neon Atoms by an Electron-Impact Method.

    ERIC Educational Resources Information Center

    Taylor, N.; And Others

    1981-01-01

    Electronic energy levels in noble gas atoms may be determined with a simple teaching apparatus incorporating a resonance potentials tube in which the electron beam intensity is held constant. The resulting spectra are little inferior to those obtained by more elaborate electron-impact methods and complement optical emission spectra. (Author/SK)

  15. Peculiarities of collisional excitation transfer with excited screened energy levels of atoms

    SciTech Connect

    Gerasimov, V. A.; Gerasimov, V. V.; Pavlinskiy, A. V.

    2007-09-15

    We report an experimental discovery of deviations from the known regularities in collisional excitation transfer processes for metal atoms. The collisional excitation transfer with excited screened energy levels of thulium and dysprosium atoms is studied. The selecting role of the screening 6s shell in collisional excitation transfer is shown.

  16. Energies and Electric Dipole Transitions for Low-Lying Levels of Protactinium IV and Uranium V

    NASA Astrophysics Data System (ADS)

    Ürer, Güldem; Özdemir, Leyla

    2012-02-01

    We have reported a relativistic multiconfiguration Dirac-Fock (MCDF) study on low-lying level structures of protactinium IV (Z =91) and uranium V (Z =92) ions. Excitation energies and electric dipole (E1) transition parameters (wavelengths, oscillator strengths, and transition rates) for these low-lying levels have been given. We have also investigated the influence of the transverse Breit and quantum electrodynamic (QED) contributions besides correlation effects on the level structure. A comparison has been made with a few available data for these ions in the literature.

  17. Variational Calculations of Ro-Vibrational Energy Levels and Transition Intensities for Tetratomic Molecules

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    A description is given of an algorithm for computing ro-vibrational energy levels for tetratomic molecules. The expressions required for evaluating transition intensities are also given. The variational principle is used to determine the energy levels and the kinetic energy operator is simple and evaluated exactly. The computational procedure is split up into the determination of one dimensional radial basis functions, the computation of a contracted rotational-bending basis, followed by a final variational step coupling all degrees of freedom. An angular basis is proposed whereby the rotational-bending contraction takes place in three steps. Angular matrix elements of the potential are evaluated by expansion in terms of a suitable basis and the angular integrals are given in a factorized form which simplifies their evaluation. The basis functions in the final variational step have the full permutation symmetries of the identical particles. Sample results are given for HCCH and BH3.

  18. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    DOE PAGESBeta

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b₁ energy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and themore » dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.« less

  19. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    SciTech Connect

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1benergy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.

  20. Determination of energy level alignment at metal/molecule interfaces by in-device electrical spectroscopy.

    PubMed

    Gobbi, M; Pietrobon, L; Atxabal, A; Bedoya-Pinto, A; Sun, X; Golmar, F; Llopis, R; Casanova, F; Hueso, L E

    2014-01-01

    The energetics of metal/molecular semiconductor interfaces plays a fundamental role in organic electronics, determining the performance of very diverse devices. So far, information about the energy level alignment has been most commonly gained by spectroscopy techniques that typically require experimental conditions far from the real device operation. Here we demonstrate that a simple three-terminal device allows the acquisition of spectroscopic information about the metal/molecule energy alignment in real operative condition. As a proof of principle, we employ the proposed device to measure the energy barrier height between different clean metals and C60 molecules and we recover typical results from photoemission spectroscopy. The device is designed to inject a hot electron current directly into the molecular level devoted to charge transport, disentangling the contributions of both the interface and the bulk to the device total resistance, with important implications for spintronics and low-temperature physics.

  1. Energy levels and radiative data for Kr-like W38+ from MCDHF and RMBPT calculations

    NASA Astrophysics Data System (ADS)

    Guo, XueLing; Grumer, Jon; Brage, Tomas; Si, Ran; Chen, ChongYang; Jönsson, Per; Wang, Kai; Yan, Jun; Hutton, Roger; Zou, YaMing

    2016-07-01

    Energies, transition rates, line strengths and lifetimes have been computed for all levels of the 4p 6 and 4p 54d configurations of W38+ by using the multi-configuration Dirac-Hartree-Fock (MCDHF) method as well as relativistic many-body perturbation theory. We investigate systematically correlation, relativistic and quantum electro-dynamical (QED) effects of different properties, including excitation energies and transition rates. We demonstrate that it is important to include the core-valence correlation of rather deep subshells (including 3d and 3p) to reach close to spectroscopic accuracy for the transition energies. We also show that high-multipole transitions (E3, M2) are important for the lifetime of some metastable levels of 4p 54d ({}3{F}3,{}1{D}2,{}3{D}2). The present results are in good agreement with experiments and of considerably higher accuracy than those achieved in previous theoretical works.

  2. Determination of energy level alignment at metal/molecule interfaces by in-device electrical spectroscopy.

    PubMed

    Gobbi, M; Pietrobon, L; Atxabal, A; Bedoya-Pinto, A; Sun, X; Golmar, F; Llopis, R; Casanova, F; Hueso, L E

    2014-01-01

    The energetics of metal/molecular semiconductor interfaces plays a fundamental role in organic electronics, determining the performance of very diverse devices. So far, information about the energy level alignment has been most commonly gained by spectroscopy techniques that typically require experimental conditions far from the real device operation. Here we demonstrate that a simple three-terminal device allows the acquisition of spectroscopic information about the metal/molecule energy alignment in real operative condition. As a proof of principle, we employ the proposed device to measure the energy barrier height between different clean metals and C60 molecules and we recover typical results from photoemission spectroscopy. The device is designed to inject a hot electron current directly into the molecular level devoted to charge transport, disentangling the contributions of both the interface and the bulk to the device total resistance, with important implications for spintronics and low-temperature physics. PMID:24946715

  3. Calculation of rotation-vibration energy levels of the ammonia molecule based on an ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Polyansky, Oleg L.; Ovsyannikov, Roman I.; Kyuberis, Aleksandra A.; Lodi, Lorenzo; Tennyson, Jonathan; Yachmenev, Andrey; Yurchenko, Sergei N.; Zobov, Nikolai F.

    2016-09-01

    An ab initio potential energy surface (PES) for gas-phase ammonia NH3 has been computed using the methodology pioneered for water (Polyansky et al., 2013). Multireference configuration interaction calculations are performed at about 50 000 points using the aug-cc-pCVQZ and aug-cc-pCV5Z basis sets and basis set extrapolation. Relativistic and adiabatic surfaces are also computed. The points are fitted to a suitable analytical form, producing the most accurate ab initio PES for this molecule available. The rotation-vibration energy levels are computed using nuclear motion program TROVE in both linearised and curvilinear coordinates. Better convergence is obtained using curvilinear coordinates. Our results are used to assign the visible spectrum of 14NH3 recorded by Coy and Lehmann (1986). Rotation-vibration energy levels for the isotopologues NH2D, NHD2, ND3 and 15NH3 are also given. An ab initio value for the dissociation energy D0 of 14NH3 is also presented.

  4. On-Site Renewable Energy and Green Buildings: A System-Level Analysis.

    PubMed

    Al-Ghamdi, Sami G; Bilec, Melissa M

    2016-05-01

    Adopting a green building rating system (GBRSs) that strongly considers use of renewable energy can have important environmental consequences, particularly in developing countries. In this paper, we studied on-site renewable energy and GBRSs at the system level to explore potential benefits and challenges. While we have focused on GBRSs, the findings can offer additional insight for renewable incentives across sectors. An energy model was built for 25 sites to compute the potential solar and wind power production on-site and available within the building footprint and regional climate. A life-cycle approach and cost analysis were then completed to analyze the environmental and economic impacts. Environmental impacts of renewable energy varied dramatically between sites, in some cases, the environmental benefits were limited despite the significant economic burden of those renewable systems on-site and vice versa. Our recommendation for GBRSs, and broader policies and regulations, is to require buildings with higher environmental impacts to achieve higher levels of energy performance and on-site renewable energy utilization, instead of fixed percentages. PMID:27031788

  5. On-Site Renewable Energy and Green Buildings: A System-Level Analysis.

    PubMed

    Al-Ghamdi, Sami G; Bilec, Melissa M

    2016-05-01

    Adopting a green building rating system (GBRSs) that strongly considers use of renewable energy can have important environmental consequences, particularly in developing countries. In this paper, we studied on-site renewable energy and GBRSs at the system level to explore potential benefits and challenges. While we have focused on GBRSs, the findings can offer additional insight for renewable incentives across sectors. An energy model was built for 25 sites to compute the potential solar and wind power production on-site and available within the building footprint and regional climate. A life-cycle approach and cost analysis were then completed to analyze the environmental and economic impacts. Environmental impacts of renewable energy varied dramatically between sites, in some cases, the environmental benefits were limited despite the significant economic burden of those renewable systems on-site and vice versa. Our recommendation for GBRSs, and broader policies and regulations, is to require buildings with higher environmental impacts to achieve higher levels of energy performance and on-site renewable energy utilization, instead of fixed percentages.

  6. Energy levels and transition rates for helium-like ions with Z = 10-36

    NASA Astrophysics Data System (ADS)

    Si, R.; Guo, X. L.; Wang, K.; Li, S.; Yan, J.; Chen, C. Y.; Brage, T.; Zou, Y. M.

    2016-08-01

    Aims: Helium-like ions provide an important X-ray spectral diagnostics in astrophysical and high-temperature fusion plasmas. An interpretation of the observed spectra provides information on temperature, density, and chemical compositions of the plasma. Such an analysis requires information for a wide range of atomic parameters, including energy levels and transition rates. Our aim is to provide a set of accurate energy levels and transition rates for helium-like ions with Z = 10-36. Methods: The second-order many-body perturbation theory (MBPT) was adopted in this paper. To support our MBPT results, we performed an independent calculation using the multiconfiguration Dirac-Hartree-Fock (MCDHF) method. Results: We provide accurate energies for the lowest singly excited 70 levels among 1snl(n ≤ 6,l ≤ (n-1)) configurations and the lowest doubly excited 250 levels arising from the K-vacancy 2ln'l'(n' ≤ 6,l' ≤ (n'-1)) configurations of helium-like ions with Z = 10-36. Wavelengths, transition rates, oscillator strengths, and line strengths are calculated for the E1, M1, E2, and M2 transitions among these levels. The radiative lifetimes are reported for all the calculated levels. Conclusions: Our MBPT results for singly excited n ≤ 2 levels show excellent agreement with other elaborate calculations, while those for singly excited n ≥ 3 and doubly excited levels show significant improvements over previous theoretical results. Our results will be very helpful for astrophysical line identification and plasma diagnostics. Full Tables 1 and 2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A141

  7. A system for measuring thermal activation energy levels in silicon by thermally stimulated capacitance

    NASA Technical Reports Server (NTRS)

    Cockrum, R. H.

    1982-01-01

    One method being used to determine energy level(s) and electrical activity of impurities in silicon is described. The method is called capacitance transient spectroscopy (CTS). It can be classified into three basic categories: the thermally stimulated capacitance method, the voltage-stimulated capacitance method, and the light-stimulated capacitance method; the first two categories are discussed. From the total change in capacitance and the time constant of the capacitance response, emission rates, energy levels, and trap concentrations can be determined. A major advantage of using CTS is its ability to detect the presence of electrically active impurities that are invisible to other techniques, such as Zeeman effect atomic absorption, and the ability to detect more than one electrically active impurity in a sample. Examples of detection of majority and minority carrier traps from gold donor and acceptor centers in silicon using the capacitance transient spectrometer are given to illustrate the method and its sensitivity.

  8. Energy levels and radiative rates for Cr-like Cu VI and Zn VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2016-09-01

    Energy levels and radiative rates (A-values) for transitions in Cr-like Cu VI and Zn VII are reported. These data are determined in the quasi-relativistic approach (QR), by employing a very large configuration interaction (CI) expansion which is highly important for these ions. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST and other available theoretical data, for a majority of the levels. The A-values (and resultant lifetimes) are listed for all significantly contributing E1, E2 and M1 radiative transitions among the energetically lowest 322 levels of each ion.

  9. Energy levels and radiative rates for Cr-like Cu VI and Zn VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2016-09-01

    Energy levels and radiative rates (A-values) for transitions in Cr-like Cu VI and Zn VII are reported. These data are determined in the quasi-relativistic approach (QR), by employing a very large configuration interaction (CI) expansion which is highly important for these ions. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST and other available theoretical data, for a majority of the levels. The A-values (and resultant lifetimes) are listed for all significantly contributing E1, E2 and M1 radiative transitions among the energetically lowest 322 levels of each ion.

  10. Energy levels and radiative rates for transitions in Cr-like Co IV and Ni V

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Karpuškienė, R.; Keenan, F. P.; Kisielius, R.; Stancalie, V.

    2016-01-01

    We report calculations of energy levels and radiative rates (A-values) for transitions in Cr-like Co IV and Ni V. The quasi-relativistic Hartree-Fock (QRHF) code is adopted for calculating the data although GRASP (general-purpose relativistic atomic structure package) and flexible atomic code (FAC) have also been employed for comparison purposes. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST for a majority of the levels. However, there are discrepancies for a few levels of up to 3%. The A-values are listed for all significantly contributing E1, E2 and M1 transitions, and the corresponding lifetimes reported, although unfortunately no previous theoretical or experimental results exist to compare with our data.

  11. Fermi level pinning and the charge transfer contribution to the energy of adsorption at semiconducting surfaces

    SciTech Connect

    Krukowski, Stanisław; Kempisty, Paweł; Strak, Paweł; Sakowski, Konrad

    2014-01-28

    It is shown that charge transfer, the process analogous to formation of semiconductor p-n junction, contributes significantly to adsorption energy at semiconductor surfaces. For the processes without the charge transfer, such as molecular adsorption of closed shell systems, the adsorption energy is determined by the bonding only. In the case involving charge transfer, such as open shell systems like metal atoms or the dissociating molecules, the energy attains different value for the Fermi level differently pinned. The Density Functional Theory (DFT) simulation of species adsorption at different surfaces, such as SiC(0001) or GaN(0001) confirms these predictions: the molecular adsorption is independent on the coverage, while the dissociative process adsorption energy varies by several electronvolts.

  12. Study of energy education on the elementary level in Colorado: an evaluation of Energy and Man's Environment

    SciTech Connect

    Coffey, J.M.

    1981-01-01

    The purpose of this research was to evaluate a curriculum designed to improve energy education. The curriculum selected, Energy and Man's Environment (EME), was implemented in a typical Colorado school district. Approximately 530 fifth graders participated in the study, from ten schools, five control and five experimental. The program lasted for nine weeks, taking approximately three and one third hours of science time each week. Teachers in the experimental group attended twenty hours of inservice. This research examined the affective and cognitive effects of the EME curriculum on the students and considered the affective results of the EME program on teachers of the experimental and control groups. The two major conclusions of the research were: (1) Students who participate in a conscientiously implemented Energy and Man's Environment program can expect to raise their energy literacy level. (2) Students who participate in a conscientiously implemented Energy and Man's Environment program can expect to maintain their general cognitive gains for at least three months after the program.

  13. Effects of Dietary Energy Levels on the Physiological Parameters and Reproductive Performance of Gestating Gilts.

    PubMed

    Jin, S S; Jung, S W; Jang, J C; Chung, W L; Jeong, J H; Kim, Y Y

    2016-07-01

    This experiment was conducted to investigate the effects of dietary energy levels on the physiological parameters and reproductive performance of gestating first parity sows. A total of 52 F1 gilts (Yorkshire×Landrace) were allocated to 4 dietary treatments using a completely randomized design. Each treatment contained diets with 3,100, 3,200, 3,300, or 3,400 kcal of metabolizable energy (ME)/kg, and the daily energy intake of the gestating gilts in each treatment were 6,200, 6,400, 6,600, and 6,800 kcal of ME, respectively. During gestation, the body weight (p = 0.04) and weight gain (p = 0.01) of gilts linearly increased with increasing dietary energy levels. Backfat thickness was not affected at d110 of gestation by dietary treatments, but increased linearly (p = 0.05) from breeding to d 110 of gestation. There were no significant differences on the litter size or litter birth weight. During lactation, the voluntary feed intake of sows tended to decrease when the dietary energy levels increased (p = 0.08). No difference was observed in backfat thickness of the sows within treatments; increasing energy levels linearly decreased the body weight of sows (p<0.05) at d 21 of lactation and body weight gain during lactation (p<0.01). No significant differences were observed in the chemical compositions of colostrum and milk. Therefore, these results indicated that high-energy diets influenced the bodyweight and backfat thickness of sows during gestation and lactation. NRC (2012) suggested that the energy requirement of the gestation gilt should be between 6,678 and 7,932 kcal of ME/d. Similarly, our results suggested that 3,100 kcal of ME/kg is not enough to maintain the reproductive performance for gilts during gestation with 2 kg feed daily. Gilts in the treatment 3,400 kcal of ME/kg have a higher weaning number of piglets, but bodyweight and backfat loss were higher than other treatments during lactation. But bodyweight and backfat loss were higher than other

  14. Effects of Dietary Energy Levels on the Physiological Parameters and Reproductive Performance of Gestating Gilts

    PubMed Central

    Jin, S. S.; Jung, S. W.; Jang, J. C.; Chung, W. L.; Jeong, J. H.; Kim, Y. Y.

    2016-01-01

    This experiment was conducted to investigate the effects of dietary energy levels on the physiological parameters and reproductive performance of gestating first parity sows. A total of 52 F1 gilts (Yorkshire×Landrace) were allocated to 4 dietary treatments using a completely randomized design. Each treatment contained diets with 3,100, 3,200, 3,300, or 3,400 kcal of metabolizable energy (ME)/kg, and the daily energy intake of the gestating gilts in each treatment were 6,200, 6,400, 6,600, and 6,800 kcal of ME, respectively. During gestation, the body weight (p = 0.04) and weight gain (p = 0.01) of gilts linearly increased with increasing dietary energy levels. Backfat thickness was not affected at d110 of gestation by dietary treatments, but increased linearly (p = 0.05) from breeding to d 110 of gestation. There were no significant differences on the litter size or litter birth weight. During lactation, the voluntary feed intake of sows tended to decrease when the dietary energy levels increased (p = 0.08). No difference was observed in backfat thickness of the sows within treatments; increasing energy levels linearly decreased the body weight of sows (p<0.05) at d 21 of lactation and body weight gain during lactation (p<0.01). No significant differences were observed in the chemical compositions of colostrum and milk. Therefore, these results indicated that high-energy diets influenced the bodyweight and backfat thickness of sows during gestation and lactation. NRC (2012) suggested that the energy requirement of the gestation gilt should be between 6,678 and 7,932 kcal of ME/d. Similarly, our results suggested that 3,100 kcal of ME/kg is not enough to maintain the reproductive performance for gilts during gestation with 2 kg feed daily. Gilts in the treatment 3,400 kcal of ME/kg have a higher weaning number of piglets, but bodyweight and backfat loss were higher than other treatments during lactation. But bodyweight and backfat loss were higher than other

  15. Evaluation of Affordable Prototype Houses at Two Levels of Energy Efficiency

    SciTech Connect

    Hendron, R.; Barker, G.; Hancock, E.; Reeves, P.

    2006-10-01

    Two high performance prototype houses were built in Carbondale, Colorado, as part of the U.S. Department of Energy's Building America (BA) Program. Each prototype was a 1256 ft2 (117 m2), 1-story, 3-bedroom house, and met the local requirements for affordable housing. The National Renewable Energy Laboratory (NREL) performed short-term field testing and DOE-2.2 simulations in support of this project at the end of December 2004. We also installed long-term monitoring equipment in one of the houses, and are currently tracking the performance of key building systems under occupied conditions. One of the houses (designated H1) included a package of cost-effective energy efficiency features that placed it well above the Energy Star level, targeting a Home Energy Rating System (HERS) score of 88-89. The other (designated H2) was a BA research house, targeting a HERS score of 94-95, and 45% whole-house energy savings compared to the BA Benchmark. Preliminary results from the field evaluation indicate that the energy savings for both houses will exceed the design targets established for the project, although the performance of certain building systems, including the ventilation and foundation systems, leave some room for improvement.

  16. Adenylate nucleotide levels and energy charge in Arthrobacter crystallopoietes during growth and starvation.

    PubMed

    Leps, W T; Ensign, J C

    1979-07-01

    The adenylate nucleotide concentrations, based on internal water space, were determined in cells of Arthrobacter crystallopoietes during growth and starvation and the energy charge of the cells was calculated. The energy charge of spherical cells rose during the first 10 h of growth, then remained nearly constant for as long as 20 h into the stationary phase. The energy charge of rod-shaped cells rose during the first 4 h of growth, then remained constant during subsequent growth and decreased in the stationary growth phase. Both spherical and rod-shaped cells excreted adenosine monophosphate but not adenosine triphosphate or adenosine diphosphate during starvation. The intracellular energy charge of spherical cells declined during the initial 10 h and then remained constant for 1 week of starvation at a value of 0.78. The intracellular energy charge of rod-shaped cells declined during the first 24 h of starvation, remained constant for the next 80 h, then decreased to a value of 0.73 after a total of 168 h starvation. Both cell forms remained more than 90% viable during this time. Addition of a carbon and energy source to starving cells resulted in an increase in the ATP concentration and as a result the energy charge increased to the smae levels as found during growth.

  17. Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications

    SciTech Connect

    Pérez, E. Castán, H.; García, H.; Dueñas, S.; Bailón, L.; Montero, D.; García-Hernansanz, R.; García-Hemme, E.; González-Díaz, G.; Olea, J.

    2015-01-12

    In the attempt to form an intermediate band in the bandgap of silicon substrates to give it the capability to absorb infrared radiation, we studied the deep levels in supersaturated silicon with titanium. The technique used to characterize the energy levels was the thermal admittance spectroscopy. Our experimental results showed that in samples with titanium concentration just under Mott limit there was a relationship among the activation energy value and the capture cross section value. This relationship obeys to the well known Meyer-Neldel rule, which typically appears in processes involving multiple excitations, like carrier capture/emission in deep levels, and it is generally observed in disordered systems. The obtained characteristic Meyer-Neldel parameters were Tmn = 176 K and kTmn = 15 meV. The energy value could be associated to the typical energy of the phonons in the substrate. The almost perfect adjust of all experimental data to the same straight line provides further evidence of the validity of the Meyer Neldel rule, and may contribute to obtain a deeper insight on the ultimate meaning of this phenomenon.

  18. Resonant nature of intrinsic defect energy levels in PbTe revealed by infrared photoreflectance spectroscopy

    SciTech Connect

    Zhang, Bingpo; Cai, Chunfeng; Jin, Shuqiang; Ye, Zhenyu; Wu, Huizhen; Qi, Zhen

    2014-07-14

    Step-scan Fourier-transform infrared photoreflectance and modulated photoluminescence spectroscopy were used to characterize the optical transitions of the epitaxial PbTe thin film grown by molecular beam epitaxy on BaF{sub 2} (111) substrate in the vicinity of energy gap of lead telluride at 77 K. It is found that the intrinsic defect energy levels in the electronic structure are of resonant nature. The Te-vacancy energy level is located above the conduction band minimum by 29.1 meV. Another defect (V{sub X}) energy level situated below valance band maximum by 18.1 meV is also revealed. Whether it is associated with the Pb vacancy is still not clear. It might also be related to the misfit dislocations stemming from the lattice mismatch between PbTe and BaF{sub 2} substrate. The experimental results support the theory prediction (N. J. Parada and G. W. Pratt, Jr., Phys. Rev. Lett. 22, 180 (1969), N. J. Parada, Phys. Rev. B 3, 2042 (1971)) and are consistent with the reported Hall experimental results (G. Bauer, H. Burkhard, H. Heinrich, and A. Lopez-Otero, J. Appl. Phys. 47, 1721 (1976)).

  19. Resonant nature of intrinsic defect energy levels in PbTe revealed by infrared photoreflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Bingpo; Cai, Chunfeng; Jin, Shuqiang; Ye, Zhenyu; Wu, Huizhen; Qi, Zhen

    2014-07-01

    Step-scan Fourier-transform infrared photoreflectance and modulated photoluminescence spectroscopy were used to characterize the optical transitions of the epitaxial PbTe thin film grown by molecular beam epitaxy on BaF2 (111) substrate in the vicinity of energy gap of lead telluride at 77 K. It is found that the intrinsic defect energy levels in the electronic structure are of resonant nature. The Te-vacancy energy level is located above the conduction band minimum by 29.1 meV. Another defect (VX) energy level situated below valance band maximum by 18.1 meV is also revealed. Whether it is associated with the Pb vacancy is still not clear. It might also be related to the misfit dislocations stemming from the lattice mismatch between PbTe and BaF2 substrate. The experimental results support the theory prediction (N. J. Parada and G. W. Pratt, Jr., Phys. Rev. Lett. 22, 180 (1969), N. J. Parada, Phys. Rev. B 3, 2042 (1971)) and are consistent with the reported Hall experimental results (G. Bauer, H. Burkhard, H. Heinrich, and A. Lopez-Otero, J. Appl. Phys. 47, 1721 (1976)).

  20. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

    SciTech Connect

    Delahaye, Thibault Rey, Michaël Tyuterev, Vladimir G.; Nikitin, Andrei; Szalay, Péter G.

    2014-09-14

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C{sub 2}H{sub 4} obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C{sub 2}H{sub 4} molecule was obtained with a RMS(Obs.–Calc.) deviation of 2.7 cm{sup −1} for fundamental bands centers and 5.9 cm{sup −1} for vibrational bands up to 7800 cm{sup −1}. Large scale vibrational and rotational calculations for {sup 12}C{sub 2}H{sub 4}, {sup 13}C{sub 2}H{sub 4}, and {sup 12}C{sub 2}D{sub 4} isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm{sup −1} are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of {sup 13}C{sub 2}H{sub 4} and {sup 12}C{sub 2}D{sub 4} and rovibrational levels of {sup 12}C{sub 2}H{sub 4}.

  1. A spectral-Lagrangian Boltzmann solver for a multi-energy level gas

    SciTech Connect

    Munafò, Alessandro; Haack, Jeffrey R.; Gamba, Irene M.; Magin, Thierry E.

    2014-05-01

    In this paper a spectral-Lagrangian method is proposed for the full, non-linear Boltzmann equation for a multi-energy level gas typical of a hypersonic re-entry flow. Internal energy levels are treated as separate species and inelastic collisions (leading to internal energy excitation and relaxation) are accounted for. The formulation developed can also be used for the case of a gas mixture made of monatomic gases without internal energy (where only elastic collisions occur). The advantage of the spectral-Lagrangian method lies in the generality of the algorithm in use for the evaluation of the elastic and inelastic collision operators, as well as the conservation of mass, momentum and energy during collisions. The latter is realized through the solution of constrained optimization problems. The computational procedure is based on the Fourier transform of the partial elastic and inelastic collision operators and exploits the fact that these can be written as weighted convolutions in Fourier space with no restriction on the cross-section model. The feasibility of the proposed approach is demonstrated through numerical examples for both space homogeneous and in-homogeneous problems. Computational results are compared with those obtained by means of the DSMC method in order to assess the accuracy of the proposed spectral-Lagrangian method.

  2. Multi-Level Experimental and Analytical Evaluation of Two Composite Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Littell, Justin D.; Fasanella, Edwin L.; Annett, Martin S.; Seal, Michael D., II

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45 deg/-45 deg/-45 deg/+45 deg] with respect to the vertical, or crush, direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soil, which is characterized as a sand/clay mixture. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  3. Seleno groups control the energy-level alignment between conjugated organic molecules and metals

    SciTech Connect

    Niederhausen, Jens; Heimel, Georg; Wilke, Andreas; Rabe, Jürgen P.; Duhm, Steffen; Bürker, Christoph; Schreiber, Frank; Xin, Qian; Vollmer, Antje; Kera, Satoshi; Ueno, Nobuo; Koch, Norbert

    2014-01-07

    The charge injection from metallic electrodes into hole transporting layers of organic devices often suffers from deviations from vacuum-level alignment at the interface. Even for weakly interacting cases, Pauli repulsion causes an interface dipole between the metal and conjugated organic molecules (COMs) (so called “push-back” or “cushion” effect), which leads notoriously to an increase of the hole injection barrier. On the other hand, for chalcogenol self assembled monolayers (SAMs) on metal surfaces, chemisorption via the formation of chalcogen-metal bonds is commonly observed. In these cases, the energy-level alignment is governed by chalcogen-derived interface states in the vicinity of the metal Fermi-level. In this work, we present X-ray and ultraviolet photoelectron spectroscopy data that demonstrate that the interfacial energy-level alignment mechanism found for chalcogenol SAMs also applies to seleno-functionalized COMs. This can be exploited to mitigate the push-back effect at metal contacts, notably also when COMs with low ionization energies are employed, permitting exceedingly low hole injection barriers, as shown here for the interfaces of tetraseleno-tetracene with Au(111), Ag(111), and Cu(111)

  4. Reliable Energy Level Alignment at Physisorbed Molecule–Metal Interfaces from Density Functional Theory

    PubMed Central

    2015-01-01

    A key quantity for molecule–metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal–molecule interfaces. The method builds on the “DFT+Σ” approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways: first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule–metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors. PMID:25741626

  5. Reliable energy level alignment at physisorbed molecule-metal interfaces from density functional theory.

    PubMed

    Egger, David A; Liu, Zhen-Fei; Neaton, Jeffrey B; Kronik, Leeor

    2015-04-01

    A key quantity for molecule-metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal-molecule interfaces. The method builds on the "DFT+Σ" approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways: first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule-metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors. PMID:25741626

  6. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems.

    PubMed

    Jorgensen, William L; Tirado-Rives, Julian

    2005-05-10

    An overview is provided on the development and status of potential energy functions that are used in atomic-level statistical mechanics and molecular dynamics simulations of water and of organic and biomolecular systems. Some topics that are considered are the form of force fields, their parameterization and performance, simulations of organic liquids, computation of free energies of hydration, universal extension for organic molecules, and choice of atomic charges. The discussion of water models covers some history, performance issues, and special topics such as nuclear quantum effects.

  7. Microwave energy for post-calcination treatment of high-level nuclear wastes

    SciTech Connect

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary.

  8. Energy level decay and excited state absorption processes in erbium-doped tellurite glass

    NASA Astrophysics Data System (ADS)

    Gomes, Laércio; Oermann, Michael; Ebendorff-Heidepriem, Heike; Ottaway, David; Monro, Tanya; Felipe Henriques Librantz, André; Jackson, Stuart D.

    2011-10-01

    The fundamental excited state decay processes relating to the 4I11/2 → 4I13/2 transition in singly Er3+-doped tellurite (TZNL) glass have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the 4I11/2 energy level at 970 nm and selective laser excitation of the 4I13/2 energy level at 1485 nm has established that energy transfer upconversion by way of a dipole-dipole interaction between two excited erbium ions in the 4I13/2 level populates the 4I11/2 upper laser level of the 3 μm transition. This upconversion has been analyzed for Er2O3 concentrations between 0.5 mol. % and 2.2 mol. %. The 4I13/2 and 4I11/2 energy levels emit luminescence with peaks located at 1532 nm and 2734 nm, respectively, with radiative decay efficiencies of 65% and 6.8% for the higher (2.2 mol. %) concentration sample. The low 2.7 μm emission efficiency is due to the non-radiative decay bridging the 4I11/2 → 4I13/2 transition and energy transfer to the OH- groups in the glass. Excited state absorption was observed to occur from the 4I13/2 and 4I11/2 levels with peak absorptions occurring at 1550 nm and 971 nm, respectively. The decay time of the 4I11/2 excited state decreased with an increase in the Er3+ concentration, which related to energy transfer to OH- ions that had a measured concentration of 6.6 × 1018 cm-3. Results from numerical simulations showed that a population inversion is reached at a threshold pumping intensity of ˜80 kW cm-2 for a cw laser pump at 976 nm if [Er3+] ≥ 1.2 × 1021 cm-3 (or [Er2O3] ≥ 2.65 mol. %) without OH- impurities being present.

  9. An efficient method for energy levels calculation using full symmetry and exact kinetic energy operator: Tetrahedral molecules

    SciTech Connect

    Nikitin, A. V.; Rey, M.; Tyuterev, Vl. G.

    2015-03-07

    A simultaneous use of the full molecular symmetry and of an exact kinetic energy operator (KEO) is of key importance for accurate predictions of vibrational levels at a high energy range from a potential energy surface (PES). An efficient method that permits a fast convergence of variational calculations would allow iterative optimization of the PES parameters using experimental data. In this work, we propose such a method applied to tetrahedral AB{sub 4} molecules for which a use of high symmetry is crucial for vibrational calculations. A symmetry-adapted contracted angular basis set for six redundant angles is introduced. Simple formulas using this basis set for explicit calculation of the angular matrix elements of KEO and PES are reported. The symmetric form (six redundant angles) of vibrational KEO without the sin(q){sup −2} type singularity is derived. The efficient recursive algorithm based on the tensorial formalism is used for the calculation of vibrational matrix elements. A good basis set convergence for the calculations of vibrational levels of the CH{sub 4} molecule is demonstrated.

  10. 'Trig-onometry': non-high-density lipoprotein cholesterol as a therapeutic target in dyslipidaemia.

    PubMed

    Jacobson, T A

    2011-01-01

    Targeting elevations in low-density lipoprotein cholesterol (LDL-C) remains the cornerstone of cardiovascular prevention. However, this fraction does not adequately capture elevated triglyceride-rich lipoproteins (TRLs; e.g. intermediate-density lipoprotein, very low density lipoprotein) in certain patients with metabolic syndrome or diabetic dyslipidaemia. Many such individuals have residual cardiovascular risk that might be lipid/lipoprotein related despite therapy with first-line agents (statins). Epidemiological evidence encompassing > 100,000 persons supports the contention that non-high-density lipoprotein cholesterol (non-HDL-C) is a superior risk factor vs. LDL-C for incident coronary heart disease (CHD) in certain patient populations. In studies with clinical end-points evaluated in the current article, a 1:1 to 1:3 relationship was observed between reductions in non-HDL-C and in the relative risk of CHD after long-term treatment with statins, niacin (nicotinic acid) and fibric-acid derivatives (fibrates); this relationship increased to 1:5 to 1:10 in smaller subgroups of patients with elevated triglycerides and low HDL-C levels. Treatment with statin-, niacin-, fibrate-, ezetimibe-, and omega 3 fatty acid-containing regimens reduced non-HDL-C by approximately 9-65%. In a range of clinical trials, long-term treatment with these agents also significantly decreased the incidence of clinical/angiographic/imaging efficacy outcome variables. For patients with dyslipidaemia, consensus guidelines have established non-HDL-C treatment targets 30 mg/dl higher than LDL-C goals. Ongoing prospective randomised controlled trials should help to resolve controversies concerning (i) the clinical utility of targeting non-HDL-C in patients with dyslipidaemia; (ii) the most efficacious and well-tolerated therapies to reduce non-HDL-C (e.g. combination regimens); and (iii) associations between such reductions and clinical, angiographic, and/or imaging end-points. PMID:21105969

  11. Bidirectional Five-Level Power Processing Interface for Low Voltage Battery Energy Storage System

    NASA Astrophysics Data System (ADS)

    Huang, Jain-Yi; Jou, Hurng-Liahng; Wu, Kuen-Der; Lin, You-Si; Wu, Jinn-Chang

    A bidirectional five-level power processing interface for low voltage battery energy storage system (BESS) is developed in this paper. This BESS consists of a bidirectional five-level DC-AC converter, a bidirectional dual boost/buck DC-DC converter and a battery set. This five-level DC-AC converter includes a bidirectional full-bridge converter and a bidirectional dual buck DC-DC converter. The five-level power processing interface can charge power to the battery set form the utility or discharge the power from the battery set to the utility depending on the demanded operation of user. A hardware prototype is developed to verify the performance of this BESS. Experimental results show the performance of the developed BESS is as expected.

  12. Level Energies, Oscillator Strengths and Lifetimes for Transitions in Pb IV

    SciTech Connect

    Colon, C.; Alonso-Medina, A.; Zanon, A.; Albeniz, J.

    2008-10-22

    Oscillator strengths for several lines of astrophysical interest arising from some configurations and some levels radiative lifetimes of Pb IV have been calculated. These values were obtained in intermediate coupling (IC) and using ab initio relativistic Hartree-Fock calculations. We use for the IC calculations the standard method of least square fitting of experimental energy levels by means of computer codes from Cowan. Transition Probabilities and oscillator strengths obtained, although in general agreement with the rare experimental data, do present some noticeable discrepancies that are studied in the text.

  13. Vibrational energy levels for CH4 from an ab initio potential

    NASA Technical Reports Server (NTRS)

    Schwenke, D. W.; Partridge, H.

    2001-01-01

    Many areas of astronomy and astrophysics require an accurate high temperature spectrum of methane (CH4). The goal of the present research is to determine an accurate ab initio potential energy surface (PES) for CH4. As a first step towards this goal, we have determined a PES including up to octic terms. We compare our results with experiment and to a PES based on a quartic expansion. Our octic PES gives good agreement with experiment for all levels, while the quartic PES only for the lower levels.

  14. COMPREHENSIVE OBSERVATIONS OF THE ULTRAVIOLET SPECTRUM AND IMPROVED ENERGY LEVELS FOR SINGLY IONIZED CHROMIUM (Cr II)

    SciTech Connect

    Sansonetti, Craig J.; Nave, Gillian; Reader, Joseph; Kerber, Florian

    2012-10-15

    We report new observations of the spectrum of singly ionized chromium (Cr II) in the region 1142-3954 A. The spectra were recorded with the National Institute of Standards and Technology 10.7 m normal-incidence vacuum spectrograph and FT700 vacuum ultraviolet Fourier transform spectrometer. More than 3600 lines are classified as transitions among 283 even and 368 odd levels. The new spectral data are used to re-optimize the energy levels, reducing their uncertainties by a typical factor of 20.

  15. Quantification of Water Energy Nexus for Sustainable Development at Local Level: Case Study of Tamil Nadu

    NASA Astrophysics Data System (ADS)

    Grover, S.; Tayal, S.

    2014-12-01

    Interdependency between water and energy is generally transacted in trade-off mode; where either of the resource gets affected because of the other. Generally this trade-off is commonly known as water-energy nexus. Many studies have been undertaken in various parts of the world using various approaches to tease out the intricate nexus. This research has adopted a different approach to quantify the inter-dependency. The adopted approach made an attempt to tease out the nexus from demand side for both the resources. For water demand assessment PODIUM Sim model was used and for other parameters available secondary data was used. Using this approach percentage share of water for energy and energy for water was estimated. For an informed decision making and sustainable development, assessment was carried out at state level as most of the policies are made specifically for the state. The research was done for the southernmost state of India, Tamil Nadu which is a rapidly growing industrial hub. Tamil Nadu is energy and water intensive state and the analysis shows that the share of water demand from energy sector compared to water demand from other major sectors is miniscule. While, the energy demand in water sector for various processes in different sectors compared to energy demand as total has a comparable share of range 15-25%. This analysis indicated the relative risk sectors face in competition for the resource. It point outs that water sector faces fierce competition with other sectors for energy. Moreover, the results of the study has assessed that state has negative water balance, which may make access to water more energy intensive with time. But, a projection into future scenario with an assumption based on the ongoing policy program of improving irrigation efficiency was made. It provided a solution of a potential positive equilibrium which conserves both water and energy. This scenario gave promising results which indicated less of water demand from

  16. Isomeric and ground state energy level measurements of natural tellurium isotopes via (γ,n) reaction

    NASA Astrophysics Data System (ADS)

    Tamkas, M.; Akcali, O.; Durusoy, A.

    2015-04-01

    We have planned to measure isomeric and ground state energy levels in 120Te(γ,n)119m,gTe, 122Te(γ,n)121m,gTe, 128Te(γ,n)127m,gTe, 130Te(γ,n)129m,gTe photonuclear reactions of natural tellurium induced by bremsstrahlung photons with end-point energy at 18 MeV. The sample was irradiated in the clinical linear electron accelerator (Philips SLi-25) at Akdeniz University Hospital. The gamma spectrum of the tellurium sample was measured using HP(Ge) semiconductor detector (ORTEC) and multi channel analyzer. We used both MAESTRO (ORTEC) and home made root based gui program (Theia) for data analyzing. The obtained experimental data values are compared with NUDAT energy values.

  17. Organic semiconductor density of states controls the energy level alignment at electrode interfaces

    PubMed Central

    Oehzelt, Martin; Koch, Norbert; Heimel, Georg

    2014-01-01

    Minimizing charge carrier injection barriers and extraction losses at interfaces between organic semiconductors and metallic electrodes is critical for optimizing the performance of organic (opto-) electronic devices. Here, we implement a detailed electrostatic model, capable of reproducing the alignment between the electrode Fermi energy and the transport states in the organic semiconductor both qualitatively and quantitatively. Covering the full phenomenological range of interfacial energy level alignment regimes within a single, consistent framework and continuously connecting the limiting cases described by previously proposed models allows us to resolve conflicting views in the literature. Our results highlight the density of states in the organic semiconductor as a key factor. Its shape and, in particular, the energy distribution of electronic states tailing into the fundamental gap is found to determine both the minimum value of practically achievable injection barriers as well as their spatial profile, ranging from abrupt interface dipoles to extended band-bending regions. PMID:24938867

  18. Energy pumping analysis of skating motion in a half pipe and on a level surface

    NASA Astrophysics Data System (ADS)

    Feng, Z. C.; Xin, Ming

    2015-01-01

    In this paper, an energy pumping mechanism for locomotion is analysed. The pumping is accomplished by exerting forces perpendicular to the direction of motion. The paper attempts to demonstrate an interesting application of the classical mechanics to two sporting events: a person skating in a half pipe and a person travelling on a level surface on a skateboard. The equations of motion based on simplified mechanical models are derived using the Lagrange mechanics. The energy-pumping phenomenon is revealed through numerical simulations with simple pumping actions. The result presented in this paper can be used as an interesting class project in undergraduate mechanics or physics courses. It also motivates potential new applications of energy pumping in many engineering fields.

  19. Fat liquefaction: effect of low-level laser energy on adipose tissue.

    PubMed

    Neira, Rodrigo; Arroyave, José; Ramirez, Hugo; Ortiz, Clara Lucía; Solarte, Efrain; Sequeda, Federico; Gutierrez, Maria Isabel

    2002-09-01

    Low-level laser energy has been increasingly used in the treatment of a broad range of conditions and has improved wound healing, reduced edema, and relieved pain of various etiologies. This study examined whether 635-nm low-level lasers had an effect on adipose tissue in vivo and the procedural implementation of lipoplasty/liposuction techniques. The experiment investigated the effect of 635-nm, 10-mW diode laser radiation with exclusive energy dispersing optics. Total energy values of 1.2 J/cm(2), 2.4 J/cm(2), and 3.6 J/cm(2) were applied on human adipose tissue taken from lipectomy samples of 12 healthy women. The tissue samples were irradiated for 0, 2, 4, and 6 minutes with and without tumescent solution and were studied using the protocols of transmission electron microscopy and scanning electron microscopy. Nonirradiated tissue samples were taken for reference. More than 180 images were recorded and professionally evaluated. All microscopic results showed that without laser exposure the normal adipose tissue appeared as a grape-shaped node. After 4 minutes of laser exposure, 80 percent of the fat was released from the adipose cells; at 6 minutes of laser exposure, 99 percent of the fat was released from the adipocyte. The released fat was collected in the interstitial space. Transmission electron microscopic images of the adipose tissue taken at x60,000 showed a transitory pore and complete deflation of the adipocytes. The low-level laser energy affected the adipose cell by causing a transitory pore in the cell membrane to open, which permitted the fat content to go from inside to outside the cell. The cells in the interstitial space and the capillaries remained intact. Low-level laser-assisted lipoplasty has a significant impact on the procedural implementation of lipoplasty techniques. PMID:12172159

  20. Quasipotential equation for hydrogen isotopes. Muonic atoms. Ground state energy levels

    NASA Astrophysics Data System (ADS)

    Bakalov, D.

