Science.gov

Sample records for energy nucleus nucleus

  1. High energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Wosiek, B.

    1986-01-01

    Experimental results on high energy nucleus-nucleus interactions are presented. The data are discussed within the framework of standard super-position models and from the point-of-view of the possible formation of new states of matter in heavy ion collisions.

  2. Meson multiplicity versus energy in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Atwater, T. W.; Freier, P. S.

    1986-01-01

    A systematic study of meson multiplicity as a function of energy at energies up to 100 GeV/u in nucleus-nucleus collisions has been made, using cosmic-ray data in nuclear emulsion. The data are consistent with simple nucleon-nucleon superposition models. Multiplicity per interacting nucleon in AA collisions does not appear to differ significantly from pp collisions.

  3. Low energy antiproton nucleus interactions

    SciTech Connect

    Sainio, M.E.; Ashford, V.; Sakitt, M.; Skelly, J.; Debbe, R.; Fickinger, W.; Marino, R.; Robinson, D.K.

    1984-05-01

    We have studied antiproton quasielastic scattering on Al, Cu, and Pb for two incident momenta, 514 and 633 MeV/c. Combining these data with other existing anti p nucleus data, we have performed a global analysis using a nonrelativistic optical potential of the Woods-Saxon form.

  4. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    SciTech Connect

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T.

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.

  5. Nucleus-nucleus potentials

    SciTech Connect

    Satchler, G.R.

    1983-01-01

    The significance of a nucleus-nucleus potential is discussed. Information about such potentials obtained from scattering experiments is reviewed, including recent examples of so-called rainbow scattering that probe the potential at smaller distances. The evidence for interactions involving the nuclear spins is summarized, and their possible origin in couplings to non-elastic channels. Various models of the potentials are discussed.

  6. Average transverse momentum and energy density in high-energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.; Lord, J. J.

    1986-01-01

    Emulsion chambers were used to measure the transverse momenta of photons or pi(0) mesons produced in high-energy cosmic-ray nucleus-nucleus collisions. A group of events having large average transverse momenta has been found which apparently exceeds the expected limiting values. Analysis of the events at early interaction times, of the order of 1 fm/c, indicates that the observed transverse momentum increases with both rapidity density and energy density.

  7. Average transverse momentum and energy density in high-energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.; Lord, J. J.

    1986-01-01

    Emulsion chambers were used to measure the transverse momenta of photons or pi(0) mesons produced in high-energy cosmic-ray nucleus-nucleus collisions. A group of events having large average transverse momenta has been found which apparently exceeds the expected limiting values. Analysis of the events at early interaction times, of the order of 1 fm/c, indicates that the observed transverse momentum increases with both rapidity density and energy density.

  8. Finite nucleus effects on relativistic energy corrections

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Faegri, Knut, Jr.

    1993-01-01

    The effect of using a finite nucleus model in quantum-chemical calculations is examined. Relativistic corrections from the first order Foldy-Wouthuysen terms are affected indirectly by the change in wavefunction, but also directly as a result of revised expressions for the Darwin and spin-orbit terms due to the change in nuclear potential. A calculation for the Rn atom indicates that the mass-velocity and Darwin corrections are much more sensitive to the finite nucleus than the non-relativistic total energy, but that the total contribution for these two terms is quite stable provided the revised form of the Darwin term is used. The spin-orbit interaction is not greatly affected by the choice of nuclear model.

  9. Fermi-motion effect on the intermediate energy nucleus-nucleus collision

    NASA Astrophysics Data System (ADS)

    Fan, G. W.; Kong, W. Y.; Han, T. F.; Li, X. C.; Ma, J. B.; Sheng, Z. Q.; Shi, G. Z.; Tian, F.; Wang, J.; Zhang, C.

    2016-11-01

    The Glauber model is modified with the Fermi-motion effect in the calculation of elastic differential cross-sections and momentum distributions of a fragment from mother nucleus. Different reaction systems at low energies are calculated with the modified Glauber model. It is found that calculations including the Fermi-motion provide a better prescription relating the model to a proper nuclear density distribution by comparing with the experimental data. On the basis of the studies, the influence of the correction on the extracted nuclear radius is quantified. The results further confirm the importance of the Fermi-motion in the nucleus-nucleus collision reactions at low energies.

  10. Pion cross section parametrizations for intermediate energy, nucleus-nucleus collisions

    SciTech Connect

    Norbury, John W.

    2009-03-15

    Space radiation and cosmic ray transport codes require simple and accurate models for hadron production in intermediate energy, nucleus-nucleus collisions. Several arithmetic parametrization models for pion production are compared to laboratory frame data. It is found that models based on high energy parametrizations are unable to describe intermediate energy, differential cross section data. However, simple thermal model parametrizations, when appropriately transformed from the center of momentum to the laboratory frame, are able to account for the data. Heavy ion transport codes that require algebraic cross section formulas can therefore use arithmetic parametrizations at high energy, but should use thermal model parametrizations at intermediate energy.

  11. Pion and Kaon Lab Frame Differential Cross Sections for Intermediate Energy Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.

    2008-01-01

    Space radiation transport codes require accurate models for hadron production in intermediate energy nucleus-nucleus collisions. Codes require cross sections to be written in terms of lab frame variables and it is important to be able to verify models against experimental data in the lab frame. Several models are compared to lab frame data. It is found that models based on algebraic parameterizations are unable to describe intermediate energy differential cross section data. However, simple thermal model parameterizations, when appropriately transformed from the center of momentum to the lab frame, are able to account for the data.

  12. Jet Tomography of High-Energy Nucleus-Nucleus Collisions at Next-to-Leading Order

    NASA Astrophysics Data System (ADS)

    Vitev, Ivan; Zhang, Ben-Wei

    2010-04-01

    We demonstrate that jet observables are highly sensitive to the characteristics of the vacuum and the in-medium QCD parton showers and propose techniques that exploit this sensitivity to constrain the mechanism of quark and gluon energy loss in strongly interacting plasmas. As a first example, we calculate the inclusive jet cross section in high-energy nucleus-nucleus collisions to O(αs3). Theoretical predictions for the medium-induced jet broadening and the suppression of the jet production rate due to cold and hot nuclear matter effects in Au+Au and Cu+Cu reactions at RHIC are presented.

  13. Jet tomography of high-energy nucleus-nucleus collisions at next-to-leading order

    SciTech Connect

    Vitev, Ivan; Zhang, Ben - Wei

    2009-01-01

    We demonstrate that jet observables are highly sensitive to the characteristics of the vacuum and the in-medium QCD parton showers and propose techniques that exploit this sensitivity to constrain the mechanism of quark and gluon energy loss in strongly-interacting plasmas. As a first example, we calculate the inclusive jet cross section in high-energy nucleus-nucleus collisions to {Omicron}({alpha}{sub s}{sup 3}). Theoretical predictions for the medium-induced jet broadening and the suppression of the jet production rate due to cold and hot nuclear matter effects in Au+Au and Cu+Cu reactions at RHIC are presented.

  14. Analysis of nucleus-nucleus collisions at high energies and random matrix theory

    SciTech Connect

    Nazmitdinov, R. G.; Shahaliev, E. I.; Suleymanov, M. K.; Tomsovic, S.

    2009-05-15

    We propose a novel statistical approach to the analysis of experimental data obtained in nucleus-nucleus collisions at high energies which borrows from methods developed within the context of random matrix theory. It is applied to the detection of correlations in a system of secondary particles. We find good agreement between the results obtained in this way and a standard analysis based on the method of effective mass spectra and two-pair correlation function often used in high energy physics. The method introduced here is free from unwanted background contributions.

  15. Low-energy antinucleon-nucleus interaction revisited

    NASA Astrophysics Data System (ADS)

    Friedman, E.

    2015-08-01

    Annihilation cross sections of antiprotons and antineutrons on the proton between 50 and 400 MeV/c show Coulomb focusing below 200 MeV/c and almost no charge-dependence above 200 MeV/c. Similar comparisons for heavier targets are not possible for lack of overlap between nuclear targets studied with and beams. Interpolating between -nucleus annihilation cross sections with the help of an optical potential to compare with -nucleus annihilation cross sections reveal unexpected features of Coulomb interactions in the latter. Direct comparisons between -nucleus and -nucleus annihilations at very low energies could be possible if cross sections are measured on the same targets and at the same energies as the available cross sections for . Such measurements may be feasible in the foreseeable future.

  16. Study of multiplicity correlations in nucleus-nucleus interactions at high energy

    NASA Astrophysics Data System (ADS)

    Mohery, M.; Sultan, E. M.; Baz, Shadiah S.

    2015-06-01

    In the present paper, some results on the correlations of the nucleus-nucleus interactions, at high energy, between different particle multiplicities are reported. The correlations between the multiplicities of the different charged particles emitted in the interactions of 22Ne and 28Si nuclei with emulsion at (4.1-4.5)A GeV/c have been studied. The correlations of the compound multiplicity nc, defined as the sum of both numbers of the shower particles ns and grey particles ng, have been investigated. The experimental data have been compared with the corresponding theoretical ones, calculated according to the modified cascade evaporation model (MCEM). An agreement has already been fairly obtained between the experimental values and the calculated ones. The dependence of the average compound multiplicity, on the numbers of shower, grey, black and heavy particles is obvious and the values of the slope have been found to be independent of the projectile nucleus. On the other hand, the variation of the average shower, grey, black and heavy particles is found to increase linearly with the compound particles. A strong correlation has been observed between the number of produced shower particles and the number of compound particles. Moreover, the value of the average compound multiplicity is found to increase with the increase of the projectile mass. Finally, an attempt has also been made to study the scaling of the compound multiplicity distribution showing that the compound multiplicity distribution is nearly consistent with the KNO scaling behavior.

  17. High-energy pion-nucleus scattering at LAMPF

    SciTech Connect

    Morris, C.L.

    1993-02-01

    Recent data obtained for pion-nucleus interactions above the {triangle}(1232) is presented. The expected long mean-free path at pion energies above the [3,3] resonance is demonstrated in elastic scattering. Evidence for unexpected nuclear transparency for outgoing pions at resonance energies is presented. A new technique measuring virtual {triangle} components of the nuclear wave function is suggested.

  18. High-energy pion-nucleus scattering at LAMPF

    SciTech Connect

    Morris, C.L.

    1993-01-01

    Recent data obtained for pion-nucleus interactions above the [triangle](1232) is presented. The expected long mean-free path at pion energies above the [3,3] resonance is demonstrated in elastic scattering. Evidence for unexpected nuclear transparency for outgoing pions at resonance energies is presented. A new technique measuring virtual [triangle] components of the nuclear wave function is suggested.

  19. Neutral current neutrino-nucleus interactions at high energies

    SciTech Connect

    Gay Ducati, M. B.; Machado, M. M.; Machado, M. V. T.

    2009-04-01

    We present a QCD analysis of the neutral current (NC) neutrino-nucleus interaction at the small-x region using the color dipole formalism. This phenomenological approach is quite successful in describing experimental results in deep inelastic ep scattering and charged current neutrino-nucleus interactions at high energies. We present theoretical predictions for the relevant structure functions and the corresponding implications for the total NC neutrino cross section. It is shown that at small x, the NC boson-nucleon cross section should exhibit the geometric scaling property that has important consequences for ultrahigh energy neutrino phenomenology.

  20. Azimuthal harmonics of color fields in a high energy nucleus

    NASA Astrophysics Data System (ADS)

    Lappi, T.

    2015-05-01

    Recent experimental results have revealed a surprisingly rich structure of multiparticle azimuthal correlations in high energy proton-nucleus collisions. Final state collective effects can be responsible for many of the observed effects, but it has recently been argued that a part of these correlations are present already in the wavefunctions of the colliding particles. We evaluate the momentum space 2-particle cumulant azimuthal anisotropy coefficients vn { 2 }, n = 2 , 3 , 4 from fundamental representation Wilson line distributions describing the high energy nucleus. These would correspond to the flow coefficients in very forward proton-nucleus scattering. We find significant differences between Wilson lines from the MV model and from JIMWLK evolution. The magnitude and qualitative transverse momentum dependence of the vn { 2 } values suggest that the fluctuations present in the initial fields are a significant contribution to the observed anisotropies.

  1. NN inversion potentials intermediate energy proton-nucleus elastic scattering

    SciTech Connect

    Arellano, H.F.; Brieva, F.A.; Love, W.G.; Geramb, H.V. von

    1995-10-01

    Recently developed nucleon-nucleon interactions using the quantum inverse scattering method shed new fight on the off-shell properties of the internucleon effective force for nucleon-nucleus scattering. Calculations of proton elastic scattering from {sup 40}Ca and {sup 208}Pb in the 500 MeV region show that variations in off-shell contributions are determined to a great extent by the accuracy with which the nucleon-nucleon phase shifts are reproduced. The study is based on the full-folding approach to the nucleon-nucleus optical potential which allows a deep understanding of the interplay between on- and off-shell effects in nucleon scattering. Results and the promising extension offered by the inversion potentials beyond the range of validity of the low-energy internucleon forces will be discussed.

  2. Experimental studies of pion-nucleus interactions at intermediate energies

    SciTech Connect

    Not Available

    1991-12-31

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting {pi}{sup 0} mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized {sup 3}He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure.

  3. Cluster Productions in Intermediate-Energy Proton-Nucleus Reactions

    SciTech Connect

    Iwamoto, Hiroki; Uozumi, Yusuke

    2008-04-17

    We propose a model to describe cluster productions within the framework of the intranuclear cascade (INC) model. In our model, combination of the 'surface coalescence' and the 'knockout' is implemented to describe cluster productions in intermediate-energy nuclear reactions. In the present work, the basic ingredients of our INC model are defined and applied to nucleon and cluster productions for the proton-nucleus reactions. Although our INC model has some difficulties and room for improvement, it gives a good overall agreement with experimental data of not only nucleon productions but also cluster productions at intermediate energies.

  4. Multiple pion and kaon production in high energy nucleus-nucleus collisions: measurements versus specific models

    NASA Astrophysics Data System (ADS)

    Guptaroy, P.; de, Bh.; Bhattacharyya, S.; Bhattacharyya, D. P.

    The pion and kaon rapidity densities and the nature of kaon-pion ratios offer two very prominent and crucial physical observables on which modestly sufficient data for heavy nucleus collisions are available to date. In the light of two sets of models - one purely phenomenological and the other with a modest degree of a dynamical basis - we try to examine the state of agreement between calculations and experimental results obtainable from the past and the latest measurements. Impact and implications of all these would also finally be spelt out.

  5. Onset of deconfinement in nucleus-nucleus collisions

    SciTech Connect

    Gazdzicki, M.; Gorenstein, M. I.; Seyboth, P.

    2012-05-15

    The energy dependence of hadron production in relativistic nucleus-nucleus collisions reveals anomalies-the kink, horn, and step. They were predicted as signals of the deconfinement phase transition and observed by the NA49 Collaboration in central PbPb collisions at the CERN SPS. This indicates the onset of the deconfinement in nucleus-nucleus collisions at about 30 A GeV.

  6. Deuteron effects in nucleon-nucleus scattering at intermediate energies

    SciTech Connect

    Arellano, H.F. Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Casilla 487-3, Santiago ); Brieva, F.A. ); Love, W.G. )

    1994-11-01

    We investigate the role of the full dynamical dependence of the free off-shell nucleon-nucleon [ital t] matrix on the optical potential for proton-nucleus elastic scattering in the 100--400 MeV incident energy range within a full-folding model context. Particular emphasis is placed on the effects of deuteron formation by explicitly taking into account pole singularities in the free nucleon-nucleon [ital t] matrix. The full-folding model for the optical potential provides a flexible framework for this purpose as it allows the sampling of the internucleon effective force both off shell and as a function of the energy available in the center of mass for the interacting nucleon pair. A comparison of calculated and measured scattering observables for proton elastic scattering on [sup 40]Ca and [sup 208]Pb leads to the conclusion that the full off-shell free [ital t] matrix is a poor approximation for that part of the nucleon-nucleon effective force required for calculating optical potentials below [similar to]250 MeV. Medium effects and higher order corrections to the optical potential are necessary to improve our understanding of nucleon scattering.

  7. Extended Glauber Model of Antiproton-Nucleus Annihilation for All Energies and Mass Numbers

    SciTech Connect

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2014-01-01

    Previous analytical formulas in the Glauber model for high-energy nucleus-nucleus collisions developed by Wong are utilized and extended to study Antiproton-nucleus annihilations for both high and low energies, after taking into account the effects of Coulomb and nuclear interactions, and the change of the antiproton momentum inside a nucleus. The extended analytical formulas capture the main features of the experimental antiproton-nucleus annihilation cross sections for all energies and mass numbers. At high antiproton energies, they exhibit the granular property for the lightest nuclei and the black-disk limit for the heavy nuclei. At low antiproton energies, they display the effect of the antiproton momentum increase due to the nuclear interaction for the light nuclei, and the effect of the magnification due to the attractive Coulomb interaction for the heavy nuclei.

  8. Effect of energy transfer from atomic electron shell to an α particle emitted by decaying nucleus

    NASA Astrophysics Data System (ADS)

    Igashov, S. Yu.; Tchuvil'sky, Yu. M.

    2016-12-01

    The process of energy transfer from the electron shell of an atom to an α particle propagating through the shell is formulated mathematically. Using the decay of the 226Ra nucleus as an example, it is demonstrated that this phenomenon increases the α-decay intensity in contrast with other known effects of similar type. Moreover, the α decay of the nucleus is more strongly affected by the energy transfer than by all other effects taken together.

  9. Effect of energy transfer from atomic electron shell to an α particle emitted by decaying nucleus

    SciTech Connect

    Igashov, S. Yu.; Tchuvil’sky, Yu. M.

    2016-12-15

    The process of energy transfer from the electron shell of an atom to an α particle propagating through the shell is formulated mathematically. Using the decay of the {sup 226}Ra nucleus as an example, it is demonstrated that this phenomenon increases the α-decay intensity in contrast with other known effects of similar type. Moreover, the α decay of the nucleus is more strongly affected by the energy transfer than by all other effects taken together.

  10. On the photon production in nucleus-nucleus collisions at high energy

    NASA Astrophysics Data System (ADS)

    Tarasov, Y. A.; Antonenko, V. G.

    1995-03-01

    A modified Landau hydrodynamical model is applied to study hard thermal photon production in central heavy-ion collisions at LHC, RHIC and SPS energies. It is shown that the phase transition from quark-gluon plasma into hadrons in consequence of the thermodynamical expansion is close to the second order phase transition if a resonance production is taken into account. Hard direct photon emission is also investigated with consideration of nuclear shadowing effect on structure function of quarks and gluons. Also ππ photon background is investigated. It is demonstrated that at the LHC energy photon yield from the quark-gluon plasma in the photon transversal momentum k ⊥ range from 5 to 25 GeV/c exceeds both the background and the direct photon yield. This conclusion may be important for the quark-gluon plasma diagnostic aims. It is also shown that for the LHC energy the thermal photon yield in the present model essentially exceeds this yield obtained in the Bjorken scaling model.

  11. High energy hadron-nucleus cross sections and their extrapolation to cosmic ray energies

    SciTech Connect

    Ball, J.S.; Pantziris, A.

    1996-02-01

    Old models of the scattering of composite systems based on the Glauber model of multiple diffraction are applied to hadron-nucleus scattering. We obtain an excellent fit iwht only two free parameters to the highest energy hadron-nucleus data available. Because of the quality of the fit and the simplicity of the model it is argued that it should continue to be reliable up to the highest cosmic ray energies. Logarithmic extrapolations of {ital p}-{ital p} and {bar {ital p}}-{ital p} data are used to calculate the proton-air cross sections at very high energy. Finally, it is observed that if the exponential behavior of the {bar {ital p}}-{ital p} diffraction peak continues into the few TeV energy range it will violate partial wave unitarity. We propose a simple modification that will guarantee unitarity throughout the cosmic ray energy region. {copyright} {ital 1996 The American Physical Society.}

  12. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Khan, Ferdous; Townsend, Lawrence W.

    1993-01-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies.

  13. Difference in Energy Metabolism of Annulus Fibrosus and Nucleus Pulposus Cells of the Intervertebral Disc

    PubMed Central

    Salvatierra, Jessica Czamanski; Yuan, Tai Yi; Fernando, Hanan; Castillo, Andre; Gu, Wei Yong; Cheung, Herman S.; Huant, C.-Y. Charles

    2011-01-01

    Low back pain is associated with intervertebral disc degeneration. One of the main signs of degeneration is the inability to maintain extracellular matrix integrity. Extracellular matrix synthesis is closely related to production of adenosine triphosphate (i.e. energy) of the cells. The intervertebral disc is composed of two major anatomical regions: annulus fibrosus and nucleus pulposus, which are structurally and compositionally different, indicating that their cellular metabolisms may also be distinct. The objective of this study was to investigate energy metabolism of annulus fibrosus and nucleus pulposus cells with and without dynamic compression, and examine differences between the two cell types. Porcine annulus and nucleus tissues were harvested and enzymatically digested. Cells were isolated and embedded into agarose constructs. Dynamically loaded samples were subjected to a sinusoidal displacement at 2 Hz and 15% strain for 4 h. Energy metabolism of cells was analyzed by measuring adenosine triphosphate content and release, glucose consumption, and lactate/nitric oxide production. A comparison of those measurements between annulus and nucleus cells was conducted. Annulus and nucleus cells exhibited different metabolic pathways. Nucleus cells had higher adenosine triphosphate content with and without dynamic loading, while annulus cells had higher lactate production and glucose consumption. Compression increased adenosine triphosphate release from both cell types and increased energy production of annulus cells. Dynamic loading affected energy metabolism of intervertebral disc cells, with the effect being greater in annulus cells. PMID:21625336

  14. Systematic study of rapidity dispersion parameter in high energy nucleus-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Swarnapratim; Haiduc, Maria; Neagu, Alina Tania; Firu, Elena

    2014-03-01

    A systematic study of rapidity dispersion parameter as a quantitative measure of clustering of particles has been carried out in the interactions of 16O, 28Si and 32S projectiles at 4.5 A GeV/c with heavy (AgBr) and light (CNO) groups of targets present in the nuclear emulsion. For all the interactions, the total ensemble of events has been divided into four overlapping multiplicity classes depending on the number of shower particles. For all the interactions and for each multiplicity class, the rapidity dispersion parameter values indicate the occurrence of clusterization during the multiparticle production at Dubna energy. The measured rapidity dispersion parameter values are found to decrease with the increase of average multiplicity for all the interactions. The dependence of rapidity dispersion parameter on the average multiplicity can be successfully described by a relation D(η) = a + b + c2. The experimental results have been compared with the results obtained from the analysis of Monte Carlo simulated (MC-RAND) events. MC-RAND events show weaker clusterization among the pions in comparison to the experimental data.

  15. Low-energy particle production and residual nuclei production from high-energy hadron-nucleus collisions

    SciTech Connect

    Alsmiller, F.S.; Alsmiller, R.G. Jr.; Hermann, O.W.

    1987-01-01

    The high-energy hadron-nucleus collision model, EVENTQ, has been modified to include a calculation of the excitation and kinetic energy of the residual compound nucleus. The specific purpose of the modification is to make it possible to use the model in the high-energy radiation transport code, HETC, which, in conjunction with MORSE, is used to transport the low energy particles. It is assumed that the nucleons in the nucleus move in a one-dimensional potential well and have the momentum distribution of a degenerate Fermi gas. The low energy particles produced by the deexcitation of the residual compound nucleus, and the final residual nucleus, are determined from an evaporation model. Comparisons of multiplicities and residual nuclei distributions with experimental data are given. The ''grey'' particles, i.e., charged particles with 0.25 < ..beta.. < 0.7, are in good agreement with experimental data but the residual nuclei distributions are not. 12 refs., 3 figs.

  16. Pion yields and the nature of kaon-pion ratios in high energy nucleus-nucleus collisons: models versus measurements

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; De, B.; Guptaroy, P.

    2001-08-01

    The pion densities and the nature of kaon-pion ratios offer two very prominent and crucial physical observables on which sufficient data for heavy nucleus collisions, to date, are available. In the light of two models - one purely phenomenological and the other with a sound dynamical basis - we would try to examine here the state of agreement between calculations and experimental results obtainable from the past and the latest measurements. Impact and implications of all these would also finally be spelt out.

  17. Low-energy neutrino-nucleus interactions and beta-beam neutrino

    SciTech Connect

    Jachowicz, N.; Pandey, V.

    2015-05-15

    We present an overview of neutrino-nucleus scattering at low energies with cross sections obtained within a continuum random phase approximation (CRPA) formalism. We highlight potential applications of beta-beam neutrino experiments for neutrino astrophysics. Our calculations are compared with MiniBooNe data at intermediate energies.

  18. The Nucleus Introduced

    PubMed Central

    Pederson, Thoru

    2011-01-01

    Now is an opportune moment to address the confluence of cell biological form and function that is the nucleus. Its arrival is especially timely because the recognition that the nucleus is extremely dynamic has now been solidly established as a paradigm shift over the past two decades, and also because we now see on the horizon numerous ways in which organization itself, including gene location and possibly self-organizing bodies, underlies nuclear functions. PMID:20660024

  19. Low-energy theorems for pion photoproduction from nuclei and pion-nucleus coupling constants

    SciTech Connect

    Radutskii, G.M.; Serdyutskii, V.A.

    1982-10-01

    New low-energy theorems for pion photoproduction in light nuclei are derived using a model that allows one to extract all the information contained in the current algebra and the CVC and PCAC hypotheses. From the comparison with the experimental total cross sections for threshold photoproduction of charged pions on the nuclei /sup 6/Li, /sup 12/C, and /sup 14/N, the values of the pion-nucleus coupling constants are obtained and the magnitude of the electric quadrupole moment of the /sup 12/N nucleus is predicted.

  20. Sensitivity of cross sections for elastic nucleus-nucleus scattering to halo nucleus density distributions

    SciTech Connect

    Alkhazov, G. D.; Sarantsev, V. V.

    2012-12-15

    In order to clear up the sensitivity of the nucleus-nucleus scattering to the nuclear matter distributions in exotic halo nuclei, we have calculated differential cross sections for elastic scattering of the {sup 6}He and {sup 11}Li nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon with different assumed nuclear density distributions in {sup 6}He and {sup 11}Li.

  1. Determination of primary energy in nucleus-nucleus collisions and the high P(sub)T tail of alpha-particles

    NASA Technical Reports Server (NTRS)

    Freier, P. S.; Atwater, T. W.

    1985-01-01

    A determination of primary energy is required in order to study the energy dependence of meson multiplicity in A-A collisions in cosmic rays. Various procedures which estimate the energy of a primary nucleus from its interaction were investigated. An average of two methods were used, one using the pions and wounded protons and the other using spectator protons and alpha particles. The high P sub T tail observed for Z = 2 fragments requires a modification of the latter method.

  2. Development of global medium-energy nucleon-nucleus optical model potentials

    SciTech Connect

    Madland, D.G.; Sierk, A.J.

    1997-08-01

    The authors report on the development of new global optical model potentials for nucleon-nucleus scattering at medium energies. Using both Schroedinger and Dirac scattering formalisms, the goal is to construct a physically realistic optical potential describing nucleon-nucleus elastic scattering observables for a projectile energy range of (perhaps) 20 meV to (perhaps) 2 GeV and a target mass range of 16 to 209, excluding regions of strong nuclear deformation. They use a phenomenological approach guided by conclusions from recent microscopic studies. The experimental database consists largely of proton-nucleus elastic differential cross sections, analyzing powers, spin-rotation functions, and total reaction cross sections, and neutron-nucleus total cross sections. They will use this database in a nonlinear least-squares adjustment of optical model parameters in both relativistic equivalent Schroedinger (including relativistic kinematics) and Dirac (second-order reduction) formalisms. Isospin will be introduced through the standard Lane model and a relativistic generalization of that model.

  3. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.

    1989-01-01

    The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  4. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Buck, Warren W.; Maung, Khin M.

    1989-01-01

    Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models, are used with the t-matrix that is taken from the scattering experiments to find a simple optical potential. The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown. The eikonal approximation was chosen as the solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  5. Antiproton-nucleus scattering at low and intermediate energies

    SciTech Connect

    Dal'karov, O.D.; Karmanov, V.A.; Trukhov, A.V.

    1987-03-01

    We calculate the reaction cross sections and differential cross sections for antiproton scattering by the nuclei SC, SNe, SXAl, UCa, and WUCu in the energy range 20--200 MeV in the Glauber approximation taking into account the Coulomb interaction. The results of the calculations are in good agreement with the experimental data obtained with antiproton beams at BNL, KEK, and LEAR. From comparison with experimental data we extract the ratio of the real to the imaginary part of the elastic p-barN forward scattering amplitude.

  6. Color Fluctuations in High Energy Hadronand Photon-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Frankfurt, Leonid; Strikman, Mark

    We explain that coherence of high energy QED and QCD processes implies existence of new kind of phenomena which are beyond a framework based on Regge poles (cuts). New phenomena emerge as the consequence of compositeness of the bound states and the Lorentz slowing down of interaction. We focus on the color fluctuations phenomena predicted earlier for pA collisions within QCD and recent evidence for this phenomenon from pA LHC run, significant modification of nuclear shadowing phenomenon in the diffractive photoproduction of vector mesons observed recently in the ultra peripheral collisions at LHC. We outlined briefly general properties of color fluctuations phenomena and perspectives of future studies of this phenomenon in electron (photon) collisions with nuclei.

  7. Pion- and proton-nucleus interactions at intermediate energy

    SciTech Connect

    Dehnhard, D.

    1992-12-01

    We report on scattering and reaction experiments on light nuclei using the [pi]-meson and proton beams from the Los Alamos Meson Physics Facility (LAMPF) and the Indiana University Cyclotron Facility (IUCF). Differential cross sections, cross section asymmetries, and angular correlation functions have been measured in order to test models of the reaction mechanism and of nuclear structure. At LAMPF we have measured asymmetries for pion scattering from polarized [sup 13]C which are uniquely sensitive to the isoscalar spin density. In order to determine details of the reaction mechanism, we have obtained approval for a scattering experiment on polarized [sup 3]He for which the nuclear structure is very well known. We have completed data taking for two studies of elastic scattering of [pi][sup +] from [sup 6]Li and [sup l3]C. The detailed differential cross sections from these experiments will be used to constrain theoretical analyses of previous polarization experiments done at the Pierre-Scherrer-Institute (PSI) and at LAMPF. We have analyzed [pi]-triton coincidence events from the [sup 4]He([pi],[pi][prime] t)p reaction and have found evidence for direct triton knockout from [sup 4]He. We have extended these angular correlation measurements to higher energies and to [sup 2]H and [sup 3]He targets. At IUCF we have performed the first [sup 4]He(p,n) experiment at intermediate energies, T[sub p] = 100, 147, and 200 MeV, in a search for previously reported narrow states in [sup 4]Li of widths of [approx] 1 MeV. Within the statistics of the data we have found no evidence for such narrow structures.

  8. Experimental studies of pion-nucleus and nucleon-nucleus interactions at intermediate energies. Progress report, April 1, 1991--March 31, 1994

    SciTech Connect

    1993-09-30

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991-94 under a grant from the U.S. Department of Energy. Most of these studies involved investigations of various pion-nucleus interactions and nucleon-nucleus charge-exchange reactions. The work was carried out with the LAMPF accelerator at the Los Alamos National Laboratory and the cyclotrons at the Paul Scherrer Institute (PSI) near Zurich, Switzerland, at Indiana University (IUCF), and at TRIUMF in Vancouver, Canada, as collaborative efforts among several laboratories and universities. We have also worked on plans and preparations for new experiments involving studies of the quark structure of nucleons and nuclei, which would be carried out at Fermilab (FNAL), near Chicago, and at the HERA facility at the DESY laboratory in Hamburg, Germany. The NMSU personnel included two faculty members, five postdoctoral research associates, nine graduate students, and one undergraduate student.

  9. Pion- and proton-nucleus interactions at intermediate energy

    SciTech Connect

    Dehnhard, D.

    1992-02-01

    {pi}-meson and proton beams from the Los Alamos Meson Physics Facility (LAMPF) and the Indiana University Cyclotron Facility (IUCF) were used in scattering and reaction experiments on atomic nuclei. The experimental data allow tests of models of the reaction mechanism and of nuclear structure. For example, the asymmetries observed in a pion scattering experiment on polarized {sup 13}C nuclei were found to contain unique information on the isoscalar spin density. However, further experiments on polarized nuclei of simpler structure are needed to provide the data for a thorough analysis of the reaction mechanism. For this reason a pion scattering experiment on a polarized {sup 3}He target is planned and a high-resolution study on {sup 6}Li({pi},{pi}{prime}) will be done. An analysis of {pi}-triton coincidence events from the {sup 4}He({pi},{pi}{prime}t)p reaction yielded evidence for direct triton knock-out from {sup 4}He. This work will be continued at higher incident pion energies. Additional work on the {sup 4}He(p,n) reaction at IUCF is planned to determine the isovector strength in mass-4 nuclei and the level parameters of {sup 4}Li.

  10. Application of multiple scattering theory to lower-energy elastic nucleon-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Chinn, C. R.; Elster, Ch.; Thaler, R. M.; Weppner, S. P.

    1995-03-01

    The optical model potentials for nucleon-nucleus elastic scattering at 65 meV are calculated for 12C, 16O, 28Si, 40Ca, 56Fe, 90Zr, and 208Pb in first-order multiple scattering theory, following the prescription of the spectator expansion, where the only inputs are the free nucleon-nucleon (NN) potentials, the nuclear densities, and the nuclear mean field as derived from microscopic nuclear structure calculations. These potentials are used to predict differential cross sections, analyzing powers, and spin rotation functions for neutron and proton scattering at 65 MeV projectile energy and compared with available experimental data. The theoretical curves are in very good agreement with the data. The modification of the propagator due to the coupling of the struck nucleon to the residual nucleus is seen to be significant at this energy and invariably improves the congruence of theoretical prediction and measurement.

  11. Theoretical antideuteron-nucleus absorptive cross sections

    NASA Technical Reports Server (NTRS)

    Buck, W. W.; Norbury, J. W.; Townsend, L. W.; Wilson, J. W.

    1993-01-01

    Antideuteron-nucleus absorptive cross sections for intermediate to high energies are calculated using an ion-ion optical model. Good agreement with experiment (within 15 percent) is obtained in this same model for (bar p)-nucleus cross sections at laboratory energies up to 15 GeV. We describe a technique for estimating antinucleus-nucleus cross sections from NN data and suggest that further cosmic ray studies to search for antideuterons and other antinuclei be undertaken.

  12. Experimental studies of pion-nucleus interactions at intermediate energies. Annual progress report

    SciTech Connect

    Not Available

    1991-12-31

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting {pi}{sup 0} mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized {sup 3}He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure.

  13. Monte Carlo modeling of the net effects of coma scattering and thermal reradiation on the energy input to cometary nucleus

    NASA Technical Reports Server (NTRS)

    Salo, H.

    1988-01-01

    A Monte Carlo simulation method is presented that can, to an accuracy of a few percent, calculate the effects of a dusty coma on the total energy input to the cometary nucleus. This method treats nonconservative nonisotropic scattering, as well as the reflection from the nucleus surface. Results are presented as a function of the optical thickness of the dust column in the sun-comet axis. The total energy input to the nucleus appears to be only weakly dependent on the opacity of the coma, the radial distribution of the dust, or the details of the extinction processes.

  14. Antinucleon-nucleus interactions

    SciTech Connect

    Dover, C.B.

    1987-01-01

    Recent experimental and theoretical results on anti p-nucleus interactions are reviewed. We focus on determinations of the anti p optical potential from elastic scattering, the use of (anti p, anti p') inelastic scattering to reveal aspects of the spin-isospin dependence of N anti N amplitudes, and some puzzling features of (anti p, anti n) charge exchange reactions on nuclei. 47 refs., 7 figs.

  15. Energy spectrum of cosmic-ray iron nucleus observed with emulsion chamber

    NASA Technical Reports Server (NTRS)

    Sato, Y.; Shimada, E.; Ohta, I.; Tasaka, S.; Tanaka, S.; Sugimoto, H.; Taira, K.; Tateyama, N.

    1985-01-01

    Energy spectrum of cosmic-ray Fe-nucleus has been measured from 4 GeV per nucleon to beyond 100 GeV per nucleon. The data were obtained using emulsion chambers on a balloon from Sanriku, Japan. The energies were estimated by the opening angle method after calibrated using 1.88 GeV per nucleon Fe collisions. The spectrum of Fe is approximately E-2.5 in the range from 10 to 200 GeV per nucleon. This result is in good agreement with those of other experiments.

  16. Transverse energy distribution, charged particle multiplicities and spectra in /sup 16/O-nucleus collisions

    SciTech Connect

    Sunier, J.W.

    1987-01-01

    The HELIOS (High Energy Lepton and Ion Spectrometer) experiment, installed at the CERN Super Proton Synchrotron, proposes to examine in details the physical properties of a state of high energy created in nuclei by ultra-relativistic nucleus-nucleus collisions. It is generally believed that, at high densities or temperatures, a phase transition to a plasma of quark and gluons will occur. The dynamic of the expansion of such a plasma and its subsequent condensation into a hadron gas should markedly affect the composition and momentum distribution of the emerging particles and photons. The HELIOS experimental setup therefore combines 4..pi.. calorimetric coverage with measurements of inclusive particle spectra, two particle correlations, low and high mass lepton pairs and photons. The emphasis is placed on transverse energy flow (E/sub T/) measurements with good energy resolution, and the ability to trigger the acquisition of data in a variety of E/sub T/ ranges, thereby selecting the impact parameter or the violence of the collisions. This short note presents HELIOS results, for the most part still preliminary, on /sup 16/O-nucleus collisions at the incident energies of 60 and 200 GeV per nucleon. The E/sub T/ distributions from Al, Ag and W targets are discussed and compared to the associated charged particle multiplicities from W. Charged particle and (converted) photon spectra measured with the external magnetic spectrometer are compared for /sup 16/O + W and p + W collisions at 200 GeV per nucleon. 5 refs., 7 figs.

  17. Leukocyte nucleus segmentation and nucleus lobe counting.

    PubMed

    Chan, Yung-Kuan; Tsai, Meng-Hsiun; Huang, Der-Chen; Zheng, Zong-Han; Hung, Kun-Ding

    2010-11-12

    Leukocytes play an important role in the human immune system. The family of leukocytes is comprised of lymphocytes, monocytes, eosinophils, basophils, and neutrophils. Any infection or acute stress may increase or decrease the number of leukocytes. An increased percentage of neutrophils may be caused by an acute infection, while an increased percentage of lymphocytes can be caused by a chronic bacterial infection. It is important to realize an abnormal variation in the leukocytes. The five types of leukocytes can be distinguished by their cytoplasmic granules, staining properties of the granules, size of cell, the proportion of the nuclear to the cytoplasmic material, and the type of nucleolar lobes. The number of lobes increased when leukemia, chronic nephritis, liver disease, cancer, sepsis, and vitamin B12 or folate deficiency occurred. Clinical neutrophil hypersegmentation has been widely used as an indicator of B12 or folate deficiency.Biomedical technologists can currently recognize abnormal leukocytes using human eyes. However, the quality and efficiency of diagnosis may be compromised due to the limitations of the biomedical technologists' eyesight, strength, and medical knowledge. Therefore, the development of an automatic leukocyte recognition system is feasible and necessary. It is essential to extract the leukocyte region from a blood smear image in order to develop an automatic leukocyte recognition system. The number of lobes increased when leukemia, chronic nephritis, liver disease, cancer, sepsis, and vitamin B12 or folate deficiency occurred. Clinical neutrophil hypersegmentation has been widely used as an indicator of B12 or folate deficiency. The purpose of this paper is to contribute an automatic leukocyte nuclei image segmentation method for such recognition technology. The other goal of this paper is to develop the method of counting the number of lobes in a cell nucleus. The experimental results demonstrated impressive segmentation accuracy

  18. Dynamical nucleus-nucleus potential at short distances

    SciTech Connect

    Jiang Yongying; Wang Ning; Li Zhuxia; Scheid, Werner

    2010-04-15

    The dynamical nucleus-nucleus potentials for fusion reactions {sup 40}Ca+{sup 40}Ca, {sup 48}Ca+{sup 208}Pb, and {sup 126}Sn+{sup 130}Te are studied with the improved quantum molecular dynamics model together with the extended Thomas-Fermi approximation for the kinetic energies of nuclei. The obtained fusion barrier for {sup 40}Ca+{sup 40}Ca is in good agreement with the extracted fusion barrier from the measured fusion excitation function, and the depths of the fusion pockets are close to the results of time-dependent Hartree-Fock calculations. The energy dependence of the fusion barrier is also investigated. The fusion pocket becomes shallow for a heavy fusion system and almost disappears for heavy nearly symmetric systems, and the obtained potential at short distances is higher than the adiabatic potential.

  19. Azimuthal correlation and collective behavior in nucleus-nucleus collisions

    SciTech Connect

    Mali, P.; Mukhopadhyay, A. Sarkar, S.; Singh, G.

    2015-03-15

    Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see a direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.

  20. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies

    SciTech Connect

    Not Available

    1990-10-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988--91. Most of these studies have involved investigations of neutron-proton and pion-nucleus interactions. The neutron-proton research is part of a program of studies of interactions between polarized nucleons that we have been involved with for more than ten years. Its purpose has been to help complete the determination of the full set of ten complex nucleon-nucleon amplitudes at energies up to 800 MeV, as well as to continue investigating the possibility of the existence of dibaryon resonances. The give complex isospin-one amplitudes have been fairly well determined, partly as a result of this work. Our work in this period has involved measurements and analysis of data on elastic scattering and total cross sections for polarized neutrons on polarized protons. The pion-nucleus research continues our studies of this interaction in regions where it has not been well explored. One set of experiments includes studies of pion elastic and double-charge-exchange scattering at energies between 300 and 550 MeV, where our data is unique. Another involves elastic and single-charge-exchange scattering of pions from polarized nuclear targets, a new field of research which will give the first extensive set of information on spin-dependent pion-nucleus amplitudes. Still another involves the first set of detailed studies of the kinematic correlations among particles emitted following pion absorption in nuclei.

  1. Nucleus from string theory

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Morita, Takeshi

    2011-08-01

    In generic holographic QCD, we find that baryons are bound to form a nucleus, and that its radius obeys the empirically-known mass-number (A) dependence r∝A1/3 for large A. Our result is robust, since we use only a generic property of D-brane actions in string theory. We also show that nucleons are bound completely in a finite volume. Furthermore, employing a concrete holographic model (derived by Hashimoto, Iizuka, and Yi, describing a multibaryon system in the Sakai-Sugimoto model), the nuclear radius is evaluated as O(1)×A1/3[fm], which is consistent with experiments.

  2. Reality of comet nucleus.

    NASA Technical Reports Server (NTRS)

    Lyttleton, R. A.

    1972-01-01

    The prime problem of a comet mission must be to settle whether the cometary nucleus has an actual tangible material existence, or whether it arises from some optical effect present only at times within comets. The absence of any large particles in a comet seems to be demonstrated by certain meteor showers. A feature that would seem to indicate that a comet consists primarily of a swarm of particles is that the coma in general contracts as the comet approaches the sun, roughly in proportion within the distance, and then expands again as it recedes.

  3. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  4. Higgs-boson production in nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  5. Higgs-Boson Production in Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  6. Higgs-Boson Production in Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  7. Higgs-boson production in nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  8. Peculiarities of the electron energy spectrum in the Coulomb field of a superheavy nucleus

    NASA Astrophysics Data System (ADS)

    Voronov, B. L.; Gitman, D. M.; Levin, A. D.; Ferreira, R.

    2016-05-01

    We consider the peculiarities of the electron energy spectrum in the Coulomb field of a superheavy nucleus and discuss the long history of an incorrect interpretation of this problem in the case of a pointlike nucleus and its current correct solution. We consider the spectral problem in the case of a regularized Coulomb potential. For some special regularizations, we derive an exact equation for the point spectrum in the energy interval (-m,m) and find some of its solutions numerically. We also derive an exact equation for charges yielding bound states with the energy E = -m; some call them supercritical charges. We show the existence of an infinite number of such charges. Their existence does not mean that the oneparticle relativistic quantum mechanics based on the Dirac Hamiltonian with the Coulomb field of such charges is mathematically inconsistent, although it is physically unacceptable because the spectrum of the Hamiltonian is unbounded from below. The question of constructing a consistent nonperturbative second-quantized theory remains open, and the consequences of the existence of supercritical charges from the standpoint of the possibility of constructing such a theory also remain unclear.

  9. Networking the nucleus

    PubMed Central

    Rajapakse, Indika; Scalzo, David; Tapscott, Stephen J; Kosak, Steven T; Groudine, Mark

    2010-01-01

    The nuclei of differentiating cells exhibit several fundamental principles of self-organization. They are composed of many dynamical units connected physically and functionally to each other—a complex network—and the different parts of the system are mutually adapted and produce a characteristic end state. A unique cell-specific signature emerges over time from complex interactions among constituent elements that delineate coordinate gene expression and chromosome topology. Each element itself consists of many interacting components, all dynamical in nature. Self-organizing systems can be simplified while retaining complex information using approaches that examine the relationship between elements, such as spatial relationships and transcriptional information. These relationships can be represented using well-defined networks. We hypothesize that during the process of differentiation, networks within the cell nucleus rewire according to simple rules, from which a higher level of order emerges. Studying the interaction within and among networks provides a useful framework for investigating the complex organization and dynamic function of the nucleus. PMID:20664641

  10. Energy dependence of cosmic ray composition above 10(15) GeV/nucleus

    NASA Technical Reports Server (NTRS)

    Linsley, J.; Fichtel, C. E.

    1985-01-01

    It is argued that above 10 to the 5th power GeV/nucleus, in the range where charge-resolved spectra have not yet been determined, the appropriate measures of equal-energy composition are 1nA and 1nA , the mean value and dispersion relative to the mean value and dispersion relative to the mean of 1nA, where A is the mass number. Experimental data which are sensitive to changes in 1nA with increasing energy are examined. It is found that, taken as a whole, they show no change (+ or 0.5) between 10 to the 5th power and 10 to the 6th power GeV, and a decrease of 1.5 + or - 0.5 between 10 to the 6th power and 10 to the 8th power GeV, with no further change + or - 0.5) above 10 to the 8th power GeV. Taken as a whole, the various indirect estimates of the absolute value of 1nA above 10 to the 5th power GeV/nucleus are also consistent with this pattern. For a wide range of astrophysically plausible composition models the value of the other measure, 1nA is insensitive to changes in 1nA . Because of this the existing data on 1nA can likewise easily be reconciled with this pattern.

  11. Electromagnetic probes of a pure-glue initial state in nucleus-nucleus collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Vovchenko, V.; Karpenko, Iu. A.; Gorenstein, M. I.; Satarov, L. M.; Mishustin, I. N.; Kämpfer, B.; Stoecker, H.

    2016-08-01

    Partonic matter produced in the early stage of ultrarelativistic nucleus-nucleus collisions is assumed to be composed mainly of gluons, and quarks and antiquarks are produced at later times. To study the implications of such a scenario, the dynamical evolution of a chemically nonequilibrated system is described by ideal (2+1)-dimensional hydrodynamics with a time dependent (anti)quark fugacity. The equation of state interpolates linearly between the lattice data for the pure gluonic matter and the lattice data for the chemically equilibrated quark-gluon plasma. The spectra and elliptic flows of thermal dileptons and photons are calculated for central Pb+Pb collisions at the CERN Large Hadron Collider energy of √{sN N}=2.76 TeV. We test the sensitivity of the results to the choice of equilibration time, including also the case where the complete chemical equilibrium of partons is reached already at the initial stage. It is shown that a suppression of quarks at early times leads to a significant reduction of the yield of the thermal dileptons, but only to a rather modest suppression of the pT distribution of direct photons. It is demonstrated that an enhancement of photon and dilepton elliptic flows might serve as a promising signature of the pure-glue initial state.

  12. The Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio

    Exciting new broadband observations of the galactic nucleus have placed the heart of the Milky Way under intense scrutiny in recent years. This has been due in part to the growing interest from theorists motivated to study the physics of black hole accretion, magnetized gas dynamics, and unusual star formation. The center of our Galaxy is now known to harbor the most compelling supermassive black hole candidate, weighing in at 3-4 million solar masses. Its nearby environment is comprised of a molecular dusty ring, clusters of evolved and young stars, diffuse hot gas, ionized gas streamers, and several supernova remnants. This chapter will focus on the physical makeup of this dynamic region and the feasibility of actually imaging the black hole's shadow in the coming decade with mm interferometry.

  13. BFKL Pomeron calculus: solution to equations for nucleus-nucleus scattering in the saturation domain

    NASA Astrophysics Data System (ADS)

    Contreras, Carlos; Levin, Eugene; Meneses, Rodrigo

    2013-04-01

    In this paper we solve the equation for nucleus-nucleus scattering in the BFKL Pomeron calculus, suggested by Braun [1-3]. We find these solutions analytically at high energies as well as numerically in the entire region of energies inside the saturation region. The semi-classical approximation is used to select out the infinite set of the parasite solutions. The nucleus-nucleus cross sections at high energy are estimated and compared with the Glauber-Gribov approach. It turns out that the exact formula gives the estimates that are very close to the ones based on Glauber-Gribov formula which is important for the practical applications.

  14. Checkerboard Theory of the Nucleus.

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2006-04-01

    The Checker Board Model (CBM) is a 2D model of the nucleus that proposes that the synchronization of the 2 outer rotating quarks in the nucleons accounts for magnetic moment of the nucleons and that the magnetic flux from the nucleons couples (weaves) into the 2D checker board array structures and this magnetic coupling in addition to electrostatic forces of the rotating and stationary quarks accounts for the apparent strong nuclear force. The symmetry of the He nucleus helps explain why this 2D structure is so stable. This model explain the mass of the proton and neutron, along with their magnetic moments and their absolute and relative sizes in terms of the above structure and predict the masses of two newly proposed quarks ^(1): the ``up'' and the ``dn'' quarks. Since the masses of the ``up'' and ``dn'' quark determined by the CBM (237.31 MeV and 42.392 MeV respectively) did not fit within the standard model as candidates for u and d, a new model (New Physics) had to be invented. This new particle physics model predicts that nature has 5 generations not 3. (1). T.M. Lach, Checkerboard Structure of the Nucleus, Infinite Energy, Vol. 5, issue 30, (2000). (2). T.M. Lach, Masses of the Sub-Nuclear Particles, nucl-th/0008026, @http://xxx.lanl.gov/

  15. Oxytocin in the ventromedial hypothalamic nucleus reduces feeding and acutely increases energy expenditure

    PubMed Central

    Noble, Emily E.; Billington, Charles J.; Kotz, Catherine M.

    2014-01-01

    Central oxytocin reduces food intake and increases energy expenditure. The ventromedial hypothalamic nucleus (VMN) is associated with energy balance and contains a high density of oxytocin receptors. We hypothesized that oxytocin in the VMN is a negative regulator of energy balance acting to reduce feeding and increase energy expenditure. To test this idea, oxytocin or vehicle was injected directly into the VMN of Sprague-Dawley rats during fasted and nonfasted conditions. Energy expenditure (via indirect calorimetry) and spontaneous physical activity (SPA) were recorded simultaneously. Animals were also exposed to a conditioned taste aversion test, to determine whether oxytocin's effects on food intake were associated with malaise. When food was available during testing, oxytocin-induced elevations in energy expenditure lasted for 1 h, after which overall energy expenditure was reduced. In the absence of food during the testing period, oxytocin similarly increased energy expenditure during the first hour, but differences in 12-h energy expenditure were eliminated, implying that the differences may have been due to the thermic effects of feeding (digestion, absorption, and metabolic processing). Oxytocin acutely elevated SPA and reduced feeding at doses that did not cause a conditioned taste aversion during both the fed and fasted states. Together, these data suggest that oxytocin in the VMN promotes satiety and acutely elevates energy expenditure and SPA and implicates the VMN as a relevant site for the antiobesity effects of oxytocin. PMID:24990860

  16. The intercalatus nucleus of Staderini.

    PubMed

    Cascella, Marco

    2016-01-01

    Rutilio Staderini was one of the leading Italian anatomists of the twentieth century, together with some scientists, such as Giulio Chiarugi, Giovanni Vitali, and others. He was also a member of a new generation of anatomists. They had continued the tradition of the most famous Italian scientists, which started from the Renaissance up until the nineteenth century. Although he carried out important studies of neuroanatomy and comparative anatomy, as well as embryology, his name is rarely remembered by most medical historians. His name is linked to the nucleus he discovered: the Staderini nucleus or intercalated nucleus, a collection of nerve cells in the medulla oblongata located lateral to the hypoglossal nucleus. This article focuses on the biography of the neuroanatomist as well as the nucleus that carries his name and his other research, especially on comparative anatomy and embryology.

  17. Low-energy {omega} ({yields}{pi}{sup 0}{gamma}) meson photoproduction in the nucleus

    SciTech Connect

    Das, Swapan

    2011-06-15

    The {pi}{sup 0{gamma}} invariant mass distribution spectra in the ({gamma},{pi}{sup 0{gamma}}) reaction were measured by the TAPS/ELSA Collaboration to look for the hadron parameters of the {omega} meson in the Nb nucleus. We study the mechanism for this reaction, where we consider that the elementary reaction in the Nb nucleus proceeds as {gamma}N{yields}{omega}N;{omega}{yields}{pi}{sup 0}{gamma}. The {omega}-meson photoproduction amplitude for this reaction is extracted from the measured four-momentum transfer distribution in the {gamma}p{yields}{omega}p reaction. The propagation of the {omega} meson and the distorted wave function for the {pi}{sup 0} meson in the final state are described by the eikonal form. The {omega} and {pi}{sup 0} mesons' nucleus optical potentials, appearing in the {omega} meson propagator and {pi}{sup 0} meson distorted wave function respectively, are estimated using the t{rho} approximation. The effects of pair correlation and color transparency are also studied. The calculated results do not show medium modification for the {omega} meson produced in the nucleus for momentum greater than 200 MeV. It occurs because the {omega} meson predominantly decays outside the nucleus. The dependence of the cross section on the final-state interaction is also investigated. The broadening of the {omega}-meson mass distribution spectra is shown to occur due to the large resolution width associated with the detector used in the experiment.

  18. Development of the Hamiltonian molecular dynamics (HMD) model: A first-principles, relativistic description of nucleus-nucleus interactions at medium energy

    NASA Astrophysics Data System (ADS)

    Zapp, Edward Neal

    Simulation of energetic, colliding nuclear systems at energies between 100 AMeV and 5 AGeV has utility in fields as diverse as the design and construction of fundamental particle physics experiments, patient treatment by radiation exposure, and in the protection of astronaut crews from the risks of exposure to natural radiation sources during spaceflight. Descriptions of these colliding systems which are derived from theoretical principles are necessary in order to provide confidence in describing systems outside the scope of existing data, which is sparse. The system size and velocity dictate descriptions which include both special relativistic and quantum effects, and the currently incomplete state of understanding with respect to the basic processes at work within nuclear matter dictate that any description will exist at some level of approximation. Models commonly found in the literature employ approximations to theory which lead to simulation results which demonstrate departure from fundamental physical principles, most notably conservation of system energy. The HMD (Hamiltonian Molecular Dynamics) mode is developed as a phase-space description of colliding nuclear system on the level of hadrons, inclusive of the necessary quantum and relativistic elements. Evaluation of model simulations shows that the HMD model shows the necessary conservations throughout system simulation. HMD model predictions are compared to both the RQMD (Relativistic Quantum Molecular Dynamics) and JQMD (Jaeri-Quantum Molecular Dynamics) codes, both commonly employed for the purpose of simulating nucleus-nucleus collisions. Comparison is also provided between all three codes and measurement. The HMD model is shown to perform well in light of both measurement and model calculation, while providing for a physically self-consistent description of the system throughout.

  19. Absence of jet quenching in peripheral nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Loizides, Constantin; Morsch, Andreas

    2017-10-01

    Medium effects on the production of high-pT particles in nucleus-nucleus (AA) collisions are generally quantified by the nuclear modification factor (RAA), defined to be unity in absence of nuclear effects. Modeling particle production including a nucleon-nucleon impact parameter dependence, we demonstrate that RAA at midrapidity in peripheral AA collisions can be significantly affected by event selection and geometry biases. Even without jet quenching and shadowing, these biases cause an apparent suppression for RAA in peripheral collisions, and are relevant for all types of hard probes and all collision energies. Our studies indicate that calculations of jet quenching in peripheral AA collisions should account for the biases, or else they will overestimate the relevance of parton energy loss. Similarly, expectations of parton energy loss in light-heavy collision systems based on comparison with apparent suppression seen in peripheral RAA should be revised. Our interpretation of the peripheral RAA data would unify observations for lighter collision systems or lower energies where significant values of elliptic flow are observed despite the absence of strong jet quenching.

  20. Forward-backward multiplicity correlation in high-energy nucleus-nucleus interactions at a few AGeV/c

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Swarnapratim; Haiduc, Maria; Neagu, Alina Tania; Firu, Elena

    2014-07-01

    We have presented a systematic study of two-particle rapidity correlations in terms of investigating the dynamical fluctuation observable \\sigma _c^2 in the forward-backward pseudo-rapidity windows by analyzing the experimental data of {}_{}^{16} O{--}AgBr interactions at 4.5 AGeV/c, {}_{}^{22} Ne{--}AgBr interactions at 4.1 AGeV/c, {}_{}^{28} Si{--}AgBr and {}_{}^{32} S{--}AgBr interactions at 4.5 AGeV/c. The experimental results have been compared with the results obtained from the analysis of event sample simulated (MC-RAND) by generating random numbers and also with the analysis of events generated by the UrQMD and AMPT model. Our study confirms the presence of strong short-range correlations among the produced particles in the forward and the backward pseudo-rapidity region. The analysis of the simple Monte Carlo-simulated (MC-RAND) events signifies that the observed correlations are not due to mere statistics only; explanation of such correlations can be attributed to the presence of dynamical fluctuations during the production of charged pions. Comparisons of the experimental results with the results obtained from analyzing the UrQMD data sample indicate that the UrQMD model cannot reproduce the experimental findings. The AMPT model also cannot explain the experimental results satisfactorily. Comparisons of our experimental results with the results obtained from the analysis of higher energy emulsion data and with the results of the RHIC data have also been presented.

  1. Mechanics of the Nucleus

    PubMed Central

    Lammerding, Jan

    2015-01-01

    The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics. PMID:23737203

  2. Specific energy from Auger and conversion electrons of 131I, 188Re-anti-CD20 to a lymphocyte's nucleus

    NASA Astrophysics Data System (ADS)

    Torres-García, E.; Carrillo-Cazares, T. A.

    2011-01-01

    The typical radionuclides used to label anti-CD20 in the treatment of non-Hodgkin's lymphoma are 90Y, 131I, and 188Re, with the emission of beta particles, Auger electrons, and conversion electrons for the latter two. The aim of the present work was to calculate the contribution of high linear energy transfer radiation as Auger electrons (AE) and conversion electrons (CE) of 131I and 188Re-anti-CD20 to mean specific energy into the cell nucleus by Monte Carlo simulation (MCS), so as to infer therapeutic effectiveness on a dosimetric basis. MCS was used to quantify the frequency-mean specific energy into the cell nucleus, where the cell was modeled by two concentric spheres, considering two cell models. The results showed that 10% and 33% of the mean-specific energies (z¯) per disintegration imparted to the cell nucleus for both geometries are due to AE and CE; on the other hand, if the hit of AE and CE occurs, the contribution to (z¯) is about 64% and 86% for 131I and 188Re, respectively. According to the amount of specific energy from AE and CE into the cell nucleus by positive event, they can cause catastrophic effects in the nuclear DNA in the treatment of non-Hodgkin's lymphoma with 131I, 188Re-anti-CD20.

  3. Photo nuclear energy loss term for muon-nucleus interactions based on xi scaling model of QCD

    NASA Technical Reports Server (NTRS)

    Roychoudhury, R.

    1985-01-01

    Extensive air showers (EMC) experiments discovered a significant deviation of the ratio of structure functions of iron and deuteron from unity. It was established that the quark parton distribution in nuclei are different from the corresponding distribution in the nucleus. It was examined whether these results have an effect on the calculation of photo nucleus energy loss term for muon-nucleus nuclear interaction. Though the EMC and SLAC data were restricted to rather large q sq region it is expected that the derivation would persist even in the low q sq domain. For the ratio of iron and deuteron structure function a rather naive least square fit of the form R(x) = a + bx was taken and it is assumed that the formula is valid for the whole q sq region the absence of any knowledge of R(x) for small q sq.

  4. Hyperon-nucleus potentials

    NASA Astrophysics Data System (ADS)

    Dover, C. B.; Gal, A.

    We review models for the interaction of baryons ( N, Λ, Σ and Ξ) with nuclei, emphasizing the underlying meson exchange picture. Starting from a phenomenological one boson exchange model (the Nijmegen potential, as an example) which accounts for the available NN, ΛN and ΣN two-body scattering data, we show how to construct the effective baryon-nucleon interaction ( G-matrix). Employing the folding model, we then obtain the many-body potentials for bound states in terms of the nuclear density and the appropriate spin-isospin weighted G-matrices. The models we emphasize most impose SU(3) constraints on baryon-baryon coupling constants SU(3) is broken through the use of physical masses), although we also compare with rough estimates based on quark model relations between coupling constants. We stress the essential unity and economy of such models, in which nucleon and hyperon-nucleus potentials are intimately related via SU(3), and the connection between the two-body and many-body potentials is preserved. We decompose the nuclear potentials into central and spin-orbit parts, each of which is isospin dependent. For nucleons, the microscopic origin of the isospin dependent Lane potential V1 N is clarified. For Λ and Σ hyperons, the one boson exchange model with SU(3) constraints leads to one-body spin-orbit strengths VLSB which are relatively weak ( VLSΛ ≈ 1.5-2 MeV, VLSΣ ≈ 2.5-;3 MeV, compared to VLSN ≈ 7-9 MeV). We demonstrate the interplay between symmetric and antisymmetric two-body spin-orbit forces which give rise to these results, as well as the special role of K and K ∗ exchange for hyperons. We contrast these results with predictions based on the naive quark model. From S and P-wave two-body interactions, a Lane potential for the Σ of depth V1 Σ ≈ 50-60 MeV is predicted although this result is somewhat uncertain. For the Ξ, the nuclear potential is very different in various models for the two-body interaction based on SU(3) or the quark

  5. The Kemmer-Duffin-Petiau formalism and intermediate-energy deuteron-nucleus scattering

    SciTech Connect

    Kozack, R.E.; Clark, B.C.; Hama, S.; Mishra, V.K.; Kaelbermann, G.; Mercer, R.L.; Ray, L.

    1988-01-01

    The spin-1 Kemmer-Duffin-Petiau (KDP) equations are described and applied to deuteron-nucleus scattering. Comparison with d + /sup 58/Ni elastic scattering data at 400 MeV shows that the KDP model; reproduces experimental spin observables very well. 11 refs., 1 fig.

  6. Intermediate Energy Proton Nucleus Scattering from CALCIUM-40, ZIRCONIUM-90 and LEAD-208.

    NASA Astrophysics Data System (ADS)

    Lee, Lawrence

    In recent years, there has been much interest in studying proton-nucleus scattering at intermediate bombarding energies. We focus on two main themes in this thesis. Firstly, we examine the importance of measuring scattering observables out to high momentum transfers where they become sensitive to the matter distribution in the interior of the nucleus. Here, we find that nuclear medium and exchange effects are needed, especially at lower proton kinetic energies (~ 200 MeV). Secondly, we focus on the remarkable and systematic agreement between experimental data and theory when a consistent microscopic approach is used. As part of our study, we have made high momentum transfer measurements at TRIUMF for proton elastic and inelastic scattering from ^{40} Ca, ^{90}Zr and ^{208}Pb. Differential cross sections and analyzing powers are presented for proton kinetic energies of 200, 362 and 400 MeV out to a maximum momentum transfer of q~ 4.8 fm^{-1}, well above the typical limit of ~2.5 fm ^{-1}. Our elastic data are analyzed with a nonrelativistic microscopic optical model based on the Hamburg density -dependent two-body interaction (Ge83a) and on the Decharge and Gogny (De87) theoretical ground states, and involve no adjustable parameters. The calculations show surprisingly good agreement with data as it follows the cross section through typically 9 orders of magnitude and reproduces the oscillations in the analyzing power out to high q for a number of target nuclei and at various bombarding energies. The success of the elastic calculations also suggests that the theoretical model(s) are sufficiently well understood that nuclear structure problems can now be investigated. We study this aspect mainly through the low-lying natural -parity 3^- and 5^ - transitions. The inelastic data are analyzed with distorted-wave Born approximation calculations using the same nonrelativistic density-dependent interaction to drive the transition, the same optical model potential to distort

  7. Unexpected doubly-magic nucleus.

    SciTech Connect

    Janssens, R. V. F.; Physics

    2009-01-01

    Nuclei with a 'magic' number of both protons and neutrons, dubbed doubly magic, are particularly stable. The oxygen isotope {sup 24}O has been found to be one such nucleus - yet it lies just at the limit of stability.

  8. Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice

    PubMed Central

    McNay, David E.G.; Briançon, Nadege; Kokoeva, Maia V.; Maratos-Flier, Eleftheria; Flier, Jeffrey S.

    2011-01-01

    In the CNS, the hypothalamic arcuate nucleus (ARN) energy-balance circuit plays a key role in regulating body weight. Recent studies have shown that neurogenesis occurs in the adult hypothalamus, revealing that the ARN energy-balance circuit is more plastic than originally believed. Changes in diet result in altered gene expression and neuronal activity in the ARN, some of which may reflect hypothalamic plasticity. To explore this possibility, we examined the turnover of hypothalamic neurons in mice with obesity secondary to either high-fat diet (HFD) consumption or leptin deficiency. We found substantial turnover of neurons in the ARN that resulted in ongoing cellular remodeling. Feeding mice HFD suppressed neurogenesis, as demonstrated by the observation that these mice both generated fewer new neurons and retained more old neurons. This suppression of neuronal turnover was associated with increased apoptosis of newborn neurons. Leptin-deficient mice also generated fewer new neurons, an observation that was explained in part by a loss of hypothalamic neural stem cells. These data demonstrate that there is substantial postnatal turnover of the arcuate neuronal circuitry in the mouse and reveal the unexpected capacity of diet and leptin deficiency to inhibit this neuronal remodeling. This insight has important implications for our understanding of nutritional regulation of energy balance and brain function. PMID:22201680

  9. Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice.

    PubMed

    McNay, David E G; Briançon, Nadege; Kokoeva, Maia V; Maratos-Flier, Eleftheria; Flier, Jeffrey S

    2012-01-01

    In the CNS, the hypothalamic arcuate nucleus (ARN) energy-balance circuit plays a key role in regulating body weight. Recent studies have shown that neurogenesis occurs in the adult hypothalamus, revealing that the ARN energy-balance circuit is more plastic than originally believed. Changes in diet result in altered gene expression and neuronal activity in the ARN, some of which may reflect hypothalamic plasticity. To explore this possibility, we examined the turnover of hypothalamic neurons in mice with obesity secondary to either high-fat diet (HFD) consumption or leptin deficiency. We found substantial turnover of neurons in the ARN that resulted in ongoing cellular remodeling. Feeding mice HFD suppressed neurogenesis, as demonstrated by the observation that these mice both generated fewer new neurons and retained more old neurons. This suppression of neuronal turnover was associated with increased apoptosis of newborn neurons. Leptin-deficient mice also generated fewer new neurons, an observation that was explained in part by a loss of hypothalamic neural stem cells. These data demonstrate that there is substantial postnatal turnover of the arcuate neuronal circuitry in the mouse and reveal the unexpected capacity of diet and leptin deficiency to inhibit this neuronal remodeling. This insight has important implications for our understanding of nutritional regulation of energy balance and brain function.

  10. Surface albedo of cometary nucleus

    NASA Astrophysics Data System (ADS)

    Mukai, T.; Mukai, S.

    A variation of the albedo on the illuminated disk of a comet nucleus is estimated, taking into account the multiple reflection of incident light due to small scale roughness. The dependences of the average albedo over the illuminated disk on the degree of roughness and on the complex refractive index of the surface materials are examined. The variation estimates are compared with measurements of the nucleus albedo of Comet Halley (Reitsema et al., 1987).

  11. Asymptotic formula far from nucleus for exchange energy density in Hartree-Fock theory of closed-shell atoms

    NASA Astrophysics Data System (ADS)

    March, N. H.

    In Hartree-Fock theory, the exchange energy density can be expressed solely in terms of the first-order density matrix. Far from the nucleus of a closed-shell atom, idem potency of the density matrix yields the exchange energy density as the magnitude of the Coulomb energy e2/r times the electron density ρ. Thus two lengths enter the asymptotic form in contrast to ρ-1/3 alone of local-density theory.

  12. Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond.

    PubMed

    Könner, A Christine; Klöckener, Tim; Brüning, Jens C

    2009-07-14

    As the obesity epidemic, diabetes mellitus type 2, and associated comorbidities show no signs of abating, large efforts have been put into a better understanding of the homeostatic control mechanisms involved in regulation of body weight and energy homeostasis. For decades, the hypothalamic arcuate nucleus (ARC), which integrates peripheral signals and modulates appetite and metabolism, has been the focus of investigation. Besides these basic homeostatic circuits, food palatability and reward are thought to be major factors involved in the regulation of food intake. Highly palatable food is easily available, and is ingested even when there is no metabolic need for it. Thus, overriding of the homeostatic control systems by the cognitive, rewarding, social, and emotional aspects of palatable food may contribute to the obesity epidemic. This review aims to provide an updated view, how insulin and leptin as signals originating from the periphery of the body and communicating energy availability to the CNS act not only on ARC neurons, but also directly control the activity of neuronal circuits in control of food-associated reward mechanisms.

  13. Spin observables in inelastic proton-nucleus scattering at intermediate energy

    SciTech Connect

    Smith, R.D.

    1984-01-01

    This dissertation is a study of spin observables in inelastic proton-nucleus reactions for incident proton energies near 1 GeV. At this energy, the dominant reaction mechanisms are (1) quasi-free knockout of one or more nucleons, and (2) pion production through the resonance. The cross section due to quasi-free knockout can be reasonably well understood theoretically in a multiple scattering picture, which uses measured NN amplitudes as input. Calculations of this sort were carried out in reference (10) using scalar NN amplitudes parameterized as Gaussians. The author has extended this picture to include spin dependent NN amplitudes. This allows calculation of all the spin observables, Ay, DLL, DSS, DNN, DLS, and DSL, as well as the cross section dsigma/dOmegadp due to quasi-free knockout of one or more particles. The cross section and polarization Ay have been measured at the LAMPF High Resolution Spectrometer at T/sub L/ = 800 MeV on SC. The theoretical results agree well with the data in the quasi-free region. The results for the remaining spin observables provide predictions for experiments which can be performed at LAMPF. By comparing the calculations with the data, it may be possible to separate the contribution due to a quasi-free knockout, and see a signature of quasi-free production in the spin observables.

  14. High density QCD and nucleus-nucleus scattering deeply in the saturation region

    NASA Astrophysics Data System (ADS)

    Kormilitzin, Andrey; Levin, Eugene; Miller, Jeremy S.

    2011-06-01

    In this paper we solve the equations that describe nucleus-nucleus scattering, in high density QCD, in the framework of the BFKL Pomeron Calculus. We found that (i) the contribution of short distances to the opacity for nucleus-nucleus scattering dies at high energies, (ii) the opacity tends to unity at high energy, and (iii) the main contribution that survives comes from soft (long distance) processes for large values of the impact parameter. The corrections to the opacity Ω(Y,b)=1 were calculated and it turns out that they have a completely different form, namely ( 1-Ω→exp(-Const √{Y} )) than the opacity that stems from the Balitsky-Kovchegov equation, which is ( 1-Ω→exp(-Const Y)). We reproduce the formula for the nucleus-nucleus cross section that is commonly used in the description of nucleus-nucleus scattering, and there is no reason why it should be correct in the Glauber-Gribov approach.

  15. J/ψ production and suppression in high-energy proton-nucleus collisions

    SciTech Connect

    Ma, Yan -Qing; Venugopalan, Raju; Zhang, Hong -Fei

    2015-10-02

    In this study, we apply a color glass condensate+nonrelativistic QCD (CGC+NRQCD) framework to compute J/ψ production in deuteron-nucleus collisions at RHIC and proton-nucleus collisions at the LHC. Our results match smoothly at high p⊥ to a next-to-leading order perturbative QCD+NRQCD computation. Excellent agreement is obtained for p⊥ spectra at the RHIC and LHC for central and forward rapidities, as well as for the normalized ratio RpA of these results to spectra in proton-proton collisions. In particular, we observe that the RpA data are strongly bounded by our computations of the same for each of the individual NRQCD channels; this result provides strong evidence that our description is robust against uncertainties in initial conditions and hadronization mechanisms.

  16. Experimental studies of pion-nucleus interactions at intermediate energies. Annual progress report

    SciTech Connect

    Not Available

    1992-12-31

    This report summarizes investigations of various pion-nucleus interactions and nucleon-nucleus charge-exchange reactions. The work was carried out with the LAMPF accelerator at the Los Alamos National Laboratory and the cyclotrons at the Paul Scherrer Institute (PSI) near Zurich, Switzerland, and at Indiana University (IUCF), as a collaborative effort among several laboratories and universities. The experimental activity at LAMPF involved measurements of new data on pion double-charge-exchange scattering, some initial work on a new Neutral Meson Spectrometer system, a search for deeply-bound pionic atoms, measurements of elastic scattering, and studies of the (n,p) reaction on various nuclei. At PSI measurements of pion quasielastic scattering were carried out, with detection of the recoil proton. Work on the analysis of data from a previous experiment at PSI on pion absorption in nuclei was continued. This experiment involved using a detector system that covered nearly the full solid angle.

  17. J/ψ production and suppression in high-energy proton-nucleus collisions

    DOE PAGES

    Ma, Yan -Qing; Venugopalan, Raju; Zhang, Hong -Fei

    2015-10-02

    In this study, we apply a color glass condensate+nonrelativistic QCD (CGC+NRQCD) framework to compute J/ψ production in deuteron-nucleus collisions at RHIC and proton-nucleus collisions at the LHC. Our results match smoothly at high p⊥ to a next-to-leading order perturbative QCD+NRQCD computation. Excellent agreement is obtained for p⊥ spectra at the RHIC and LHC for central and forward rapidities, as well as for the normalized ratio RpA of these results to spectra in proton-proton collisions. In particular, we observe that the RpA data are strongly bounded by our computations of the same for each of the individual NRQCD channels; this resultmore » provides strong evidence that our description is robust against uncertainties in initial conditions and hadronization mechanisms.« less

  18. The Changes of Energy Interactions between Nucleus Function and Mitochondria Functions Causing Transmutation of Chronic Inflammation into Cancer Metabolism.

    PubMed

    Ponizovskiy, Michail R

    2016-01-01

    Interactions between nucleus and mitochondria functions induce the mechanism of maintenance stability of cellular internal energy according to the first law of thermodynamics in able-bodied cells and changes the mechanisms of maintenance stability of cellular internal energy creating a transition stationary state of ablebodied cells into quasi-stationary pathologic states of acute inflammation transiting then into chronic inflammation and then transmuting into cancer metabolism. The mechanisms' influences of intruding etiologic pathologic agents (microbe, virus, etc.) lead to these changes of energy interactions between nucleus and mitochondria functions causing general acute inflammation, then passing into local chronic inflammation, and reversing into cancer metabolism transmutation. Interactions between biochemical processes and biophysical processes of cellular capacitors' operations create a supplementary mechanism of maintenance stability of cellular internal energy in the norm and in pathology. Discussion of some scientific works eliminates doubts of the authors of these works.

  19. Elastic alpha scattering experiments and the alpha-nucleus optical potential at low energies

    SciTech Connect

    Mohr, P.; Kiss, G.G.; Fülöp, Zs.; Galaviz, D.; Gyürky, Gy.; Somorjai, E.

    2013-11-15

    High precision angular distribution data of (α,α) elastic scattering are presented for the nuclei {sup 89}Y, {sup 92}Mo, {sup 106,110,116}Cd, {sup 112,124}Sn, and {sup 144}Sm at energies around the Coulomb barrier. Such data with small experimental uncertainties over the full angular range (20–170°) are the indispensable prerequisite for the extraction of local optical potentials and for the determination of the total reaction cross section σ{sub reac}. A systematic fitting procedure was applied to the experimental scattering data presented to obtain comprehensive local potential parameter sets that are composed of a real folding potential and an imaginary potential of Woods–Saxon surface type. The potential parameters obtained were used in turn to construct a new systematic α-nucleus potential with very few parameters. Although this new potential cannot reproduce the angular distributions with the same small deviations as the local potential, the new potential is able to predict the total reaction cross sections for all cases under study.

  20. Target nucleus in relativistic nuclear collisions

    SciTech Connect

    Gutbrod, H.H.; Warwick, A.I.; Wieman, H.

    1982-03-01

    Both the fireball model and hydrodynamical model predict, in a central collision, a fast energy dissipation in the early diving stage of the projectile into the target nucleus. In the final state both models show total incident energy largely dispersed over the whole target nucleus. In a quantitative comparison with the data for the Intranuclear Cascade Calculations, however, the 90/sup 0/ double differential cross section seems to be flatter than the calculated one. If the slope is reflecting the temperature in the system then the data are having apparently a higher temperature than the cascade would predict. This report suggests and discusses a picture of the reaction mechanism where the light projectile (e.g. Ne) gets stopped very early in the large target nucleus (e.g. Au or U) forming a small fireball at approximately half the beam rapidity, which decays inside the target nucleus, heating it up and causing thee whole system to expand. The expansion cools the system and big clusters can condense out if the total energy and thus entropy in the system is not too high to prevent it. Such a qualitative picture of a reaction mechanism emerges when we consider the information obtained about relativistic nuclear collisions from measurements of the remnants of a large target nucleus struck by a smaller projectile (Ne + Au) and relate it to the complementary information from earlier measurements of fast light reaction products. (WHK)

  1. Formin' actin in the nucleus.

    PubMed

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.

  2. Results on ultra-relativistic nucleus-nucleus interactions from balloon-borne emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W.; Meegan, C. A.; Takahashi, Y.; Watts, J. W.; Fuki, M.; Gregory, J. C.; Hayashi, T.

    1985-01-01

    The results of balloon-borne emulsion-chamber measurements on high-energy cosmic-ray nuclei (Burnett et al., 1983) are summarized in tables and graphs and briefly characterized. Special consideration is given to seven nucleus-nucleus interaction events at energy in excess of 1 TeV/A with multiplicity greater than 400, and to Fe interactions (53 with CHO, 10 with emulsion, and 14 with Pb) at 20-60 GeV/A.

  3. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  4. Is {sup 276}U a doubly magic nucleus?

    SciTech Connect

    Liliani, N. Sulaksono, A.

    2016-04-19

    We investigate a possible new doubly magic heavy nucleus by using a relativistic mean-field (RMF) model with the addition of a cross interaction term of omega-rho mesons and an electromagnetic exchange term. We propose that {sup 276}U is a doubly magic nucleus. The evidence for {sup 276}U being a doubly magic nucleus is shown through the two-nucleon gaps, the single-particle energies, and the neutron skin thickness of the nucleus. We have also found that the prediction of {sup 276}U as a doubly magic nucleus by the RMF model is not affected by the inclusion of isoscalar-isovector and electromagnetic exchange couplings.

  5. TWO-PHOTON PHYSICS IN NUCLEUS-NUCLEUS COLLISIONS AT RHIC.

    SciTech Connect

    NYSTRAND,J.

    1998-09-10

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z{sup 2} up to an energy of {approx} 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented.

  6. Two-photon physics in nucleus-nucleus collisions at RHIC

    SciTech Connect

    Nystrand, J.; Klein, S.

    1998-09-01

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z{sup 2} up to an energy of {approx} 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented.

  7. Low-energy ionization yield in liquid argon for a coherent neutrino-nucleus scatter detector

    NASA Astrophysics Data System (ADS)

    Foxe, Michael P.

    A mode of interaction predicted by the Standard Model of particle physics, but not yet observed, is coherent neutrino-nucleus scattering (CNNS). CNNS results from the neutrino (or antineutrino) scattering coherently with the entire nucleus rather than a single nucleon. The leading challenge in detecting CNNS is the resulting sub-keV nuclear recoil energies, producing little ionization in the detector medium. In order to detect the CNNS interaction, it is beneficial to first measure the nuclear ionization yield for the chosen detector medium. The ionization yield represents the expected number of electrons produced by a nuclear recoil, and it depends both on the recoil energy and on the detector medium in which the recoil occurs. Additionally, the ionization yield depends on the applied electron drift electric field, and for this reason it should be measured directly in the detector type anticipated for future CNNS measurements. This dissertation is focused on making the prediction and measurement of the ionization yield in LAr using a dual-phase Ar detector. Due to the complexity of measuring the ionization yield at various energies, it is beneficial to also construct a predictive model for the ionization yield. In this dissertation, the prediction of the ionization yield is made on the basis of a simulation of a two-stage process. The number of ionizations generated from Ar recoil of a given energy is simulated using a Monte Carlo atomic collision model, along with the cross sections for ionization and excitation in Ar + Ar collisions. After the electrons are generated, a fraction of them recombine with the initially generated ion cloud. The electron recombination fraction is simulated by assigning the emitted electrons either 1 or 10 eV of initial kinetic energy and transporting the electrons under the influence of Coulomb forces of the ion cloud and an applied external electric field. The simulation predicts the energy dependent ionization yield, with a value of

  8. Correlation and fluctuations in relativistic nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Mohsin Khan, M.; Ahmad, N.; Kamal, A.; Masoodi, A. A.; Irfan, M.

    2011-01-01

    Correlation and fluctuations are now well accepted analysis techniques in heavy-ion collisions at relativistic energies. At the current stage of RHIC exploration, matter in bulk and many of the physics questions about the final stage of collisions are addressed with the help of correlation techniques. In the present work after a general introduction to the underlying formalism to the exotic phenomena of correlation and fluctuations, discussion on various parameters disentangling dynamical fluctuations is presented. Analysis to investigate dynamical fluctuations and correlation is carried out in terms of F q - and G q -moments. A study of various other parameters involving multiplicity and pseudorapidity of relativistic charged particles produced in high energy nuclear interactions reveals the presence of correlation and fluctuations in particle production in these collisions. The experimental data on 14.5A GeV/c 28Si-nucleus interactions has been analyzed. A parallel analysis of correlation free data generated using MC-RAND Monte Carlo code, UrQMD data and for the HIJING generated events has also been carried out.

  9. Static versus energy-dependent nucleus-nucleus potential for description of sub-barrier fusion dynamics of {}_{8}^{16}O+{}^{112,116,120}\\!\\!\\!\\!\\!\\!{}_{50}Sn reactions

    NASA Astrophysics Data System (ADS)

    Manjeet Singh, Gautam

    2015-11-01

    The static and energy-dependent nucleus-nucleus potentials are simultaneously used along with the Wong formula for exploration of fusion dynamics of {}816O+{}112,116,120{}50Sn reactions. The role of internal structure degrees of freedom of colliding pairs, such as inelastic surface vibrations, are examined within the context of coupled channel calculations performed using the code CCFULL. Theoretical calculations based on the static Woods-Saxon potential along with the one-dimensional Wong formula fail to address the fusion data of {}816O+{}112,116,120{}50Sn reactions. Such discrepancies can be removed if one uses couplings to internal structure degrees of freedom of colliding nuclei. However, the energy-dependent Woods-Saxon potential model (EDWSP model) accurately describes the sub-barrier fusion enhancement of {}816O+{}112,116,120{}50Sn reactions. Therefore, in sub-barrier fusion dynamics, energy dependence in the nucleus-nucleus potential governs barrier modification effects in a closely similar way to that of the coupled channel approach. Supported by Dr. D. S. Kothari Post-Doctoral Fellowship Scheme sponsored by University Grants Commission (UGC), New Delhi, India

  10. Comet Odyssey: Comet Nucleus Orbiter

    NASA Astrophysics Data System (ADS)

    Weissman, P. R.; Smythe, W. D.; Spitz, S. J.; Bernard, D. E.; Bailey, R. W.

    2004-11-01

    Comet Odyssey is a comet nucleus orbiter mission, proposed to NASA's Discovery program in 2004. The goal of the mission is to completely characterize a cometary nucleus, both physically and compositionally, as can only be done during an extended rendezvous and not with a fast flyby. Comet Odyssey will launch in October 2009 on a Delta II 7925 and use a solar-electric powered spacecraft to effect a rendezvous with periodic comet 46P/Wirtanen in October 2013. Arrival is 96 days after perihelion at a heliocentric distance of 1.61 AU. Comet Odyssey's science payload includes narrow- and wide-angle CCD cameras, an infrared thermal imager, a gas chromatograph/mass spectrometer, an XRD/XRF dust compositional analyzer, and a dust counter and accumulation sensors. The Comet Odyssey spacecraft implementation uses a high heritage approach of flight proven and redundant hardware. The 3-engine ion propulsion subsystem is derived from that on Dawn but includes the capability for multi-engine thrusting. Comet Odyssey will approach the Wirtanen nucleus and make repeated slow flybys through the active cometary coma for a period of three months. It will then be placed in a ˜100-km radius orbit around the nucleus, with a plan to eventually orbit at 40-km altitude or less. From that altitude the narrow-angle camera will map the entire nucleus surface at 1 meter/pixel and the thermal imager will map at 19 meter/pixel. The orbital portion of the nominal mission will last 4.5 months, following the comet outward from the Sun to 3.3 AU as the comet evolves from an active to a quiescent state. En route to P/Wirtanen, the Comet Odyssey spacecraft will perform a close flyby of the 200-km diameter, G-type, main belt asteroid 19 Fortuna in January 2012 and make appropriate remote sensing observations.

  11. Higgs and Particle Production in Nucleus-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Liu, Zhe

    We apply a diagrammatic approach to study Higgs boson, a color-neutral heavy particle, pro- duction in nucleus-nucleus collisions in the saturation framework without quantum evolution. We assume the strong coupling constant much smaller than one. Due to the heavy mass and colorless nature of Higgs particle, final state interactions are absent in our calculation. In order to treat the two nuclei dynamically symmetric, we use the Coulomb gauge which gives the appropriate light cone gauge for each nucleus. To further eliminate initial state interactions we choose specific prescriptions in the light cone propagators. We start the calculation from only two nucleons in each nucleus and then demonstrate how to generalize the calculation to higher orders diagrammatically. We simplify the diagrams by the Slavnov-Taylor-Ward identities. The resulting cross section is factorized into a product of two Weizsacker-Williams gluon distributions of the two nuclei when the transverse momentum of the produced scalar particle is around the saturation momentum. To our knowledge this is the first process where an exact analytic formula has been formed for a physical process, involving momenta on the order of the saturation momentum, in nucleus-nucleus collisions in the quasi-classical approximation. Since we have performed the calculation in an unconventional gauge choice, we further confirm our results in Feynman gauge where the Weizsacker-Williams gluon distribution is interpreted as a transverse momentum broadening of a hard gluons traversing a nuclear medium. The transverse momentum factorization manifests itself in light cone gauge but not so clearly in Feynman gauge. In saturation physics there are two different unintegrated gluon distributions usually encountered in the literature: the Weizsacker-Williams gluon distribution and the dipole gluon distribution. The first gluon distribution is constructed by solving classical Yang-Mills equation of motion in the Mc

  12. Single nucleon emission in relativistic nucleus-nucleus reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors.

  13. Analysis of relativistic nucleus-nucleus interactions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The development of a computer-assisted method is reported for the determination of the angular distribution data for secondary particles produced in relativistic nucleus-nucleus collisions in emulsions. The method is applied to emulsion detectors that were placed in a constant, uniform magnetic field and exposed to beams of 60 and 200 GeV/nucleon O-16 ions at the Super Proton Synchrotron (SPS) of the European Center for Nuclear Research (CERN). Linear regression analysis is used to determine the azimuthal and polar emission angles from measured track coordinate data. The software, written in BASIC, is designed to be machine independent, and adaptable to an automated system for acquiring the track coordinates. The fitting algorithm is deterministic, and takes into account the experimental uncertainty in the measured points. Further, a procedure for using the track data to estimate the linear momenta of the charged particles observed in the detectors is included.

  14. Nucleon-nucleus interactions from JACEE

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.; Lord, J. J.

    1985-01-01

    Results on hadron-nucleus interactions from the Japanese-American Cooperation Emulsion Experiment experiment are presented. Angular distributions for charged particles, and angular and transverse momentum spectra for photons have been measured for a sample of events with sigma epsilon sub gamma. Results on central rapidity density and transverse energy flow are discussed.

  15. Hummingbird Comet Nucleus Analysis Mission

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  16. Targeted delivery to the nucleus.

    PubMed

    Pouton, Colin W; Wagstaff, Kylie M; Roth, Daniela M; Moseley, Gregory W; Jans, David A

    2007-08-10

    Macromolecules and supramolecular complexes are frequently required to enter and exit the nucleus during normal cell function, but access is restricted and exchange to and from the nucleus is tightly controlled. We describe the mechanisms which regulate nuclear import of endogenous molecules and indicate how viruses exploit these mechanisms during their life cycle. Opportunities exist to make use of natural pathways for delivery of therapeutic entities, in particular to develop safe and effective methods for gene therapy, although past attempts to design non-viral nuclear delivery systems have met with limited success. To increase the likelihood of success scientists will need an appreciation of the mechanisms by which viruses deliver their genomes to the nucleus, and will need a commitment to control the architecture of non-viral delivery systems at the molecular level. Effective delivery systems will require several attributes to facilitate endosomal escape, microtubular transport and uptake through the nuclear pore complex. The published literature provides a strong foundation for design of nuclear targeting systems. The challenge faced by delivery scientists is to assemble a system which is as effective as, for example, the adenovirus but which lacks its immunogenicity. This article reviews the relevant literature and indicates key areas for future research.

  17. Investigation of charged-hadron production in proton–nucleus interactions at the energy of 50 GeV

    SciTech Connect

    Bordanovskii, A. Yu.; Volkov, A. A.; Elumahov, D. K.; Efremov, V. P.; Kalinin, A. Yu.; Korablev, A. V.; Krinitsyn, A. N.; Kryshkin, V. I.; Kulagin, N. V.; Skvortsov, V. V.; Talov, V. V.; Turchanovich, L. K.

    2016-07-15

    Cross sections for the production of high-transverse-momentum charged hadrons in proton–nucleus interactions at the incident-proton energy of 50 GeV were measured with the aid of the FODS double-arm spectrometer. Single hadrons (charged pions and protons) emitted at a c.m. angle of about 90° and high-effective-mass pairs of hadrons flying apart at a c.m. angle of 180° were detected simultaneously. Results on the production of single hadrons are presented.

  18. Classifiers for centrality determination in proton-nucleus and nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Altsybeev, Igor; Kovalenko, Vladimir

    2017-03-01

    Centrality, as a geometrical property of the collision, is crucial for the physical interpretation of nucleus-nucleus and proton-nucleus experimental data. However, it cannot be directly accessed in event-by-event data analysis. Common methods for centrality estimation in A-A and p-A collisions usually rely on a single detector (either on the signal in zero-degree calorimeters or on the multiplicity in some semi-central rapidity range). In the present work, we made an attempt to develop an approach for centrality determination that is based on machine-learning techniques and utilizes information from several detector subsystems simultaneously. Different event classifiers are suggested and evaluated for their selectivity power in terms of the number of nucleons-participants and the impact parameter of the collision. Finer centrality resolution may allow to reduce impact from so-called volume fluctuations on physical observables being studied in heavy-ion experiments like ALICE at the LHC and fixed target experiment NA61/SHINE on SPS.

  19. Amylin Acts in the Lateral Dorsal Tegmental Nucleus to Regulate Energy Balance Through Gamma-Aminobutyric Acid Signaling.

    PubMed

    Reiner, David J; Mietlicki-Baase, Elizabeth G; Olivos, Diana R; McGrath, Lauren E; Zimmer, Derek J; Koch-Laskowski, Kieran; Krawczyk, Joanna; Turner, Christopher A; Noble, Emily E; Hahn, Joel D; Schmidt, Heath D; Kanoski, Scott E; Hayes, Matthew R

    2017-01-10

    The pancreatic- and brain-derived hormone amylin promotes negative energy balance and is receiving increasing attention as a promising obesity therapeutic. However, the neurobiological substrates mediating amylin's effects are not fully characterized. We postulated that amylin acts in the lateral dorsal tegmental nucleus (LDTg), an understudied neural processing hub for reward and homeostatic feeding signals. We used immunohistochemical and quantitative polymerase chain reaction analyses to examine expression of the amylin receptor complex in rat LDTg tissue. Behavioral experiments were performed to examine the mechanisms underlying the hypophagic effects of amylin receptor activation in the LDTg. Immunohistochemical and quantitative polymerase chain reaction analyses show expression of the amylin receptor complex in the LDTg. Activation of LDTg amylin receptors by the agonist salmon calcitonin dose-dependently reduces body weight, food intake, and motivated feeding behaviors. Acute pharmacological studies and longer-term adeno-associated viral knockdown experiments indicate that LDTg amylin receptor signaling is physiologically and potentially preclinically relevant for energy balance control. Finally, immunohistochemical data indicate that LDTg amylin receptors are expressed on gamma-aminobutyric acidergic neurons, and behavioral results suggest that local gamma-aminobutyric acid receptor signaling mediates the hypophagia after LDTg amylin receptor activation. These findings identify the LDTg as a novel nucleus with therapeutic potential in mediating amylin's effects on energy balance through gamma-aminobutyric acid receptor signaling. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Validity of the relativistic impulse approximation for elastic proton-nucleus scattering at energies lower than 200 MeV

    SciTech Connect

    Li, Z. P.; Hillhouse, G. C.; Meng, J.