    1980-06-01

    The quasipotential for the electromagnetic interaction of two particles of spin {1}/{2} or 1 with arbitrary electromagnetic interaction of two particles of spin {1}/{2} or 1 with arbitrary electromagnetic structure is constructed in the one-photon approximation. Todorov's quasipotential equation is applied to calculate the ground state energy levels of the muonic atoms pμ, dμ and tμ with accuracy 10 -3 eV.

  1. Calculations of energy levels and lifetimes of low-lying states of barium and radium

    SciTech Connect

    Dzuba, V. A.; Ginges, J. S. M.

    2006-03-15

    We use the configuration-interaction method and many-body perturbation theory to perform accurate calculations of energy levels, transition amplitudes, and lifetimes of low-lying states of barium and radium. Calculations for radium are needed for the planning of measurements of parity- and time-invariance-violating effects which are strongly enhanced in this atom. Calculations for barium are used to control the accuracy of the calculations.

  2. Energy levels, radiative rates, and lifetimes for transitions in W XL

    SciTech Connect

    Aggarwal, Kanti M. Keenan, Francis P.

    2014-11-15

    Energy levels and radiative rates are reported for transitions in Br-like tungsten, W XL, calculated with the general-purpose relativistic atomic structure package (GRASP). Configuration interaction (CI) has been included among 46 configurations (generating 4215 levels) over a wide energy range up to 213 Ryd. However, for conciseness results are only listed for the lowest 360 levels (with energies up to ∼43 Ryd), which mainly belong to the 4s{sup 2}4p{sup 5},4s{sup 2}4p{sup 4}4d,4s{sup 2}4p{sup 4}4f,4s4p{sup 6},4p{sup 6}4d,4s4p{sup 5}4d,4s{sup 2}4p{sup 3}4d{sup 2}, and 4s{sup 2}4p{sup 3}4d4f configurations, and provided for four types of transitions, E1, E2, M1, and M2. Comparisons are made with existing (but limited) results. However, to fully assess the accuracy of our data, analogous calculations have been performed with the flexible atomic code, including an even larger CI than in GRASP. Our energy levels are estimated to be accurate to better than 0.02 Ryd, whereas results for radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

  3. Energy level formula for the Morse oscillator with an additional kinetic coupling potential

    NASA Astrophysics Data System (ADS)

    Fan, Hong-yi; Chen, Bo-zhan; Fan, Yue

    1996-02-01

    Based on the <η| representation which is the common eigenstate of the relative position x1 - x2 and the total momentum P1 + P2 of two particles we derive the energy level formula for a Morse oscillator with an additional kinetic coupling potential. The <η| representation seems to provide a direct and convenient approach for solving certain dynamical problems for two-body systems.

  4. Interfacial energy level bending in a crystalline p/p-type organic heterostructure

    SciTech Connect

    Zhu Feng; Grobosch, Mandy; Treske, Uwe; Knupfer, Martin; Huang Lizhen; Ji Shiliang; Yan Donghang

    2011-05-16

    A conduction channel was observed at the heterointerface of the crystalline p-type organic films copper phthalocyanine (CuPc) and 2,5-bis(4-biphenylyl) bithiophene (BP2T). Energy level bending at the interface is confirmed by photoemission spectroscopy, which verifies a charge transfer between CuPc and BP2T. This provides a further route to utilize interfacial electronic properties in functional devices and also documents the importance of reconsidering the interfacial electronic structure of organic heterostructures.

  5. Quantum cosmological Friedman models with a Yang-Mills field and positive energy levels

    NASA Astrophysics Data System (ADS)

    Gerhardt, Claus

    2010-02-01

    We prove the existence of a spectral resolution of the Wheeler-DeWitt equation when the matter field is provided by a Yang-Mills field, with or without mass term, if the spatial geometry of the underlying spacetime is homothetic to {\\bb R}^{3} . The energy levels of the resulting quantum model, i.e. the eigenvalues of the corresponding self-adjoint Hamiltonian with a pure point spectrum, are strictly positive. This work has been supported by the DFG.

  6. Detection of high-frequency energy level changes in speech and singing

    PubMed Central

    Monson, Brian B.; Lotto, Andrew J.; Story, Brad H.

    2014-01-01

    Previous work has shown that human listeners are sensitive to level differences in high-frequency energy (HFE) in isolated vowel sounds produced by male singers. Results indicated that sensitivity to HFE level changes increased with overall HFE level, suggesting that listeners would be more “tuned” to HFE in vocal production exhibiting higher levels of HFE. It follows that sensitivity to HFE level changes should be higher (1) for female vocal production than for male vocal production and (2) for singing than for speech. To test this hypothesis, difference limens for HFE level changes in male and female speech and singing were obtained. Listeners showed significantly greater ability to detect level changes in singing vs speech but not in female vs male speech. Mean differences limen scores for speech and singing were about 5 dB in the 8-kHz octave (5.6–11.3 kHz) but 8–10 dB in the 16-kHz octave (11.3–22 kHz). These scores are lower (better) than those previously reported for isolated vowels and some musical instruments. PMID:24437780

  7. The influence of interfacial energies and gravitational levels on the directionally solidified structures in hypermonotectic alloys

    NASA Astrophysics Data System (ADS)

    Sandlin, A. C.; Andrews, J. B.; Curreri, P. A.

    1988-11-01

    Several Cu-Pb-Al alloys were directionally solidified under one-g conditions and alternating high-g/low-g conditions in order to determine the influence of interfacial energies and gravitational levels on the resulting microstructures. The low-g conditions were obtained through use of NASA's KC-135 aircraft. In the Cu-Pb-Al system, changes in the Al content are known to result in variations in the interfacial energy relationships between the phases. Theory predicts that this should lead to a transition from an irregular to a regular, aligned microstructure in monotectic composition alloys. Four different hypermonotectic alloy compositions were used in this study in order to vary systematically the interfacial energies between the phases. Preliminary results indicate microstructural variations between control and flight samples and samples processed at different rates under both one-g and high-g/low-g conditions. In addition, directional solidification of low Al content alloys resulted in samples with coarse, irregular microstructures, as compared to finer, more aligned microstructures in alloys with high Al contents. This was seen in samples processed under both one-g and high-g/low-g conditions. The resulting structures have been related to interfacial energies, growth rates, and gravitational levels.

  8. Energy Performance Assessment of Radiant Cooling System through Modeling and Calibration at Component Level

    SciTech Connect

    Khan, Yasin; Mathur, Jyotirmay; Bhandari, Mahabir S

    2016-01-01

    The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans, etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.

  9. by ligand exchange: utilizing energy level alignment for efficiently reducing carrier rec ombination

    NASA Astrophysics Data System (ADS)

    Wang, Xia; Kou, Dong-Xing; Zhou, Wen-Hui; Zhou, Zheng-Ji; Wu, Si-Xin; Cao, Xuan

    2014-05-01

    In this work, we employed a convenient one-step synthesis method for synthesizing Cu2ZnSnSe4 (CZTSe) nanocrystals (NCs) in an excess selenium environment. This excess selenium situation enhanced the reaction of metal acetylacetonates with selenium, resulting in the burst nucleation of NCs at relatively low temperatures. The phase morphology and surface and optoelectronic properties of NCs before and after ligand exchange were discussed in depth. It was found that pure tetragonal-phase structure CZTSe NCs with approximately 1.7-eV bandgap could be synthesized. The removal of large organic molecules on CZTSe NCs after ligand exchange by S2- decreased the resistivity. The bandgap of the films after ligand exchange by 550°C selenization was also decreased due to better crystallinity. For potential application in CZTSe solar cells, we constructed an energy level diagram to explain the mutual effect between the absorption layer and CdS layer. Using cyclic voltammetry (CV) measurement, we found that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of CZTSe films shifted down after ligand exchange. After energy level alignment at the CdS/CZTSe interface, a type I band alignment structure was more conveniently formed after ligand exchange. This structure acted as the barrier against injection electrons from ZnO to the CZTSe layer, and recombination would subsequently be depressed.

  10. Pronounced polarization-induced energy level shifts at boundaries of organic semiconductor nanostructures

    PubMed Central

    Cochrane, K. A.; Schiffrin, A.; Roussy, T. S.; Capsoni, M.; Burke, S. A.

    2015-01-01

    Organic semiconductor devices rely on the movement of charge at and near interfaces, making an understanding of energy level alignment at these boundaries an essential element of optimizing materials for electronic and optoelectronic applications. Here we employ low temperature scanning tunneling microscopy and spectroscopy to investigate a model system: two-dimensional nanostructures of the prototypical organic semiconductor, PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) adsorbed on NaCl (2 ML)/Ag(111). Pixel-by-pixel scanning tunneling spectroscopy allows mapping of occupied and unoccupied electronic states across these nanoislands with sub-molecular spatial resolution, revealing strong electronic differences between molecules at the edges and those in the centre, with energy level shifts of up to 400 meV. We attribute this to the change in electrostatic environment at the boundaries of clusters, namely via polarization of neighbouring molecules. The observation of these strong shifts illustrates a crucial issue: interfacial energy level alignment can differ substantially from the bulk electronic structure in organic materials. PMID:26440933

  11. Pronounced polarization-induced energy level shifts at boundaries of organic semiconductor nanostructures.

    PubMed

    Cochrane, K A; Schiffrin, A; Roussy, T S; Capsoni, M; Burke, S A

    2015-01-01

    Organic semiconductor devices rely on the movement of charge at and near interfaces, making an understanding of energy level alignment at these boundaries an essential element of optimizing materials for electronic and optoelectronic applications. Here we employ low temperature scanning tunneling microscopy and spectroscopy to investigate a model system: two-dimensional nanostructures of the prototypical organic semiconductor, PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) adsorbed on NaCl (2 ML)/Ag(111). Pixel-by-pixel scanning tunneling spectroscopy allows mapping of occupied and unoccupied electronic states across these nanoislands with sub-molecular spatial resolution, revealing strong electronic differences between molecules at the edges and those in the centre, with energy level shifts of up to 400 meV. We attribute this to the change in electrostatic environment at the boundaries of clusters, namely via polarization of neighbouring molecules. The observation of these strong shifts illustrates a crucial issue: interfacial energy level alignment can differ substantially from the bulk electronic structure in organic materials. PMID:26440933

  12. A new classification of the amino acid side chains based on doublet acceptor energy levels.

    PubMed Central

    Sneddon, S F; Morgan, R S; Brooks, C L

    1988-01-01

    We describe a new classification of the amino acid side chains based on the potential energy level at which each will accept an extra (doublet) electron. The doublet acceptor energy level, and the doublet acceptor orbital were calculated using semiempirical INDO/2-UHF molecular orbital theory. The results of these calculations show that the side chains fall into four groups. We have termed these groups repulsive, insulating, semiconducting, and attractive in accordance with where each lies on the relative energy scale. We use this classification to examine the role of residues between the donor and acceptor in modulating the rate and mechanism of electron transfer in proteins. With the calculated acceptor levels, we construct a potential barrier for those residues between the donor and acceptor. It is the area beneath this barrier that determines the decay of electronic coupling between donor and acceptor, and thus the transfer rate. We have used this schematic approach to characterize the four electron transfer pathways in myoglobin recently studied by Mayo et al. (Mayo, S.L., W.R. Ellis, R.J. Crutchley, and H.B. Gray. 1986. Science [Wash. DC]. 233:948-952). PMID:3342271

  13. Effect of acidity on the energy level of curcumin dye extracted from Curcuma longa L.

    NASA Astrophysics Data System (ADS)

    Agustia, Yuda Virgantara; Suyitno, Arifin, Zainal; Sutanto, Bayu

    2016-03-01

    The purpose of this research is to investigate the effect of acidity on the energy level of curcumin dye. The natural dye, curcumin, was synthesized from Curcuma longa L. using a simple extraction technique. The purification of curcumin dye was conducted in a column of chromatography and its characteristics were studied. Next, the purified curcumin dye was added by benzoic acids until various acidities of 3.0, 3.5, 4.0, 4.5, and 5.0. The absorbance spectra and the functionality groups found in the dyes were detected by ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy, respectively. Meanwhile, the energy level of the dyes, EHOMO and ELUMO was measured by cyclic voltammetry. The best energy level of curcumin dye was achieved at pH 3.5 where Ered = -0.37V, ELUMO = -4.28 eV, Eox = 1.15V, EHOMO = -5.83 eV, and Eband gap = 1.55 eV. Therefore, the purified curcumin dye added by benzoic acid was promising for sensitizing the dye-sensitized solar cells.

  14. Knee joint function and the energy cost of level walking in soccer players

    PubMed Central

    Tofts, L. J.; Stanley, C. S.; Barnett, T. G.; Logan, J. G.

    1998-01-01

    OBJECTIVES: To study self reported knee joint problems and the energy costs of level walking in soccer players. METHODS: Seventeen soccer players and twelve control subjects between 18 and 27 years old participated in the study. A questionnaire was used to establish the amount of participation in soccer and the frequency and extent of knee injuries. The physiological cost index (PCI) was used as an index of the energy costs of level walking. RESULTS: Soccer players had a significantly higher PCI than control subjects (p = 0.0001). Control subjects had a mean (SD) PCI of 0.23 (0.06) beats/m and soccer players had a mean PCI of 0.42 (0.12) beats/m. Some 82% of the soccer players experienced knee joint problems, whereas only 25% of the control group had problems. CONCLUSIONS: This study shows that college soccer players have a higher rate of self reported knee problems and higher energy costs of level walking than people who do not play soccer. 




 PMID:9631219

  15. Crystal field parameters and energy levels scheme of trivalent chromium doped BSO

    SciTech Connect

    Petkova, P.; Andreici, E.-L.; Avram, N. M.

    2014-11-24

    The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.

  16. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning

    PubMed Central

    Schlesinger, R.; Bianchi, F.; Blumstengel, S.; Christodoulou, C.; Ovsyannikov, R.; Kobin, B.; Moudgil, K.; Barlow, S.; Hecht, S.; Marder, S.R.; Henneberger, F.; Koch, N.

    2015-01-01

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach. PMID:25872919

  17. Low-level exposures: some implications for the U.S. Department of Energy.

    PubMed Central

    Beall, J R

    1998-01-01

    The U.S. Department of Energy (U.S. DOE) maintains several programs to study and understand the health and environmental effects of exposure to low levels of energy-related agents. These programs include research to understand the mechanisms of action of agents of concern and to assess the risks associated with exposures of people and ecological systems to these agents. They also include implementing appropriate occupational safety and health standards and remediating waste sites to environmental standards. These programs require that the U.S. DOE pursue a realistic understanding of the effects of exposures to small amounts of energy-related agents. The largest of these programs involves hazardous waste remediation and includes potentially harmful exposures to low levels of numerous agents. The U.S. DOE conducts research to establish the scientific bases for the realistic assessment of risks of exposure to such wastes. As part of the U.S. DOE efforts to understand the risks of low-level exposures to hazardous waste, the Office of Health and Environmental Research and the Office of Environmental Management recently launched a broad cooperative program. It is comprised of research projects in nine general scientific areas and includes research on the health impacts and risk estimation of exposure to low levels of hazardous wastes. Projects for this new cooperative research program were selected from 610 applications and totaled approximately $47 million in fiscal year 1996. This program marks a new approach by using basic research to reduce cleanup costs and to develop scientific foundations for advances in environmental technologies. The research will also examine the effects of exposure to low levels of chemical and radiological wastes. PMID:9539034

  18. Modeling plant-level industrial energy demand with the Manufacturing Energy Consumption Survey (MECS) database and the Longitudinal Research Database (LRD)

    SciTech Connect

    Boyd, G.A.; Neifer, M.J.; Ross, M.H.

    1992-08-01

    This report discusses Phase 1 of a project to help the US Department of Energy determine the applicability of the Manufacturing Energy Consumption Survey (MECS) database and the Longitudinal Research Database (LRD) for industrial modeling and analysis. Research was conducted at the US Bureau of the Census; disclosure of the MECS/LRD data used as a basis for this report was subject to the Bureau`s confidentiality restriction. The project is designed to examine the plant-level energy behavior of energy-intensive industries. In Phase 1, six industries at the four-digit standard industrial classification (SIC) level were studied. The utility of analyzing four-digit SIC samples at the plant level is mixed, but the plant-level structure of the MECS/LRD makes analyzing samples disaggregated below the four-digit level feasible, particularly when the MECS/LRD data are combined with trade association or other external data. When external data are used, the validity of using value of shipments as a measure of output for analyzing energy use can also be examined. Phase 1 results indicate that technical efficiency and the distribution of energy intensities vary significantly at the plant level. They also show that the six industries exhibit monopsony-like behavior; that is, energy prices vary significantly at the plant level, with lower prices being correlated with a higher level of energy consumption. Finally, they show to what degree selected energy-intensive products are manufactured outside their primary industry.

  19. Spectrum and energy levels of the Yb4+ free ion (Yb V)

    NASA Astrophysics Data System (ADS)

    Meftah, Ali; Wyart, Jean-François; Tchang-Brillet, Wan-Ü. Lydia; Blaess, Christophe; Champion, Norbert

    2013-10-01

    The spectrum of ionized ytterbium produced by a sliding spark source was recorded on the 10 m high resolution vacuum ultraviolet normal-incidence spectrograph of the Meudon Observatory. About 1080 lines attributed to Yb V, hitherto unknown, have been identified. The analysis of this spectrum established all the energy levels of the ground configuration 4f12 and, respectively 174, 12 and 43 levels of the excited configurations 4f115d,4f116s and 4f116p. The theoretical calculations by means of the Cowan codes included a least-squares optimization of the relevant radial parameters by minimizing the differences between calculated and experimental level energies, which led to mean errors of 55 cm-1 for the 56 even parity levels and 51 cm-1 for the 186 odd parity ones. Interactions with the unknown core-excited configurations 5p54f13, 5p54f126p, 5p54f125d and 5p54f126s were taken into account.

  20. Level of energy restriction alters body condition score and morphometric profile in obese Shetland ponies.

    PubMed

    Bruynsteen, L; Moons, C P H; Janssens, G P J; Harris, P A; Vandevelde, K; Lefère, L; Duchateau, L; Hesta, M

    2015-10-01

    Due to the high prevalence of obesity in some horses and ponies (especially in the leisure horse sector), effective and safe weight loss strategies are required. The present study evaluated the effect of two different energy restriction rates on physical, morphometric and welfare parameters in 18 obese (body condition score [BCS] 7-9/9) Shetland geldings. The trial was divided into three periods: (1) a 4 week adaptation period, during which the maintenance energy intakes to maintain a stable obese bodyweight were determined (100% MERob); (2) a 16.5-week weight loss period during which the ponies were randomly divided into three groups (n = 6/group) comprising a control group (CONTROL), moderate energy restricted (MOD), and severe energy restricted (SEV) groups that were respectively fed at 100%, 80% and 60% of their individual MERob; and (3) a 3 week follow up period in which the ponies were again fed at their outset individual 100% MERob. Between the start and end of the weight loss period, significant pairwise differences between the three treatment groups were seen for bodyweight, BCS, heart girth, belly girth, and relative ultrasound fat depth at the level of loin and ribs at several time points (P < 0.05). The higher energy restriction was associated with a faster decrease in BCS, tail head, and heart plus belly girth, but no gastric ulcers or stereotypic behaviours were seen. PMID:26117272

  1. Contrasting energy pathways at the community level as a consequence of regime shifts.

    PubMed

    Xu, Jun; Wen, Zhourui; Ke, Zhixin; Zhang, Meng; Zhang, Min; Guo, Nichun; Hansson, Lars-Anders; Xie, Ping

    2014-05-01

    Ecological regime shifts typically result in abrupt changes in ecosystem structure through several trophic levels, which leads to rapid ecosystem reconfiguration between regimes. An interesting aspect of the impact of regime shift is that alternative regimes may induce distinct shifts in energy pathways; these have been less tested than structural changes. This paper addresses this by using stable isotopes to establish the energy pathways in fish communities. We specifically focus on the impact of regime shift on changes of the energy pathways, and how the magnitude and direction of these changes affect the local community. We found that energy pathways significantly varied among the planktivorous, benthivorous, and piscivorous trophic guilds as a result of the alternative regimes. The regime shift from a clear to a turbid state altered the food web towards planktonic energy pathways and truncated food chain length, which is indicative of less ecological efficiency. This was confirmed by the adaptive foraging strategies of prevalent omnivores in the current communities. These structural and functional characteristics of trophic interactions might not facilitate classic trophic cascading effects in such a turbid regime and suppress the system's response to environmental changes, e.g., nutrient loading, and restoration efforts in turbid to clear water regime shifts.

  2. An analysis of Renewable Portfolio Standard policy formulation and its influence on state level energy prices

    NASA Astrophysics Data System (ADS)

    McCollester, Peter Colin

    Over the past two decades, environmental concern has crept to the forefront of the world policy agenda. This concern has manifested itself differently throughout the world. In the United States, this has come in the form of Renewable Portfolio Standards (RPS) which have become one of the primary policy tools which states use to encourage renewable energy generation. The advent of RPS has spurred intense debate at a federal and state level, centering on the economic merits of promoting renewable energy generation. Detractors argue that RPS will raise electricity rates, since generation from renewable sources is typically costlier than energy generated from fossil fuels. At this point, evidence to the relationship between RPS on electricity prices remains unclear. Researchers have attempted to understand this relationship through a variety of means. The most common being regression based models, which utilize readily available United States Energy Information Agency (US EIA) data, and have uncovered a number of important independent variables which are incorporated into the model in this study. Examples include personal income, state population, and deregulation of an energy market. In addition to empirical studies, the National Renewable Energy Laboratory (NREL) has created complex mathematical models which generate scenario projections based on a number of assumptions. While interesting, these are forward looking tools and as such have not yielded a tremendous amount of insight into the underlying policy mechanics of RPS. A challenge of addressing this topic which is worth noting is that much of the research available which analyzes the merits of RPS caters to distinct political or private sector agendas. The research gathered for this study is comprehensive, and attempts to avoid studies with any clear political, ideological, or financial motivation. Using the insights from previous researchers this study develops a rigorous fixed effects regression model to

  3. Energy levels, lifetimes, and transition probabilities for Mn XII and Ge XIX

    SciTech Connect

    El-Sayed, Fatma

    2014-09-15

    Energy levels, transition probabilities, oscillator strengths, line strengths, and lifetimes have been calculated for silicon-like manganese and germanium, Mn XII and Ge XIX. The configurations 3s{sup 2}3p{sup 2}, 3s3p{sup 3}, 3s{sup 2}3p3d, 3s3p{sup 2}3d, and 3p{sup 4} were used in the calculations and 88 fine-structure levels were obtained. The fully relativistic GRASP code has been adopted, and results are reported for all electric dipole, electric quadrupole, magnetic dipole, and magnetic quadrupole transitions among levels of Mn XII and Ge XIX. Comparisons have been made with available theoretical and experimental results.

  4. Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface

    SciTech Connect

    Chen, Shi; Goh, Teck Wee; Sum, Tze Chien E-mail: Tzechien@ntu.edu.sg; Sabba, Dharani; Chua, Julianto; Mathews, Nripan; Huan, Cheng Hon Alfred E-mail: Tzechien@ntu.edu.sg

    2014-08-01

    The energy level alignment at the CH{sub 3}NH{sub 3}PbI{sub 3}/copper phthalocyanine (CuPc) interface is investigated by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). XPS reveal a 0.3 eV downward band bending in the CuPc film. UPS validate this finding and further reveal negligible interfacial dipole formation – verifying the viability of vacuum level alignment. The highest occupied molecular orbital of CuPc is found to be closer to the Fermi level than the valance band maximum of CH{sub 3}NH{sub 3}PbI{sub 3}, facilitating hole transfer from CH{sub 3}NH{sub 3}PbI{sub 3} to CuPc. However, subsequent hole extraction from CuPc may be impeded by the downward band bending in the CuPc layer.

  5. Nuclear level density of even-even nuclei with temperature-dependent pairing energy

    NASA Astrophysics Data System (ADS)

    Dehghani, V.; Alavi, S. A.

    2016-10-01

    The influence of using a temperature-dependent pairing term on the back-shifted Fermi gas (BSFG) model of nuclear level density of some even-even nuclei has been investigated. We have chosen an approach to determine the adjustable parameters from theoretical calculations, directly. The exact Ginzburg-Landau (EGL) theory was used to determine the temperature-dependent pairing energy as back-shifted parameter of the BSFG model. The level density parameter of the BSFG model has been determined through the Thomas-Fermi approximation. The level densities of 96Mo, 106,112Cd, 106,108Pd, 164Dy, 232Th, 238U and heat capacities of 96Mo and 164Dy nuclei were calculated. Good agreement between theory and experiment was observed.

  6. Calculation of energy levels, {ital E}1 transition amplitudes, and parity violation in francium

    SciTech Connect

    Dzuba, V.A.; Flambaum, V.V.; Sushkov, O.P.

    1995-05-01

    Many-body perturbation theory in the screened Coulomb interaction was used to calculate energy levels, {ital E}1 trransition amplitudes, and the parity-nonconserving (PNC) {ital E}1 amplitude of the 7{ital s}-8{ital s} transition in francium. The method takes into account the core-polarization effect, the second-order correlations, and the three dominating sequences of higher-order correlation diagrams: screening of the electron-electron interaction, particle-hole interaction, and the iterations of the self-energy operator. The result for the PNC amplitude for {sup 223}Fr is {ital E}1(7{ital s}-8{ital s})=(1.59{plus_minus}{similar_to}1%){times}10{sup {minus}10}{ital iea}{sub {ital B}}({minus}{ital Q}{sub {ital W}}/{ital N}), where {ital Q}{sub {ital W}} is the weak charge of the nucleus, {ital N}=136 is the number of neutrons, {ital e}={vert_bar}{ital e}{vert_bar} is the elementary charge, and {ital a}{sub {ital B}} is the Bohr radius. Our prediction for the position of the 8{ital s} energy level of Fr, which has not been measured yet, is 13 110 cm{sup {minus}1} below the limit of the continuous spectrum. The accuracy of the calculations was controlled by comparison with available experimental data and analogous calculations for cesium. It is estimated to be {similar_to}0.1% for the energy levels and {similar_to}1% for the transition amplitudes.

  7. Surface effects on core-level binding energies and valence in thulium chalcogenides

    NASA Astrophysics Data System (ADS)

    Kaindl, G.; Laubschat, C.; Reihl, B.; Pollak, R. A.; Mårtensson, N.; Holtzberg, F.; Eastman, D. E.

    1982-08-01

    Vacuum-cleaved (100) surfaces of mixed-valent TmSe, divalent TmTe, and trivalent TmS were studied by high-resolution, angle-integrated photoelectron spectroscopy with the use of synchrotron radiation in the energy range 30<=hν<=110 eV. In the topmost surface layers of TmSe and TmTe the 4f levels are found to be shifted to higher binding energies by 0.32+/-0.04 and 0.41+/-0.05 eV, respectively. In both TmSe and TmS the topmost surface layers are divalent. In the case of TmSe a separation of the Tm2+ 4f12 spectral feature into surface and bulk contributions allows a determination of the bulk mean valence v¯=2.55+/-0.05. While a shift of the Se 3d levels to lower binding energy is observed for Se atoms in the topmost surface layer of TmSe, no such shift can be resolved for the Te 4d levels of TmTe. The surface-derived divalent spectral features can be quenched completely in all three cases by exposure of the surfaces to submonolayer amounts of oxygen, resulting in the formation of trivalent surface oxides. Values for the electron mean free path l are derived from the observed surface- and bulk-spectral intensities, with l decreasing with decreasing electron kinetic energy down to ≅45 eV. Smaller singularity indices α of the Doniach-Sunjić line shapes as well as smaller extrinsic losses are observed for photoemission from the divalent surface layers as compared to the bulk.

  8. Changes in oxidative stress in response to different levels of energy restriction in obese ponies.

    PubMed

    Bruynsteen, Lien; Janssens, Geert P J; Harris, Patricia A; Duchateau, Luc; Valle, Emanuela; Odetti, Patrizio; Vandevelde, Kimberley; Buyse, Johan; Hesta, Myriam

    2014-10-28

    The present study evaluated the effect of different levels of energy restriction on metabolic parameters in obese ponies. Relative weight changes, markers of lipid metabolism and oxidant/antioxidant balance were monitored. A total of eighteen obese (body condition score ≥ 7/9) Shetland ponies were studied over a 23·5-week trial, which was divided into three periods. The first period involved a 4-week adaptation period in which each animal was fed 100% of their maintenance energy requirements needed to maintain a stable obese body weight (MERob). This was followed by a 16·5-week weight-loss period in which ponies were assigned to receive either 100% (control group, CONTROL), 80% (slow weight-loss (SLOW) group) or 60% (rapid weight-loss (RAPID) group) of their MERob. During the 3-week end-phase period, all ponies were again fed 100% of their MERob. Relative weight loss was higher in the RAPID group (P< 0·001) compared with the SLOW group. No linear relationship was found as a doubling of the percentage of energy restriction was accompanied by a tripling of the percentage of weight loss. Relative weight gain afterwards in the end-phase period was higher in the RAPID group (P< 0·001) compared with the SLOW and CONTROL groups. During the weight-loss period, TAG and NEFA concentrations were highest in the RAPID group, as were α-tocopherol and ferric-reducing ability of plasma concentrations. After 8 weeks of weight loss, the concentrations of advanced oxidation protein products were higher in the RAPID group compared with the SLOW and CONTROL groups (P< 0·001). In conclusion, the level of energy restriction influences the extent of changes in oxidant/antioxidant balance. Practically, more severe energy restriction regimens may be associated with a greater regain of weight after the restriction period. PMID:25181634

  9. Response of male buffalo calves to different levels of energy and protein in finishing diets.

    PubMed

    Mahmoudzadeh, H; Fazaeli, H; Kordnejad, I; Mirzaei, H R

    2007-05-01

    A factorial experiment with completely randomised design was conducted, using 27 heads of 15 month buffalo male calves with initial live weight of 287 +/- 15 kg. The animals were individually housed and randomly allocated into 9 treatment groups of three animals each. Three levels of energy (E1, E2, E3) with three levels of crude protein (P1, P2, P3) were formulated to provide 90, 100 and 110% requirement equivalents for 900 g, expected body weight gain of steers derived from NRC beef cattle requirements (1976). Live weight changes were obtained by direct weighing of the animals every month and ended by slaughtering the calves for carcass index measurements. Results indicated that Dry Matter Intake (DMI) was not significantly different between treatments. Average Daily Gain (ADG) ranged from 503 to 951 g/animal that was significantly varied among the diets (p < 0.05). The significantly higher daily gain was obtained (p < 0.05) when animals received medium energy diets that was similar to 100% beef cattle steer requirements. In addition the feed conversion ratio was significantly lower, when the animals received medium energy diets (p < 0.05). The dressing yield as well as the meat % age was not affected by the type of the diet, but abdominal fat was significantly higher in medium energy diets (p < 0.05). It can be concluded that the optimum fattening performance of 15 month old buffalo male calves may be obtained by providing around 10.42 MJ/kg of dietary metabolisable energy and about 10.22% of crude protein. PMID:19069949

  10. Fine-structure energy levels, radiative rates and lifetimes in Si-like nickel

    NASA Astrophysics Data System (ADS)

    Gupta, G. P.; Msezane, A. Z.

    2012-07-01

    Large scale CIV3 calculations of excitation energies from ground state as well as of oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the fine-structure levels of the terms belonging to the (1s22s22p6)3s23p2, 3s3p3, 3p4, 3s23p3d, 3s23p4s, 3s23p4p, 3s23p4d and 3s23p4f configurations of Ni XV, are performed using very extensive configuration-interaction wave functions. The relativistic effects in intermediate coupling are incorporated by means of the Breit-Pauli Hamiltonian. In order to keep our calculated energy splittings as close as possible to the National Institute of Standard and Technology (NIST) values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. Our calculated excitation energies, including their ordering, are in excellent agreement with the available NIST results. From our radiative decay rates we have also calculated radiative lifetimes of the fine-structure levels. It is noted that our calculated radiative rates show significant disagreement (23-30%) with those calculated by Ishikawa and Vilkas (2002 Phys. Scr. 65 219) for the transitions involving the 3s3p3(5S2) level. For this high spin level 3s3p3(5S2) our calculated lifetime is found to be in excellent agreement with the experimental value of Träbert et al (1989 Z. Phys. D 11 207). In this calculation, we also predict many additional new and accurate data for various optically allowed and intercombination transitions to complete the void in the existing data.

  11. Core-level binding-energy shifts for the metallic elements

    NASA Astrophysics Data System (ADS)

    Johansson, Börje; Mårtensson, Nils

    1980-05-01

    A general treatment of core-level binding-energy shifts in metals relative to the free atom is introduced and applied to all elemental metals in the Periodic Table. The crucial ingredients of the theoretical description are (a) the assumption of a fully screened final state in the metallic case and (b) the (Z+1) approximation for the screening valence charge distribution around the core-ionized site. This core-ionized site is, furthermore, treated as an impurity in an otherwise perfect metal. The combination of the complete screening picture and the (Z+1) approximation makes it possible to introduce a Born-Haber cycle which connects the initial state with the final state of the core-ionization process. From this cycle it becomes evident that the main contributions to the core-level shift are the cohesive energy difference between the (Z+1) and Z metal and an appropriate ionization energy of the (Z+1) atom (usually the first ionization potential). The appearance of the ionization potential in the shift originates from the assumption of a charge-neutral final state, while the contribution from the cohesive energies essentially describes the change of bonding properties between the initial and final state of the site. The calculated shifts show very good agreement with available experimental values (at present, for 19 elements). For the other elements we have made an effort to combine experimental ionization potentials with theoretical calculations in order to obtain accurate estimates of some of the atomic-core-level binding energies. Such energies together with measured metallic binding energies give "pseudoexperimental" shifts for many elements. Our calculated core-level shifts agree exceedingly well also with these data. For some of the transition elements the core-level shift shows a deviating behavior in comparison with that of neighboring elements. This is shown to be due to a difference in the atomic ground-state configuration, such as, for example, d5s in

  12. Energy and antioxidant responses of pacific oyster exposed to trace levels of pesticides.

    PubMed

    Epelboin, Yanouk; Quéré, Claudie; Pernet, Fabrice; Pichereau, Vianney; Corporeau, Charlotte

    2015-09-21

    Here, we assess the physiological effects induced by environmental concentrations of pesticides in Pacific oyster Crassostrea gigas. Oysters were exposed for 14 d to trace levels of metconazole (0.2 and 2 μg/L), isoproturon (0.1 and 1 μg/L), or both in a mixture (0.2 and 0.1 μg/L, respectively). Exposure to trace levels of pesticides had no effect on the filtration rate, growth, and energy reserves of oysters. However, oysters exposed to metconazole and isoproturon showed an overactivation of the sensing-kinase AMP-activated protein kinase α (AMPKα), a key enzyme involved in energy metabolism and more particularly glycolysis. In the meantime, these exposed oysters showed a decrease in hexokinase and pyruvate kinase activities, whereas 2-DE proteomic revealed that fructose-1,6-bisphosphatase (F-1,6-BP), a key enzyme of gluconeogenesis, was up-regulated. Activities of antioxidant enzymes were higher in oysters exposed to the highest pesticide concentrations. Both pesticides enhanced the superoxide dismutase activity of oysters. Isoproturon enhanced catalase activity, and metconazole enhanced peroxiredoxin activity. Overall, our results show that environmental concentrations of metconazole or isoproturon induced subtle changes in the energy and antioxidant metabolisms of oysters.

  13. Energy levels, transition probabilities, and electron impact excitations for La XXX

    SciTech Connect

    Zhong, J.Y. . E-mail: jyzhong@aphy.iphy.ac.cn; Zhao, G.; Zhang, J.

    2006-09-15

    energy levels, spontaneous radiative decay rates, and electron impact collision strengths are calculated for La XXX. The data refer to 107 fine-structure levels belonging to the configurations (1s{sup 2}2s{sup 2}2p{sup 6})3s{sup 2}3p{sup 6}3d{sup 10}, 3s{sup 2}3p{sup 6}3d{sup 9}4l, 3s{sup 2}3p{sup 5}3d{sup 10}4l, and 3s3p{sup 6}3d{sup 10}4l (l = s, p, d, f). The collision strengths are calculated with a 20-collision-energy grid in terms of the energy of the scattered electron between 10 and 10,000 eV by using the distorted-wave approximation. Effective collision strengths are obtained at seven electron temperatures: T {sub e} (eV) = 10, 100, 300, 500, 800, 1000, and 1500 by integrating the collision strengths over a Maxwellian electron distribution. Coupled with these atomic data, a hydrodynamic code MED103 can be used to simulate the Ni-like La X-ray laser at 8.8 nm.

  14. The relationship between active ghrelin levels and human obesity involves alterations in resting energy expenditure.

    PubMed

    Marzullo, Paolo; Verti, Barbara; Savia, Giulio; Walker, Gillian E; Guzzaloni, Gabriele; Tagliaferri, Mariantonella; Di Blasio, Annamaria; Liuzzi, Antonio

    2004-02-01

    Ghrelin is a gastric hormone that exerts a stimulatory effect on appetite and fat accumulation. Ser(3) octanoylation is regarded as a prerequisite for ghrelin biological activity, although des-octanoylated forms may retain biological functions in vitro. Circulating ghrelin levels are usually low in obesity and in states of positive energy balance. Hence, the aim of our study was to analyze plasma active and serum total ghrelin levels in 20 obese (ages, 22-42 yr; body mass index, 41.3 +/- 1.1 kg/m(2)) and 20 lean subjects (ages, 22-43 yr; body mass index, 22.4 +/- 0.6 kg/m(2)) as well as their relationship to measures of glucose homeostasis, body fat, and resting energy expenditure (REE). The measured/predicted REE percentage ratio was calculated to subdivide groups into those with positive (> or = 100% ) and negative (<100%) ratio values. In obese patients, plasma active (180 +/- 18 vs. 411 +/- 57 pg/ml; P < 0.001) and serum total ghrelin levels (3650 +/- 408 vs. 5263 +/- 643 pg/ml; P < 0.05) were significantly lower when compared with lean subjects. Hence, ghrelin activity, defined as the proportion of active over total ghrelin levels, was similarly reduced in the obese state (6.1 +/- 0.9% vs. 8.4 +/- 1%; P < 0.05). There was a significant correlation between active and total ghrelin (r = 0.62; P < 0.001), and between total ghrelin and insulin (r = -0.53; P < 0.001) or insulin resistance using the homeostatis model of assessment-insulin resistance (r = -0.49; P < 0.001) approach. Significantly higher active ghrelin levels (214 +/- 22 vs. 159 +/- 30 pg/ml; P < 0.05) and ghrelin activity (8 +/- 1.7% vs. 4.9 +/- 0.9%; P < 0.05) were observed in patients with positive compared with negative measured/predicted REE ratio values. Our study shows that obesity is associated with an impairment of the entire ghrelin system. The observation that ghrelin is further decreased in cases of abnormal energy profit adds new evidence to the relationship between ghrelin activity and

  15. Self-energy-corrected electronic energy level alignment in molecular junctions and at interfaces with hybrid functionals

    NASA Astrophysics Data System (ADS)

    Kotiuga, Michele; Egger, David; Kronik, Leeor; Neaton, Jeffrey B.

    2015-03-01

    Accurate calculations of energy level alignment at complex interfaces are imperative for understanding a variety of transport and spectroscopy measurements, as well as for elucidating new interfacial electronic structure phenomena. However, standard approaches to such calculations, based on density functional theory (DFT), are well known to be deficient. In prior work on molecular junctions and physisorbed molecules on surfaces, an approximate GW approach, DFT+ Σ, has been successful in describing the conductance and level alignment of amine and pyridine terminated molecules on gold surfaces and in junctions. Here, via the use of hybrid functionals, we preform quantitative studies of the level alignment of thiol- and carbon-terminated phenyls on gold, where the formation of a strong chemical bond and presence of gateway states limit the validity of the DFT+ Σ approximation as currently formulated. We contrast these systems to prior work on weakly-coupled molecules, including bipyridine or phenyl-diamines. Additionally, we compute transmission functions using both DFT-PBE and DFT-HSE starting points and predict conductance and thermopower with these methods, comparing to experiments where possible. We acknowledge DOE, DOD, NERSC, ERC, ISF, and FWF.

  16. Origin of the energy level alignment at organic/organic interfaces: The role of structural defects

    NASA Astrophysics Data System (ADS)

    Bussolotti, Fabio; Yang, Jinpeng; Hinderhofer, Alexander; Huang, Yuli; Chen, Wei; Kera, Satoshi; Wee, Andrew T. S.; Ueno, Nobuo

    2014-03-01

    In this paper, the electronic properties of as-deposited and N2-exposedCuPc/F16CuPc interface, a prototype system for organic photovoltaic applications, are investigated by using ultralow background, high-sensitivity photoemission spectroscopy. It is found that (i) N2 exposure significantly modifies the energy level alignment (ELA) at the interface between CuPc and F16CuPc layer and (ii) the direction of the N2-induced energy level shift of the CuPc depends on the position of the Fermi level (EF) in the CuPc highest occupied molecular orbital-lowest unoccupied molecular orbital gap of the as-deposited film. These observations are related to the changes in the density of gap states (DOGS) produced by structural imperfections in the molecular packing geometry, as introduced by the N2 penetration into the CuPc layer. This result demonstrates the key role of structure-induced DOGS in controlling the ELA at organic/organic interfaces.

  17. Level of satiety: In vitro energy metabolism in brain during hypophagic and hyperphagic body weight recovery

    SciTech Connect

    Kasser, T.R.; Harris, R.B.; Martin, R.J. )

    1989-12-01

    Rates of in vitro glucose and fatty acid oxidation were examined in four brain sites during hypophagic and hyperphagic recovery of normal body weight. Rats were fed 40, 100, or 160% of normal intake, via gastric intubation, for 3 wk. Another group of rats was starved until body weight loss was equivalent to weight loss in 40%-fed rats. Groups of rats were killed at the conclusion of tube feeding or fasting and at specific periods during recovery of body weight. Brain sites examined were the ventrolateral hypothalamus (VLH), ventromedial hypothalamus (VMH), a caudal brain stem site encompassing the area postrema-nucleus of the solitary tract (AP-NTS), and cortex. During recovery, rats previously fed 160% of normal intake (anorectic) maintained low rates of VLH fatty acid oxidation and were hypophagic until most excess fat was depleted. Conversely, rats previously fed 40% of normal intake (hungry) maintained high rates of VLH fatty acid oxidation and were hyperphagic until most deficient fat was repleted. Rats previously starved maintained high rates of VLH fatty acid oxidation during hyperphagic recovery, although levels of VLH fatty acid oxidation and food intake were initially low on refeeding. Rates of glucose oxidation in the brain sites examined did not relate well to energy balance status and the needed adjustments in food intake. The results indicated that the level of glucose oxidation in the VLH and AP-NTS responded to the level of energy immediately coming into the system (food intake).