    2008-07-15

    We present the first study to examine the validity of the relativistic impulse approximation (RIA) for describing elastic proton-nucleus scattering at incident laboratory kinetic energies lower than 200 MeV. For simplicity we choose a {sup 208}Pb target, which is a spin-saturated spherical nucleus for which reliable nuclear structure models exist. Microscopic scalar and vector optical potentials are generated by folding invariant scalar and vector scattering nucleon-nucleon (NN) amplitudes, based on our recently developed relativistic meson-exchange model, with Lorentz scalar and vector densities resulting from the accurately calibrated PK1 relativistic mean field model of nuclear structure. It is seen that phenomenological Pauli blocking (PB) effects and density-dependent corrections to {sigma}N and {omega}N meson-nucleon coupling constants modify the RIA microscopic scalar and vector optical potentials so as to provide a consistent and quantitative description of all elastic scattering observables, namely, total reaction cross sections, differential cross sections, analyzing powers and spin rotation functions. In particular, the effect of PB becomes more significant at energies lower than 200 MeV, whereas phenomenological density-dependent corrections to the NN interaction also play an increasingly important role at energies lower than 100 MeV.

  1. Nucleus morphology of Comet Halley

    NASA Technical Reports Server (NTRS)

    Reitsema, H. J.; Delamere, W. A.; Huebner, W. F.; Keller, H. U.; Schmidt, W. K. H.; Wilhelm, K.; Schmidt, H. U.; Whipple, Fred L.

    1986-01-01

    Images obtained by the Halley multicolor camera were used to determine the projected size and shape of the nucleus. The location of the terminator and numerous surface features were determined. There is good correlation between the brightest surface features and the dust jets; however, many bright features are seen which are not associated with jets. Most of the observed features are circular and appear to be related to surface elevation. The angularity of the terminator gives an indication of the three-dimensional structure of the face which was observed.

  2. Exceptionally bright, compact starburst nucleus

    SciTech Connect

    Margon, B.; Anderson, S.F.; Mateo, M.; Fich, M.; Massey, P.

    1988-11-01

    Observations are reported of a remarkably bright (V about 13) starburst nucleus, 0833 + 652, which has been detected at radio, infrared, optical, ultraviolet, and X-ray wavelengths. Despite an observed flux at each of these wavelengths which is comparable to that of NGC 7714, often considered the 'prototypical' example of the starburst phenomenon, 0833 + 652 appears to be a previously uncataloged object. Its ease of detectability throughout the electromagnetic spectrum should make it useful for a variety of problems in the study of compact emission-line galaxies. 30 references.

  3. The effect of the relative nuclear size on the nucleus-nucleus interactions

    NASA Technical Reports Server (NTRS)

    Erofeeva, I. N.; Murzin, V. S.; Sivoklokov, S. Y.; Smirnova, L. N.

    1985-01-01

    The experimental data on the interactions of light nuclei (d, He(4), C(12)) at the momentum 4.2 GeV/cA with the carbon nuclei were taken in the 2-m propane bubble chamber. The distributions in the number of interacting nucleons, the spectra of protons, the mean energies of secondary pions and protons, the mean fractions of energy transferred to the pion and nucleon components are presented. The results of the investigation of the mechanism of nucleus-nucleus interactions can be used to calculate the nuclear cascades in the atmosphere.

  4. Observation of direct hadronic pairs in nucleus-nucleus collisions in JACEE emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.

    1985-01-01

    In a number of high energy ( or = 1 TeV/amu) nucleus-nucleus collisions observed in Japanese-American Cooperative Emulsion Experiment (JACEE) emulsion chambers, nonrandom spatial association of produced charged particles, mostly hadronic pairs, are observed. Similar narrow pairs are observed in about 100 events at much low energy (20 to 60 GeV/amu). Analysis shows that 30 to 50% of Pair abundances are understood by the Hambury-Brown-Twiss effect, and the remainder seems to require other explanations.

  5. Core-nucleus distortation in hypernuclei

    SciTech Connect

    Bodmer, A.R.; Usmani, Q.N.

    1995-08-01

    We are completing a study of the effects of the spherical distortion of the {open_quotes}core{close_quotes} nucleus by the {Lambda} in a hypernucleus. The response of the core was determined by an appropriately chosen energy-density functional which depends, in particular, on the nuclear compressibility. The forcing action of the A is determined by the nuclear density dependence of the {Lambda} binding in nuclear matter which is obtained from our work on the {Lambda} single-particle energies. Because of the strongly repulsive {Lambda}NN forces, this {Lambda} binding {open_quotes}saturates{close_quotes} at a density close to the central density of nuclei, and results in a reduced core-nucleus distortion much less than would otherwise be obtained. The effects of the core distortion then turn out to be very small even for quite light hypernuclei. This result justifies the assumption that spherical core nuclei are effectively undistorted in a hypernucleus.

  6. How viruses access the nucleus.

    PubMed

    Cohen, Sarah; Au, Shelly; Panté, Nelly

    2011-09-01

    Many viruses depend on nuclear proteins for replication. Therefore, their viral genome must enter the nucleus of the host cell. In this review we briefly summarize the principles of nucleocytoplasmic transport, and then describe the diverse strategies used by viruses to deliver their genomes into the host nucleus. Some of the emerging mechanisms include: (1) nuclear entry during mitosis, when the nuclear envelope is disassembled, (2) viral genome release in the cytoplasm followed by entry of the genome through the nuclear pore complex (NPC), (3) capsid docking at the cytoplasmic side of the NPC, followed by genome release, (4) nuclear entry of intact capsids through the NPC, followed by genome release, and (5) nuclear entry via virus-induced disruption of the nuclear envelope. Which mechanism a particular virus uses depends on the size and structure of the virus, as well as the cellular cues used by the virus to trigger capsid disassembly and genome release. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import. 2010 Elsevier B.V. All rights reserved.

  7. Comet nucleus sample return mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A comet nucleus sample return mission in terms of its relevant science objectives, candidate mission concepts, key design/technology requirements, and programmatic issues is discussed. The primary objective was to collect a sample of undisturbed comet material from beneath the surface of an active comet and to preserve its chemical and, if possible, its physical integrity and return it to Earth in a minimally altered state. The secondary objectives are to: (1) characterize the comet to a level consistent with a rendezvous mission; (2) monitor the comet dynamics through perihelion and aphelion with a long lived lander; and (3) determine the subsurface properties of the nucleus in an area local to the sampled core. A set of candidate comets is discussed. The hazards which the spacecraft would encounter in the vicinity of the comet are also discussed. The encounter strategy, the sampling hardware, the thermal control of the pristine comet material during the return to Earth, and the flight performance of various spacecraft systems and the cost estimates of such a mission are presented.

  8. The Confined Hydrogen Atom with a Moving Nucleus

    ERIC Educational Resources Information Center

    Fernandez, Francisco M.

    2010-01-01

    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first-order perturbation theory and show that it is greater than that for the case in which the nucleus is clamped…

  9. The Confined Hydrogen Atom with a Moving Nucleus

    ERIC Educational Resources Information Center

    Fernandez, Francisco M.

    2010-01-01

    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first-order perturbation theory and show that it is greater than that for the case in which the nucleus is clamped…

  10. Pygmy dipole response in 238U nucleus

    NASA Astrophysics Data System (ADS)

    Guliyev, Ekber; Kuliev, Ali Akbar; Quliyev, Huseynqulu

    2017-02-01

    The presence of the El pygmy dipole resonance (PDR) in the actinide nucleus 238U was shown via QRPA. Below the particle threshold energy, 24 excitation states were calculated. The calculations, is demonstrating the presence of a PDR with evidence for K splitting. The calculations further suggest that the PDR in 238U is predominantly K=0. The obtained results show universality of the PDR in atomic nuclei.

  11. PI3K in the ventromedial hypothalamic nucleus mediates estrogenic actions on energy expenditure in female mice

    PubMed Central

    Saito, Kenji; He, Yanlin; Yang, Yongjie; Zhu, Liangru; Wang, Chunmei; Xu, Pingwen; Hinton, Antentor Othrell; Yan, Xiaofeng; Zhao, Jean; Fukuda, Makoto; Tong, Qingchun; Clegg, Deborah J.; Xu, Yong

    2016-01-01

    Estrogens act in the ventromedial hypothalamic nucleus (VMH) to regulate body weight homeostasis. However, the molecular mechanisms underlying these estrogenic effects are unknown. We show that activation of estrogen receptor-α (ERα) stimulates neural firing of VMH neurons expressing ERα, and these effects are blocked with intracellular application of a pharmacological inhibitor of the phosphatidyl inositol 3-kinase (PI3K). Further, we demonstrated that mice with genetic inhibition of PI3K activity in VMH neurons showed a sexual dimorphic obese phenotype, with only female mutants being affected. In addition, inhibition of VMH PI3K activity blocked effects of 17β-estradiol to stimulate energy expenditure, but did not affect estrogen-induced anorexia. Collectively, our results indicate that PI3K activity in VMH neurons plays a physiologically relevant role in mediating estrogenic actions on energy expenditure in females. PMID:26988598

  12. NEW CLASS OF VERY HIGH ENERGY {gamma}-RAY EMITTERS: RADIO-DARK MINI SHELLS SURROUNDING ACTIVE GALACTIC NUCLEUS JETS

    SciTech Connect

    Kino, Motoki; Kawakatu, Nozomu; Orienti, Monica

    2013-02-20

    We explore non-thermal emission from a shocked interstellar medium, which is identified as an expanding shell, driven by a relativistic jet in active galactic nuclei (AGNs). In this work, we particularly focus on parsec-scale size mini shells surrounding mini radio lobes. From the radio to X-ray band, the mini radio lobe emission dominates the faint emission from the mini shell. On the other hand, we find that inverse-Compton (IC) emission from the shell can overwhelm the associated lobe emission at the very high energy (VHE; E > 100 GeV) {gamma}-ray range, because energy densities of synchrotron photons from the lobe and/or soft photons from the AGN nucleus are large and IC scattering works effectively. The predicted IC emission from nearby mini shells can be detected with the Cherenkov Telescope Array and they are potentially a new class of VHE {gamma}-ray emitters.

  13. Nuclear mean field and double-folding model of the nucleus-nucleus optical potential

    NASA Astrophysics Data System (ADS)

    Khoa, Dao T.; Phuc, Nguyen Hoang; Loan, Doan Thi; Loc, Bui Minh

    2016-09-01

    Realistic density dependent CDM3Yn versions of the M3Y interaction have been used in an extended Hartree-Fock (HF) calculation of nuclear matter (NM), with the nucleon single-particle potential determined from the total NM energy based on the Hugenholtz-van Hove theorem that gives rise naturally to a rearrangement term (RT). Using the RT of the single-nucleon potential obtained exactly at different NM densities, the density and energy dependence of the CDM3Yn interactions was modified to account properly for both the RT and observed energy dependence of the nucleon optical potential. Based on a local density approximation, the double-folding model of the nucleus-nucleus optical potential has been extended to take into account consistently the rearrangement effect and energy dependence of the nuclear mean-field potential, using the modified CDM3Yn interactions. The extended double-folding model was applied to study the elastic 12C+12C and 16O+12C scattering at the refractive energies, where the Airy structure of the nuclear rainbow has been well established. The RT was found to affect significantly the real nucleus-nucleus optical potential at small internuclear distances, giving a potential strength close to that implied by the realistic optical model description of the Airy oscillation.

  14. Oocyte nucleus controls progression through meiotic maturation.

    PubMed

    Polanski, Zbigniew; Hoffmann, Steffen; Tsurumi, Chizuko

    2005-05-15

    We analyzed progression through the meiotic maturation in oocytes manipulated to replace the prophase oocyte nucleus with the nucleus from a cumulus cell, a pachytene spermatocyte or the pronucleus from a fertilized egg. Removal of the oocyte nucleus led to a significant reduction in histone H1 kinase activity. Replacement of the oocyte nucleus by a pronucleus followed by culture resulted in premature pseudomeiotic division and occasional abnormal cytokinesis; however, histone H1 kinase activity was rescued, microtubules formed a bipolar spindle, and chromosomes were condensed. In addition to the anomalies observed after pronuclear transfer, those after transfer of the nucleus from a cumulus cell or spermatocyte included a dramatically impaired ability to form the bipolar spindle or to condense chromosomes, and histone H1 kinase activity was not rescued. Expression of a cyclin B-YFP in enucleated oocytes receiving the cumulus cell nucleus rescued histone H1 kinase activity, but spindle formation and chromosome condensation remained impaired, indicating a pleiotropic effect of oocyte nucleus removal. However, when the cumulus cell nucleus was first transformed into pronuclei (transfer into a metaphase II oocyte followed by activation), such pronuclei supported maturation after transfer into the oocyte in a manner similar to that of normal pronuclei. These results show that the oocyte nucleus contains specific components required for the control of progression through the meiotic maturation and that some of these components are also present in pronuclei.

  15. Subthreshold pion production from nucleus-nucleus collisions around 100 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Badalá, A.; Barbera, R.; Palmeri, A.; Pappalardo, G. S.; Riggi, F.; Russo, A. C.

    1993-12-01

    Several global variables were tested with the aim to determine the impact parameter in nucleus-nucleus collisions producing pions at incident energies around 100 MeV/nucleon. The experimental set-up includes the MEDEA multidetector, part of which is used as a π 0 spectrometer, and an additional hodoscope of plastic scintillators to cover very forward angles. A statistical model was used to generate both inclusive and pion-triggered events. Selection of well measured events was made through the measured total parallel momentum. Among the different global variables which were tested, the average parallel velocity was seen to give the best correlation with the impact parameter.

  16. Theoretical predictions for the nucleus 296118

    NASA Astrophysics Data System (ADS)

    Sobiczewski, A.

    2016-11-01

    Theoretical predictions for the α -decay chain of the nucleus 296118 are performed. The synthesis of this nucleus is being attempted in experiments running in Dubna. The α -decay energies Qα, and the α -decay and spontaneous-fission half-lives, Tα and Tsf, are studied. The analysis of the α decay is based on a phenomenological model using only three parameters. The calculations are performed in nine variants using masses obtained within nine nuclear-mass models describing masses of the heaviest nuclei. The experimental Qα energies, known from earlier experiments for the potential daughter, 292Lv, and grand-daughter, 288Fl, nuclei are reproduced with an average of the absolute values of the discrepancies: from 0.13 to 1.52 MeV within the considered variants. Measured half-lives Tα are reconstructed within average ratios: from 1.7 to 1054. Within all variants considered, the half-life Tα of the nucleus 296118 is obtained larger than needed (around 1 μ s ) for its observation.

  17. Projections from the cochlear nucleus to the superior paraolivary nucleus in guinea pigs.

    PubMed

    Schofield, B R

    1995-09-11

    Axonal tracing techniques were used to study the projection from the cochlear nucleus to the superior paraolivary nucleus in guinea pigs. Different tracers were used to identify the cell types that give rise to the projections, the morphology of their axons, and the cell types that they contact in the superior paraolivary nucleus. Injections of Fluoro-Gold or peroxidase-labeled-WGA and HRP into the superior paraolivary nucleus labeled multipolar cells and octopus cells bilaterally in the ventral cochlear nucleus, mainly on the contralateral side. Injections of PHAL into the ventral cochlear nucleus labeled two types of axons in the superior paraolivary nucleus. Thin axons branch infrequently and give rise primarily to small, en passant boutons. Thick axons have larger boutons, many of which are terminal boutons that arise from short collaterals. Thin axons appear to originate from multipolar cells, whereas thick axons probably originate from octopus cells. Both types are found bilaterally after an injection into the ventral cochlear nucleus on one side. Individual thick or thin axons may contact multiple cell types in the superior paraolivary nucleus. Individual cells in the superior paraolivary nucleus can receive convergent input from both thick and thin axons. Combined anterograde and retrograde transport of different fluorescent tracers was used to identify the projections of the cells in the superior paraolivary nucleus that receive inputs from the ventral cochlear nucleus. Cells in the superior paraolivary nucleus that projected to the ipsilateral cochlear nucleus or to the ipsilateral inferior colliculus appeared to be contacted by axons that were labeled by anterograde transport from the contralateral ventral cochlear nucleus. Thus the projections to the superior paraolivary nucleus are in a position to affect the activity in both ascending and descending auditory pathways.

  18. Energy sharing in the deexcitation of the {sup 90}Ru compound nucleus via the p{alpha} channel

    SciTech Connect

    Bourgine, F.; Cabaussel, D.; Boivin, D.; Aieche, M.; Aleonard, M.; Barreau, G.; Chemin, J.; Doan, T.P.; Goudour, J.P.; Harston, M.; Scheurer, J.; Brondi, A.; La Rana, G.; Moro, R.; Principe, A.; Vardaci, E.; Curien, D.

    1997-12-01

    Using the 4{pi} light charged-particle detector DIAMANT in combination with the {gamma}-ray spectrometer EUROGAM II, the decay of the {sup 90}Ru compound nucleus via the p{alpha} channel was studied. These nuclei were produced at an excitation energy of 54.9 MeV and with a maximum angular momentum of 37{h_bar} by the 120 MeV {sup 32}S + {sup 58}Ni reaction. The measurement of the energy of the two particles allowed the determination of the energy distribution of the entry states. A particular behavior of the sharing of the available energy between the two particles was found: For increasing values of the entry-state energy, the mean energy for protons remains almost constant while for alpha particles it decreases. This behavior is well reproduced by the evaporation code LILITA-N95. The physics underlying the decay is discussed in the framework of the statistical model which predicts a strong correlation between the excitation energy and the angular momentum of the evaporation residue. This result encourages the use of the p{alpha} channel to select the excitation energy and the angular momentum of the evaporation residue for superdeformed band studies. {copyright} {ital 1997} {ital The American Physical Society}

  19. Projections from the central amygdaloid nucleus to the precuneiform nucleus in the mouse.

    PubMed

    Liang, Huazheng; Watson, Charles; Paxinos, George

    2015-01-01

    The mouse precuneiform nucleus has been proposed as the midbrain locomotion center, a function ascribed to its caudal neighbor, cuneiform nucleus, in the rat, cat and other species. The present study investigated the projections from the central amygdaloid nucleus to the precuneiform nucleus in the mouse using retrograde tracer injections (fluoro-gold) into the precuneiform nucleus and anterograde tracer injections (biotinylated dextran amine) into the central amygdaloid nucleus. The entire central amygdaloid nucleus except the rostral pole had retrogradely labeled neurons, especially in the middle portion where labeled neurons were densely packed. Anterogradely labeled amygdaloid fibers approached the precuneiform nucleus from the area ventrolateral to it and terminated in the entire precuneiform nucleus. Labeled fibers were also found in laminae 5 and 6 in the upper cervical cord on the ipsilateral side. The present study is the first demonstration of projections from the central amygdaloid nucleus to the precuneiform nucleus. This projection may underpin the role of the precuneiform nucleus in the modulation of the cardiovascular activity.

  20. System-size and centrality dependence of charged kaon and pion production in nucleus-nucleus collisions at 40A GeV and 158A GeV beam energy

    NASA Astrophysics Data System (ADS)

    Anticic, T.; Baatar, B.; Barna, D.; Bartke, J.; Beck, H.; Betev, L.; Białkowska, H.; Blume, C.; Bogusz, M.; Boimska, B.; Book, J.; Botje, M.; Bunčić, P.; Cetner, T.; Christakoglou, P.; Chung, P.; Chvala, O.; Cramer, J. G.; Dinkelaker, P.; Eckardt, V.; Fodor, Z.; Foka, P.; Friese, V.; Gaździcki, M.; Grebieszkow, K.; Höhne, C.; Kadija, K.; Karev, A.; Kliemant, M.; Kolesnikov, V. I.; Kollegger, T.; Kowalski, M.; Kresan, D.; Laszlo, A.; Lacey, R.; van Leeuwen, M.; Lungwitz, B.; Mackowiak, M.; Makariev, M.; Malakhov, A. I.; Mateev, M.; Melkumov, G. L.; Mitrovski, M.; Mrówczyński, St.; Nicolic, V.; Pálla, G.; Panagiotou, A. D.; Peryt, W.; Pluta, J.; Prindle, D.; Pühlhofer, F.; Renfordt, R.; Roland, C.; Roland, G.; Rybczyński, M.; Rybicki, A.; Sandoval, A.; Schmitz, N.; Schuster, T.; Seyboth, P.; Siklér, F.; Skrzypczak, E.; Slodkowski, M.; Stefanek, G.; Stock, R.; Ströbele, H.; Susa, T.; Szuba, M.; Utvić, M.; Varga, D.; Vassiliou, M.; Veres, G. I.; Vesztergombi, G.; Vranić, D.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.

    2012-11-01

    Measurements of charged pion and kaon production are presented in centrality selected Pb+Pb collisions at 40A GeV and 158A GeV beam energy as well as in semicentral C+C and Si+Si interactions at 40A GeV. Transverse mass spectra, rapidity spectra, and total yields are determined as a function of centrality. The system-size and centrality dependence of relative strangeness production in nucleus-nucleus collisions at 40A GeV and 158A GeV beam energy are derived from the data presented here and from published data for C+C and Si+Si collisions at 158A GeV beam energy. At both energies a steep increase with centrality is observed for small systems followed by a weak rise or even saturation for higher centralities. This behavior is compared to calculations using transport models (ultra-relativistic quantum molecular dynamics and hadron-string dynamics), a percolation model, and the core-corona approach.

  1. The nature of the cometary nucleus

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1985-01-01

    The basic properties of the cometary nucleus are reviewed. Consideration is given to the absence of depth differentiation, the icy conglomerate nature, the possible existence of a halo of icy grains around the nuclear region, the nucleus size and albedo, the mass, the rotation rate, and the chemical composition (elemental and molecular).

  2. Actomyosin contractility rotates the cell nucleus

    PubMed Central

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G. V.

    2014-01-01

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells. PMID:24445418

  3. Actomyosin contractility rotates the cell nucleus.

    PubMed

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  4. Interactions and low-energy collisions between an alkali ion and an alkali atom of a different nucleus

    NASA Astrophysics Data System (ADS)

    Rakshit, Arpita; Ghanmi, Chedli; Berriche, Hamid; Deb, Bimalendu

    2016-05-01

    We study theoretically interaction potentials and low-energy collisions between different alkali atoms and alkali ions. Specifically, we consider systems such as X + {{{Y}}}+, where X({{{Y}}}+) is either Li(Cs+) or Cs(Li+), Na(Cs+) or Cs(Na+) and Li(Rb+) or Rb(Li+). We calculate the molecular potentials of the ground and first two excited states of these three systems using a pseudopotential method and compare our results with those obtained by others. We derive ground-state scattering wave functions and analyze the cold collisional properties of these systems for a wide range of energies. We find that, in order to get convergent results for the total scattering cross sections for energies of the order 1 K, one needs to take into account at least 60 partial waves. The low-energy scattering properties calculated in this paper may serve as a precursor for experimental exploration of quantum collisions between an alkali atom and an alkali ion of a different nucleus.

  5. Music and the nucleus accumbens.

    PubMed

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.

  6. PI3K in the ventromedial hypothalamic nucleus mediates estrogenic actions on energy expenditure in female mice

    USDA-ARS?s Scientific Manuscript database

    Estrogens act in the ventromedial hypothalamic nucleus (VMH) to regulate body weight homeostasis. However, the molecular mechanisms underlying these estrogenic effects are unknown. We show that activation of estrogen receptor-a (ERa) stimulates neural firing of VMH neurons expressing ERa, and these ...

  7. Dynamical description of the moments of the energy distribution of fission fragments and scission of a fissile nucleus

    SciTech Connect

    Borunov, M. V. Nadtochy, P. N.; Adeev, G. D.

    2007-11-15

    A multidimensional stochastic approach to fission dynamics on the basis of three-dimensional Langevin equations is applied systematically to calculating the first four moments of the energy distribution of fission fragments over a broad range of Coulomb parameter values (700 < Z{sup 2}/A{sup 1/3} < 1700). For the scission of a fissile nucleus into fragments, use was made of various criteria traditional in modern fission theory: the vanishing of the neck radius at the scission instant and the equality of the neck radius to about 0.3R{sub 0} at this instant. In calculating the energy distribution, both of the criteria used lead to a fairly good description of experimental data on the first two moments and to a satisfactory description of data on the third and fourth moments of the distribution. However, the quality of the description of available experimental data is insufficiently good for giving preference to any of these criteria. Within three-dimensional Langevin dynamics, it is shown that the vanishing-radius criterion leads to unexpectably good agreement with experimental data on the first four moments of the energy distribution. A modified version of one-body dissipation where the coefficient that takes into account the reduction of the wall-formula contribution was set to k{sub s} = 0.25 was used in the calculations.

  8. Quarkonium-nucleus bound states from lattice QCD

    SciTech Connect

    Beane, S.  R.; Chang, E.; Cohen, S.  D.; Detmold, W.; Lin, H. -W.; Orginos, K.; Parreño, A.; Savage, M.  J.

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  9. The mediodorsal thalamic nucleus and schizophrenia

    PubMed Central

    Alelú-Paz, Raúl; Giménez-Amaya, José Manuel

    2008-01-01

    The mediodorsal nucleus of the human thalamus is in a crucial position that allows it to establish connections with diverse cerebral structures, particularly the prefrontal cortex. The present review examines existing neurobiologic studies of the brains of people with and without schizophrenia that indicate a possible involvement of the mediodorsal nucleus in this psychiatric disorder. Studies at synaptic and cellular levels of the neurobiology of the mediodorsal nucleus, together with a better anatomic understanding of this diencephalic structure owing to neuroimaging studies, should help to establish a more deep and solid pathophysiologic model of schizophrenia. PMID:18982171

  10. A search for ϕ meson nucleus bound state using antiproton annihilation on nucleus

    NASA Astrophysics Data System (ADS)

    Ohnishi, H.; Bühler, P.; Cargnelli, M.; Curceanu, C.; Guaraldo, C.; Hartmann, O.; Hicks, K.; Iwasaki, M.; Ishiwatari, T.; Kienle, P.; Marton, J.; Muto, R.; Naruki, M.; Niiyama, M.; Noumi, H.; Okada, S.; Vidal, A. Romero; Sakaguchi, A.; Sakuma, F.; Sawada, S.; Sirghi, D.; Sirghi, F.; Suzuki, K.; Tsukada, K.; Doce, O. Vazquez; Widmann, E.; Yokkaichi, S.; Zmeskal, J.

    The mass shift of the vector mesons in nuclei is known to be a powerful tool for investigating the mechanism of generating hadron mass from the QCD vacuum. The mechanism is known to be the spontaneous breaking of chiral symmetry. In 2007, KEK-PS E325 experiment reported about 3.4 % mass reduction of the ϕ meson in medium-heavy nuclei (Cu). This result is possibly one of the indications of the partial restoration of chiral symmetry in nuclei, however, unfortunately it is hard to make strong conclusions from the data. One of the ways to conclude the strength of the ϕ meson mass shift in nuclei will be by trying to produce only slowly moving ϕ mesons where the maximum nuclear matter effect can be probed. The observed mass reduction of the ϕ meson in the nucleus can be translated as the existence of an attractive force between ϕ meson and nucleus. Thus, one of the extreme conditions that can be achieved in the laboratory is indeed the formation of a ϕ-nucleus bound state, where the ϕ meson is "trapped" in the nucleus. The purpose of the experiment is to search for a ϕ-nucleus bound state and measure the binding energy of the system. We will demonstrate that a completely background-free missing-mass spectrum can be obtained efficiently by (bar{p}, φ) spectroscopy together with K + Λ tagging, using the primary reaction channel bar{p} p rightarrow φ φ. This paper gives an overview of the physics motivation and the detector concept, and explains the direction of the initial research and development effort.

  11. A search for ϕ meson nucleus bound state using antiproton annihilation on nucleus

    NASA Astrophysics Data System (ADS)

    Ohnishi, H.; Bühler, P.; Cargnelli, M.; Curceanu, C.; Guaraldo, C.; Hartmann, O.; Hicks, K.; Iwasaki, M.; Ishiwatari, T.; Kienle, P.; Marton, J.; Muto, R.; Naruki, M.; Niiyama, M.; Noumi, H.; Okada, S.; Vidal, A. Romero; Sakaguchi, A.; Sakuma, F.; Sawada, S.; Sirghi, D.; Sirghi, F.; Suzuki, K.; Tsukada, K.; Doce, O. Vazquez; Widmann, E.; Yokkaichi, S.; Zmeskal, J.

    2012-12-01

    The mass shift of the vector mesons in nuclei is known to be a powerful tool for investigating the mechanism of generating hadron mass from the QCD vacuum. The mechanism is known to be the spontaneous breaking of chiral symmetry. In 2007, KEK-PS E325 experiment reported about 3.4 % mass reduction of the ϕ meson in medium-heavy nuclei (Cu). This result is possibly one of the indications of the partial restoration of chiral symmetry in nuclei, however, unfortunately it is hard to make strong conclusions from the data. One of the ways to conclude the strength of the ϕ meson mass shift in nuclei will be by trying to produce only slowly moving ϕ mesons where the maximum nuclear matter effect can be probed. The observed mass reduction of the ϕ meson in the nucleus can be translated as the existence of an attractive force between ϕ meson and nucleus. Thus, one of the extreme conditions that can be achieved in the laboratory is indeed the formation of a ϕ-nucleus bound state, where the ϕ meson is "trapped" in the nucleus. The purpose of the experiment is to search for a ϕ-nucleus bound state and measure the binding energy of the system. We will demonstrate that a completely background-free missing-mass spectrum can be obtained efficiently by (bar{p}, φ) spectroscopy together with K + Λ tagging, using the primary reaction channel bar{p} p rightarrow φ φ. This paper gives an overview of the physics motivation and the detector concept, and explains the direction of the initial research and development effort.

  12. The Checkerboard Model of the Nucleus

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2014-03-01

    The Lach Checker Board Model (CBM) of the nucleus and the associated ESM predicts that nature has 5 generations of quarks not 3. The heaviest generation in the Extended Standard Model (ESM) has a t' quark of mass 65 GeV and a b' quark of 42.4 GeV. The lepton in this generation has a mass of 27 GeV. Part of this theory evolved because it appears that the quarks and lepton of each generation have masses related by the geometric mean. The Geometric mean of 65 and 27 is 42. Charge is conserved (+2/3 and -1 is -1/3). Details of how this theory evolved is found on my web site (http://checkerboard.dnsalias.net) or in the following references [T.M. Lach, Checkerboard Structure of the Nucleus, Infinite Energy, Vol. 5, issue 30, (2000); T.M. Lach, Masses of the Sub-Nuclear Particles, nucl-th/0008026, @http://xxx.lanl.gov/] One independent check of this CB model is that the wavelength of the ``up'' quark orbiting inside the proton at 84.8123% the speed of light around the ``dn'' quark in the center turns out to be exactly one DeBroglie wavelength. This explains the mass of the proton and neutron and their magnetic moments. This along with the beautiful symmetric 2D structure of the He nucleus led to the evolution of this theory. One would expect a t'-anti t' meson of mass of about 130 GeV.

  13. Dynamic risk control by human nucleus accumbens

    PubMed Central

    Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio

    2015-01-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667

  14. Microtubules move the nucleus to quiescence.

    PubMed

    Laporte, Damien; Sagot, Isabelle

    2014-01-01

    The nucleus is a cellular compartment that hosts several macro-molecular machines displaying a highly complex spatial organization. This tight architectural orchestration determines not only DNA replication and repair but also regulates gene expression. In budding yeast microtubules play a key role in structuring the nucleus since they condition the Rabl arrangement in G1 and chromosome partitioning during mitosis through their attachment to centromeres via the kinetochore proteins. Recently, we have shown that upon quiescence entry, intranuclear microtubules emanating from the spindle pole body elongate to form a highly stable bundle that spans the entire nucleus. Here, we examine some molecular mechanisms that may underlie the formation of this structure. As the intranuclear microtubule bundle causes a profound re-organization of the yeast nucleus and is required for cell survival during quiescence, we discuss the possibility that the assembly of such a structure participates in quiescence establishment.

  15. Dynamic risk control by human nucleus accumbens.

    PubMed

    Nachev, Parashkev; Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio; Strange, Bryan

    2015-12-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established.

  16. Experimental studies of pion-nucleus interactions at intermediate energies. [New Mexico State Univ. , Las Cruces, New Mexico

    SciTech Connect

    Not Available

    1992-12-31

    This report summarizes investigations of various pion-nucleus interactions and nucleon-nucleus charge-exchange reactions. The work was carried out with the LAMPF accelerator at the Los Alamos National Laboratory and the cyclotrons at the Paul Scherrer Institute (PSI) near Zurich, Switzerland, and at Indiana University (IUCF), as a collaborative effort among several laboratories and universities. The experimental activity at LAMPF involved measurements of new data on pion double-charge-exchange scattering, some initial work on a new Neutral Meson Spectrometer system, a search for deeply-bound pionic atoms, measurements of elastic scattering, and studies of the (n,p) reaction on various nuclei. At PSI measurements of pion quasielastic scattering were carried out, with detection of the recoil proton. Work on the analysis of data from a previous experiment at PSI on pion absorption in nuclei was continued. This experiment involved using a detector system that covered nearly the full solid angle.

  17. Melanocortin 4 receptor ligands modulate energy homeostasis through urocortin 1 neurons of the centrally projecting Edinger-Westphal nucleus.

    PubMed

    Füredi, Nóra; Nagy, Ákos; Mikó, Alexandra; Berta, Gergely; Kozicz, Tamás; Pétervári, Erika; Balaskó, Márta; Gaszner, Balázs

    2017-03-03

    The role of the urocortin 1 (Ucn1) expressing centrally projecting Edinger-Westphal (EWcp) nucleus in energy homeostasis and stress adaptation response has previously been investigated. Morphological and functional studies have proven that orexigenic and anorexigenic peptidergic afferents and receptors for endocrine messengers involved in the energy homeostasis are found in the EWcp. The central role of the hypothalamic melanocortin system in energy homeostasis is well known, however, no data have been published so far on possible crosstalk between melanocortins and EWcp-Ucn1. First, we hypothesized that members of the melanocortin system [i.e. alpha-melanocyte stimulating hormone (alpha-MSH), agouti-related peptide (AgRP), melanocortin 4 receptor (MC4R)] would be expressed in the EWcp. Second, we put forward, that alpha-MSH and AgRP contents as well as neuronal activity and Ucn1 peptide content of the EWcp would be affected by fasting. Third, we assumed that the intra-EWcp injections of exogenous MC4R agonists and antagonist would cause food intake-related and metabolic changes. Ucn1 neurons were found to carry MC4Rs, and they were contacted both by alpha-MSH and AgRP immunoreactive nerve fibers in the rat. The alpha-MSH immunosignal was reduced, while that of AgRP was increased upon starvation. These were associated with the elevation of FosB and Ucn1 expression. The intra-EWcp administration of MC4R blocker (i.e. HS024) had a similar, but enhanced effect on FosB and Ucn1. Furthermore, alpha-MSH injected into the EWcp had anorexigenic effect, increased oxygen consumption and caused peripheral vasodilation. We conclude that the melanocortin system influences the EWcp that contributes to energy-homeostasis.

  18. Delta-nucleus dynamics: proceedings of symposium

    SciTech Connect

    Lee, T.S.H.; Geesaman, D.F.; Schiffer, J.P.

    1983-10-01

    The appreciation of the role in nuclear physics of the first excited state of the nucleon, the delta ..delta..(1232), has grown rapidly in the past decade. The delta resonance dominates nuclear reactions induced by intermediate energy pions, nucleons, and electromagnetic probes. It is also the most important non-nucleonic degree of freedom needed to resolve many fundamental problems encountered in the study of low-energy nuclear phenomena. Clearly, a new phase of nuclear physics has emerged and conventional thinking must be extended to account for this new dimension of nuclear dynamics. The most challenging problem we are facing is how a unified theory can be developed to describe ..delta..-nucleus dynamics at all energies. In exploring this new direction, it is important to have direct discussions among researchers with different viewpoints. Separate entries were prepared for the 49 papers presented. (WHK)

  19. Fission cross section calculations for 209Bi target nucleus based on fission reaction models in high energy regions

    NASA Astrophysics Data System (ADS)

    Kaplan, Abdullah; Capali, Veli; Ozdogan, Hasan

    2015-07-01

    Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi) due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS). In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f), (γ,f), (p,f), (n,f) and (3He,f) reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.

  20. Improved Cloud Condensation Nucleus Spectrometer

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  1. Investigation of gamma-ray families originating from nucleus-nucleus interactions at ultrahigh energies E{sub 0} in excess of 10{sup 16} eV

    SciTech Connect

    Yuldashbaev, T. S.; Nuritdinov, Kh.

    2013-12-15

    Various spatial and energy features of gamma-ray families originating from the interactions of primary nuclei of galactic cosmic rays with nuclei of atmospheric atoms (AA interactions) are studied. The mass composition of galactic cosmic rays is analyzed on the basis of data from x-ray emulsion chambers of the Pamir experiment with the aid of a criterion for selecting gamma-ray families originating from AA interactions (A families) at energies E{sub 0} of primary galactic cosmic rays in excess of 10{sup 16} eV. According to the results obtained in this way only the experimental spatial parameters R{sub 1E} and ρ differ from their counterparts in the MC0 model.

  2. Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Cheung, Wang K.; Norbury, John W.

    1994-01-01

    The effects of electromagnetic-production processes due to two-photon exchange in nucleus-nucleus collisions are discussed. Feynman diagrams for two-photon exchange are evaluated using quantum electrodynamics. The total cross section and stopping power for projectile and target nuclei of identical charge are found to be significant for heavy nuclei above a few GeV per nucleon-incident energy.

  3. Experimental evidence and the Landau-Zener promotion in nucleus-nucleus collisions

    SciTech Connect

    Cindro, N.; Freeman, R.M.; Haas, F.

    1986-04-01

    Recent data from C+O collisions are analyzed in terms of the Landau-Zener promotion in nuclei. Evidence for the presence of this mechanism in nuclear collisions is of considerable interest, since it provides a signature of single-particle orbitals in molecular-type potentials and, at the same time, paves the way to a microscopic understanding of the collision dynamics, in particular of the energy dissipation rate. The analyzed data are of two types: integrated cross sections and angular distributions of inelastically scattered particles. The first set of data shows structure qualitatively consistent with recent calculations of the Landau-Zener effect; for this set of data no other reasonable explanation is presently available. The second set of data, while consistent with the presence of the Landau-Zener promotion, is examined in terms of other possible explanations too. The combined data show evidence favoring the presence of the Landau-Zener promotion in nucleus-nucleus collisions.

  4. Direct photon production and jet energy-loss in small systems. The XXVth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Park, Chanwook; Paquet, Jean-François; Denicol, Gabriel S.; Jeon, Sangyong; Gale, Charles

    2016-12-01

    Two types of penetrating probes, direct photon and QCD jets, are investigated in the background of a small and rapidly expanding droplet of quark-gluon plasma. The additional thermal electromagnetic radiation results in a ∼50% enhancement of the direct photons. In high multiplicity p+Pb collisions, jets can lose a sizeable fraction of their initial energy, leading to a charged hadron RpA of ∼0.8 at a transverse momentum around 10GeV. Those two proposed measurements can help understand the apparent collective behaviour observed in small collision systems.

  5. High energy (gamma)-ray emission from the starburst nucleus of NGC 253

    SciTech Connect

    Domingo-Santamaria, E; Torres, D F

    2005-06-15

    The high density medium that characterizes the central regions of starburst galaxies and its power to accelerate particles up to relativistic energies make these objects good candidates as {gamma}-rays sources. In this paper, a self-consistent model of the multifrequency emission of the starburst galaxy NGC 253, from radio to gamma-rays, is presented. The model is in agreement with all current measurements and provides predictions for the high energy behavior of the NGC 253 central region. Prospects for observations with the HESS array and GLAST satellite are especially discussed.

  6. Recent developments in neutrino-nucleus interactions in 1 GeV energy region

    SciTech Connect

    Sobczyk, Jan T.

    2015-07-15

    Neutrino interactions in 1 GeV energy region are discussed. A role of nucleon-nucleon correlations in understanding recent quasi-elastic cross section measurements on nuclear target is explained. An importance of a correct treatment of two-body current contribution to the neutrino inclusive cross section is addressed.

  7. New quasibound states of the compound nucleus in α -particle capture by the nucleus

    NASA Astrophysics Data System (ADS)

    Maydanyuk, Sergei P.; Zhang, Peng-Ming; Zou, Li-Ping

    2017-07-01

    We generalize the theory of nuclear decay and capture of Gamow that is based on tunneling through the barrier and internal oscillations inside the nucleus. In our formalism an additional factor is obtained, which describes distribution of the wave function of the the α particle inside the nuclear region. We discover new most stable states (called quasibound states) of the compound nucleus (CN) formed during the capture of α particle by the nucleus. With a simple example, we explain why these states cannot appear in traditional calculations of the α capture cross sections based on monotonic penetrabilities of a barrier, but they appear in a complete description of the evolution of the CN. Our result is obtained by a complete description of the CN evolution, which has the advantages of (1) a clear picture of the formation of the CN and its disintegration, (2) a detailed quantum description of the CN, (3) tests of the calculated amplitudes based on quantum mechanics (not realized in other approaches), and (4) high accuracy of calculations (not achieved in other approaches). These peculiarities are shown with the capture reaction of α +44Ca . We predict quasibound energy levels and determine fusion probabilities for this reaction. The difference between our approach and theory of quasistationary states with complex energies applied for the α capture is also discussed. We show (1) that theory does not provide calculations for the cross section of α capture (according to modern models of the α capture), in contrast with our formalism, and (2) these two approaches describe different states of the α capture (for the same α -nucleus potential).

  8. Nonexistence of the Oppenheimer-Phillips process in low-energy deuteron-nucleus collisions

    SciTech Connect

    Bencze, G.; Chandler, C.

    1996-02-01

    It is shown that the electric polarizability of the deuteron produces negligible effect on the cross section of deuteron induced rearrangement reactions even at extremely low energies. This assessment is based on simple analytical formulas, derived on the basis of {ital N}-particle scattering theory by means of the general two-potential formalism, including Coulomb and exchange effects. It is shown on the basis of general physical arguments that the polarizability effects at very low energies are entirely contained in a multiplicative enhancement factor that differs from 1 by at most a few percent. As a result enhancement of ({ital d},{ital p}) relative to ({ital d},{ital n}) reactions is not possible by the Oppenheimer-Phillips mechanism.

  9. Nonexistence of the Oppenheimer-Phillips process in low-energy deuteron-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Bencze, Gy.; Chandler, Colston

    1996-02-01

    It is shown that the electric polarizability of the deuteron produces negligible effect on the cross section of deuteron induced rearrangement reactions even at extremely low energies. This assessment is based on simple analytical formulas, derived on the basis of N-particle scattering theory by means of the general two-potential formalism, including Coulomb and exchange effects. It is shown on the basis of general physical arguments that the polarizability effects at very low energies are entirely contained in a multiplicative enhancement factor that differs from 1 by at most a few percent. As a result enhancement of (d,p) relative to (d,n) reactions is not possible by the Oppenheimer-Phillips mechanism.

  10. NAD+ metabolism and the control of energy homeostasis - a balancing act between mitochondria and the nucleus

    PubMed Central

    Cantó, Carles; Menzies, Keir; Auwerx, Johan

    2015-01-01

    NAD+ has emerged as a vital cofactor that can rewire metabolism, activate sirtuins and maintain mitochondrial fitness through mechanisms such as the mitochondrial unfolded protein response. This improved understanding of NAD+ metabolism revived interest in NAD+ boosting strategies to manage a wide spectrum of diseases, ranging from diabetes to cancer. In this review, we summarize how NAD+ metabolism links energy status with adaptive cellular and organismal responses and how this knowledge can be therapeutically exploited. PMID:26118927

  11. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus.

    PubMed

    Cantó, Carles; Menzies, Keir J; Auwerx, Johan

    2015-07-07

    NAD(+) has emerged as a vital cofactor that can rewire metabolism, activate sirtuins, and maintain mitochondrial fitness through mechanisms such as the mitochondrial unfolded protein response. This improved understanding of NAD(+) metabolism revived interest in NAD(+)-boosting strategies to manage a wide spectrum of diseases, ranging from diabetes to cancer. In this review, we summarize how NAD(+) metabolism links energy status with adaptive cellular and organismal responses and how this knowledge can be therapeutically exploited.

  12. Φ -meson-nucleus bound states

    NASA Astrophysics Data System (ADS)

    Cobos-Martínez, J. J.; Tsushima, K.; Krein, G.; Thomas, A. W.

    2017-09-01

    ϕ -meson-nucleus bound state energies and absorption widths are calculated for seven selected nuclei by solving the Klein-Gordon equation with complex optical potentials. Essential input for the calculations, namely the medium-modified K and K ¯ meson masses, as well as the density distributions in nuclei, are obtained from the quark-meson coupling model. The attractive potential for the ϕ meson in the nuclear medium originates from the in-medium enhanced K K ¯ loop in the ϕ -meson self-energy. The results suggest that the ϕ meson should form bound states with all the nuclei considered. However, the identification of the signal for these predicted bound states will need careful investigation because of their sizable absorption widths.

  13. Microenvironment and Effect of Energy Depletion in the Nucleus Analyzed by Mobility of Multiple Oligomeric EGFPs

    PubMed Central

    Pack, Changi; Saito, Kenta; Tamura, Mamoru; Kinjo, Masataka

    2006-01-01

    Four different tandem EGFPs were constructed to elucidate the nuclear microenvironment by quantifying its diffusional properties in both aqueous solution and the nuclei of living cells. Diffusion of tandem EGFP was dependent on the length of the protein as a rod-like molecule or molecular ruler in solution. On the other hand, we found two kinds of mobility, fast diffusional mobility and much slower diffusional mobility depending on cellular compartments in living cells. Diffusion in the cytoplasm and the nucleoplasm was mainly measured as fast diffusional mobility. In contrast, diffusion in the nucleolus was complex and mainly much slower diffusional mobility, although both the fast and the slow diffusional mobilities were dependent on the protein length. Interestingly, we found that diffusion in the nucleolus was clearly changed by energy depletion, even though the diffusion in the cytoplasm and the nucleoplasm was not changed. Our results suggest that the nucleolar microenvironment is sensitive to energy depletion and very different from the nucleoplasm. PMID:16950841

  14. Cell survival fraction estimation based on the probability densities of domain and cell nucleus specific energies using improved microdosimetric kinetic models.

    PubMed

    Sato, Tatsuhiko; Furusawa, Yoshiya

    2012-10-01

    Estimation of the survival fractions of cells irradiated with various particles over a wide linear energy transfer (LET) range is of great importance in the treatment planning of charged-particle therapy. Two computational models were developed for estimating survival fractions based on the concept of the microdosimetric kinetic model. They were designated as the double-stochastic microdosimetric kinetic and stochastic microdosimetric kinetic models. The former model takes into account the stochastic natures of both domain and cell nucleus specific energies, whereas the latter model represents the stochastic nature of domain specific energy by its approximated mean value and variance to reduce the computational time. The probability densities of the domain and cell nucleus specific energies are the fundamental quantities for expressing survival fractions in these models. These densities are calculated using the microdosimetric and LET-estimator functions implemented in the Particle and Heavy Ion Transport code System (PHITS) in combination with the convolution or database method. Both the double-stochastic microdosimetric kinetic and stochastic microdosimetric kinetic models can reproduce the measured survival fractions for high-LET and high-dose irradiations, whereas a previously proposed microdosimetric kinetic model predicts lower values for these fractions, mainly due to intrinsic ignorance of the stochastic nature of cell nucleus specific energies in the calculation. The models we developed should contribute to a better understanding of the mechanism of cell inactivation, as well as improve the accuracy of treatment planning of charged-particle therapy.

  15. Dynamical evolution of comet nucleus rotation

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.; Sidorenko, V. V.; Neishtadt, A. I.; Vasiliev, A. A.

    2001-11-01

    The rotational dynamics of outgassing cometary nuclei are investigated analytically using dynamical systems theory. We develop a general theory for the averaged evolution of a comet nucleus rotation state assuming that the nucleus is a spheroid (either prolate or oblate) and that the outgassing torques are a function of solar insolation and heliocentric distance. The resulting solutions are a function of the comet outgassing properties, its heliocentric orbit, and the assumed distribution of active regions on its surface. We find that the long-term evolution of the comet nucleus rotation is a strong function of the distribution of active regions over its surface. Specifically, we find that a comet nucleus with a uniformly active surface will tend towards a rotation state with a nutation angle of ~ 55 degrees and an angular momentum perpendicular to the sun-perihelion direction. Conversely, a comet nucleus with an isolated active region will tend towards a zero nutation angle with its symmetry axis and angular momentum aligned parallel to the sun-perihelion direction. For active surface regions between these extremes we find 4 qualitatively different dynamical outcomes. In all cases, the theory predicts that the comet nucleus angular momentum will have a secular increase, a phenomenon that could contribute to nucleus splitting of active comets. These results can be used to discriminate between competing theories of comet outgassing based on a nucelus' rotation state. They also allow for a range of plausible a priori constraints to be placed on a comet's rotation state to aid in the interpretation of its outgassing structure. This work was supported by the NASA JURRISS program under Grant NAG5-8715. AIN, AAV and VVS acknowledge support from Russian Foundation for Basic research via Grants 00-01-00538 and 00-01-0174 respectively. DJS acknowledges support from the PG&G program via Grant NAG5-9017.

  16. Effects of subthalamic nucleus deep brain stimulation and levodopa on energy production rate and substrate oxidation in Parkinson's disease.

    PubMed

    Perlemoine, Caroline; Macia, Frédéric; Tison, François; Coman, Isabelle; Guehl, Dominique; Burbaud, Pierre; Cuny, Emmanuel; Baillet, Laurence; Gin, Henri; Rigalleau, Vincent

    2005-02-01

    Patients with Parkinson's disease (PD) often lose weight, but after subthalamic nucleus deep brain stimulation (STN-DBS), they gain weight. We compared daily energy intake (DEI), resting energy expenditure (REE) and substrate oxidation rates (measured by indirect calorimetry) in nineteen STN-DBS-treated patients (Group S), thirteen others on pharmacologic treatment by levodopa (Group L) and eight control subjects. We also determined the acute effects of STN-DBS and levodopa on REE and substrate oxidation rates. STN-DBS treated patients gained 9.7 (SEM 7.1) kg after surgery, whereas patients on pharmacologic treatment lost 3.8 (SEM 10.0) kg since diagnosis. In STN-DBS-treated patients, REE (-16.5 %; P<0.001), lipid oxidation (-27 %; P<0.05) and protein oxidation (-46 %; P<0.05) were decreased, whereas glucose oxidation was elevated (+81 %; P<0.05) as compared to patients on pharmacologic treatment. Levodopa acutely reduced REE (-8.3 %; P<0.05) and glucose oxidation (-37 %; P<0.01) with a slight hyperglycaemic effect (after levodopa challenge: 5.6 (SEM 0.8) v. before levodopa challenge: 5.3 (SEM 0.6) mmol/l; P<0.01). Switching 'on' STN-DBS acutely reduced REE (-17.5 %; P<0.01) and lipid oxidation (-24 %; P<0.001) 30 min after starting stimulation. Fasting glycaemia was slightly but significantly reduced (5.4 (SEM 1.4) v. 5.5 (SEM 1.3) mmol/l; P<0.01). After STN-DBS, the normalization of REE and the reduction in lipid and protein oxidation contribute to the restoration of weight. As levodopa decreases glucose oxidation, the reduction in daily dose of levodopa in STN-DBS-treated patients helps prevent the effect of weight gain on glycaemia.

  17. Spectroscopy of the N=Z-2 nucleus {sup 46}Cr and mirror energy differences

    SciTech Connect

    Garrett, P. E.; Lenzi, S. M.; Algin, E.; Appelbe, D.; Cameron, J. A.; Bauer, R. W.; Becker, J. A.; Bernstein, L. A.; Carpenter, M. P.; Janssens, R. V. F.; Lister, C. J.; Seweryniak, D.; Warner, D. D.

    2007-01-15

    Excited states in {sup 46}Cr were sought using the {sup 12}C({sup 36}Ar,2n) reaction. Gamma rays were detected with the Gammasphere array, and the Z value of the reaction products was determined with an ionization chamber located at the focal plane of the Fragment Mass Analyzer. In addition to the ground-state band observed up to I{sup {pi}}=10{sup +} (tentatively 12{sup +}), five states are proposed to belong to the 3{sup -} band. The mirror energy differences with the analog states in {sup 46}Ti present a pronounced staggering effect between the odd and even spin members that is reproduced well by shell-model calculations incorporating the different Coulomb contributions, monopole, multipole, and single-particle effects together with an isospin-nonconserving interaction that accounts for the so-called J=2 anomaly. Dramatically different E1 decay patterns for members of the 3{sup -} band between the {sup 46}Cr and {sup 46}Ti mirrors are also observed.

  18. Cell Biology of the Caenorhabditis elegans Nucleus.

    PubMed

    Cohen-Fix, Orna; Askjaer, Peter

    2017-01-01

    Studies on the Caenorhabditis elegans nucleus have provided fascinating insight to the organization and activities of eukaryotic cells. Being the organelle that holds the genetic blueprint of the cell, the nucleus is critical for basically every aspect of cell biology. The stereotypical development of C. elegans from a one cell-stage embryo to a fertile hermaphrodite with 959 somatic nuclei has allowed the identification of mutants with specific alterations in gene expression programs, nuclear morphology, or nuclear positioning. Moreover, the early C. elegans embryo is an excellent model to dissect the mitotic processes of nuclear disassembly and reformation with high spatiotemporal resolution. We review here several features of the C. elegans nucleus, including its composition, structure, and dynamics. We also discuss the spatial organization of chromatin and regulation of gene expression and how this depends on tight control of nucleocytoplasmic transport. Finally, the extensive connections of the nucleus with the cytoskeleton and their implications during development are described. Most processes of the C. elegans nucleus are evolutionarily conserved, highlighting the relevance of this powerful and versatile model organism to human biology. Copyright © 2017 by the Genetics Society of America.

  19. Structural dynamics of the cell nucleus

    PubMed Central

    Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons. PMID:21738832

  20. Control of nucleus positioning in mouse oocytes.

    PubMed

    Almonacid, Maria; Terret, Marie-Emilie; Verlhac, Marie-Hélène

    2017-08-12

    The position of the nucleus in a cell can instruct morphogenesis in some cases, conveying spatial and temporal information and abnormal nuclear positioning can lead to disease. In oocytes from worm, sea urchin, frog and some fish, nucleus position regulates embryo development, it marks the animal pole and in Drosophila it defines the future dorso-ventral axis of the embryo and of the adult body plan. However, in mammals, the oocyte nucleus is centrally located and does not instruct any future embryo axis. Yet an off-center nucleus correlates with poor outcome for mouse and human oocyte development. This is surprising since oocytes further undergo two extremely asymmetric divisions in terms of the size of the daughter cells (enabling polar body extrusion), requiring an off-centering of their chromosomes. In this review we address not only the bio-physical mechanism controlling nucleus positioning via an actin-mediated pressure gradient, but we also speculate on potential biological relevance of nuclear positioning in mammalian oocytes and early embryos. Copyright © 2017. Published by Elsevier Ltd.

  1. The dynamic landscape of the cell nucleus.

    PubMed

    Austin, Christopher M; Bellini, Michel

    2010-01-01

    While the cell nucleus was described for the first time almost two centuries ago, our modern view of the nuclear architecture is primarily based on studies from the last two decades. This surprising late start coincides with the development of new, powerful strategies to probe for the spatial organization of nuclear activities in both fixed and live cells. As a result, three major principles have emerged: first, the nucleus is not just a bag filled with nucleic acids and proteins. Rather, many distinct functional domains, including the chromosomes, resides within the confines of the nuclear envelope. Second, all these nuclear domains are highly dynamic, with molecules exchanging rapidly between them and the surrounding nucleoplasm. Finally, the motion of molecules within the nucleoplasm appears to be mostly driven by random diffusion. Here, the emerging roles of several subnuclear domains are discussed in the context of the dynamic functions of the cell nucleus.

  2. Organisation of the human dorsomedial hypothalamic nucleus.

    PubMed

    Koutcherov, Yuri; Mai, Juergen K; Ashwell, Ken W; Paxinos, George

    2004-01-19

    This study used acetylcholinesterase (AChE) histochemistry to reveal the organization of the dorsomedial hypothalamic nucleus (DM) in the human. Topographically, the human DM is similar to DM in the monkey and rat. It is wedged between the paraventricular nucleus, dorsally, and the ventromedial nucleus, ventrally. Laterally, DM borders the lateral hypothalamic area while medially it approaches the 3rd ventricle. The AChE staining distinguished two subcompartments of the human DM: the larger diffuse and the smaller compact DM. The subcompartmental organization of the human DM appears homologous to that found in the monkey and less complex than that reported in rats. Understanding of the organization of DM creates meaningful anatomical reference for physiological and pharmacological studies in the human hypothalamus.

  3. UNCOVERING THE NUCLEUS CANDIDATE FOR NGC 253

    SciTech Connect

    Günthardt, G. I.; Camperi, J. A.; Agüero, M. P.; Díaz, R. J.; Gomez, P. L.; Schirmer, M.; Bosch, G. E-mail: camperi@oac.uncor.edu E-mail: rdiaz@gemini.edu E-mail: mschirmer@gemini.edu

    2015-11-15

    NGC 253 is the nearest spiral galaxy with a nuclear starburst that becomes the best candidate for studying the relationship between starburst and active galactic nucleus activity. However, this central region is veiled by large amounts of dust, and it has been so far unclear which is the true dynamical nucleus to the point that there is no strong evidence that the galaxy harbors a supermassive black hole co-evolving with the starburst as was supposed earlier. Near-infrared (NIR) spectroscopy, especially NIR emission line analysis, could be advantageous in shedding light on the true nucleus identity. Using Flamingos-2 at Gemini South we have taken deep K-band spectra along the major axis of the central structure and through the brightest infrared source. In this work, we present evidence showing that the brightest NIR and mid-infrared source in the central region, already known as radio source TH7 and so far considered just a large stellar supercluster, in fact presents various symptoms of a genuine galactic nucleus. Therefore, it should be considered a valid nucleus candidate. Mentioning some distinctive aspects, it is the most massive compact infrared object in the central region, located at 2.″0 of the symmetry center of the galactic bar, as measured in the K-band emission. Moreover, our data indicate that this object is surrounded by a large circumnuclear stellar disk and it is also located at the rotation center of the large molecular gas disk of NGC 253. Furthermore, a kinematic residual appears in the H{sub 2} rotation curve with a sinusoidal shape consistent with an outflow centered in the candidate nucleus position. The maximum outflow velocity is located about 14 pc from TH7, which is consistent with the radius of a shell detected around the nucleus candidate, observed at 18.3 μm (Qa) and 12.8 μm ([Ne ii]) with T-ReCS. Also, the Brγ emission line profile shows a pronounced blueshift and this emission line also has the highest equivalent width at this

  4. Nucleus model for periodic Comet Tempel 2

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1991-01-01

    Observational data obtained primarily during 1988 are analyzed and synthesized to develop a comprehensive physical model for the nucleus of Periodic Comet Tempel 2, one of the best studied members of Jupiter's family of short-period comets. It is confirmed that a previous investigation provided reliable information on the comet's spin-axis orientation, which implies and obliquity of 54 degrees of the orbit plane to the equatorial plane and which appears to have varied little - if at all - with time. This conclusion is critical for fitting a triaxial ellipsoid to approximate the figure of the nucleus.

  5. Uncovering the Nucleus Candidate for NGC 253

    NASA Astrophysics Data System (ADS)

    Günthardt, G. I.; Agüero, M. P.; Camperi, J. A.; Díaz, R. J.; Gomez, P. L.; Bosch, G.; Schirmer, M.

    2015-11-01

    NGC 253 is the nearest spiral galaxy with a nuclear starburst that becomes the best candidate for studying the relationship between starburst and active galactic nucleus activity. However, this central region is veiled by large amounts of dust, and it has been so far unclear which is the true dynamical nucleus to the point that there is no strong evidence that the galaxy harbors a supermassive black hole co-evolving with the starburst as was supposed earlier. Near-infrared (NIR) spectroscopy, especially NIR emission line analysis, could be advantageous in shedding light on the true nucleus identity. Using Flamingos-2 at Gemini South we have taken deep K-band spectra along the major axis of the central structure and through the brightest infrared source. In this work, we present evidence showing that the brightest NIR and mid-infrared source in the central region, already known as radio source TH7 and so far considered just a large stellar supercluster, in fact presents various symptoms of a genuine galactic nucleus. Therefore, it should be considered a valid nucleus candidate. Mentioning some distinctive aspects, it is the most massive compact infrared object in the central region, located at 2.″0 of the symmetry center of the galactic bar, as measured in the K-band emission. Moreover, our data indicate that this object is surrounded by a large circumnuclear stellar disk and it is also located at the rotation center of the large molecular gas disk of NGC 253. Furthermore, a kinematic residual appears in the H2 rotation curve with a sinusoidal shape consistent with an outflow centered in the candidate nucleus position. The maximum outflow velocity is located about 14 pc from TH7, which is consistent with the radius of a shell detected around the nucleus candidate, observed at 18.3 μm (Qa) and 12.8 μm ([Ne ii]) with T-ReCS. Also, the Brγ emission line profile shows a pronounced blueshift and this emission line also has the highest equivalent width at this

  6. Compound Nucleus Contributions to the Optical Potential

    SciTech Connect

    Thompson, I. J.; Dietrich, F. S.; Escher, J. E.; Dupuis, M.

    2008-04-17

    An ab-initio calculation of the optical potential for neutron-nucleus scattering has been performed by explicitly coupling the elastic channel to all the particle-hole (p-h) excitation states in the target. These p-h states may be regarded as doorway states through which the flux flows to more complicated configurations, and (in the end) to long-lived compound nucleus resonances. The random-phase approximation (RPA) provides the linear combinations of p-h states that include the residual interactions within the target, and we show preliminary results for elastic flux loss using both p-h and RPA descriptions of target excitations.

  7. Exclusive experiment on nuclei with backward emitted particles by electron-nucleus collision in {approximately} 10 GeV energy range

    SciTech Connect

    Saito, T.; Takagi, F.

    1994-04-01

    Since the evidence of strong cross section in proton-nucleus backward scattering was presented in the early of 1970 years, this phenomena have been interested from the point of view to be related to information on the short range correlation between nucleons or on high momentum components of the wave function of the nucleus. In the analysis of the first experiment on protons from the carbon target under bombardment by 1.5-5.7 GeV protons, indications are found of an effect analogous to scaling in high-energy interactions of elementary particles with protons. Moreover it is found that the function f(p{sup 2})/{sigma}{sub tot}, which describes the spectra of the protons and deuterons emitted backward from nuclei in the laboratory system, does not depend on the energy and the type of the incident particle or on the atomic number of the target nucleus. In the following experiments the spectra of the protons emitted from the nuclei C, Al, Ti, Cu, Cd and Pb were measured in the inclusive reactions with incident particles of negative pions (1.55-6.2 GeV/c) and protons (6.2-9.0 GeV/C). The cross section f is described by f = E/p{sup 2} d{sup 2}{sigma}/dpd{Omega} = C exp ({minus}Bp{sup 2}), where p is the momentum of hadron. The function f depends linearly on the atomic weight A of the target nuclei. The slope parameter B is independent of the target nucleus and of the sort and energy of the bombarding particles. The invariant cross section {rho} = f/{sigma}{sub tot} is also described by exponential A{sub 0} exp ({minus}A{sub 1p}{sup 2}), where p becomes independent of energy at initial particle energies {ge} 1.5 GeV for C nucleus and {ge} 5 GeV for the heaviest of the investigated Pb nuclei.

  8. Calculated dynamical evolution of the nucleus of comet Hartley 2

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid

    2013-04-01

    The nucleus of comet Hartley 2 has a relatively regular dumbbell shape with unequal heads. The narrow part of elongated shape contains a relatively smooth region whose covering material is highly different in its shallow structure compared to other parts of this celestial body. The surface of crudely spherical parts of the nucleus is different from the surface of the "neck", which implies a hypothesis that the shape of the nucleus of Hartley 2 is indicative of destruction of this celestial body occurring in our days. The nucleus rotates around its axis passing through the center of mass, and centrifugal forces arise. This process is hindered by gravitation between parts of the nucleus and gradual slowing of rotation due to body lengthening because of the increase in the moment of inertia (proportional to R2) and due to friction losses in the neck material. We posed the task to determine centrifugal and gravitational forces in the neck (and, respectively, the strains of stretching and compression), the moment of inertia of the body and supply of its rotational energy E, the volume of the nucleus and its average density, and the position of the barycenter and center of rotation. It can be assumed that these forces cause slow but progressive lengthening of the neck which should eventually result in fragmentation of the nucleus. Centrifugal forces can be found as a result of summation of forces produced by parts of the body. According to the calculation model, the total stretching forces in the section passing through the narrowest cut of the neck are 1.21E6 N. The corresponding compression forces in the section passing through the narrow section are 1.04E6 N. The comparison of these values indicates a paradoxical result: stretching strains dominate in the neck, while compressions are dominant in the section passing through the common center of mass. The excess of stretching strains in the neck is 11%. The inference is as follows: the right part of the neck and the

  9. Mass dependence of critical behavior in nucleus-nucleus collisions

    SciTech Connect

    Li, T.; Bauer, W.; Craig, D.; Gualtieri, E.; Hannuschke, S.; Pak, R.; Vander Molen, A.M.; Westfall, G.D.; Winfield, J.S.; Yee, J.; Yennello, S.J.; Lacey, R.; Nadasen, A.; Tickle, R.S.; Norbeck, E.

    1994-03-01

    The {ital Z} distributions of fragments emitted from central collisions of {sup 40}Ar+{sup 45}Sc at beam energies from 15 to 115 MeV/nucleon have been fitted to power laws {sigma}({ital Z}){proportional_to}{ital Z}{sup {minus}{lambda}}. The {lambda} parameter reaches a minimum at a beam energy of 23.9{plus_minus}0.7 MeV/nucleon. A percolation model calculation reproduces the observed {ital Z} distributions for all beam energies, using the mean excitation energy as extracted from proton kinetic energy spectra. We extract the critical value of the deposited excitation energy for our system and make predictions for the dependence of this quantity on the size of the fragmenting system.

  10. Gamma-ray spectroscopy of the nucleus 139Ce

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Căta-Danil, G.; Căta-Danil, I.; Ivaşcu, M.; Mărginean, N.; Mărginean, R.; Mihăilescu, L. C.; Rusu, C.; Suliman, G.

    2006-03-01

    Gamma-ray coincidence techniques are used to determine new level structures in the N = 81 nucleus 139Ce, at low spins and excitation energies with the 139La(p, nγ) reaction at 5.0 and 6.0MeV incident energy, and at high spins with the 130Te(12C, 3nγ) reaction at 50.5MeV, respectively. Lifetime determinations are also made in the (p, nγ) reaction with the centroid DSA method. The observed level structures are discussed by comparison with existing calculations and with those in the neighbouring nucleus 140Ce.

  11. Pion-nucleon scattering and pion production in nucleon-nucleon and nucleus-nucleus collisions

    SciTech Connect

    Dover, C.B.

    1982-01-01

    Lecture notes are presented on the following: (1) basic aspects of ..pi..N interactions (properties of pions and nucleons, SU(3) and SU(6) classification phenomenology of ..pi..N scattering ((3.3) resonance; phase shift analysis, and bag model approach to ..pi..N); (2) pion production and absorption in the two nucleon system (NN ..-->.. NN..pi.. (isobar model) and ..pi..d reversible NN (existence of dibaryon resonances)); (3) pion absorption in complex nuclei (multiparticle aspects and cascade calculations); and (4) pion production with nuclear targets including (a) nucleon-nucleus, (b) nucleus-nucleus (Fermi-averaged 2-body vs thermodynamic models), and (c) ..pi pi.. interoferometry.

  12. The Checkerboard Model of the Nucleus

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2015-04-01

    The Checker Board Model (CBM) of the nucleus and the associated extended standard model predicts that nature has 5 generations of quarks not 3 and that Nucleus is 2 dimensional. The CBM theory began with an insight into the structure of the He nucleus around the year 1989. Details of how this theory evolved which took many years, and is found on my web site (http://checkerboard.dnsalias.net) or in the following references One independent check of this model is that the wavelength of the ``up'' quark orbiting inside the proton at 84.8123% the speed of light (around the ``dn'' quark in the center of the proton) turns out to be exactly one de Broglie wavelength something determined after the mass and speed of the up quark were determined by other means. This theory explains the mass of the proton and neutron and their magnetic moments and this along with the beautiful symmetric 2D structure of the He nucleus led to the evolution of this theory. When this theory was first presented at Argonne in 1996, it was the first time that anyone had predicted the quarks orbited inside the proton at relativistic speeds and it was met with skepticism.

  13. The Nucleus and the Simple Microscope.

    ERIC Educational Resources Information Center

    Ford, Brian J.

    1982-01-01

    The 150th anniversary of the naming of the nucleus by Robert Brown in 1831 was commemorated by re-creating some of his most important observations using two of his microscopes. Comments on Brown's career and the microtechnique employed during his time are provided. (Author/JN)

  14. Oral alprazolam acutely increases nucleus accumbens perfusion

    PubMed Central

    Wolf, Daniel H.; Pinkham, Amy E.; Satterthwaite, Theodore D.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey; Smith, Mark A.; Detre, John A.; Gur, Ruben C.; Gur, Raquel E.

    2014-01-01

    Benzodiazepines treat anxiety, but can also produce euphoric effects, contributing to abuse. Using perfusion magnetic resonance imaging, we provide the first direct evidence in humans that alprazolam (Xanax) acutely increases perfusion in the nucleus accumbens, a key reward-processing region linked to addiction. PMID:23070072

  15. THE ROLE OF THE NUCLEUS IN OXIDATION.

    PubMed

    Osterhout, W J

    1917-10-12

    Injury produces in the leaf-cells of the Indian Pipe (Monotropa uniflora) a darkening which is due to oxidation. The oxidation is much more rapid in the nucleus than in the cytoplasm and the facts indicate that this is also the case with the oxidation of the uninjured cell.

  16. Nucleus-associated actin in Amoeba proteus.

    PubMed

    Berdieva, Mariia; Bogolyubov, Dmitry; Podlipaeva, Yuliya; Goodkov, Andrew

    2016-10-01

    The presence, spatial distribution and forms of intranuclear and nucleus-associated cytoplasmic actin were studied in Amoeba proteus with immunocytochemical approaches. Labeling with different anti-actin antibodies and staining with TRITC-phalloidin and fluorescent deoxyribonuclease I were used. We showed that actin is abundant within the nucleus as well as in the cytoplasm of A. proteus cells. According to DNase I experiments, the predominant form of intranuclear actin is G-actin which is associated with chromatin strands. Besides, unpolymerized actin was shown to participate in organization of a prominent actin layer adjacent to the outer surface of nuclear envelope. No significant amount of F-actin was found in the nucleus. At the same time, the amoeba nucleus is enclosed in a basket-like structure formed by circumnuclear actin filaments and bundles connected with global cytoplasmic actin cytoskeleton. A supposed architectural function of actin filaments was studied by treatment with actin-depolymerizing agent latrunculin A. It disassembled the circumnuclear actin system, but did not affect the intranuclear chromatin structure. The results obtained for amoeba cells support the modern concept that actin is involved in fundamental nuclear processes that have evolved in the cells of multicellular organisms.

  17. New developments in nucleus pulposus replacement technology.

    PubMed

    Carl, Allen; Ledet, Eric; Yuan, Hansen; Sharan, Alok

    2004-01-01

    Attempts to alleviate the pain attributed to degeneration of the nucleus pulposus using replacement or reinforcement techniques dating back to the 1950s are reviewed. The various materials and their insertion techniques are discussed as are results available from early clinical experiences. These techniques are in evolution and clinical outcomes will be necessary to establish the efficacy of these approaches.

  18. Phase Evolution and Nucleus Growth Observation of Solid-State BaTiO3 Powder Prepared by High-Energy Bead Milling for Raw Material Mixing

    NASA Astrophysics Data System (ADS)

    Lee, Ting-Tai; Huang, Chi-Yuen; Chang, Che-Yuan; Lin, Shih-Pin; Su, Che-Yi; Lee, Chun-Te; Fujimoto, Masayuki

    2011-09-01

    The solid-state synthesis, phase evolution, and nucleus growth of the barium titanate (BaTiO3, BT) powder were investigated in this study. Rapid nucleus growth and precursor phase formation of BT were observed at a relatively low temperature of 600 °C by mixing BaCO3 (2 m2/g) and TiO2 (7 m2/g) with a high-energy bead mill. The decomposition of BaCO3 and the formation of the Ba2TiO4 phase were identified by transmission electron microscopy (TEM). On the basis of this observation, the weight loss observed at 600 °C in the derivative thermogravimetry (DTG) curve could also be explained. Furthermore, with increasing calcination temperature, single cubic BT with less than 80 nm fine nuclei/crystallites was observed at 900 °C, and tetragonal BT (c/a > 1.008) with an average particle size of 0.4 µm was obtained at 1000 °C. With regard to the dielectric properties of sintered ceramics, the relative permittivity (ɛr) increased with calcination temperature, and the Curie point also shifted to a progressively higher temperature. However, BT nucleus samples (with low calcination temperatures of 800 and 900 °C) could not satisfy the X7R requirement (Electric Industries Association Standard, the tolerance of capacitance from -55 to +125 °C is ±15%) until calcination temperature increased to 1000 °C.

  19. Constraining in-medium nucleon-nucleon interactions via nucleus-nucleus reactions

    NASA Astrophysics Data System (ADS)

    Sammarruca, Francesca; White, Larz

    2010-11-01

    The nuclear equation of state is a broadly useful tool. Besides being the main input of stellar structure calculations, it allows a direct connection to the physics of nuclei. For instance, an energy functional (such as a mass formula), together with the energy/particle in nuclear matter, can be used to predict nuclear energies and radii [1]. The single-particle properties are also a key point to link infinite nuclear matter and actual nuclei. The parameters of the single-particle potential, in particular the effective mass, enter the calculations of, for instance, in-medium effective cross sections. From the well-known Glauber reaction theory, the total nucleus-nucleus reaction cross section is expressed in terms of the nuclear transparency, which, in turn, depends on the overlap of the nuclear density distributions and the elementary nucleon-nucleon (NN) cross sections. We explore the sensitivity of the reaction calculation to medium modifications of the NN cross sections to estimate the likelihood of constraining the latter through nuclear reactions. Ultimately, we wish to incorporate isospin asymmetry in the reaction model, having in mind connections with rare isotopes. [1] F. Sammarruca, arXiv:1002.00146 [nucl-th]; International Journal of Modern Physics, in press.

  20. A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

    NASA Astrophysics Data System (ADS)

    Brice, S. J.; Cooper, R. L.; DeJongh, F.; Empl, A.; Garrison, L. M.; Hime, A.; Hungerford, E.; Kobilarcik, T.; Loer, B.; Mariani, C.; Mocko, M.; Muhrer, G.; Pattie, R.; Pavlovic, Z.; Ramberg, E.; Scholberg, K.; Tayloe, R.; Thornton, R. T.; Yoo, J.; Young, A.

    2014-04-01

    We present an experimental method for measuring the process of coherent elastic neutrino-nucleus scattering (CENNS). This method uses a detector situated transverse to a high-energy neutrino beam production target. This detector would be sensitive to the low-energy neutrinos arising from decay-at-rest pions in the target. We discuss the physics motivation for making this measurement and outline the predicted backgrounds and sensitivities using this approach. We report a measurement of neutron backgrounds as found in an off-axis surface location of the Fermilab Booster Neutrino Beam (BNB) target. The results indicate that the Fermilab BNB target is a favorable location for a CENNS experiment.

  1. A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

    SciTech Connect

    Brice, S. J.; Cooper, R. L.; DeJongh, F.; Empl, A.; Garrison, L. M.; Hime, A.; Hungerford, E.; Kobilarcik, T.; Loer, B.; Mariani, C.; Mocko, M.; Muhrer, G.; Pattie, R.; Pavlovic, Z.; Ramberg, E.; Scholberg, K.; Tayloe, R.; Thornton, R. T.; Yoo, J.; Young, A.

    2014-04-03

    We present an experimental method for measuring the process of coherent elastic neutrino-nucleus scattering (CENNS). This method uses a detector situated transverse to a high-energy neutrino beam production target. This detector would be sensitive to the low-energy neutrinos arising from decay-at-rest pions in the target. We discuss the physics motivation for making this measurement and outline the predicted backgrounds and sensitivities using this approach. We report a measurement of neutron backgrounds as found in an off-axis surface location of the Fermilab Booster Neutrino Beam (BNB) target. The results indicate that the Fermilab BNB target is a favorable location for a CENNS experiment.

  2. Development of the ventromedial nucleus of the hypothalamus.

    PubMed

    McClellan, Kristy M; Parker, Keith L; Tobet, Stuart

    2006-07-01

    The ventromedial nucleus of the hypothalamus (VMH) is important in the regulation of female sexual behavior, feeding, energy balance, and cardiovascular function. It is a highly conserved nucleus across species and a good model for studying neuronal organization into nuclei. Expression of various transcription factors, receptors, and neurotransmitters are important for the development of this nucleus and for mapping the position of identified cells within the nucleus. The VMH is subdivided into regions, all of which may project to specific locations to carry out various functions. For example, the ventrolateral quadrant contains a subset of neurons that highly express estrogen receptors. These neurons specifically are involved in the lordosis response pathway through projections to other estrogen receptor containing regions. In development, neurons that form the VMH generate from the proliferative zone surrounding the third ventricle. Neurons then migrate along radial glial fibers to final positions within the nucleus. Migration and positioning of neurons is an important step in setting up connections to and from the VMH and hence in its function. As compared to other developing brain regions, cell death may play a minor role in sculpting the VMH. We review the processes involved in forming a functional nuclear group and some of the factors known to be involved particularly focusing on the positioning of identified neurons within the VMH.

  3. Empirical description of the hadron-hadron and hadron-nucleus interaction at the accelerator energy range

    NASA Technical Reports Server (NTRS)

    Kubiak, G.; Szabelski, J.; Wdowczyk, J.; Kempa, J.; Piotrowska, A.

    1985-01-01

    Taking into account several assumptions, a formula is transformed into two expressions for kaon and baryon plus antibaryon production in proton interaction and for pion production in pion interactions. Combining both formulae, expression are obtained for the spectrum of kaons and baryons plus antibaryons produced in the meson interactions. For analysis of the cosmic ray propagation in the atmosphere in actual fact, instead of the formulae for interactions of protons and mesons with protons, formulae appropriate for interactions with air nuclei was used. Using the method outlined among others by Elias et al. (1980) simple corrections were introduced to the derived expressions to account for the fact that the target is an air nucleus.

  4. Nucleus-nucleus cold fusion reactions analyzed with the l-dependent ``fusion by diffusion'' model

    NASA Astrophysics Data System (ADS)

    Cap, T.; Siwek-Wilczyńska, K.; Wilczyński, J.

    2011-05-01

    We present a modified version of the Fusion by Diffusion (FBD) model aimed at describing the synthesis of superheavy nuclei in cold fusion reactions, in which a low excited compound nucleus emits only one neutron. The modified FBD model accounts for the angular momentum dependence of three basic factors determining the evaporation residue cross section: the capture cross section σcap(l), the fusion probability Pfus(l), and the survival probability Psurv(l). The fusion hindrance factor, the inverse of Pfus(l), is treated in terms of thermal fluctuations in the shape degrees of freedom and is expressed as a solution of the Smoluchowski diffusion equation. The l dependence of Pfus(l) results from the l-dependent potential energy surface of the colliding system. A new parametrization of the distance of starting point of the diffusion process is introduced. An analysis of a complete set of 27 excitation functions for production of superheavy nuclei in cold fusion reactions, studied in experiments at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley, is presented. The FBD model satisfactorily reproduces shapes and absolute cross sections of all the cold fusion excitation functions. It is shown that the peak position of the excitation function for a given 1n reaction is determined by the Q value of the reaction and the height of the fission barrier of the final nucleus. This fact could possibly be used in future experiments (with well-defined beam energy) for experimental determination of the fission barrier heights.

  5. Recent Developments in Neutrino/Antineutrino-Nucleus Interactions

    SciTech Connect

    Morfín, Jorge G.; Nieves, Juan; Sobczyk, Jan T.

    2012-01-01

    Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.

  6. Recent Developments in Neutrino/Antineutrino-Nucleus Interactions

    DOE PAGES

    Morfín, Jorge G.; Nieves, Juan; Sobczyk, Jan T.

    2012-01-01

    Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.

  7. Ventral nucleus of the lateral lemniscus in guinea pigs: cytoarchitecture and inputs from the cochlear nucleus.

    PubMed

    Schofield, B R; Cant, N B

    1997-03-17

    Cytoarchitectonic criteria were used to distinguish three subdivisions of the ventral nucleus of the lateral lemniscus in guinea pigs. Axonal tracing techniques were used to examine the projections from the cochlear nucleus to each subdivision. Based on the cell types they contain and their patterns of input, we distinguished ventral, dorsal, and anterior subdivisions of the ventral nucleus of the lateral lemniscus. All three subdivisions receive bilateral inputs from the cochlear nucleus, with contralateral inputs greatly outnumbering ipsilateral inputs. However, the relative density of the inputs varies: the ventral subdivision receives the densest projection, whereas the anterior subdivision receives the sparsest projection. Further differences are apparent in the morphology of the afferent axons. Following an injection of Phaseolus vulgaris-leucoagglutinin into the ventral cochlear nucleus, most of the axons on the contralateral side and all of the axons on the ipsilateral side are thin. Thick axons are present only in the ventral subdivision contralateral to the injection site. The evidence from both anterograde and retrograde tracing studies suggests that the thick axons originate from octopus cells, whereas the thin axons arise from multipolar cells and spherical bushy cells. The differences in constituent cell types and in patterns of inputs suggest that each of the three subdivisions of the ventral nucleus of the lateral lemniscus makes a distinct contribution to the analysis of acoustic signals.

  8. The Neutrophil Nucleus and Its Role in Neutrophilic Function.

    PubMed

    Carvalho, Leonardo Olivieri; Aquino, Elaine Nascimento; Neves, Anne Caroline Dias; Fontes, Wagner

    2015-09-01

    The cell nucleus plays a key role in differentiation processes in eukaryotic cells. It is not the nucleus in particular, but the organization of the genes and their remodeling that provides the data for the adjustments to be made according to the medium. The neutrophil nucleus has a different morphology. It is a multi-lobed nucleus where some researchers argue no longer function. However, studies indicate that it is very probable the occurrence of chromatin remodeling during activation steps. It may be that the human neutrophil nucleus also contributes to the mobility of neutrophils through thin tissue spaces. Questions like these will be discussed in this small review. The topics include morphology of human neutrophil nucleus, maturation process and modifications of the neutrophil nucleus, neutrophil activation and chromatin modifications, causes and consequences of multi-lobulated segmented morphology, and importance of the nucleus in the formation of neutrophil extracellular traps (NETs). © 2015 Wiley Periodicals, Inc.

  9. Measuring neutrino-nucleus interactions with MINERνA

    SciTech Connect

    Rodrigues, P. A.

    2015-07-15

    We present results from the MINERνA experiment for neutrino-nucleus scattering in the few-GeV energy region. These measurements cover a range of processes that must be modeled correctly in neutrino oscillation experiments, and in which recent results from other experiments have suggested deficiencies in the models currently used.

  10. Why do we have a caudate nucleus?

    PubMed

    Villablanca, Jaime R

    2010-01-01

    In order to understand the physiological role of the caudate nucleus, we combine here our laboratory data on cats with reports of patients with selective damage to this nucleus. Cats with bilateral removal of the caudate nuclei showed a stereotyped behavior consisting of persistently approaching and then following a person, another cat, or any object, and attempting to contact the target. Simultaneously, the animals exhibited a friendly disposition and persistent docility together with purring and forelimbs treading/kneading. The magnitude and duration of this behavior was proportional to the extent of the removal reaching a maximum after ablations of 65% or more of the caudate tissue. These cats were hyperactive but they had lost the feline elegance of movements. Additional features of acaudate cats were: (1) postural and accuracy deficits (plus perseveration) in paw usage tasks including bar pressing for food reward; (2) cognitive and perceptual impairments on a T-maze battery of tasks and on the bar pressing tasks; (3) blockage or blunting of the species-specific behavioral response to a single injection of morphine; Unilateral caudate nucleus removal did not produce global behavioral effects, but only deficit in the contralateral paw contact placing reaction and paw usage/bar pressing. Moreover and surprisingly, we found hypertrophy of the ipsilateral caudate nucleus following prenatal focal neocortical removal. The findings in human were also behavioral (not neurological) and also occurred with unilateral caudate damage. The main manifestations consisted of loss of drive (apathy), obsessive-compulsive behavior, cognitive deficits, stimulus-bound perseverative behavior, and hyperactivity. Based on all of the above data we propose that the specific function of the caudate nucleus is to control approach-attachment behavior, ranging from plain approach to a target, to romantic love. This putative function would account well for the caudate involvement in the

  11. Collateral projections from the lateral parabrachial nucleus to the paraventricular thalamic nucleus and the central amygdaloid nucleus in the rat.

    PubMed

    Liang, Shao-Hua; Yin, Jun-Bin; Sun, Yi; Bai, Yang; Zhou, Kai-Xiang; Zhao, Wen-Jun; Wang, Wei; Dong, Yu-Lin; Li, Yun-Qing

    2016-08-26

    Combined the retrograde double tracing with immunofluorescence histochemical staining, we examined the neurons in the lateral parabrachial nucleus (LPB) sent collateral projections to the paraventricular thalamic nucleus (PVT) and central amygdaloid nucleus (CeA) and their roles in the nociceptive transmission in the rat. After the injection of Fluoro-gold (FG) into the PVT and tetramethylrhodamine-dextran (TMR) into the CeA, respectively, FG/TMR double-labeled neurons were observed in the LPB. The percentages of FG/TMR double-labeled neurons to the total number of FG- or TMR-labeled neurons were 6.18% and 9.09%, respectively. Almost all of the FG/TMR double-labeled neurons (95%) exhibited calcitonin gene-related peptide (CGRP) immunoreactivity. In the condition of neuropathic pain, 94% of these neurons showed FOS immunoreactivity. The present data indicates that some of CGRP-expressing neurons in the LPB may transmit nociceptive information toward the PVT and CeA by way of axon collaterals.

  12. Observation of the antimatter helium-4 nucleus

    SciTech Connect

    Agakishiev, H.; Tang, A.; et al.

    2011-04-24

    High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus ({sup 4}He), also known as the anti-{alpha} ({alpha}), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the {alpha}-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by a factor of about 1,000 with each additional antinucleon. Here we report the observation of {sup 4}He, the heaviest observed antinucleus to date. In total, 18 {sup 4}He counts were detected at the STAR experiment at the Relativistic Heavy Ion Collider (RHIC) in 10{sup 9} recorded gold-on-gold (Au+Au) collisions at centre-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, providing an indication of the production rate of even heavier antimatter nuclei and a benchmark for possible future observations of {sup 4}He in cosmic radiation.

  13. Statistical analysis of secondary particle distributions in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The use is described of several statistical techniques to characterize structure in the angular distributions of secondary particles from nucleus-nucleus collisions in the energy range 24 to 61 GeV/nucleon. The objective of this work was to determine whether there are correlations between emitted particle intensity and angle that may be used to support the existence of the quark gluon plasma. The techniques include chi-square null hypothesis tests, the method of discrete Fourier transform analysis, and fluctuation analysis. We have also used the method of composite unit vectors to test for azimuthal asymmetry in a data set of 63 JACEE-3 events. Each method is presented in a manner that provides the reader with some practical detail regarding its application. Of those events with relatively high statistics, Fe approaches 0 at 55 GeV/nucleon was found to possess an azimuthal distribution with a highly non-random structure. No evidence of non-statistical fluctuations was found in the pseudo-rapidity distributions of the events studied. It is seen that the most effective application of these methods relies upon the availability of many events or single events that possess very high multiplicities.

  14. Multiple-scattering effects in nucleus-nucleus reactions with Glauber theory

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Shinya; Ebata, Shuichiro; Horiuchi, Wataru; Kimura, Masaaki

    2014-09-01

    A study of new unstable nuclei has become possible in new radioactive beam facilities. In order to understand the relationship between reaction observables and nuclear structure, we need reaction theory which exactly reflects the nuclear structure. The Glauber theory is a powerful tool of analyzing high energy nuclear reactions. The theory describes the multiple scattering processes, whereas the optical limit approximation (OLA), which is widely used, ignores those processes. Those effects are expected to play an important role in the nuclear collision involving unstable nuclei (see for example Phys. Rev. C 54, 1843 (1996)). Here we apply the Glauber theory to nucleus-nucleus reactions. The wave functions are generated by the Skyrme-Hartree-Fock method and are expressed in a Slater determinant that allows us to evaluate the complete Glauber amplitude easily. We calculate total reaction cross sections, elastic cross sections and differential elastic cross sections for 16~24O, 40~70Ca, 56,58Ni, 100~140Sn, 190~214Pb on proton, 4He, 12C targets and compare with experimental data. The Glauber theory gives much better description than the OLA, especially at larger scattering angles.

  15. Quantitative analysis of the fusion cross sections using different microscopic nucleus-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Adel, A.; Alharbi, T.

    2017-01-01

    The fusion cross sections for reactions involving medium and heavy nucleus-nucleus systems are investigated near and above the Coulomb barrier using the one-dimensional barrier penetration model. The microscopic nuclear interaction potential is computed by four methods, namely: the double-folding model based on a realistic density-dependent M3Y NN interaction with a finite-range exchange part, the Skyrme energy density functional in the semiclassical extended Thomas-Fermi approximation, the generalized Proximity potential, and the Akyüz-Winther interaction. The comparison between the calculated and the measured values of the fusion excitation functions indicates that the calculations of the DFM give quite satisfactory agreement with the experimental data, being much better than the other methods. New parameterized forms for the fusion barrier heights and positions are presented. Furthermore, the effects of deformation and orientation degrees of freedom on the distribution of the Coulomb barrier characteristics as well as the fusion cross sections are studied for the reactions 16 O + 70 Ge and 28 Si + 100 Mo. The calculated values of the total fusion cross sections are compared with coupled channel calculations using the code CCFULL and compared with the experimental data. Our results reveal that the inclusion of deformations and orientation degrees of freedom improves the comparison with the experimental data.

  16. Feasibility of multichannel human cochlear nucleus stimulation.

    PubMed

    Luetje, C M; Whittaker, C K; Geier, L; Mediavilla, S J; Shallop, J K

    1992-01-01

    Bipolar electrical stimulation of the brainstem cochlear nucleus (CN) following acoustic tumor removal in an only-hearing ear can provide beneficial hearing. However, the benefits of multichannel stimulation have yet to be defined. Following removal of a second acoustic tumor in a patient with neurofibromatosis 2, a Nucleus mini-22 channel implant device was inserted with the electrode array tip from the foramen of Luschka cephalad along the root entry zone of the eighth nerve, secured by a single suture superficially in the brain stem. Initial stimulation on the sixth postoperative day indicated that electrodes 18 to 22 were capable of CN stimulation without seventh nerve stimulation. Presumed electrode migration precluded further CN stimulation 1 month later. This report illustrates the feasibility of brainstem CN stimulation with an existing multichannel system.

  17. Cell Nucleus-Targeting Zwitterionic Carbon Dots

    PubMed Central

    Jung, Yun Kyung; Shin, Eeseul; Kim, Byeong-Su

    2015-01-01

    An innovative nucleus-targeting zwitterionic carbon dot (CD) vehicle has been developed for anticancer drug delivery and optical monitoring. The zwitterionic functional groups of the CDs introduced by a simple one-step synthesis using β-alanine as a passivating and zwitterionic ligand allow cytoplasmic uptake and subsequent nuclear translocation of the CDs. Moreover, multicolor fluorescence improves the accuracy of the CDs as an optical code. The CD-based drug delivery system constructed by non-covalent grafting of doxorubicin, exhibits superior antitumor efficacy owing to enhanced nuclear delivery in vitro and tumor accumulation in vivo, resulting in highly effective tumor growth inhibition. Since the zwitterionic CDs are highly biocompatible and effectively translocated into the nucleus, it provides a compelling solution to a multifunctional nanoparticle for substantially enhanced nuclear uptake of drugs and optical monitoring of translocation. PMID:26689549

  18. Gustatory Reward and the Nucleus Accumbens

    PubMed Central

    Norgren, R.; Hajnal, A.; Mungarndee, S.S.

    2011-01-01

    The concept of reward is central to psychology, but remains a cipher for neuroscience. Considerable evidence implicates dopamine in the process of reward and much of the data derives from the nucleus accumbens. Gustatory stimuli are widely used for animal studies of reward, but the connections between the taste and reward systems are unknown. In a series of experiments, our laboratory has addressed this issue using functional neurochemistry and neuroanatomy. First, using microdialysis probes, we demonstrated that sapid sucrose releases dopamine in the nucleus accumbens. The effect is dependent on oral stimulation and concentration. We subsequently determined that this response was independent of the thalamocortical gustatory system, but substantially blunted by damage to the parabrachial limbic taste projection. Further experiments using c-fos histochemistry confirmed that the limbic pathway was the prime carrier for the gustatory afferent activity that drives accumbens dopamine release. PMID:16822531

  19. Cell Nucleus-Targeting Zwitterionic Carbon Dots.

    PubMed

    Jung, Yun Kyung; Shin, Eeseul; Kim, Byeong-Su

    2015-12-22

    An innovative nucleus-targeting zwitterionic carbon dot (CD) vehicle has been developed for anticancer drug delivery and optical monitoring. The zwitterionic functional groups of the CDs introduced by a simple one-step synthesis using β-alanine as a passivating and zwitterionic ligand allow cytoplasmic uptake and subsequent nuclear translocation of the CDs. Moreover, multicolor fluorescence improves the accuracy of the CDs as an optical code. The CD-based drug delivery system constructed by non-covalent grafting of doxorubicin, exhibits superior antitumor efficacy owing to enhanced nuclear delivery in vitro and tumor accumulation in vivo, resulting in highly effective tumor growth inhibition. Since the zwitterionic CDs are highly biocompatible and effectively translocated into the nucleus, it provides a compelling solution to a multifunctional nanoparticle for substantially enhanced nuclear uptake of drugs and optical monitoring of translocation.