  18. Energy-Efficient Crowdsensing of Human Mobility and Signal Levels in Cellular Networks.

    PubMed

    Foremski, Paweł; Gorawski, Michał; Grochla, Krzysztof; Polys, Konrad

    2015-09-02

    The paper presents a practical application of the crowdsensing idea to measure human mobility and signal coverage in cellular networks. Currently, virtually everyone is carrying a mobile phone, which may be used as a sensor to gather research data by measuring, e.g., human mobility and radio signal levels. However, many users are unwilling to participate in crowdsensing experiments. This work begins with the analysis of the barriers for engaging people in crowdsensing. A survey showed that people who agree to participate in crowdsensing expect a minimum impact on their battery lifetime and phone usage habits. To address these requirements, this paper proposes an application for measuring the location and signal strength data based on energy-efficient GPS tracking, which allows one to perform the measurements of human mobility and radio signal levels with minimum energy utilization and without any engagement of the user. The method described combines measurements from the accelerometer with effective management of the GPS to monitor the user mobility with the decrease in battery lifetime by approximately 20%. To show the applicability of the proposed platform, the sample results of signal level distribution and coverage maps gathered for an LTE network and representing human mobility are shown.

  19. Energy-Efficient Crowdsensing of Human Mobility and Signal Levels in Cellular Networks

    PubMed Central

    Foremski, Paweł; Gorawski, Michał; Grochla, Krzysztof; Polys, Konrad

    2015-01-01

    The paper presents a practical application of the crowdsensing idea to measure human mobility and signal coverage in cellular networks. Currently, virtually everyone is carrying a mobile phone, which may be used as a sensor to gather research data by measuring, e.g., human mobility and radio signal levels. However, many users are unwilling to participate in crowdsensing experiments. This work begins with the analysis of the barriers for engaging people in crowdsensing. A survey showed that people who agree to participate in crowdsensing expect a minimum impact on their battery lifetime and phone usage habits. To address these requirements, this paper proposes an application for measuring the location and signal strength data based on energy-efficient GPS tracking, which allows one to perform the measurements of human mobility and radio signal levels with minimum energy utilization and without any engagement of the user. The method described combines measurements from the accelerometer with effective management of the GPS to monitor the user mobility with the decrease in battery lifetime by approximately 20%. To show the applicability of the proposed platform, the sample results of signal level distribution and coverage maps gathered for an LTE network and representing human mobility are shown. PMID:26340633

  20. THE SPECTRUM OF THORIUM FROM 250 nm TO 5500 nm: RITZ WAVELENGTHS AND OPTIMIZED ENERGY LEVELS

    SciTech Connect

    Redman, Stephen L.; Nave, Gillian; Sansonetti, Craig J.

    2014-03-01

    We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists to re-optimize the energy levels of neutral, singly, and doubly ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19, 874 thorium lines between 250 nm and 5500 nm (40, 000 cm{sup –1} to 1800 cm{sup –1}). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer and Engleman and typographical errors and incorrect classifications in Kerber et al. We also found a large scatter with respect to the thorium line list of Lovis and Pepe. We anticipate that our Ritz wavelengths will lead to improved measurement accuracy for current and future spectrographs that make use of thorium-argon or thorium-neon lamps as calibration standards.

  1. Calculation of energy levels and transition amplitudes for barium and radium.

    SciTech Connect

    Dzuba, V. A.; Flambaum, V. V.; Physics; Univ. of New South Wales

    2007-01-01

    The radium atom is a promising system for studying parity and time invariance violating weak interactions. However, available experimental spectroscopic data for radium are insufficient for designing an optimal experimental setup. We calculate the energy levels and transition amplitudes for radium states of significant interest. Forty states corresponding to all possible configurations consisting of the 7s, 7p and 6d single-electron states as well as the states of the 7s8s, 7s8p and 7s7d configurations have been calculated. The energies of ten of these states corresponding to the 6d{sup 2}, 7s8s, 7p{sup 2} and 6d7p configurations are not known from experiment. Calculations for barium are used to control the accuracy.

  2. Energy level broadening of defects causing nonideality in nearly ideal Si Schottky barriers

    NASA Astrophysics Data System (ADS)

    Maeda, Keiji

    2004-10-01

    We have proposed a mechanism of the local Schottky barrier height (SBH) lowering to explain the nonideal characteristics in Si SBs. Positively charged defects close to the M/S interface induce image charge in the metal-induced gap states (MIGS) and lower the SBH. Based on this mechanism, the inhomogeneous potential distributions in the proximity of the MIGS are calculated in agreement with the I- V characteristics. The energy level of the defect, identified with Si self-interstitial, is in agreement with the theoretical value. The energy width of the defect is nearly equal to the standard deviation in the Gaussian distribution describing the SBH inhomogeneity. Thus, the propriety of the model is confirmed.

  3. S-matrix Calculations of Energy Levels of the Lithium Isoelectronic Sequence

    SciTech Connect

    sapirstein, J; Cheng, K T

    2010-11-02

    A QED approach to the calculation of the spectra of the lithium isoelectronic sequence is implemented. A modified Furry representation based on the Kohn-Sham potential is used to evaluate all one- and two-photon diagrams with the exception of the two-loop Lamb shift. Three-photon diagrams are estimated with Hamiltonian methods. After incorporating recent calculations of the two-loop Lamb shift and recoil corrections a comprehensive tabulation of the 2s, 2p{sub 1/2} and 2p{sub 3/2} energy levels as well as the 2s - 2p{sub 1/2} and 2s - 2p{sub 3/2} transition energies for Z = 10 - 100 is presented.

  4. S-matrix calculations of energy levels of the lithium isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Sapirstein, J.; Cheng, K. T.

    2012-06-01

    A QED approach to the calculation of the spectra of the lithium isoelectronic sequence is implemented. A modified Furry representation based on the Kohn-Sham potential is used to evaluate all one- and two-photon diagrams with the exception of the two-loop Lamb shift. Three-photon diagrams are estimated with Hamiltonian methods. After incorporating recent calculations of the two-loop Lamb shift and recoil corrections a comprehensive tabulation of the 2s, 2p1/2 and 2p3/2 energy levels as well as the 2s-2p1/2 and 2s-2p3/2 transition energies for Z=10-100 is presented.

  5. S-matrix calculations of energy levels of the lithium isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Sapirstein, J.; Cheng, K. T.

    2011-01-01

    A QED approach to the calculation of the spectra of the lithium isoelectronic sequence is implemented. A modified Furry representation based on the Kohn-Sham potential is used to evaluate all one- and two-photon diagrams with the exception of the two-loop Lamb shift. Three-photon diagrams are estimated with Hamiltonian methods. After incorporating recent calculations of the two-loop Lamb shift and recoil corrections, a comprehensive tabulation of the 2s, 2p1/2, and 2p3/2 energy levels as well as the 2s-2p1/2 and 2s-2p3/2 transition energies for Z=10-100 is presented.

  6. Infection and immunoglobulin levels in Sudanese children with severe protein-energy malnutrition.

    PubMed

    Suliman, Omer S M; Salih, Mustafa A M; Karrar, Zein A; Mohammed, Abdelrahim O; Helsing, Chrestover

    2011-01-01

    A hospital-based case control study was carried out to determine the pattern of infections and immunoblobulin levels in Sudanese children with severe protein energy malnutrition (PEM). The pre-dietary rehabilitation levels of the three major immunoglobulins (IgG, IgA and IgM) were compared with those of normal controls, and with the levels after dietary rehabilitation. Eighty one children were included in the study: 49 with severe PEM (23 with marasmus, 17 with marasmic - kwashiorkor and 9 with kwashiorkor), 13 with tuberculosis and 19 healthy children as controls. The study showed high incidence of infections, especially pneumonia and gastrointestinal infections in the malnourished children. Of special concern was the high incidence of urinary tract infection: 13 (26.5%) had significant pyuria and 9 of them had positive urine cultures, mainly Escherichia coli. Eight of the malnourished children also had pulmonary TB, and the ESR and Mantoux tests were not helpful in the diagnosis. The Mantoux test was negative in 88.8% of the malnourished group compared to 62.5% in those malnourished with TB. The malnourished groups had significantly higher plasma levels of the 3 immunoglobulins. While the maramic group attained significantly higher levels of IgG and IgA compared to the marasmic -kwashiorkor and kwashiorkor groups, the 3 groups of PEM showed a uniformly higher level of the IgM. After 2 weeks of rehabilitation, the levels of the 3 immunoglobulins showed no significant changes, except for the IgA which significantly decreased in all malnourished and the oedematous groups, and the IgM which increased significantly in the oedematous group.

  7. The Path to Fusion Energy for Concepts Currently at the Concept Exploration Level

    SciTech Connect

    Hooper, E B

    2003-01-09

    Concept Exploration (CE) experiments within the Innovative Confinement Concept Program have a unique role which impacts their contributions to the development of fusion energy. As stated in the FESAC ''Report on Alternate Concepts:'' These [CE] programs are aimed at innovation and basic understanding of relevant scientific phenomena. The emphasis on innovation motivates their application to the search for a better fusion reactor configuration. In addition, because of their unique character the CE experiments offer excellent opportunities to couple fusion-plasma physics to other sciences. A recent example of coupling is the fusion self-organized plasmas to reconnection physics and extra-terrestrial plasmas. Perhaps of even greater importance is the education of the future scientists needed for developing fusion energy. The CE experiments, both at universities and national labs, are of a size students can ''get their hands around;'' young scientists and engineers will be attracted by this intellectual challenge combined with the vision of low-pollution energy for mankind represented by a burning-plasma experiment. A CE concept showing promise for fusion energy is expected to advance to the Proof-of-Principal stage. Experience has shown that this progression may occur in several ways: NSTX followed from success in START, a CE-level experiment in England; NCSX built on a broad base of theory and a strong international stellarator data base, without a CE experiment to test quasi-axisymmetry; and MST is following an upgrade path from the CE experiment of the same name. The lesson to be learned is a highly positive one, namely that the portfolio approach--with its five stages of development--is being applied in a flexible and pragmatic manner without artificial constraints from strategic planning. This lesson also makes it clear that as we move towards the development of fusion energy we need to determine the best way forward for each promising configuration, taking

  8. Experimental Energy Levels of HD18O and D_218O

    NASA Astrophysics Data System (ADS)

    Mikhailenko, S. N.; Naumenko, O. V.; Tashkun, S. A.; Liu, A.-W.; Hu, S.-M.

    2010-06-01

    Extended sets of experimental energy levels of HD18O and D_218O have been obtained as the result of the analysis of recent high-resolution spectra and previously reported data. Spectra of the enriched by deuterium and oxygen-18 water samples were recorded with a Bruker IFS 120HR spectrometer at room temperature in the 1000 - 9200 cm-1 range a,b for this purpose. The RITZ code h was used for analysis of the rotation-vibration transitions and the energy levels determination. New energy levels as well as comparison with previous experimental and theoretical studies will be presented. This work was supported by Grant nos. 06-03-39014 and 10-05-91176 of RFBR (Russia) and by Grant nos. 20903085 and 10574124 of NSFC (China). Work of SNM and SAT was also partly supported by CRDF (USA) Grant RUG1-2954-TO-09 and by RFBR. Grant 09-05-92508. A.-W. Liu et al., J. Mol. Spectrosc. 237, 149-162 (2006). H.-Y. Ni et al., Mol. Phys. 106, 1793-1801 (2008). J. Bellet et al., J. Mol. Spectrosc. 47, 388-402 (1973). J.W.C. Johns, J. Opt. Soc. Am. B2, 1340-1354 (1985). R.A. Toth, J. Mol. Spectrosc. 162, 41-54 (1993). W.F. Wang et al., J. Mol. Spectrosc. 176, 226-228 (1996). R.A. Toth, J. Mol. Structure, 742, 49-68 (2005). S.N. Mikhailenko et al., JQSRT, 110, 597-608 (2009). A. Liu et al., JQSRT, 110, 1781-1800 (2009). O.V. Naumenko et al., JQSRT, 111, 36-44 (2010).

  9. Limits to prediction of energy balance from milk composition measures at individual cow level.

    PubMed

    Løvendahl, P; Ridder, C; Friggens, N C

    2010-05-01

    Frequently updated energy balance (EB) estimates for individual cows are especially useful for dairy herd management, and individual-level estimates form the basis for group-level EB estimates. The accuracy of EB estimates determines the value of this information for management decision support. This study aimed to assess EB accuracy through ANOVA components and by comparing EB estimates based either on milk composition (EBalMilk) or on body condition score (BCS) and body weight (BW) (EBalBody). Energy balance based on milk composition was evaluated using data in which milk composition was measured at each milking. Three breeds (Danish Red, Holstein-Friesian, and Jersey) of cows (299 cows, 623 lactations) in parities 1 to 4 were used. Milk data were smoothed using a rolling local regression. Energy balance based on milk composition was calculated using a partial least squares (PLS) model based on milk fat, protein, and lactose contents and yields, and the daily change in these variables at each day. Energy balance based on BCS and BW was calculated from changes in body condition and BW scored weekly or fortnightly. Equations for calculation of EBalMilk and EBalBody used no common variables and were, therefore, assumed mathematically independent. Traits were analyzed within 3 stages of lactation expected to have high mobilization of body tissue (1, early), almost balanced (2), and deposition of body energy (3, mid to late lactation). In general, EBalMilk and EBalBody followed similar expected changes through lactation. Estimates of covariance were obtained using single-trait mixed models with random regression terms describing the change with time and used for calculation of repeatability as intraclass correlations. Within stage, EBalMilk was less repeatable than EBalBody (0.53, 0.41, 0.43 vs. 0.93, 0.91, 0.86, respectively, for stages 1, 2, and 3), mainly because of a larger residual variance for EBalMilk. Correlations between individual-level estimates of EBal

  10. New odd-parity high-lying energy levels of the europium atom by resonance ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakhate, S. G.; Razvi, M. A. N.; Bhale, G. L.; Ahmad, S. A.

    1996-04-01

    Odd-parity energy levels of the neutral europium atom (Eu I) have been investigated by employing both single-colour and two-colour stepwise laser excitation using the technique of resonance ionization spectroscopy in a heat-pipe thermionic diode system. Fifty-two new odd-parity energy levels of Eu I have been found in the energy region 40 575 - 43 410 0953-4075/29/8/009/img1. The J values for most of these new energy levels have been assigned unambiguously. In addition to this, 19 odd levels which were reported earlier, in the region of our present study, have also been investigated; the assignments of J values to nine of these levels have been confirmed and four levels, which had no unique J assignments, have been assigned definite J values.

  11. Corrections to the energy levels of a spin-zero particle bound in a strong field

    SciTech Connect

    Lee, R. N.; Milstein, A. I.; Karshenboim, S. G.

    2006-01-15

    Formulas for the corrections to the energy levels and wave functions of a spin-zero particle bound in a strong field are derived. The general case of the sum of a Lorentz-scalar potential and zero component of a Lorentz-vector potential is considered. The forms of the corrections differ essentially from those for spin-(1/2) particles. As an example of application of our results, we evaluated the electric polarizability of a ground state of a spin-zero particle bound in a strong Coulomb field.

  12. Additions to the spectrum and energy levels and critical compilation of doubly ionized boron, B III

    NASA Astrophysics Data System (ADS)

    Kramida, A. E.; Ryabtsev, A. N.; Ekberg, J. O.; Kink, I.; Mannervik, S.; Martinson, I.

    2008-08-01

    We have undertaken the study of the Li-like spectrum of doubly ionized boron, B III. The spectroscopic data have been obtained with beam-foil spectroscopy and high-resolution spark spectroscopy. The experimental work was combined with theoretical calculations using ab initio and semi-empirical techniques. About 50 new transitions have been observed, and most of the previously known lines have been measured with improved accuracy. We have also critically evaluated all previous and recent data for this spectrum. Complete data on wavelengths and energy levels based on this analysis are tabulated.

  13. Diagrammatic treatment of coherent backscattering of intense light by cold atoms with degenerate energy levels

    NASA Astrophysics Data System (ADS)

    Shatokhin, V. N.; Blattmann, R.; Wellens, T.; Buchleitner, A.

    2014-08-01

    We present a generalization of the diagrammatic pump-probe approach to coherent backscattering (CBS) of intense laser light for atoms with degenerate energy levels. We employ this approach for a characterization of the double-scattering signal from optically pumped atoms with the transition Jg→Je=Jg+1 in the helicity-preserving polarization channel. We show that, in the saturation regime, the internal degeneracy becomes manifest for atoms with Jg≥1, leading to a faster decrease of the CBS enhancement factor with increasing saturation parameter than in the nondegenerate case.

  14. Energy levels and lifetimes of Nd IV, Pm IV, Sm IV, and Eu IV

    SciTech Connect

    Dzuba, V. A.; Safronova, U. I.; Johnson, W. R.

    2003-09-01

    To address the shortage of experimental data for electron spectra of triply ionized rare-earth elements we have calculated energy levels and lifetimes of 4f{sup n+1} and 4f{sup n}5d configurations of Nd IV (n=2), Pm IV (n=3), Sm IV (n=4), and Eu IV (n=5) using Hartree-Fock and configuration-interaction methods. To control the accuracy of our calculations we also performed similar calculations for Pr III, Nd III, and Sm III, for which experimental data are available. The results are important, in particular, for physics of magnetic garnets.

  15. Four kingdoms on glacier ice: convergent energetic processes boost energy levels as temperatures fall.

    PubMed

    Napolitano, Michael J; Shain, Daniel H

    2004-08-01

    A diverse group of glacially obligate organisms coexist on temperate glaciers between Washington State and Alaska. A fundamental challenge for these and other cold-adapted species is the necessity to maintain an energy flux capable of sustaining life at low physiological temperatures. We show here that ice-adapted psychrophiles from four kingdoms (Animalia, Eubacteria, Fungi, Protista) respond to temperature fluctuations in a similar manner; namely, ATP levels and the total adenylate pool increase as temperatures fall (within their viable temperature limits, respectively), yet growth rate increases with temperature. By contrast, mesophilic representatives of each kingdom respond in an opposite manner (i.e. adenylates increase with temperature). These observations suggest that elevated adenylate levels in psychrophiles may offset inherent reductions in molecular diffusion at low physiological temperatures.

  16. Energy levels and spectral lines in the X-ray spectra of highly charged W XLIV

    NASA Astrophysics Data System (ADS)

    Hao, Liang-Huan; Kang, Xiao-Ping

    2014-07-01

    The multi-configuration Dirac-Hartree-Fock method is employed to calculate the fine-structure energy levels, wavelengths, transition probabilities, and oscillator strengths for electric dipole allowed (E1) and forbidden (M1, E2, M2) lines for the 4 s 24 p and 4 s4 p 2 configurations of W XLIV. The valence-valence and core-valence correlation effects are accounted for in a systematic way. Breit interactions and quantum electrodynamics (QED) effects are estimated in subsequent relativistic configuration interaction (CI) calculations. The present results are in good agreement with other available theoretical and experimental values, and we predict new data for several levels where no other theoretical and/or experimental results are available, precise measurements are clearly needed here.

  17. Shell energy and the level-density parameter of hot nuclei

    SciTech Connect

    Nerlo-Pomorska, Bozena; Pomorski, Krzysztof; Bartel, Johann

    2006-09-15

    Macroscopic-microscopic calculations have been performed with the Yukawa folded mean field for 134 spherical even-even nuclei and 6 deformed ones at temperatures 0{<=}T{<=}5 MeV and elongations ranging from oblate shapes to the scission configuration of fissioning nuclei. The Strutinsky type free-energy shell corrections for this sample of nuclei and their temperature and deformation dependence are found by a folding procedure in particle-number space. The average dependence of the single-particle level-density parameter on mass number A and isospin I is determined and compared with previous estimates obtained using the relativistic mean-field theory, the Hartree-Fock approximation with the Skyrme effective interaction, and the phenomenological Thomas-Fermi approach adjusted to experimental data. The estimates for the level-density parameter obtained for different deformations are fitted by a liquid-drop type expression.

  18. Time resolved fluorescence from parity mixed rotational energy levels - Collisions vs electric field effects

    NASA Astrophysics Data System (ADS)

    Mandich, M. L.; Gaebe, C. E.; Gottscho, R. A.

    1985-10-01

    Moore et al. (1984) have described a method for the in situ and nonintrusive measurement of plasma electric fields by a method involving the excitation of a parity or Lambda doublet of the polar diatomic molecule BCl. Three approximations are made in deriving a theoretical relationship between field strength and the forbidden to allowed line intensity ratio. One approximation is related to the neglect of collisional transfer, while another is based on the neglect of coherent phenomena, such as quantum beats between the mixed parity levels. New experimental evidence is provided, and it is shown that the latter approximation is not always justified. The last assumption is the neglect of hyperfine structure effects on field-dependent line intensities and polarizations. Hyperfine effects are accounted for in a phenomenological fashion which is justified empirically. Attention is given to both time-resolved and time-integrated fluorescence measurements from parity-mixed energy levels in the polar diatomic molecule BCl.

  19. Dynamical image-charge effect in molecular tunnel junctions: Beyond energy level alignment

    NASA Astrophysics Data System (ADS)

    Jin, Chengjun; Thygesen, Kristian S.

    2014-01-01

    When an electron tunnels between two metal contacts it temporarily induces an image charge (IC) in the electrodes which acts back on the tunneling electron. It is usually assumed that the IC forms instantaneously such that a static model for the image potential applies. Here we investigate how the finite IC formation time affects charge transport through a molecule suspended between two electrodes. For a single-level model, an analytical treatment shows that the conductance is suppressed by a factor Z2, where Z is the quasiparticle renormalization factor, compared to the static IC approximation. We show that Z can be expressed either in terms of the plasma frequency of the electrode or as the overlap between electrode wave functions corresponding to an empty and filled level, respectively. First-principles GW calculations for benzene-diamine connected to gold electrodes show that the dynamical corrections can reduce the conductance by more than a factor of two when compared to static GW or density functional theory where the molecular energy levels have been shifted to match the exact quasiparticle levels.

  20. Recent Developments in Energy Level Statistics in Generic Systems between Integrability and Chaos

    NASA Astrophysics Data System (ADS)

    Robnik, M.

    During the past decade or so there has been growing theoretical, numerical and experimental support for the Bohigas-Giannoni-Schmit Conjecture (1984) on the applicability of the random matrix theories statistics (GOE, GUE) in the classically ergodic quantal Hamiltonian systems. In the classically integrable systems the spectral fluctuations of the corresponding quantal Hamiltonians are well described by the Poissonian statistics. In the present paper we discuss the statistical properties of energy spectra of generic Hamiltonians in the transition region between integrability and ergodicity (KAM-systems). We present convincing statistically highly significant evidence for the fractional power law level repulsion (in the non-semiclassical limit, or near semiclassical limit), which is quite well fitted by the Brody distribution and even more so by the Izrailev distribution. However, at sufficiently large level spacings, say S > 1, the Berry-Robnik formulae for the level spacing distribution are found to be adequate. We discuss the possible theoretical approaches and explanations. The phenomenon of power law level repulsion is partially understood in terms of the sparsed banded random matrix ensembles (SBRME).

  1. Ab initio Determination of Formation Energies and Charge Transfer Levels of Charged Ions in Water

    NASA Astrophysics Data System (ADS)

    Vatti, Anoop Kishore; Todorova, Mira; Neugebauer, Joerg

    The ability to describe the complex atomic and electronic structure of liquid water and hydrated ions on a microscopic level is a key requirement to understand and simulate electro-chemical and biological processes. Identifying theoretical concepts which enable us to achieve an accurate description in a computationally efficient way is thereby of central importance. Aiming to unravel the importance and influence of different contributions on the hydration energy of ions we perform extensive ab-initio molecular dynamics simulations for charged and neutral cations (Zn, Mg) and anions (Cl, Br, I) in water. The structural correlations and electronic properties of the studied ions are analysed and compared to experimental observations. Following an approach inspired by the defect chemistry in semiconductors and aligning the water band edges on an absolute scale allows us to benchmark the calculated formation energies, identify transition states and compare the results to experiment. Based on these results we discuss the performance of various DFT xc-functionals to predict charge transfer levels and photo-emission experiments.

  2. A system-level cost-of-energy wind farm layout optimization with landowner modeling

    SciTech Connect

    Chen, Le; MacDonald, Erin

    2013-10-01

    This work applies an enhanced levelized wind farm cost model, including landowner remittance fees, to determine optimal turbine placements under three landowner participation scenarios and two land-plot shapes. Instead of assuming a continuous piece of land is available for the wind farm construction, as in most layout optimizations, the problem formulation represents landowner participation scenarios as a binary string variable, along with the number of turbines. The cost parameters and model are a combination of models from the National Renewable Energy Laboratory (NREL), Lawrence Berkeley National Laboratory, and Windustiy. The system-level cost-of-energy (COE) optimization model is also tested under two land-plot shapes: equally-sized square land plots and unequal rectangle land plots. The optimal COEs results are compared to actual COE data and found to be realistic. The results show that landowner remittances account for approximately 10% of farm operating costs across all cases. Irregular land-plot shapes are easily handled by the model. We find that larger land plots do not necessarily receive higher remittance fees. The model can help site developers identify the most crucial land plots for project success and the optimal positions of turbines, with realistic estimates of costs and profitability. (C) 2013 Elsevier Ltd. All rights reserved.

  3. Ideal Energy-Level Alignment at the ZnO/P3HT Photovoltaic Interface

    NASA Astrophysics Data System (ADS)

    Noori, Keian; Giustino, Feliciano

    2013-03-01

    Despite the significant progress made during the past decade, hybrid organic-inorganic photovoltaic devices comprising P3HT and ZnO still suffer from low short-circuit currents and moderate open-circuit voltages. These barriers call for a detailed examination of the atomic-scale physics underlying the energy-level alignment at the ZnO/P3HT interface, which is of critical importance if we are to understand what is the maximum ideal open-circuit voltage for this class of solar cell. Here we present the results of a first-principles study on large model interfaces between ZnO and P3HT. Using a combination of density-functional theory (DFT) and post-DFT methods based on hybrid functionals, we analyze the atomic structure and energetics of the semiconductor/polymer interface, as well as the interfacial energy-level alignment. We explore the effect of charge transfer on the ideal open-circuit voltage and identify a failure in the standard electron affinity rule. We determine a maximum ideal open-circuit voltage of ~2 V, which suggests that there is significant room for enhancing the performance of ZnO/P3HT solar cells by optimizing the interface at the nanoscale. This work is supported by the ERC under the EU FP7 / ERC grant no. 239578. Calculations were performed in part at the Oxford Supercomputing Centre.

  4. A few remarks on the simulation and use of crystal field energy level schemes of the rare earth ions

    NASA Astrophysics Data System (ADS)

    Hölsä, Jorma; Lastusaari, Mika; Maryško, Miroslav; Tukia, Mika

    2005-02-01

    The usefulness of the simulation of the energy level schemes of the trivalent rare earth ( R3+) ions in the prediction of the properties of the rare earth compounds is demonstrated for a few selected cases emphasizing the connection between different spectroscopic and magnetic properties of the R 3+ ions. The importance of the calculated energy level schemes in the UV-VUV range in interpreting complicated spectra and designing new phosphors by energy transfer and quantum cutting is described. In the absence of direct measurements, the calculated energy level values can be very useful. The possibilities to interpret the magnetic properties of the R3+ (and R2+) ions are described by using the wave functions of the energy levels obtained from the energy level simulations. As a fine example, it is shown how the amount of an Eu 2+ impurity can be obtained from the calculation of the paramagnetic susceptibility as a function of temperature. The problems involved in the simulation of the 7FJ crystal field energy level scheme of the Eu 3+ ion are highlighted by using a comparison between the extensive literature data and calculated level schemes.

  5. Revisiting the Earth's sea-level and energy budgets from 1961 to 2008

    USGS Publications Warehouse

    Church, John A.; White, Neil J.; Konikow, Leonard F.; Domingues, Catia M.; Cogley, J. Graham; Rignot, Eric; Gregory, Jonathan M.; van den Broeke, Michiel R.; Monaghan, Andrew J.; Velicogna, Isabella

    2011-01-01

    We review the sea-level and energy budgets together from 1961, using recent and updated estimates of all terms. From 1972 to 2008, the observed sea-level rise (1.8 0.2 mm yr-1 from tide gauges alone and 2.1 0.2 mm yr -1 from a combination of tide gauges and altimeter observations) agrees well with the sum of contributions (1.8 0.4 mm yr-1) in magnitude and with both having similar increases in the rate of rise during the period. The largest contributions come from ocean thermal expansion (0.8 mm yr-1) and the melting of glaciers and ice caps (0.7 mm yr -1), with Greenland and Antarctica contributing about 0.4 mm yr -1. The cryospheric contributions increase through the period (particularly in the 1990s) but the thermosteric contribution increases less rapidly. We include an improved estimate of aquifer depletion (0.3 mm yr -1), partially offsetting the retention of water in dams and giving a total terrestrial storage contribution of-0.1 mm yr-1. Ocean warming (90% of the total of the Earth's energy increase) continues through to the end of the record, in agreement with continued greenhouse gas forcing. The aerosol forcing, inferred as a residual in the atmospheric energy balance, is estimated as-0.8 0.4 W m-2 for the 1980s and early 1990s. It increases in the late 1990s, as is required for consistency with little surface warming over the last decade. This increase is likely at least partially related to substantial increases in aerosol emissions from developing nations and moderate volcanic activity. Copyright 2011 by the American Geophysical Union.

  6. A Critical Compilation of Energy Levels, Spectral Lines, and Transition Probabilities of Singly Ionized Silver, Ag II

    PubMed Central

    Kramida, Alexander

    2013-01-01

    All available experimental measurements of the spectrum of the Ag+ ion are critically reviewed. Systematic shifts are removed from the measured wavelengths. The compiled list of critically evaluated wavelengths is used to derive a comprehensive list of energy levels with well-defined uncertainties. Eigenvector compositions and level designations are found in two alternate coupling schemes. Some of the older work is found to be incorrect. A revised value of the ionization energy, 173283(7) cm−1, equivalent to 21.4844(8) eV, is derived from the new energy levels. A set of critically evaluated transition probabilities is given. PMID:26401429

  7. Rates of exponential decay in systems of discrete energy levels by Stieltjes imaging

    SciTech Connect

    Craigie, Jacob; Hammad, Ali; Cooper, Bridgette; Averbukh, Vitali

    2014-07-07

    An isolated bound state coupled to a continuum shows an exponential decay of its survival probability. Rates of the exponential decay occurring due to the bound-continuum coupling can be recovered from discretized continuum (L{sup 2}) calculations using a computational technique known as Stieltjes-Chebyshev moment theory or Stieltjes imaging. At the same time, some genuinely discrete level systems, e.g., Bixon-Jortner model, also show an exponential (or approximately exponential) decay of the initially populated level before the onset of quantum revivals. Here, we demonstrate numerically that Stieltjes imaging can be used for calculation of the rates of the exponential decay in such discrete level systems. We apply the Stieltjes imaging technique to the approximately exponential decay of inner-valence vacancies in trans-butadiene in order to show that the breakdown of the molecular orbital picture of ionization in the inner valence region can be physically interpreted as an energy-forbidden Coster-Kronig transition.

  8. Levelized cost of energy and sensitivity analysis for the hydrogen-bromine flow battery

    NASA Astrophysics Data System (ADS)

    Singh, Nirala; McFarland, Eric W.

    2015-08-01

    The technoeconomics of the hydrogen-bromine flow battery are investigated. Using existing performance data the operating conditions were optimized to minimize the levelized cost of electricity using individual component costs for the flow battery stack and other system units. Several different configurations were evaluated including use of a bromine complexing agent to reduce membrane requirements. Sensitivity analysis of cost is used to identify the system elements most strongly influencing the economics. The stack lifetime and round-trip efficiency of the cell are identified as major factors on the levelized cost of electricity, along with capital components related to hydrogen storage, the bipolar plate, and the membrane. Assuming that an electrocatalyst and membrane with a lifetime of 2000 cycles can be identified, the lowest cost market entry system capital is 220 kWh-1 for a 4 h discharge system and for a charging energy cost of 0.04 kWh-1 the levelized cost of the electricity delivered is 0.40 kWh-1. With systems manufactured at large scales these costs are expected to be lower.

  9. Age at puberty, ovulation rate, and reproductive tract traits of developing gilts fed two lysine levels and three metabolizable energy levels from 100 to 260 d of age

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the effect of feeding different lysine and metabolizable energy (ME) levels to developing gilts on age at puberty and reproductive tract measurements. Crossbred Large White × Landrace gilts (n = 1221) housed in groups from 100 d of age until slaughter (ap...

  10. The performance of brown egg-type layers fed different protein and energy levels in the tropics.

    PubMed

    Olomu, J M; Offiong, S A

    1983-02-01

    The effects of feeding three protein levels (16, 18, and 20%), each at three metabolizable energy levels (2400, 2600, and 2800 kcal/kg diet), were studied with 990 caged Warren Studler Sex-Sal Link pullets over a 336-day laying period. Dietary protein had no significant effects on hen-day egg production, egg weight, Haugh units, feed intake, feed conversion, feed cost per dozen eggs, caloric intake, egg weights, and final body weight. Protein consumption on all levels of dietary protein was over 20 g per bird per day and increased significantly with increases in dietary protein. Mortality was lowest on the highest protein level. The highest energy level (2800 kcal/kg diet) significantly depressed egg production and feed and protein intake. The feed costs per dozen eggs increased significantly with increases in dietary energy level. Caloric intake and final body weights were similar for the medium (2600 kcal/kg diet) and highest energy levels (2800 kcal/kg diet) but significantly higher than that obtained on the lowest energy level (2400 kcal/kg diet). Egg weights, Haugh units, feed per dozen eggs, and mortality were not significantly affected by energy levels. In spite of the average maximum monthly temperatures, ranging from 26.8 to 35.2 C, annual egg production was about 71 to 73% for the best groups, figures comparable with those obtainable in temperate climates. Egg weight and Haugh units were similar to reported temperate zone values. This experiment supports the use of 16% protein and a metabolizable energy level of 2400 kcal/kg diet for brown egg-type layers.

  11. Wavelengths, energy levels and hyperfine structure of Mn II and Sc II.

    NASA Astrophysics Data System (ADS)

    Nave, Gillian; Pickering, Juliet C.; Townley-Smith, Keeley I. M.; Hala, .

    2015-08-01

    For many decades, the Atomic Spectroscopy Groups at the National Institute of Standards and Technology (NIST) and Imperial College London (ICL) have measured atomic data of astronomical interest. Our spectrometers include Fourier transform (FT) spectrometers at NIST and ICL covering the region 1350 Å to 5.5 μm and a 10.7-m grating spectrometer at NIST covering wavelengths from 300 - 5000 Å. Sources for these spectra include high-current continuous and pulsed hollow cathode (HCL) lamps, Penning discharges, and sliding spark discharges. Recent work has focused on the measurement and analysis of wavelengths, energy levels, and hyperfine structure (HFS) constants for iron-group elements. The analysis of FT spectra of Cr I, Mn I, and Mn II is being led by ICL and is described in a companion poster [1]. Current work being led by NIST includes the analysis of HFS in Mn II, analysis of Mn II in the vacuum ultraviolet, and a comprehensive analysis of Sc II.Comprehensive HFS constants for Mn II are needed for the interpretation of stellar spectra and incorrect abundances may be obtained when HFS is omitted. Holt et al. [2] have measured HFS constants for 59 levels of Mn II using laser spectroscopy. We used FT spectra of Mn/Ni and Mn/Cu HCLs covering wavelength ranges from 1350 Å to 5.4 μm to confirm 26 of the A constants of Holt et al. and obtain values for roughly 40 additional levels. We aim to obtain HFS constants for the majority of lines showing significant HFS that are observed in chemically-peculiar stars.Spectra of Sc HCLs have been recorded from 1800 - 6700 Å using a vacuum ultraviolet FT spectrometer at NIST. Additional measurements to cover wavelengths above 6700 Å and below 1800 Å are in progress. The spectra are being analyzed by NIST and Alighar Muslim University, India in order to derive improved wavelengths, energy levels, and hyperfine structure parameters.This work was partially supported by NASA, the STFC and PPARC (UK), the Royal Society of the UK

  12. Charge separation at nanoscale interfaces: Energy-level alignment including two-quasiparticle interactions

    SciTech Connect

    Li, Huashan; Lin, Zhibin; Lusk, Mark T. Wu, Zhigang

    2014-10-21

    The universal and fundamental criteria for charge separation at interfaces involving nanoscale materials are investigated. In addition to the single-quasiparticle excitation, all the two-quasiparticle effects including exciton binding, Coulomb stabilization, and exciton transfer are considered, which play critical roles on nanoscale interfaces for optoelectronic applications. We propose a scheme allowing adding these two-quasiparticle interactions on top of the single-quasiparticle energy level alignment for determining and illuminating charge separation at nanoscale interfaces. Employing the many-body perturbation theory based on Green's functions, we quantitatively demonstrate that neglecting or simplifying these crucial two-quasiparticle interactions using less accurate methods is likely to predict qualitatively incorrect charge separation behaviors at nanoscale interfaces where quantum confinement dominates.

  13. Accuracy of analytic energy level formulas applied to hadronic spectroscopy of heavy mesons

    NASA Technical Reports Server (NTRS)

    Badavi, Forooz F.; Norbury, John W.; Wilson, John W.; Townsend, Lawrence W.

    1988-01-01

    Linear and harmonic potential models are used in the nonrelativistic Schroedinger equation to obtain article mass spectra for mesons as bound states of quarks. The main emphasis is on the linear potential where exact solutions of the S-state eigenvalues and eigenfunctions and the asymptotic solution for the higher order partial wave are obtained. A study of the accuracy of two analytical energy level formulas as applied to heavy mesons is also included. Cornwall's formula is found to be particularly accurate and useful as a predictor of heavy quarkonium states. Exact solution for all partial waves of eigenvalues and eigenfunctions for a harmonic potential is also obtained and compared with the calculated discrete spectra of the linear potential. Detailed derivations of the eigenvalues and eigenfunctions of the linear and harmonic potentials are presented in appendixes.

  14. Department of Energy perspective on high-level waste standards for Yucca Mountain

    SciTech Connect

    Brocoum, S.J.; Gil, A.V.; Van Luik, A.E.; Lugo, M.A.

    1996-07-01

    This paper provides a regulatory perspective from the viewpoint of the potential licensee, the U.S. Department of Energy (DOE), on the National Academy of Sciences (NAS) report on Yucca Mountain standards issued in August 1995, and on how the recommendations in that report should be considered in the development of high-level radioactive waste standards applicable to Yucca Mountain. The paper first provides an overview of the DOE perspective and then discusses several of the issues that are of most importance in the development of the regulatory framework for Yucca Mountain, including both the U.S. Environmental Protection Agency (EPA) standard and the U.S. Nuclear Regulatory Commission (NRC) implementing regulation. These issues include: the regulatory time frame, the risk/dose limit, the definition of the reference biosphere, human intrusion, and natural processes and events.

  15. Development of radiological profiles for U.S. Department of Energy low-level mixed wastes

    SciTech Connect

    Wilkins, B.D.; Meshkov, N.K.; Dolak, D.A.; Wang, Y.Y.

    1995-03-01

    Radiological profiles have been developed by Argonne National Laboratory for low-level mixed wastes (LLMWs) that are under the management of the US Department of Energy (DOE). These profiles have been used in the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS) to support the analysis of environmental and health risks associated with the various waste management strategies. The radiological characterization of DOE LLMWs is generally inadequate and has made it difficult to develop a site- and waste-stream-dependent radiological profile for LLMWs. On the basis of the operational history of the DOE sites, a simple model was developed to generate site-dependent and waste-stream-independent radiological profiles for LLMWs. This paper briefly discusses the assumptions used in this model and the uncertainties in the results.

  16. Energy levels of exciton traps in yttrium aluminum garnet single crystals

    NASA Astrophysics Data System (ADS)

    Varney, C. R.; Mackay, D. T.; Pratt, A.; Reda, S. M.; Selim, F. A.

    2012-03-01

    Electronic defects and exciton traps were studied in yttrium aluminum garnet (YAG) single crystals by wavelength and temperature resolved thermoluminescence (TL). Measurements were carried out from room temperature to 400 °C on a number of rare earth (RE) doped and undoped YAG crystals, and the trap parameters were determined. Although the TL emission spectrum is characteristic of the RE ion, the main trap levels are found to be characteristic of the undoped host crystal. Nevertheless, the thermal activation energies of the traps are slightly modified by doping. The trap kinetics are found to be of the first order in both undoped and Ce doped YAG single crystals indicating the absence of retrapping, which suggests that the traps and recombination centers exhibit a close spatial correlation. The effect of annealing on TL response suggests that some of the major traps are associated with oxygen vacancies.

  17. Fine-structure energy levels and autoionizing width calculations of magnesium-like Ni XVII

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Gao, Wenjing; Zhou, Chao; Zhang, Ling

    2013-05-01

    We have calculated highly excited fine-structure energy levels and their autoionizing width of 3 pns 3 P 1 ( n = 11-26), 3 pns 1 P 1 ( n = 10-22), 3 pnd 3 D 1 ( n = 11-26), 3 pnd 3 P 1 ( n = 10-21), 3 pnd 1 P 1( n = 10-21), 3 dnp 3 D 1 ( n = 7-30), 3 dnp 3 P 1 ( n = 7-28), 3 dnp 1 P 1 ( n = 7-28), 3 dnf 3 D 1 ( n = 7, 9-27), 3 dnf 3 P 1 ( n = 7, 9-27), and 3 dnf 1 P 1 ( n = 7, 9-27) for magnesium-like Ni XVII. The calculations are based upon the relativistic Breit-Pauli R-matrix approximation combining with the QB method of Quigley-Berrington (L. Quigley, K. A. Berrington, Pelan J. Comput. Phys. Commun. 114, 225 (1998)). We have reported the many unpublished energy values and autoionizing width of the J = 1 odd states of magnesium-like Ni XVII.

  18. Modification of Coulomb law and energy levels of the hydrogen atom in a superstrong magnetic field

    SciTech Connect

    Machet, B.; Vysotsky, M. I.