  20. Physical Properties of Cometary Nucleus Candidates

    NASA Technical Reports Server (NTRS)

    Jewitt, David; Hillman, John (Technical Monitor)

    2003-01-01

    In this proposal we aim to study the physical properties of the Centaurs and the dead comets, these being the precursors to, and the remnants from, the active cometary nuclei. The nuclei themselves are very difficult to study, because of the contaminating effects of near-nucleus coma. Systematic investigation of the nuclei both before they enter the zone of strong sublimation and after they have depleted their near-surface volatiles should neatly bracket the properties of these objects, revealing evolutionary effects.

  1. Development of a Mobile Ice Nucleus Counter

    SciTech Connect

    Kok, Gregory; Kulkarni, Gourihar

    2014-07-10

    An ice nucleus counter has been constructed. The instrument uses built-in refrigeration systems for wall cooling. A cascade refrigeration system will allow the cold wall to operate as low as -70°C, and a single stage system can operate the warm wall at -45C. A unique optical particle counter has been constructed using polarization detection of the scattered light. This allows differentiation of the particles exiting the chamber to determine if they are ice or liquid.

  2. Absolute cross sections of compound nucleus reactions

    NASA Astrophysics Data System (ADS)

    Capurro, O. A.

    1993-11-01

    The program SEEF is a Fortran IV computer code for the extraction of absolute cross sections of compound nucleus reactions. When the evaporation residue is fed by its parents, only cumulative cross sections will be obtained from off-line gamma ray measurements. But, if one has the parent excitation function (experimental or calculated), this code will make it possible to determine absolute cross sections of any exit channel.

  3. Antinucleon-nucleus elastic and inelastic scattering

    SciTech Connect

    Dover, C.B.; Millener, D.J.

    1985-01-01

    A general overview of the utility of antinucleon (anti N)-nucleus inelastic scattering studies is presented, emphasizing both the sensitivity of the cross sections to various components of the N anti N transition amplitudes and the prospects for the exploration of some novel aspects of nuclear structure. We start with an examination of the relation between NN and N anti N potentials, focusing on the coherences predicted for the central, spin-orbit and tensor components, and how these may be revealed by measurements of two-body spin observables. We next discuss the role of the nucleus as a spin and isospin filter, and show how, by a judicious choice of final state quantum numbers (natural or unnatural parity states, isospin transfer ..delta..T = 0 or 1) and momentum transfer q, one can isolate different components of the N anti N transition amplitude. Various models for the N anti N interaction which give reasonable fits to the available two-body data are shown to lead to strikingly different predictions for certain spin-flip nuclear transitions. We suggest several possible directions for future anti N-nucleus inelastic scattering experiments, for instance the study of spin observables which would be accessible with polarized anti N beams, charge exchange reactions, and higher resolution studies of the (anti p, anti p') reaction. We compare the antinucleon and the nucleon as a probe of nuclear modes of excitation. 40 refs., 13 figs.

  4. Comet nucleus and asteroid sample return missions

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  5. How to build a yeast nucleus.

    PubMed

    Wong, Hua; Arbona, Jean-Michel; Zimmer, Christophe

    2013-01-01

    Biological functions including gene expression and DNA repair are affected by the 3D architecture of the genome, but the underlying mechanisms are still unknown. Notably, it remains unclear to what extent nuclear architecture is driven by generic physical properties of polymers or by specific factors such as proteins binding particular DNA sequences. The budding yeast nucleus has been intensely studied by imaging and biochemical techniques, resulting in a large quantitative data set on locus positions and DNA contact frequencies. We recently described a quantitative model of the interphase yeast nucleus in which chromosomes are represented as passively moving polymer chains. This model ignores the DNA sequence information except for specific constraints at the centromeres, telomeres, and the ribosomal DNA (rDNA). Despite its simplicity, the model accounts for a large majority of experimental data, including absolute and relative locus positions and contact frequency patterns at chromosomal and subchromosomal scales. Here, we also illustrate the model's ability to reproduce observed features of chromatin movements. Our results strongly suggest that the dynamic large-scale architecture of the yeast nucleus is dominated by statistical properties of randomly moving polymers with a few sequence-specific constraints, rather than by a large number of DNA-specific factors or epigenetic modifications. In addition, we show that our model accounts for recently measured variations in homologous recombination efficiency, illustrating its potential for quantitatively understanding functional consequences of nuclear architecture.

  6. Functional morphology of the suprachiasmatic nucleus.

    PubMed

    Ibata, Y; Okamura, H; Tanaka, M; Tamada, Y; Hayashi, S; Iijima, N; Matsuda, T; Munekawa, K; Takamatsu, T; Hisa, Y; Shigeyoshi, Y; Amaya, F

    1999-07-01

    In mammals, the biological clock (circadian oscillator) is situated in the suprachiasmatic nucleus (SCN), a small bilaterally paired structure just above the optic chiasm. Circadian rhythms of sleep-wakefulness and hormone release disappear when the SCN is destroyed, and transplantation of fetal or neonatal SCN into an arrhythmic host restores rhythmicity. There are several kinds of peptide-synthesizing neurons in the SCN, with vasoactive intestinal peptide, arginine vasopressin, and somatostatine neurons being most prominent. Those peptides and their mRNA show diurnal rhythmicity and may or may not be affected by light stimuli. Major neuronal inputs from retinal ganglion cells as well as other inputs such as those from the lateral geniculate nucleus and raphe nucleus are very important for entrainment and shift of circadian rhythms. In this review, we describe morphological and functional interactions between neurons and glial elements and their development. We also consider the expression of immediate-early genes in the SCN after light stimulation during subjective night and their role in the mechanism of signal transduction. The reciprocal interaction between the SCN and melatonin, which is synthesized in the pineal body under the influence of polysynaptic inputs from the SCN, is also considered. Finally, morphological and functional characteristics of clock genes, particularly mPers, which are considered to promote circadian rhythm, are reviewed. Copyright 1999 Academic Press.

  7. Comet nucleus and asteroid sample return missions

    NASA Astrophysics Data System (ADS)

    1992-06-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  8. Forward Physics in Proton-Nucleus and Nucleus-Nucleus Collisions

    SciTech Connect

    Nemchik, J.; Potashnikova, I. K.

    2008-10-13

    We present an universal treatment for a substantial nuclear suppression representing a common feature of all known reactions on nuclear targets (forward production of high-p{sub T} hadrons, production of direct photons, the Drell-Yan process, heavy flavor production, etc.). Such a suppression at large Feynman x{sub F}, corresponding to region of minimal light-cone momentum fraction variable x{sub 2} in nuclei, is tempting to interpret as a manifestation of coherence or the Color Glass Condensate. We demonstrate, however, that it is actually a simple consequence of energy conservation and takes place even at low energies, where no effects of coherence are possible. We analyze this common suppression mechanism for several processes performing model predictions in the light-cone dipole approach. Our calculations agree with the data.

  9. Dynamical evolution of comet nucleus rotation

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.; Sidorenko, V. V.; Neishtadt, A. I.; Vasiliev, A. A.

    2002-09-01

    The rotational dynamics of outgassing cometary nuclei are investigated analytically. We develop a general theory for the evolution of a comet nucleus' rotation state using averaging theory and assuming that the outgassing torques are a function of solar insolation and heliocentric distance. The resulting solutions are a function of the nucleus inertia ellipsoid, its outgassing properties, its heliocentric orbit, and the assumed distribution of active regions on its surface. We find that the long-term evolution of the comet nucleus rotation is a strong function of the distribution of active regions over its surface. In particular, we find that nuclei with nearly axisymmetric inertia ellipsoids and a uniformly active surface will tend towards a rotation state that has a nutation angle of ~ 55 degrees and its angular momentum perpendicular to the sun-perihelion direction. If such a comet nucleus has only one isolated active region, it will tend towards a zero nutation angle with its approximate symmetry axis and rotational angular momentum aligned parallel to the sun-perihelion direction. In the general case for an inertia ellipsoid that is not close to being axisymmetric we find a much richer set of possible steady-state solutions that are stable, ranging from rotation about the maximum moment of the inertia axis, to SAM and LAM non-principal axis rotation states. The resulting stable rotation states are a strong function of outgassing activity distribution, which we show using a simplified model of the comet Halley nucleus. Also, we demonstrate that comet Borrely observations are consistent with a stable rotation state. Our results can be used to discriminate between competing theories of comet outgassing based on a nucelus' rotation state. They also allow for a range of plausible a priori constraints to be placed on a comet's rotation state to aid in the interpretation of its outgassing structure. This work was supported by the NASA JURRISS program under Grant NAG5

  10. Dynamics of strange, charm and high momentum hadrons in relativistic nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Cassing, W.; Gallmeister, K.; Bratkovskaya, E. L.; Greiner, C.; Stöcker, H.

    2004-07-01

    We investigate hadron production and attenuation of hadrons with strange and charm quarks (or antiquarks) as well as high transverse momentum hadrons in relativistic nucleus-nucleus collisions from 2 A GeV to 21.3 A TeV within two independent transport approaches (UrQMD and HSD). Both transport models are based on quark, diquark, string and hadronic degrees of freedom, but do not include any explicit phase transition to a quark-gluon plasma. From our dynamical calculations we find that both models do not describe the maximum in the K+/ π+ ratio at 20-30 A GeV in central Au+Au collisions found experimentally, though the excitation functions of strange mesons are reproduced well in HSD and UrQMD. Furthermore, the transport calculations show that the charmonium recreation by D+ D¯→J/Ψ+ meson reactions is comparable to the dissociation by ‘comoving’ mesons at RHIC energies contrary to SPS energies. This leads to the final result that the total J/ Ψ suppression as a function of centrality at RHIC should be less than the suppression seen at SPS energies where the ‘comover’ dissociation is substantial and the backward channels play no role. Furthermore, our transport calculations-in comparison to experimental data on transverse momentum spectra from pp, d+Au and Au+Au reactions-show that pre-hadronic effects are responsible for both the hardening of the hadron spectra for low transverse momenta (Cronin effect) as well as the suppression of high pT hadrons. The mutual interactions of formed hadrons are found to be negligible in central Au+Au collisions at s=200 GeV for p T≥6 GeV/c and the sizeable suppression seen experimentally is attributed to a large extent to the interactions of ‘leading’ pre-hadrons with the dense environment.

  11. Biological Effect of Lead-212 Localized in the Nucleus of Mammalian Cells: Role of Recoil Energy in the Radiotoxicity of Internal Alpha-Particle Emitters1

    PubMed Central

    Azure, Michael T.; Archer, Ronald D.; Sastry, Kandula S. R.; Rao, Dandamudi V.; Howell, Roger W.

    2012-01-01

    The radiochemical dipyrrolidinedithiocarbamato-212Pb(II) [212Pb(PDC)2] is synthesized and its effects on colony formation in cultured Chinese hamster V79 cells are investigated. The cellular uptake, biological retention, subcellular distribution and cytotoxicity of the radiocompound are determined. The 212Pb is taken up quickly by the cells, reaching saturation levels in 1.25 h. When the cells are washed, the intracellular activity is retained with a biological half-life of 11.6 h. Gamma-ray spectroscopy indicates that the 212Pb daughters (212Bi, 212Po and 208Tl) are in secular equilibrium within the cell. About 72% of the cellular activity localizes in the cell nucleus, of which 35% is bound specifically to nuclear DNA. The mean cellular uptake required to achieve 37% survival is 0.35 mBq of 212Pb per cell, which delivers a dose of 1.0 Gy to the cell nucleus when the recoil energy of 212Bi and 212Po decays is ignored and 1.7 Gy when recoil is included. The corresponding RBE values compared to acute external 137Cs γ rays at 37% survival are 4.0 and 2.3, respectively. The chemical Pb(PDC)2 is not chemotoxic at the concentrations used in this study. Because the β-particle emitter 212Pb decays to the α-particle-emitting daughters 212Bi and 212Po, these studies provide information on the biological effects of α-particle decays that occur in the cell nucleus. Our earlier studies with cells of the same cell line using 210Po (emits 5.3 MeV α particle) localized predominantly in the cytoplasm resulted in an RBE of 6. These earlier results for 210Po, along with the present results for 212Pb, suggest that the recoil energy associated with the 212Bi and 212Po daughter nuclei plays little or no role in imparting biological damage to critical targets in the cell nucleus. PMID:7938477

  12. Nucleus-nucleus cold fusion reactions analyzed with the l-dependent 'fusion by diffusion' model

    SciTech Connect

    Cap, T.; Siwek-Wilczynska, K.; Wilczynski, J.

    2011-05-15

    We present a modified version of the Fusion by Diffusion (FBD) model aimed at describing the synthesis of superheavy nuclei in cold fusion reactions, in which a low excited compound nucleus emits only one neutron. The modified FBD model accounts for the angular momentum dependence of three basic factors determining the evaporation residue cross section: the capture cross section {sigma}{sub cap}(l), the fusion probability P{sub fus}(l), and the survival probability P{sub surv}(l). The fusion hindrance factor, the inverse of P{sub fus}(l), is treated in terms of thermal fluctuations in the shape degrees of freedom and is expressed as a solution of the Smoluchowski diffusion equation. The l dependence of P{sub fus}(l) results from the l-dependent potential energy surface of the colliding system. A new parametrization of the distance of starting point of the diffusion process is introduced. An analysis of a complete set of 27 excitation functions for production of superheavy nuclei in cold fusion reactions, studied in experiments at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley, is presented. The FBD model satisfactorily reproduces shapes and absolute cross sections of all the cold fusion excitation functions. It is shown that the peak position of the excitation function for a given 1n reaction is determined by the Q value of the reaction and the height of the fission barrier of the final nucleus. This fact could possibly be used in future experiments (with well-defined beam energy) for experimental determination of the fission barrier heights.

  13. Nuclear radii calculations in various theoretical approaches for nucleus-nucleus interactions

    SciTech Connect

    Merino, C.; Novikov, I. S.; Shabelski, Yu.

    2009-12-15

    The information about sizes and nuclear density distributions in unstable (radioactive) nuclei is usually extracted from the data on interaction of radioactive nuclear beams with a nuclear target. We show that in the case of nucleus-nucleus collisions the values of the parameters depend somewhat strongly on the considered theoretical approach and on the assumption about the parametrization of the nuclear density distribution. The obtained values of root-mean-square radii (R{sub rms}) for stable nuclei with atomic weights A=12-40 vary by approximately 0.1 fm when calculated in the optical approximation, in the rigid target approximation, and using the exact expression of the Glauber theory. We present several examples of R{sub rms} radii calculations using these three theoretical approaches and compare these results with the data obtained from electron-nucleus scattering.

  14. Moderate Long-Term Modulation of Neuropeptide Y in Hypothalamic Arcuate Nucleus Induces Energy Balance Alterations in Adult Rats

    PubMed Central

    Sousa-Ferreira, Lígia; Garrido, Manuel; Nascimento-Ferreira, Isabel; Nobrega, Clévio; Santos-Carvalho, Ana; Álvaro, Ana Rita; Rosmaninho-Salgado, Joana; Kaster, Manuella; Kügler, Sebastian

    2011-01-01

    Neuropeptide Y (NPY) produced by arcuate nucleus (ARC) neurons has a strong orexigenic effect on target neurons. Hypothalamic NPY levels undergo wide-ranging oscillations during the circadian cycle and in response to fasting and peripheral hormones (from 0.25 to 10-fold change). The aim of the present study was to evaluate the impact of a moderate long-term modulation of NPY within the ARC neurons on food consumption, body weight gain and hypothalamic neuropeptides. We achieved a physiological overexpression (3.6-fold increase) and down-regulation (0.5-fold decrease) of NPY in the rat ARC by injection of AAV vectors expressing NPY and synthetic microRNA that target the NPY, respectively. Our work shows that a moderate overexpression of NPY was sufficient to induce diurnal over-feeding, sustained body weight gain and severe obesity in adult rats. Additionally, the circulating levels of leptin were elevated but the immunoreactivity (ir) of ARC neuropeptides was not in accordance (POMC-ir was unchanged and AGRP-ir increased), suggesting a disruption in the ability of ARC neurons to response to peripheral metabolic alterations. Furthermore, a dysfunction in adipocytes phenotype was observed in these obese rats. In addition, moderate down-regulation of NPY did not affect basal feeding or normal body weight gain but the response to food deprivation was compromised since fasting-induced hyperphagia was inhibited and fasting-induced decrease in locomotor activity was absent. These results highlight the importance of the physiological ARC NPY levels oscillations on feeding regulation, fasting response and body weight preservation, and are important for the design of therapeutic interventions for obesity that include the NPY. PMID:21799827

  15. Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.

  16. Development of silicon pixels for strangeness detection in nucleus-nucleus collisions

    SciTech Connect

    Antinori, F. |; Barberis, D.; Beker, H.; Beusch, W.; Campbell, M.; Cantatore, E.; Catanesi, M.G.; Chesi, E.; Darbo, G.; Di Bari, D.; Di Liberto, S.; Elia, D.; Heijne, E.H.M.; Helstrup, H.; Jacholkowski, A.; Klempt, W.; Knudson, K.; Kralik, I.; Lassalle, J.C.; Lenti, V.; Lopez, L.; Luptak, M.; Martinengo, P.; Meddi, F.; Middelkamp, P.; Presented by...

    1995-07-20

    Silicon microdetectors and in particular the novel silicon pixel detectors open up the way for a comprehensive study of strangeness detection in nucleus-nucleus collisions. We outline the philosophy behind this approach, describe an application in the pixel-based heavy-ion experiment WA97, and give some preliminary results on the performance of four silicon pixels planes in the 1994 Pb beam run of WA97. We conclude with an outlook on some possible future applications of silicon pixels. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}.

  17. Surface Photometric Variation of Comet Borrelly's Nucleus

    NASA Astrophysics Data System (ADS)

    Li, J.; A'Hearn, M. F.; McFadden, L. A.

    2004-11-01

    Comet Borrelly was visited by Deep Space 1 in Sept. 2001 (Soderblom et al. 2004) The images of comet Borrelly's nucleus show large brightness variation over the surface even after the effect of shape is taken into account (Oberst et al. 2004, Kirk et al. 2004). It is not yet known whether this variation is caused by albedo variation (Oberst et al. 2004, Buratti et al. 2004) or the variation of other physical properties such as surface roughness (Kirk et al. 2004) or solar phase function. In our analysis, the disk-resolved images from the DS1 spacecraft (Soderblom et al. 2004) were used, coupled with the shape model of Borrelly's nucleus developed from stereo imaging (Oberst et al. 2004, Kirk et al. 2004), to fit the bidirectional reflectance as a function of local illumination and viewing geometry for individual terrains as defined by Britt et al. (2004). Results show that the surface reflectance variation is, contrary to previous interpretations, most likely due to the combination of albedo variation (a factor of 1.5) and the variation of the asymmetry factor (g) of the single-particle phase function. We find the roughness parameter (theta_bar) is <25o over the surface. The surface on Borrelly's nucleus can be highly back-scattering (g <= -0.7) for mottled terrain, and close to isotropic scattering (g -0.15) for smooth terrain, with single scattering albedo ranging from 0.05 to 0.07. This work is supported by NASA grant NNG04GA92G.

  18. The quasirelativistic contact interaction and effective electron and spin densities at the nucleus: A model based on weighting the electron density with the finite Gaussian nucleus model

    NASA Astrophysics Data System (ADS)

    Malček, Michal; Bučinský, Lukáš; Biskupič, Stanislav; Jayatilaka, Dylan

    2013-08-01

    The Infinite Order Two Component quasirelativistic Hartree-Fock contact and effective electron/spin densities of Cu, Ag, Au atoms and the chemical shifts of HgF2, Cu+, Ag+ and Au+ are presented. The effective densities for the Gaussian nucleus model based on the weighted product of electron/spin density with the Gaussian distribution of the nucleus are reported for the first time. The effective (average) electron density obtained via the derivative of the energy of the system with respect to the size of the nucleus is shown for comparison. The finite-field difference method to obtain the derivative of the energy is also considered.

  19. Dust activity of Comet Halley's nucleus

    NASA Technical Reports Server (NTRS)

    Keller, H. U.; Delamere, W. A.; Huebner, W. F.; Reitsema, H.; Schmidt, H. U.; Schmidt, W. K. H.; Whipple, Fred L.; Wilhelm, K.

    1986-01-01

    Images obtained by the Halley multicolor camera using the clear filter with a pass band from 300 to 1000 nm were used to study dust activity in the comet nucleus. Comparisons with ground based observations confirm that dust production towards the Sun increases in activity relative to the southern background source while the Giotto spacecraft was approaching. This is in agreement with the assumption that the sunward activity becomes stronger when the source rotates towards the Sun. Estimated dust column density is 90 billion/sqm, with optical thickness less than or = 0.3. Surface reflectivity is less than 1%, indicating a very rough surface with large fractions of shadowed areas.

  20. Rethinking temperature sensitivity of the suprachiasmatic nucleus.

    PubMed

    Ruby, Norman F

    2011-08-01

    A report by Buhr et al. (2010) proposed that the suprachiasmatic nucleus (SCN) is resistant to phase shifts induced by heat pulses and to entrainment by temperature cycles. These findings are inconsistent with those from studies by other laboratories in which the SCN readily phase shifts in response to heat pulses. I propose that their negative findings are not due to the SCN being temperature insensitive but are based on an explant culture preparation that does not fully express the properties of the SCN that are present in other in vitro preparations.

  1. Galaxy NGC 1448 with Active Galactic Nucleus

    NASA Image and Video Library

    2017-01-07

    NGC 1448, a galaxy with an active galactic nucleus, is seen in this image combining data from the Carnegie-Irvine Galaxy Survey in the optical range and NuSTAR in the X-ray range. This galaxy contains an example of a supermassive black hole hidden by gas and dust. X-ray emissions from NGC 1448, as seen by NuSTAR and Chandra, suggests for the first time that, like IC 3639 in PIA21087, there must be a thick layer of gas and dust hiding the active black hole in this galaxy from our line of sight. http://photojournal.jpl.nasa.gov/catalog/PIA21086

  2. Dust activity of Comet Halley's nucleus

    NASA Technical Reports Server (NTRS)

    Keller, H. U.; Delamere, W. A.; Huebner, W. F.; Reitsema, H.; Schmidt, H. U.; Schmidt, W. K. H.; Whipple, Fred L.; Wilhelm, K.

    1986-01-01

    Images obtained by the Halley multicolor camera using the clear filter with a pass band from 300 to 1000 nm were used to study dust activity in the comet nucleus. Comparisons with ground based observations confirm that dust production towards the Sun increases in activity relative to the southern background source while the Giotto spacecraft was approaching. This is in agreement with the assumption that the sunward activity becomes stronger when the source rotates towards the Sun. Estimated dust column density is 90 billion/sqm, with optical thickness less than or = 0.3. Surface reflectivity is less than 1%, indicating a very rough surface with large fractions of shadowed areas.

  3. The bare nucleus of comet Neujmin 1

    NASA Technical Reports Server (NTRS)

    Campins, Humberto; A'Hearn, Michael F.; Mcfadden, Lucy-Ann

    1987-01-01

    Simultaneous visible and infrared observations of comet P/Neujmin 1 1984c are presented which show that the comet has a large (mean radius 10 km), dark (geometric albedo 2-3 percent) nucleus with a surface which is mostly inert material but which still shows a low level of gaseous activity. This is the first physical evidence that cometary nuclei can leave behind an inert body after the coma activity ceases. No asteroid or asteroid class has been found to match the reflectance and albedo of this comet except possibly some D asteroids.

  4. [The perichromatin compartment of the cell nucleus].

    PubMed

    Bogoliubov, D S

    2014-01-01

    In this review, the data on the structure and composition of the perichromatin compartment, a special border area between the condensed chromatin and the interchromatin space of the cell nucleus, are discussed in the light of the concept of nuclear functions in complex nuclear architectonics. Morphological features, molecular composition and functions of main extrachromosomal structures of the perichromatin compartment, perichromatin fibrils (PFs) and perichromatin granules (PGs) including nuclear stress-bodies (nSBs) that are derivates of the PGs under heat shock, are presented. A special attention was paid to the features of the molecular compositions of PFs and PGs in different cell types and at different physiological conditions.

  5. Visual field topography and binocular responses in frog's nucleus isthmi.

    PubMed

    Wang, S R; Yan, K; Wang, Y T

    1981-09-01

    Visual responses of 125 units have been extracellularly recorded with glass micropipettes from the left nucleus isthmi in the frog Rana nigromaculata, and 101 electrode tip positions marked with cobalt staining to reconstruct a visual field map in the nucleus. 80% of the units recorded show ON-OFF responses to a stationary spot of light and many are directionally selective in response to black or white targets moving through their receptive fields. All the cobalt-marked spots are within the nucleus, indicating that the nucleus isthmus proper is a restricted part of the frog visual system. There is a visual field map in the nucleus. The entire contralateral hemifield and the nasal 40 degrees of the ipsilateral hemifield project on the nucleus topographically. A cell-free band inside the nucleus is a boundary line separating the contralateral hemifield from the ipsilateral one. Dorsal to it is the contralateral field representation. The upper visual field projects on the rostral half of the nucleus and the central and medio-ventral portion of its caudal half. The lower field is represented on the dorsal and lateral part of the caudal half. Fifteen binocular units have been found from the nucleus, 13 of which are dominantly activated by the contralateral eye, the other two are almost equally excited by either eye. These binocular units are mainly situated in the medulla of the rostral half of the nucleus isthmus.

  6. The shape of the human lens nucleus with accommodation.

    PubMed

    Hermans, Erik; Dubbelman, Michiel; van der Heijde, Rob; Heethaar, Rob

    2007-07-31

    Knowledge about geometric properties such as shape and volume and Poisson's ratio of the nucleus can be used in the mechanical and optical modeling of the accommodation process. Therefore, Scheimpflug imaging was used to determine the shape of the human lens nucleus during accommodation in five subjects. To describe the shape of the nucleus, we fitted a parametric model of the cross-sectional geometry to the gradient of the Scheimpflug images using the Hough transform. The geometric model made it possible to estimate the anterior and the posterior central radius, central thickness, equatorial diameter, and cross-sectional area of the nucleus. Assuming that the nucleus is rotationally symmetric, the volume of the nucleus can be estimated by integrating around the circumference. For all five subjects, the results show that during accommodation the nucleus became more convex and that the central thickness increased whereas the equatorial diameter decreased. This decrease in equatorial diameter of the nucleus with accommodation is in accordance with the Helmholtz accommodation theory. Finally, the volume of the nucleus (on average 35 mm(3)) showed no significant change during accommodation in any of the subjects, presumably due to the fact that the human nucleus consists of incompressible material with a Poisson's ratio that is near .5.

  7. Paraventricular hypothalamic nucleus: axonal projections to the brainstem

    PubMed Central

    Geerling, Joel C.; Shin, Jung-Won; Chimenti, Peter C.; Loewy, Arthur D.

    2010-01-01

    The paraventricular hypothalamic nucleus (PVH) contains many neurons that innervate the brainstem, but information regarding their target sites remains incomplete. Here, we labeled neurons in the rat PVH with an anterograde axonal tracer, Phaseolus vulgaris leucoagglutinin (PHAL) and studied their descending projections in reference to specific neuronal subpopulations throughout the brainstem. While many of their target sites were identified previously, numerous new observations were made. Major findings include: (1) In the midbrain, the PVH projects lightly to the ventral tegmental area, Edinger-Westphal nucleus, ventrolateral periaqueductal gray matter, reticular formation, pedunculopontine tegmental nucleus, and dorsal raphe nucleus. (2) In the dorsal pons, the PVH projects heavily to the pre-locus coeruleus, yet very little to the catecholamine neurons in the locus coeruleus, and selectively targets the viscerosensory subregions of the parabrachial nucleus; (3) In the ventral medulla, the superior salivatory nucleus, retrotrapezoid nucleus, compact and external formations of the nucleus ambiguus, A1 and caudal C1 catecholamine neurons, and caudal pressor area receive dense axonal projections, generally exceeding the PVH projection to the rostral C1 region; (4) The medial nucleus of the solitary tract (including A2 noradrenergic and aldosterone-sensitive neurons) receives the most extensive projections of the PVH, substantially more than the dorsal vagal nucleus or area postrema. Our findings suggest that the PVH may modulate a range of homeostatic functions, including cerebral and ocular blood flow, corneal and nasal hydration, ingestive behavior, sodium intake, and glucose metabolism, as well as cardiovascular, gastrointestinal, and respiratory activities. PMID:20187136

  8. Defense of Elevated Body Weight Setpoint in Diet-Induced Obese Rats on Low Energy Diet Is Mediated by Loss of Melanocortin Sensitivity in the Paraventricular Hypothalamic Nucleus.

    PubMed

    Luchtman, Dirk W; Chee, Melissa J S; Doslikova, Barbora; Marks, Daniel L; Baracos, Vickie E; Colmers, William F

    2015-01-01

    Some animals and humans fed a high-energy diet (HED) are diet-resistant (DR), remaining as lean as individuals who were naïve to HED. Other individuals become obese during HED exposure and subsequently defend the obese weight (Diet-Induced Obesity- Defenders, DIO-D) even when subsequently maintained on a low-energy diet. We hypothesized that the body weight setpoint of the DIO-D phenotype resides in the hypothalamic paraventricular nucleus (PVN), where anorexigenic melanocortins, including melanotan II (MTII), increase presynaptic GABA release, and the orexigenic neuropeptide Y (NPY) inhibits it. After prolonged return to low-energy diet, GABA inputs to PVN neurons from DIO-D rats exhibited highly attenuated responses to MTII compared with those from DR and HED-naïve rats. In DIO-D rats, melanocortin-4 receptor expression was significantly reduced in dorsomedial hypothalamus, a major source of GABA input to PVN. Unlike melanocortin responses, NPY actions in PVN of DIO-D rats were unchanged, but were reduced in neurons of the ventromedial hypothalamic nucleus; in PVN of DR rats, NPY responses were paradoxically increased. MTII-sensitivity was restored in DIO-D rats by several weeks' refeeding with HED. The loss of melanocortin sensitivity restricted to PVN of DIO-D animals, and its restoration upon prolonged refeeding with HED suggest that their melanocortin systems retain the ability to up- and downregulate around their elevated body weight setpoint in response to longer-term changes in dietary energy density. These properties are consistent with a mechanism of body weight setpoint.

  9. Defense of Elevated Body Weight Setpoint in Diet-Induced Obese Rats on Low Energy Diet Is Mediated by Loss of Melanocortin Sensitivity in the Paraventricular Hypothalamic Nucleus

    PubMed Central

    Luchtman, Dirk W.; Chee, Melissa J. S.; Doslikova, Barbora; Marks, Daniel L.; Baracos, Vickie E.; Colmers, William F.

    2015-01-01

    Some animals and humans fed a high-energy diet (HED) are diet-resistant (DR), remaining as lean as individuals who were naïve to HED. Other individuals become obese during HED exposure and subsequently defend the obese weight (Diet-Induced Obesity- Defenders, DIO-D) even when subsequently maintained on a low-energy diet. We hypothesized that the body weight setpoint of the DIO-D phenotype resides in the hypothalamic paraventricular nucleus (PVN), where anorexigenic melanocortins, including melanotan II (MTII), increase presynaptic GABA release, and the orexigenic neuropeptide Y (NPY) inhibits it. After prolonged return to low-energy diet, GABA inputs to PVN neurons from DIO-D rats exhibited highly attenuated responses to MTII compared with those from DR and HED-naïve rats. In DIO-D rats, melanocortin-4 receptor expression was significantly reduced in dorsomedial hypothalamus, a major source of GABA input to PVN. Unlike melanocortin responses, NPY actions in PVN of DIO-D rats were unchanged, but were reduced in neurons of the ventromedial hypothalamic nucleus; in PVN of DR rats, NPY responses were paradoxically increased. MTII-sensitivity was restored in DIO-D rats by several weeks’ refeeding with HED. The loss of melanocortin sensitivity restricted to PVN of DIO-D animals, and its restoration upon prolonged refeeding with HED suggest that their melanocortin systems retain the ability to up- and downregulate around their elevated body weight setpoint in response to longer-term changes in dietary energy density. These properties are consistent with a mechanism of body weight setpoint. PMID:26444289

  10. K+-nucleus potentials from K+-nucleon amplitudes

    NASA Astrophysics Data System (ADS)

    Friedman, E.

    2016-10-01

    Optical potentials for K+-nucleus interactions are constructed from K+-nucleon amplitudes using recently developed algorithm based on K+-N kinematics in the nuclear medium. With the deep penetration of K+ mesons into the nucleus at momenta below 800 MeV / c it is possible to test this approach with greater sensitivity than hitherto done with K- and pions. The energy-dependence of experimental reaction and total cross sections on nuclei is better reproduced with this approach compared to fixed-energy amplitudes. The inclusion of Pauli correlations in the medium also improves the agreement between calculation and experiment. The absolute scale of the cross sections is reproduced very well for 6Li but for C, Si and Ca calculated cross sections are (23 ± 4)% smaller than experiment, in agreement with earlier analyses. Two phenomenological models that produce such missing strength suggest that the imaginary part of the potential needs about 40% enhancement.

  11. Prestress mediates force propagation into the nucleus

    SciTech Connect

    Hu Shaohua; Chen Jianxin; Butler, James P.; Wang Ning . E-mail: nwang@hsph.harvard.edu

    2005-04-08

    Several reports show that the nucleus is 10 times stiffer than the cytoplasm. Hence, it is not clear if intra-nuclear structures can be directly deformed by a load of physiologic magnitudes. If a physiologic load could not directly deform intra-nuclear structures, then signaling inside the nucleus would occur only via the mechanisms of diffusion or translocation. Using a synchronous detection approach, we quantified displacements of nucleolar structures in cultured airway smooth muscle cells in response to a localized physiologic load ({approx}0.4 {mu}m surface deformation) via integrin receptors. The nucleolus exhibited significant displacements. Nucleolar structures also exhibited significant deformation, with the dominant strain being the bulk strain. Increasing the pre-existing tensile stress (prestress) in the cytoskeleton significantly increased the stress propagation efficiency to the nucleolus (defined as nucleolus displacement per surface deformation) whereas decreasing the prestress significantly lowered the stress propagation efficiency to the nucleolus. Abolishing the stress fibers/actin bundles by plating the cells on poly-L-lysine-coated dishes dramatically inhibited stress propagation to the nucleolus. These results demonstrate that the prestress in the cytoskeleton is crucial in mediating stress propagation to the nucleolus, with implications for direct mechanical regulation of nuclear activities and functions.

  12. Subthalamic Nucleus Stimulation Modulates Thalamic Neuronal Activity

    PubMed Central

    Xu, Weidong; Russo, Gary S.; Hashimoto, Takao; Zhang, Jianyu; Vitek, Jerrold L.

    2009-01-01

    Deep brain stimulation (DBS) in the subthalamic nucleus (STN) is an effective tool for the treatment of advanced Parkinson’s disease. The mechanism by which STN DBS elicits its beneficial effect, however, remains unclear. We previously reported STN stimulation increased the rate and produced a more regular and periodic pattern of neuronal activity in the internal segment of the globus pallidus (GPi). Here we extend our observations to neurons in the pallidal (ventralis lateralis pars oralis (VLo) and ventralis anterior (VA)) and cerebellar (ventralis lateralis posterior pars oralis (VPLo)) receiving areas of the motor thalamus during STN DBS. Stimulation parameters that produced improvement in rigidity and bradykinesia resulted in changes in the pattern and power of oscillatory activity of neuronal activity that were similar in both regions of the motor thalamus. Neurons in both VA/VLo and VPLo tended to become more periodic and regular with a shift in oscillatory activity from low to high frequencies. Burst activity was reduced in VA/VLo, but was not significantly changed in VPLo. There was also a significant shift in the population of VA/VLo neurons that were inhibited during STN DBS, while VPLo neurons tended to be activated. These data are consistent with the hypothesis that STN DBS increases output from the nucleus and produces a change in the pattern and periodicity of neuronal activity in the basal ganglia thalamic network, and that these changes include cerebellar pathways likely via activation of adjacent cerebello-thalamic fiber bundles. PMID:19005057

  13. Remote fitting in Nucleus cochlear implant recipients.

    PubMed

    Wesarg, Thomas; Wasowski, Arkadiusz; Skarzynski, Henryk; Ramos, Angel; Falcon Gonzalez, Juan Carlos; Kyriafinis, George; Junge, Friederike; Novakovich, Allan; Mauch, Herbert; Laszig, Roland

    2010-12-01

    Remote programming is a viable alternative to face-to-face programming. The procedure can be regarded as safe, time and cost saving, and clinically feasible. The aim of this study was to determine the suitability of commercially available video conferencing technology and remote control software for remote programming of sound processors in Nucleus cochlear implant recipients by assessing the feasibility, efficiency, risks, and benefits of remote programming compared to face-to-face programming. This was a randomized, prospective study. Seventy Nucleus implant recipients were recruited for a random sequence comparison of one remote and one local programming session each. The time required for local or remote programming was measured and resulting MAP T and C levels were compared. The recipient provided feedback on the local and remote programming session. The audiologist and monitoring clinician were asked for their feedback on remote programming. Remote programming sessions were successfully finished for 69 recipients. No significant differences between T and C levels obtained by local and remote programming were found. The audiologists and monitoring clinicians agreed that the remote programming system provided an acceptable level of performance after most sessions. More than 50 participating recipients considered remote programming an efficient alternative to face-to-face-programming.

  14. Comet nucleus and asteroid sample return missions

    NASA Technical Reports Server (NTRS)

    Melton, Robert G.; Thompson, Roger C.; Starchville, Thomas F., Jr.; Adams, C.; Aldo, A.; Dobson, K.; Flotta, C.; Gagliardino, J.; Lear, M.; Mcmillan, C.

    1992-01-01

    During the 1991-92 academic year, the Pennsylvania State University has developed three sample return missions: one to the nucleus of comet Wild 2, one to the asteroid Eros, and one to three asteroids located in the Main Belt. The primary objective of the comet nucleus sample return mission is to rendezvous with a short period comet and acquire a 10 kg sample for return to Earth. Upon rendezvous with the comet, a tethered coring and sampler drill will contact the surface and extract a two-meter core sample from the target site. Before the spacecraft returns to Earth, a monitoring penetrator containing scientific instruments will be deployed for gathering long-term data about the comet. A single asteroid sample return mission to the asteroid 433 Eros (chosen for proximity and launch opportunities) will extract a sample from the asteroid surface for return to Earth. To limit overall mission cost, most of the mission design uses current technologies, except the sampler drill design. The multiple asteroid sample return mission could best be characterized through its use of future technology including an optical communications system, a nuclear power reactor, and a low-thrust propulsion system. A low-thrust trajectory optimization code (QuickTop 2) obtained from the NASA LeRC helped in planning the size of major subsystem components, as well as the trajectory between targets.

  15. On M31's Double Nucleus

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, B. F.; Cuzzi, Jeffrey (Technical Monitor)

    1995-01-01

    The recent HST discovery of a double nucleus in M31 brings into prominence the question how long, a second core can survive within the nuclear regions of a galaxy. Physical conditions in the nuclear regions of a typical galaxy help a second core survive, so it can orbit for a long time. possibly for thousands of orbits. Given the nearly uniform mass density in a core, tidal forces within a core radius are compressive in all directions and help the core survive the buffeting it takes as it orbits near the center of the galaxy. We use numerical experiments to illustrate these physical principles. Our method allows the full power of the experiments to be concentrated on the nuclear regions. Spatial resolution of about 0.2 pc comfortably resolves detail within the 1.4 parsec core radius of the second, but brighter core (P1) in M31. We use these physical principles to discuss M31's double nucleus, but they apply to other galaxies as well. and in other astronomical situations such as dumbbell galaxies. galaxies orbiting near the center of a galaxy cluster, and subclustering in galaxy clusters. The experiments also illustrate that galaxy encounters and merging are quite sensitive to external tidal forces, such as those produced by the gravitational potential in a group or cluster of galaxies.

  16. Spectrin repeat proteins in the nucleus.

    PubMed

    Young, Kevin G; Kothary, Rashmi

    2005-02-01

    Spectrin repeat sequences are among the more common repeat elements identified in proteins, typically occurring in large structural proteins. Examples of spectrin repeat-containing proteins include dystrophin, alpha-actinin and spectrin itself--all proteins with well-demonstrated roles of establishing and maintaining cell structure. Over the past decade, it has become clear that, although these proteins display a cytoplasmic and plasma membrane distribution, several are also found both at the nuclear envelope, and within the intranuclear space. In this review, we provide an overview of recent work regarding various spectrin repeat-containing structural proteins in the nucleus. As well, we hypothesize about the regulation of their nuclear localization and possible nuclear functions based on domain architecture, known interacting proteins and evolutionary relationships. Given their large size, and their potential for interacting with multiple proteins and with chromatin, spectrin repeat-containing proteins represent strong candidates for important organizational proteins within the nucleus. Supplementary material for this article can be found on the BioEssays website (http://www.interscience.wiley.com/jpages/0265-9247/suppmat/index.html).

  17. A Simple Method for Nucleon-Nucleon Cross Sections in a Nucleus

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Cucinotta, Francis A.; Wilson, John W.

    1999-01-01

    A simple reliable formalism is presented for obtaining nucleon-nucleon cross sections within a nucleus in nuclear collisions for a given projectile and target nucleus combination at a given energy for use in transport, Monte Carlo, and other calculations. The method relies on extraction of these values from experiments and has been tested and found to give excellent results.

  18. Isospin effects in elastic proton-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Chinn, C. R.; Elster, Ch.; Thaler, R. M.

    1993-05-01

    Isovector effects in proton-nucleus elastic scattering at medium energies are studied. The accuracy of the Kerman-McManus-Thaler isospin averaging procedure is found to be very good for nuclei larger than 4He. Studies of 40Ca and 208Pb suggest that the surface neutrons may be pulled in somewhat relative to the protons, although uncertainties in the detailed applicability of the present truncation of the multiple scattering treatment render firm conclusions premature.

  19. High-spin states in the 96Tc nucleus

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Căta-Danil, Gh.; Căta-Danil, I.; Ivaşcu, M.; Mărginean, N.; Rusu, C.; Stroe, L.; Ur, C. A.; Gizon, A.; Gizon, J.; Nyakó, B.; Timár, J.; Zolnai, L.; Boston, A. J.; Joss, D. T.; Paul, E. S.; Semple, A. T.; Parry, C. M.

    High-spin states in the 96Tc nucleus have been studied with the reactions 82Se(19F,5nγ) at 68 MeV and Zn(36S,αpxn) at 130 MeV. Two γ-ray cascades (irregular bandlike structures) have been observed up to an excitation energy of about 10 MeV and spin 21-22?.

  20. High-spin states in the 97Tc nucleus

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Gadea, A.; Căta-Danil, Ghe.; Căta-Danil, I.; Ivaşcu, M.; Mărginean, N.; Rusu, C.; Stroe, L.; Ur, C. A.

    High-spin states in the 97Tc nucleus have been studied by in-beam γ-ray spectroscopy with the reaction 82Se(19F,4nγ) at 68 MeV incident energy. Excited states have been observed up to about 8 MeV excitation and spin 43/2ℎ. The observed level scheme is compared with results of shell model calculations.

  1. PREFACE: 11th International Conference on Nucleus-Nucleus Collisions (NN2012)

    NASA Astrophysics Data System (ADS)

    Li, Bao-An; Natowitz, Joseph B.

    2013-03-01

    The 11th International Conference on Nucleus-Nucleus Collisions (NN2012) was held from 27 May to 1 June 2012, in San Antonio, Texas, USA. It was jointly organized and hosted by The Cyclotron Institute at Texas A&M University, College Station and The Department of Physics and Astronomy at Texas A&M University-Commerce. Among the approximately 300 participants were a large number of graduate students and post-doctoral fellows. The Keynote Talk of the conference, 'The State of Affairs of Present and Future Nucleus-Nucleus Collision Science', was given by Dr Robert Tribble, University Distinguished Professor and Director of the TAMU Cyclotron Institute. During the conference a very well-received public lecture on neutrino astronomy, 'The ICEcube project', was given by Dr Francis Halzen, Hilldale and Gregory Breit Distinguished Professor at the University of Wisconsin, Madison. The Scientific program continued in the general spirit and intention of this conference series. As is typical of this conference a broad range of topics including fundamental areas of nuclear dynamics, structure, and applications were addressed in 42 plenary session talks, 150 parallel session talks, and 21 posters. The high quality of the work presented emphasized the vitality and relevance of the subject matter of this conference. Following the tradition, the NN2012 International Advisory Committee selected the host and site of the next conference in this series. The 12th International Conference on Nucleus-Nucleus Collisions (NN2015) will be held 21-26 June 2015 in Catania, Italy. It will be hosted by The INFN, Laboratori Nazionali del Sud, INFN, Catania and the Dipartimento di Fisica e Astronomia of the University of Catania. The NN2012 Proceedings contains the conference program and 165 articles organized into the following 10 sections 1. Heavy and Superheavy Elements 2. QCD and Hadron Physics 3. Relativistic Heavy-Ion Collisions 4. Nuclear Structure 5. Nuclear Energy and Applications of

  2. Odyssey Comet Nucleus Orbiter: The Next Step in Cometary Exploration

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.; Nilsen, E. N.; Smythe, W. D.; Marriott, J.; Reinert, R.

    2001-01-01

    Cometary nuclei are the most primitive bodies in the solar system, containing a cosmo-chemical record of the primordial solar nebula. Flyby missions to comets, such as those that encountered Comet Halley in 1986, provide a glimpse at this record. However, to study a cometary nucleus in detail requires a rendezvous mission, i.e., a nucleus orbiter. Only an orbiter provides the ability to map the entire nucleus surface at high resolution, to study the complex chemistry in the cometary coma and its variation with time, and to determine the mass and bulk density of the nucleus, key parameters in understanding how small bodies first formed in the solar nebula. A nucleus orbiter also provides the opportunity to sense the nucleus surface in preparation for more ambitious landing and sample return missions in the future. Additional information is contained in the original extended abstract.

  3. In vitro and in silico investigations of disc nucleus replacement

    PubMed Central

    Reitmaier, Sandra; Shirazi-Adl, Aboulfazl; Bashkuev, Maxim; Wilke, Hans-Joachim; Gloria, Antonio; Schmidt, Hendrik

    2012-01-01

    Currently, numerous hydrogels are under examination as potential nucleus replacements. The clinical success, however, depends on how well the mechanical function of the host structure is restored. This study aimed to evaluate the extent to and mechanisms by which surgery for nucleus replacements influence the mechanical behaviour of the disc. The effects of an annulus defect with and without nucleus replacement on disc height and nucleus pressure were measured using 24 ovine motion segments. The following cases were considered: intact; annulus incision repaired by suture and glue; annulus incision with removal and re-implantation of nucleus tissue repaired by suture and glue or plug. To identify the likely mechanisms observed in vitro, a finite-element model of a human disc (L4–L5) was employed. Both studies were subjected to physiological cycles of compression and recovery. A repaired annulus defect did not influence the disc behaviour in vitro, whereas additional nucleus removal and replacement substantially decreased disc stiffness and nucleus pressure. Model predictions demonstrated the substantial effects of reductions in replaced nucleus water content, bulk modulus and osmotic potential on disc height loss and pressure, similar to measurements. In these events, the compression load transfer in the disc markedly altered by substantially increasing the load on the annulus when compared with the nucleus. The success of hydrogels for nucleus replacements is not only dependent on the implant material itself but also on the restoration of the environment perturbed during surgery. The substantial effects on the disc response of disruptions owing to nucleus replacements can be simulated by reduced nucleus water content, elastic modulus and osmotic potential. PMID:22337630

  4. Physical role for the nucleus in cell migration

    NASA Astrophysics Data System (ADS)

    Fruleux, Antoine; Hawkins, Rhoda J.