    2011-01-15

    We obtain the following analytical formula which describes the dependence of the electric potential of a pointlike charge on the distance away from it in the direction of an external magnetic field B: {Phi}(z)=e/|z|[1-exp(-{radical}(6m{sub e}{sup 2})|z|)+exp(-{radical}((2/{pi})e{sup 3}B+6m{sub e}{sup 2})|z|)]. The deviation from Coulomb's law becomes essential for B>3{pi}B{sub cr}/{alpha}=3{pi}m{sub e}{sup 2}/e{sup 3{approx_equal}}6x10{sup 16} G. In such superstrong fields, electrons are ultrarelativistic except those which occupy the lowest Landau level (LLL) and which have the energy {epsilon}{sub 0}{sup 2}=m{sub e}{sup 2}+p{sub z}{sup 2}. The energy spectrum on which LLL splits in the presence of the atomic nucleus is found analytically. For B>3{pi}B{sub cr}/{alpha} it differs substantially from the one obtained without accounting for the modification of the atomic potential.

  19. Wind Levelized Cost of Energy: A Comparison of Technical and Financing Input Variables

    SciTech Connect

    Cory, K.; Schwabe, P.

    2009-10-01

    The expansion of wind power capacity in the United States has increased the demand for project development capital. In response, innovative approaches to financing wind projects have emerged and are proliferating in the U.S. renewable energy marketplace. Wind power developers and financiers have become more efficient and creative in structuring their financial relationships, and often tailor them to different investor types and objectives. As a result, two similar projects may use very different cash flows and financing arrangements, which can significantly vary the economic competitiveness of wind projects. This report assesses the relative impact of numerous financing, technical, and operating variables on the levelized cost of energy (LCOE) associated with a wind project under various financing structures in the U.S. marketplace. Under this analysis, the impacts of several financial and technical variables on the cost of wind electricity generation are first examined individually to better understand the relative importance of each. Then, analysts examine a low-cost and a high-cost financing scenario, where multiple variables are modified simultaneously. Lastly, the analysis also considers the impact of a suite of financial variables versus a suite of technical variables.

  20. Energy Spectra, Composition, and Other Properties of Ground-Level Events During Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; COhen, C. M. S.; Labrador, A. W.; Leske, R. A.; Looper, M. D.; Haggerty, D. K.; Mason, G. M.; Mazur, J. E.; vonRosenvinge, T. T.

    2012-01-01

    We report spacecraft measurements of the energy spectra of solar protons and other solar energetic particle properties during the 16 Ground Level Events (GLEs) of Solar Cycle 23. The measurements were made by eight instruments on the ACE, GOES, SAMPBX, and STEREO spacecraft and extend from approximately 0.1 to approximately 500-700 MeV. All of the proton spectra exhibit spectral breaks at energies ranging from approximately 2 to approximately 46 MeV and all are well fit by a double power-law shape. A comparison of GLE events with a larger sample of other solar energetic particle (SEP) events shows that the typical spectral indices are harder in GLE events, with a mean slope of -3.18 at greater than 40 MeV/nuc. In the energy range 45 to 80 MeV/nucleon about approximately 50% of GLE events have properties in common with impulsive He-3-rich SEP events, including enrichments in Ne/O, Fe/O, Ne-22/Ne-20, and elevated mean charge states of Fe. These He-3 rich events contribute to the seed population accelerated by CME-driven shocks. An analysis is presented of whether highly-ionized Fe ions observed in five events could be due to electron stripping during shock acceleration in the low corona. Making use of stripping calculations by others and a coronal density model, we can account for events with mean Fe charge states of (Q(sub Fe) is approximately equal to +20 if the acceleration starts at approximately 1.24-1.6 solar radii, consistent with recent comparisons of CME trajectories and type-II radio bursts. In addition, we suggest that gradual stripping of remnant ions from earlier large SEP events may also contribute a highly-ionized suprathermal seed population. We also discuss how observed SEP spectral slopes relate to the energetics of particle acceleration in GLE and other large SEP events.

  1. Highlands County Energy Lessons. Middle School Level - Science, Mathematics, Social Studies, Vocational Education.

    ERIC Educational Resources Information Center

    Allen, Rodney F., Ed.; Farmer, Richard

    Middle school energy skills (Enerskills) and activities (Eneractivities) are provided in seven sections. Areas addressed include: (1) locating energy information using telephone books, dictionaries, card catalogs, and readers' guides; (2) writing letters for energy information; (3) energy and food (food intake/human performance, calories/energy);…

  2. Measuring the dynamics of cyclic adenosine monophosphate level in living cells induced by low-level laser irradiation using bioluminescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen; Zeng, Haishan

    2015-05-01

    Several studies demonstrated that the cyclic adenosine monophosphate (cAMP), an important second messenger, is involved in the mechanism of low-level laser irradiation (LLLI) treatment. However, most of these studies obtained the cAMP level in cell culture extracts or supernatant. In this study, the cAMP level in living cells was measured with bioluminescence resonance energy transfer (BRET). The effect of LLLI on cAMP level in living cells with adenosine receptors blocked was explored to identify the role of adenosine receptors in LLLI. The results showed that LLLI increased the cAMP level. Moreover, the rise of cAMP level was light dose dependent but wavelength independent for 658-, 785-, and 830-nm laser light. The results also exhibited that the adenosine receptors, a class of G protein-coupled receptor (GPCR), modulated the increase of cAMP level induced by LLLI. The cAMP level increased more significantly when the A3 adenosine receptors (A3R) were blocked by A3R antagonist compared with A1 adenosine receptor or A2a adenosine receptor blocked in HEK293T cells after LLLI, which was in good agreement with the adenosine receptors' expressions. All these results suggested that measuring the cAMP level with BRET could be a useful technique to study the role of GPCRs in living cells under LLLI.

  3. Influence of gravity level and interfacial energies on dispersion-forming tendencies in hypermonotectic Cu-Pb-Al alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. B.; Curreri, P. A.; Sandlin, A. C.

    1988-01-01

    Results on the nondirectional solidification of several hypermonotectic Cu-Pb-Al alloys were obtained aboard NASA's KC-135 zero-gravity aircraft in order to determine the influence of interfacial energies and gravity levels on dispersion-forming tendencies. The Al content was systematially varied in the alloys. The dispersion-forming ability is correlated with gravity level during solidification, the interfacial energy between the immiscible phases, and the tendency for the minority immiscible phase to wet the walls of the crucible.

  4. Electronic Characterization of Defects in Narrow Gap Semiconductors-Comparison of Electronic Energy Levels and Formation Energies in Mercury Cadmium Telluride, Mercury Zinc Telluride, and Mercury Zinc Selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1996-01-01

    We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.

  5. Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry

    SciTech Connect

    Boubault, Antoine; Ho, Clifford K.; Hall, Aaron; Lambert, Timothy N.; Ambrosini, Andrea

    2015-07-08

    The contribution of each component of a power generation plant to the levelized cost of energy (LCOE) can be estimated and used to increase the power output while reducing system operation and maintenance costs. The LCOE is used in order to quantify solar receiver coating influence on the LCOE of solar power towers. Two new parameters are introduced: the absolute levelized cost of coating (LCOC) and the LCOC efficiency. Depending on the material properties, aging, costs, and temperature, the absolute LCOC enables quantifying the cost-effectiveness of absorber coatings, as well as finding optimal operating conditions. The absolute LCOC is investigated for different hypothetic coatings and is demonstrated on Pyromark 2500 paint. Results show that absorber coatings yield lower LCOE values in most cases, even at significant costs. Optimal reapplication intervals range from one to five years. At receiver temperatures greater than 700 °C, non-selective coatings are not always worthwhile while durable selective coatings consistently reduce the LCOE—up to 12% of the value obtained for an uncoated receiver. Moreover the absolute LCOC is a powerful tool to characterize and compare different coatings, not only considering their initial efficiencies but also including their durability.

  6. Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry

    DOE PAGESBeta

    Boubault, Antoine; Ho, Clifford K.; Hall, Aaron; Lambert, Timothy N.; Ambrosini, Andrea

    2015-07-08

    The contribution of each component of a power generation plant to the levelized cost of energy (LCOE) can be estimated and used to increase the power output while reducing system operation and maintenance costs. The LCOE is used in order to quantify solar receiver coating influence on the LCOE of solar power towers. Two new parameters are introduced: the absolute levelized cost of coating (LCOC) and the LCOC efficiency. Depending on the material properties, aging, costs, and temperature, the absolute LCOC enables quantifying the cost-effectiveness of absorber coatings, as well as finding optimal operating conditions. The absolute LCOC is investigatedmore » for different hypothetic coatings and is demonstrated on Pyromark 2500 paint. Results show that absorber coatings yield lower LCOE values in most cases, even at significant costs. Optimal reapplication intervals range from one to five years. At receiver temperatures greater than 700 °C, non-selective coatings are not always worthwhile while durable selective coatings consistently reduce the LCOE—up to 12% of the value obtained for an uncoated receiver. Moreover the absolute LCOC is a powerful tool to characterize and compare different coatings, not only considering their initial efficiencies but also including their durability.« less

  7. Issues in performance assessments for disposal of US Department of Energy low-level waste

    SciTech Connect

    Wood, D.E.; Wilhite, E.L.; Duggan, G.J.

    1994-12-01

    The US Department of Energy (DOE) and its contractors have long been pioneers in the field of radiological performance assessment (PA). Much effort has been expended in developing technology and acquiring data to facilitate the assessment process. This is reflected in DOE Order 5820.2A, Radioactive Waste Management Chapter III of the Order lists policy and requirements to manage the DOEs low-level waste; performance objectives for low-level waste management are stated to ensure the protection of public health and the environment. A radiological PA is also required to demonstrate compliance with the performance objectives. DOE Order 5820.2A further requires that an Oversight and Peer Review Panel be established to ensure consistency and technical quality around the DOE complex in the development and application of PA models that include site-specific geohydrology and waste composition. The DOE has also established a Performance Assessment Task Team (PATT) to integrate the activities of sites that are preparing PAs. The PATT`s purpose is to recommend policy and guidance to DOE on issues that impact PAs so that the approaches taken are as consistent as possible across the DOE complex.

  8. Channel coupling in heavy quarkonia: Energy levels, mixing, widths, and new states

    SciTech Connect

    Danilkin, I. V.; Simonov, Yu. A.

    2010-04-01

    The mechanism of channel coupling via decay products is used to study energy shifts, level mixing as well as the possibility of new near-threshold resonances in cc, bb systems. The Weinberg eigenvalue method is formulated in the multichannel problems, which allows one to describe coupled-channel resonances and wave functions in a unitary way, and to predict new states due to channel coupling. Realistic wave functions for all single-channel states and decay matrix elements computed earlier are exploited, and no new fitting parameters are involved. Examples of level shifts, widths, and mixings are presented; the dynamical origin of X(3872) and the destiny of the single-channel 2{sup 3}P{sub 1}(cc) state are clarified. As a result a sharp and narrow peak in the state with quantum numbers J{sup PC}=1{sup ++} is found at 3.872 GeV, while the single-channel resonance originally around 3.940 GeV becomes increasingly broad and disappears with growing coupling to open channels.

  9. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    PubMed

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  10. Effect of Different Energy Levels of Microwave on Disinfection of Dental Stone Casts

    PubMed Central

    Robati Anaraki, Mahmood; Lotfipour, Farzaneh; Moslehifard, Elnaz; Momtaheni, Ali; Sigari, Pooyan

    2013-01-01

    Background and aims Current chemical methods may not efficiently disinfect dental stone casts. The aim of this study was to investigate if microwave irradiation is effective for disinfection of stone casts. Materials and methods In this laboratory study, three groups (n = 162) of prepared spherical stone beads as carriers with a diameter of 10 mm were inoculated by separately soaking in three broth culture media, each containing a study microorganism—Pseudomonas aeruginosa, Staphylococcus aureus or Candida albicans. Six inoculated carriers were used for every test, including irradiation in a household microwave oven at 300, 450, 600 or 900 W energy level, or soaking in 0.03%, 0.06%, 0.12%, 0.25% or 0.50% concentration of sodium hypochlorite solution, at 1, 2, or 3-minute test times. Positive and negative control groups were considered for each test. All treated carriers were then individually transferred to nutrient broth culture medium and one milliliter from each tube was cultured in nutrient agar media over night. Colony forming unit per milliliter (CFU/mL) was counted, and multi-factor ANOVA was used to analyze data (α = 0.05). Results Microwave irradiation at 600 W resulted in high-level disinfection in 3 minutes. Immersion of the stone casts in hypochlorite solution at 0.06% concentration resulted in disinfection after 2 minutes. Conclusion According to the results, high level disinfection of the stone casts can be achieved by microwave irradiation at 600 W in 3 minutes, similar to a validated chemical method. PMID:24082984

  11. Spectra and energy levels of Tm3+ (4 f12 ) in AlN

    NASA Astrophysics Data System (ADS)

    Gruber, John B.; Vetter, Ulrich; Hofsäss, Hans; Zandi, Bahram; Reid, Michael F.

    2004-12-01

    We report a detailed analysis of the cathodoluminescence spectra of Tm3+ -implanted 2H-aluminum nitride (AlN) covering the wavelength range between 290 and 820nm at temperatures between 12 and 60K . More than 200 transitions are observed, of which more than 100 of these transitions can be identified from emitting multiplet manifolds I61 , D21 , and G41 . Although the emitting levels are not observed directly, emission is also attributed to the P23 and P13 multiplet manifolds based on analyses of transitions to terminal levels F43 , H53 , and F33 . The observed crystal-field splitting of the ground-state multiplet manifold, H63 , and manifolds F43 , H53 , H43 , F33 , F23 , and G41 is established from an analysis based on matching repeated energy differences between transitions. This method is similar to one used in analyzing arc and spark spectra. Temperature-dependent spectra also establish the crystal-field splitting of the P13 and part of the manifold splitting of emitting levels such as I61 . To establish an initial set of crystal-field splitting parameters, Bnm , that can be related to a physical model, we carried out a lattice-sum calculation by computing the crystal-field components, which are the coefficients in a multipolar expansion of the crystal field about the Al3+ sites that have C3v symmetry in the lattice. Emission channeling experiments indicate that the Al3+ sites serve as the substitutional sites for Tm3+ in AlN. With only minor adjustments to the calculated centroids to account for J -mixing, the calculated crystal-field splitting of most multiplet manifolds, LJ2S+1 , of Tm3+(4f12) based on the Bnm obtained from the lattice-sum calculations, is in good agreement with the reported experimental splitting.

  12. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale.

    PubMed

    Cornil, J; Verlaak, S; Martinelli, N; Mityashin, A; Olivier, Y; Van Regemorter, T; D'Avino, G; Muccioli, L; Zannoni, C; Castet, F; Beljonne, D; Heremans, P

    2013-02-19

    strongly interacting electron-hole pairs can potentially escape from their Coulomb well, a process that is at the heart of photoconversion or molecular doping. Yet they do, with near-quantitative yield in some cases. Limited screening by the low dielectric medium in organic materials leads to subtle static and dynamic electronic polarization effects that strongly impact the energy landscape for charges, which offers a rationale for this apparent inconsistency. In this Account, we use different theoretical approaches to predict the energy landscape of charge carriers at the molecular level and review a few case studies highlighting the role of electrostatic interactions in conjugated organic molecules. We describe the pros and cons of different theoretical approaches that provide access to the energy landscape defining the motion of charge carriers. We illustrate the applications of these approaches through selected examples involving OFETs, OLEDs, and solar cells. The three selected examples collectively show that energetic disorder governs device performances and highlights the relevance of theoretical tools to probe energy landscapes in molecular assemblies.

  13. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale.

    PubMed

    Cornil, J; Verlaak, S; Martinelli, N; Mityashin, A; Olivier, Y; Van Regemorter, T; D'Avino, G; Muccioli, L; Zannoni, C; Castet, F; Beljonne, D; Heremans, P

    2013-02-19

    strongly interacting electron-hole pairs can potentially escape from their Coulomb well, a process that is at the heart of photoconversion or molecular doping. Yet they do, with near-quantitative yield in some cases. Limited screening by the low dielectric medium in organic materials leads to subtle static and dynamic electronic polarization effects that strongly impact the energy landscape for charges, which offers a rationale for this apparent inconsistency. In this Account, we use different theoretical approaches to predict the energy landscape of charge carriers at the molecular level and review a few case studies highlighting the role of electrostatic interactions in conjugated organic molecules. We describe the pros and cons of different theoretical approaches that provide access to the energy landscape defining the motion of charge carriers. We illustrate the applications of these approaches through selected examples involving OFETs, OLEDs, and solar cells. The three selected examples collectively show that energetic disorder governs device performances and highlights the relevance of theoretical tools to probe energy landscapes in molecular assemblies. PMID:23140088

  14. Energy levels and far-infrared optical absorption of impurity doped semiconductor nanorings: Intense laser and electric fields effects

    NASA Astrophysics Data System (ADS)

    Barseghyan, M. G.

    2016-11-01

    The effects of electron-impurity interaction on energy levels and far-infrared absorption in semiconductor nanoring under the action of intense laser and lateral electric fields have been investigated. Numerical calculations are performed using exact diagonalization technique. It is found that the electron-impurity interaction and external fields change the energy spectrum dramatically, and also have significant influence on the absorption spectrum. Strong dependence on laser field intensity and electric field of lowest energy levels, also supported by the Coulomb interaction with impurity, is clearly revealed.

  15. Sensory profile of a model energy drink with varying levels of functional ingredients-caffeine, ginseng, and taurine.

    PubMed

    Tamamoto, Lauren C; Schmidt, Shelly J; Lee, Soo-Yeun

    2010-08-01

    Energy drinks have increased in popularity in recent years due to the claimed energy boost provided by functional ingredients. A multitude of functional ingredients have been utilized; however, there is limited research on their sensory effects in energy drink formulations. A 13-member descriptive analysis panel was conducted to investigate the effects on the sensory and rheological properties of 3 common functional ingredients-caffeine, ginseng, and taurine-in a noncarbonated model energy drink solution. Combinations of these functional ingredients at 3 levels (low, medium, high) were added to create a total of 27 different solutions (3 x 3 x 3 factorial design). Analysis of variance was performed to evaluate the sensory effects of the varying concentrations of functional ingredients in solution. Principal component analysis (PCA) was performed to summarize the relationship among the attributes and solutions. In general, high levels of caffeine in solution resulted in low ratings of fruity attributes and high ratings of bitter tea and fruit bitter attributes. The high level of ginseng in solution was characterized by high ratings of bitter attributes. A horns effect was observed as the sweet, artificial lemon-lime, pear, mango, and pineapple attributes were rated lower in intensity with increased ginseng levels. Taurine levels of up to 416 mg/100 mL had no significant effect on the sensory attribute ratings of the model energy drink solutions. These findings can be utilized to predict the changes in sensory characteristics when formulating energy drinks containing these popular functional ingredients.

  16. a New Method for Solving the Z > 137 Problem and for Determination of Energy Levels of Hydrogen-Like Atoms

    NASA Astrophysics Data System (ADS)

    Neznamov, V. P.; Safronov, I. I.

    The "catastrophe" in solving the Dirac equation for an electron in the field of a point electric charge, which emerges for the charge numbers Z > 137, is removed in this work by new method of accounting of finite dimensions of nuclei. For this purpose, in numerical solutions of equations for Dirac radial wave functions, we introduce a boundary condition at the nucleus boundary such that the components of the electron current density is zero. As a result, for all nuclei of the periodic table the calculated energy levels practically coincide with the energy levels in standard solutions of the Dirac equation in the external field of the Coulomb potential of a point charge. Further, for Z > 105, the calculated energy level functions E(Z) are monotone and smooth. The lower energy level reaches the energy E = -mc2 (the electron "drop" on a nuclei) at Zc = 178. The proposed method of accounting of the finite size of nuclei can be easily used in numerical calculations of energy levels of many-electron atoms.

  17. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006

    SciTech Connect

    Building America Industrialized Housing Partnership; Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Davis Energy Group; IBACOS; National Association of Home Builders Research Center; National Renewable Energy Laboratory

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

  18. Intravenous non-high-dose pantoprazole is equally effective as high-dose pantoprazole in preventing rebleeding among low risk patients with a bleeding peptic ulcer after initial endoscopic hemostasis

    PubMed Central

    2012-01-01

    Background Many studies have shown that high-dose proton-pumps inhibitors (PPI) do not further reduce the rate of rebleeding compared to non-high-dose PPIs but we do not know whether intravenous non-high-dose PPIs reduce rebleeding rates among patients at low risk (Rockall score < 6) or among those at high risk, both compared to high-dose PPIs. This retrospective case-controlled study aimed to identify the subgroups of these patients that might benefit from treatment with non-high-dose PPIs. Methods Subjects who received high dose and non-high-dose pantoprazole for confirmed acute PU bleeding at a tertiary referral hospital were enrolled (n = 413). They were divided into sustained hemostasis (n = 324) and rebleeding groups (n = 89). The greedy method was applied to allow treatment-control random matching (1:1). Patients were randomly selected from the non-high-dose and high-dose PPI groups who had a high risk peptic ulcer bleeding (n = 104 in each group), and these were then subdivided to two subgroups (Rockall score ≥ 6 vs. < 6, n = 77 vs. 27). Results An initial low hemoglobin level, serum creatinine level, and Rockall score were independent factors associated with rebleeding. After case-control matching, the significant variables between the non-high-dose and high-dose PPI groups for a Rockall score ≥ 6 were the rebleeding rate, and the amount of blood transfused. Case-controlled matching for the subgroup with a Rockall score < 6 showed that the rebleeding rate was similar for both groups (11.1% in each group). Conclusion Intravenous non-high-dose pantoprazole is equally effective as high-dose pantoprazole when treating low risk patients with a Rockall sore were < 6 who have bleeding ulcers and high-risk stigmata after endoscopic hemostasis. PMID:22455511

  19. Isolated energy level in the band gap of Yb2Si2O7 identified by electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Ogawa, Takafumi; Kobayashi, Shunsuke; Wada, Masashi; Fisher, Craig A. J.; Kuwabara, Akihide; Kato, Takeharu; Yoshiya, Masato; Kitaoka, Satoshi; Moriwake, Hiroki

    2016-05-01

    We report the detection of an isolated energy level in the band gap of crystalline Yb2Si2O7 in the low-energy-loss region of its electron energy-loss (EEL) spectrum, obtained using a monochromated scanning transmission electron microscope. The experimental results are corroborated by first-principles calculations of the theoretical EEL spectrum. The calculations reveal that unoccupied Yb 4 f orbitals constitute an isolated energy level about 1 eV below the conduction band minimum (CBM), resulting in a terrace about 1 eV wide at the band edge of the EEL spectrum. In the case of Yb2O3 , no band edge terrace is present because the unoccupied f level lies just below the CBM. We also examined optical absorption properties of Yb2Si2O7 using UV-vis diffuse reflectance spectroscopy, which shows that the isolated energy level could not be detected in the band edge of the obtained absorbance spectrum. These findings demonstrate the utility of low-loss EEL spectroscopy with high energy resolution for probing semilocalized electronic features.

  20. Energy Sources (Energy/Power). Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    ERIC Educational Resources Information Center

    Lawrence, Allen; And Others

    This course guide for an energy sources course is one of four developed for the energy/power area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--graphic communications and production.) Part 1 provides such introductory information as a definition and…

  1. Accurate Potential Energy Surface, Rovibrational Energy Levels, and Transitions of Ammonia C_{3v} Isotopologues: ^{14}NH_3, ^{15}NH_3, ^{14}ND_3 and ^{14}NT_3

    NASA Astrophysics Data System (ADS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2009-06-01

    A further refined, global potential energy surface (PES) is computed for the C_{3v} symmetry isotopologues of ammonia, including ^{14}NH_3, ^{15}NH_3, ^{14}ND_3 and ^{14}NT_3. The refinement procedure was similar to that used in our previously reported PES, but now extends to higher J energy levels and other isotopologues. Both the diagonal Born-Oppenheimer correction and the non-adiabatic correction were included. J=0-6 rovibrational energy levels and transition frequencies of ^{14}NH_3 computed on this PES are in excellent agreement with HITRAN data. Statistics on nearly 4100 transitions and more than 1000 energy levels demonstrate the accuracy achieved by the state-of-the-art "Best Theory + Experiment" strategy. Most transition frequencies are of ±0.01-0.02 cm^{-1} accuracy. Similar accuracy has been found on ^{15}NH_3 J=0-3 rovibrational energy levels. Several transitions and energy levels in HITRAN have been identified as unreliable or suspicious, and some have been re-assigned. For ^{14}ND_3 and ^{14}NT_3, J=0-3 calculations have been performed. Agreement for pure rotation-inversion transitions is nearly perfect, with more reliable energy levels presented. On the other hand, our J=0 results suggest a re-analysis on the ^{14}ND_3 ν_1 band origin is needed. Finally, we will discuss possible future refinements leading to an even better final PES for Ammonia. X. Huang, D.W. Schwenke, and T.J. Lee, J. Chem. Phys. 129, 214304 (2008).

  2. Impact of molecule-dipole orientation on energy level alignment at the submolecular scale

    NASA Astrophysics Data System (ADS)

    Huang, Y. L.; Chen, W.; Bussolotti, F.; Niu, T. C.; Wee, A. T. S.; Ueno, N.; Kera, S.

    2013-02-01

    The molecular orientation-dependent electronic properties of monolayer dipolar molecule chloroaluminum phthalocyanine (ClAlPc) on Au(111) are investigated by ultraviolet photoemission spectroscopy and scanning tunneling microscopy. The relation between geometrical and electronic structures has been revealed in the binding energies of the highest occupied molecular orbital states and vacuum level (VL) shifts. Two molecular orientations, Cl-up- and Cl-down-oriented molecules, coexist in the as-grown monolayer ClAlPc films on Au(111) without the formation of staggered molecular pairs to cancel the dipoles and phase separation, as is the case on graphite. After annealing, only the Cl-up-oriented molecules remain on Au(111), as on graphite. Interestingly, an extraordinarily large VL shift of -0.89 eV is observed in the annealed monolayer ClAlPc film on Au(111), which is opposite to that of +0.46 eV on graphite even though the molecular dipoles are oriented similarly.

  3. US Department of Energy Storage of Spent Fuel and High Level Waste

    SciTech Connect

    Sandra M Birk

    2010-10-01

    ABSTRACT This paper provides an overview of the Department of Energy's (DOE) spent nuclear fuel (SNF) and high level waste (HLW) storage management. Like commercial reactor fuel, DOE's SNF and HLW were destined for the Yucca Mountain repository. In March 2010, the DOE filed a motion with the Nuclear Regulatory Commission (NRC) to withdraw the license application for the repository at Yucca Mountain. A new repository is now decades away. The default for the commercial and DOE research reactor fuel and HLW is on-site storage for the foreseeable future. Though the motion to withdraw the license application and delay opening of a repository signals extended storage, DOE's immediate plans for management of its SNF and HLW remain the same as before Yucca Mountain was designated as the repository, though it has expanded its research and development efforts to ensure safe extended storage. This paper outlines some of the proposed research that DOE is conducting and will use to enhance its storage systems and facilities.

  4. Energy level shifts at the silica/Ru(0001) heterojunction driven by surface and interface dipoles

    DOE PAGESBeta

    Wang, Mengen; Zhong, Jian -Qiang; Kestell, John; Waluyo, Iradwikanari; Stacchiola, Dario J.; Boscoboinik, J. Anibal; Lu, Deyu

    2016-09-12

    Charge redistribution at heterogeneous interfaces is a fundamental aspect of surface chemistry. Manipulating the amount of charges and the magnitude of dipole moments at the interface in a controlled way has attracted tremendous attention for its potential to modify the activity of heterogeneous catalysts in catalyst design. Two-dimensional ultrathin silica films with well-defined atomic structures have been recently synthesized and proposed as model systems for heterogeneous catalysts studies. R. Wlodarczyk et al. (Phys. Rev. B, 85, 085403 (2012)) have demonstrated that the electronic structure of silica/Ru(0001) can be reversibly tuned by changing the amount of interfacial chemisorbed oxygen. Here wemore » carried out systematic investigations to understand the underlying mechanism through which the electronic structure at the silica/Ru(0001) interface can be tuned. As corroborated by both in situ X-ray photoelectron spectroscopy and density functional theory calculations, the observed interface energy level alignments strongly depend on the surface and interfacial charge transfer induced dipoles at the silica/Ru(0001) heterojunction. These observations may help to understand variations in catalytic performance of the model system from the viewpoint of the electronic properties at the confined space between the silica bilayer and the Ru(0001) surface. As a result, the same behavior is observed for the aluminosilicate bilayer, which has been previously proposed as a model system for zeolites.« less

  5. Interplay between Self-Assembled Structures and Energy Level Alignment of Benzenediamine on Au(111) Surfaces

    NASA Astrophysics Data System (ADS)

    Li, Guo; Neaton, Jeffrey

    2015-03-01

    Using van der Waals-corrected density functional theory (DFT) calculations, we study the adsorption of benzene-diamine (BDA) molecules on Au(111) surfaces. We find that at low surface coverage, the adsorbed molecules prefer to stay isolated from each other in a monomer phase, due to the inter-molecular dipole-dipole repulsions. However, when the coverage rises above a critical value of 0.9nm-2, the adsorbed molecules aggregate into linear structures via hydrogen bonding between amine groups, consistent with recent experiments [Haxton, Zhou, Tamblyn, et al, Phys. Rev. Lett. 111, 265701 (2013)]. Moreover, we find that these linear structures at high density considerably reduces the Au work function (relative to a monomer phase). Due to reduced surface polarization effects, we estimate that the resonance energy of the highest occupied molecular orbital of the adsorbed BDA molecule relative to the Au Fermi level is significantly lower than the monomer phase by more than 0.5 eV, consistent with the experimental measurements [DellAngela, Kladnik, and Cossaro, et al., Nano Lett. 10, 2470 (2010)]. This work supported by DOE (the JCAP under Award Number DE-SC000499 and the Molecular Foundry of LBNL), and computational resources provided by NERSC.

  6. Hysteresis in Carbon Nanotube Transistors: Measurement and Analysis of Trap Density, Energy Level, and Spatial Distribution.

    PubMed

    Park, Rebecca Sejung; Shulaker, Max Marcel; Hills, Gage; Suriyasena Liyanage, Luckshitha; Lee, Seunghyun; Tang, Alvin; Mitra, Subhasish; Wong, H-S Philip

    2016-04-26

    We present a measurement technique, which we call the Pulsed Time-Domain Measurement, for characterizing hysteresis in carbon nanotube field-effect transistors, and demonstrate its applicability for a broad range of 1D and 2D nanomaterials beyond carbon nanotubes. The Pulsed Time-Domain Measurement enables the quantification (density, energy level, and spatial distribution) of charged traps responsible for hysteresis. A physics-based model of the charge trapping process for a carbon nanotube field-effect transistor is presented and experimentally validated using the Pulsed Time-Domain Measurement. Leveraging this model, we discover a source of traps (surface traps) unique to devices with low-dimensional channels such as carbon nanotubes and nanowires (beyond interface traps which exist in today's silicon field-effect transistors). The different charge trapping mechanisms for interface traps and surface traps are studied based on their temperature dependencies. Through these advances, we are able to quantify the interface trap density for carbon nanotube field-effect transistors (∼3 × 10(13) cm(-2) eV(-1) near midgap), and compare this against a range of previously studied dielectric/semiconductor interfaces.

  7. Extrapolating toxic effects on individuals to the population level: the role of dynamic energy budgets.

    PubMed

    Jager, Tjalling; Klok, Chris

    2010-11-12

    The interest of environmental management is in the long-term health of populations and ecosystems. However, toxicity is usually assessed in short-term experiments with individuals. Modelling based on dynamic energy budget (DEB) theory aids the extraction of mechanistic information from the data, which in turn supports educated extrapolation to the population level. To illustrate the use of DEB models in this extrapolation, we analyse a dataset for life cycle toxicity of copper in the earthworm Dendrobaena octaedra. We compare four approaches for the analysis of the toxicity data: no model, a simple DEB model without reserves and maturation (the Kooijman-Metz formulation), a more complex one with static reserves and simplified maturation (as used in the DEBtox software) and a full-scale DEB model (DEB3) with explicit calculation of reserves and maturation. For the population prediction, we compare two simple demographic approaches (discrete time matrix model and continuous time Euler-Lotka equation). In our case, the difference between DEB approaches and population models turned out to be small. However, differences between DEB models increased when extrapolating to more field-relevant conditions. The DEB3 model allows for a completely consistent assessment of toxic effects and therefore greater confidence in extrapolating, but poses greater demands on the available data. PMID:20921051

  8. Monochromatic Infrared Photo Energy Versus Low Level Laser Therapy in Chronic Low Back Pain

    PubMed Central

    Ammar, Tarek Abdel Rahman Ali

    2015-01-01

    Introduction: Low back pain (LBP) is the most common musculoskeletal disease. Monochromatic infrared photo energy (MIPE) and low level laser therapy (LLLT) are light modalities used to reduce pain and increase blood flow. The aim of this study was to compare the effects of the MIPE and LLLT in reducing functional disability and pain as well as improving lumbar range of motion (ROM) in patients with chronic LBP. Methods: Seventy participants with LBP completed the program and were randomly assigned into 2 groups. Group 1 (n = 35) received MIPE and therapeutic exercises. Group 2 (n = 35) received LLLT and therapeutic exercises. Both groups received 2 visits per week for 6 weeks. Outcome measures were functional rating index (FRI), visual analogue scale (VAS) and modified-modified Schober test at baseline and after 6 weeks. Results: There were statistically significant improvements in functional disability, pain and lumbar ROM (P < .05) in each group. However, no significant differences were recorded between the groups (P > .05). Conclusion: Therefore, MIPE and LLLT may play a role in treating chronic LBP and there are no differences between the two modalities in improving functional disability, pain and lumbar ROM in patients with chronic LBP. PMID:26705460

  9. Conjugated polymer energy level shifts in lithium-ion battery electrolytes.

    PubMed

    Song, Charles Kiseok; Eckstein, Brian J; Tam, Teck Lip Dexter; Trahey, Lynn; Marks, Tobin J

    2014-11-12

    The ionization potentials (IPs) and electron affinities (EAs) of widely used conjugated polymers are evaluated by cyclic voltammetry (CV) in conventional electrochemical and lithium-ion battery media, and also by ultraviolet photoelectron spectroscopy (UPS) in vacuo. By comparing the data obtained in the different systems, it is found that the IPs of the conjugated polymer films determined by conventional CV (IPC) can be correlated with UPS-measured HOMO energy levels (EH,UPS) by the relationship EH,UPS = (1.14 ± 0.23) × qIPC + (4.62 ± 0.10) eV, where q is the electron charge. It is also found that the EAs of the conjugated polymer films measured via CV in conventional (EAC) and Li(+) battery (EAB) media can be linearly correlated by the relationship EAB = (1.07 ± 0.13) × EAC + (2.84 ± 0.22) V. The slopes and intercepts of these equations can be correlated with the dielectric constants of the polymer film environments and the redox potentials of the reference electrodes, as modified by the surrounding electrolyte, respectively.

  10. Serum zinc and copper level in children with protein energy malnutrition.

    PubMed

    Gautam, B; Deb, K; Banerjee, M; Ali, M S; Akhter, S; Shahidullah, S M; Hoque, M R

    2008-07-01

    This case control study was carried out in the department of Biochemistry, Mymensingh Medical College in co-operation with the Pediatric wards of Mymensingh Medical College Hospital and Ganashasthya Nagar Hospital, Dhaka during the period from July 2005 to June 2006. The aim of the study was to explore the status of serum zinc and copper level in Bangladeshi children with Protein Energy Malnutrition (PEM) as a means to monitor the possibility of management of these children as each of these mineral deficiencies produce typical deficiency syndromes. A total of 68 children aging from five months to five years were included in this study. Subjects were divided into two groups-Group I (Control; n=20)-children with normal growth, weight for age between 3rd and 97th centile curve, Centers for Disease Control (CDC) growth chart, USA, 2000 and group II-(children with PEM; n=48)-children with retarded growth, weight for age below 3rd centile of CDC growth chart, USA, 2000. Group II was again divided into three subgroups according to Wellcome classification of PEM and clinical features. These were Group IIA: Marasmus (n=19), Group IIB: Kwashiorkor (n=14) and Group IIC: Marasmic Kwashiorkor (n=15). Serum zinc and copper levels were determined by Atomic Absorption Spectrophotometric method. Statistical analysis was done by using Statistical Package for the Social Sciences (SPSS) window package. Among the different groups of children mean+/-SD (Standard Deviation) of serum zinc in PEM (59.85+/-11.18 microg/dl), Marasmus (66.73+/-8.23 microg/dl), Kwashiorkor (49.69+/-10.35 microg/dl) and Marasmic Kwashiorkor (60.63+/-8.04 microg/dl) were all significantly lower (p<0.001) than in control group (106.16+/-13.36 microg/dl). Similarly mean+/-SD of serum copper in PEM (82.73+/-16.35 microg/dl), Marasmus (93.72+/-9.77 microg/dl), Kwashiorkor (63.75+/-13.12 microg/dl) and Marasmic Kwashiorkor (86.52+/-8.68 microg/dl) were all also significantly lower (p<0.001) than in control group (135

  11. Cellular energy allocation in zebra mussels exposed along a pollution gradient: linking cellular effects to higher levels of biological organization.

    PubMed

    Smolders, R; Bervoets, L; De Coen, W; Blust, R

    2004-05-01

    Organisms exposed to suboptimal environments incur a cost of dealing with stress in terms of metabolic resources. The total amount of energy available for maintenance, growth and reproduction, based on the biochemical analysis of the energy budget, may provide a sensitive measure of stress in an organism. While the concept is clear, linking cellular or biochemical responses to the individual and population or community level remains difficult. The aim of this study was to validate, under field conditions, using cellular energy budgets [i.e. changes in glycogen-, lipid- and protein-content and mitochondrial electron transport system (ETS)] as an ecologically relevant measurement of stress by comparing these responses to physiological and organismal endpoints. Therefore, a 28-day in situ bioassay with zebra mussels (Dreissena polymorpha) was performed in an effluent-dominated stream. Five locations were selected along the pollution gradient and compared with a nearby (reference) site. Cellular Energy Allocation (CEA) served as a biomarker of cellular energetics, while Scope for Growth (SFG) indicated effects on a physiological level and Tissue Condition Index and wet tissue weight/dry tissue weight ratio were used as endpoints of organismal effects. Results indicated that energy budgets at a cellular level of biological organization provided the fastest and most sensitive response and energy budgets are a relevant currency to extrapolate cellular effects to higher levels of biological organization within the exposed mussels.

  12. Calculation of Electrochemical Energy Levels in Water Using the Random Phase Approximation and a Double Hybrid Functional.

    PubMed

    Cheng, Jun; VandeVondele, Joost

    2016-02-26

    Understanding charge transfer at electrochemical interfaces requires consistent treatment of electronic energy levels in solids and in water at the same level of the electronic structure theory. Using density-functional-theory-based molecular dynamics and thermodynamic integration, the free energy levels of six redox couples in water are calculated at the level of the random phase approximation and a double hybrid density functional. The redox levels, together with the water band positions, are aligned against a computational standard hydrogen electrode, allowing for critical analysis of errors compared to the experiment. It is encouraging that both methods offer a good description of the electronic structures of the solutes and water, showing promise for a full treatment of electrochemical interfaces.

  13. Energy levels and redox properties of aqueous Mn(2+/3+) from photoemission spectroscopy and density functional molecular dynamics simulation.

    PubMed

    Moens, Jan; Seidel, Robert; Geerlings, Paul; Faubel, Manfred; Winter, Bernd; Blumberger, Jochen

    2010-07-22

    Energy-resolved photoemission spectroscopy and density functional molecular dynamics simulations are combined to construct an energy level diagram for the Mn(2+/3+) redox reaction in aqueous solution. Two peaks centered at 8.88 and 10.26 eV electron binding energies can be assigned to the Mn2+ hexa-aquo complex with a peak area ratio of 2:2.83. Using the notation of crystal field theory, the peak at lower energies can be interpreted as arising from ionization from the e(g) levels (highest occupied molecular orbital, HOMO), and the peak at higher energies are from ionization of the t(2g) levels. The difference corresponds to the average crystal field splitting, 1.38 eV. From the position of the HOMO level and the absolute redox potential, an experimental value for the reorganization free energy of the aqueous Mn3+ hexa-aquo complex is estimated to be 2.98 eV. Density functional molecular dynamics simulations can reproduce the experimental vertical ionization energy, redox free energy, and reorganization free energies fairly well, provided that the absolute potential shift in periodic boundary conditions, finite size effects, and inaccuracies of the exchange correlation functional are taken into account. Most strikingly, in the simulations, we observe spontaneous and reversible deprotonation of the aqueous Mn3+ hexa-aquo complex to form MnOH(H2O)5(2+) + H+, in line with the low experimental pKa value of this ion. The interconversion between protonation states leads to interesting redox phenomena for aqueous Mn3+, culminating in a bimodal thermal distribution of the electron affinity.

  14. Accurate high level ab initio-based global potential energy surface and dynamics calculations for ground state of CH2(+).

    PubMed

    Li, Y Q; Zhang, P Y; Han, K L

    2015-03-28

    A global many-body expansion potential energy surface is reported for the electronic ground state of CH2 (+) by fitting high level ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pV6Z basis set. The topographical features of the new global potential energy surface are examined in detail and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. In turn, in order to validate the potential energy surface, a test theoretical study of the reaction CH(+)(X(1)Σ(+))+H((2)S)→C(+)((2)P)+H2(X(1)Σg (+)) has been carried out with the method of time dependent wavepacket on the title potential energy surface. The total integral cross sections and the rate coefficients have been calculated; the results determined that the new potential energy surface can both be recommended for dynamics studies of any type and as building blocks for constructing the potential energy surfaces of larger C(+)/H containing systems.

  15. Effects of inclusion level on nutrient digestibility and energy content of wheat middlings and soya bean meal for growing pigs.

    PubMed

    Huang, Qiang; Piao, Xiangshu; Liu, Ling; Li, Defa

    2013-01-01

    Two experiments were conducted to determine the effects of inclusion level of wheat middlings and soya bean meal on apparent total tract digestibility (ATTD) of energy and chemical components of these ingredients in growing pigs. Furthermore, the effects of the inclusion level on their contents of digestible energy (DE) and metabolisable energy (ME) were also determined by the difference method. In Experiment 1, six diets were fed to 36 growing pigs according to a completely randomised design. The basal diet was a corn-soya bean meal diet while the other five diets contained 9.6%, 19.2%, 28.8%, 38.4% or 48.0% of wheat middlings added at the expense of corn and soya bean meal. The measured digestibility of energy and most nutrients of wheat middlings increased (p < 0.05) with increasing levels of that ingredient. Equations were obtained to predict digestibility by inclusion level. At an inclusion level of 9.6% wheat middlings, their DE contents were significantly lower (8.9 MJ/kg DM) than for the higher levels (10.7 to 11.9 MJ/kg DM, p < 0.01). In Experiment 2, three diets were fed to 18 growing pigs according to a completely randomised block design. The basal diet was a corn-based diet while the other two diets were based on corn and two levels of soya bean meal (22.2% and 33.6%). The content of DE in soya bean meal did not differ at 22.2% and 33.6% inclusion levels (16.2 and 16.3 MJ/kg DM, respectively), but the digestibility of dry matter (DM), organic matter and carbohydrates was increased at a higher inclusion level (p < 0.05). This study revealed that the estimated digestibility of nutrients from soya bean meal and wheat middlings was affected by their dietary inclusion levels. For soya bean meal, the estimated energy contents was independent of its inclusion level, but not for wheat middlings. Therefore, the inclusion level of wheat middlings has to be considered for estimating their energy value.

  16. Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems

    SciTech Connect

    Dean, J.; Braun, R.; Penev, M.; Kinchin, C.; Munoz, D.

    2010-01-01

    The increased use of intermittent renewable power in the United States is forcing utilities to manage increasingly complex supply and demand interactions. This paper evaluates biomass pathways for hydrogen production and how they can be integrated with renewable resources to improve the efficiency, reliability, dispatchability, and cost of other renewable technologies. Two hybrid concepts were analyzed that involve co-production of gaseous hydrogen and electric power from thermochemical biorefineries. Both of the concepts analyzed share the basic idea of combining intermittent wind-generated electricity with a biomass gasification plant. The systems were studied in detail for process feasibility and economic performance. The best performing system was estimated to produce hydrogen at a cost of $1.67/kg. The proposed hybrid systems seek to either fill energy shortfalls by supplying hydrogen to a peaking natural gas turbine or to absorb excess renewable power during low-demand hours. Direct leveling of intermittent renewable electricity production is accomplished with either an indirectly heated biomass gasifier, or a directly heated biomass gasifier. The indirect gasification concepts studied were found to be cost competitive in cases where value is placed on controlling carbon emissions. A carbon tax in the range of $26-40 per metric ton of CO{sub 2} equivalent (CO{sub 2}e) emission makes the systems studied cost competitive with steam methane reforming (SMR) to produce hydrogen. However, some additional value must be placed on energy peaking or sinking for these plants to be economically viable. The direct gasification concept studied replaces the air separation unit (ASU) with an electrolyzer bank and is unlikely to be cost competitive in the near future. High electrolyzer costs and wind power requirements make the hybridization difficult to justify economically without downsizing the system. Based on a direct replacement of the ASU with electrolyzers, hydrogen

  17. Correlation between the energy level structure of cerium-doped yttrium aluminum garnet and luminescent behavior at varying temperatures

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Liu, Xiaolang; He, Lizhu; Liu, Q. L.

    2016-05-01

    Luminescent spectra of cerium-doped yttrium aluminum garnet are measured at varying temperatures. It is found that the two excitation peaks demonstrate a reverse trend as the temperature rises, and the breadth of the high-energy emission peak experiences an abrupt widening. These effects could be directly linked to the energy level scheme of Ce3+ under the crystal field of local symmetry. Moreover, an alternative fitting function is provided which could effectively resolve the emission curve.

  18. Energy level alignment and quantum conductance of functionalized metal-molecule junctions: Density functional theory versus GW calculations

    SciTech Connect

    Jin, Chengjun; Markussen, Troels; Thygesen, Kristian S.; Strange, Mikkel; Solomon, Gemma C.

    2013-11-14

    We study the effect of functional groups (CH{sub 3}*4, OCH{sub 3}, CH{sub 3}, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method predicts the correct ordering of the conductance amongst the molecules. The absolute GW (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close to experiments, but does not improve on the relative ordering. We ascribe this to a too strong pinning of the molecular energy levels to the metal Fermi level by DFT which suppresses the variation in orbital energy with functional group.

  19. Short communication: Effects of feeding level on energy concentration in grass silage-based diets offered to dairy cattle.

    PubMed

    Yan, T; Ferris, C P; Agnew, R E; Gordon, F J

    2004-05-01

    Twelve grass silages were offered to sheep as a sole diet at maintenance and to lactating dairy cows ad libitum as mixed silage and concentrates diets (n = 13 diets). Fecal and urinary energy outputs were measured for silages and mixed diets. Digestible energy (DE) and metabolizable energy (ME) concentrations for mixed diets with sheep at maintenance were estimated based on the silage dry matter (DM) proportion obtained in the cattle trials, the silage energy utilization values (methane energy-predicted) determined using sheep, and tabulated concentrate values. A comparison of dietary mean data (n = 13) indicated that concentrations of ME (P < 0.01) and DE (P < 0.001) in mixed diets were significantly lower for cows at production feeding level than for sheep at maintenance. The reductions were proportionately 0.015 and 0.020 with each unit increase in feeding level above maintenance, respectively. These ME and DE data were also used to evaluate the feeding level correction factors previously proposed by Van Es (1975) (ME, 0.018) and Yan et al. (2002) (ME, 0.016; DE, 0.025) using the mean square prediction error technique. The ME correction factor proposed by Yan et al. (2002) had a greater prediction accuracy than that proposed by Van Es (1975) for the prediction of ME concentration in mixed diets offered to dairy cattle at production feeding level.

  20. The energy-level crossing behavior and quantum Fisher information in a quantum well with spin-orbit coupling

    PubMed Central

    Wang, Z. H.; Zheng, Q.; Wang, Xiaoguang; Li, Yong

    2016-01-01

    We study the energy-level crossing behavior in a two-dimensional quantum well with the Rashba and Dresselhaus spin-orbit couplings (SOCs). By mapping the SOC Hamiltonian onto an anisotropic Rabi model, we obtain the approximate ground state and its quantum Fisher information (QFI) via performing a unitary transformation. We find that the energy-level crossing can occur in the quantum well system within the available parameters rather than in cavity and circuit quantum eletrodynamics systems. Furthermore, the influence of two kinds of SOCs on the QFI is investigated and an intuitive explanation from the viewpoint of the stationary perturbation theory is given. PMID:26931762

  1. Analysis of {sup 25}Al energy levels observed in the {sup 28}Si(p,{alpha}){sup 25}Al reaction

    SciTech Connect

    Pittman, S. T.; Bardayan, D. W.; Smith, M. S.; Blackmon, J. C.; Kozub, R. L.

    2009-09-15

    The level structure of {sup 25}Al has been studied at the ORNL Holifield Radioactive Ion Beam Facility by measuring the angular and energy distributions of {alpha} particles from the {sup 28}Si(p,{alpha}){sup 25}Al reaction. Proton beams ({approx}10 nA) at laboratory energies of 40 and 42 MeV were generated by the 25 MV tandem accelerator and bombarded a natural silicon target (50 {mu}g/cm{sup 2}). Seventeen levels were observed and spins for several were constrained through a distorted-wave Born approximation analysis of the angular distributions.

  2. Energy level alignment in polymer organic solar cells at donor-acceptor planar junction formed by electrospray vacuum deposition

    SciTech Connect

    Kim, Ji-Hoon; Hong, Jong-Am; Kwon, Dae-Gyeon; Seo, Jaewon; Park, Yongsup

    2014-04-21

    Using ultraviolet photoelectron spectroscopy (UPS), we have measured the energy level offset at the planar interface between poly(3-hexylthiophene) (P3HT) and C{sub 61}-butyric acid methylester (PCBM). Gradual deposition of PCBM onto spin-coated P3HT in high vacuum was made possible by using electrospray vacuum deposition (EVD). The UPS measurement of EVD-prepared planar interface resulted in the energy level offset of 0.91 eV between P3HT HOMO and PCBM LUMO, which is considered as the upper limit of V{sub oc} of the organic photovoltaic cells.

  3. Positronium energy levels at order m α7 : Product contributions in the two-photon-annihilation channel

    NASA Astrophysics Data System (ADS)

    Adkins, Gregory S.; Tran, Lam M.; Wang, Ruihan

    2016-05-01

    Ongoing improvements in the measurement of positronium transition intervals motivate the calculation of the O (m α7) corrections to these intervals. In this work we focus on corrections to the spin-singlet parapositronium energies involving virtual annihilation to two photons in an intermediate state. We have evaluated all contributions to the positronium S -state energy levels that can be written as the product of a one-loop correction on one side of the annihilation event and another one-loop correction on the other side. These effects contribute Δ E =-0.561971 (25 ) m α7/π3 to the parapositronium ground-state energy.

  4. Novel method to determine capture cross-section activation energies by deep-level transient spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Criado, J.; Gomez, A.; Calleja, E.; Muñoz, E.

    1988-02-01

    Deep-center characterization by deep-level transient spectroscopy (DLTS) allows a direct determination of the trap thermal emission activation energy. However, capture barrier energy measurements, based on trap partial filling by pulses of increasing width, require a quite different experimental processing and pose some hardware difficulties. In this letter we present a new method to determine the trap capture barrier energy, one that requires constant-width filling pulses and obtains capture information from standard DLTS data. This technique has been applied to Te-, Sn-, and Si-related DX centers in AlGaAs alloys.

  5. A reliable energy-efficient multi-level routing algorithm for wireless sensor networks using fuzzy Petri nets.

    PubMed

    Yu, Zhenhua; Fu, Xiao; Cai, Yuanli; Vuran, Mehmet C

    2011-01-01

    A reliable energy-efficient multi-level routing algorithm in wireless sensor networks is proposed. The proposed algorithm considers the residual energy, number of the neighbors and centrality of each node for cluster formation, which is critical for well-balanced energy dissipation of the network. In the algorithm, a knowledge-based inference approach using fuzzy Petri nets is employed to select cluster heads, and then the fuzzy reasoning mechanism is used to compute the degree of reliability in the route sprouting tree from cluster heads to the base station. Finally, the most reliable route among the cluster heads can be constructed. The algorithm not only balances the energy load of each node but also provides global reliability for the whole network. Simulation results demonstrate that the proposed algorithm effectively prolongs the network lifetime and reduces the energy consumption. PMID:22163802

  6. Expression of Arabidopsis FCS-Like Zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress

    PubMed Central

    Jamsheer K, Muhammed; Laxmi, Ashverya

    2015-01-01

    Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1) signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ) gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response toward energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response. PMID:26442059

  7. Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for sulfur-like iron, Fe XI

    SciTech Connect

    Abou El-Maaref, A.; Ahmad, Mahmoud; Allam, S.H.

    2014-05-15

    Energy levels, oscillator strengths, and transition probabilities for transitions among the 14 LS states belonging to configurations of sulfur-like iron, Fe XI, have been calculated. These states are represented by configuration interaction wavefunctions and have configurations 3s{sup 2}3p{sup 4}, 3s3p{sup 5}, 3s{sup 2}3p{sup 3}3d, 3s{sup 2}3p{sup 3}4s, 3s{sup 2}3p{sup 3}4p, and 3s{sup 2}3p{sup 3}4d, which give rise to 123 fine-structure energy levels. Extensive configuration interaction calculations using the CIV3 code have been performed. To assess the importance of relativistic effects, the intermediate coupling scheme by means of the Breit–Pauli Hamiltonian terms, such as the one-body mass correction and Darwin term, and spin–orbit, spin–other-orbit, and spin–spin corrections, are incorporated within the code. These incorporations adjusted the energy levels, therefore the calculated values are close to the available experimental data. Comparisons between the present calculated energy levels as well as oscillator strengths and both experimental and theoretical data have been performed. Our results show good agreement with earlier works, and they might be useful in thermonuclear fusion research and astrophysical applications. -- Highlights: •Accurate atomic data of iron ions are needed for identification of solar corona. •Extensive configuration interaction wavefunctions including 123 fine-structure levels have been calculated. •The relativistic effects by means of the Breit–Pauli Hamiltonian terms are incorporated. •This incorporation adjusts the energy levels, therefore the calculated values are close to experimental values.

  8. Energy and Safety: Science Activities for Elementary Students, Level I (Grades (K-2).

    ERIC Educational Resources Information Center

    Westcott, Dale; And Others

    Twelve activities are presented that focus on a common phenomenon of a child's world: energy. These activities relate energy, how it occurs, how it is used, and how to use it safely. Each activity includes the purpose, introduction, background, procedure, materials, estimated time for the activity, typical results, safety notes, and more ideas.…

  9. Air-climate-energy investigations with a state-level Integrated Assessment Model: GCAM-USA

    EPA Science Inventory

    The Global Change Assessment Model (GCAM) is a global integrated assessment model used for exploring future scenarios and examining strategies that address air pollution, climate change, and energy goals.  GCAM includes technology-rich representations of the energy, transportatio...

  10. Energy and Safety: Science Activities for Elementary Students, Level III (Grades (5-6).

    ERIC Educational Resources Information Center

    Westcott, Dale; And Others

    Thirteen activities are presented that focus on a common phenomenon of a child's world: energy. These activities relate energy, how it occurs, how it is used, and how to use it safely. Each activity includes the purpose, introduction, background, procedure, materials, estimated time for the activity, typical results, safety notes, and more ideas.…

  11. Examining Student Ideas about Energy Measurements on Quantum States across Undergraduate and Graduate Levels

    ERIC Educational Resources Information Center

    Passante, Gina; Emigh, Paul J.; Shaffer, Peter S.

    2015-01-01

    Energy measurements play a fundamental role in the theory of quantum mechanics, yet there is evidence that the underlying concepts are difficult for many students, even after all undergraduate instruction. We present results from an investigation into student ability to determine the possible energies that can be measured for a given wave function…

  12. Energy and Safety: Science Activities for Elementary Students, Level II (Grades (3-4).

    ERIC Educational Resources Information Center

    Westcott, Dale; And Others

    Thirteen activities are presented that focus on a common phenomenon of a child's world: energy. These activities relate energy, how it occurs, how it is used, and how to use it safely. Each activity includes the purpose, introduction, background, procedure, materials, estimated time for the activity, typical results, safety notes, and more ideas.…

  13. A single-phase multi-level D-STATCOM inverter using modular multi-level converter (MMC) topology for renewable energy sources

    NASA Astrophysics Data System (ADS)

    Sotoodeh, Pedram

    This dissertation presents the design of a novel multi-level inverter with FACTS capability for small to mid-size (10-20kW) permanent-magnet wind installations using modular multi-level converter (MMC) topology. The aim of the work is to design a new type of inverter with D-STATCOM option to provide utilities with more control on active and reactive power transfer of distribution lines. The inverter is placed between the renewable energy source, specifically a wind turbine, and the distribution grid in order to fix the power factor of the grid at a target value, regardless of wind speed, by regulating active and reactive power required by the grid. The inverter is capable of controlling active and reactive power by controlling the phase angle and modulation index, respectively. The unique contribution of the proposed work is to combine the two concepts of inverter and D-STATCOM using a novel voltage source converter (VSC) multi-level topology in a single unit without additional cost. Simulations of the proposed inverter, with 5 and 11 levels, have been conducted in MATLAB/Simulink for two systems including 20 kW/kVAR and 250 W/VAR. To validate the simulation results, a scaled version (250 kW/kVAR) of the proposed inverter with 5 and 11 levels has been built and tested in the laboratory. Experimental results show that the reduced-scale 5- and 11-level inverter is able to fix PF of the grid as well as being compatible with IEEE standards. Furthermore, total cost of the prototype models, which is one of the major objectives of this research, is comparable with market prices.

  14. Role of non-high-density lipoprotein cholesterol in predicting cerebrovascular events in patients following myocardial infarction.

    PubMed

    Mahajan, Nitin; Ference, Brian A; Arora, Natasha; Madhavan, Ramesh; Bhattacharya, Pratik; Sudhakar, Rajeev; Sagar, Amit; Wang, Yun; Sacks, Frank; Afonso, Luis

    2012-06-15

    Although there appears to be a role for statins in reducing cerebrovascular events, the exact role of different lipid fractions in the etiopathogenesis of cerebrovascular disease (CVD) is not well understood. A secondary analysis of data collected for the placebo arm (n = 2,078) of the Cholesterol and Recurrent Events (CARE) trial was performed. The CARE trial was a placebo-controlled trial aimed at testing the effect of pravastatin on patients after myocardial infarction. Patients with histories of CVD were excluded from the study. A Cox proportional-hazards model was used to evaluate the association between plausible risk factors (including lipid fractions) and risk for first incident CVD in patients after myocardial infarction. At the end of 5 years, 123 patients (6%) had incident CVD after myocardial infarction (76 with stroke and 47 with transient ischemic attack). Baseline non-high-density lipoprotein (HDL) cholesterol level emerged as the only significant lipid risk factor that predicted CVD; low-density lipoprotein cholesterol and HDL cholesterol were not significant. The adjusted hazard ratios (adjusted for age, gender, hypertension, diabetes mellitus, and smoking) for CVD were 1.28 (95% confidence interval [CI] 1.06 to 1.53) for non-HDL cholesterol, 1.14 (95% CI 0.96 to 1.37) for low-density lipoprotein cholesterol, and 0.90 (95% CI 0.75 to 1.09) for HDL cholesterol (per unit SD change of lipid fractions). This relation held true regardless of the level of triglycerides. After adjustment for age and gender, the hazard ratio for the highest natural quartile of non-HDL was 1.76 (95% CI 1.05 to 2.54), compared to 1.36 (95% CI 0.89 to 1.90) for low-density lipoprotein cholesterol. In conclusion, non-HDL cholesterol is the strongest predictor among the lipid risk factors of incident CVD in patients with established coronary heart disease.

  15. 75 FR 24755 - DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... quality of the human environment as documented in Federal Register (FR) notice 75 FR 20867, April 21, 2010... COMMISSION DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste... and holder of Facility Operating License No. DPR-9 issued for Enrico Fermi Atomic Power Plant, Unit...

  16. Aerobic fitness level does not modulate changes in whole-body protein turnover produced by unaccustomed increases in energy expenditure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of a sudden increase in energy expenditure (EE) on whole-body protein turnover vary between studies, and the possibility that fitness level modulates those responses has not been fully investigated. We hypothesized that aerobically trained individuals may exhibit adaptations that protec...

  17. Additions to the spectra and energy levels of the zinc-like ions Y X-Cd XIX

    NASA Astrophysics Data System (ADS)

    Litzén, Ulf; Hansson, Anna

    1989-10-01

    Transitions from 4p4d 1F and 3F have been identified in the spectra Y X-Cd XIX emitted from laserproduced plasmas. Energy levels have been derived, and the term structure has been studied with special emphasis on the 4s4f-4p4d configuration interaction.

  18. 23 CFR Appendix A to Part 772 - National Reference Energy Mean Emission Levels as a Function of Speed

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false National Reference Energy Mean Emission Levels as a Function of Speed A Appendix A to Part 772 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Function of Speed EC14OC91.013...

  19. Energy level alignment in TiO2/metal sulfide/polymer interfaces for solar cell applications.

    PubMed

    Lindblad, Rebecka; Cappel, Ute B; O'Mahony, Flannan T F; Siegbahn, Hans; Johansson, Erik M J; Haque, Saif A; Rensmo, Håkan

    2014-08-28

    Semiconductor sensitized solar cell interfaces have been studied with photoelectron spectroscopy to understand the interfacial electronic structures. In particular, the experimental energy level alignment has been determined for complete TiO2/metal sulfide/polymer interfaces. For the metal sulfides CdS, Sb2S3 and Bi2S3 deposited from single source metal xanthate precursors, it was shown that both driving forces for electron injection into TiO2 and hole transfer to the polymer decrease for narrower bandgaps. The energy level alignment results were used in the discussion of the function of solar cells with the same metal sulfides as light absorbers. For example Sb2S3 showed the most favourable energy level alignment with 0.3 eV driving force for electron injection and 0.4 eV driving force for hole transfer and also the most efficient solar cells due to high photocurrent generation. The energy level alignment of the TiO2/Bi2S3 interface on the other hand showed no driving force for electron injection to TiO2, and the performance of the corresponding solar cell was very low.

  20. Position-dependent energy-level shifts of an accelerated atom in the presence of a boundary

    SciTech Connect

    Zhu Zhiying; Yu Hongwei

    2010-10-15

    We consider a uniformly accelerated atom interacting with a vacuum electromagnetic field in the presence of an infinite conducting plane boundary and calculate separately the contributions of vacuum fluctuations and radiation reaction to the atomic energy-level shift. We analyze in detail the behavior of the total energy shift in three different regimes of the distance in both the low-acceleration and high-acceleration limits. Our results show that, in general, an accelerated atom does not behave as if immersed in a thermal bath at the Unruh temperature in terms of the atomic energy-level shifts, and the effect of the acceleration on the atomic energy-level shifts may in principle become appreciable in certain circumstances, although it may not be realistic for actual experimental measurements. We also examine the effects of the acceleration on the level shifts when the acceleration is of the order of the transition frequency of the atom and we find some features which differ from what was obtained in the existing literature.

  1. Accelerometry predicts daily energy expenditure in a bird with high activity levels.

    PubMed

    Elliott, Kyle H; Le Vaillant, Maryline; Kato, Akiko; Speakman, John R; Ropert-Coudert, Yan

    2013-02-23

    Animal ecology is shaped by energy costs, yet it is difficult to measure fine-scale energy expenditure in the wild. Because metabolism is often closely correlated with mechanical work, accelerometers have the potential to provide detailed information on energy expenditure of wild animals over fine temporal scales. Nonetheless, accelerometry needs to be validated on wild animals, especially across different locomotory modes. We merged data collected on 20 thick-billed murres (Uria lomvia) from miniature accelerometers with measurements of daily energy expenditure over 24 h using doubly labelled water. Across three different locomotory modes (swimming, flying and movement on land), dynamic body acceleration was a good predictor of daily energy expenditure as measured independently by doubly labelled water (R(2) = 0.73). The most parsimonious model suggested that different equations were needed to predict energy expenditure from accelerometry for flying than for surface swimming or activity on land (R(2) = 0.81). Our results demonstrate that accelerometers can provide an accurate integrated measure of energy expenditure in wild animals using many different locomotory modes. PMID:23256182

  2. Accelerometry predicts daily energy expenditure in a bird with high activity levels

    PubMed Central

    Elliott, Kyle H.; Le Vaillant, Maryline; Kato, Akiko; Speakman, John R.; Ropert-Coudert, Yan

    2013-01-01

    Animal ecology is shaped by energy costs, yet it is difficult to measure fine-scale energy expenditure in the wild. Because metabolism is often closely correlated with mechanical work, accelerometers have the potential to provide detailed information on energy expenditure of wild animals over fine temporal scales. Nonetheless, accelerometry needs to be validated on wild animals, especially across different locomotory modes. We merged data collected on 20 thick-billed murres (Uria lomvia) from miniature accelerometers with measurements of daily energy expenditure over 24 h using doubly labelled water. Across three different locomotory modes (swimming, flying and movement on land), dynamic body acceleration was a good predictor of daily energy expenditure as measured independently by doubly labelled water (R2 = 0.73). The most parsimonious model suggested that different equations were needed to predict energy expenditure from accelerometry for flying than for surface swimming or activity on land (R2 = 0.81). Our results demonstrate that accelerometers can provide an accurate integrated measure of energy expenditure in wild animals using many different locomotory modes. PMID:23256182

  3. Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.

    PubMed

    Garrett, Joanne K; Witt, Matthew J; Johanning, Lars

    2016-01-01

    Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial.

  4. Distribution of Sea Level Muons at Zenith Angles below 10 TeV Energy

    NASA Astrophysics Data System (ADS)

    Mitra, M.

    The moderate energy primary cosmic ray nucleon spectrum has been constructed fro the direct measurements of Webber et al., Seo et al., Menn et al. along with the other results surveyed by Swordy. The sea leve muon energy spectra at different zenith angles have been derived from the decay of non-prompt mesons by adopting standard diffusion equation of hadronic cascades. The contribution of charmed mesons to muon spectrum has also been accounted following standard procedure. Our estimated tota muon energy spectra have been found comparable with the global spectrograph muon flux results of MARS, DEIS, MSU and other groups.

  5. Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.

    PubMed

    Garrett, Joanne K; Witt, Matthew J; Johanning, Lars

    2016-01-01

    Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial. PMID:26610976

  6. The effect of fibre amount, energy level and viscosity of beverages containing oat fibre supplement on perceived satiety

    PubMed Central

    Lyly, Marika; Ohls, Nora; Lähteenmäki, Liisa; Salmenkallio-Marttila, Marjatta; Liukkonen, Kirsi-Helena; Karhunen, Leila; Poutanen, Kaisa

    2010-01-01

    Background Soluble fibre has been proposed to suppress appetite-related perceptions and it could thus contribute favourably to the regulation of energy intake and the increasing obesity problem. Objective To investigate the effect of an oat ingredient rich in β-glucan on perceived satiety at different dietary fibre (DF) concentrations, energy levels and viscosity levels. Design A total of 29 healthy volunteers, age 19–39, mean BMI 23.2 kg/m2 participated in this study. Measurement of subjective perceptions (satiety, fullness, hunger, desire to eat something/the sample food and thirst) was performed during a 180-min period after ingestion of the sample. There were altogether six samples: two beverages without fibre at energy levels 700 and 1,400 kJ; two beverages containing 5 or 10 g oat DF (2.5 and 5 g oat β-glucan, respectively) at energy level 700 kJ, one beverage containing 10 g oat DF/1,400 kJ and one beverage containing 10 g enzymatically treated oat DF with low viscosity at energy level 700 kJ. Each beverage portion weighted 300 g. The order of the samples was randomised for each subject and evaluated during six separate days. The results are reported in three sets of samples: ‘fibre’, ‘energy’ and ‘viscosity’. Results In the fibre set, the beverages containing 5 or 10 g of fibre had a larger area under curve (AUC) for perceived satiety and smaller AUC for hunger compared to the beverage without fibre, but no significant dose–response relationship was detected. Increasing the energy content from 700 to 1,400 kJ in the energy set did not affect the satiety-related perceptions. In the viscosity set, the beverage with low-viscosity β-glucan increased satiety-related perceptions from no fibre containing beverage, but less compared to the beverage with the same amount of fibre and higher viscosity. Conclusions Addition of an oat ingredient rich in β-glucan and high viscosity of beverages enhance post-meal satiety induced by beverages. The

  7. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis.

    PubMed

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-26

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum. PMID:27420635

  8. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-01

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum.

  9. Evaluation of piezoelectret foam in a multilayer stack configuration for low-level vibration energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Ray, Chase A.; Anton, Steven R.

    2015-04-01

    Electronic devices are high demand commodities in today's world, and such devices will continue increasing in popularity. Currently, batteries are implemented to provide power to these devices; however, the need for battery replacement, their cost, and the waste associated with battery disposal present a need for advances in self-powered technology. Energy harvesting technology has great potential to alleviate the drawbacks of batteries. In this work, a novel piezoelectret foam material is investigated for low-level energy harvesting. Specifically, piezoelectret foam assembled in a multilayer stack configuration is explored. Modeling and experimentation of the stack behavior when excited in compression at low frequencies are performed to investigate piezoelectret foam as a multilayer energy harvester. An examination of modeling piezoelectret foam as a stack with an equivalent circuit is made following recently published work and is used in this study. A 20-layer prototype device is fabricated and experimentally tested via harmonic base excitation. Electromechanical testing is performed by compressing the foam stack to obtain output electrical energy; consequently, allowing the frequency response between input mechanical energy and output electrical energy to be developed. Modeling results are compared to the experimental measurements to assess the fidelity of the model. Lastly, energy harvesting experimentation in which the device is subject to harmonic base excitation at the natural frequency is conducted to determine the ability of the piezoelectret foam stack to successfully charge a capacitor.

  10. Status of energy education at the secondary school level in the State of Alabama. [249 science teachers queried

    SciTech Connect

    McCarley, J.W.

    1983-01-01

    The purpose of this study was to assess and evaluate the status of energy education in the State of Alabama. Specifically, the study dealt with personal characteristics of the secondary school science teachers along with school characteristics and whether or not these characteristics related to teaching energy education, topics, methods, and procedures used in existing energy education programs. The sample consisted of 400 randomly selected secondary school science teachers in the State of Alabama; 249 questionnaires were returned. This instrument requested demographic information and information on the status of energy education as taught in the secondary school science classes in the State of Alabama. Nonparametric techniques were employed throughout the analysis procedure. Chi square was the statistical test used. The major findings were: (1) the sex, age, number of years of teaching experience, level of certification, and current enrollment in an advanced degree program were not related to the teaching of energy education; (2) the academic major of the teacher and the subject taught related to the teaching of energy education; (3) junior-high science teachers used more-varied teaching strategies than the senior-high science teachers; (4) the primary method of instruction was by integration into appropriate units; and (5) energy education was taught from one to ninety-nine days. The mean number of days was sixteen.

  11. 18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program

    SciTech Connect

    1997-05-20

    This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories.

  12. Calculated rotation-bending energy levels of CH 5+ and a comparison with experiment

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2016-05-01

    We report J > 0 CH 5+ levels computed by fixing stretch coordinates. They are computed by using a simple product basis, exploiting symmetry, and carefully parallelizing the calculation. The J > 0 CH 5+ levels are compared with those obtained from other theoretical methods and with experimental ground state combination differences of Asvany et al. [Science, 347, 1346 (2015)]. If the assignment of Asvany et al. is correct, there are important differences between the levels we compute and those observed. We propose a different assignment of the experimental levels that reduces the maximum error from 34 to 2 cm-1. The new assignment can only be correct if states of both parities exist in the experiment. Although, ro-vibrational levels of CH 5+ cannot be associated with individual vibrational states, they do occur in blocks separated by gaps.

  13. Optimization of the Electric Power Leveling System Using a Superconducting Magnetic Energy Storage with Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Funabiki, Shigeyuki; Tanaka, Toshihiko; Fujii, Toshinori

    A new optimization method of the electric power leveling system using an SMES is proposed. The SMES is parallelly connected with rolling mills in steel works. The leveling control is based on fuzzy reasoning. The SMES capacity and the scaling factors of the fuzzy controller will be optimized so that the power leveling control can be achieved and then the total cost of the added SMES cost and reduced contract electricity rate becomes lower. The optimization is carried out using the genetic algorithm and the cost reduction of 7.76 billion yen can be achieved. It is confirmed by the power leveling simulation that the proposed optimization method is very effective for designing the power leveling system.

  14. Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality.

    PubMed

    Tian, Yuyu; Cong, Shan; Su, Wenming; Chen, Hongyuan; Li, Qingwen; Geng, Fengxia; Zhao, Zhigang

    2014-01-01

    Supercapacitors are important energy storage technologies in fields such as fuel-efficient transport and renewable energy. State-of-the-art supercapacitors are capable of supplanting conventional batteries in real applications, and supercapacitors with novel features and functionalities have been sought for years. Herein, we report the realization of a new concept, a smart supercapacitor, which functions as a normal supercapacitor in energy storage and also communicates the level of stored energy through multiple-stage pattern indications integrated into the device. The metal-oxide W18O49 and polyaniline constitute the pattern and background, respectively. Both materials possess excellent electrochemical and electrochromic behaviors and operate in different potential windows, -0.5-0 V (W18O49) and 0-0.8 V (polyaniline). The intricate cooperation of the two materials enables the supercapacitor to work in a widened, 1.3 V window while displaying variations in color schemes depending on the level of energy storage. We believe that our success in integrating this new functionality into a supercapacitor may open the door to significant opportunities in the development of future supercapacitors with imaginative and humanization features.

  15. Selection of bi-level image compression method for reduction of communication energy in wireless visual sensor networks

    NASA Astrophysics Data System (ADS)

    Khursheed, Khursheed; Imran, Muhammad; Ahmad, Naeem; O'Nils, Mattias

    2012-06-01

    Wireless Visual Sensor Network (WVSN) is an emerging field which combines image sensor, on board computation unit, communication component and energy source. Compared to the traditional wireless sensor network, which operates on one dimensional data, such as temperature, pressure values etc., WVSN operates on two dimensional data (images) which requires higher processing power and communication bandwidth. Normally, WVSNs are deployed in areas where installation of wired solutions is not feasible. The energy budget in these networks is limited to the batteries, because of the wireless nature of the application. Due to the limited availability of energy, the processing at Visual Sensor Nodes (VSN) and communication from VSN to server should consume as low energy as possible. Transmission of raw images wirelessly consumes a lot of energy and requires higher communication bandwidth. Data compression methods reduce data efficiently and hence will be effective in reducing communication cost in WVSN. In this paper, we have compared the compression efficiency and complexity of six well known bi-level image compression methods. The focus is to determine the compression algorithms which can efficiently compress bi-level images and their computational complexity is suitable for computational platform used in WVSNs. These results can be used as a road map for selection of compression methods for different sets of constraints in WVSN.

  16. Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality.

    PubMed

    Tian, Yuyu; Cong, Shan; Su, Wenming; Chen, Hongyuan; Li, Qingwen; Geng, Fengxia; Zhao, Zhigang

    2014-01-01

    Supercapacitors are important energy storage technologies in fields such as fuel-efficient transport and renewable energy. State-of-the-art supercapacitors are capable of supplanting conventional batteries in real applications, and supercapacitors with novel features and functionalities have been sought for years. Herein, we report the realization of a new concept, a smart supercapacitor, which functions as a normal supercapacitor in energy storage and also communicates the level of stored energy through multiple-stage pattern indications integrated into the device. The metal-oxide W18O49 and polyaniline constitute the pattern and background, respectively. Both materials possess excellent electrochemical and electrochromic behaviors and operate in different potential windows, -0.5-0 V (W18O49) and 0-0.8 V (polyaniline). The intricate cooperation of the two materials enables the supercapacitor to work in a widened, 1.3 V window while displaying variations in color schemes depending on the level of energy storage. We believe that our success in integrating this new functionality into a supercapacitor may open the door to significant opportunities in the development of future supercapacitors with imaginative and humanization features. PMID:24593047

  17. Metagenomics shows that low-energy anaerobic-aerobic treatment reactors reduce antibiotic resistance gene levels from domestic wastewater.

    PubMed

    Christgen, Beate; Yang, Ying; Ahammad, S Z; Li, Bing; Rodriquez, D Catalina; Zhang, Tong; Graham, David W

    2015-02-17

    Effective domestic wastewater treatment is among our primary defenses against the dissemination of infectious waterborne disease. However, reducing the amount of energy used in treatment processes has become essential for the future. One low-energy treatment option is anaerobic-aerobic sequence (AAS) bioreactors, which use an anaerobic pretreatment step (e.g., anaerobic hybrid reactors) to reduce carbon levels, followed by some form of aerobic treatment. Although AAS is common in warm climates, it is not known how its compares to other treatment options relative to disease transmission, including its influence on antibiotic resistance (AR) in treated effluents. Here, we used metagenomic approaches to contrast the fate of antibiotic-resistant genes (ARG) in anaerobic, aerobic, and AAS bioreactors treating domestic wastewater. Five reactor configurations were monitored for 6 months, and treatment performance, energy use, and ARG abundance and diversity were compared in influents and effluents. AAS and aerobic reactors were superior to anaerobic units in reducing ARG-like sequence abundances, with effluent ARG levels of 29, 34, and 74 ppm (198 ppm influent), respectively. AAS and aerobic systems especially reduced aminoglycoside, tetracycline, and β-lactam ARG levels relative to anaerobic units, although 63 persistent ARG subtypes were detected in effluents from all systems (of 234 assessed). Sulfonamide and chloramphenicol ARG levels were largely unaffected by treatment, whereas a broad shift from target-specific ARGs to ARGs associated with multi-drug resistance was seen across influents and effluents. AAS reactors show promise for future applications because they can reduce more ARGs for less energy (32% less energy here), but all three treatment options have limitations and need further study.

  18. Circadian changes in energy expenditure in the preruminant calf: whole animal and tissue level.

    PubMed

    Ortigues, I; Martin, C; Durand, D; Vermorel, M

    1995-02-01

    A study was conducted using four preruminant calves to determine the contribution of portal-drained viscera, liver, and hindquarters to circadian changes in total energy expenditure, after removing variations due to behavioral patterns. Indirect calorimetry and in vivo arterio-venous techniques were used. Standing time was longer (P < .01) after the meals and shorter (P < .01) at night. These variations were associated with higher (P < .01) energy cost of standing immediately after the meals and lower (P < .01) ones at night. When these behavioral effects were removed, total energy expenditure of lying calves was shown to be stable between the morning and evening meal, to increase by 11.5% and remained elevated during the 6 h after the evening meal, and to reach the lowest values at night. Portal-drained viscera and liver contributed 32.8 to 53.7% and 29.1 to 32.2%, respectively, to the circadian variations calculated for calves that were always standing. Changes in splanchnic tissue energy expenditure resulted from combined modifications in blood flow and O2 extraction rate. The contribution of hindquarters could not be clearly established. Overall, portal-drained viscera, liver, and hindquarters contributed 17.2, 12.8, and 18.0%, respectively, to total energy expenditure of standing calves. Their respective in vivo metabolic activities averaged 1.08, 2.10, and .25 mumol of O2 consumed.min-1.g-1 of fresh tissue.

  19. Factors affecting the energy cost of level running at submaximal speed.

    PubMed

    Lacour, Jean-René; Bourdin, Muriel

    2015-04-01

    Metabolic measurement is still the criterion for investigation of the efficiency of mechanical work and for analysis of endurance performance in running. Metabolic demand may be expressed either as the energy spent per unit distance (energy cost of running, C r) or as energy demand at a given running speed (running economy). Systematic studies showed a range of costs of about 20 % between runners. Factors affecting C r include body dimensions: body mass and leg architecture, mostly calcaneal tuberosity length, responsible for 60-80 % of the variability. Children show a higher C r than adults. Higher resting metabolism and lower leg length/stature ratio are the main putative factors responsible for the difference. Elastic energy storage and reuse also contribute to the variability of C r. The increase in C r with increasing running speed due to increase in mechanical work is blunted till 6-7 m s(-1) by the increase in vertical stiffness and the decrease in ground contact time. Fatigue induced by prolonged or intense running is associated with up to 10 % increased C r; the contribution of metabolic and biomechanical factors remains unclear. Women show a C r similar to men of similar body mass, despite differences in gait pattern. The superiority of black African runners is presumably related to their leg architecture and better elastic energy storage and reuse. PMID:25681108

  20. The self-consistent calculation of pseudo-molecule energy levels, construction of energy level correlation diagrams and an automated computation system for SCF-X(Alpha)-SW calculations

    NASA Technical Reports Server (NTRS)

    Schlosser, H.

    1981-01-01

    The self consistent calculation of the electronic energy levels of noble gas pseudomolecules formed when a metal surface is bombarded by noble gas ions is discussed along with the construction of energy level correlation diagrams as a function of interatomic spacing. The self consistent field x alpha scattered wave (SCF-Xalpha-SW) method is utilized. Preliminary results on the Ne-Mg system are given. An interactive x alpha programming system, implemented on the LeRC IBM 370 computer, is described in detail. This automated system makes use of special PROCDEFS (procedure definitions) to minimize the data to be entered manually at a remote terminal. Listings of the special PROCDEFS and of typical input data are given.

  1. Interplay between Energy-Level Position and Charging Effect of Manganese Phthalocyanines on an Atomically Thin Insulator.

    PubMed

    Liu, Liwei; Dienel, Thomas; Widmer, Roland; Gröning, Oliver

    2015-10-27

    Understanding the energy-level alignment and charge transfer of organic molecules at large bandgap semiconductors is of crucial importance to optimize device performance in organic electronics. We have studied submonolayer coverage of manganese phthalocyanine (MnPc) on hexagonal boron nitride (h-BN) on Rh(111) as a model system by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). The adsorbed molecules show three distinctly different bias-dependent topographic signatures, which depend on their adsorption positions on the h-BN. Among these three types of MnPc, one shows pronounced charging because of the proximity of the highest occupied molecular orbital (HOMO) to the Fermi level on the decoupling h-BN substrate. The charging of the MnPc from its neutral to the MnPc(+) state leads to a down shift of the Mn 3d-related orbital by 840 meV as determined from the difference in energy position between high- and low-bias charging. We find that the charging field is linearly related to the HOMO position with respect to the Fermi level, with a clear correlation to the adsorption orientations of the MnPc. Our results show how critically energy level alignment and field-induced charge transfer process can depend on adsorption configurations, even on an apparently low-interacting substrate like metal supported monolayer h-BN. PMID:26390030

  2. Linking steroid hormone levels to sexual maturity index and energy reserves in Nereis diversicolor from clean and polluted estuaries.

    PubMed

    Durou, C; Mouneyrac, C

    2007-01-01

    The objective of this work was to compare seasonal variations of reproduction physiology of the ragworm Nereis diversicolor --a key species in estuarine ecosystems--originating from a clean (Authie) and multi-polluted (Seine) estuaries. A particular attention was carried out in female worms, on relationships between sexual maturity stages, energy reserves (glycogen and lipids) and steroid hormone levels (progesterone, 17beta-estradiol, and testosterone). Sexual maturity index (SMI), energy reserves and steroid hormones are clearly influenced by season in worms from both sites. Depleted steroid hormone levels were depicted in specimens exhibiting high sexual maturity stage and energy reserves. Intersite analysis has revealed all over the sampling period:--a sexual precocity in worms from Seine,--glycogen concentrations generally higher in worms from Authie,--no clear tendency for lipids,--no differences in steroid hormone levels. Sexual precocity and lower glycogen levels in Seine could be explained by a specific strategy above all devoted to reproduction in these worms. Chemical stress could be a possible explanation of these observations.

  3. Energy levels, oscillator strengths, and radiative rates for Si-like Zn XVII, Ga XVIII, Ge XIX, and As XX

    SciTech Connect

    Abou El-Maaref, A.; Allam, S.H.; El-Sherbini, Th.M.

    2014-01-15

    The energy levels, oscillator strengths, line strengths, and transition probabilities for transitions among the terms belonging to the 3s{sup 2}3p{sup 2}, 3s3p{sup 3}, 3s{sup 2}3p3d, 3s{sup 2}3p4s, 3s{sup 2}3p4p and 3s{sup 2}3p4d configurations of silicon-like ions (Zn XVII, Ga XVIII, Ge XIX, and As XX) have been calculated using the configuration-interaction code CIV3. The calculations have been carried out in the intermediate coupling scheme using the Breit–Pauli Hamiltonian. The present calculations have been compared with the available experimental data and other theoretical calculations. Most of our calculations of energy levels and oscillator strengths (in length form) show good agreement with both experimental and theoretical data. Lifetimes of the excited levels have also been calculated. -- Highlights: •We have calculated the fine-structure energy levels of Si-like Zn, Ga, Ge and As. •The calculations are performed using the configuration interaction method (CIV3). •We have calculated the oscillator strengths, line strengths and transition rates. •The wavelengths of the transitions are listed in this article. •We also have made comparisons between our data and other calculations.

  4. Genome-wide association studies identified novel loci for non-high-density lipoprotein cholesterol and its postprandial lipemic response

    PubMed Central

    An, Ping; Straka, Robert J.; Pollin, Toni I.; Feitosa, Mary F.; Wojczynski, Mary K.; Daw, E. Warwick; O'Connell, Jeffrey R.; Gibson, Quince; Ryan, Kathleen A.; Hopkins, Paul N.; Tsai, Michael Y.; Lai, Chao-Qiang; Province, Michael A.; Ordovas, Jose M.; Shuldiner, Alan R; Arnett, Donna K.; Borecki, Ingrid B.