    2016-09-01

    Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration.

  5. In vitro and in silico investigations of disc nucleus replacement.

    PubMed

    Reitmaier, Sandra; Shirazi-Adl, Aboulfazl; Bashkuev, Maxim; Wilke, Hans-Joachim; Gloria, Antonio; Schmidt, Hendrik

    2012-08-07

    Currently, numerous hydrogels are under examination as potential nucleus replacements. The clinical success, however, depends on how well the mechanical function of the host structure is restored. This study aimed to evaluate the extent to and mechanisms by which surgery for nucleus replacements influence the mechanical behaviour of the disc. The effects of an annulus defect with and without nucleus replacement on disc height and nucleus pressure were measured using 24 ovine motion segments. The following cases were considered: intact; annulus incision repaired by suture and glue; annulus incision with removal and re-implantation of nucleus tissue repaired by suture and glue or plug. To identify the likely mechanisms observed in vitro, a finite-element model of a human disc (L4-L5) was employed. Both studies were subjected to physiological cycles of compression and recovery. A repaired annulus defect did not influence the disc behaviour in vitro, whereas additional nucleus removal and replacement substantially decreased disc stiffness and nucleus pressure. Model predictions demonstrated the substantial effects of reductions in replaced nucleus water content, bulk modulus and osmotic potential on disc height loss and pressure, similar to measurements. In these events, the compression load transfer in the disc markedly altered by substantially increasing the load on the annulus when compared with the nucleus. The success of hydrogels for nucleus replacements is not only dependent on the implant material itself but also on the restoration of the environment perturbed during surgery. The substantial effects on the disc response of disruptions owing to nucleus replacements can be simulated by reduced nucleus water content, elastic modulus and osmotic potential.

  6. The Ionization Source in the Nucleus of M84

    NASA Technical Reports Server (NTRS)

    Bower, G. A.; Green, R. F.; Quillen, A. C.; Danks, A.; Malumuth, E. M.; Gull, T.; Woodgate, B.; Hutchings, J.; Joseph, C.; Kaiser, M. E.

    2000-01-01

    We have obtained new Hubble Space Telescope (HST) observations of M84, a nearby massive elliptical galaxy whose nucleus contains a approximately 1.5 X 10(exp 9) solar mass dark compact object, which presumably is a supermassive black hole. Our Space Telescope Imaging Spectrograph (STIS) spectrum provides the first clear detection of emission lines in the blue (e.g., [0 II] lambda 3727, HBeta and [0 III] lambda lambda4959,5007), which arise from a compact region approximately 0".28 across centered on the nucleus. Our Near Infrared Camera and MultiObject Spectrometer (NICMOS) images exhibit the best view through the prominent dust lanes evident at optical wavelengths and provide a more accurate correction for the internal extinction. The relative fluxes of the emission lines we have detected in the blue together with those detected in the wavelength range 6295 - 6867 A by Bower et al. indicate that the gas at the nucleus is photoionized by a nonstellar process, instead of hot stars. Stellar absorption features from cool stars at the nucleus are very weak. We update the spectral energy distribution of the nuclear point source and find that although it is roughly flat in most bands, the optical to UV continuum is very red, similar to the spectral energy distribution of BL Lac. Thus, the nuclear point source seen in high-resolution optical images is not a star cluster but is instead a nonstellar source. Assuming isotropic emission from this source, we estimate that the ratio of bolometric luminosity to Eddington luminosity is about 5 x 10(exp -7). However, this could be underestimated if this source is a misaligned BL Lac object, which is a possibility suggested by the spectral energy distribution and the evidence of optical variability we describe.

  7. The critical complex in nucleation is not the nucleus

    NASA Technical Reports Server (NTRS)

    Rasmussen, Don H.; Esen, Etop; Appleby, Mary R.

    1988-01-01

    A theory of nucleation is presented which combines features of classical nucleation. In this theory, the nucleus is a cluster of finite size with a sharp interface and spinodal decomposition, in which a fluctuation in density or composition generates the critical complex and nucleus. Thus, the nucleus is a product of nucleation. Schematic models for the classical and the proposed routes to nucleation are compared, focusing on the relation between pressure and volume in the models. In the proposed model, the critical complex, or critical state, is between the parent state and the nucleus.

  8. Nucleus properties of P/Schwassmann-Wachmann 1

    NASA Technical Reports Server (NTRS)

    Meech, Karen J.; Belton, Michael J. S.; Mueller, Beatrice E. A.; Dicksion, Matthew W.; Li, Heide R.

    1993-01-01

    Time series photometric measurements are presented of Comet P/Schwassmann-Wachmann 1 at a heliocentric distance of 5.886 AU when the comet possessed an extensive coma. The light curve shows a modulation caused by the rotation of the nucleus. The rotation period is considerably shorter than the 5 day period found by Whipple (1980), and we find substantial evidence that the nucleus may be in a complex spin state characterized by two periods 14.0 and 32.3 hr. Models of the rate at which the rotational light curve range decreases as a function of the amount of coma in the aperture have determined that the projected maximum to minimum axis ratio of the comet is 2.6 and that the product of the albedo times the rotationally averaged nucleus radius size is 9.54 +/- 0.3 sq km. Assuming a minimum geometric albedo of pR = 0.04, the maximum projected average nucleus radius is 15.44 +/-0.2 km, which is only 44 percent of the size estimated by Roemer (1966). However, using the albedo determined by Cruikshank & Brown (1983) of p = 0.13, the nucleus radius is only RN = 8.6 +/-0.l km. Because of the unknown nucleus orientation, these will be upper limits to the nucleus size. It appears that the nucleus of P/Schwassmann-Wachmann 1 is not the large nucleus that it has been believed to be for nearly 40 yr.

  9. Organizational effects of perinatal exposure to bisphenol-A and diethylstilbestrol on arcuate nucleus circuitry controlling food intake and energy expenditure in male and female CD-1 mice.

    PubMed

    Mackay, Harry; Patterson, Zachary R; Khazall, Rim; Patel, Shoyeb; Tsirlin, Dina; Abizaid, Alfonso

    2013-04-01

    The endocrine disrupting compound bisphenol-A (BPA) has been reported to act as an obesogen in rodents exposed perinatally. In this study, we investigated the effects of early-life BPA exposure on adult metabolic phenotype and hypothalamic energy balance circuitry. Pregnant and lactating CD-1 dams were exposed, via specially prepared diets, to 2 environmentally relevant doses of BPA. Dams consumed an average of 0.19 and 3.49 μg/kg per day of BPA in the low and high BPA treatments prenatally and an average of 0.36 and 7.2 μg/kg per day of BPA postnatally. Offspring were weaned initially onto a normal (AIN93G) diet, then as adults exposed to either a normal or high-fat diet (HFD). Males exposed to the high dose of BPA showed impaired glucose tolerance on both diets. They also showed reduced proopiomelanocortin fiber innervation into the paraventricular nucleus of the hypothalamus, and when exposed to HFD, they demonstrated increased neuropeptide Y and Agouti-related peptide expression in the arcuate nucleus (ARC). Females exposed to the high BPA dose were heavier, ate more, and had increased adiposity and leptin concentrations with reduced proopiomelanocortin mRNA expression in the ARC when consuming a HFD. BPA-exposed females showed ARC estrogen receptor α expression patterns similar to those seen in males, suggesting a masculinizing effect of BPA. These results demonstrate that early-life exposure to the obesogen BPA leads to sexually dimorphic alterations in the structure of hypothalamic energy balance circuitry, leading to increased vulnerability for developing diet-induced obesity and metabolic impairments, such as glucose intolerance.

  10. Coulomb Excitation of the N = 50 nucleus 80Zn

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2008-05-01

    Neutron rich Zinc isotopes, including the N = 50 nucleus 80Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2+ states. For the first time, an excited state in 80Zn was observed and the 21+ state in 78Zn was established. The measured B(E2,21+-->01+) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni.

  11. Neutrino-nucleus interactions at the LBNF near detector

    SciTech Connect

    Mosel, Ulrich

    2015-10-15

    The reaction mechanisms for neutrino interactions with an {sup 40}Ar nucleus with the LBNF flux are calculated with the Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) transport-theoretical implementation of these interactions. Quasielastic scattering, many-body effects, pion production and absorption and Deep Inelastic Scattering are discussed; they all play a role at the LBNF energies and are experimentally entangled with each other. Quasielastic scattering makes up for only about 1/3 of the total cross section whereas pion production channels make up about 2/3 of the total. This underlines the need for a consistent description of the neutrino-nucleus reaction that treats all channels on an equal, consistent footing. The results discussed here can also serve as useful guideposts for the Intermediate Neutrino Program.

  12. Galaxy IC 3639 with Obscured Active Galactic Nucleus

    NASA Image and Video Library

    2017-01-07

    IC 3639, a galaxy with an active galactic nucleus, is seen in this image combining data from the Hubble Space Telescope and the European Southern Observatory. This galaxy contains an example of a supermassive black hole hidden by gas and dust. Researchers analyzed NuSTAR data from this object and compared them with previous observations from NASA's Chandra X-Ray Observatory and the Japanese-led Suzaku satellite. The findings from NuSTAR, which is more sensitive to higher energy X-rays than these observatories, confirm the nature of IC 3639 as an active galactic nucleus that is heavily obscured, and intrinsically much brighter than observed. http://photojournal.jpl.nasa.gov/catalog/PIA21087

  13. Structure of Tz = 3 / 2 , 33P Nucleus

    NASA Astrophysics Data System (ADS)

    Lubna, Rebeka Sultana; Tripathi, Vandana; Tabor, Samuel; Tai, Pei-Laun; Bender, Peter

    2016-03-01

    The excited states of the nucleus 33P were populated by the 18O(18O, p-2n γ)33P fusion evaporation reaction at Elab = 25 MeV.Gammasphere was used along with the particle detector Microball to detect the γ emissions in coincidence with the emitted charged particles from the compound nucleus 36S. The auxiliary detector Microball was used to select the charged particle channel and to determine the exact position and the energy of the emitted proton. The purpose of finding the position and energy of proton was to determine a more precise angle between the recoil nucleus and the emitted γ which was later employed to get a better Doppler correction. Along with the selection of the proton channel, the γ- γ coincidence technique helped to isolate 33P from the other phosphorus isotopes and also reduced the contaminations from the dominant pure neutron channels. A number of transitions and states was identified that were not observed before. The 4 π arrangement of Gammasphere offered an excellent opportunity to measure the angular distribution of the electromagnetic emissions leading to the assignment of the spins for most of the new states. The experimental observations were compared to the shell model calculation using Work supported by the U.S. National Science Foundation under Grant No. 1401574.

  14. Nature of multiple-nucleus cluster galaxies

    SciTech Connect

    Merritt, D.

    1984-05-01

    In models for the evolution of galaxy clusters which include dynamical friction with the dark binding matter, the distribution of galaxies becomes more concentrated to the cluster center with time. In a cluster like Coma, this evolution could increase by a factor of approximately 3 the probability of finding a galaxy very close to the cluster center, without decreasing the typical velocity of such a galaxy significantly below the cluster mean. Such an enhancement is roughly what is needed to explain the large number of first-ranked cluster galaxies which are observed to have extra ''nuclei''; it is also consistent with the high velocities typically measured for these ''nuclei.'' Unlike the cannibalism model, this model predicts that the majority of multiple-nucleus systems are transient phenomena, and not galaxies in the process of merging.

  15. Nucleus of Comet P/Arend-Rigaux

    SciTech Connect

    Brooke, T.Y.; Knacke, R.F.

    1986-07-01

    Photometry data at 1-20 microns taken of Comet P/Arend-Rigaux are reported. The observations were carried out to test the possibility of observing the nuclei of low activity, nearly extinct comets at visible and IR wavelengths. The data were collected in February 1985 using the NASA 3 m IR telescope on Mauna Kea. The comet was at 1.67 AU heliocentric distance at the time. Attempts were made to detect rotation of the core on the bases of variations in the J, H and K light curves. The images obtained were those of a rotating nucleus with a radius of 4.0-6.2 km surrounded by a faint coma. The comet had a geometric albedo of 0.01-0.03 and a near-IR red slope that exhibited no evidence of the presence of ice. 32 references.

  16. Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    Chang, Sherwood (Compiler)

    1997-01-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  17. The nucleus of the Cygnus A galaxy

    NASA Astrophysics Data System (ADS)

    Vestergaard, M.; Barthel, P. D.

    1993-02-01

    New obtained high resolution optical images of the prototypical luminous radio galaxy Cygnus A (3C 405) indicate an inhomogeneous distribution of obscuring dust and, in combination with previous data, three types of radiation (stellar and blue featureless continuum as well as luminous line emission) in its central regions. The alleged double nucleus finds its origin in heavy obscuration coupled to excess line emission in the central regions of an otherwise normal giant elliptical galaxy. A strongly reddened nuclear component, coincident with the Cygnus A radio core, is found to emit faint but concentrated narrow line emission. All data appear consistent with identification of Cygnus A as a radio-loud quasar having its radio axis oriented at about 35 deg from the sky plane. The presumed dust torus obscuring the quasar continuum is inferred to be smaller than 800 parsec.

  18. In situ hybridization of suprachiasmatic nucleus slices.

    PubMed

    de la Iglesia, Horacio O

    2007-01-01

    The progress in the understanding of the molecular machinery of mammalian circadian clocks, in combination with the well-established role of the hypothalamic suprachiasmatic nucleus (SCN) as a master circadian clock, has provided an invaluable system for the study of the molecular basis of circadian rhythmicity. Using in situ hybridization (ISH) techniques that label specific clock-gene mRNAs within the SCN, researchers can now elucidate the core molecular oscillatory mechanisms underlying specific circadian physiological and behavioral phenotypes. In this chapter, two methods for ISH within the SCN are described. The first method is based on the fluorescent labeling of mRNA and is suitable for confocal microscopy analysis and double labeling techniques. The second method is based on the radioactive labeling of mRNA and is more sensitive and more adequate for the relative quantification of mRNA species.

  19. Analysis of Returned Comet Nucleus Samples

    NASA Astrophysics Data System (ADS)

    Chang, Sherwood

    1997-12-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  20. Shaping the nucleus: factors and forces.

    PubMed

    Walters, Alison D; Bommakanti, Ananth; Cohen-Fix, Orna

    2012-09-01

    Take a look at a textbook illustration of a cell and you will immediately be able to locate the nucleus, which is often drawn as a spherical or ovoid shaped structure. But not all cells have such nuclei. In fact, some disease states are diagnosed by the presence of nuclei that have an abnormal shape or size. What defines nuclear shape and nuclear size, and how does nuclear geometry affect nuclear function? While the answer to the latter question remains largely unknown, significant progress has been made towards understanding the former. In this review, we provide an overview of the factors and forces that affect nuclear shape and size, discuss the relationship between ER structure and nuclear morphology, and speculate on the possible connection between nuclear size and its shape. We also note the many interesting questions that remain to be explored. Copyright © 2012 Wiley Periodicals, Inc.

  1. Separable Representation of Nucleon-Nucleus Optical Potentials as Input to (d; p) Reaction Calculations

    NASA Astrophysics Data System (ADS)

    Hlophe, Linda D.

    The three-body description of deuteron-induced nuclear reactions requires the nucleon-nucleon (NN) and effective nucleon-nucleus interactions as input. The latter are given by Optical Model Potentials (OMPs), which are complex as well as energy-dependent. While a lot of effort has been dedicated to creating separable NN potentials, the same is not true for the nucleon-nucleus OMPs. In this work, separable representations of nucleon-nucleus OMPs are presented. To construct separable representations of neutron-nucleus OMPs, a scheme due to Ernst, Shakin, and Thaler (EST) is adopted as a starting point. It is shown that, by including both incoming and outgoing scattering states in the EST scheme, separable expansions for complex neutron-nucleus potentials that partially obey reciprocity are obtained. For the application to neutron-nucleus potentials that are complex as well as energy-dependent, a further generalization is carried out leading to an energy-dependent separable expansion that exactly fulfills reciprocity. By working exclusively with half-shell transition matrices in momentum space, the implementation of these separable representation schemes is straightforward. The proton-nucleus interaction consists of a short-ranged nuclear piece as well as the long-ranged point-Coulomb potential. After separating the point-Coulomb piece via the Gell-Mann-Goldberger relation, one is left with the short-ranged potential in the Coulomb basis. An extension of the separable representation schemes for neutron-nucleus OMPs to proton-nucleus systems thus requires scattering solutions in the Coulomb basis. This complicates a momentum space implementation of the aforementioned separable expansions. However, by employing the techniques first suggested by Elster, Liu, and Thaler, the separable representation schemes generalized for proton-nucleus OMPs are implemented in a similar manner to neutron-nucleus OMPs. Taking into account the internal structure of the nucleus leads to

  2. Separable representation of multichannel nucleon-nucleus optical potentials

    NASA Astrophysics Data System (ADS)

    Hlophe, L.; Elster, Ch.

    2017-05-01

    Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship is cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g., (d ,p ) reactions, should be used. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy dependent. Including excitations of the nucleus in the calculation requires a multichannel optical potential. The purpose of this paper is to introduce a separable, energy-dependent multichannel representation of complex, energy-dependent optical potentials that contain excitations of the nucleus and that fulfill reciprocity exactly. Methods: Momentum space Lippmann-Schwinger integral equations are solved with standard techniques to obtain the form factors for the separable representation. Results: Starting from energy-dependent multichannel optical potentials for neutron and proton scattering from 12C, separable representations based on a generalization of the Ernst-Shakin-Thaler (EST) scheme are constructed which fulfill reciprocity exactly. Applications to n +12C and p +12C scattering are investigated for energies from 0 to 50 MeV. Conclusions: We find that the energy-dependent separable representation of complex, energy-dependent phenomenological multichannel optical potentials describes scattering data with the same quality as the original potential.

  3. Nonlinear osmotic properties of the cell nucleus

    PubMed Central

    Finan, John D.; Chalut, Kevin J.; Wax, Adam; Guilak, Farshid

    2009-01-01

    Summary In the absence of active volume regulation processes, cell volume is inversely proportional to osmolarity, as predicted by the Boyle Van’t Hoff relation. In this study, we tested the hypothesis that nuclear volume has a similar relationship with extracellular osmolarity in articular chondrocytes, cells that are exposed to changes in the osmotic environment in vivo, and furthermore, we explored the mechanism of the relationships between osmolarity and nuclear size and shape. Nuclear size was quantified using two independent techniques, confocal laser scanning microscopy and angle-resolved low coherence interferometry. Nuclear volume was osmotically-sensitive but this relationship was not linear, showing a decline in the osmotic sensitivity in the hypo-osmotic range. Nuclear shape was also influenced by extracellular osmolarity, becoming smoother as the osmolarity decreased. The osmotically-induced changes in nuclear size paralleled the changes in nuclear shape, suggesting that shape and volume are interdependent. The osmotic sensitivity of shape and volume persisted after disruption of the actin cytoskeleton. Isolated nuclei contracted in response to physiologic changes in macromolecule concentration but not in response to physiologic changes in ion concentration, suggesting solute size has an important influence on the osmotic pressurization of the nucleus. This finding in turn implies that the diffusion barrier that causes osmotic effects is not a semi-permeable membrane, but rather due to size constraints that prevent large solute molecules from entering small spaces in the nucleus. As nuclear morphology has been associated previously with cell phenotype, these findings may provide new insight into the role of mechanical and osmotic signals in regulating cell physiology. PMID:19107599

  4. Parabrachial nucleus involvement in multiple system atrophy☆

    PubMed Central

    Benarroch, E.E.; Schmeichel, A.M.; Low, P.A.; Parisi, J.E.

    2014-01-01

    Multiple system atrophy (MSA) is associated with respiratory dysfunction, including sleep apnea, respiratory dysrhythmia, and laryngeal stridor. Neurons of the parabrachial nucleus (PBN) control respiratory rhythmogenesis and airway resistance. Objectives The objective of this study is to determine whether there was involvement of putative respiratory regions of the PBN in MSA. Methods We examined the pons at autopsy in 10 cases with neuropathologically confirmed MSA and 8 age-matched controls. Sections obtained throughout the pons were processed for calcitonin-gene related peptide (CGRP) and Nissl staining to identify the lateral crescent of the lateral PBN (LPB) and the Kölliker-Fuse nucleus (K-F), which are involved in respiratory control. Cell counts were performed using stereology. Results There was loss of CGRP neurons in the PBN in MSA (total estimated cell counts for the external LPB cluster was 12,584 ± 1146 in controls and 5917 ± 389 in MSA, p < 0.0001); for the external medial PBN (MPB) cluster it was 15,081 ± 1758 in controls and 7842 ± 466 in MSA, p < 0.001. There was also neuronal loss in putative respiratory regions of the PBN, including the lateral crescent of the LPB (13,039 ± 1326 in controls and 4164 ± 872 in MSA, p < 0.0001); and K-F (5120 ± 495 in controls and 999 ± 308 in MSA, p < 0.0001). Conclusions There is involvement of both CGRP and putative respiratory cell groups in the PBN in MSA. Whereas the clinical implications of CGRP cell loss are still undetermined, involvement of the LPB and K-F may contribute to respiratory dysfunction in this disorder. PMID:23665165

  5. INORGANIC CATIONS IN THE CELL NUCLEUS

    PubMed Central

    Tres, Laura L.; Kierszenbaum, A. L.; Tandler, C. J.

    1972-01-01

    Earlier reports indicated the presence of significant amounts of inorganic salts in the nucleus. In the present study the possibility that this might be related to the transcription process was tested on seminiferous epithelium of the adult mouse, using potassium pyroantimonate as a fixative. The results indicated that a correlation exists between the inorganic cations comprising the pyroantimonate-precipitable fraction and the RNA synthetic activity. During meiotic prophase an accumulation of cation-antimonate precipitates occurs dispersed through the middle pachytene nuclei, the stage in which RNA synthesis reaches a maximum. At other stages (zygotene to diplotene), where RNA synthesis falls to a low level, that pattern is not seen; cation-antimonate deposits are restricted to a few masses in areas apparently free of chromatin. The condensed sex chromosomes, the heterochromatin of the "basal knobs," the axial elements, and the synaptonemal complexes are devoid of antimonate deposits during the meiotic prophase. The Sertoli cells, active in RNA synthesis in both nucleoplasm and nucleolus, show cation-antimonate deposits at these sites. In the nucleoplasm some "patches" of precipitates appear coincident with clusters of interchromatin granules; in the nucleolus the inorganic cations are mainly located in the fibrillar and/or amorphous areas, whereas relatively few are shown by the granular component. The condensed chromatin bodies associated with the nucleolus were always free of antimonate precipitates. It is suggested that the observed sites of inorganic cation accumulation within the nucleus may at least partially indicate the presence of RNA polymerases, the activity of which is dependent on divalent cations. PMID:4112542

  6. Nonlinear osmotic properties of the cell nucleus.

    PubMed

    Finan, John D; Chalut, Kevin J; Wax, Adam; Guilak, Farshid

    2009-03-01

    In the absence of active volume regulation processes, cell volume is inversely proportional to osmolarity, as predicted by the Boyle Van't Hoff relation. In this study, we tested the hypothesis that nuclear volume has a similar relationship with extracellular osmolarity in articular chondrocytes, cells that are exposed to changes in the osmotic environment in vivo. Furthermore, we explored the mechanism of the relationships between osmolarity and nuclear size and shape. Nuclear size was quantified using two independent techniques, confocal laser scanning microscopy and angle-resolved low coherence interferometry. Nuclear volume was osmotically sensitive but this relationship was not linear, showing a decline in the osmotic sensitivity in the hypo-osmotic range. Nuclear shape was also influenced by extracellular osmolarity, becoming smoother as the osmolarity decreased. The osmotically induced changes in nuclear size paralleled the changes in nuclear shape, suggesting that shape and volume are interdependent. The osmotic sensitivity of shape and volume persisted after disruption of the actin cytoskeleton. Isolated nuclei contracted in response to physiologic changes in macromolecule concentration but not in response to physiologic changes in ion concentration, suggesting solute size has an important influence on the osmotic pressurization of the nucleus. This finding in turn implies that the diffusion barrier that causes osmotic effects is not a semi-permeable membrane, but rather due to size constraints that prevent large solute molecules from entering small spaces in the nucleus. As nuclear morphology has been associated previously with cell phenotype, these findings may provide new insight into the role of mechanical and osmotic signals in regulating cell physiology.

  7. Novel associated hydrogels for nucleus pulposus replacement.

    PubMed

    Thomas, Jonathan; Lowman, Anthony; Marcolongo, Michele

    2003-12-15

    Hydrogels of poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) blends may provide a material suitable for replacement of the nucleus pulposus of the intervertebral disc. This research examined the stability of these hydrogels under simulated physiological conditions. Polymer dissolution and stability were characterized over 120 days immersion, chemical surface analysis over 56 days immersion, and tensile mechanical behavior over 56 days immersion. Rubber elasticity theory was used by combining mechanical results with swelling data to calculate network characteristics such as the molecular weight between physical crosslinks and density of crosslinks. Properties were examined as a function of PVA/PVP composition as well as PVA molecular weight and PVP molecular weight. Results indicated that PVA/PVP blends prepared with moderate amounts of PVP (0.5-5%) resulted in a polymer network stabilized through interchain hydrogen bonding between hydroxyl groups on PVA chains and carbonyl groups on PVP chains. Most notably, a significant decrease in percentage of polymer mass loss was seen for blends prepared with 143K molecular weight PVA. Surface chemical analysis revealed that PVP unincorporated in the network structure suffered significant dissolution out of the polymer network and into solution. The molecular weight of PVA and PVP were shown to have a significant influence on the blends' network properties. Gels prepared with lower molecular weight PVA resulted in a more stable blend containing a higher density of crosslinks. However, blends prepared with a higher molecular weight PVA showed superior polymer network stability in dissolution studies. The blend that had the best combination of network stability under physiological conditions and a relatively tight, stable, and crosslinked network was prepared with 99% PVA (143K) and 1% PVP (40K). This material is proposed as an implant material for replacement of the degenerated nucleus pulposus.

  8. Projections to the rostral reticular thalamic nucleus in the rat.

    PubMed

    Cornwall, J; Cooper, J D; Phillipson, O T

    1990-01-01

    Afferent pathways to the rostral reticular thalamic nucleus (Rt) in the rat were studied using anterograde and retrograde lectin tracing techniques, with sensitive immunocytochemical methods. The analysis was carried out to further investigate previously described subregions of the reticular thalamic nucleus, which are related to subdivisions of the dorsal thalamus, in the paraventricular and midline nuclei and three segments of the mediodorsal thalamic nucleus. Cortical inputs to the rostral reticular nucleus were found from lamina VI of cingulate, orbital and infralimbic cortex. These projected with a clear topography to lateral, intermediate and medial reticular nucleus respectively. Thalamic inputs were found from lateral and central segments of the mediodorsal nucleus to the lateral and intermediate rostral reticular nucleus respectively and heavy paraventricular thalamic inputs were found to the medial reticular nucleus. In the basal forebrain, afferents were found from the vertical and horizontal limbs of the diagonal band, substantia innominata, ventral pallidum and medial globus pallidus. Brainstem projections were identified from ventrolateral periaqueductal grey and adjacent sites in the mesencephalic reticular formation, laterodorsal tegmental nucleus, pedunculopontine nucleus, medial pretectum and ventral tegmental area. The results suggest a general similarity in the organisation of some brainstem Rt afferents in rat and cat, but also show previously unsuspected inputs. Furthermore, there appear to be at least two functional subdivisions of rostral Rt which is reflected by their connections with cortex and thalamus. The studies also extend recent findings that the ventral striatum, via inputs from the paraventricular thalamic nucleus, is included in the circuitry of the rostral Rt, providing further evidence that basal ganglia may function in concert with Rt. Evidence is also outlined with regard to the possibility that rostral Rt plays a significant

  9. A jet-dominated model for a broad-band spectral energy distribution of the nearby low-luminosity active galactic nucleus in M94

    NASA Astrophysics Data System (ADS)

    van Oers, Pieter; Markoff, Sera; Uttley, Phil; McHardy, Ian; van der Laan, Tessel; Donovan Meyer, Jennifer; Connors, Riley

    2017-06-01

    We have compiled a new multiwavelength spectral energy distribution (SED) for the closest obscured low-ionization emission-line region active galactic nucleus (AGN), NGC 4736, also known as M94. The SED comprises mainly high-resolution (mostly sub-arcsecond, or, at the distance to M94, ≲23 pc from the nucleus) observations from the literature, archival data, as well as previously unpublished sub-millimetre data from the Plateau de Bure Interferometer (PdBI) and the Combined Array for Research in Millimeter-wave Astronomy, in conjunction with new electronic MultiElement Radio Interferometric Network (e-MERLIN) L-band (1.5 GHz) observations. Thanks to the e-MERLIN resolution and sensitivity, we resolve for the first time a double structure composed of two radio sources separated by ˜1 arcsec, previously observed only at higher frequency. We explore this data set, which further includes non-simultaneous data from the Very Large Array, the Gemini telescope, the Hubble Space Telescope and the Chandra X-ray observatory, in terms of an outflow-dominated model. We compare our results with previous trends found for other AGN using the same model (NGC 4051, M81*, M87 and Sgr A*), as well as hard- and quiescent-state X-ray binaries. We find that the nuclear broad-band spectrum of M94 is consistent with a relativistic outflow of low inclination. The findings in this work add to the growing body of evidence that the physics of weakly accreting black holes scales with mass in a rather straightforward fashion.

  10. The chemical composition of cosmic ray nuclei above 1.3 GeV per nucleus and 23 GeV per nucleus

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Osborn, R. W.

    1974-01-01

    Measurements made with a balloon-borne counter telescope are reported. The telescope was flown from Palestine, Tex., during the fall of 1971 for a total of 10 hours under an average residual atmospheric depth of 4.4 g per sq cm. The data analysis indicates that the integral flux ratios above 1.3 GeV per nucleus and 23 GeV per nucleus are consistent with energy independence.

  11. Pedunculopontine nucleus evoked potentials from subthalamic nucleus stimulation in Parkinson's disease.

    PubMed

    Neagu, Bogdan; Tsang, Eric; Mazzella, Filomena; Hamani, Clement; Moro, Elena; Hodaie, Mojgan; Lozano, Andres M; Chen, Robert

    2013-12-01

    The effects of subthalamic nucleus (STN) stimulation on the pedunculopontine nucleus area (PPNR) evoked activities were examined in two patients with Parkinson's disease. The patients had previously undergone bilateral STN deep brain stimulation (DBS) and subsequently received unilateral DBS electrodes in the PPNR. Evoked potentials were recorded from the local field potentials (LFP) from the PPNR with STN stimulation at different frequencies and bipolar contacts. Ipsilateral and contralateral short latency (<2ms) PPNR responses were evoked from left but not from right STN stimulation. In both patients, STN stimulation evoked contralateral PPNR responses at medium latencies between 41 and 45ms. Cortical evoked potentials to single pulse STN stimulation were observed at latencies between 18 and 27ms. These results demonstrate a functional connection between the STN and the PPNR. It likely involves direct projections between the STN and PPNR or polysynaptic pathways with thalamic or cortical relays.

  12. Nuclear Effects in Neutrino-Nucleus Interactions and the MINERvA Neutrino Nucleus Scattering Program

    NASA Astrophysics Data System (ADS)

    Morfín, Jorge G.

    2011-09-01

    Nuclear effects of charged current deep inelastic neutrino-iron scattering have been studied in the frame-work of a χ2 analysis of parton distribution functions (PDFs)1. A set of iron PDFs have been extracted which are then used to compute xBj-dependent and Q2-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. Upon comparing our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for l±-iron scattering we find that, except for very high xBj, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering. The MINERvA neutrino-nucleus scattering experiment at Fermilab, will systematically study neutrino nuclear effects off of He, C, Fe and Pb for a more thorough A-dependent study of nuclear PDFs and these correction factors.

  13. Fluctuation analysis of relativistic nucleus-nucleus collisions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1988-01-01

    An analytical technique was developed for identifying enhanced fluctuations in the angular distributions of secondary particles produced from relativistic nucleus-nucleus collisions. The method is applied under the assumption that the masses of the produced particles are small compared to their linear momenta. The importance of particles rests in the fact that enhanced fluctuations in the rapidity distributions is considered to be an experimental signal for the creation of the quark-gluon-plasma (QGP), a state of nuclear matter predicted from the quantum chromodynamics theory (QCD). In the approach, Monte Carlo simulations are employed that make use of a portable random member generator that allow the calculations to be performed on a desk-top computer. The method is illustrated with data taken from high altitude emulsion exposures and is immediately applicable to similar data from accelerator-based emulsion exposures.

  14. Nucleus and nucleus-cytoskeleton connections in 3D cell migration.

    PubMed

    Liu, Lingling; Luo, Qing; Sun, Jinghui; Song, Guanbin

    2016-10-15

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration.

  15. [Unilateral abolition of parkinsonian rigidity after subthalamic nucleus hemorrhage].

    PubMed

    Yamada, A; Takeuchi, H; Miki, H

    1992-08-01

    A 63-year-old man with parkinsonism suddenly developed a right hemiballism, and the CT showed a hematoma of the left subthalamic nucleus. After the ballistic movement had disappeared, muscular rigidity improved on the right. This case suggests that excessive output from the subthalamic nucleus to the internal segment of globus pallidus plays a critical role in the pathophysiology of parkinsonian rigidity.

  16. Glutamatergic projection from the nucleus incertus to the septohippocampal system.

    PubMed

    Cervera-Ferri, Ana; Rahmani, Yasamin; Martínez-Bellver, Sergio; Teruel-Martí, Vicent; Martínez-Ricós, Joana

    2012-05-31

    Recent findings support a relevant role of the nucleus incertus in the control of the hippocampal activity through the modulation of theta rhythm. Previous studies from our group have shown that this nucleus is a critical relay between reticularis pontis oralis and the medial septum/diagonal band, regarded as the main activator and the pacemaker of the hippocampal oscillations, respectively. Besides, the nucleus incertus is highly linked to activated states related to the arousal response. The neurotransmission of the nucleus incertus, however, remains uncertain. Only GABA and the neuromodulator relaxin 3 are usually considered to be involved in its contribution to the septohippocampal system. In this work, we have analyzed the existence of an excitatory projection from the nucleus incertus to the medial septum. We have found a group of glutamatergic neurons in the nucleus incertus projecting to the medial septum. Moreover, we were able to describe a segregated distribution of calbindin and calretinin neurons. While calretinin expression was restricted to the nucleus incertus pars compacta, calbindin positive neurons where observed both in the pars dissipata and the pars compacta of the nucleus. The present work provides innovative data supporting an excitatory component in the pontoseptal pathway. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Cytotoxicity of nucleus-targeting fluorescent gold nanoclusters.

    PubMed

    Zhao, Jing-Ya; Cui, Ran; Zhang, Zhi-Ling; Zhang, Mingxi; Xie, Zhi-Xiong; Pang, Dai-Wen

    2014-11-07

    Gold nanoclusters (AuNCs) with ultra small sizes and unique fluorescence properties have shown promising potential for imaging the nuclei of living cells. However, little is known regarding the potential cytotoxicity of AuNCs after they enter the cell nucleus. The aim of this study is to investigate whether and how nucleus-targeting AuNCs affect the normal functioning of cells. Highly stable, water-soluble and bright fluorescent Au25NCs (the core of each nanocluster is composed of 25 gold atoms) were synthesized. Specific targeting of Au25NCs to the cell nucleus was achieved by conjugating the TAT peptide to the Au25NCs. Cell viability, cell morphology, cell apoptosis/necrosis, reactive oxygen species (ROS) level and mitochondrial membrane potential examinations were performed on different cell lines exposed to the nucleus-targeting Au25NCs. We found that the nucleus-targeting Au25NCs caused cell apoptosis in a dose-dependent manner. A possible mechanism for the cytotoxicity of the nucleus-targeting Au25NCs was proposed as follows: the nucleus-targeting Au25NCs induce the production of ROS, resulting in the oxidative degradation of mitochondrial components, in turn leading to apoptosis via a mitochondrial damage pathway. This work facilitates a better understanding of the toxicity of AuNCs, especially nucleus-targeting AuNCs.

  18. Study of the peculiarities of multiparticle production via event-by-event analysis in asymmetric nucleus-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Fedosimova, Anastasiya; Gaitinov, Adigam; Grushevskaya, Ekaterina; Lebedev, Igor

    2017-06-01

    In this work the study on the peculiarities of multiparticle production in interactions of asymmetric nuclei to search for unusual features of such interactions, is performed. A research of long-range and short-range multiparticle correlations in the pseudorapidity distribution of secondary particles on the basis of analysis of individual interactions of nuclei of 197 Au at energy 10.7 AGeV with photoemulsion nuclei, is carried out. Events with long-range multiparticle correlations (LC), short-range multiparticle correlations (SC) and mixed type (MT) in pseudorapidity distribution of secondary particles, are selected by the Hurst method in accordance with Hurst curve behavior. These types have significantly different characteristics. At first, they have different fragmentation parameters. Events of LC type are processes of full destruction of the projectile nucleus, in which multicharge fragments are absent. In events of mixed type several multicharge fragments of projectile nucleus are discovered. Secondly, these two types have significantly different multiplicity distribution. The mean multiplicity of LC type events is significantly more than in mixed type events. On the basis of research of the dependence of multiplicity versus target-nuclei fragments number for events of various types it is revealed, that the most considerable multiparticle correlations are observed in interactions of the mixed type, which correspond to the central collisions of gold nuclei and nuclei of CNO-group, i.e. nuclei with strongly asymmetric volume, nuclear mass, charge, etc. Such events are characterised by full destruction of the target-nucleus and the disintegration of the projectile-nucleus on several multi-charged fragments.

  19. Afferent projections to the deep mesencephalic nucleus in the rat

    SciTech Connect

    Veazey, R.B.; Severin, C.M.

    1982-01-10

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medial and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist.

  20. α and 3He production in the 7Be+28Si reaction at near-barrier energies: Direct versus compound-nucleus mechanisms

    NASA Astrophysics Data System (ADS)

    Sgouros, O.; Pakou, A.; Pierroutsakou, D.; Mazzocco, M.; Acosta, L.; Aslanoglou, X.; Betsou, Ch.; Boiano, A.; Boiano, C.; Carbone, D.; Cavallaro, M.; Grebosz, J.; Keeley, N.; La Commara, M.; Manea, C.; Marquinez-Duran, G.; Martel, I.; Nicolis, N. G.; Parascandolo, C.; Rusek, K.; Sánchez-Benítez, A. M.; Signorini, C.; Soramel, F.; Soukeras, V.; Stefanini, C.; Stiliaris, E.; Strano, E.; Strojek, I.; Torresi, D.

    2016-10-01

    The production of α and 3He particles, the cluster constituents of 7Be, in the 7Be+28Si reaction was studied at three near-barrier energies, namely 13, 20, and 22 MeV. Angular distribution measurements were performed at each energy, and the data were analyzed in both statistical model and Distorted-Wave Born Approximation (DWBA) frameworks in order to disentangle the degree of competition between direct and compound channels. The energy evolution of the ratio of direct to total reaction cross section was mapped in comparison with similar data for 6Li and 7Li projectiles on a 28Si target. The results indicate larger transfer contributions for collisions involving the mirror nuclei 7Be and 7Li than in the 6Li case. Fusion cross sections were deduced, taking into account the α -particle cross sections due to compound-nucleus formation and particle multiplicities deduced from our statistical model framework. It was found that fusion is compatible with systematics and single-barrier penetration cross sections to within an uncertainty band of 10% to 20%. Indications of fusion hindrance for 7Li and 7Be compared to 6Li, starting from the barrier and below it, are given. This hindrance is attributed to the existence of large transfer channels. Furthermore, the experimental results, analyzed in the DWBA framework, suggest 3He and 4He transfer as the dominant direct reaction mechanism.

  1. Nucleon emission via electromagnetic excitation in relativistic nucleus-nucleus collisions: Re-analysis of the Weizsacker-Williams method

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Previous analyses of the comparison of Weizsacker-Williams (WW) theory to experiment for nucleon emission via electromagnetic (EM) excitations in nucleus-nucleus collisions were not definitive because of different assumptions concerning the value of the minimum impact parameter. This situation is corrected by providing criteria that allows definitive statements to be made concerning agreement or disagreement between WW theory and experiment.

  2. Glycine immunoreactivity of multipolar neurons in the ventral cochlear nucleus which project to the dorsal cochlear nucleus.

    PubMed

    Doucet, J R; Ross, A T; Gillespie, M B; Ryugo, D K

    1999-06-14

    Certain distinct populations of neurons in the dorsal cochlear nucleus are inhibited by a neural source that is responsive to a wide range of acoustic frequencies. In this study, we examined the glycine immunoreactivity of two types of ventral cochlear nucleus neurons (planar and radiate) in the rat which project to the dorsal cochlear nucleus (DCN) and thus, might be responsible for this inhibition. Previously, we proposed that planar neurons provided a tonotopic and narrowly tuned input to the DCN, whereas radiate neurons provided a broadly tuned input and thus, were strong candidates as the source of broadband inhibition (Doucet and Ryugo [1997] J. Comp. Neurol. 385:245-264). We tested this idea by combining retrograde labeling and glycine immunohistochemical protocols. Planar and radiate neurons were first retrogradely labeled by injecting biotinylated dextran amine into a restricted region of the dorsal cochlear nucleus. The labeled cells were visualized using streptavidin conjugated to indocarbocyanine (Cy3), a fluorescent marker. Sections that contained planar or radiate neurons were then processed for glycine immunocytochemistry using diaminobenzidine as the chromogen. Immunostaining of planar neurons was light, comparable to that of excitatory neurons (pyramidal neurons in the DCN), whereas immunostaining of radiate neurons was dark, comparable to that of glycinergic neurons (cartwheel cells in the dorsal cochlear nucleus and principal cells in the medial nucleus of the trapezoid body). These results are consistent with the hypothesis that radiate neurons in the ventral cochlear nucleus subserve the wideband inhibition observed in the dorsal cochlear nucleus.

  3. Glutamate Receptors in the Central Nucleus of the Amygdala Mediate Cisplatin-Induced Malaise and Energy Balance Dysregulation through Direct Hindbrain Projections.

    PubMed

    Alhadeff, Amber L; Holland, Ruby A; Nelson, Alexandra; Grill, Harvey J; De Jonghe, Bart C

    2015-08-05

    Cisplatin chemotherapy is used commonly to treat a variety of cancers despite severe side effects such as nausea, vomiting, and anorexia that compromise quality of life and limit treatment adherence. The neural mechanisms mediating these side effects remain elusive despite decades of clinical use. Recent data highlight the dorsal vagal complex (DVC), lateral parabrachial nucleus (lPBN), and central nucleus of the amygdala (CeA) as potential sites of action in mediating the side effects of cisplatin. Here, results from immunohistochemical studies in rats identified a population of cisplatin-activated DVC neurons that project to the lPBN and a population of cisplatin-activated lPBN calcitonin gene-related peptide (CGRP, a marker for glutamatergic neurons in the lPBN) neurons that project to the CeA, outlining a neuroanatomical circuit that is activated by cisplatin. CeA gene expressions of AMPA and NMDA glutamate receptor subunits were markedly increased after cisplatin treatment, suggesting that CeA glutamate receptor signaling plays a role in mediating cisplatin side effects. Consistent with gene expression results, behavioral/pharmacological data showed that CeA AMPA/kainate receptor blockade attenuates cisplatin-induced pica (a proxy for nausea/behavioral malaise in nonvomiting laboratory rodents) and that CeA NMDA receptor blockade attenuates cisplatin-induced anorexia and body weight loss in addition to pica, demonstrating that glutamate receptor signaling in the CeA is critical for the energy balance dysregulation caused by cisplatin treatment. Together, these data highlight a novel circuit and CGRP/glutamatergic mechanism through which cisplatin-induced malaise and energy balance dysregulation are mediated. To treat cancer effectively, patients must follow prescribed chemotherapy treatments without interruption, yet most cancer treatments produce side effects that devastate quality of life (e.g., nausea, vomiting, anorexia, weight loss). Although hundreds of

  4. Degeneration and energy shortage in the suprachiasmatic nucleus underlies the circadian rhythm disturbance in ApoE−/− mice: implications for Alzheimer’s disease

    PubMed Central

    Zhou, Lan; Gao, Qian; Nie, Meng; Gu, Jing-Li; Hao, Wei; Wang, Lin; Cao, Ji-Min

    2016-01-01

    Alzheimer’s disease (AD) patients suffer sleep disorders and circadian rhythm disturbances (CRDs). The underlying mechanisms are incompletely understood, and treatments are lacking. In this study, we characterized the locomotor activity, clock gene expression, morphological degeneration and energy metabolism of suprachiasmatic nucleus (SCN), together with retinal light sensing, in ApoE−/− mice, a model for AD. Compared with the control C57BL/6J mice, ApoE−/− mice exhibited disordered circadian locomotor activity under dim light and constant darkness, with impaired re-entrainment to phase change schedules. Decreased retinal melanopsin expression, together with amyloidosis and tau deposition, was evident in ApoE−/− mice. Mitochondrial and synaptic deterioration, altered SIRT1-mediated energy metabolism and clock gene expression were also observed in ApoE−/− SCN. Supplementation with fat or ketone bodies but not glucose, or intraperitoneal administration of nicotinamide, restored the locomotor rhythmicity and circadian expression of SIRT1 and clock genes, as well as reducing neurodegeneration. Taken together, ApoE deficiency induced degeneration and a significant disturbance in the SCN rhythmicity. Decline of retinal light sensing and SCN structural and metabolic deteriorations represented the major pathologies accounting for the CRDs in ApoE−/− mice. Our curative experiments may help develop future therapies to treat the CRDs and sleep disorders in AD patients. PMID:27824104

  5. Scattering of the Halo Nucleus Be 11 on Au 197 at Energies around the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Pesudo, V.; Borge, M. J. G.; Moro, A. M.; Lay, J. A.; Nácher, E.; Gómez-Camacho, J.; Tengblad, O.; Acosta, L.; Alcorta, M.; Alvarez, M. A. G.; Andreoiu, C.; Bender, P. C.; Braid, R.; Cubero, M.; Di Pietro, A.; Fernández-García, J. P.; Figuera, P.; Fisichella, M.; Fulton, B. R.; Garnsworthy, A. B.; Hackman, G.; Hager, U.; Kirsebom, O. S.; Kuhn, K.; Lattuada, M.; Marquínez-Durán, G.; Martel, I.; Miller, D.; Moukaddam, M.; O'Malley, P. D.; Perea, A.; Rajabali, M. M.; Sánchez-Benítez, A. M.; Sarazin, F.; Scuderi, V.; Svensson, C. E.; Unsworth, C.; Wang, Z. M.