    2014-01-01

    Non-high-density lipoprotein cholesterol (NHDL) is an independent and superior predictor of CVD risk as compared to LDL alone. It represents a spectrum of atherogenic lipid fractions with possibly a distinct genomic signature. We performed genome-wide association studies (GWAS) to identify loci influencing baseline NHDL and its postprandial lipemic (PPL) response. We carried out GWAS in 4,241 participants of European descent. Our discovery cohort included 928 subjects from the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN) Study. Our replication cohorts included 3,313 subjects from the Heredity and Phenotype Intervention (HAPI) Heart Study and Family Heart Study (FamHS). A linear mixed model using the kinship matrix was used for association tests. The best association signal was found in a tri-genic region at RHOQ-PIGF-CRIPT for baseline NHDL (lead SNP rs6544903, discovery p = 7e-7, MAF = 2%; validation p = 6e-4 at 0.1 kb upstream neighboring SNP rs3768725, and 5e-4 at 0.7 kb downstream neighboring SNP rs6733143, MAF = 10%). The lead and neighboring SNPs were not perfect surrogate proxies to each other (D′ = 1, r2 = 0.003) but they seemed to be partially dependent (likelihood ration test p = 0.04). Other suggestive loci (discovery p < 1e-6) included LOC100419812 and LOC100288337 for baseline NHDL, and LOC100420502 and CDH13 for NHDL PPL response that were not replicated (p > 0.01). The current and first GWAS of NHDL yielded an interesting common variant in RHOQ-PIGF-CRIPT influencing baseline NHDL levels. Another common variant in CDH13 for NHDL response to dietary high fat intake challenge was also suggested. Further validations for both loci from large independent studies, especially interventional studies, are warranted. PMID:24604477

  5. Effect of Increased Levels of Liquefied Natural Gas Exports on U.S. Energy Markets

    EIA Publications

    2014-01-01

    This report responds to a May 29, 2014 request from the U.S. Department of Energy's Office of Fossil Energy (DOE/FE) for an update of the Energy Information Administration's (EIA) January 2012 study of liquefied natural gas (LNG) export scenarios. This updated study, like the prior one, is intended to serve as an input to be considered in the evaluation of applications to export LNG from the United States under Section 3 of the Natural Gas Act, which requires DOE to grant a permit to export domestically produced natural gas unless it finds that such action is not consistent with the public interest. Appendix A provides a copy of the DOE/FE request letter.

  6. Energy levels, Auger branching ratios, and radiative rates of the core-excited states of B-like carbon

    SciTech Connect

    Sun Yan; Gou Bingcong; Chen Feng

    2011-09-28

    Energy levels, Auger branching ratios, and radiative rates of the core-excited states of B-like carbon are calculated by the saddle-point variation and saddle-point complex-rotation methods. Relativistic and mass polarization corrections are included using first-order perturbation theory. Calculated Auger channel energies and branching ratios are used to identify high-resolution Auger spectrum in the 300-keV C{sup +}{yields} CH{sub 4} collision experiment. It is found that Auger decay of these five-electron core-excited states gives significant contributions to Auger spectrum in the range of 238-280 eV.

  7. Preparation, crystal structure, spectra and energy levels of the trivalent ytterbium ion doped into rare earth stannates

    NASA Astrophysics Data System (ADS)

    Ning, Kaijie; Zhang, Qingli; Sun, Dunlu; Yin, Shaotang; Jiang, Haihe

    2011-11-01

    Yb3+-doped Rare Earth Stannates Ln2Sn2O7(Ln=Y, Gd) with space group Fd3m were synthesized by co-precipitation technique. Their structures were determined by Rietveld refinement to their X-ray diffraction, and their atom coordinates, lattice parameters and temperature factors were given. From emission, absorption and excitation spectra, the energy levels of Yb3+ in Ln2Sn2O7(Ln=Y, Gd) were assigned and the crystal field parameters were fitted to energy splitting of Yb3+-doped Ln2Sn2O7 (Ln=Y, Gd).

  8. Preparation, crystal structure, spectra and energy levels of the trivalent ytterbium ion doped into rare earth stannates

    NASA Astrophysics Data System (ADS)

    Ning, Kaijie; Zhang, Qingli; Sun, Dunlu; Yin, Shaotang; Jiang, Haihe

    2012-01-01

    Yb3+-doped Rare Earth Stannates Ln2Sn2O7(Ln=Y, Gd) with space group Fd3m were synthesized by co-precipitation technique. Their structures were determined by Rietveld refinement to their X-ray diffraction, and their atom coordinates, lattice parameters and temperature factors were given. From emission, absorption and excitation spectra, the energy levels of Yb3+ in Ln2Sn2O7(Ln=Y, Gd) were assigned and the crystal field parameters were fitted to energy splitting of Yb3+-doped Ln2Sn2O7 (Ln=Y, Gd).

  9. Measured impacts of supermarket humidity level on defrost performance and refrigerating system energy use

    SciTech Connect

    Henderson, H.I.; Khattar, M.

    1999-07-01

    This paper presents field-monitor data from two supermarkets where the impact of space humidity on refrigerating system energy use was evaluated. Direct digital control (DDC) systems were used at both stores to collect 15-minute monitored data. At Store A in Minneapolis, the DDC system was used to monitor system performance as well as to implement temperature-terminated control in place of time-terminated control on 16 refrigerated zones using hot gas defrost. At Store B in Indianapolis, the DDC system was used to quantify the performance trends for the single compressor rack system with electric defrost. The results at Store B showed that refrigerating system energy use decreases by nearly 10 kWh/day for each 1% drop in space relative humidity, or about 0.4% of average annual system energy use. This value includes the impact of reduced latent loads, the reduction in direct energy use and imposed load from reduced electric defrost heater operation, and the smaller imposed load from reduced anti-sweat heater energy use. The measured reductions agree well with the impact predicted using the calculation methods developed by Howell (1933b) in ASHRAE Research Project 596. At Store A, the measured data show that implementing temperature-terminated defrost reduced refrigerating system energy use by nearly 70 kWh/day over the winter period when the average space humidity was 22% RH. The savings from temperature-terminated defrost increase by 4 kWh/day per each 1% drop in relative humidity. At both stores, the same type of mechanical controls were used to duty cycle the anti-sweat heaters based on store dew point. Anti-sweat heater electricity use was observed to decrease by 4.6 kWh/day at Store B and 3.4 kWh/day at Store A for each 1% drop in relative humidity. At Store A, a more aggressive control scheme was implemented with the DDC system that reduced anti-sweat heater energy use by 7.8 kWh/day per % RH. The more aggressive control approach was reported to properly

  10. Modulation of single quantum dot energy levels by a surface-acoustic-wave

    NASA Astrophysics Data System (ADS)

    Gell, J. R.; Ward, M. B.; Young, R. J.; Stevenson, R. M.; Atkinson, P.; Anderson, D.; Jones, G. A. C.; Ritchie, D. A.; Shields, A. J.

    2008-08-01

    This letter presents an experimental investigation into the effect of a surface-acoustic-wave (SAW) on the emission of a single InAs quantum dot. The SAW causes the energy of the transitions within the dot to oscillate at the frequency of the SAW, producing a characteristic broadening of the emission lines in their time-averaged spectra. This periodic tuning of the transition energy is used as a method to regulate the output of a device containing a single quantum dot and we study the system as a high-frequency periodic source of single photons.

  11. Spectra and energy levels of Er3+(4f11) in NaBi(WO4)2

    NASA Astrophysics Data System (ADS)

    Gruber, John B.; Sardar, Dhiraj K.; Russell, Charles C.; Yow, Raylon M.; Zandi, Bahram; Kokanyan, Edvard P.

    2003-12-01

    Absorption and fluorescence spectra of Er3+(4f11) in crystals of NaBi(WO4)2 (NBW) are reported at temperatures between 15 K and room temperature. The absorption spectra include the details of the crystal-field splitting of 11 multiplet manifolds, 2S+1LJ of Er3+(4f11), spanning the wavelength range between 350 nm and 1550 nm. The crystal-field splitting of the ground-state 4I15/2, is obtained from an analysis of the fluorescence spectrum, 4S3/2→4I15/2. Spectra are characterized by inhomogeneous broadening due to the disordered crystal structure in which different valency cations, Na+ and Bi3+, statistically fill the S4 symmetry sites. The Er3+ ions likely replace the Bi3+ ions in these sites. A quasi-center model has been chosen to interpret the crystal-field splitting of each manifold, using D2d rather than S4 symmetry as the site for the rare-earth ion in the lattice. To test the feasibility of the model, the splitting of the energy levels of Nd3+ in NBW was carried out first and compared with experimental levels reported in literature. A least-squares fitting analysis between 26 calculated-to-observed energy (Stark) levels gave a root-mean-square (rms) deviation of 8 cm-1 for the 4IJ and 4F3/2 multiplet manifolds of Nd3+ in NBW. Using the phenomenological lattice-sum parameters, Anm, obtained from the analysis of the Nd3+ energy levels, we predicted an initial set of crystal-field parameters, Bnm, for Er3+. With only a modest fitting of the multiplet centroids, these Bnm predict the observed splitting in the Er3+ spectra remarkably well. In a fitting of the energy levels in which both the Bnm and centroids are allowed to vary, we obtained a rms deviation of 6 cm-1 for 57 calculated-to-observed Stark levels. The results suggest that the quasi-center model has merit when used to calculate the crystal-field splitting of the energy levels of the trivalent rare-earth ions in crystal hosts having a disordered structure.

  12. Low levels of energy expenditure in childhood cancer survivors: Implications for obesity prevention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Childhood cancer survivors are at an increased risk of obesity but causes for this elevated risk are uncertain. We evaluated total energy expenditure in childhood cancer survivors using the doubly labeled water method in a cross-sectional study of 17 survivors of pediatric leukemia or lymphoma (medi...

  13. Heat Mining or Replenishable Geothermal Energy? A Project for Advanced-Level Physics Students

    ERIC Educational Resources Information Center

    Dugdale, Pam

    2014-01-01

    There is growing interest in the use of low enthalpy geothermal (LEG) energy schemes, whereby heated water is extracted from sandstone aquifers for civic heating projects. While prevalent in countries with volcanic activity, a recently proposed scheme for Manchester offered the perfect opportunity to engage students in the viability of this form…

  14. Economic Evaluation of Dual-Level-Residence Solar-Energy System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    105-page report is one in a series of economic evaluations of different solar-energy installations. Using study results, an optimal collector area is chosen that minimizes life-cycle costs. From this optimal size thermal and economic performance is evaluated.

  15. Antidepressant Use is Associated with Increased Energy Intake and Similar Levels of Physical Activity.

    PubMed

    Jensen-Otsu, Elsbeth; Austin, Gregory L

    2015-11-01

    Antidepressants have been associated with weight gain, but the causes are unclear. The aims of this study were to assess the association of antidepressant use with energy intake, macronutrient diet composition, and physical activity. We used data on medication use, energy intake, diet composition, and physical activity for 3073 eligible adults from the 2005-2006 National Health and Nutrition Examination Survey (NHANES). Potential confounding variables, including depression symptoms, were included in the models assessing energy intake, physical activity, and sedentary behavior. Antidepressant users reported consuming an additional (mean ± S.E.) 215 ± 73 kcal/day compared to non-users (p = 0.01). There were no differences in percent calories from sugar, fat, or alcohol between the two groups. Antidepressant users had similar frequencies of walking or biking, engaging in muscle-strengthening activities, and engaging in moderate or vigorous physical activity. Antidepressant users were more likely to use a computer for ≥2 h/day (OR 1.77; 95% CI: 1.09-2.90), but TV watching was similar between the two groups. These results suggest increased energy intake and sedentary behavior may contribute to weight gain associated with antidepressant use. Focusing on limiting food intake and sedentary behaviors may be important in mitigating the weight gain associated with antidepressant use. PMID:26610562

  16. Antidepressant Use is Associated with Increased Energy Intake and Similar Levels of Physical Activity.

    PubMed

    Jensen-Otsu, Elsbeth; Austin, Gregory L

    2015-11-20

    Antidepressants have been associated with weight gain, but the causes are unclear. The aims of this study were to assess the association of antidepressant use with energy intake, macronutrient diet composition, and physical activity. We used data on medication use, energy intake, diet composition, and physical activity for 3073 eligible adults from the 2005-2006 National Health and Nutrition Examination Survey (NHANES). Potential confounding variables, including depression symptoms, were included in the models assessing energy intake, physical activity, and sedentary behavior. Antidepressant users reported consuming an additional (mean ± S.E.) 215 ± 73 kcal/day compared to non-users (p = 0.01). There were no differences in percent calories from sugar, fat, or alcohol between the two groups. Antidepressant users had similar frequencies of walking or biking, engaging in muscle-strengthening activities, and engaging in moderate or vigorous physical activity. Antidepressant users were more likely to use a computer for ≥2 h/day (OR 1.77; 95% CI: 1.09-2.90), but TV watching was similar between the two groups. These results suggest increased energy intake and sedentary behavior may contribute to weight gain associated with antidepressant use. Focusing on limiting food intake and sedentary behaviors may be important in mitigating the weight gain associated with antidepressant use.

  17. Effect of diet energy level and genomic residual feed intake on dairy heifer performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the growth, feed intake, and feed efficiency of dairy heifers with different genomically predicted residual feed intakes (RFI), and offered diets differing in energy density. Post-bred Holstein heifers (N=128; ages 14-20 months) were blocked by initial we...

  18. Students' Reading of Innovative Images of Energy at Secondary School Level.

    ERIC Educational Resources Information Center

    Ametller, Jaume; Pinto, Roser

    2002-01-01

    Focuses on images of energy that may help to construct key scientific concepts. Analyzes interpretations given by students of documents containing images evoking ideas that are seldom visually explained within a theoretical semiotic frame. Confirms the utility of this frame and suggests some abilities needed for students to correctly interpret…

  19. Energy level and half-life determinations from photonuclear reaction on Ga target

    NASA Astrophysics Data System (ADS)

    Akkoyun, Serkan; Bayram, Tuncay; Dulger, Fatih; Đapo, Haris; Boztosun, Ismail

    2016-06-01

    Photonuclear reactions are important tools in the understanding of the nucleus. These reactions are also interesting for realizing the element creation processes in stellar environment. The use of bremsstrahlung photons generated from clinic linear accelerator is practical for performing these type of reactions. In this study, the bremsstrahlung photons with endpoint energy of 18MeV have been used for activating gallium target material. After irradiation, the transition energies and half-lives associated with the decay of 68Ga, 70Ga and 72Ga isotopes have been determined The values obtained for half-life of 68Ga, 70Ga and 72Ga isotopes are 67.5±0.9min, 21.1±0.9min and 13.8±0.4h, respectively. It has been seen that the values are consistent with the present literature values. In addition, the new measurements of gamma-ray energies for transition energies have been obtained comparable to the literature values with good uncertainties.

  20. Relativistic Many-body Moller-Plesset Perturbation Theory Calculations of the Energy Levels and Transition Probabilities in Na- to P-like Xe Ions

    SciTech Connect

    Vilkas, M J; Ishikawa, Y; Trabert, E

    2007-03-27

    Relativistic multireference many-body perturbation theory calculations have been performed on Xe{sup 43+}-Xe{sup 39+} ions, resulting in energy levels, electric dipole transition probabilities, and level lifetimes. The second-order many-body perturbation theory calculation of energy levels included mass shifts, frequency-dependent Breit correction and Lamb shifts. The calculated transition energies and E1 transition rates are used to present synthetic spectra in the extreme ultraviolet range for some of the Xe ions.

  1. Earlier Metabolizable Energy Intake Level Influences Heat Production during a Following 3-Day Fast in Laying Hens.

    PubMed

    Ning, D; Guo, Y M; Wang, Y W; Peng, Y Z

    2013-04-01

    The present study was conducted to estimate energy requirements for maintenance in laying hens by using indirect calorimetry and energy balance. A total of 576 28-wk-old Nongda-3 laying hens with dwarf gene were randomly allocated into four ME intake levels (86.57, 124.45, 166.63 and 197.20 kcal/kg body weight (BW)(0.75) per d) with four replicates each. After a 4 d adaptation period, 36 hens from one replicate were maintained in one of the two respiration chambers to measure the heat production (HP) for 3 d during the feeding period and subsequent 3 d fast. Metabolizable energy (ME) intake was partitioned between heat increment (HI), HP associated with activity, fasting HP (FHP) and retained energy (RE). The equilibrium FHP may provide an estimate of NE requirements for maintenance (NEm). Results showed that HP, HI and RE in the fed state increased with ME intake level (p<0.05). Based on the regression of HP on ME intake, the estimated ME requirements for maintenance (MEm) was 113.09 kcal/kg BW(0.75) per d when ME intake equals HP. The FHP was decreased day by day with the lowest value on the third day of starvation. Except for lowest ME intake level, the FHP increased with ME intake level on the first day of starvation (p<0.05). The FHP at the two higher ME intake levels were greater than that at the two lower ME intake levels (p<0.05) but no difference was found between the two lower ME intake levels. Linear regression of HP from the fed state to zero ME intake yielded a value of 71.02 kcal/kg BW(0·75) per d, which is higher than the extrapolated FHP at zero ME intake (60.78, 65.23 and 62.14 kcal/kg BW(0.75) per d for the first, second and third day of fasting, respectively). Fasting time, lighting schedules, calculation methods and duration of adaptation of hens to changes in ME intake level should be properly established when using indirect calorimetry technique to estimate dietary NE content, MEm and NEm for laying hens.

  2. Development and applications of a multi-level strain energy method for detecting finite element modeling errors

    NASA Technical Reports Server (NTRS)

    Hashemi-Kia, Mostafa; Kilroy, Kevin L.; Parker, G.

    1990-01-01

    A computational procedure is described which can be used efficiently in identifying modeling errors which may arise from development of a structural finite element model. The procedure, which is referred to as the multi-level strain energy check, is set up in the form of a set of NASTRAN DMAP alters which provide sufficient information about the modeling errors at G-Set, N-Set, and F-Set levels. This technique was applied to two NASTRAN models, namely, the AH-64A and AH-1G models. Two modeling errors were identified for the AH-1G, which were then corrected.

  3. Flexibility Reserve Reductions from an Energy Imbalance Market with High Levels of Wind Energy in the Western Interconnection

    SciTech Connect

    King, J.; Kirby, B.; Milligan, M.; S. Beuning

    2011-10-01

    The anticipated increase in variable generation in the Western Interconnection (WI) over the next several years has raised concerns about how to maintain system balance, especially in smaller Balancing Areas (BAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts (GW) of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. The consequent increase in variability and uncertainty that must be managed by the conventional generation fleet and responsive load make it attractive to consider ways in which Balancing Area Authorities (BAAs) can pool their variability and response resources, thus taking advantage of geographic and temporal diversity to increase overall operational efficiency. Our analysis considers several alternative forms of an Energy Imbalance Market (EIM) that have been proposed in the non-market areas of the WI. The proposed EIM includes two changes in operating practices that independently reduce variability and increase access to responsive resources: BAA cooperation and sub-hourly dispatch. As proposed, the EIM does not consider any form of coordinated unit commitment; however, over time it is possible that BAAs would develop formal or informal coordination plans. This report examines the benefits of several possible EIM implementations, both separately and in concert.

  4. Umbrella motion of the methyl cation, radical, and anion molecules. I. Potentials, energy levels and partition functions

    NASA Astrophysics Data System (ADS)

    Ragni, Mirco; Bitencourt, Ana Carla P.; Prudente, Frederico V.; Barreto, Patricia R. P.; Posati, Tamara

    2016-03-01

    A study of the umbrella motion of the methyl cation, radical, and anion molecules is presented. This is the floppiest mode of vibration of all three species and its characterization is of fundamental importance for understanding their reactivity. Minimum Energy Paths of the umbrella motions according to the hyperspherical treatment were obtained, by single point calculations, at the CCSD(T)/aug-cc-pVQT level of theory in the Born-Oppenheimer approximation. These energy profiles permit us to calculate the vibrational levels through the Hyperquantization algorithm, which is shown appropriated for the description of the umbrella motion of these three molecules. The adiabatic electron affinity and ionization potentials were estimated to good accuracy. Partition functions are also calculated in order to obtain information on the reaction rates involving these groups.

  5. Energy levels of GaAs/AlxGa1-xAs/AlAs spherical quantum dot with an impurity

    NASA Astrophysics Data System (ADS)

    Boz, Figen Karaca; Nisanci, Beyza; Aktas, Saban; Okan, S. Erol

    2016-11-01

    We have calculated the energy levels and the radial probability distributions of an electron with an impurity in a spherical quantum dot which is layered as GaAs/AlxGa1-xAs/AlAs. The numerical method used is the fourth-order Runge-Kutta method in the framework of the effective mass approximation. The variation of the energy levels have been calculated as functions of the radius of the GaAs sphere and the thickness of AlxGa1-xAs spherical layer considering effective mass and dielectric constant mismatches. The results have presented the importance of the geometry on the electronic properties of the spherical GaAs/AlxGa1-xAs/AlAs quantum dot.

  6. An analysis of 25Al energy levels observed in the 28Si(p,alpha)25Al reaction

    SciTech Connect

    Pittman, S. T.; Bardayan, Daniel W; Blackmon, Jeff C; Kozub, R. L.; Smith, Michael Scott

    2009-01-01

    The level structure of {sup 25}Al has been studied at the ORNL Holifield Radioactive Ion Beam Facility (HRIBF) by measuring the angular and energy distributions of alpha particles from the {sup 28}Si(p,{alpha}){sup 25}Al reaction. Proton beams ({approx}10 nA) at laboratory energies of 40- and 42-MeV were generated by the 25 MV tandem accelerator and bombarded a natural silicon target (50 {micro}g/cm{sup 2}). Alpha particles were detected and identified in the Silicon Detector Array (SIDAR) in the 'telescope' configuration [1]. Eighteen levels have been observed and spins for several have been constrained through a distorted-wave Born approximation (DWBA) analysis of the angular distributions.

  7. Interfacial energy level alignments between low-band-gap polymer PTB7 and indium zinc oxide anode

    NASA Astrophysics Data System (ADS)

    Shin, Dongguen; Lee, Jeihyun; Park, Soohyung; Jeong, Junkyeong; Seo, Ki-Won; Kim, Hyo-Joong; Kim, Han-Ki; Choi, Min-Jun; Chung, Kwun-Bum; Yi, Yeonjin

    2015-09-01

    The interfacial energy level alignments between poly(thieno[3,4-b]-thiophene)-co-benzodithiophene (PTB7) and indium zinc oxide (IZO) were investigated. In situ ultraviolet photoemission spectroscopy measurements were conducted with the step-by-step deposition of PTB7 on IZO substrate. All spectral changes were analyzed between each deposition step, and interfacial energy level alignments were estimated. The hole barrier of standard ultraviolet-ozone treated IZO is 0.58 eV, which is lower than the value of 1.09 eV obtained for bare IZO. The effect of barrier reduction on the hole transport was also confirmed with electrical measurements of hole-dominated devices.

  8. Calculation of Rotation-Vibration Energy Levels of the Water Molecule with Near-Experimental Accuracy Based on an ab Initio Potential Energy Surface

    NASA Astrophysics Data System (ADS)

    Polyansky, Oleg L.; Ovsyannikov, Roman I.; Kyuberis, Aleksandra A.; Lodi, Lorenzo; Tennyson, Jonathan; Zobov, Nikolai F.

    2013-10-01

    A recently computed, high-accuracy ab initio Born-Oppenheimer (BO) potential energy surface (PES) for the water molecule is combined with relativistic, adiabatic, quantum electrodynamics, and, crucially, nonadiabatic corrections. Calculations of ro-vibrational levels are presented for several water isotopologues and shown to have unprecedented accuracy. A purely ab initio calculation reproduces some 200 known band origins associated with seven isotopologues of water with a standard deviation (σ) of about 0.35 cm-1. Introducing three semiempirical scaling parameters, two affecting the BO PES and one controlling nonadiabatic effects, reduces σ below 0.1 cm-1. Introducing one further rotational nonadiabatic parameter gives σ better than 0.1 cm-1 for all observed ro-vibrational energy levels up to J = 25. We conjecture that the energy levels of closed-shell molecules with roughly the same number of electrons as water, such as NH3, CH4, and H3O+, could be calculated to this accuracy using an analogous procedure. This means that near-ab initio calculations are capable of predicting transition frequencies with an accuracy only about a factor of 5 worse than high resolution experiments.

  9. Chemical Treatment of US Department of Energy High Level and Low Level Waste to Obtain a Pure Radiochemical Fraction for Determination of Californium Alpha-Decay Content

    SciTech Connect

    Dewberry, R.

    2002-12-02

    We have developed a chemical separation technique that allows the radiochemical determination of the californium a-decay content in Department of Energy (DOE) high level wastes from the Hanford and Savannah River sites. The chemical separation technique uses a series of column extraction chromatography steps that use Eichrom Industries' lanthanide and actinide plus 3 oxidation state selective Ln-resin(R) and the transuranic selective plus 4 oxidation state TRU-resin(R) to obtain intermediate product phases in dilute nitric acid. The technique has been demonstrated on three types of authentic DOE high and low level waste samples. We obtain discrimination from Pu a-activity by a factor of over 200 and from Cm-244 a-activity by a factor approaching 1700. Californium recoveries are measured by addition of a Cf-249 spike and are in the range of 50 percent to 90 percent in the synthetic samples and are in the range of 1.4 percent to 48 percent for the authentic DOE waste samples.

  10. MicroRNAs Regulate Cellular ATP Levels by Targeting Mitochondrial Energy Metabolism Genes during C2C12 Myoblast Differentiation.

    PubMed

    Siengdee, Puntita; Trakooljul, Nares; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus; Ponsuksili, Siriluck

    2015-01-01

    In our previous study, we identified an miRNA regulatory network involved in energy metabolism in porcine muscle. To better understand the involvement of miRNAs in cellular ATP production and energy metabolism, here we used C2C12 myoblasts, in which ATP levels increase during differentiation, to identify miRNAs modulating these processes. ATP level, miRNA and mRNA microarray expression profiles during C2C12 differentiation into myotubes were assessed. The results suggest 14 miRNAs (miR-423-3p, miR-17, miR-130b, miR-301a/b, miR-345, miR-15a, miR-16a, miR-128, miR-615, miR-1968, miR-1a/b, and miR-194) as cellular ATP regulators targeting genes involved in mitochondrial energy metabolism (Cox4i2, Cox6a2, Ndufb7, Ndufs4, Ndufs5, and Ndufv1) during C2C12 differentiation. Among these, miR-423-3p showed a high inverse correlation with increasing ATP levels. Besides having implications in promoting cell growth and cell cycle progression, its function in cellular ATP regulation is yet unknown. Therefore, miR-423-3p was selected and validated for the function together with its potential target, Cox6a2. Overexpression of miR-423-3p in C2C12 myogenic differentiation lead to decreased cellular ATP level and decreased expression of Cox6a2 compared to the negative control. These results suggest miR-423-3p as a novel regulator of ATP/energy metabolism by targeting Cox6a2.

  11. Concerning the energy levels of silver in Ge-Si alloys

    SciTech Connect

    Tahirov, V. I.; Agamaliev, Z. A.; Sadixova, S. R.; Guliev, A. F.; Gahramanov, N. F.

    2012-03-15

    The emission from impurity states of silver (an element of the IB subgroup) in a Ge-Si alloy, containing 18 at % Si, has been studied. The donor level of silver has been found in crystals doubly doped with gallium and silver, while its first acceptor level has been revealed in crystals doped with only silver. Single crystals were grown by pulling from a melt using a feeding rod. Doping with gallium was performed by introducing this element into the feeding rod, and silver was introduced into the crystals via diffusion. The positions of the donor and first acceptor Ag levels with respect to the top of the valence band were found by analyzing the temperature dependence of the Hall coefficient and the electroneutrality equation for the crystal: 0.06 and 0.29 eV, respectively.

  12. Relativistic MR-MP energy levels: Low-lying states in the Mg isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Santana, Juan A.

    2016-09-01

    The relativistic Multi-Reference Møller-Plesset (MR-MP) many-body perturbation theory was applied to calculate the energies of all excited states within the 3s3p, 3p2, 3s3d, 3p3d and 3d2 configurations for every ion of the Mg isoelectronic sequence (Z = 12 - 100). The results are compared with previous calculations and available experimental data. The MR-MP excitation energies agree with experiment typically within 100 ppm over a wide range of Z, particularly for mid- and high-range Z. Experimental data for highly charged ions in this isoelectronic sequence are limited and the complete and accurate dataset presented here is expected to ease the identification process upon measurements.

  13. Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy.

    PubMed

    Harwell, J R; Baikie, T K; Baikie, I D; Payne, J L; Ni, C; Irvine, J T S; Turnbull, G A; Samuel, I D W

    2016-07-20

    The field of organo-lead halide perovskite solar cells has been rapidly growing since their discovery in 2009. State of the art devices are now achieving efficiencies comparable to much older technologies like silicon, while utilising simple manufacturing processes and starting materials. A key parameter to consider when optimising solar cell devices or when designing new materials is the position and effects of the energy levels in the materials. We present here a comprehensive study of the energy levels present in a common structure of perovskite solar cell using an advanced macroscopic Kelvin probe and UV air photoemission setup. By constructing a detailed map of the energy levels in the system we are able to predict the importance of each layer to the open circuit voltage of the solar cell, which we then back up through measurements of the surface photovoltage of the cell under white illumination. Our results demonstrate the effectiveness of air photoemission and Kelvin probe contact potential difference measurements as a method of identifying the factors contributing to the open circuit voltage in a solar cell, as well as being an excellent way of probing the physics of new materials.

  14. CNF1 Increases Brain Energy Level, Counteracts Neuroinflammatory Markers and Rescues Cognitive Deficits in a Murine Model of Alzheimer's Disease

    PubMed Central

    Travaglione, Sara; Fabbri, Alessia; Guidotti, Marco; Ferri, Alberto; Campana, Gabriele; Fiorentini, Carla

    2013-01-01

    Overexpression of pro-inflammatory cytokines and cellular energy failure are associated with neuroinflammatory disorders, such as Alzheimer's disease. Transgenic mice homozygous for human ApoE4 gene, a well known AD and atherosclerosis animal model, show decreased levels of ATP, increased inflammatory cytokines level and accumulation of beta amyloid in the brain. All these findings are considered responsible for triggering cognitive decline. We have demonstrated that a single administration of the bacterial E. coli protein toxin CNF1 to aged apoE4 mice, beside inducing a strong amelioration of both spatial and emotional memory deficits, favored the cell energy restore through an increment of ATP content. This was accompanied by a modulation of cerebral Rho and Rac1 activity. Furthermore, CNF1 decreased the levels of beta amyloid accumulation and interleukin-1β expression in the hippocampus. Altogether, these data suggest that the pharmacological modulation of Rho GTPases by CNF1 can improve memory performances in an animal model of Alzheimer's disease via a control of neuroinflammation and a rescue of systemic energy homeostasis. PMID:23738020

  15. Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy.

    PubMed

    Harwell, J R; Baikie, T K; Baikie, I D; Payne, J L; Ni, C; Irvine, J T S; Turnbull, G A; Samuel, I D W

    2016-07-20

    The field of organo-lead halide perovskite solar cells has been rapidly growing since their discovery in 2009. State of the art devices are now achieving efficiencies comparable to much older technologies like silicon, while utilising simple manufacturing processes and starting materials. A key parameter to consider when optimising solar cell devices or when designing new materials is the position and effects of the energy levels in the materials. We present here a comprehensive study of the energy levels present in a common structure of perovskite solar cell using an advanced macroscopic Kelvin probe and UV air photoemission setup. By constructing a detailed map of the energy levels in the system we are able to predict the importance of each layer to the open circuit voltage of the solar cell, which we then back up through measurements of the surface photovoltage of the cell under white illumination. Our results demonstrate the effectiveness of air photoemission and Kelvin probe contact potential difference measurements as a method of identifying the factors contributing to the open circuit voltage in a solar cell, as well as being an excellent way of probing the physics of new materials. PMID:27384817

  16. The influence of coal physical and mechanical properties and mining energy consumption factor on airborne respirable dust level

    SciTech Connect

    Koziel, A.; Malec, M.; Wardas, E.

    1999-07-01

    The fact that there are not any explicitly defined relationships describing the influence of physical and mechanical properties of coal and of energy consumption factor on dust level prompted Polish and American investigators to carry out a joint research project within the framework of the US-Poland Maria Sklodowska-Curie Joint Fund II. The paper presents methods used to perform tests under laboratory conditions at the Pittsburgh Research Laboratory as well as under real conditions in the course of coal cutting in Polish coal mines. Measuring systems and results of the tests are described. The analysis carried out has provided a basis for determining the influence of specified operational parameters, i.e., coal compression strength R{sub c}, coal cuttability factor A, energy consumption factor of mining E{sub uc}, load of cutting drums as well as of laboratory parameters, i.e., grindability, coal breakage characteristics (product size distribution), moisture content, volatile and fixed carbon content, specific energy of crushing on a level of generated dust (total dust, specific dust and airborne respirable dust). The effect of technical parameters, i.e., face height, airflow velocity in a face, amount and pressure of water in spraying systems of longwall shearers, depth of cut taken by a cutting drum and application of powered cowls on dust level under operating conditions are also presented. Results of the tests made it possible to work out guidelines relating to methods and technology for effective reduction of dust emission on longwall faces.

  17. Lithium-antimony-lead liquid metal battery for grid-level energy storage

    NASA Astrophysics Data System (ADS)

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J.; Boysen, Dane A.; Bradwell, David J.; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R.

    2014-10-01

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this finding

  18. Effect of photon energy in collagen generation by interstitial low level laser stimulation

    NASA Astrophysics Data System (ADS)

    Jun, Eunkwon; Ha, Myungjin; Lee, Sangyeob; Radfar, Edalat; Park, Jihoon; Jung, Byungjo

    2015-03-01

    Although the mechanism of low level laser therapy (LLLT) is unclear, many studies demonstrated the positive clinical performance of LLLT for skin rejuvenation. An increase in dermal collagen plays an important role in skin rejuvenation and wound healing. This study aimed to investigate collagen generation after interstitial low level laser stimulation (ILLS). Rabbits were divided into two groups: surfacing irradiation and minimally invasive irradiation. 660nm diode laser of 20mW with 10J, 13J and 15J was applied to the backside of rabbits. Collagen formation was evaluated with ultrasound skin scanner every 12 hours. Results shows that ILLS groups have denser collagen density than surfacing groups.

  19. Comparison of Pap test among high and non-high risk female.

    PubMed

    Vaidya, A

    2003-01-01

    A prospective study of pap smear in 100 high risk and equal number of non high risk female among total 1022 female Gynecological patients within a period of two and half months {Beginning of Sept. to middle of Nov. 1995} in Maternity Hospital, Thapathali is presented. There were 9 cases positive for dyskaryosis among high risk and 3 cases among the comparison group. All positive cases were at the age of 35 years and above. In 9 positive cases, 5 cases were in CIN I (55.55%) while 4 were in CIN II (44.44%). Similarly out of 3 positive cases in comparison group 1 was in CIN I category (33.33%) and 2 cases were in CIN II (66.66%). Relation of positive cases with low social class revealed 80% CIN I and 50% CIN II among high risk group where as 66.6% CIN II in comparison group. Analysis of risk factor in development of various grades Dyskaryosis revealed 60% of CIN I had high parity while 50% had CIN II. There are about 40% of CIN I and 75% CIN II among child birth less than 19yrs, 60% smoker had CIN I where as 100%. Smoker had CIN II. 80% of CIN I gave history of excessive vaginal discharge where as 50% of CIN II had excessive vaginal discharge. 40% of CIN I was having injection Depo provera. Cases were also analyzed according to risk factor. Out of 9 positive cases among high-risk females 5 positive had parity more than 4 and 4 cases had less than 4. 5 positive cases were among less than 19 years of first childbirth, 4 among more than 19 years. 7 positive cases were smoker and 2 positive cases were non-smoker. 6 positive cases gave history of abnormal vaginal discharge and 3 positive cases had no abnormal vaginal discharge. Out of 9 positive cases 2 had history of injection Depo provera continuously for more than 5 years where as 7 were non users.

  20. Work-energy level, personal characteristics, and fatal heart attack: a birth-cohort effect.

    PubMed

    Paffenbarger, R S; Hale, W E; Brand, R J; Hyde, R T

    1977-03-01

    In a 22-year followup of 3686 San Francisco longshoremen, a cohort analysis assessed job activity and six personal characteristics in relation to 395 fatal heart attacks. Four cohorts aged 35-44, 45-54, 55-64, and 65-74 in 1951 were studied annually for job shifts affecting energy output and for sudden or delayed death from heart attack by age 75. All subjects underwent multiphasic screening for heavy cigarette smoking, higher blood pressure, history of prior heart disease, obesity, abnormal glucose metabolism, and higher blood cholesterol. The first three of these characteristics added risk of fatal heart attack. The amount of risk varied in the four cohorts. Higher energy output on the job reduced risk of fatal heart attack, especially sudden death, in the two younger cohorts, where less active workers were at threefold increased risk. Lack of this effect in the two older cohorts could imply real differences in their work habits, such as being less energetic in heavy jobs or more energetic in light jobs than the younger cohorts. Or, before the study began, early deaths may have winnowed susceptibles from the two older cohorts. Combined low-energy output, heavy smoking, and higher blood pressure increased risk by as much as 20-fold. By elimination of these adverse influences, this population might have had an 88% reduction in its rate of fatal heart attack during the 22 years.

  1. Relationship between tactics and energy expenditure according to level of experience in badminton.

    PubMed

    Dieu, Olivier; Blondeau, Thomas; Vanhelst, Jérémy; Fardy, Paul S; Bui-Xuân, Gilles; Mikulovic, Jacques

    2014-10-01

    Research on racket sports has traditionally focused on expert players and has treated energy expenditure and tactics as independent factors. These prior studies could not assess how energy expenditure and tactics changed as a function of experience and skill. Here, the specific relationship between playing tactics and energy expenditure in badminton were assessed. Participants were classified into five stages of badminton experience on the basis of conative criteria: structural (physical abilities), technical (technical skills), and functional (tactics). The physical activity of 99 players (47 beginners, 15 intermediates, 30 advanced, and 7 experts) was measured using a three-axis accelerometer during a badminton set (21 points, no extra scoring). The results showed that physical activity (counts/sec.) ranged between about 115 (Stage 1) and 155 (Stage 5), and differed significantly across the conative stages. For Stages 2 and 4, defined by an increase in use of tactics, physical activity increased substantially. For Stage 3, defined by a decrease in use of tactics, physical activity decreased significantly. Thus, tactically-oriented play appears to be closely related to physical activity. PMID:25202998

  2. Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies.

    PubMed

    Parker, Trent M; Burns, Lori A; Parrish, Robert M; Ryno, Alden G; Sherrill, C David

    2014-03-01

    A systematic examination of the computational expense and accuracy of Symmetry-Adapted Perturbation Theory (SAPT) for the prediction of non-covalent interaction energies is provided with respect to both method [SAPT0, DFT-SAPT, SAPT2, SAPT2+, SAPT2+(3), and SAPT2+3; with and without CCD dispersion for the last three] and basis set [Dunning cc-pVDZ through aug-cc-pV5Z wherever computationally tractable, including truncations of diffuse basis functions]. To improve accuracy for hydrogen-bonded systems, we also include two corrections based on exchange-scaling (sSAPT0) and the supermolecular MP2 interaction energy (δMP2). When considering the best error performance relative to computational effort, we recommend as the gold, silver, and bronze standard of SAPT: SAPT2+(3)δMP2/aug-cc-pVTZ, SAPT2+/aug-cc-pVDZ, and sSAPT0/jun-cc-pVDZ. Their respective mean absolute errors in interaction energy across the S22, HBC6, NBC10, and HSG databases are 0.15 (62.9), 0.30 (4.4), and 0.49 kcal mol(-1) (0.03 h for adenine·thymine complex).

  3. Relationship between tactics and energy expenditure according to level of experience in badminton.

    PubMed

    Dieu, Olivier; Blondeau, Thomas; Vanhelst, Jérémy; Fardy, Paul S; Bui-Xuân, Gilles; Mikulovic, Jacques

    2014-10-01

    Research on racket sports has traditionally focused on expert players and has treated energy expenditure and tactics as independent factors. These prior studies could not assess how energy expenditure and tactics changed as a function of experience and skill. Here, the specific relationship between playing tactics and energy expenditure in badminton were assessed. Participants were classified into five stages of badminton experience on the basis of conative criteria: structural (physical abilities), technical (technical skills), and functional (tactics). The physical activity of 99 players (47 beginners, 15 intermediates, 30 advanced, and 7 experts) was measured using a three-axis accelerometer during a badminton set (21 points, no extra scoring). The results showed that physical activity (counts/sec.) ranged between about 115 (Stage 1) and 155 (Stage 5), and differed significantly across the conative stages. For Stages 2 and 4, defined by an increase in use of tactics, physical activity increased substantially. For Stage 3, defined by a decrease in use of tactics, physical activity decreased significantly. Thus, tactically-oriented play appears to be closely related to physical activity.

  4. Effect of feeding different levels of energy and protein on performance of Aseel breed of chicken during juvenile phase.

    PubMed

    Haunshi, Santosh; Panda, Arun Kumar; Rajkumar, Ullengala; Padhi, Mahendra Kumar; Niranjan, Mattam; Chatterjee, Rudra Nath

    2012-10-01

    A study was conducted to evaluate the effect of feeding different metabolizable energy (ME) and crude protein (CP) levels on performance of Aseel chicken during 0 to 8 weeks of age (Juvenile phase). At 1 day old, 432 chicks were randomly distributed into nine groups. Each group had 48 chicks distributed into eight replicates with six birds in each. Maize-soybean meal-based diets with three ME levels (2,400, 2,600 and 2,800 kcal/kg) and three CP levels (16%, 18% and 20%) were fed to birds in a 3 × 3 factorial design. Different ME levels had significant effect on body weight gain (BWG), feed intake and feed conversion ratio (FCR). Birds fed diet with 2,400 kcal/kg ME had significantly lower BWG (P < 0.004), lower shank length (P < 0.0007), higher feed intake (P < 0.0001) and poor FCR (P < 0.0001) than those fed diet with either 2,600 or 2,800 kcal/kg ME. Energy efficiency ratio was not influenced by ME, CP or their interaction. However, protein efficiency ratio was significantly higher at higher ME levels and lower at higher CP levels. There was significant effect of ME, CP and their interaction on serum protein and cholesterol levels. However, they made no significant effect on antibody titre against New Castle disease vaccine. The study concluded that provision of 2,600 kcal/kg ME and 16% CP would be ideal for optimum growth of Aseel birds during juvenile phase. However, to obtain better FCR, feeding Aseel birds with diet having 2,800 kcal/kg ME and 16% CP would be ideal.

  5. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    EIA Publications

    2015-01-01

    This analysis examines some of the factors that influence state-level carbon dioxide emissions from the consumption of fossil fuels. These factors include: the fuel mix — especially in the generation of electricity; the state climate; the population density of the state; the industrial makeup of the state and whether the state is a net exporter or importer of electricity.

  6. Work-Family Balance and Energy: A Day-Level Study on Recovery Conditions

    ERIC Educational Resources Information Center

    Sanz-Vergel, Ana Isabel; Demerouti, Evangelia; Moreno-Jimenez, Bernardo; Mayo, Margarita

    2010-01-01

    The present study examines whether daily recovery inhibiting and enhancing conditions predict day-levels of work-family conflict (WFC), work-family facilitation (WFF), exhaustion and vigor. Forty-nine individuals from various professional backgrounds in Spain provided questionnaire and daily survey measures over a period of five working days.…

  7. Semiempirical scaling laws for diabatic energy levels of highly excited hydrogen atoms in high magnetic fields

    SciTech Connect

    Feneuille, S.

    1982-07-01

    The ''diabatic'' levels responsible for the observation of quasi-Landau resonances in absorption spectra of strongly magnetized atoms obey some scaling laws, valid for the whole range of the magnetic field. This suggests again that it should be possible to find a fully separable approximate model to describe the considered system in a realistic way.

  8. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators.

    PubMed

    Imamura, Hiromi; Nhat, Kim P Huynh; Togawa, Hiroko; Saito, Kenta; Iino, Ryota; Kato-Yamada, Yasuyuki; Nagai, Takeharu; Noji, Hiroyuki

    2009-09-15

    Adenosine 5'-triphosphate (ATP) is the major energy currency of cells and is involved in many cellular processes. However, there is no method for real-time monitoring of ATP levels inside individual living cells. To visualize ATP levels, we generated a series of fluorescence resonance energy transfer (FRET)-based indicators for ATP that were composed of the epsilon subunit of the bacterial F(o)F(1)-ATP synthase sandwiched by the cyan- and yellow-fluorescent proteins. The indicators, named ATeams, had apparent dissociation constants for ATP ranging from 7.4 muM to 3.3 mM. By targeting ATeams to different subcellular compartments, we unexpectedly found that ATP levels in the mitochondrial matrix of HeLa cells are significantly lower than those of cytoplasm and nucleus. We also succeeded in measuring changes in the ATP level inside single HeLa cells after treatment with inhibitors of glycolysis and/or oxidative phosphorylation, revealing that glycolysis is the major ATP-generating pathway of the cells grown in glucose-rich medium. This was also confirmed by an experiment using oligomycin A, an inhibitor of F(o)F(1)-ATP synthase. In addition, it was demonstrated that HeLa cells change ATP-generating pathway in response to changes of nutrition in the environment.

  9. Prioritizing Avian Species for Their Risk of Population-Level Consequences from Wind Energy Development.

    PubMed

    Beston, Julie A; Diffendorfer, Jay E; Loss, Scott R; Johnson, Douglas H

    2016-01-01

    Recent growth in the wind energy industry has increased concerns about its impacts on wildlife populations. Direct impacts of wind energy include bird and bat collisions with turbines whereas indirect impacts include changes in wildlife habitat and behavior. Although many species may withstand these effects, species that are long-lived with low rates of reproduction, have specialized habitat preferences, or are attracted to turbines may be more prone to declines in population abundance. We developed a prioritization system to identify the avian species most likely to experience population declines from wind facilities based on their current conservation status and their expected risk from turbines. We developed 3 metrics of turbine risk that incorporate data on collision fatalities at wind facilities, population size, life history, species' distributions relative to turbine locations, number of suitable habitat types, and species' conservation status. We calculated at least 1 measure of turbine risk for 428 avian species that breed in the United States. We then simulated 100,000 random sets of cutoff criteria (i.e., the metric values used to assign species to different priority categories) for each turbine risk metric and for conservation status. For each set of criteria, we assigned each species a priority score and calculated the average priority score across all sets of criteria. Our prioritization system highlights both species that could potentially experience population decline caused by wind energy and species at low risk of population decline. For instance, several birds of prey, such as the long-eared owl, ferruginous hawk, Swainson's hawk, and golden eagle, were at relatively high risk of population decline across a wide variety of cutoff values, whereas many passerines were at relatively low risk of decline. This prioritization system is a first step that will help researchers, conservationists, managers, and industry target future study and management

  10. Prioritizing avian species for their risk of population-level consequences from wind energy development

    USGS Publications Warehouse

    Beston, Julie A.; Diffendorfer, James E.; Loss, Scott; Johnson, Douglas H.

    2016-01-01

    Recent growth in the wind energy industry has increased concerns about its impacts on wildlife populations. Direct impacts of wind energy include bird and bat collisions with turbines whereas indirect impacts include changes in wildlife habitat and behavior. Although many species may withstand these effects, species that are long-lived with low rates of reproduction, have specialized habitat preferences, or are attracted to turbines may be more prone to declines in population abundance. We developed a prioritization system to identify the avian species most likely to experience population declines from wind facilities based on their current conservation status and their expected risk from turbines. We developed 3 metrics of turbine risk that incorporate data on collision fatalities at wind facilities, population size, life history, species’ distributions relative to turbine locations, number of suitable habitat types, and species’ conservation status. We calculated at least 1 measure of turbine risk for 428 avian species that breed in the United States. We then simulated 100,000 random sets of cutoff criteria (i.e., the metric values used to assign species to different priority categories) for each turbine risk metric and for conservation status. For each set of criteria, we assigned each species a priority score and calculated the average priority score across all sets of criteria. Our prioritization system highlights both species that could potentially experience population decline caused by wind energy and species at low risk of population decline. For instance, several birds of prey, such as the long-eared owl, ferruginous hawk, Swainson’s hawk, and golden eagle, were at relatively high risk of population decline across a wide variety of cutoff values, whereas many passerines were at relatively low risk of decline. This prioritization system is a first step that will help researchers, conservationists, managers, and industry target future study and

  11. Prioritizing Avian Species for Their Risk of Population-Level Consequences from Wind Energy Development

    PubMed Central

    Beston, Julie A.; Diffendorfer, Jay E.; Loss, Scott R.; Johnson, Douglas H.

    2016-01-01

    Recent growth in the wind energy industry has increased concerns about its impacts on wildlife populations. Direct impacts of wind energy include bird and bat collisions with turbines whereas indirect impacts include changes in wildlife habitat and behavior. Although many species may withstand these effects, species that are long-lived with low rates of reproduction, have specialized habitat preferences, or are attracted to turbines may be more prone to declines in population abundance. We developed a prioritization system to identify the avian species most likely to experience population declines from wind facilities based on their current conservation status and their expected risk from turbines. We developed 3 metrics of turbine risk that incorporate data on collision fatalities at wind facilities, population size, life history, species’ distributions relative to turbine locations, number of suitable habitat types, and species’ conservation status. We calculated at least 1 measure of turbine risk for 428 avian species that breed in the United States. We then simulated 100,000 random sets of cutoff criteria (i.e., the metric values used to assign species to different priority categories) for each turbine risk metric and for conservation status. For each set of criteria, we assigned each species a priority score and calculated the average priority score across all sets of criteria. Our prioritization system highlights both species that could potentially experience population decline caused by wind energy and species at low risk of population decline. For instance, several birds of prey, such as the long-eared owl, ferruginous hawk, Swainson’s hawk, and golden eagle, were at relatively high risk of population decline across a wide variety of cutoff values, whereas many passerines were at relatively low risk of decline. This prioritization system is a first step that will help researchers, conservationists, managers, and industry target future study and

  12. Prioritizing Avian Species for Their Risk of Population-Level Consequences from Wind Energy Development.

    PubMed

    Beston, Julie A; Diffendorfer, Jay E; Loss, Scott R; Johnson, Douglas H

    2016-01-01

    Recent growth in the wind energy industry has increased concerns about its impacts on wildlife populations. Direct impacts of wind energy include bird and bat collisions with turbines whereas indirect impacts include changes in wildlife habitat and behavior. Although many species may withstand these effects, species that are long-lived with low rates of reproduction, have specialized habitat preferences, or are attracted to turbines may be more prone to declines in population abundance. We developed a prioritization system to identify the avian species most likely to experience population declines from wind facilities based on their current conservation status and their expected risk from turbines. We developed 3 metrics of turbine risk that incorporate data on collision fatalities at wind facilities, population size, life history, species' distributions relative to turbine locations, number of suitable habitat types, and species' conservation status. We calculated at least 1 measure of turbine risk for 428 avian species that breed in the United States. We then simulated 100,000 random sets of cutoff criteria (i.e., the metric values used to assign species to different priority categories) for each turbine risk metric and for conservation status. For each set of criteria, we assigned each species a priority score and calculated the average priority score across all sets of criteria. Our prioritization system highlights both species that could potentially experience population decline caused by wind energy and species at low risk of population decline. For instance, several birds of prey, such as the long-eared owl, ferruginous hawk, Swainson's hawk, and golden eagle, were at relatively high risk of population decline across a wide variety of cutoff values, whereas many passerines were at relatively low risk of decline. This prioritization system is a first step that will help researchers, conservationists, managers, and industry target future study and management

  13. Lithium-antimony-lead liquid metal battery for grid-level energy storage.

    PubMed

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J; Boysen, Dane A; Bradwell, David J; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R

    2014-10-16

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this

  14. Lithium-antimony-lead liquid metal battery for grid-level energy storage.

    PubMed

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J; Boysen, Dane A; Bradwell, David J; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R

    2014-10-16

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this

  15. The interplay between interface structure, energy level alignment and chemical bonding strength at organic-metal interfaces.

    PubMed

    Willenbockel, M; Lüftner, D; Stadtmüller, B; Koller, G; Kumpf, C; Soubatch, S; Puschnig, P; Ramsey, M G; Tautz, F S

    2015-01-21

    What do energy level alignments at metal-organic interfaces reveal about the metal-molecule bonding strength? Is it permissible to take vertical adsorption heights as indicators of bonding strengths? In this paper we analyse 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) on the three canonical low index Ag surfaces to provide exemplary answers to these questions. Specifically, we employ angular resolved photoemission spectroscopy for a systematic study of the energy level alignments of the two uppermost frontier states in ordered monolayer phases of PTCDA. Data are analysed using the orbital tomography approach. This allows the unambiguous identification of the orbital character of these states, and also the discrimination between inequivalent species. Combining this experimental information with DFT calculations and the generic Newns-Anderson chemisorption model, we analyse the alignments of highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) with respect to the vacuum levels of bare and molecule-covered surfaces. This reveals clear differences between the two frontier states. In particular, on all surfaces the LUMO is subject to considerable bond stabilization through the interaction between the molecular π-electron system and the metal, as a consequence of which it also becomes occupied. Moreover, we observe a larger bond stabilization for the more open surfaces. Most importantly, our analysis shows that both the orbital binding energies of the LUMO and the overall adsorption heights of the molecule are linked to the strength of the chemical interaction between the molecular π-electron system and the metal, in the sense that stronger bonding leads to shorter adsorption heights and larger orbital binding energies. PMID:25475998

  16. Energy levels and upconversion fluorescence in trivalent thulium-doped yttrium scandium aluminum garnet

    NASA Astrophysics Data System (ADS)

    Gruber, John B.; Seltzer, Michael D.; Hills, Marian E.; Stevens, Sally B.; Morrison, Clyde A.

    1993-02-01

    Absorption spectra of Tm(3+) ions in yttrium scandium aluminum garnet are reported between 1.9 microns and 0.25 micron at 4 K. Laser-excited fluorescence was observed at 4 K from Tm(3+)(4f12) multiplet manifolds 1D2, 1G4, 3F2, and 3H4 to the ground-state manifold 3H6. Emission from 1D2 and 1G4 also includes transitions to Stark levels in manifolds 3F4 and 3H5. Upconversion excited fluorescence was observed between 1D2 and 3F4 at 10 K. Analysis of the fluorescence emission confirms assignments given to individual Stark levels based on an analysis of the absorption spectra. A crystal-field splitting calculation was carried out in which a parameterized Hamiltonian (including Coulombic, spin-orbit, and crystal-field terms in D2 symmetry) was diagonalized for all multiplets of the Tm(3+)(4f12) configuration. The rms deviation between 42 experimental and calculated Stark levels was 8/cm.

  17. Reduced high-energy phosphate levels in rat hearts. II. Effects of sodium cyanate.

    PubMed

    Allison, T B; Pieper, G M; Clayton, F C; Eliot, R S

    1976-06-01

    The effects of increased blood-oxygen affinity, due to carbamylation of hemoglobin in vivo, on aerobic metabolism in the heart were studied in rats. Adult male rats were injected intraperitoneally 3 times weekly for 10 wk with sodium cyanate (60 mg/kg). Significant derangement of blood-oxygen interaction was observed. Oxygen-dissociation curves were left shifted by 13 mmHg (35.1-21.8), and the overall deoxygenation rate (k) was reduced 41% (6.142-3.624; s(-1)); P is less than 0.001 for each parameter. Heart ATP and PCr levels were reduced (ATP: 19.4-16.7; PCr: 15.0-11.0, mum/g dry wt; P is less than 0.001 for each). In addition, glycogen levels fell (161.4-112.9, mum C6/g dry wt; P is less than 0.001). Myocardial lactate levels increased 54% (2.6-4.0, mum/g dry wt; P is less than 0.01) in the cyanate-treated group. These findings strongly suggest a hypoxia-induced activation of glycolysis as a consequence of altered oxidative metabolism in rats treated with sodium cyanate. PMID:937561

  18. Research Frontiers in Bioinspired Energy: Molecular-Level Learning from Natural Systems: A Workshop

    SciTech Connect

    Zolandz, Dorothy

    2012-03-28

    An interactive, multidisciplinary, public workshop, organized by a group of experts in biochemistry, biophysics, chemical and biomolecular engineering, chemistry, microbial metabolism, and protein structure and function, was held on January 6-7, 2011 in Washington, DC. Fundamental insights into the biological energy capture, storage, and transformation processes provided by speakers was featured in this workshop which included topics such as microbes living in extreme environments such as hydrothermal vents or caustic soda lakes (extremophiles) provided a fascinating basis for discussing the exploration and development of new energy systems. Breakout sessions and extended discussions among the multidisciplinary groups of participants in the workshop fostered information sharing and possible collaborations on future bioinspired research. Printed and web-based materials that summarize the committee's assessment of what transpired at the workshop were prepared to advance further understanding of fundamental chemical properties of biological systems within and between the disciplines. In addition, webbased materials (including two animated videos) were developed to make the workshop content more accessible to a broad audience of students and researchers working across disciplinary boundaries. Key workshop discussion topics included: Exploring and identifying novel organisms; Identifying patterns and conserved biological structures in nature; Exploring and identifying fundamental properties and mechanisms of known biological systems; Supporting current, and creating new, opportunities for interdisciplinary education, training, and outreach; and Applying knowledge from biology to create new devices and sustainable technology.

  19. Glauber modeling of high-energy nuclear collisions at the subnucleon level

    NASA Astrophysics Data System (ADS)

    Loizides, C.

    2016-08-01

    Glauber models based on nucleon-nucleon interactions are commonly used to characterize the initial state in high-energy nuclear collisions and the dependence of its properties on impact parameter or number of participating nucleons. In this paper, an extension to the Glauber model is presented, which accounts for an arbitrary number of effective subnucleon degrees of freedom, or active constituents, in the nucleons. Properties of the initial state, such as the number of constituent participants and collisions, as well as eccentricity and triangularity, are calculated and systematically compared for different assumptions of how to distribute the subnuclear degrees of freedom and for various collision systems. It is demonstrated that at high collision energy the number of produced particles scales with an average number of subnucleon degrees of freedom of between 3 and 5. The source codes for the constituent Monte Carlo Glauber extension, as well as for the calculation of the overlap area and participant density in a standard Glauber model, are made publicly available.

  20. Pixel level image fusion for medical imaging: an energy minimizing approach

    NASA Astrophysics Data System (ADS)

    Miles, Brandon; Law, Max W. K.; Ben-Ayed, Ismail; Garvin, Greg; Fenster, Aaron; Li, Shuo

    2012-03-01

    In an attempt to improve the visualisation techniques for diagnosis and treatment of musculoskeletal injuries, we present a novel image fusion method for a pixel-wise fusion of CT and MR images. We focus on the spine and it's related diseases including osteophyte growth, degenerate disc disease and spinal stenosis. This will have benefit to the 50-75% of people who suffer from back pain, which is the reason for 1.8% of all hospital stays in the United States.1 Pre-registered CT and MR image pairs were used. Rigid registration was performed based on soft tissue correspondence. A pixel-wise image fusion algorithm has been designed to combine CT and MR images into a single image. This is accomplished by minimizing an energy functional using a Graph Cut approach. The functional is formulated to balance the similarity between the resultant image and the CT image as well as between the resultant image and the MR image. Furthermore the variational smoothness of the resultant image is considered in the energy functional (to enforce natural transitions between pixels). The results have been validated based on the amount of significant detail preserved in the final fused image. Based on bone cortex and disc / spinal cord areas, 95% of the relevant MR detail and 85% of the relevant CT detail was preserved. This work has the potential to aid in patient diagnosis, surgery planning and execution along with post operative follow up.

  1. Threshold level laser photoablation of crystalline silver: Ejected ion translational energy distributions

    NASA Astrophysics Data System (ADS)

    Helvajian, H.; Welle, R.

    1989-08-01

    We have conducted an experiment which measures, for a single laser shot, the ejected mass and nascent velocity distributions of ionic species ablated at laser fluences near the threshold for ion production. Our results show that for a crystalline silver target, the laser-ablated ion products are ejected with fixed kinetic energy equal to 9±1 eV (3 eV FWHM). The kinetic energy of the ejecta (Ag+,Ag+2, adsorbed Fe+) do not vary with wavelength (351 and 248 nm), nor with the ion product mass, and within limits are independent of the incident laser intensity. We do see a wavelength dependence in the threshold for ion production and in the dimer/monomer (Ag+/Ag+2) ion ratio. A number of possible mechanisms are presented to explain the data, although none is without some objection. Among these, the process whereby desorption is induced by electronic transitions (DIET processes) has some merit in explaining our data.

  2. Energy levels in {sup 251}{sub 98}Cf populated in the {sup 255}{sub 100}Fm.

    SciTech Connect

    Ahmad, I.; Carpenter, M. P.; Chasman, R. R.; Greene, J. P.; Janssens, R. V. F.; Khoo, T. L.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; Reiter, C. J.; Seweryniak, D.; Sonzogni, A.; Uusitalo, J.; Wiedenhoever, I.; Bhattacharyya, P.; Physics; Purdue Univ.

    2000-01-01

    Gamma-ray spectra of a 20-h {sup 255}Fm source containing -1 mCi activity were measured with a 25% Ge detector and a low-energy photon spectrometer (LEPS). Gamma lines with intensities as low at 1.0 x 10{sup -6}% per {sup 255}Fm {alpha} decay were observed. Gamma-gamma coincidence spectra of a {sup 255}Fm sample were measured with the GAMMASPHERE array. A comparison of the {gamma}-ray spectrum gated by the Cf K{sub {alpha}} x-ray peak with the {gamma}-singles spectrum provided spins of the excited states in {sup 251}Cf. The {gamma}-ray data, in conjunction with previously measured {sup 250}Cf(d,p) reaction data, allowed us to characterize several single-particle and vibrational states above the N=152 subshell gap.

  3. Molecular level energy and electron transfer processes at nanocrystalline titanium dioxide interfaces

    NASA Astrophysics Data System (ADS)

    Farzad, Fereshteh

    This thesis describes photo-induced molecular electron and energy transfer processes occurring at nanocrystalline semiconductor interfaces. The Introductory Chapter provides background and describes how these materials may be useful for solar energy conversion. In Chapter 2, results describing excitation of Ru(deeb)(bpy)2 2+, bis(2,2'-bipyridine)(2,2'-bipyridine-4,4 '-diethylester)ruthenium(II) hexafluorophosphate, bound to nanocrystalline TiO2 thin films, immersed in an acetonitrile bath are presented. The data indicates that light excitation forms predominately long-lived metal-to-ligand charge-transfer, MLCT, excited states under these conditions. Modeling of the data as a function of irradiance has been accomplished assuming parallel unimolecular and bimolecular excited state deactivation processes. The quantum yield for excited state formation depends on the excitation irradiance, consistent with triplet-triplet annihilation processes that occur with k > 1 x 108 s-1. Chapter 3 extends the work described in Chapter 2 to LiClO4 acetonitrile solutions. Li+ addition results in a red shift in the MLCT absorption and photoluminescence, PL, and a concentration dependent quenching of the PL intensity on TiO2. The Li+ induced spectroscopic changes were found to be reversible by varying the electrolyte composition. A second-order kinetic model quantified charge recombination transients. A model is proposed wherein Li+ ion adsorption stabilizes TiO2 acceptor states resulting in energetically more favorable interfacial electron transfer. The photophysical and photoelectrochemical properties of porous nanocrystalline anatase TiO2 electrodes modified with Ru(deeb)(bpy)2 2+, Os(deeb)(bpy)22+, and mixtures of both are described in Chapters 4 and 5. In regenerative solar cells with 0.5 M LiI/0.05 M I2 acetonitrile electrolyte, both compounds efficiently inject electrons into TiO2 producing monochromatic incident photon-to-current efficiencies (IPCE), IPCE (460 nm) = 0.70 + 0

  4. Spectra and energy levels of Tm3+:Y3Al5O12

    NASA Astrophysics Data System (ADS)

    Gruber, John B.; Hills, Marian E.; Macfarlane, Roger M.; Morrison, Clyde A.; Turner, Gregory A.; Quarles, Gregory J.; Kintz, Gregory J.; Esterowitz, Leon

    1989-11-01

    Absorption spectra of Tm3+:Y3Al5O12 are reported between 1.9 and 0.26 μm at 15 and 90 K, and between 0.80 and 0.35 μm at 1.6 K. Laser-excited emission obtained at 80 K is also reported from the Tm3+ manifolds 1D2, 1G4, 3H4, and 3F4 to the ground-state manifold, 3H6. The emission from 1D2 also includes transitions to Stark levels in manifolds 3F4, 3F3, and 3F2. Analysis of the emission spectra confirms the experimental crystal-field splitting deduced from an analysis of the hot-band absorption data. Both emission and absorption spectra indicate that Tm3+ ions occupy several different sites although the majority of Tm3+ ions appear to substitute for Y3+ ions in dodecahedral lattice sites (D2 point-group symmetry). The most intense spectra are analyzed assuming selection rules for D2 symmetry. A lattice-sum calculation predicts a symmetry of Γ2 for the ground state. Using this result the symmetries of 20 Γ1, 11 Γ2, 17 Γ3, and 18 Γ4 Stark levels were identified experimentally and compared with results from a crystal-field splitting calculation. A Hamiltonian consisting of Coulombic, spin-orbit, interconfiguration-interaction, and crystal-field (D2 symmetry) terms was parametrized and diagonalized for all manifolds of the Tm3+(4f12) configuration. The rms deviation between 66 experimental and calculated Stark levels was 11 cm-1.

  5. Strategic planning at the national level: Evaluating and ranking energy projects by environmental impact

    SciTech Connect

    Thorhallsdottir, Thora Ellen . E-mail: theth@hi.is

    2007-08-15

    A method for evaluating and ranking energy alternatives based on impact upon the natural environment and cultural heritage was developed as part of the first phase of an Icelandic framework plan for the use of hydropower and geothermal energy. The three step procedure involved assessing i) site values and ii) development impacts within a multi-criteria analysis, and iii) ranking the alternatives from worst to best choice from an environmental-cultural heritage point of view. The natural environment was treated as four main classes (landscape + wilderness, geology + hydrology, species, and ecosystem/habitat types + soils), while cultural heritage constituted one class. Values and impacts were assessed within a common matrix with 6 agglomerated attributes: 1) diversity, richness, 2) rarity, 3) size (area), completeness, pristineness, 4) information (epistemological, typological, scientific and educational) and symbolic value, 5) international responsibility, and 6) scenic value. Standardized attribute scores were used to derive total class scores whose weighted sums yielded total site value and total impact. The final output was a one-dimensional ranking obtained by Analytical Hierarchical Process considering total predicted impacts, total site values, risks and uncertainties as well as special site values. The value/impact matrix is compact (31 cell scores) but was considered to be of sufficient resolution and has the advantage of facilitating overview and communication of the methods and results. The classes varied widely in the extent to which value assessments could be based on established scientific procedures and the project highlighted the immense advantage of an internationally accepted frame of reference, first for establishing the theoretical and scientific foundation, second as a tool for evaluation, and third for allowing a global perspective.

  6. Mammary gland development of dairy heifers fed diets containing increasing levels of metabolisable protein: metabolisable energy.

    PubMed

    Albino, Ronan L; Marcondes, Marcos I; Akers, Robert M; Detmann, Edenio; Carvalho, Bruno C; Silva, Tadeu E

    2015-02-01

    This study was conducted to evaluate the development of the mammary gland in Holstein heifers subjected to different dietary metabolisable protein (MP): metabolisable energy (ME) ratios. Twenty-five Holstein heifers (initial body weight (BW) 213±13·5 kg and initial average age 7·8±0·5 months) were divided into five treatments. The treatments were designed to provide MP:ME ratios equal to 33, 38, 43, 48, and 53 g of MP per Mcal of ME. All diets were formulated to have the same energy content (2·6 Mcal ME/kg dry matter). Actual MP:ME ratios were 36·2, 40·2, 46·2, 47·1, and 50·8 g MP/Mcal ME. The experiment was conducted in a randomised block design, while considering initial BW as a blocking factor to evaluate pre- and post-pubertal periods. Block effect was not observed for all variables evaluated; hence it was considered that the diets had the same influence both on pre- and post-pubertal phases. Dry matter and nutrient intake did not change between treatments, excepting protein intake and digestibility. Serum concentrations of insulin-like growth factor 1 increased linearly across treatments. Changes in the pixel brightness of mammary gland ultrasound images, which are associated with lipid content, were significantly influenced by MP:ME ratios in the diet of heifers that were subjected to accelerated growth rates. It is not recommended to use diets of less than 38 g MP/Mcal ME in diets to heifers allowed to gain more than 1 kg/d. PMID:25592631

  7. Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels

    PubMed Central

    Hyder, Fahmeed; Rothman, Douglas L.; Bennett, Maxwell R.

    2013-01-01

    The continuous need for ion gradient restoration across the cell membrane, a prerequisite for synaptic transmission and conduction, is believed to be a major factor for brain’s high oxidative demand. However, do energy requirements of signaling and nonsignaling components of cortical neurons and astrocytes vary with activity levels and across species? We derived oxidative ATP demand associated with signaling (Ps) and nonsignaling (Pns) components in the cerebral cortex using species-specific physiologic and anatomic data. In rat, we calculated glucose oxidation rates from layer-specific neuronal activity measured across different states, spanning from isoelectricity to awake and sensory stimulation. We then compared these calculated glucose oxidation rates with measured glucose metabolic data for the same states as reported by 2-deoxy-glucose autoradiography. Fixed values for Ps and Pns were able to predict the entire range of states in the rat. We then calculated glucose oxidation rates from human EEG data acquired under various conditions using fixed Ps and Pns values derived for the rat. These calculated metabolic data in human cerebral cortex compared well with glucose metabolism measured by PET. Independent of species, linear relationship was established between neuronal activity and neuronal oxidative demand beyond isoelectricity. Cortical signaling requirements dominated energy demand in the awake state, whereas nonsignaling requirements were ∼20% of awake value. These predictions are supported by 13C magnetic resonance spectroscopy results. We conclude that mitochondrial energy support for signaling and nonsignaling components in cerebral cortex are conserved across activity levels in mammalian species. PMID:23319606

  8. Verifying the Presence of Low Levels of Neptunium in a Uranium Matrix with Electron Energy-Loss Spectroscopy

    SciTech Connect

    Buck, Edgar C.; Douglas, Matthew; Wittman, Richard S.

    2010-01-01

    This paper examines the problems associated with the analysis of low levels of neptunium (Np) in a uranium (U) matrix with electron energy-loss spectroscopy (EELS) on the transmission electron microscope (TEM). The detection of Np in a matrix of uranium (U) can be impeded by the occurrence of a plural scattering event from U (U-M5 + U-O4,5) that results in severe overlap on the Np-M5 edge at 3665 eV. Low levels (1600 - 6300 ppm) of Np can be detected in U solids by confirming the energy gap between the Np-M5 and Np-M4 edges is at 184 eV and showing that the M4/M5 ratio for the Np is smaller than that for U. The Richardson-Lucy deconvolution method was applied to energy-loss spectral images and was shown to increase the signal to noise. This method also improves the limits of detection for Np in a U matrix.

  9. A three-dimensional electret-based micro power generator for low-level ambient vibrational energy harvesting

    NASA Astrophysics Data System (ADS)

    Tao, Kai; Liu, Shuwei; Woh Lye, Sun; Miao, Jianmin; Hu, Xiao

    2014-06-01

    A novel three-dimensional (3D) electret-based micro power generator with multiple vibration modes has been developed, which is capable of converting low-level ambient kinetic energy to electrical energy. The device is based on a rotational symmetrical resonator which consists of a movable disc-shaped seismic mass suspended by three sets of spiral springs. Experimental analysis shows that the proposed generator operates at an out-of-plane direction at mode I of 66 Hz and two in-plane directions at mode II of 75 Hz and mode III of 78.5 Hz with a phase difference of about 90°. A corona localized charging method is also proposed that employs a shadow mask and multiple discharge needles for the production of micro-sized electret array. From tests conducted at an acceleration of 0.05 g, the prototype can generate a maximum power of 4.8 nW, 0.67 nW and 1.2 nW at vibration modes of I, II and III, respectively. These values correspond to the normalized power densities of 16 µW cm-3 g-2, 2.2 µW cm-3 g-2 and 4 µW cm-3 g-2, respectively. The results show that the generator can potentially offer an intriguing alternative for scavenging low-level ambient energy from 3D vibration sources.

  10. Hydrostatic Level Sensors as High Precision Ground Motion Instrumentation for Tevatron and Other Energy Frontier Accelerators

    SciTech Connect

    Volk, James; Hansen, Sten; Johnson, Todd; Jostlein, Hans; Kiper, Terry; Shiltsev, Vladimir; Chupyra, Andrei; Kondaurov, Mikhail; Medvedko, Anatoly; Parkhomchuk, Vasily; Singatulin, Shavkat

    2012-01-01

    Particle accelerators require very tight tolerances on the alignment and stability of their elements: magnets, accelerating cavities, vacuum chambers, etc. In this article we describe the Hydrostatic Level Sensors (HLS) for very low frequency measurements used in a variety of facilities at Fermilab. We present design features of the sensors, outline their technical parameters, describe their test and calibration procedures, discuss different regimes of operation and give few illustrative examples of the experimental data. Detail experimental results of the ground motion measurements with these detectors will be presented in subsequent papers.

  11. Energy levels and mean lives of Cl II to Cl VII.

    NASA Technical Reports Server (NTRS)

    Bashkin, S.; Martinson, I.

    1971-01-01

    Investigation of the spectra of chlorine between 500 and 2800 A using the beam-foil technique. Over 200 multiplets have been observed, many of which had not been reported earlier. A number of such transitions could be classified, and several new term values are proposed for Cl IV, Cl V, Cl VI , and Cl VII. Mean lives of various excited levels were measured for Cl II to Cl VII. The results are compared with theoretical calculations and other measurements in appropriate isoelectronic systems.

  12. Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework

    SciTech Connect

    Zhou, Yuyu; Clarke, Leon E.; Eom, Jiyong; Kyle, G. Page; Patel, Pralit L.; Kim, Son H.; Dirks, James A.; Jensen, Erik A.; Liu, Ying; Rice, Jennie S.; Schmidt, Laurel C.; Seiple, Timothy E.

    2014-01-01

    As long-term socioeconomic transformation and energy service expansion show large spatial heterogeneity, advanced understanding of climate impact on building energy use at the sub-national level will offer useful insights into climate policy and regional energy system planning. In this study, we presented a detailed building energy model with a U.S. state-level representation, nested in the GCAM integrated assessment framework. We projected state-level building energy demand and its spatial pattern over the century, considering the impact of climate change based on the estimates of heating and cooling degree days derived from downscaled USGS CASCaDE temperature data. The result indicates that climate change has a large impact on heating and cooling building energy and fuel use at the state level, exhibiting large spatial heterogeneity across states (ranges from -10% to +10%). The sensitivity analysis reveals that the building energy demand is subject to multiple key factors, such as the magnitude of climate change, the choice of climate models, and the growth of population and GDP, and that their relative contributions vary greatly across the space. The scale impact in building energy use modeling highlights the importance of constructing a building energy model with the spatially-explicit representation of socioeconomics, energy system development, and climate change. These findings will help the climate-based policy decision and energy system, especially utility planning related to building sector at the U.S. state and regional level facing the potential climate change.

  13. Dialkylthio Substitution: An Effective Method to Modulate the Molecular Energy Levels of 2D-BDT Photovoltaic Polymers.

    PubMed

    Yao, Huifeng; Zhang, Hao; Ye, Long; Zhao, Wenchao; Zhang, Shaoqing; Hou, Jianhui

    2016-02-17

    Dialkylthio-substituted thienyl-benzodithiophene (BDT-DST) was designed and synthesized as a building block to modulate the molecular levels of the conjugated polymers, and three copolymers named PDST-BDD, PDST-TT and PDST-DPP were prepared and applied in polymer solar cells (PSCs). Theoretical calculations and electrochemical cyclic voltammetry (CV) measurement suggested that the dialkylthio group could decrease the molecular energy levels of the resulting polymers distinctly. The open-circuit voltage (VOC) of PSC devices based on PDST-BDD, PDST-TT, and PDST-DPP are as high as 1.0, 0.98, and 0.88 V, respectively, which are ∼0.15 V higher than those of the corresponding alky-substituted analogues. Moreover, the influence of the dialkylthio group on the absorption spectra, crystalline properties, hole mobilities, and blend morphologies of the polymers was also investigated. The results indicate that the dialkythio substitution is an effective method to modulate the molecular energy levels and that the BDT-DST unit has potential for constructing high-efficiency photovoltaic polymers.

  14. Use of the Drawing-Writing Technique to Determine the Level of Knowledge of Pre-Service Teachers Regarding Renewable Energy Sources

    ERIC Educational Resources Information Center

    Kara, Filiz

    2015-01-01

    The aim of this study was to determine the level of knowledge of pre-service science teachers in Turkey regarding the different types of renewable energy sources, the methods used for obtaining energy from these sources, and the areas of use for these energy sources. Within the context of the study, the drawing-writing technique was used in order…

  15. High-level energy estimation in the sub-VT domain: simulation and measurement of a cardiac event detector.

    PubMed

    Akgun, Omer Can; Rodrigues, Joachim Neves; Leblebici, Yusuf; Öwall, Viktor

    2012-02-01

    This paper presents a flow that is suitable to estimate energy dissipation of digital standard-cell based designs which are determined to operate in the subthreshold regime. The flow is applicable on gate-level netlists, where back-annotated toggle information is used to find the minimum energy operation point, corresponding maximum clock frequency, as well as the dissipated energy per clock cycle. The application of the model is demonstrated by exploring the energy efficiency of pipelining, retiming, and register balancing. Simulation results, which are obtained during a fraction of SPICE simulation time, are validated by measurements on a wavelet-based cardiac event detector that was fabricated in 65-nm low-leakage high-threshold technology. The mean of the absolute modeling error is calculated as 5.2%, with a standard deviation of 6.6% over the measurement points. The cardiac event detector dissipates 0.88 pJ/sample at a supply voltage of 320 mV. PMID:23852741

  16. Reexamination of the Energy Levels of 15F by 14O + 1H ElasticResonance Scattering with BEARS

    SciTech Connect

    Guo, F.Q.; Powell, J.; Lee, D.W.; Leitner, D.; McMahan, M.A.; Moltz, D.M.; O'Neil, J.P.; Perajarvi, K.; Phair, L.; Ramsey, C.A.; Xu,X.J.; Cerny, Joseph

    2005-05-30

    The energy levels of 15F have been measured by the p(14O,p)14O reaction. The 120 MeV 14O radioactive ion beam was produced by the BEARS coupled cyclotron system at an intensity averaging 1x104 particles/second on target. Energy calibration was obtained using resonances from the p(14N,p)14N reaction. The two lowest resonances in 15F were fitted with an R-matrix calculation. The fit to the ground state had Jp = 1/2+ at 1.23+-0.05 MeV (width 0.5-0.84 MeV), and the first excited state was Jp=5/2+ at 2.81+-0.02 MeV (width 0.30+-0.06 MeV), both relative to the mass-energy of the proton and 14O. The 15F ground state energy supports the disappearance of the Z=8 proton magic number for odd Z, Tz=-3/2 nuclei.

  17. New odd-parity energy levels of europium atoms in the 43 200-45 000 cm-1 region by laser photoionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakhate, S. G.; Razvi, M. A. N.; Ahmad, S. A.

    2000-01-01

    Odd-parity energy levels of europium atoms (Eu I) have been investigated by employing single-colour and two-colour stepwise resonance ionization spectroscopy techniques with a heat-pipe oven for metal vapour containment and a thermionic diode for ion detection. Eighty-two new odd-parity energy levels of Eu I have been found in the energy region 43 200-45 000 cm-1 . The J quantum numbers for all these newly discovered energy levels have been uniquely assigned. In addition to this, some of the energy levels previously reported by us and assigned more than one J quantum number have been re-investigated and unique J quantum numbers for these levels have been determined.

  18. Prepartal dietary energy level affects peripartal bovine blood neutrophil metabolic, antioxidant, and inflammatory gene expression.

    PubMed

    Zhou, Z; Bu, D P; Vailati Riboni, M; Khan, M J; Graugnard, D E; Luo, J; Cardoso, F C; Loor, J J

    2015-08-01

    During the dry period, cows can easily overconsume higher-grain diets, a scenario that could impair immune function during the peripartal period. Objectives were to investigate the effects of energy overfeeding on expression profile of genes associated with inflammation, lipid metabolism, and neutrophil function, in 12 multiparous Holstein cows (n=6/dietary group) fed control [CON, 1.34 Mcal/kg of dry matter (DM)] or higher-energy (HE, 1.62 Mcal/kg of DM) diets during the last 45 d of pregnancy. Blood was collected to evaluate 43 genes in polymorphonuclear neutrophil leukocytes (PMNL) isolated at -14, 7, and 14 d relative to parturition. We detected greater expression of inflammatory-related cytokines (IL1B, STAT3, NFKB1) and eicosanoid synthesis (ALOX5AP and PLA2G4A) in HE cows than in CON cows. Around parturition, all cows had a close balance in mRNA expression of the pro-inflammatory IL1B and the anti-inflammatory IL10, with greater expression of both in cows fed HE than CON. The expression of CCL2, LEPR, TLR4, IL6, and LTC4S was undetectable. Cows in the HE group had greater expression of genes involved in PMNL adhesion, motility, migration, and phagocytosis, which was similar to expression of genes related to the pro-inflammatory cytokine. This response suggests that HE cows experienced a chronic state of inflammation. The greater expression of G6PD in HE cows could have been associated with the greater plasma insulin, which would have diverted glucose to other tissues. Cows fed the HE diet also had greater expression of transcription factors involved in metabolism of long-chain fatty acids (PPARD, RXRA), suggesting that immune cells might be predisposed to use endogenous ligands such as nonesterified fatty acids available in the circulation when glucose is in high demand for milk synthesis. The lower overall expression of SLC2A1 postpartum than prepartum supports this suggestion. Targeting interleukin-1β signaling might be of value in terms of controlling

  19. Two different carbon-hydrogen complexes in silicon with closely spaced energy levels

    SciTech Connect

    Stübner, R. E-mail: kolkov@ifpan.edu.pl; Kolkovsky, Vl. E-mail: kolkov@ifpan.edu.pl; Weber, J.

    2015-08-07

    An acceptor and a single donor state of carbon-hydrogen defects (CH{sub A} and CH{sub B}) are observed by Laplace deep level transient spectroscopy at 90 K. CH{sub A} appears directly after hydrogenation by wet chemical etching or hydrogen plasma treatment, whereas CH{sub B} can be observed only after a successive annealing under reverse bias at about 320 K. The activation enthalpies of these states are 0.16 eV for CH{sub A} and 0.14 eV for CH{sub B}. Our results reconcile previous controversial experimental results. We attribute CH{sub A} to the configuration where substitutional carbon binds a hydrogen atom on a bond centered position between carbon and the neighboring silicon and CH{sub B} to another carbon-hydrogen defect.

  20. Dynamics of a Landau-Zener non-dissipative system with fluctuating energy levels

    NASA Astrophysics Data System (ADS)

    Fai, L. C.; Diffo, J. T.; Ateuafack, M. E.; Tchoffo, M.; Fouokeng, G. C.

    2014-12-01

    This paper considers a Landau-Zener (two-level) system influenced by a three-dimensional Gaussian and non-Gaussian coloured noise and finds a general form of the time dependent diabatic quantum bit (qubit) flip transition probabilities in the fast, intermediate and slow noise limits. The qubit flip probability is observed to mimic (for low-frequencies noise) that of the standard LZ problem. The qubit flip probability is also observed to be the measure of quantum coherence of states. The transition probability is observed to be tailored by non-Gaussian low-frequency noise and otherwise by Gaussian low-frequency coloured noise. Intermediate and fast noise limits are observed to alter the memory of the system in time and found to improve and control quantum information processing.

  1. Effect of energy on the performance of broiler chicks fed various levels of monensin.

    PubMed

    Christmas, R B; Harms, R H

    1988-03-01

    A total of 768 female broiler chicks in two experiments was fed diets containing 0, 100, or 120 mg monensin/kg of diet with and without added animal fat, in a 2 X 3 factorial design. Chicks were grown in electrically heated battery brooders and supplied feed and water ad libitum for 21 days. Animal fat fed at 6.8% of the diet consistently improved body weight, daily feed intake, and feed conversion regardless of monensin level. Monensin at 100 and 120 mg/kg of diet, in general, decreased these performance criteria progressively. Daily monensin intake was related to the concentration of monensin in the diet. Intake per unit of body weight was increased by reducing fat or increasing monensin.

  2. Full-dimensional quantum calculations of vibrational levels of NH4+ and isotopomers on an accurate ab initio potential energy surface

    DOE PAGESBeta

    Hua -Gen Yu; Han, Huixian; Guo, Hua

    2016-03-29

    Vibrational energy levels of the ammonium cation (NH4+) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4+ and ND4+ exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. As a result, the low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm–1.

  3. Full-Dimensional Quantum Calculations of Vibrational Levels of NH4(+) and Isotopomers on An Accurate Ab Initio Potential Energy Surface.

    PubMed

    Yu, Hua-Gen; Han, Huixian; Guo, Hua

    2016-04-14

    Vibrational energy levels of the ammonium cation (NH4(+)) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4(+) and ND4(+) exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. The low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm(-1).