    2017-04-01

    Angular distributions of the elastic, inelastic, and breakup cross sections of the halo nucleus Be 11 on Au 197 were measured at energies below (Elab=31.9 MeV ) and around (39.6 MeV) the Coulomb barrier. These three channels were unambiguously separated for the first time for reactions of Be 11 on a high-Z target at low energies. The experiment was performed at TRIUMF (Vancouver, Canada). The differential cross sections were compared with three different calculations: semiclassical, inert-core continuum-coupled-channels and continuum-coupled-channels ones with including core deformation. These results show conclusively that the elastic and inelastic differential cross sections can only be accounted for if core-excited admixtures are taken into account. The cross sections for these channels strongly depend on the B (E 1 ) distribution in Be 11 , and the reaction mechanism is sensitive to the entanglement of core and halo degrees of freedom in Be 11 .

  6. SUNrises on the International Plant Nucleus Consortium

    PubMed Central

    Graumann, Katja; Bass, Hank W.; Parry, Geraint

    2013-01-01

    The nuclear periphery is a dynamic, structured environment, whose precise functions are essential for global processes—from nuclear, to cellular, to organismal. Its main components—the nuclear envelope (NE) with inner and outer nuclear membranes (INM and ONM), nuclear pore complexes (NPC), associated cytoskeletal and nucleoskeletal components as well as chromatin are conserved across eukaryotes (Fig. 1). In metazoans in particular, the structure and functions of nuclear periphery components are intensely researched partly because of their involvement in various human diseases. While far less is known about these in plants, the last few years have seen a significant increase in research activity in this area. Plant biologists are not only catching up with the animal field, but recent findings are pushing our advances in this field globally. In recognition of this developing field, the Annual Society of Experimental Biology Meeting in Salzburg kindly hosted a session co-organized by Katja Graumann and David E. Evans (Oxford Brookes University) highlighting new insights into plant nuclear envelope proteins and their interactions. This session brought together leading researchers with expertise in topics such as epigenetics, meiosis, nuclear pore structure and functions, nucleoskeleton and nuclear envelope composition. An open and friendly exchange of ideas was fundamental to the success of the meeting, which resulted in founding the International Plant Nucleus Consortium. This review highlights new developments in plant nuclear envelope research presented at the conference and their importance for the wider understanding of metazoan, yeast and plant nuclear envelope functions and properties. PMID:23324458

  7. Functional network inference of the suprachiasmatic nucleus

    SciTech Connect

    Abel, John H.; Meeker, Kirsten; Granados-Fuentes, Daniel; St. John, Peter C.; Wang, Thomas J.; Bales, Benjamin B.; Doyle, Francis J.; Herzog, Erik D.; Petzold, Linda R.

    2016-04-04

    In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure.

  8. Functional network inference of the suprachiasmatic nucleus

    PubMed Central

    Abel, John H.; Meeker, Kirsten; Granados-Fuentes, Daniel; St. John, Peter C.; Wang, Thomas J.; Bales, Benjamin B.; Doyle, Francis J.; Herzog, Erik D.; Petzold, Linda R.

    2016-01-01

    In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure. PMID:27044085

  9. Calretinin Neurons in the Rat Suprachiasmatic Nucleus.

    PubMed

    Moore, Robert Y

    2016-08-01

    The hypothalamic suprachiasmatic nucleus (SCN), a circadian pacemaker, is present in all mammalian brains. It has a complex organization of peptide-containing neurons that is similar among species, but calcium-binding proteins are expressed variably. Neurons containing calretinin have been described in the SCN in a number of species but not with association to circadian function. The objective of the present study is to characterize a calretinin neuron (CAR) group in the rat anterior hypothalamus anatomically and functionally with a detailed description of its location and a quantitative analysis of neuronal calretinin immunoreactivity at 3 times of day, 0600, 1400, and 1900 h, from animals in either light-dark or constant dark conditions. CAR neurons occupy a region in the dorsal and lateral SCN with a circadian rhythm in CAR immunoreactivity with a peak at 0600 h and a rhythm in cytoplasmic CAR distribution with a peak at 1400 h. CAR neurons should be viewed as an anatomical and functional component of the rat SCN that expands the definition from observations with cell stains. CAR neurons are likely to modulate temporal regulation of calcium in synaptic transmission.

  10. Control of nucleus accumbens activity with neurofeedback

    PubMed Central

    Greer, Stephanie M.; Trujillo, Andrew J.; Glover, Gary H.; Knutson, Brian

    2014-01-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as “neurofeedback.” In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive arousal affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function. PMID:24705203

  11. Development of the human dentate nucleus.

    PubMed

    Mihajlovic, P; Zecevic, N

    1986-01-01

    The developing human dentate nucleus (DN) was studied in a series of specimens of various pre- and postnatal ages ranging from 8 gestational weeks (gw) to 10 years, in Golgi-impregnated and Nissl-stained material. The DN emerges from the cerebellar white matter at around 16 gestational weeks (gw) as a thick band of cells (600-700 micron in width) that gradually attenuates to a final width of 150-250 micron as it undergoes extensive infolding beginning around 24 gw. The highly convoluted configuration of the adult DN is recognizable by 35 gw. Around 16 gw, two basic classes of DN neurons can be identified. Differentiation of these neurons is especially intensive during the mid-gestational period (20-25 gw). At this time the size of cell bodies increases, dendrites branch profusely and acquire spines. A second, slower phase of maturation consisting of addition of secondary and tertiary branches, continues into the postnatal period. At all prenatal ages examined, dentate neurons are morphologically more mature than the Purkinje cells in the overlying cortex. DN neurons of premature infants did not show cytomorphological differences when compared with babies born at term.

  12. Control of nucleus accumbens activity with neurofeedback.

    PubMed

    Greer, Stephanie M; Trujillo, Andrew J; Glover, Gary H; Knutson, Brian

    2014-08-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as "neurofeedback." In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive aroused affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function.

  13. Restoring Segmental Biomechanics Through Nucleus Augmentation: An In Vitro Study.

    PubMed

    Pelletier, Matthew H; Cohen, Charles S; Ducheyne, Paul; Walsh, William R

    2016-12-01

    In vitro biomechanical laboratory study. The purpose of this study is to evaluate a mechanical treatment to create a degenerative motion segment and the ability of nucleus augmentation to restore biomechanics. In cases with an intact annulus fibrosus, the replacement or augmentation of the nucleus pulposus alone may provide a less invasive option to restore normal biomechanics and disk height when compared with spinal fusion or total disk replacement. Laboratory testing allows these changes to be fully characterized. However, without preexisting pathology, nucleus augmentation therapies are difficult to evaluate in vitro. The present study evaluated pure moment bending and compressive biomechanics in 3 states (n=6): (1) intact, (2) after creep loading and nucleus disruption to induce degenerative biomechanical changes, and (3) after nucleus augmentation through an injectable polymer (DiscCell). Neutral zone and ROM were increased in all modes of bending after the degenerative treatment. The most sensitive mode of bending was lateral bending, with intact ROM (20.0±2.9 degrees) increased to 22.3±2.6 degrees after degenerative treatment and reduced to 18.4±1.6 degrees after injection of the polymer. All bending ROM and NZ changes induced by the degenerative treatment were reversed by nucleus augmentation. This material was shown to be effective at altering motion segment biomechanics and restoring disk height during time zero tests. This technique may provide a model to examine the time zero performance of a nucleus augmentation device/material.

  14. Did Struve observe the nucleus of Halley's comet in 1835?

    NASA Astrophysics Data System (ADS)

    Wittmann, Axel D.

    During its apparition in 1835 Halley's comet reached its minimum distance from the earth (0.187 au) on 13 October in the constellation of Ursa Major. Telescopic visual observations were made, e.g., by F.W. Bessel at Königsberg and by F.G.W. Struve at Dorpat (Tartu). In particular a drawing made by Struve on 8 October of what he calls the `nucleus' and describes as a small, slightly yellowish glowing piece of coal of elongated shape bears such a striking resemblance to the images of Halley's nucleus obtained in 1986 by the Giotto spacecraft that it merits further examination: Could Struve, who had been using a 24.4 cm refractor at 254-fold magnification, possibly have observed the real nucleus? Closer examination shows that neither Struve's maximum possible resolution (0.13 arc seconds or 23 km at the comet), nor his measured size of the nucleus (160 x 400 km), nor his verbal description of the nucleus (as a bright object) support this idea: It rather seems that the term `nucleus' was used at the time for the brightest, innermost part of the coma. It is concluded that, nevertheless, Struve quite correctly envisaged the structure of the innermost coma, and to a considerable degree of accuracy anticipated the correct shape and structure of the nucleus (elongated, 1:2) and its localized sources of outstreaming gas.

  15. Development of the human dorsal nucleus of the vagus.

    PubMed

    Cheng, Gang; Zhu, Hua; Zhou, Xiangtian; Qu, Jia; Ashwell, K W S; Paxinos, G

    2008-01-01

    The dorsal nucleus of the vagus nerve plays an integral part in the control of visceral function. The aim of the present study was to correlate structural and chemical changes in the developing nucleus with available data concerning functional maturation of human viscera and reflexes. The fetal development (ages 9 to 26 weeks) of the human dorsal nucleus of the vagus nerve has been examined with the aid of Nissl staining and immunocytochemistry for calbindin and tyrosine hydroxylase. By 13 weeks, the dorsal vagal nucleus emerges as a distinct structure with at least two subnuclei visible in Nissl stained preparations. By 15 weeks, three subnuclei (dorsal intermediate, centrointermediate and ventrointermediate) were clearly discernible at the open medulla level with caudal and caudointermediate subnuclei visible at the level of the area postrema. All subnuclei known to exist in the adult were visible by 21 weeks and cytoarchitectonic differentiation of the nucleus was largely completed by 25 weeks. The adult distribution pattern of calbindin and tyrosine hydroxylase immunoreactive neurons was also largely completed by 21 weeks, although morphological differentiation of labeled neurons continued until the last age examined (26 weeks). The structural development of the dorsal nucleus of the vagus nerve appears to occur in parallel with functional maturation of the cardiovascular and gastric movements, which the nucleus controls.

  16. Inputs to the ventrolateral bed nucleus of the stria terminalis

    PubMed Central

    Shin, Jung-Won; Geerling, Joel C.; Loewy, Arthur D.

    2009-01-01

    The ventrolateral bed nucleus of the stria terminalis (BSTvl) receives direct input from two specific subpopulations of neurons in the nucleus tractus solitarius (NTS). It is heavily innervated by aldosterone-sensitive NTS neurons, which are selectively activated by sodium depletion, and by the A2 noradrenergic neurons, which are activated by visceral, immune- and stress-related stimuli. Here, we used a retrograde neuronal tracer to identify other brain sites that innervate the BSTvl. Five general brain regions contained retrogradely labeled neurons: cerebral cortex (infralimbic and insular regions), rostral forebrain structures (subfornical organ, organum vasculosum of the lamina terminalis, taenia tecta, nucleus accumbens, lateral septum, endopiriform nucleus, dorsal BST, substantia innominata, and most prominently the amygdala – primarily its basomedial and central subnuclei), thalamus (central medial, intermediodorsal, reuniens, and most prominently the paraventricular thalamic nucleus), hypothalamus (medial preoptic area, perifornical, arcuate, dorsomedial, parasubthalamic, and posterior hypothalamic nuclei), and brainstem (periaqueductal gray matter, dorsal and central superior raphe nuclei, parabrachial nucleus, pre-locus coeruleus region, NTS, and A1 noradrenergic neurons in the caudal ventrolateral medulla). In the arcuate hypothalamic nucleus, some retrogradely-labeled neurons contained either agouti-related peptide or cocaine-amphetamine regulated transcript. Of the numerous retrogradely labeled neurons in the perifornical hypothalamic area, few contained melanin concentrating hormone or orexin. In the brainstem, many retrogradely labeled neurons were either serotoninergic or catecholaminergic. In summary, the BSTvl receives inputs from a variety of brain sites implicated in hunger, salt and water intake, stress, arousal, and reward. PMID:18853414

  17. Angiotensin receptor binding and pressor effects in cat subretrofacial nucleus

    SciTech Connect

    Allen, A.M.; Dampney, R.A.L.; Mendelsohn, F.A.O. Univ. of Sydney )

    1988-11-01

    Central administration of angiotensin II (ANG II) increases arterial blood pressure via increased sympathetic activity. The authors have examined the possibility that one site of action of ANG II is the subretrofacial (SRF) nucleus in the rostral ventrolateral medulla, since this nucleus is known to play a critical role in the tonic and phasic control of arterial pressure. In vitro autoradiography, employing {sup 125}I-labeled (Sar{sup 1}, Ile{sup 8})ANG II as radioligand, was used to localize binding sites for ANG-II in the cat ventrolateral medulla. A high density of ANG II-receptor binding sites was found confined to the SRF nucleus. In a second group of experiments in anesthetized cats, microinjections of ANG II, in doses ranging from 10 to 50 pmol, were made into histologically identified sites within and outside the SRF nucleus. Microinjections into the nucleus resulted in a dose-dependent increase in arterial pressure, which was abolished by systemic administration of the ganglion-blocking drug hexamethonium bromide. In contrast, microinjections just outside the SRF nucleus had no effect on arterial pressure. It is concluded that activation of ANG II-receptor binding sites within the SRF nucleus leads to an increase in arterial pressure via increased sympathetic efferent activity.

  18. Lepton event rates in neutrino-nucleus DIS

    SciTech Connect

    Haider, H.; Athar, M. Sajjad; Simo, I. Ruiz; Vicente Vacas, M. J.

    2011-10-06

    In this work we have studied the nuclear effect in F{sub 2}{sup A}(x) and F{sub 3}{sup A}(x) weak structure functions and calculated {nu}-nucleus cross section using them by taking into account Fermi motion, binding energy, pion and rho meson cloud contributions and shadowing and anti-shadowing effects. The numerical calculations have been performed in a local density approximation using relativistic nuclear spectral functions which include nucleon correlations for nuclear matter. The results have been compared with the experimental results of NuTeV and CDHSW collaborations.

  19. The Suprachiasmatic Nucleus Modulates the Sensitivity of Arcuate Nucleus to Hypoglycemia in the Male Rat.

    PubMed

    Herrera-Moro Chao, D; León-Mercado, L; Foppen, E; Guzmán-Ruiz, M; Basualdo, M C; Escobar, C; Buijs, R M

    2016-09-01

    The suprachiasmatic nucleus (SCN) and arcuate nucleus (ARC) have reciprocal connections; catabolic metabolic information activates the ARC and inhibits SCN neuronal activity. Little is known about the influence of the SCN on the ARC. Here, we investigated whether the SCN modulated the sensitivity of the ARC to catabolic metabolic conditions. ARC neuronal activity, as determined by c-Fos immunoreactivity, was increased after a hypoglycemic stimulus by 2-deoxyglucose (2DG). The highest ARC neuronal activity after 2DG was found at the end of the light period (zeitgeber 11, ZT11) with a lower activity in the beginning of the light period (zeitgeber 2, ZT2), suggesting the involvement of the SCN. The higher activation of ARC neurons after 2DG at ZT11 was associated with higher 2DG induced blood glucose levels as compared with ZT2. Unilateral SCN-lesioned animals, gave a mainly ipsilateral activation of ARC neurons at the lesioned side, suggesting an inhibitory role of the SCN on ARC neurons. The 2DG-induced counterregulatory glucose response correlated with increased ARC neuronal activity and was significantly higher in unilateral SCN-lesioned animals. Finally, the ARC as site where 2DG may, at least partly, induce a counterregulatory response was confirmed by local microdialysis of 2DG. 2DG administration in the ARC produced a higher increase in circulating glucose compared with 2DG administration in surrounding areas such as the ventromedial nucleus of the hypothalamus (VMH). We conclude that the SCN uses neuronal pathways to the ARC to gate sensory metabolic information to the brain, regulating ARC glucose sensitivity and counterregulatory responses to hypoglycemic conditions.

  20. Beam-energy dependence and updated test of the Trojan-horse nucleus invariance via a measurement of the 2H(d ,p )3H reaction at low energies

    NASA Astrophysics Data System (ADS)

    Li, Chengbo; Wen, Qungang; Tumino, A.; Fu, Yuanyong; Zhou, Jing; Zhou, Shuhua; Meng, Qiuying; Spitaleri, C.; Pizzone, R. G.; Lamia, L.

    2017-03-01

    The 2H(d ,p )3H bare nucleus astrophysical S (E ) factor has been measured indirectly at energies from about 500 keV down to several keV by means of the Trojan-horse method applied to the 2H(6Li,p t )4He quasifree reaction induced at 11 MeV. The obtained results are compared with direct data as well as with previous indirect investigation of the same binary reactions. It shows that the precision of S (E ) data in the low-energy range extracted via the same Trojan-horse nuclei [6Li=(d ⊕α )] becomes better when the incident energy of the virtual binary process decreases from high value down to the lower Gamow energy range, which near the zero-quasi-free-energy point. The very good agreement between data extracted from different Trojan-horse nuclei [6Li=(d ⊕α ) vs 3He=(d ⊕p )] gives a strong updated test for the independence of the binary indirect cross section on the chosen Trojan-horse nucleus at low energies.

  1. Determination of electron-nucleus collisions geometry with forward neutrons

    DOE PAGES

    Zheng, L.; Aschenauer, E.; Lee, J. H.

    2014-12-29

    There are a large number of physics programs one can explore in electron-nucleus collisions at a future electron-ion collider. Collision geometry is very important in these studies, while the measurement for an event-by-event geometric control is rarely discussed in the prior deep-inelastic scattering experiments off a nucleus. This paper seeks to provide some detailed studies on the potential of tagging collision geometries through forward neutron multiplicity measurements with a zero degree calorimeter. As a result, this type of geometry handle, if achieved, can be extremely beneficial in constraining nuclear effects for the electron-nucleus program at an electron-ion collider.

  2. Nucleus of Comet IRAS-Araki-Alcock (1983 VII)

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1988-01-01

    Optical, radar, infrared, UV, and microwave-continuum observations of Comet IRAS-Araki-Alcok were obtained in May 1983, the week of the comet's close approach to earth. The comet has a nucleus dimension and a rotation period which are similar to those of Comet Halley, but a different morphological signature (a persisting sunward fan-shaped coma). Time variations are noted in the projected nucleus cross section. Results suggest significant limb-darkening effects in the relevant domains of radio waves, and that the comet's interior must be extremely cold. It is found that the thermal-infrared fluxes from the inner coma of the comet are dominated by the nucleus.

  3. Ice nucleus activity measurements of solid rocket motor exhaust particles

    NASA Technical Reports Server (NTRS)

    Keller, V. W. (Compiler)

    1986-01-01

    The ice Nucleus activity of exhaust particles generated from combustion of Space Shuttle propellant in small rocket motors has been measured. The activity at -20 C was substantially lower than that of aerosols generated by unpressurized combustion of propellant samples in previous studies. The activity decays rapidly with time and is decreased further in the presence of moist air. These tests corroborate the low effectivity ice nucleus measurement results obtained in the exhaust ground cloud of the Space Shuttle. Such low ice nucleus activity implies that Space Shuttle induced inadvertent weather modification via an ice phase process is extremely unlikely.

  4. Impact of low-energy nuclear excitations on neutrino-nucleus scattering at MiniBooNE and T2K kinematics

    NASA Astrophysics Data System (ADS)

    Pandey, V.; Jachowicz, N.; Martini, M.; González-Jiménez, R.; Ryckebusch, J.; Van Cuyck, T.; Van Dessel, N.

    2016-11-01

    Background: Meticulous modeling of neutrino-nucleus interactions is essential to achieve the unprecedented precision goals of present and future accelerator-based neutrino-oscillation experiments. Purpose: Confront our calculations of charged-current quasielastic cross sections with the measurements of MiniBooNE and T2K, and to quantitatively investigate the role of nuclear-structure effects, in particular, low-energy nuclear excitations in forward muon scattering. Method: The model takes the mean-field approach as the starting point, and solves Hartree-Fock (HF) equations using a Skyrme (SkE2) nucleon-nucleon interaction. Long-range nuclear correlations are taken into account by means of the continuum random-phase approximation (CRPA) framework. Results: We present our calculations on flux-folded double differential, and flux-unfolded total cross sections off 12C and compare them with MiniBooNE and (off-axis) T2K measurements. We discuss the importance of low-energy nuclear excitations for the forward bins. Conclusions: The HF and CRPA predictions describe the gross features of the measured cross sections. They underpredict the data (more in the neutrino than in the antineutrino case) because of the absence of processes beyond pure quasielastic scattering in our model. At very forward muon scattering, low-energy HF-CRPA nuclear excitations (ω <50 MeV) account for nearly 50% of the flux-folded cross section. This extra low-energy strength is a feature of the detailed microscopic nuclear model used here, that is not accessed in a Fermi-gas based approach.

  5. Reduction of 3-methoxytyramine concentrations in the caudate nucleus of rats after exposure to high-energy iron particles: Evidence for deficits in dopaminergic neurons

    SciTech Connect

    Hunt, W.A.; Dalton, T.K.; Joseph, J.A.; Rabin, B.M.

    1990-01-01

    The prospect of long-term space travel raises a number of questions about the safety of astronauts asked to venture on prolonged journeys. The problems of microgravity are well known, but the hazards of exposure to radation are less understood. Most space travel has involved a few days to many months in low-altitude, equatorial orbits, where the dangers of radiation are lessened by the magnetic field surrounding the earth. Travel to polar or geostationary orbits or travel to the moon or the planets has a far greater radiation hazard. Almost nothing is known about possible risks to behavior and brain function after radiation exposure, such as found after the emission of solar flares or from long-term exposure from galactic cosmic radiation. Exposure to low doses of high-energy iron particles can alter motor behavior. The ability of rats to hang from a wire has been reported to be significantly degraded after exposure to doses as low as 0.5 Gy. In addition, deficits in the ability of acetylcholine to regulate dopamine release in the caudate nucleus (an area in the brain important for motor function) have been found. These results provide further evidence that exposure to heavy particles can degrade motor behavior through an action on dopaminergic mechanisms and that this can occur after doses much lower than those needed for low-LET radiation.

  6. Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl.

    PubMed

    Takahashi, T T; Konishi, M

    1988-08-08

    Interaural phase and intensity are cues by which the barn owl determines, respectively, the azimuth and elevation of a sound source. Physiological studies indicate that phase and intensity are processed independently in the auditory brainstem of the barn owl. The phases of spectral components of a sound are encoded in nucleus magnocellularis (NM), one of the two cochlear nuclei. NM projects solely and bilaterally to nucleus laminaris (NL), wherein interaural phase difference is computed. The other cochlear nucleus, nucleus angularis (NA), encodes the amplitudes of spectral components of sounds. We report here the projections of NA and NL to the lateral lemniscal nuclei of the barn owl. The lateral lemniscal complex comprises nucleus olivaris superior (SO); nucleus lemnisci lateralis, pars ventralis (LLv); and nucleus ventralis lemnisci lateralis (VLV). At caudal levels, VLV may be divided into a posterior (VLVp) and an anterior (VLVa) subdivision on cytoarchitectonic grounds. At rostral levels, the cytoarchitectural differences diminish and the boundaries between the two subdivisions become obscured. Likewise, our data from anterograde tracing studies suggest that at caudal levels the terminal fields of NA and NL remain confined to VLVp and VLVa, respectively. They merge, however, at rostral levels. The data also suggest that NL projects to the medial portion of the ipsilateral SO and that NA projects bilaterally to all parts of SO and LLv. Studies with the retrograde transport of horseradish peroxidase confirm these projections.

  7. Smallest Black Hole in Galactic Nucleus Detected

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    A team of astronomers have reported the detection of the smallest black hole (BH) ever observed in a galactic nucleus. The BH is hosted in the center of dwarf galaxy RGG 118, and it weighs in at 50,000 solar masses, according to observations made by Vivienne Baldassare of University of Michigan and her collaborators. Small Discoveries: Why is the discovery of a small nuclear BH important? Some open questions that this could help answer are: - Do the very smallest dwarf galaxies have BHs at their centers too? Though we believe that there's a giant BH at the center of every galaxy, we aren't sure how far down the size scale this holds true. - What is the formation mechanism for BHs at the center of galaxies? - What's the behavior of the M-sigma relation at the low-mass end? The M-sigma relation is an observed correlation between the mass of a galaxy's central BH and the velocity dispersion of the stars in the galaxy. This relation is incredibly useful for determining properties of distant BHs and their galaxies empirically, but little data is available to constrain the low-mass end of the relation. M-sigma relation, plotting systems with dynamically-measured black hole masses. RGG 118 is plotted as the pink star. The solid and dashed lines represent various determinations of scaling relations. Credit: Baldassare et al. 2015. Identifying a Black Hole: RGG 118 was identified as a candidate host for an accreting, nuclear BH from the catalog of dwarf galaxies observed in the Sloan Digital Sky Survey. Baldassare and her team followed up with high-resolution spectroscopy from the Clay telescope in Chile and Chandra x-ray observations. Using these observations, the team determined that RGG 118 plays host to a massive BH at its center based on three clues: 1) narrow emission line ratios, which is a signature of accretion onto a massive BH, 2) the presence of broad emission lines, indicating that gas is rotating around a central BH, and 3) the existence of an X-ray point

  8. The Acasta Gneiss - a Hadean cratonic nucleus

    NASA Astrophysics Data System (ADS)

    Sprung, P.; Scherer, E. E.; Maltese, A.; Bast, R.; Bleeker, W.; Mezger, K.

    2016-12-01

    The known terrestrial rock record lacks undisputed, chemically intact Hadean crust. Direct evidence from this eon has been restricted to zircon grains within younger rocks [1]. The Acasta Gneiss Complex (AGC; NT, CA) has yielded zircon with Hadean domains [e.g., 2,3], but the time at which AGC rocks became closed chemical systems is unclear [4,5]. Determining this `time of last disturbance' (tld) would provide a minimum protolith age, and is crucial for using radiogenic isotope compositions of bulk rocks to trace crust-mantle evolution. Recent studies mostly focused on the `low-strain' eastern AGC [e.g., 6, 7], which records an evolving, early-mid Archean cratonic nucleus [7]. We also studied the `high-strain' banded gneiss in the western AGC, which hosts >4 Ga zircon domains [2,3], too. Our focusing lay on adjoining, lithologically distinct bands [8] of two distinct chemical groups: A) Mafic, chondrite-normalized LaN/YbN ≦20, slightly HFSE- depleted, and B) TTG-like, LaN/YbN up to 145, markedly HFSE-depleted. Six adjacent bands yield a well-defined 4 Ga Sm-Nd isochron with a ɛNd4Ga of +2 and ɛHf4Ga values from +1 to +6. Within-band Sm-Nd and Lu-Hf systematics imply younger mineral re-equilibration [9]. We interpret the 4 Ga Sm-Nd isochron to date the physical juxtaposition of bands in the gneiss unit and to define tld among bands for elements less mobile and diffusive than Sm and Nd. Contrasting Sm-Nd results from the same unit [10] likely are due to sampling at too fine a scale. Digestion of metamict pre-tld zircon likely caused the scatter in Lu-Hf. Both decay systems hint at the existence of a possibly local, strongly depleted Hadean mantle domain. The TTG-like bands are 0.4 Gyr older than similar rocks in the `low-strain' eastern AGC [7]. The AGC was thus an evolved cratonic nucleus already at 4 Ga, possibly with a depleted lithospheric keel. [1] Cavosie et al. (2004) Prec. Res. 135, 251-279 [2] Bowring & Williams (1999) CMP 134, 3-16 [3] Iizuka et al

  9. Nucleus Accumbens Invulnerability to Methamphetamine Neurotoxicity

    PubMed Central

    Kuhn, Donald M.; Angoa-Pérez, Mariana; Thomas, David M.

    2016-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure. PMID:23382149

  10. Nucleus accumbens invulnerability to methamphetamine neurotoxicity.

    PubMed

    Kuhn, Donald M; Angoa-Pérez, Mariana; Thomas, David M

    2011-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure.

  11. Direct and compound-nucleus reaction mechanisms in the 7Be+58Ni system at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Mazzocco, M.; Torresi, D.; Pierroutsakou, D.; Keeley, N.; Acosta, L.; Boiano, A.; Boiano, C.; Glodariu, T.; Guglielmetti, A.; La Commara, M.; Lay, J. A.; Martel, I.; Mazzocchi, C.; Molini, P.; Parascandolo, C.; Pakou, A.; Parkar, V. V.; Romoli, M.; Rusek, K.; Sánchez-Benítez, A. M.; Sandoli, M.; Sgouros, O.; Signorini, C.; Silvestri, R.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Strano, E.; Stroe, L.; Zerva, K.

    2015-08-01

    The energy and angular distributions of 3He and 4He ions produced in the 7Be +58Ni reaction at a bombarding energy of 22 MeV have been measured for the first time. The yield of the heavier helium isotope was four to five times more abundant than that of its lighter counterpart, ruling out the possibility that in this energy range the 7Be reaction dynamics is dominated by the exclusive breakup process 7Be→3He +4He (Sα=1.586 MeV). Extensive kinematic and theoretical calculations suggest that the 3He ions mostly originate from the 4He-stripping process and the 4He production is mainly triggered by the fusion-evaporation channel. The role played by the breakup, 3He-stripping, 1 n -stripping, and 1 n -pickup processes is also discussed.

  12. Pion production at 180/sup 0/ in nucleus-nucleus collisions

    SciTech Connect

    Chessin, S.A.

    1983-05-01

    A survey experiment of pion production at 180/sup 0/ in nucleus-nucleus collisions is presented. Beams of 1.05 GeV/A and 2.1 GeV/A protons, alphas, and carbon were used, as well as proton beams of 0.80 GeV, 3.5 GeV, and 4.89 GeV, and argon beams of 1.05 GeV/A and 1.83 GeV/A. This is the first such experiment to use the heavier beams. Targets used ranged from carbon to lead. An in-depth review of the literature, both experimental and theoretical, is also presented. The systematics of the data are discussed, and comparisons are made both with prior experiments and with the predictions of the models reviewed. The cross sections appear consistent with a simple single nucleon-nucleon collision picture, without the need for collective or other exotic effects. Suggestions for future work are made.

  13. Major diencephalic inputs to the hippocampus: supramammillary nucleus and nucleus reuniens. Circuitry and function.

    PubMed

    Vertes, Robert P

    2015-01-01

    The hippocampus receives two major external inputs from the diencephalon, that is, from the supramammillary nucleus (SUM) and nucleus reuniens (RE) of the midline thalamus. These two afferents systems project to separate, nonoverlapping, regions of the hippocampus. Specifically, the SUM distributes to the dentate gyrus (DG) and to CA2 of the dorsal and ventral hippocampus, whereas RE projects to CA1 of the dorsal and ventral hippocampus and to the subiculum. SUM and RE fibers to the hippocampus participate in common as well as in separate functions. Both systems would appear to amplify signals from other sources to their respective hippocampal targets. SUM amplifies signals from the entorhinal cortex (EC) to DG, whereas RE may amplify them from CA3 (and EC) to CA1 of the hippocampus. This "amplification" may serve to promote the transfer, encoding, and possibly storage of information from EC to DG and from CA3 and EC to CA1. Regarding their unique actions on the hippocampus, the SUM is a vital part of an ascending brainstem to hippocampal system generating the theta rhythm of the hippocampus, whereas RE importantly routes information from the medial prefrontal cortex to the hippocampus to thereby mediate functions involving both structures. In summary, although, to date, SUM and RE afferents to the hippocampus have not been extensively explored, the SUM and RE exert a profound influence on the hippocampus in processes of learning and memory. © 2015 Elsevier B.V. All rights reserved.

  14. Major diencephalic inputs to the hippocampus: supramammillary nucleus and nucleus reuniens. Circuitry and function

    PubMed Central

    Vertes, Robert P.

    2016-01-01

    The hippocampus receives two major external inputs from the diencephalon, that is, from the supramammillary nucleus (SUM) and nucleus reuniens (RE) of the midline thalamus. These two afferents systems project to separate, nonoverlapping, regions of the hippocampus. Specifically, the SUM distributes to the dentate gyrus (DG) and to CA2 of the dorsal and ventral hippocampus, whereas RE projects to CA1 of the dorsal and ventral hippocampus and to the subiculum. SUM and RE fibers to the hippocampus participate in common as well as in separate functions. Both systems would appear to amplify signals from other sources to their respective hippocampal targets. SUM amplifies signals from the entorhinal cortex (EC) to DG, whereas RE may amplify them from CA3 (and EC) to CA1 of the hippocampus. This “amplification” may serve to promote the transfer, encoding, and possibly storage of information from EC to DG and from CA3 and EC to CA1. Regarding their unique actions on the hippocampus, the SUM is a vital part of an ascending brainstem to hippocampal system generating the theta rhythm of the hippocampus, whereas RE importantly routes information from the medial prefrontal cortex to the hippocampus to thereby mediate functions involving both structures. In summary, although, to date, SUM and RE afferents to the hippocampus have not been extensively explored, the SUM and RE exert a profound influence on the hippocampus in processes of learning and memory. PMID:26072237

  15. Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior

    PubMed Central

    Acosta-Galvan, Guadalupe; Yi, Chun-Xia; van der Vliet, Jan; Jhamandas, Jack H.; Panula, Pertti; Angeles-Castellanos, Manuel; del Carmen Basualdo, María; Escobar, Carolina; Buijs, Ruud M.

    2011-01-01

    Food anticipatory behavior (FAA) is induced by limiting access to food for a few hours daily. Animals anticipate this scheduled meal event even without the suprachiasmatic nucleus (SCN), the biological clock. Consequently, a food-entrained oscillator has been proposed to be responsible for meal time estimation. Recent studies suggested the dorsomedial hypothalamus (DMH) as the site for this food-entrained oscillator, which has led to considerable controversy in the literature. Herein we demonstrate by means of c-Fos immunohistochemistry that the neuronal activity of the suprachiasmatic nucleus (SCN), which signals the rest phase in nocturnal animals, is reduced when animals anticipate the scheduled food and, simultaneously, neuronal activity within the DMH increases. Using retrograde tracing and confocal analysis, we show that inhibition of SCN neuronal activity is the consequence of activation of GABA-containing neurons in the DMH that project to the SCN. Next, we show that DMH lesions result in a loss or diminution of FAA, simultaneous with increased activity in the SCN. A subsequent lesion of the SCN restored FAA. We conclude that in intact animals, FAA may only occur when the DMH inhibits the activity of the SCN, thus permitting locomotor activity. As a result, FAA originates from a neuronal network comprising an interaction between the DMH and SCN. Moreover, this study shows that the DMH–SCN interaction may serve as an intrahypothalamic system to gate activity instead of rest overriding circadian predetermined temporal patterns. PMID:21402951

  16. Suprachiasmatic Nucleus Interaction with the Arcuate Nucleus; Essential for Organizing Physiological Rhythms

    PubMed Central

    Guzmán-Ruiz, Mara

    2017-01-01

    Abstract The suprachiasmatic nucleus (SCN) is generally considered the master clock, independently driving all circadian rhythms. We recently demonstrated the SCN receives metabolic and cardiovascular feedback adeptly altering its neuronal activity. In the present study, we show that microcuts effectively removing SCN-arcuate nucleus (ARC) interconnectivity in Wistar rats result in a loss of rhythmicity in locomotor activity, corticosterone levels, and body temperature in constant dark (DD) conditions. Elimination of these reciprocal connections did not affect SCN clock gene rhythmicity but did cause the ARC to desynchronize. Moreover, unilateral SCN lesions with contralateral retrochiasmatic microcuts resulted in identical arrhythmicity, proving that for the expression of physiological rhythms this reciprocal SCN-ARC interaction is essential. The unaltered SCN c-Fos expression following glucose administration in disconnected animals as compared to a significant decrease in controls demonstrates the importance of the ARC as metabolic modulator of SCN neuronal activity. Together, these results indicate that the SCN is more than an autonomous clock, and forms an essential component of a larger network controlling homeostasis. The present novel findings illustrate how an imbalance between SCN and ARC communication through circadian disruption could be involved in the etiology of metabolic disorders. PMID:28374011

  17. Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior.

    PubMed

    Acosta-Galvan, Guadalupe; Yi, Chun-Xia; van der Vliet, Jan; Jhamandas, Jack H; Panula, Pertti; Angeles-Castellanos, Manuel; Del Carmen Basualdo, María; Escobar, Carolina; Buijs, Ruud M

    2011-04-05

    Food anticipatory behavior (FAA) is induced by limiting access to food for a few hours daily. Animals anticipate this scheduled meal event even without the suprachiasmatic nucleus (SCN), the biological clock. Consequently, a food-entrained oscillator has been proposed to be responsible for meal time estimation. Recent studies suggested the dorsomedial hypothalamus (DMH) as the site for this food-entrained oscillator, which has led to considerable controversy in the literature. Herein we demonstrate by means of c-Fos immunohistochemistry that the neuronal activity of the suprachiasmatic nucleus (SCN), which signals the rest phase in nocturnal animals, is reduced when animals anticipate the scheduled food and, simultaneously, neuronal activity within the DMH increases. Using retrograde tracing and confocal analysis, we show that inhibition of SCN neuronal activity is the consequence of activation of GABA-containing neurons in the DMH that project to the SCN. Next, we show that DMH lesions result in a loss or diminution of FAA, simultaneous with increased activity in the SCN. A subsequent lesion of the SCN restored FAA. We conclude that in intact animals, FAA may only occur when the DMH inhibits the activity of the SCN, thus permitting locomotor activity. As a result, FAA originates from a neuronal network comprising an interaction between the DMH and SCN. Moreover, this study shows that the DMH-SCN interaction may serve as an intrahypothalamic system to gate activity instead of rest overriding circadian predetermined temporal patterns.

  18. Deconvolving the Nucleus of Centaurus A Using Chandra PSF Library

    NASA Technical Reports Server (NTRS)

    Karovska, Margarita

    2000-01-01

    Centaurus A (NGC 5128) is a giant early-type galaxy containing the nearest (at 3.5 Mpc) radio-bright Active Galactic Nucleus (AGN). Cen A was observed with the High Resolution Camera (HRC) on the Chandra X-ray Observatory on several occasions since the launch in July 1999. The high-angular resolution (less than 0.5 arcsecond) Chandra/HRC images reveal X ray multi-scale structures in this object with unprecedented detail and clarity, including the bright nucleus believed to be associated with a supermassive black hole. We explored the spatial extent of the Cen A nucleus using deconvolution techniques on the full resolution Chandra images. Model point spread functions (PSFs) were derived from the standard Chandra raytrace PSF library as well as unresolved point sources observed with Chandra. The deconvolved images show that the Cen A nucleus is resolved and asymmetric. We discuss several possible causes of this extended emission and of the asymmetries.

  19. Cytotoxicity of nucleus-targeting fluorescent gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhao, Jing-Ya; Cui, Ran; Zhang, Zhi-Ling; Zhang, Mingxi; Xie, Zhi-Xiong; Pang, Dai-Wen

    2014-10-01

    Gold nanoclusters (AuNCs) with ultra small sizes and unique fluorescence properties have shown promising potential for imaging the nuclei of living cells. However, little is known regarding the potential cytotoxicity of AuNCs after they enter the cell nucleus. The aim of this study is to investigate whether and how nucleus-targeting AuNCs affect the normal functioning of cells. Highly stable, water-soluble and bright fluorescent Au25NCs (the core of each nanocluster is composed of 25 gold atoms) were synthesized. Specific targeting of Au25NCs to the cell nucleus was achieved by conjugating the TAT peptide to the Au25NCs. Cell viability, cell morphology, cell apoptosis/necrosis, reactive oxygen species (ROS) level and mitochondrial membrane potential examinations were performed on different cell lines exposed to the nucleus-targeting Au25NCs. We found that the nucleus-targeting Au25NCs caused cell apoptosis in a dose-dependent manner. A possible mechanism for the cytotoxicity of the nucleus-targeting Au25NCs was proposed as follows: the nucleus-targeting Au25NCs induce the production of ROS, resulting in the oxidative degradation of mitochondrial components, in turn leading to apoptosis via a mitochondrial damage pathway. This work facilitates a better understanding of the toxicity of AuNCs, especially nucleus-targeting AuNCs.Gold nanoclusters (AuNCs) with ultra small sizes and unique fluorescence properties have shown promising potential for imaging the nuclei of living cells. However, little is known regarding the potential cytotoxicity of AuNCs after they enter the cell nucleus. The aim of this study is to investigate whether and how nucleus-targeting AuNCs affect the normal functioning of cells. Highly stable, water-soluble and bright fluorescent Au25NCs (the core of each nanocluster is composed of 25 gold atoms) were synthesized. Specific targeting of Au25NCs to the cell nucleus was achieved by conjugating the TAT peptide to the Au25NCs. Cell viability, cell

  20. Cloud condensation nucleus-sulfate mass relationship and cloud albedo

    NASA Technical Reports Server (NTRS)

    Hegg, Dean A.

    1994-01-01

    Analysis of previously published, simultaneous measurements of cloud condensation nucleus number concentration and sulfate mass concentration suggest a nonlinear relationship between the two variables. This nonlinearity reduces the sensitivity of cloud albedo to changes in the sulfur cycle.

  1. Cloud condensation nucleus-sulfate mass relationship and cloud albedo

    NASA Technical Reports Server (NTRS)

    Hegg, Dean A.

    1994-01-01

    Analysis of previously published, simultaneous measurements of cloud condensation nucleus number concentration and sulfate mass concentration suggest a nonlinear relationship between the two variables. This nonlinearity reduces the sensitivity of cloud albedo to changes in the sulfur cycle.

  2. Deconvolving the Nucleus of Centaurus A Using Chandra PSF Library

    NASA Technical Reports Server (NTRS)

    Karovska, Margarita

    2000-01-01

    Centaurus A (NGC 5128) is a giant early-type galaxy containing the nearest (at 3.5 Mpc) radio-bright Active Galactic Nucleus (AGN). Cen A was observed with the High Resolution Camera (HRC) on the Chandra X-ray Observatory on several occasions since the launch in July 1999. The high-angular resolution (less than 0.5 arcsecond) Chandra/HRC images reveal X ray multi-scale structures in this object with unprecedented detail and clarity, including the bright nucleus believed to be associated with a supermassive black hole. We explored the spatial extent of the Cen A nucleus using deconvolution techniques on the full resolution Chandra images. Model point spread functions (PSFs) were derived from the standard Chandra raytrace PSF library as well as unresolved point sources observed with Chandra. The deconvolved images show that the Cen A nucleus is resolved and asymmetric. We discuss several possible causes of this extended emission and of the asymmetries.

  3. 3D Protein Dynamics in the Cell Nucleus.

    PubMed

    Singh, Anand P; Galland, Rémi; Finch-Edmondson, Megan L; Grenci, Gianluca; Sibarita, Jean-Baptiste; Studer, Vincent; Viasnoff, Virgile; Saunders, Timothy E

    2017-01-10

    The three-dimensional (3D) architecture of the cell nucleus plays an important role in protein dynamics and in regulating gene expression. However, protein dynamics within the 3D nucleus are poorly understood. Here, we present, to our knowledge, a novel combination of 1) single-objective based light-sheet microscopy, 2) photoconvertible proteins, and 3) fluorescence correlation microscopy, to quantitatively measure 3D protein dynamics in the nucleus. We are able to acquire >3400 autocorrelation functions at multiple spatial positions within a nucleus, without significant photobleaching, allowing us to make reliable estimates of diffusion dynamics. Using this tool, we demonstrate spatial heterogeneity in Polymerase II dynamics in live U2OS cells. Further, we provide detailed measurements of human-Yes-associated protein diffusion dynamics in a human gastric cancer epithelial cell line.

  4. Dipole response of the odd-proton nucleus 205Tl up to the neutron-separation energy

    DOE PAGES

    Benouaret, N.; Beller, J.; Pai, H.; ...

    2016-10-17

    The low-lying electromagnetic dipole strength of the odd-proton nuclide 205Tl has been investigated up to the neutron separation energy exploiting the method of nuclear resonance fluorescence. In total, 61 levels of 205Tl have been identified. Lastly, the measured strength distribution of 205Tl were discussed and compared to those of even–even and even–odd mass nuclei in the same mass region as well as to calculations that have been performed within the quasi-particle phonon model.

  5. Dipole response of the odd-proton nucleus 205Tl up to the neutron-separation energy

    SciTech Connect

    Benouaret, N.; Beller, J.; Pai, H.; Pietralla, N.; Ponomarev, V. Yu; Romig, C.; Schnorrenberger, L.; Zweidinger, M.; Scheck, M.; Isaak, J.; Savran, D.; Sonnabend, K.; Raut, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Kelley, J. H.

    2016-10-17

    The low-lying electromagnetic dipole strength of the odd-proton nuclide 205Tl has been investigated up to the neutron separation energy exploiting the method of nuclear resonance fluorescence. In total, 61 levels of 205Tl have been identified. Lastly, the measured strength distribution of 205Tl were discussed and compared to those of even–even and even–odd mass nuclei in the same mass region as well as to calculations that have been performed within the quasi-particle phonon model.

  6. Dipole response of the odd-proton nucleus 205 Tl up to the neutron-separation energy

    SciTech Connect

    Benouaret, N.; Beller, J.; Pai, H.; Pietralla, N.; Ponomarev, V. Yu; Romig, C.; Schnorrenberger, L.; Zweidinger, M.; Scheck, M.; Isaak, J.; Savran, D.; Sonnabend, K.; Raut, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Kelley, J. H.

    2016-10-17

    The low-lying electromagnetic dipole strength of the odd-proton nuclide 205Tl has been investigated up to the neutron separation energy exploiting the method of nuclear resonance fluorescence. In total, 61 levels of 205Tl have been identified. The measured strength distribution of 205Tl is discussed and compared to those of even–even and even–odd mass nuclei in the same mass region as well as to calculations that have been performed within the quasi-particle phonon model.

  7. Radiometric observations of the nucleus of Comet Halley

    NASA Technical Reports Server (NTRS)

    Delamere, W. A.; Reitsema, H. J.; Huebner, W. F.; Schmidt, H. U.; Keller, H. U.; Schmidt, W. K. H.; Wilhelm, K.; Whipple, Fred L.

    1986-01-01

    Images obtained by the Halley multicolor camera (HMC) were used to determine the surface brightness of the nucleus. Radiometric values of jet-free areas of the surface are presented and a range of possible surface brightness values are derived. These direct measures are compared with brightnesses derived from the size of the nucleus, as determined from HMC images, and ground-based observations obtained before the onset of coma activity.

  8. The Galactic nucleus: A unique region in the Galactic ecosystem

    NASA Technical Reports Server (NTRS)

    Genzel, Reinhard; Poglitsch, Albrecht

    1995-01-01

    The nucleus is a unique region in the Galactic ecosystem. It is also superb laboratory of modern astrophysics where astronomers can study, at unprecedented spatial resolution and across the entire electromagnetic spectrum, physical processes that may also happen at the cores of other galaxies. Infrared observations from the Kuiper Airborne Observatory have made important contributions to unraveling the mysteries of the Galactic nucleus and this review highlights some of these measurements, as well as recent results regarding the central parsec.