  4. NQO1-Dependent Redox Cycling of Idebenone: Effects on Cellular Redox Potential and Energy Levels

    PubMed Central

    Gemperli, Anja C.; Robay, Dimitri; Courdier Fruh, Isabelle; Anklin, Corinne; Dallmann, Robert; Gueven, Nuri

    2011-01-01

    Short-chain quinones are described as potent antioxidants and in the case of idebenone have already been under clinical investigation for the treatment of neuromuscular disorders. Due to their analogy to coenzyme Q10 (CoQ10), a long-chain quinone, they are widely regarded as a substitute for CoQ10. However, apart from their antioxidant function, this provides no clear rationale for their use in disorders with normal CoQ10 levels. Using recombinant NAD(P)H:quinone oxidoreductase (NQO) enzymes, we observed that contrary to CoQ10 short-chain quinones such as idebenone are good substrates for both NQO1 and NQO2. Furthermore, the reduction of short-chain quinones by NQOs enabled an antimycin A-sensitive transfer of electrons from cytosolic NAD(P)H to the mitochondrial respiratory chain in both human hepatoma cells (HepG2) and freshly isolated mouse hepatocytes. Consistent with the substrate selectivity of NQOs, both idebenone and CoQ1, but not CoQ10, partially restored cellular ATP levels under conditions of impaired complex I function. The observed cytosolic-mitochondrial shuttling of idebenone and CoQ1 was also associated with reduced lactate production by cybrid cells from mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) patients. Thus, the observed activities separate the effectiveness of short-chain quinones from the related long-chain CoQ10 and provide the rationale for the use of short-chain quinones such as idebenone for the treatment of mitochondrial disorders. PMID:21483849

  5. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function

    PubMed Central

    Edmunds, Lia R.; Sharma, Lokendra; Wang, Huabo; Kang, Audry; d’Souza, Sonia; Lu, Jie; McLaughlin, Michael; Dolezal, James M.; Gao, Xiaoli; Weintraub, Susan T.; Ding, Ying; Zeng, Xuemei; Yates, Nathan; Prochownik, Edward V.

    2015-01-01

    The c-Myc (Myc) oncoprotein and AMP-activated protein kinase (AMPK) regulate glycolysis and oxidative phosphorylation (Oxphos) although often for different purposes. Because Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the potential co-dependency of and cross-talk between these proteins by comparing the consequences of acute Myc induction in ampk+/+ (WT) and ampk-/- (KO) murine embryo fibroblasts (MEFs). KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an appropriate increase in response to activation of a Myc-estrogen receptor (MycER) fusion protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial mass and reactive oxygen species in response to MycER activation. Other differences between WT and KO MEFs, either in the basal state or following MycER induction, included abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreductases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered significant differences between WT and KO MEFs and their response to MycER activation. Finally, an unbiased mass-spectrometry (MS)-based survey capable of quantifying ~40% of all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent in their steady state. Significant differences in the activities of the rate-limiting enzymes pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme A abundance, were also differentially responsive to Myc and AMPK and could account for some of the differences in basal metabolite levels that were also detected by MS. Thus, Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk across numerous pathways which support metabolic and ATP-generating functions. PMID:26230505

  6. [Development of an optimized formulation of damask marmalade with low energy level using Taguchi methodology].

    PubMed

    Villarroel, Mario; Castro, Ruth; Junod, Julio

    2003-06-01

    The goal of this present study was the development of an optimized formula of damask marmalade low in calories applying Taguchi methodology to improve the quality of this product. The selection of this methodology lies on the fact that in real life conditions the result of an experiment frequently depends on the influence of several variables, therefore, one expedite way to solve this problem is utilizing factorial desings. The influence of acid, thickener, sweetener and aroma additives, as well as time of cooking, and possible interactions among some of them, were studied trying to get the best combination of these factors to optimize the sensorial quality of an experimental formulation of dietetic damask marmalade. An orthogonal array L8 (2(7)) was applied in this experience, as well as level average analysis was carried out according Taguchi methodology to determine the suitable working levels of the design factors previously choiced, to achieve a desirable product quality. A sensory trained panel was utilized to analyze the marmalade samples using a composite scoring test with a descriptive acuantitative scale ranging from 1 = Bad, 5 = Good. It was demonstrated that the design factors sugar/aspartame, pectin and damask aroma had a significant effect (p < 0.05) on the sensory quality of the marmalade with 82% of contribution on the response. The optimal combination result to be: citric acid 0.2%; pectin 1%; 30 g sugar/16 mg aspartame/100 g, damask aroma 0.5 ml/100 g, time of cooking 5 minutes. Regarding chemical composition, the most important results turned out to be the decrease in carbohydrate content compaired with traditional marmalade with a reduction of 56% in coloric value and also the amount of dietary fiber greater than similar commercial products. Assays of storage stability were carried out on marmalade samples submitted to different temperatures held in plastic bags of different density. Non percetible sensorial, microbiological and chemical changes

  7. A proposed alternative approach for protection of inadvertent human intruders from buried Department of Energy low level radioactive wastes

    SciTech Connect

    Cochran, J.R.

    1995-12-31

    The burial of radioactive wastes creates a legacy. To limit the impact of this legacy on future generations, we establish and comply with performance objectives. This paper reviews performance objectives for the long-term isolation of buried radioactive wastes; identifies regulatorly-defined performance objectives for protecting the inadvertent human intruder (IHI) from buried low-level radioactive waste (LLW); (3) discusses a shortcoming of the current approach; and (4) offers an alternative approach for protecting the IHI. This alternative approach is written specifically for the burial of US Department of Energy (DOE) wastes at the Nevada Test Site (NTS), although the approach might be applied at other DOE burial sites.

  8. Full formula for heavy quarkonium energy levels at next-to-next-to-next-to-leading order

    NASA Astrophysics Data System (ADS)

    Kiyo, Y.; Sumino, Y.

    2014-12-01

    We derive a full formula for the energy level of a heavy quarkonium state identified by the quantum numbers n, ℓ, s and j, up to O (αs5m) and O (αs5mlog ⁡αs) in perturbative QCD. The QCD Bethe logarithm is given in a one-parameter integral form. The rest of the formula is given as a combination of rational numbers, transcendental numbers (π, ζ (3), ζ (5)) and finite sums (besides the 3-loop constant abar3 of the static potential whose full analytic form is still unknown). A derivation of the formula is given.

  9. Aerobic Capacity, Activity Levels and Daily Energy Expenditure in Male and Female Adolescents of the Kenyan Nandi Sub-Group

    PubMed Central

    Gibson, Alexander R.; Ojiambo, Robert; Konstabel, Kenn; Lieberman, Daniel E.; Reilly, John J.; Speakman, John R.; Pitsiladis, Yannis P.

    2013-01-01

    The relative importance of genetic and socio-cultural influences contributing to the success of east Africans in endurance athletics remains unknown in part because the pre-training phenotype of this population remains incompletely assessed. Here cardiopulmonary fitness, physical activity levels, distance travelled to school and daily energy expenditure in 15 habitually active male (13.9±1.6 years) and 15 habitually active female (13.9±1.2) adolescents from a rural Nandi primary school are assessed. Aerobic capacity () was evaluated during two maximal discontinuous incremental exercise tests; physical activity using accelerometry combined with a global positioning system; and energy expenditure using the doubly labelled water method. The of the male and female adolescents were 73.9±5.7 ml. kg−1. min−1 and 61.5±6.3 ml. kg−1. min−1, respectively. Total time spent in sedentary, light, moderate and vigorous physical activities per day was 406±63 min (50% of total monitored time), 244±56 min (30%), 75±18 min (9%) and 82±30 min (10%). Average total daily distance travelled to and from school was 7.5±3.0 km (0.8–13.4 km). Mean daily energy expenditure, activity-induced energy expenditure and physical activity level was 12.2±3.4 MJ. day−1, 5.4±3.0 MJ. day−1 and 2.2±0.6. 70.6% of the variation in was explained by sex (partial R2 = 54.7%) and body mass index (partial R2 = 15.9%). Energy expenditure and physical activity variables did not predict variation in once sex had been accounted for. The highly active and energy-demanding lifestyle of rural Kenyan adolescents may account for their exceptional aerobic fitness and collectively prime them for later training and athletic success. PMID:23805234

  10. Effects of water temperature and dietary carbohydrate levels on growth and energy budget of juvenile Litopenaeus vannamei

    NASA Astrophysics Data System (ADS)

    Wang, Xingqiang; Ma, Shen; Dong, Shuanglin

    2006-09-01

    A 3×3 factorial experiment was conducted to determine the effects of water temperature (22 °C, 27°C and 32°C) and dietary carbohydrate ( CBH) levels (15.47%, 29.15% and 41.00%) on growth, food consumption, feed efficiency, apparent digestibility coefficient and energy budget of juvenile Litopenaeus vannamei. The results showed that, at each dietary CBH level, specific growth rate, food consumption and apparent digestibility coefficient generally increased, while feed efficiency decreased with increasing water temperatures. Specific growth rate and food consumption were the highest in the shrimps fed with diet of 29.15% CBH, closely followed by those with 15.47% CBH, and those with 41.00% CBH had the lowest value.

  11. SYSTEMATIC CALCULATIONS OF ENERGY LEVELS AND TRANSITION RATES OF C-LIKE IONS WITH Z = 13-36

    SciTech Connect

    Wang, K.; Li, D. F.; Liu, H. T.; Han, X. Y.; Duan, B.; Li, C. Y.; Li, J. G.; Yan, J.; Guo, X. L.; Chen, C. Y.

    2015-01-01

    Based on systematic calculations using a combined relativistic configuration interaction and a many-body perturbation theory (MBPT) approach, we provide a complete and consistent data set for 46 levels belonging to the 2s {sup 2}2p {sup 2}, 2s2p {sup 3}, 2p {sup 4}, 2s {sup 2}2p3s, 2s {sup 2}2p3p, and 2s {sup 2}2p3d configurations in C-like ions with 13 ≤ Z ≤ 36. The data set includes energy levels as well as electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transition properties. Extensive comparisons with available observed and calculated results are made and indicate that the present MBPT calculations are highly accurate. The present data set can be used reliably for many purposes, such as the line identification of observed spectra, and modeling and diagnostics of astrophysical and fusion plasmas.

  12. Genetic approaches to understanding the population-level impact of wind energy development on migratory bats

    SciTech Connect

    Vonhof, Maarten J.; Russell, Amy L.

    2013-09-30

    Documented fatalities of bats at wind turbines have raised serious concerns about the future impacts of increased wind power development on populations of migratory bat species. Yet there is little data on bat population sizes and trends to provide context for understanding the consequences of mortality due to wind power development. Using a large dataset of both nuclear and mitochondrial DNA variation for eastern red bats, we demonstrated that: 1) this species forms a single, panmictic population across their range with no evidence for the historical use of divergent migratory pathways by any portion of the population; 2) the effective size of this population is in the hundreds of thousands to millions; and 3) for large populations, genetic diversity measures and at least one coalescent method are insensitive to even very high rates of population decline over long time scales and until population size has become very small. Our data provide important context for understanding the population-level impacts of wind power development on affected bat species.

  13. Multisite optical spectra and energy levels of trivalent thulium ions in yttrium scandium gallium garnet

    NASA Astrophysics Data System (ADS)

    Seltzer, Michael D.; Gruber, John B.; Hills, Marian E.; Quarles, Gregory J.; Morrison, Clyde A.

    1993-08-01

    Intrinsic structural disorder in scandium-substituted garnets, attributed to mixed occupancy of certain sites in the crystal lattice by different cations, has direct consequences for the optical spectra of rare-earth activator ions dispersed over multiple sites. In trivalent thulium-doped yttrium scandium gallium garnet (Tm3+:YSGG), site-selective laser excitation spectra reveal the presence of Tm3+ ions in regular D2 sites, disturbed regular sites, and in octahedral C3i sites. Absorption spectra obtained at 4 K between 0.26 and 1.85 μm are broader than those observed in more-ordered crystal hosts and include structure attributed to Tm3+ ions in sites of other than D2 symmetry. A crystal-field splitting calculation was carried out in which a parametrized Hamiltonian (including Coulombic, spin-orbit, and crystal-field terms for Tm3+ ions in D2 symmetry) was diagonalized for all manifolds of the Tm3+ (4f12) configuration. The rms deviation between 52 experimental and calculated Stark levels of Tm3+ in regular D2 sites was 5 cm-1.

  14. Seasonal variation in energy expenditure is not related to activity level or water temperature in a large diving bird.

    PubMed

    Guillemette, Magella; Butler, Patrick J

    2012-09-15

    There is considerable interest in understanding how the energy budget of an endotherm is modulated from a physiological and ecological point of view. In this paper, we used daily (24 h) heart rate (f(H24)), as a proxy of daily energy expenditure (DEE) across seasons, to test the effect of locomotion activity and water temperature on the energy budget of a large diving bird. f(H24) was monitored continuously in common eiders (Somateria mollissima) during 7 months together with measures of time spent flying and time spent feeding. f(H24) varied substantially during the recording period, with numerous increases and decreases that occurred across seasons, although we did not find any relationship between f(H24) and the time spent active (feeding and flying). However, inactive heart rate (f(H,inactive)) decreased as locomotion activity increased, suggesting that common eiders were using some form of compensation when under a high work load. We were also unable to detect a negative relationship between water temperature and resting heart rate, a proxy of resting metabolic rate. This was unexpected, based on the assumption that high thermoregulation costs would be associated with cold waters. We showed instead that a high level of energy expenditure coincided with feather moult and warm waters, which suggests that the observed variable pattern of seasonal DEE was driven by these two factors. Nevertheless, our results indicate that compensation and possibly the timing of moult may be used as mechanisms to reduce seasonal variation in energy expenditure. PMID:22660783

  15. Improved energy output levels from small-scale Microbial Fuel Cells.

    PubMed

    Ieropoulos, I; Greenman, J; Melhuish, C

    2010-04-01

    This study reports on the findings from the investigation into small-scale (6.25 mL) MFCs, connected together as a network of multiple units. The MFCs contained unmodified (no catalyst) carbon fibre electrodes and for initial and later experiments, a standard ion-exchange membrane for the proton transfer from the anode to the cathode. The anode microbial culture was of the type commonly found in domestic wastewater fed with 5 mM acetate as the carbon-energy (C/E) source. The cultures were mature and acclimatised in the MFC environment for approximately 2 months before being re-inoculated in the experimental MFC units. The cathode was of the O(2) diffusion open-to-air type, but for the purposes of the polarization experiments, the cathodic electrodes were moistened with ferricyanide. The main aim of this study was to investigate the effects of connecting multiples of MFC units together as a method of scale up by using stacks and comparison of the effects of different PEM and MFC structural materials on the performance. Impedance matching (maximum-power-transfer) was achieved through calculation of total internal impedance. Three different PEM materials were compared in otherwise identical MFCs in sets of three. For individual isolated MFCs, Hyflon E87-03 was shown to produce twice, whilst E87-10 produced approximately 1.5 times the power output of the control (standard) PEM. However, when MFCs containing the E87-03 and E87-10 membranes were connected in a stack, the system suffered from severe instability and cell reversal. To study the effects of the various polymeric MFC structural materials, four small-scale units were manufactured from three different types of RP material; acrylo-butadiene-styrene coated (ABS), ABS coated (ABS-MEK) and polycarbonate (polyC). The stack of four (4) units prototyped out of polyC produced the highest power density values in polarisation experiments (80 mW/m(2)).

  16. Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste

    SciTech Connect

    Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

    1996-03-01

    Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units.

  17. Highly Accurate Potential Energy Surface, Dipole Moment Surface, Rovibrational Energy Levels, and Infrared Line List for (32)S(16)O2 up to 8000 cm(exp -1)

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2014-01-01

    A purely ab initio potential energy surface (PES) was refined with selected (32)S(16)O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (RMS) error for all J=0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm(exp -1). Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296K and covers up to 8,000 cm(exp -1). Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85-90%. Our predictions for (34)S(16)O2 band origins, higher energy (32)S(16)O2 band origins and missing (32)S(16)O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict (32/34)S(16)O2 band origins below 5500 cm(exp -1) with 0.01-0.03 cm(exp -1) uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The Ka-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations.

  18. Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for ³²S¹⁶O₂ up to 8000 cm⁻¹.

    PubMed

    Huang, Xinchuan; Schwenke, David W; Lee, Timothy J

    2014-03-21

    A purely ab initio potential energy surface (PES) was refined with selected (32)S(16)O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (σ(RMS)) for all J = 0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm(-1). Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296 K and covers up to 8000 cm(-1). Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85%-90%. Our predictions for (34)S(16)O2 band origins, higher energy (32)S(16)O2 band origins and missing (32)S(16)O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict (32/34)S(16)O2 band origins below 5500 cm(-1) with 0.01-0.03 cm(-1) uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The K(a)-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations. PMID:24655184

  19. Influence of process operating parameters on dryness level and energy saving during wastewater sludge electro-dewatering.

    PubMed

    Mahmoud, Akrama; Hoadley, Andrew F A; Conrardy, Jean-Baptiste; Olivier, Jérémy; Vaxelaire, Jean

    2016-10-15

    Electrically assisted mechanical dewatering, known as electro-dewatering (EDW), is an alternative emerging technology for energy-efficient liquid/solids separation in the dewatering of wastewater sludge. In this study, the performance of the electro-dewatering (EDW) process for activated wastewater sludge was investigated. The influence of the operating modes; being the timing of voltage (U-EDW) or current (I-EDW) application to either or both the filtration and compression stages, and the influence of the applied pressure (in successive 30 min pressure steps) were studied. The results showed that by delaying the application of the electric field to the filter cake compression stage, there was a potential saving in power consumption of around 10-12% in the case of U-EDW and about 30-46% in the case of I-EDW. The increase of the applied pressure from 0.5 to 12 bar during the filter cake compression stage leads to an increase in electro-dewatering kinetics. The results also reveal that at a low electric field level the increase of the processing pressure has a relatively pronounced effect on the dewatering process. At high levels of the electric field, a minimum processing pressure (4-6 bar) is required to improve the electrical contact between the electrode and the sludge and thus lower the energy consumption. PMID:27448036

  20. Influence of process operating parameters on dryness level and energy saving during wastewater sludge electro-dewatering.

    PubMed

    Mahmoud, Akrama; Hoadley, Andrew F A; Conrardy, Jean-Baptiste; Olivier, Jérémy; Vaxelaire, Jean

    2016-10-15

    Electrically assisted mechanical dewatering, known as electro-dewatering (EDW), is an alternative emerging technology for energy-efficient liquid/solids separation in the dewatering of wastewater sludge. In this study, the performance of the electro-dewatering (EDW) process for activated wastewater sludge was investigated. The influence of the operating modes; being the timing of voltage (U-EDW) or current (I-EDW) application to either or both the filtration and compression stages, and the influence of the applied pressure (in successive 30 min pressure steps) were studied. The results showed that by delaying the application of the electric field to the filter cake compression stage, there was a potential saving in power consumption of around 10-12% in the case of U-EDW and about 30-46% in the case of I-EDW. The increase of the applied pressure from 0.5 to 12 bar during the filter cake compression stage leads to an increase in electro-dewatering kinetics. The results also reveal that at a low electric field level the increase of the processing pressure has a relatively pronounced effect on the dewatering process. At high levels of the electric field, a minimum processing pressure (4-6 bar) is required to improve the electrical contact between the electrode and the sludge and thus lower the energy consumption.

  1. Energy-level alignment and open-circuit voltage at graphene/polymer interfaces: theory and experiment

    NASA Astrophysics Data System (ADS)

    Noori, Keian; Konios, Dimitrios; Stylianakis, Minas M.; Kymakis, Emmanuel; Giustino, Feliciano

    2016-03-01

    Functionalized graphene promises to become a key component of novel solar cell architectures, owing to its versatile ability to act either as transparent conductor, electron acceptor, or buffer layer. In spite of this promise, the solar energy conversion efficiency of graphene-based devices falls short of the performance of competing solution-processable photovoltaic technologies. Here we address the question of the maximum achievable open-circuit voltage of all-organic graphene: polymer solar cells using a combined theoretical/experimental approach, going from the atomic scale level to the device level. Our calculations on very large atomistic models of the graphene/polymer interface indicate that the ideal open-circuit voltage approaches one volt, and that epoxide functional groups can have a dramatic effect on the photovoltage. Our predictions are confirmed by direct measurements on complete devices where we control the concentration of functional groups via chemical reduction. Our findings indicate that the selective removal of epoxide groups and the use of ultradisperse polymers are key to achieving graphene solar cells with improved energy conversion efficiency.

  2. The energy cost of level walking before and after hydro-kinesi therapy in patients with spastic paresis.

    PubMed

    Zamparo, P; Pagliaro, P

    1998-08-01

    In this study the energy cost of level walking was measured in 23 patients with stationary spastic paresis before and after a two-week treatment (45 min daily) of hydro-kinesi therapy, the latter consisting of passive and active movements in warm (32 degrees C) sea water, free swimming and water immersion walking. Among the subjects (80.2 +/- 13.2 kg body mass; 56.0 +/- 14.6 years of age; 10.7 +/- 6.6 years of duration of spasticity), 12 were affected by hemiparesis, 4 by multiple sclerosis and 7 by spinal cord injury. The energy cost of level walking (Cw) was measured before and after therapy from the ratio of the overall steady-state oxygen consumption to the effective speed of progression. The differences in Cw due to the treatment, at matched speeds, were found to be negligible at speeds higher than 0.75 m.s-1 (less than 5%) but to increase, with decreasing speed, up to about 17% at 0.1 m.s-1. The treatment was therefore effective in improving the gait characteristics of the subjects, through a decrease of their Cw, mainly at low speeds of progression.

  3. Non-high-density lipoprotein cholesterol changes in middle-aged obese men with and without metabolic syndrome during weight loss.

    PubMed

    Kim, Maengkyu; Tanaka, Kiyoji

    2014-11-01

    Non-high-density lipoprotein (non-HDL-C) is the best predictor of coronary artery disease and stroke. Studies have shown that weight loss decreases non-HDL-C levels. However, whether diet-induced weight loss in individuals with and without metabolic syndrome causes a reduction in non-HDL-C levels remains unclear. We investigated the effects of weight loss on non-HDL-C levels in 34 middle-aged obese men with and without metabolic syndrome classified using National Cholesterol Education Panel Adult Treatment Panel III criteria (metabolic syndrome, n = 17; non-metabolic syndrome, n = 17). We conducted a 12-week dietary intervention using a low-carbohydrate, -fat, and -protein diet to reduce body weight. A significant decrease in body weight and body mass index in both groups was observed. However, the non-HDL-C level after weight loss was significantly decreased in the metabolic syndrome group (151.9 ± 6.8 to 131.4 ± 6.2 mg/dL, P < 0.01) but not in the non-metabolic syndrome group (152.1 ± 8.2 to 141.2 ± 8.1 mg/dL, P > 0.05). Levels of apolipoprotein AII and B, but not AI, were similarly decreased in both groups (P > 0.05). Pearson correlation analysis showed that the change in non-HDL-C levels in the metabolic syndrome group was strongly associated with levels of total cholesterol, fasting insulin, and alanine and aspartate transaminase, as well as homeostatic model assessment index, diastolic blood pressure, and maximal oxygen uptake (P < 0.05). These results demonstrated that diet-induced weight loss without physical activity decreases non-HDL-C levels, an important factor associated with changes in cardiorespiratory fitness and insulin sensitivity, in obese individuals with metabolic syndrome.

  4. Effect of precalving and postcalving dietary energy level on performance and blood metabolite concentrations of dairy cows throughout lactation.

    PubMed

    Law, R A; Young, F J; Patterson, D C; Kilpatrick, D J; Wylie, A R G; Ingvarsten, K L; Hameleers, A; McCoy, M A; Mayne, C S; Ferris, C

    2011-02-01

    The effects of the level of energy intake (high E and low E) offered before and after calving on body condition score at calving, production performance, and energy status in the first 250 d of lactation were evaluated in a 2 × 2 factorial design experiment involving 80 Holstein-Friesian dairy animals (40 primiparous and 40 multiparous). From d 80 until d 21 precalving, primiparous animals were offered either high or low pasture allowances. Thereafter, these animals were housed and had ad libitum access to a high energy density diet (high E) or restricted access [6 kg of dry matter (DM) per d] to a low energy density diet (low E), respectively, until calving. From d 100 until d 42 precalving, multiparous animals were offered either ad libitum or restricted (10 kg of DM/d) access to a late lactation diet, and thereafter, had ad libitum access to a high E diet or restricted access (7 kg of DM complete diet/d) to a low E diet, respectively, until calving. The forage to concentrate (F:C) ratios (DM basis) of these high E and low E diets [d 42 (d 21 in primiparous animals) until calving] were 64:36 and 83:17, respectively. Cows offered high E and low E precalving diets were allocated to either a high E or low E postcalving diet [F:C ratio (DM basis) of 30:70 and 70:30, respectively] and remained on these diets until d 250 of lactation. Multiparous animals offered a high E diet precalving had a significantly higher body condition score at calving than those offered the low E diet precalving. This effect was not evident in primiparous animals. Precalving diet had no significant effect on plasma nonesterified fatty acid concentrations during the last 3 wk precalving in primi- or multiparous animals. Primiparous animals offered a high E diet precalving had significantly higher postcalving plasma concentrations of nonesterified fatty acid, suggesting greater mobilization of body reserves. Primi- and multiparous animals offered a high E diet postcalving had a significantly

  5. Renewable Energy Prices in State-Level Feed-in Tariffs: Federal Law Constraints and Possible Solutions

    SciTech Connect

    Hempling, S.; Elefant, C.; Cory, K.; Porter, K.

    2010-01-01

    State legislatures and state utility commissions trying to attract renewable energy projects are considering feed-in tariffs, which obligate retail utilities to purchase electricity from renewable producers under standard arrangements specifying prices, terms, and conditions. The use of feed-in tariffs simplifies the purchase process, provides revenue certainty to generators, and reduces the cost of financing generating projects. However, some argue that federal law--including the Public Utility Regulatory Policies Act of 1978 (PURPA) and the Federal Power Act of 1935 (FPA)--constrain state-level feed-in tariffs. This report seeks to reduce the legal uncertainties for states contemplating feed-in tariffs by explaining the constraints imposed by federal statutes. It describes the federal constraints, identifies transaction categories that are free of those constraints, and offers ways for state and federal policymakers to interpret or modify existing law to remove or reduce these constraints. This report proposes ways to revise these federal statutes. It creates a broad working definition of a state-level feed-in tariff. Given this definition, this report concludes there are paths to non-preempted, state-level feed-in tariffs under current federal law.

  6. Vibrational Levels and Resonances on a New Potential Energy Surface for the Ground Electronic State of Ozone

    NASA Astrophysics Data System (ADS)

    Ndengue, Steve Alexandre; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker

    2014-06-01

    The isotopic ratios for ozone observed in laboratory and atmospheric measurements, known as the ozone isotopic anomaly,[1,2] have been an open question in physical and atmospheric chemistry for the past 30 years. The biggest limitation in achieving agreement between theory and experiment has been the availability of a satisfactory[3-5] ground state potential energy surface (PES). The presence of a spurious reef feature in the asymptotic region of most PESs has been associated with large discrepancies between calculated and observed rates of formation especially at low temperature. We recently proposed a new global potential energy surface for ozone[6,7] possessing 4 features that make it suitable for kinetics and dynamics studies: excellent equilibrium parameters, good agreement with experimental vibrational levels, accurate dissociation energy and a transition region with accurate topography (without the reef artifact). This PES has been used recently to simulate the temperature dependent exchange reaction (16O+16O2) with a quantum statistical model[6,7], and, for the first time, a negative temperature dependence which agrees with experiments was obtained, indicating the good quality of this global surface. A quantum description of the ozone exchange and recombination reaction requires knowledge of the resonances but also the rovibrational levels just below the dissociation. We present results of global 3-well vibrational-state calculations up to the dissociation threshold and (J = 0) resonances up to 1000 wn beyond. The calculations were done using a large DVR basis ( 24 million functions) with a symmetry-adapted Lanczos algorithm as well as MCTDH. Results indicate the presence of localized bound states at energies close to the dissociation threshold beyond which some long-lived resonances follow, contrasted with a few delocalized bound states with density at large values of the stretching coordinates. References: 1- K. Mauersberger et al., Adv. At. Mol. Opt

  7. Torsional energy levels of CH{sub 3}OH{sup +}/CH{sub 3}OD{sup +}/CD{sub 3}OD{sup +} studied by zero-kinetic energy photoelectron spectroscopy and theoretical calculations

    SciTech Connect

    Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang

    2014-10-14

    The torsional energy levels of CH{sub 3}OH{sup +}, CH{sub 3}OD{sup +}, and CD{sub 3}OD{sup +} have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH{sub 3}OH, CH{sub 3}OD, and CD{sub 3}OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm{sup −1}, which is about half of that of the neutral (340 cm{sup −1}). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C–O stretch vibrational energy level for CD{sub 3}OD{sup +} has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C–O stretch vibration indicate a strong torsion-vibration coupling.

  8. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1.

    PubMed

    Hunt, Kristopher A; Flynn, Jeffrey M; Naranjo, Belén; Shikhare, Indraneel D; Gralnick, Jeffrey A

    2010-07-01

    It is well established that respiratory organisms use proton motive force to produce ATP via F-type ATP synthase aerobically and that this process may reverse during anaerobiosis to produce proton motive force. Here, we show that Shewanella oneidensis strain MR-1, a nonfermentative, facultative anaerobe known to respire exogenous electron acceptors, generates ATP primarily from substrate-level phosphorylation under anaerobic conditions. Mutant strains lacking ackA (SO2915) and pta (SO2916), genes required for acetate production and a significant portion of substrate-level ATP produced anaerobically, were tested for growth. These mutant strains were unable to grow anaerobically with lactate and fumarate as the electron acceptor, consistent with substrate-level phosphorylation yielding a significant amount of ATP. Mutant strains lacking ackA and pta were also shown to grow slowly using N-acetylglucosamine as the carbon source and fumarate as the electron acceptor, consistent with some ATP generation deriving from the Entner-Doudoroff pathway with this substrate. A deletion strain lacking the sole F-type ATP synthase (SO4746 to SO4754) demonstrated enhanced growth on N-acetylglucosamine and a minor defect with lactate under anaerobic conditions. ATP synthase mutants grown anaerobically on lactate while expressing proteorhodopsin, a light-dependent proton pump, exhibited restored growth when exposed to light, consistent with a proton-pumping role for ATP synthase under anaerobic conditions. Although S. oneidensis requires external electron acceptors to balance redox reactions and is not fermentative, we find that substrate-level phosphorylation is its primary anaerobic energy conservation strategy. Phenotypic characterization of an ackA deletion in Shewanella sp. strain MR-4 and genomic analysis of other sequenced strains suggest that this strategy is a common feature of Shewanella.

  9. Thermal stability of deep level defects induced by high energy proton irradiation in n-type GaN

    SciTech Connect

    Zhang, Z.; Farzana, E.; Sun, W. Y.; Arehart, A. R.; Ringel, S. A.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; McSkimming, B.; Kyle, E. C. H.; Speck, J. S.

    2015-10-21

    The impact of annealing of proton irradiation-induced defects in n-type GaN devices has been systematically investigated using deep level transient and optical spectroscopies. Moderate temperature annealing (>200–250 °C) causes significant reduction in the concentration of nearly all irradiation-induced traps. While the decreased concentration of previously identified N and Ga vacancy related levels at E{sub C} − 0.13 eV, 0.16 eV, and 2.50 eV generally followed a first-order reaction model with activation energies matching theoretical values for N{sub I} and V{sub Ga} diffusion, irradiation-induced traps at E{sub C} − 0.72 eV, 1.25 eV, and 3.28 eV all decrease in concentration in a gradual manner, suggesting a more complex reduction mechanism. Slight increases in concentration are observed for the N-vacancy related levels at E{sub C} − 0.20 eV and 0.25 eV, which may be due to the reconfiguration of other N-vacancy related defects. Finally, the observed reduction in concentrations of the states at E{sub C} − 1.25 and E{sub C} − 3.28 eV as a function of annealing temperature closely tracks the detailed recovery behavior of the background carrier concentration as a function of annealing temperature. As a result, it is suggested that these two levels are likely to be responsible for the underlying carrier compensation effect that causes the observation of carrier removal in proton-irradiated n-GaN.

  10. High-fructose corn syrup and sucrose have equivalent effects on energy-regulating hormones at normal human consumption levels.

    PubMed

    Yu, Zhiping; Lowndes, Joshua; Rippe, James

    2013-12-01

    Intake of high-fructose corn syrup (HFCS) has been suggested to contribute to the increased prevalence of obesity, whereas a number of studies and organizations have reported metabolic equivalence between HFCS and sucrose. We hypothesized that HFCS and sucrose would have similar effects on energy-regulating hormones and metabolic substrates at normal levels of human consumption and that these values would not change over a 10-week, free-living period at these consumption levels. This was a randomized, prospective, double-blind, parallel group study in which 138 adult men and women consumed 10 weeks of low-fat milk sweetened with either HFCS or sucrose at levels of the 25th, 50th, and 90th percentile population consumption of fructose (the equivalent of 40, 90, or 150 g of sugar per day in a 2000-kcal diet). Before and after the 10-week intervention, 24-hour blood samples were collected. The area under the curve (AUC) for glucose, insulin, leptin, active ghrelin, triglyceride, and uric acid was measured. There were no group differences at baseline or posttesting for all outcomes (interaction, P > .05). The AUC response of glucose, active ghrelin, and uric acid did not change between baseline and posttesting (P > .05), whereas the AUC response of insulin (P < .05), leptin (P < .001), and triglyceride (P < .01) increased over the course of the intervention when the 6 groups were averaged. We conclude that there are no differences in the metabolic effects of HFCS and sucrose when compared at low, medium, and high levels of consumption.

  11. High-fructose corn syrup and sucrose have equivalent effects on energy-regulating hormones at normal human consumption levels.

    PubMed

    Yu, Zhiping; Lowndes, Joshua; Rippe, James

    2013-12-01

    Intake of high-fructose corn syrup (HFCS) has been suggested to contribute to the increased prevalence of obesity, whereas a number of studies and organizations have reported metabolic equivalence between HFCS and sucrose. We hypothesized that HFCS and sucrose would have similar effects on energy-regulating hormones and metabolic substrates at normal levels of human consumption and that these values would not change over a 10-week, free-living period at these consumption levels. This was a randomized, prospective, double-blind, parallel group study in which 138 adult men and women consumed 10 weeks of low-fat milk sweetened with either HFCS or sucrose at levels of the 25th, 50th, and 90th percentile population consumption of fructose (the equivalent of 40, 90, or 150 g of sugar per day in a 2000-kcal diet). Before and after the 10-week intervention, 24-hour blood samples were collected. The area under the curve (AUC) for glucose, insulin, leptin, active ghrelin, triglyceride, and uric acid was measured. There were no group differences at baseline or posttesting for all outcomes (interaction, P > .05). The AUC response of glucose, active ghrelin, and uric acid did not change between baseline and posttesting (P > .05), whereas the AUC response of insulin (P < .05), leptin (P < .001), and triglyceride (P < .01) increased over the course of the intervention when the 6 groups were averaged. We conclude that there are no differences in the metabolic effects of HFCS and sucrose when compared at low, medium, and high levels of consumption. PMID:24267044

  12. Effects of dietary protein level on growth and utilization of protein and energy by juvenile mangrove red snapper (Lutjanus argentimaculatus)

    NASA Astrophysics Data System (ADS)

    Ghulam, Abbas; Khalid, Jamil; Rukhsana, Akhtar; Lin, Hong

    2005-01-01

    A feeding trial was conducted in a recirculating water system to investigate the effects of dietary protein levels on growth, feed utilization, hepatosomatic index and liver lipid deposition of juvenile red snapper, Lutjanus argentimaculatus (average initial wet weight 8.0 ± 0.39 g and total length 3.14 ± 0.3 cm). In the experiment, six fishmeal-based diets were formulated to contain various protein levels (20% to 45% in 5% increments), with dietary energy ranging from 2210.7kJ lOOg to 2250.2kJlOOg dry matter. The protein to energy ratios of diets ranged from 8.58 mg protein kJ-1 to 20.03 mg protein kJ-1. Diets were fed for 90d to triplicate groups of fish stocked in 0.128m3 seawater tanks, 25 individuals each. The daily ration of 2% wet body weight was offered to the fish thrice a day. The fish at the end of the study had more than ten-fold (77.0g) increase in weight compared to the initial (8.0g). Fish fed diets of 40% and 45% protein produced significantly (P<0.05) higher weight gain of 77.2g and 76.5g, and specific growth rate (SGR) of 2.65% and 2.62% than those of 67.0 g and 68.3g, and 2.49% and 2.51% of the other diets. The broken-line regression of SGR against dietary protein level yielded an optimum dietary protein requirement of 42.6% (Y=-1.6295 + 0.1114 X 2,P<0.05). Survival remained 100% among groups. Feed conversion ratio decreased from 0.45 for fish fed 20% dietary protein to 0.35 for fish fed 45% dietary protein. Nitrogen intake increased with an increase in dietary protein, which in turn resulted in an increase in nitrogen gain of fish whole body. Fish fed 40% and 45% protein diets showed higher (P<0.05) nitrogen gain (0.27g and 0.26g) than those (0.23g and 025g) fed all other diets. Gross energy intake (GEI) in fish fed 45% protein was lower (600.67kJ) than that (607.97 kJ) of 40% protein diet, though the differences were not statistically significant (P>0.05); GEI ranging from 677.31 kJ to 663.20 kJ at remaining four diets (20% to 35% protein

  13. Building America Residential System Research Results. Achieving 30% Whole House Energy Savings Level in Hot-Dry and Mixed-Dry Climates

    SciTech Connect

    Anderson, R.; Hendron, R.; Eastment, M.; Jalalzadeh-Azar, A.

    2006-01-01

    This report summarizes Building America research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost-neutral basis.

  14. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    SciTech Connect

    Anderson, R.; Hendron, R.; Eastment, M.; Jalalzadeh-Azar, A.

    2006-12-01

    This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  15. Energy levels of very short-period (GaAs) sub n -(AlAs) sub n superlattices

    SciTech Connect

    Ge, W.; Sturge, M.D.; Schmidt, W.D. ); Pfeiffer, L.N.; West, K.W. )

    1990-07-02

    The energy levels of very short-period (GaAs){sub {ital n}}-(AlAs){sub {ital n}} superlattices ({ital n}{le}4) were investigated by photoluminescence (PL). The results show that these superlattices are type II but the lowest conduction bands are {ital X}{sub {ital x},{ital y}} for {ital n}{le}3 and {ital X}{sub {ital z}} for {ital n}=4, respectively. (Here {ital X}{sub {ital z}} is the valley with {bold k} parallel to the growth axis.) In both cases the {ital X} valleys are very close to each other. PL decay, PL excitation, and PL under uniaxial stress confirm this identification. Al{sub 0.5}Ga{sub 0.5}As shows very different behavior, showing that even for {ital n}=1 our samples are true superlattices.

  16. Evaluation of Department of Energy-Held Potential Greater-Than-Class C Low-Level Radioactive Waste. Revision 1

    SciTech Connect

    1994-09-01

    A number of commercial facilities have generated potential greater-than-Class C low-level radioactive waste (GTCC LLW), and, through contractual arrangements with the US Department of Energy (DOE) or for health and safety reasons, DOE is storing the waste. This report presents the results of an assessment conducted by the GTCC LLW Management Program to consider specific circumstances under which DOE accepted the waste, and to determine whether disposal in a facility licensed by the US Nuclear Regulatory Commission, or by DOE in a nonlicensed facility, is appropriate. Input from EG&G Idaho, Inc., and DOE Idaho Operations Office legal departments concerning the disposal requirements of this waste were the basis for the decision process used in this report.

  17. Recommended seismic hazard levels for the Oak Ridge, Tennessee; Paducah, Kentucky; Fernald, Ohio; and Portsmouth, Ohio, Department of Energy reservations

    SciTech Connect

    Beavers, J.E.; Manrod, W.E.; Stoddart, W.C.

    1982-12-01

    This document presents recommendations for the seismic hazard levels at the Oak Ridge Operations-Department of Energy (ORO-DOE) reservations in Oak Ridge, Tennessee; Paducah, Kentucky; Fernald, Ohio; and Portsmouth, Ohio. These recommendations are based on seismic hazard studies that have occurred over the past 10 y concerning these reservations. The authors have conducted in-depth reviews of the seismic hazard studies that have been completed for the reservations, have had various meetings with the authors of these studies, have had meetings and conducted studies among themselves and their consultants, and feel that the recommendations made in this report represent the state-of-the-art for assessing the seismic hazard at a site.

  18. A preliminary area survey of neutron radiation levels associated with the NASA variable energy cyclotron horizontal neutron delivery system

    NASA Technical Reports Server (NTRS)

    Roberts, W. K.; Leonard, R. F.

    1976-01-01

    The 25 MeV deuteron beam from the NASA variable energy cyclotron incident on a thick beryllium target will deliver a tissue neutron dose rate of 2.14 rad micron A-min at a source to skin distance of 125 cm. A neutron survey of the existing hallways with various shielding configurations made during operating of the horizontal neutron delivery system indicates that minimal amounts of additional neutron shielding material are required to provide a low level radiation environment within a self-contained neutron therapy control station. Measurements also indicate that the primary neutron distribution delivered by a planned vertical delivery system will be minimally perturbed by neutrons backscattered from the floor.

  19. Modeling of trap-assisted tunneling on performance of charge trapping memory with consideration of trap position and energy level

    NASA Astrophysics Data System (ADS)

    Lun, Zhi-Yuan; Li, Yun; Zhao, Kai; Du, Gang; Liu, Xiao-Yan; Wang, Yi

    2016-08-01

    In this work, the trap-assisted tunneling (TAT) mechanism is modeled as a two-step physical process for charge trapping memory (CTM). The influence of the TAT mechanism on CTM performance is investigated in consideration of various trap positions and energy levels. For the simulated CTM structure, simulation results indicate that the positions of oxide traps related to the maximum TAT current contribution shift towards the substrate interface and charge storage layer interface during time evolutions in programming and retention operations, respectively. Lower programming voltage and retention operations under higher temperature are found to be more sensitive to tunneling oxide degradation. Project supported by the National Natural Science Foundation of China (Grant Nos. 61404005, 61421005, and 91434201).

  20. On sulfur core level binding energies in thiol self-assembly and alternative adsorption sites: An experimental and theoretical study

    SciTech Connect

    Jia, Juanjuan; Kara, Abdelkader E-mail: vladimir.esaulov@u-psud.fr; Pasquali, Luca; Bendounan, Azzedine; Sirotti, Fausto; Esaulov, Vladimir A. E-mail: vladimir.esaulov@u-psud.fr

    2015-09-14

    Characteristic core level binding energies (CLBEs) are regularly used to infer the modes of molecular adsorption: orientation, organization, and dissociation processes. Here, we focus on a largely debated situation regarding CLBEs in the case of chalcogen atom bearing molecules. For a thiol, this concerns the case when the CLBE of a thiolate sulfur at an adsorption site can be interpreted alternatively as due to atomic adsorption of a S atom, resulting from dissociation. Results of an investigation of the characteristics of thiol self-assembled monolayers (SAMs) obtained by vacuum evaporative adsorption are presented along with core level binding energy calculations. Thiol ended SAMs of 1,4-benzenedimethanethiol (BDMT) obtained by evaporation on Au display an unconventional CLBE structure at about 161.25 eV, which is close to a known CLBE of a S atom on Au. Adsorption and CLBE calculations for sulfur atoms and BDMT molecules are reported and allow delineating trends as a function of chemisorption on hollow, bridge, and atop sites and including the presence of adatoms. These calculations suggest that the 161.25 eV peak is due to an alternative adsorption site, which could be associated to an atop configuration. Therefore, this may be an alternative interpretation, different from the one involving the adsorption of atomic sulfur resulting from the dissociation process of the S–C bond. Calculated differences in S(2p) CLBEs for free BDMT molecules, SH group sulfur on top of the SAM, and disulfide are also reported to clarify possible errors in assignments.