  9. Truncal ataxia from infarction involving the inferior olivary nucleus.

    PubMed

    Park, Jae Hyun; Ryoo, Sookyung; Moon, So Young; Seo, Sand Won; Na, Duk L

    2012-08-01

    Truncal ataxia in medullary infarction may be caused by involvement of the lateral part of the medulla; however, truncal ataxia in infarction involving the inferior olivary nucleus (ION) has received comparatively little attention. We report a patient with truncal ataxia due to medial medullary infarction located in the ION. A lesion in the ION could produce a contralateral truncal ataxia due to increased inhibitory input to the contralesional vestibular nucleus from the contralesional flocculus.

  10. Under Pressure: Mechanical Stress Management in the Nucleus

    PubMed Central

    Belaadi, Néjma; Aureille, Julien; Guilluy, Christophe

    2016-01-01

    Cells are constantly adjusting to the mechanical properties of their surroundings, operating a complex mechanochemical feedback, which hinges on mechanotransduction mechanisms. Whereas adhesion structures have been shown to play a central role in mechanotransduction, it now emerges that the nucleus may act as a mechanosensitive structure. Here, we review recent advances demonstrating that mechanical stress emanating from the cytoskeleton can activate pathways in the nucleus which eventually impact both its structure and the transcriptional machinery. PMID:27314389

  11. Colour, albedo and nucleus size of Halley's comet

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Tholen, D. J.; Hartmann, W. K.

    1985-01-01

    Photometry of Halley's comet in the B, J, V, and K broadband filters during a time when the coma was very weak and presumed to contribute negligibly to the broadband photometry is reported. The V-J and J-K colors suggest that the color of the nucleus of Halley's comet is similar to that of the D-type asteroids, which in turn suggests that the surface of the nucleus has an albedo less than 0.1.

  12. Mission CaMKIIγ: shuttle calmodulin from membrane to nucleus.

    PubMed

    Malik, Zulfiqar A; Stein, Ivar S; Navedo, Manuel F; Hell, Johannes W

    2014-10-09

    Neuronal plasticity depends on plasma membrane Ca(2+) influx, resulting in activity-dependent gene transcription. Calmodulin (CaM) activated by Ca(2+) initiates the nuclear events, but how CaM makes its way to the nucleus has remained elusive. Ma et al. now show that CaMKIIγ transports CaM from cell surface Ca(2+) channels to the nucleus. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Low-energy modification of the γ strength function of the odd-even nucleus 115In

    NASA Astrophysics Data System (ADS)

    Versteegen, Maud; Denis-Petit, David; Méot, Vincent; Bonnet, Thomas; Comet, Maxime; Gobet, Franck; Hannachi, Fazia; Tarisien, Medhi; Morel, Pascal; Martini, Marco; Péru, Sophie

    2016-10-01

    Photoactivation yield measurements on 115In have been performed at the ELSA facility with Bremsstrahlung photon beams over a range of endpoint energies between 4.5 and 18 MeV. The measured photoexcitation yields of the Inm115 metastable state are compared with calculated yields using cross sections obtained with different models of the photon strength function. It is shown that additional photon strength with respect to the general Lorentzian model is needed at 8.1 MeV for the calculated yields to reproduce the data. The origin of this extra strength is unclear, because it is compatible with additional strength predicted in both E 1 and M 1 photon strength distributions by quasiparticle random-phase approximation calculations using the Gogny D1S force.

  14. GLP-1R Signaling Directly Activates Arcuate Nucleus Kisspeptin Action in Brain Slices but Does not Rescue Luteinizing Hormone Inhibition in Ovariectomized Mice During Negative Energy Balance.

    PubMed

    Heppner, Kristy M; Baquero, Arian F; Bennett, Camdin M; Lindsley, Sarah R; Kirigiti, Melissa A; Bennett, Baylin; Bosch, Martha A; Mercer, Aaron J; Rønnekleiv, Oline K; True, Cadence; Grove, Kevin L; Smith, M Susan

    2017-01-01

    Kisspeptin (Kiss1) neurons in the hypothalamic arcuate nucleus (ARC) are key components of the hypothalamic-pituitary-gonadal axis, as they regulate the basal pulsatile release of gonadotropin releasing hormone (GnRH). ARC Kiss1 action is dependent on energy status, and unmasking metabolic factors responsible for modulating ARC Kiss1 neurons is of great importance. One possible factor is glucagon-like peptide 1 (GLP-1), an anorexigenic neuropeptide produced by brainstem preproglucagon neurons. Because GLP fiber projections and the GLP-1 receptor (GLP-1R) are abundant in the ARC, we hypothesized that GLP-1R signaling could modulate ARC Kiss1 action. Using ovariectomized mice, we found that GLP-producing fibers come in close apposition with ARC Kiss1 neurons; these neurons also contain Glp1r mRNA. Electrophysiological recordings revealed that liraglutide (a long-acting GLP-1R agonist) increased action potential firing and caused a direct membrane depolarization of ARC Kiss1 cells in brain slices. We determined that brainstem preproglucagon mRNA is decreased after a 48-h fast in mice, a negative energy state in which ARC Kiss1 expression and downstream GnRH/luteinizing hormone (LH) release are potently suppressed. However, activation of GLP-1R signaling in fasted mice with liraglutide was not sufficient to prevent LH inhibition. Furthermore, chronic central infusions of the GLP-1R antagonist, exendin(9-39), in ad libitum-fed mice did not alter ARC Kiss1 mRNA or plasma LH. As a whole, these data identify a novel interaction of the GLP-1 system with ARC Kiss1 neurons but indicate that CNS GLP-1R signaling alone is not critical for the maintenance of LH during fasting or normal feeding.

  15. GLP-1R Signaling Directly Activates Arcuate Nucleus Kisspeptin Action in Brain Slices but Does not Rescue Luteinizing Hormone Inhibition in Ovariectomized Mice During Negative Energy Balance

    PubMed Central

    Heppner, Kristy M.; Baquero, Arian F.; True, Cadence; Grove, Kevin L.

    2017-01-01

    Abstract Kisspeptin (Kiss1) neurons in the hypothalamic arcuate nucleus (ARC) are key components of the hypothalamic-pituitary-gonadal axis, as they regulate the basal pulsatile release of gonadotropin releasing hormone (GnRH). ARC Kiss1 action is dependent on energy status, and unmasking metabolic factors responsible for modulating ARC Kiss1 neurons is of great importance. One possible factor is glucagon-like peptide 1 (GLP-1), an anorexigenic neuropeptide produced by brainstem preproglucagon neurons. Because GLP fiber projections and the GLP-1 receptor (GLP-1R) are abundant in the ARC, we hypothesized that GLP-1R signaling could modulate ARC Kiss1 action. Using ovariectomized mice, we found that GLP-producing fibers come in close apposition with ARC Kiss1 neurons; these neurons also contain Glp1r mRNA. Electrophysiological recordings revealed that liraglutide (a long-acting GLP-1R agonist) increased action potential firing and caused a direct membrane depolarization of ARC Kiss1 cells in brain slices. We determined that brainstem preproglucagon mRNA is decreased after a 48-h fast in mice, a negative energy state in which ARC Kiss1 expression and downstream GnRH/luteinizing hormone (LH) release are potently suppressed. However, activation of GLP-1R signaling in fasted mice with liraglutide was not sufficient to prevent LH inhibition. Furthermore, chronic central infusions of the GLP-1R antagonist, exendin(9–39), in ad libitum–fed mice did not alter ARC Kiss1 mRNA or plasma LH. As a whole, these data identify a novel interaction of the GLP-1 system with ARC Kiss1 neurons but indicate that CNS GLP-1R signaling alone is not critical for the maintenance of LH during fasting or normal feeding. PMID:28144621

  16. Glucokinase activity in the arcuate nucleus regulates glucose intake

    PubMed Central

    Hussain, Syed; Richardson, Errol; Ma, Yue; Holton, Christopher; De Backer, Ivan; Buckley, Niki; Dhillo, Waljit; Bewick, Gavin; Zhang, Shuai; Carling, David; Bloom, Steve; Gardiner, James

    2014-01-01

    The brain relies on a constant supply of glucose, its primary fuel, for optimal function. A taste-independent mechanism within the CNS that promotes glucose delivery to the brain has been postulated to maintain glucose homeostasis; however, evidence for such a mechanism is lacking. Here, we determined that glucokinase activity within the hypothalamic arcuate nucleus is involved in regulation of dietary glucose intake. In fasted rats, glucokinase activity was specifically increased in the arcuate nucleus but not other regions of the hypothalamus. Moreover, pharmacologic and genetic activation of glucokinase in the arcuate nucleus of rodent models increased glucose ingestion, while decreased arcuate nucleus glucokinase activity reduced glucose intake. Pharmacologic targeting of potential downstream glucokinase effectors revealed that ATP-sensitive potassium channel and P/Q calcium channel activity are required for glucokinase-mediated glucose intake. Additionally, altered glucokinase activity affected release of the orexigenic neurotransmitter neuropeptide Y in response to glucose. Together, our results suggest that glucokinase activity in the arcuate nucleus specifically regulates glucose intake and that appetite for glucose is an important driver of overall food intake. Arcuate nucleus glucokinase activation may represent a CNS mechanism that underlies the oft-described phenomena of the “sweet tooth” and carbohydrate craving. PMID:25485685

  17. A FIBER APPARATUS IN THE NUCLEUS OF THE YEAST CELL

    PubMed Central

    Robinow, C. F.; Marak, J.

    1966-01-01

    The structure and mode of division of the nucleus of budding yeast cells have been studied by phase-contrast microscopy during life and by ordinary microscopy after Helly fixation. The components of the nucleus were differentially stained by the Feulgen procedure, with Giemsa solution after hydrolysis, and with iron alum haematoxylin. New information was obtained in cells fixed in Helly's by directly staining them with 0.005% acid fuchsin in 1% acetic acid in water. Electron micrographs have been made of sections of cells that were first fixed with 3% glutaraldehyde, then divested of their walls with snail juice, and postfixed with osmium tetroxide. Light and electron microscopy have given concordant information about the organization of the yeast nucleus. A peripheral segment of the nucleus is occupied by relatively dense matter (the "peripheral cluster" of Mundkur) which is Feulgen negative. The greater part of the nucleus is filled with fine-grained Feulgen-positive matter of low density in which chromosomes could not be identified. Chromosomes become visible in this region under the light microscope at meiosis. In the chromatin lies a short fiber with strong affinity for acid fuchsin. The nucleus divides by elongation and constriction, and during this process the fiber becomes long and thin. Electron microscopy has resolved it into a bundle of dark-edged 150 to 180 A filaments which extends between "centriolar plaques" that are attached to the nuclear envelope. PMID:5331666

  18. International Halley Watch: Discipline specialists for near-nucleus studies

    NASA Technical Reports Server (NTRS)

    Larson, S.; Sekanina, Z.; Rahe, J.

    1986-01-01

    The purpose of the Near-Nucleus Studies Net is to study the processes taking place in the near-nucleus environment as they relate to the nature of nucleus. This is accomplisghed by measuring the spatial and temporal distribution of dust, gases and ions in the coma on high resolution images taken from many observatories around the world. By modeling the motions of discrete dust features in Comet Halley, it is often possible to determine the locations of the emission sources on the surface and learn about the nucleus structure. In addition to the general goals shared by all IHW nets, the scientific goals of the net has been to determine (1)the gross surface structure of the nucleus, (2)the nucleus spin vector, (3)the distribution and evolution of jet sources and (4)the interrelationships between the gas, dust and ion components of the coma. An additional Comet Giacobini-Zinner watch was carried out by the NNSN in support of the NASA International Cometary Explorer flyby.

  19. Suprachiasmatic Nucleus Neuropeptide Expression in Patients with Huntington's Disease

    PubMed Central

    van Wamelen, Daniel J.; Aziz, N. Ahmad; Anink, Jasper J.; van Steenhoven, Robin; Angeloni, Debora; Fraschini, Franco; Jockers, Ralf; Roos, Raymund A. C.; Swaab, Dick F.

    2013-01-01

    Study Objective: To study whether sleep and circadian rhythm disturbances in patients with Huntington's disease (HD) arise from dysfunction of the body's master clock, the hypothalamic suprachiasmatic nucleus. Design: Postmortem cohort study. Patients: Eight patients with HD and eight control subjects matched for sex, age, clock time and month of death, postmortem delay, and fixation time of paraffin-embedded hypothalamic tissue. Measurements and Results: Using postmortem paraffin-embedded tissue, we assessed the functional integrity of the suprachiasmatic nucleus in patients with HD and control subjects by determining the expression of two major regulatory neuropeptides, vasoactive intestinal polypeptide and arginine vasopressin. Additionally, we studied melatonin 1 and 2 receptor expression. Compared with control subjects, the suprachiasmatic nucleus contained 85% fewer neurons immunoreactive for vasoactive intestinal polypeptide and 33% fewer neurons for arginine vasopressin in patients with HD (P = 0.002 and P = 0.027). The total amount of vasoactive intestinal polypeptide and arginine vasopressin messenger RNA was unchanged. No change was observed in the number of melatonin 1 or 2 receptor immunoreactive neurons. Conclusions: These findings indicate posttranscriptional neuropeptide changes in the suprachiasmatic nucleus of patients with HD, and suggest that sleep and circadian rhythm disorders in these patients may at least partly arise from suprachiasmatic nucleus dysfunction. Citation: van Wamelen DJ; Aziz NA; Anink JJ; van Steenhoven R; Angeloni D; Fraschini F; Jockers R; Roos RAC; Swaab DF. Suprachiasmatic nucleus neuropeptide expression in patients with Huntington's disease. SLEEP 2013;36(1):117–125. PMID:23288978

  20. Cytoarchitecture and saccular innervation of nucleus y in the mouse.

    PubMed

    Frederickson, C J; Trune, D R

    1986-10-15

    The cytoarchitecture and saccular innervation of the mouse nucleus y were investigated by using Golgi, Nissl, and myelin stains and anterograde axonal transport of horseradish peroxidase. Nucleus y was found to be a compact group of cells in a small fiber-free region dorsal to the restiform body. Qualitative and morphometric analyses showed that most (75%) of the nucleus y neurons could not be reliably subdivided into morphologic subgroups, but varied continuously in soma size (15-25 microns), shape (fusiform to stellate), and number of dendrites (two to four), and had sparsely branched dendrites with an average of 3 to 4 spines per 10 microns of length. Three groups of cells that were identified morphometrically accounted for 10% (type I: large stellate cells), 9% (type II: long-dendrite cells), and 6% (type III: elongated soma cells) of the y neurons. Vestibular nerve axons transporting horseradish peroxidase after injury at their origin in the saccular neuroepithelium were found to form a dense terminal meshwork that was virtually co-extensive with the cytoarchitectonic boundaries of nucleus y. Nucleus y was distinguished from the overlying infracerebellar nucleus on the basis of anatomical, cytoarchitectural, and hodological features.

  1. Maruhn-Greiner Maximum for Confirmation of Low Energy Nuclear Reactions (LENR) via a Compound Nucleus with Double Magic Numbers

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Miley, George

    2007-03-01

    One of the most convincing facts about LENR due to deuterons (ds) or protons of very high concentration in host metals of palladium is the measurement of the large scale minimum in the reaction probability with product elements centered around the nucleon number A = 153. The local maximum was measured in this region is similar to fission of uranium at A = 119 where the local maximum follows the Maruhn-Greiner mechanism^1. We suggest this phenomenon can be explained by the strong screening of the Maxwellian ds on the degenerate rigid electron background within the swimming electrons at the metal surface or thin filem interfaces. The deuterons behave like neutrals at distances of above 2 picometers (pm) and form clusters due to soft attraction in the range of thermal energy; 10 pm diameter clusters can react over long time scales (10^6 s) with Pd leading to double magic number compound nuclei 306x126 decaying via fission to an A=153 element distribution. J. Maruhn et al, Phys. Rev. Letters 32, 548 (1974) H. Hora, G.H. Miley, CzechJ. Phys. 48, 1111 (1998)

  2. 3200 Phaethon, Asteroid or Comet Nucleus?

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Benkhoff, Johannes

    2015-08-01

    Physico-chemical modeling is central to understand the important physical processes in small solar system bodies. We have developed a computer simulation, SUISEI, that includes the physico-chemical processes relevant to comets within a global modeling framework. Our goals are to gain valuable insights into the intrinsic properties of cometary nuclei so we can better understand observations and in situ measurements. SUISEI includes a 3-D model of gas and heat transport in porous sub-surface layers in the interior of the nucleus.We present results on the application of SUISEI to the near-Sun object, Phaethon. Discovered in 1983 and classified as an asteroid, it has recently exhibited an active dust coma. Phaethon has long been associated as the source of the Geminids meteor shower so the dust activity provides a clear link to the meteor shower. The observed dust activity would traditionally lead to Phaethon being also classified as a comet (e.g., 2060-95P/Chiron, 133P/Elst-Pizarro). This is unusual since the orbit of Phaethon has a perihelion of 0.14 AU, resulting in surface temperatures of more than 1025K, much too hot for water ice or other volatiles to exist near the surface and drive the activity. This situation and others such as the “Active Asteroids” necessitates a revision of how we understand and classify these small asteroid-comet transition objects.We conclude the following for Phaethon:1. It is likely to contain relatively pristine volatiles in its interior despite repeated near perihelion passages of 0.14 AU during its history in its present orbit,2. Steady water gas fluxes at perihelion and throughout its orbit are insufficient to entrain the currently observed dust production,3. Thermal gradients into the surface as well as those caused by diurnal rotation are consistent with the mechanism of dust release due to thermal fracture,4. The initial large gas release during the first perihelion passage may be sufficient to produce enough dust to explain

  3. Nucleus-Dependent Valence-Space Approach to Nuclear Structure

    NASA Astrophysics Data System (ADS)

    Stroberg, S. R.; Calci, A.; Hergert, H.; Holt, J. D.; Bogner, S. K.; Roth, R.; Schwenk, A.

    2017-01-01

    We present a nucleus-dependent valence-space approach for calculating ground and excited states of nuclei, which generalizes the shell-model in-medium similarity renormalization group to an ensemble reference with fractionally filled orbitals. Because the ensemble is used only as a reference, and not to represent physical states, no symmetry restoration is required. This allows us to capture three-nucleon (3 N ) forces among valence nucleons with a valence-space Hamiltonian specifically targeted to each nucleus of interest. Predicted ground-state energies from carbon through nickel agree with results of other large-space ab initio methods, generally to the 1% level. In addition, we show that this new approach is required in order to obtain convergence for nuclei in the upper p and s d shells. Finally, we address the 1+/3+ inversion problem in 22Na and 46V. This approach extends the reach of ab initio nuclear structure calculations to essentially all light- and medium-mass nuclei.

  4. Lifetime measurements in shape transition nucleus 188Pt

    NASA Astrophysics Data System (ADS)

    Rohilla, Aman; Gupta, C. K.; Singh, R. P.; Muralithar, S.; Chakraborty, S.; Sharma, H. P.; Kumar, A.; Govil, I. M.; Biswas, D. C.; Chamoli, S. K.

    2017-04-01

    Nuclear level lifetimes of high spin states in yrast and non-yrast bands of 188Pt nucleus have been measured using recoil distance plunger setup present at IUAC, Delhi. In the experiment nuclear states of interest were populated via 174Yb(18O,4 n)188Pt reaction at a beam energy of 79MeV provided by 15 UD Pelletron accelerator. The extracted B(E2\\downarrow) values show an initial rise up to 4+ state and then a nearly constant behavior with spin along yrast band, indicating change of nuclear structure in 188Pt at low spins. The good agreement between experimental and TPSM model B(E2\\downarrow) values up to 4^+ state suggests an increase in axial deformation of the nucleus. The average absolute β2 = 0.20 (3) obtained from measured B(E2\\downarrow) values matches well the values predicted by CHFB and IBM calculations for oblate ( β2 ˜ -0.19) and prolate (β2 ˜ 0.22) shapes. As the lifetime measurements do not yield the sign of β2, no definite conclusion can be drawn on the prolate or oblate collectivity of 188Pt on the basis of present measurements.

  5. Identifying folding nucleus based on residue contact networks of proteins.

    PubMed

    Li, Jie; Wang, Jun; Wang, Wei

    2008-06-01

    In the native structure of a protein, all the residues are tightly parked together in a specific order following its folding and every residue contacts with some spatially neighbor residues. A residue contact network can be constructed by defining the residues as nodes and the native contacts as edges. During the folding of small single-domain proteins, there is a set of contacts (or bonds), defined as the folding nucleus (FN), which is formed around the transition state, i.e., a rate-limiting barrier located at about the middle between the unfolded states and the native state on the free energy landscape. Such a FN plays an essential role in the folding dynamics and the residues, which form the related contacts called as folding nucleus residues (FNRs). In this work, the FNRs in proteins are identified by using quantities which characterize the topology of residue contact networks of proteins. By comparing the specificities of residues with the network quantities K(R), L(R), and D(R), up to 90% FNRs of six typical proteins found experimentally are identified. It is found that the FNRs behave the full-closeness centrals rather than degree or closeness centers in the residue contact network, implying that they are important to the folding cooperativity of proteins. Our study shows that the FNRs can be identified solely from the native structures of proteins based on the analysis of residue contact network without any knowledge of the transition state ensemble. (c) 2008 Wiley-Liss, Inc.

  6. A model of the cell nucleus for DNA damage calculations.

    PubMed

    Nikjoo, Hooshang; Girard, Peter

    2012-01-01

    Development of a computer model of genomic deoxyribonucleic acid (DNA) in the human cell nucleus for DNA damage and repair calculations. The model comprises the human genomic DNA, chromosomal domains, and loops attached to factories. A model of canonical B-DNA was used to build the nucleosomes and the 30-nanometer solenoidal chromatin. In turn the chromatin was used to form the loops of factories in chromosome domains. The entire human genome was placed in a spherical nucleus of 10 micrometers diameter. To test the new target model, tracks of protons and alpha-particles were generated using Monte Carlo track structure codes PITS99 (Positive Ion Track Structure) and KURBUC. Damage sites induced in the genome were located and classified according to type and complexity. The three-dimensional structure of the genome starting with a canonical B-DNA model, nucleosomes, and chromatin loops in chromosomal domains are presented. The model was used to obtain frequencies of DNA damage induced by protons and alpha-particles by direct energy deposition, including single- and double-strand breaks, base damage, and clustered lesions. This three-dimensional model of the genome is the first such model using the full human genome for the next generation of more comprehensive modelling of DNA damage and repair. The model combines simple geometrical structures at the level of domains and factories with potentially full detail at the level of atoms in particular genes, allowing damage patterns in the latter to be simulated.

  7. Plastid-Nucleus Distance Alters the Behavior of Stromules

    PubMed Central

    Erickson, Jessica L.; Kantek, Matthias; Schattat, Martin H.

    2017-01-01

    Plastids send “retrograde” signals to the nucleus to deliver information regarding their physiological status. One open question concerning this signal transfer is how the signal bridges the cytoplasm. Based on individual reports of plastid derived tubular membrane extensions connecting to nuclei, these so-called stromules have been suggested to function as communication routes between plastids and nuclei in response to biotic stress. However, based on the data currently available it is unclear whether interactions between stromules and nuclei are truly intentional or observed as a result of an inflated stromule frequency throughout the cell, and are thus a random event. The source of this uncertainty stems from missing information regarding the relative distribution of all plastids and stromules within a given cell. A comprehensive analysis of the upper epidermis of Arabidopsis thaliana rosette leaves was performed via a combination of still images and time-lapse movies of stromule formation in the context of the whole cell. This analysis could definitively confirm that stromule formation is not evenly distributed. Stromules are significantly more frequent within 8 μm of the nucleus, and approximately 90% of said stromules formed facing the nucleus. Time-lapse movies revealed that this enrichment of stromules is achieved via a 10-fold higher frequency of stromule initiation events within this 8 μm zone compared to the cell periphery. Following the movement of plastids and nuclei it became evident that movement and formation of stromules is correlated to nucleus movement. Observations suggest that stromules “connecting” to the nucleus are not necessarily the result of plastids sensing the nucleus and reaching out toward it, but are rather pulled out of the surface of nucleus associated plastids during opposing movement of these two organelles. This finding does not exclude the possibility that stromules could be transferring signals to the nucleus

  8. The interfascicular trigeminal nucleus: a precerebellar nucleus in the mouse defined by retrograde neuronal tracing and genetic fate mapping.

    PubMed

    Fu, Yuhong; Tvrdik, Petr; Makki, Nadja; Machold, Robert; Paxinos, George; Watson, Charles

    2013-02-15

    We have found a previously unreported precerebellar nucleus located among the emerging fibers of the motor root of the trigeminal nerve in the mouse, which we have called the interfascicular trigeminal nucleus (IF5). This nucleus had previously been named the tensor tympani part of the motor trigeminal nucleus (5TT) in rodent brain atlases, because it was thought to be a subset of small motor neurons of the motor trigeminal nucleus innervating the tensor tympani muscle. However, following injection of retrograde tracer in the cerebellum, the labeled neurons in IF5 were found to be choline acetyltransferase (ChAT) negative, indicating that they are not motor neurons. The cells of IF5 are strongly labeled in mice from Wnt1Cre and Atoh1 CreER lineage fate mapping, in common with the major precerebellar nuclei that arise from the rhombic lip and that issue mossy fibers. Analysis of sections from mouse Hoxa3, Hoxb1, and Egr2 Cre labeled lineages shows that the neurons of IF5 arise from rhombomeres caudal to rhombomere 4, most likely from rhombomeres 6-8. We conclude that IF5 is a significant precerebellar nucleus in the mouse that shares developmental gene expression characteristics with mossy fiber precerebellar nuclei that arise from the caudal rhombic lip.

  9. The turtle thalamic anterior entopeduncular nucleus shares connectional and neurochemical characteristics with the mammalian thalamic reticular nucleus.

    PubMed

    Kenigfest, Natalia; Belekhova, Margarita; Repérant, Jacques; Rio, Jean Paul; Ward, Roger; Vesselkin, Nikolai

    2005-10-01

    Neurochemical and key connectional characteristics of the anterior entopeduncular nucleus (Enta) of the turtle (Testudo horsfieldi) were studied by axonal tracing techniques and immunohistochemistry of parvalbumin, gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD). We showed that the Enta, which is located within the dorsal peduncle of the lateral forebrain bundle (Pedd), has roughly topographically organized reciprocal connections with the dorsal thalamic visual nuclei, the nucleus rotundus (Rot) and dorsal lateral geniculate nucleus (GLd). The Enta receives projections from visual telencephalic areas, the anterior dorsal ventricular ridge and dorsolateral cortex/pallial thickening. Most Enta neurons contained GABA and parvalbumin, and some of them were retrogradely labeled when the tracer was injected into the visual dorsal thalamic nuclei. Further experiments using double immunofluorescence revealed colocalization of GAD and parvalbumin in the vast majority of Enta neurons, and many of these cells showed retrograde labeling with Fluoro-gold injected into the Rot and/or GLd. According to these data, the Enta may be considered as a structural substrate for recurrent inhibition of the visual thalamic nuclei. Based on morphological and neurochemical similarity of the turtle Enta, caiman Pedd nucleus, the superior reticular nucleus in birds, and the thalamic reticular nucleus in mammals, we suggest that these structures represent a characteristic component which is common to the thalamic organization in amniotes.

  10. Some morphological features of a visual thalamic nucleus in a reptile: observations on nucleus rotundus in Caiman crocodilus.

    PubMed

    Pritz, M B

    1997-01-01

    The morphology of nucleus rotundus, a visual thalamic nucleus, was investigated in one species of reptiles. Caiman crocodilus, using Nisst stained material in transverse, sagittal, and horizontal planes. The topographical location of nucleus rotundus and its relationship to surrounding thalamic nuclear groups are described. Nucleus rotundus in Caiman can be subdivided into three areas: (1) an outer shell; (2) an inner core; and (3) a cell poor zone located between the shell and core. Most rotundal core neurons were round, fusiform, triangular, pear-shaped, or elliptical. Core neurons were not distributed evenly throughout the nucleus but, in many instances, were arranged in clusters composed of two to ten neurons. Quantitative measurements of area, perimeter, and eccentricity (greatest width/greatest length), which served as an index of cell roundness, were made on rotundal core neuron profiles in transverse, sagittal, and horizontal planes of section. Qualitative and quantitative observations were not appreciably different regardless of the plane of orientation. Both qualitative and quantitative data suggest that relay cells located in the core of nucleus rotundus are not a homogeneous population of neurons but comprise several subtypes.

  11. Spectral energy distributions of QSOs at z > 5: Common active galactic nucleus-heated dust and occasionally strong star-formation

    SciTech Connect

    Leipski, C.; Meisenheimer, K.; Walter, F.; Klaas, U.; Krause, O.; Rix, H.-W.; Dannerbauer, H.; De Rosa, G.; Fan, X.; Haas, M.

    2014-04-20

    We present spectral energy distributions (SEDs) of 69 QSOs at z > 5, covering a rest frame wavelength range of 0.1 μm to ∼80 μm, and centered on new Spitzer and Herschel observations. The detection rate of the QSOs with Spitzer is very high (97% at λ{sub rest} ≲ 4 μm), but drops toward the Herschel bands with 30% detected in PACS (rest frame mid-infrared) and 15% additionally in the SPIRE (rest frame far-infrared; FIR). We perform multi-component SED fits for Herschel-detected objects and confirm that to match the observed SEDs, a clumpy torus model needs to be complemented by a hot (∼1300 K) component and, in cases with prominent FIR emission, also by a cold (∼50 K) component. In the FIR-detected cases the luminosity of the cold component is of the order of 10{sup 13} L {sub ☉} which is likely heated by star formation. From the SED fits we also determine that the active galactic nucleus (AGN) dust-to-accretion disk luminosity ratio declines with UV/optical luminosity. Emission from hot (∼1300 K) dust is common in our sample, showing that nuclear dust is ubiquitous in luminous QSOs out to redshift 6. However, about 15% of the objects appear under-luminous in the near infrared compared to their optical emission and seem to be deficient in (but not devoid of) hot dust. Within our full sample, the QSOs detected with Herschel are found at the high luminosity end in L {sub UV/opt} and L {sub NIR} and show low equivalent widths (EWs) in Hα and in Lyα. In the distribution of Hα EWs, as determined from the Spitzer photometry, the high-redshift QSOs show little difference to low-redshift AGN.

  12. Free energy of formation of a crystal nucleus in incongruent solidification: Implication for modeling the crystallization of aqueous nitric acid droplets in polar stratospheric clouds.

    PubMed

    Djikaev, Yuri S; Ruckenstein, Eli

    2017-04-07

    Using the formalism of classical thermodynamics in the framework of the classical nucleation theory, we derive an expression for the reversible work W* of formation of a binary crystal nucleus in a liquid binary solution of non-stoichiometric composition (incongruent crystallization). Applied to the crystallization of aqueous nitric acid droplets, the new expression more adequately takes account of the effects of nitric acid vapor compared to the conventional expression of MacKenzie, Kulmala, Laaksonen, and Vesala (MKLV) [J. Geophys. Res.: Atmos. 102, 19729 (1997)]. The predictions of both MKLV and modified expressions for the average liquid-solid interfacial tension σ(ls) of nitric acid dihydrate (NAD) crystals are compared by using existing experimental data on the incongruent crystallization of aqueous nitric acid droplets of composition relevant to polar stratospheric clouds (PSCs). The predictions for σ(ls) based on the MKLV expression are higher by about 5% compared to predictions based on our modified expression. This results in similar differences between the predictions of both expressions for the solid-vapor interfacial tension σ(sv) of NAD crystal nuclei. The latter can be obtained by using the method based on the analysis of experimental data on crystal nucleation rates in aqueous nitric acid droplets; it exploits the dominance of the surface-stimulated mode of crystal nucleation in small droplets and its negligibility in large ones. Applying that method to existing experimental data, our expression for the free energy of formation provides an estimate for σ(sv) of NAD in the range ≈92 dyn/cm to ≈100 dyn/cm, while the MKLV expression predicts it in the range ≈95 dyn/cm to ≈105 dyn/cm. The predictions of both expressions for W* become identical for the case of congruent crystallization; this was also demonstrated by applying our method for determining σ(sv) to the nucleation of nitric acid trihydrate crystals in PSC droplets of

  13. One-pion production in neutrino-nucleus collisions

    SciTech Connect

    Hernández, E.; Nieves, J.; Vicente-Vacas, J. M.

    2015-05-15

    We use our model for neutrino pion production on the nucleon to study pion production on a nucleus. The model is conveniently modified to include in-medium corrections and its validity is extended up to 2 GeV neutrino energies by the inclusion of new resonant contributions in the production process. Our results are compared with recent MiniBooNE data measured in mineral oil. Our total cross sections are below data for neutrino energies above ≈ 1 GeV. As with other theoretical calculations, the agreement with data improves if we neglect pion final state interaction. This is also the case for differential cross sections convoluted over the neutrino flux.

  14. The subthalamic nucleus influences visuospatial attention in humans.

    PubMed

    Schmalbach, Barbara; Günther, Veronika; Raethjen, Jan; Wailke, Stefanie; Falk, Daniela; Deuschl, Günther; Witt, Karsten

    2014-03-01

    Spatial attention is a lateralized feature of the human brain. Whereas the role of cortical areas of the nondominant hemisphere on spatial attention has been investigated in detail, the impact of the BG, and more precisely the subthalamic nucleus, on signs and symptoms of spatial attention is not well understood. Here we used unilateral deep brain stimulation of the subthalamic nucleus to reversibly, specifically, and intraindividually modify the neuronal BG outflow and its consequences on signs and symptoms of visuospatial attention in patients suffering from Parkinson disease. We tested 13 patients with Parkinson disease and chronic deep brain stimulation in three stimulation settings: unilateral right and left deep brain stimulation of the subthalamic nucleus as well as bilateral deep brain stimulation of the subthalamic nucleus. In all three stimulation settings, the patients viewed a set of pictures while an eye-tracker system recorded eye movements. During the exploration of the visual stimuli, we analyzed the time spent in each visual hemispace, as well as the number, duration, amplitude, peak velocity, acceleration peak, and speed of saccades. In the unilateral left-sided stimulation setting, patients show a shorter ipsilateral exploration time of the extrapersonal space, whereas number, duration, and speed of saccades did not differ between the different stimulation settings. These results demonstrated reduced visuospatial attention toward the side contralateral to the right subthalamic nucleus that was not being stimulated in a unilateral left-sided stimulation. Turning on the right stimulator, the reduced visuospatial attention vanished. These results support the involvement of the subthalamic nucleus in modulating spatial attention. Therefore, the subthalamic nucleus is part of the subcortical network that subserves spatial attention.

  15. The red nucleus and the rubrospinal projection in the mouse.

    PubMed

    Liang, Huazheng; Paxinos, George; Watson, Charles

    2012-04-01

    We studied the organization and spinal projection of the mouse red nucleus with a range of techniques (Nissl stain, immunofluorescence, retrograde tracer injections into the spinal cord, anterograde tracer injections into the red nucleus, and in situ hybridization) and counted the number of neurons in the red nucleus (3,200.9 ± 230.8). We found that the rubrospinal neurons were mainly located in the parvicellular region of the red nucleus, more lateral in the rostral part and more medial in the caudal part. Labeled neurons were least common in the rostral and caudal most parts of the red nucleus. Neurons projecting to the cervical cord were predominantly dorsomedially placed and neurons projecting to the lumbar cord were predominantly ventrolaterally placed. Immunofluorescence staining with SMI-32 antibody showed that ~60% of SMI-32-positive neurons were cervical cord-projecting neurons and 24% were lumbar cord-projecting neurons. SMI-32-positive neurons were mainly located in the caudomedial part of the red nucleus. A study of vGluT2 expression showed that the number and location of glutamatergic neurons matched with those of the rubrospinal neurons. In the anterograde tracing experiments, rubrospinal fibers travelled in the dorsal portion of the lateral funiculus, between the lateral spinal nucleus and the calretinin-positive fibers of the lateral funiculus. Rubrospinal fibers terminated in contralateral laminae 5, 6, and the dorsal part of lamina 7 at all spinal cord levels. A few fibers could be seen next to the neurons in the dorsolateral part of lamina 9 at levels of C8-T1 (hand motor neurons) and L5-L6 (foot motor neurons), which is consistent with a view that rubrospinal fibers may play a role in distal limb movement in rodents.

  16. Dynamic, mechanical integration between nucleus and cell- where physics meets biology

    PubMed Central

    Dickinson, Richard B; Neelam, Srujana; Lele, Tanmay P

    2015-01-01

    Nuclear motions like rotation, translation and deformation suggest that the nucleus is acted upon by mechanical forces. Molecular linkages with the cytoskeleton are thought to transfer forces to the nuclear surface. We developed an approach to apply reproducible, known mechanical forces to the nucleus in spread adherent cells and quantified the elastic response of the mechanically integrated nucleus-cell. The method is sensitive to molecular perturbations and revealed new insight into the function of the LINC complex. While these experiments revealed elastic behaviors, turnover of the cytoskeleton by assembly/disassembly and binding/unbinding of linkages are expected to dissipate any stored mechanical energy in the nucleus or the cytoskeleton. Experiments investigating nuclear forces over longer time scales demonstrated the mechanical principle that expansive/compressive stresses on the nuclear surface arise from the movement of the cell boundaries to shape and position the nucleus. Such forces can shape the nucleus to conform to cell shapes during cell movements with or without myosin activity. PMID:26338356

  17. Dynamic, mechanical integration between nucleus and cell- where physics meets biology.

    PubMed

    Dickinson, Richard B; Neelam, Srujana; Lele, Tanmay P

    2015-01-01

    Nuclear motions like rotation, translation and deformation suggest that the nucleus is acted upon by mechanical forces. Molecular linkages with the cytoskeleton are thought to transfer forces to the nuclear surface. We developed an approach to apply reproducible, known mechanical forces to the nucleus in spread adherent cells and quantified the elastic response of the mechanically integrated nucleus-cell. The method is sensitive to molecular perturbations and revealed new insight into the function of the LINC complex. While these experiments revealed elastic behaviors, turnover of the cytoskeleton by assembly/disassembly and binding/unbinding of linkages are expected to dissipate any stored mechanical energy in the nucleus or the cytoskeleton. Experiments investigating nuclear forces over longer time scales demonstrated the mechanical principle that expansive/compressive stresses on the nuclear surface arise from the movement of the cell boundaries to shape and position the nucleus. Such forces can shape the nucleus to conform to cell shapes during cell movements with or without myosin activity.

  18. The midbrain precommand nucleus of the mormyrid electromotor network.

    PubMed

    von der Emde, G; Sena, L G; Niso, R; Grant, K

    2000-07-15

    The functional role of the midbrain precommand nucleus (PCN) of the electromotor system was explored in the weakly electric mormyrid fish Gnathonemus petersii, using extracellular recording of field potentials, single unit activity, and microstimulation in vivo. Electromotor-related field potentials in PCN are linked in a one-to-one manner and with a fixed time relationship to the electric organ discharge (EOD) command cycle, but occur later than EOD command activity in the medulla. It is suggested that PCN electromotor-related field potentials arise from two sources: (1) antidromically, by backpropagation across electrotonic synapses between PCN axons and command nucleus neurons, and (2) as corollary discharge-driven feedback arriving from the command nucleus indirectly, via multisynaptic pathways. PCN neurons can be activated by electrosensory input, but this does not necessarily activate the whole motor command chain. Microstimulation of PCN modulates the endogenous pattern of electromotor command in a way that can mimic the structure of certain stereotyped behavioral patterns. PCN activity is regulated, and to a certain extent synchronized, by corollary discharge feedback inhibition. However, PCN does not generally function as a synchronized pacemaker driving the electromotor command chain. We propose that PCN neurons integrate information of various origins and individually relay this to the command nucleus in the medulla. Some may also have intrinsic, although normally nonsynchronized, pacemaker properties. This descending activity, integrated in the electromotor command nucleus, will play an important modulatory role in the central pattern generator decision process.

  19. Coordinated Dynamics of RNA Splicing Speckles in the Nucleus.

    PubMed

    Zhang, Qiao; Kota, Krishna P; Alam, Samer G; Nickerson, Jeffrey A; Dickinson, Richard B; Lele, Tanmay P

    2016-06-01

    Despite being densely packed with chromatin, nuclear bodies and a nucleoskeletal network, the nucleus is a remarkably dynamic organelle. Chromatin loops form and relax, RNA transcripts and transcription factors move diffusively, and nuclear bodies move. We show here that RNA splicing speckled domains (splicing speckles) fluctuate in constrained nuclear volumes and remodel their shapes. Small speckles move in a directed way toward larger speckles with which they fuse. This directed movement is reduced upon decreasing cellular ATP levels or inhibiting RNA polymerase II activity. The random movement of speckles is reduced upon decreasing cellular ATP levels, moderately reduced after inhibition of SWI/SNF chromatin remodeling and modestly increased upon inhibiting RNA polymerase II activity. To define the paths through which speckles can translocate in the nucleus, we generated a pressure gradient to create flows in the nucleus. In response to the pressure gradient, speckles moved along curvilinear paths in the nucleus. Collectively, our results demonstrate a new type of ATP-dependent motion in the nucleus. We present a model where recycling splicing factors return as part of small sub-speckles from distal sites of RNA processing to larger splicing speckles by a directed ATP-driven mechanism through interchromatin spaces.

  20. Growth dynamics of the developing lateral geniculate nucleus.

    PubMed

    Williams, A L; Jeffery, G

    2001-02-12

    Segregated binocular maps in the lateral geniculate nucleus (LGN) develop from stages where they initially completely overlap. Here, we show that segregation occurs at different rates across the depth of the nucleus and that the volume of the ipsilateral projection does not decrease significantly during this period, rather LGN volume expands markedly and its shape changes. Hence, we have examined the differential growth of the ferret LGN during the process of segregation by using novel shape modelling techniques. These have facilitated quantification of its three-dimensional structure at successive developmental stages as well as the definition of growth vectors which illustrate shape change. This has been undertaken in direct representations of the LGN and those normalised for size and orientation. Spatiotemporal aspects of shape change have then been compared with different measurements of its cellular population. Initial stages of segregation are associated with a large expansion of the rostrocaudal axis of the nucleus along which segregation takes place, and an expansion of caudal regions that will eventually contain the binocular representation. Later stages are associated with dorsoventral expansions and a consolidation of the rostrocaudal axis. The pace of shape change peaks toward the end of the period of segregation when the nucleus has adopted approximately 50% of its adult shape. After segregation, nuclear growth is mainly isotropic. The mature shape of the nucleus is achieved before it reaches its full size and while cell density and cell sizes are still changing.

  1. Cochlear nucleus whole mount explants promote the differentiation of neuronal stem cells from the cochlear nucleus in co-culture experiments.

    PubMed

    Rak, Kristen; Völker, Johannes; Jürgens, Lukas; Völker, Christine; Frenz, Silke; Scherzad, Agmal; Schendzielorz, Philipp; Jablonka, Sibylle; Mlynski, Robert; Radeloff, Andreas; Hagen, Rudolf

    2015-08-07

    The cochlear nucleus is the first brainstem nucleus to receive sensory input from the cochlea. Depriving this nucleus of auditory input leads to cellular and molecular disorganization which may potentially be counteracted by the activation or application of stem cells. Neuronal stem cells (NSCs) have recently been identified in the neonatal cochlear nucleus and a persistent neurogenic niche was demonstrated in this brainstem nucleus until adulthood. The present work investigates whether the neurogenic environment of the cochlear nucleus can promote the survival of engrafted NSCs and whether cochlear nucleus-derived NSCs can differentiate into neurons and glia in brain tissue. Therefore, cochlear nucleus whole-mount explants were co-cultured with NSCs extracted from either the cochlear nucleus or the hippocampus and compared to a second environment using whole-mount explants from the hippocampus. Factors that are known to induce neuronal differentiation were also investigated in these NSC-explant experiments. NSCs derived from the cochlear nucleus engrafted in the brain tissue and differentiated into all cells of the neuronal lineage. Hippocampal NSCs also immigrated in cochlear nucleus explants and differentiated into neurons, astrocytes and oligodendrocytes. Laminin expression was up-regulated in the cochlear nucleus whole-mounts and regulated the in vitro differentiation of NSCs from the cochlear nucleus. These experiments confirm a neurogenic environment in the cochlear nucleus and the capacity of cochlear nucleus-derived NSCs to differentiate into neurons and glia. Consequently, the presented results provide a first step for the possible application of stem cells to repair the disorganization of the cochlear nucleus, which occurs after hearing loss. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Reactions with the double-Borromean nucleus {sup 8}He

    SciTech Connect

    Lemasson, A.; Navin, A.; Rejmund, M.; France, G. de; Jacquot, B.; Raabe, R.; Stefan, I.; Bhattacharyya, S.; Bazin, D.; Beaumel, D.; Blumenfeld, Y.; Gupta, D.; Scarpaci, J. A.; Labiche, M.; Lemmon, R.; Nanal, V.

    2010-10-15

    Differential cross sections for elastic-scattering and neutron-transfer reactions along with cross sections for fusion in the {sup 8}He+{sup 65}Cu system are reported at energies above the Coulomb barrier (E{sub lab}= 19.9 and 30.6 MeV). The present work demonstrates the feasibility of using inclusive measurements of characteristic in-beam {gamma} rays with low-intensity ({approx}10{sup 5} pps) radioactive ion beams to obtain the residue cross sections for fusion and neutron transfer. Exclusive measurements of {gamma} rays in coincidence with light charged particles have been used to further characterize the direct reactions induced by this double-Borromean nucleus. Coupled reaction channels calculations are used to illustrate the important role played by the transfer channels and to help in understanding the influence of the structure of {sup 8}He on the reaction mechanism.

  3. Total absorption spectroscopy of N = 51 nucleus 85Se

    NASA Astrophysics Data System (ADS)

    Goetz, K. C.; Grzywacz, R. K.; Rykaczewski, K. P.; Karny, M.; Fialkowska, A.; Wolinska-Cichocka, M.; Rasco, B. C.; Zganjar, E. F.; Johnson, J. W.; Gross, C. J.

    2014-09-01

    An experimental campaign utilizing the Modular Total Absorption Spectrometer (MTAS) was conducted at the HRIBF facility in January of 2012. The campaign studied 22 isotopes, many of which were identified as the highest priority for decay heat analysis during a nuclear fuel cycle, see the report by the OECD-IAEA Nuclear Energy Agency in 2007. The case of 85Se will be discussed. 85Se is a Z = 34, N = 51 nucleus with the valence neutron located in the positive parity sd single particle state. Therefore, its decay properties are determined by interplay between first forbidden decays of the valence neutron and Gamow-Teller decay of a 78Ni core. Analysis of the data obtained during the January 2012 run indicates a significant increase of the beta strength function when compared with previous measurements, see Ref..

  4. Reactions with the double-Borromean nucleus He8

    NASA Astrophysics Data System (ADS)

    Lemasson, A.; Navin, A.; Keeley, N.; Rejmund, M.; Bhattacharyya, S.; Shrivastava, A.; Bazin, D.; Beaumel, D.; Blumenfeld, Y.; Chatterjee, A.; Gupta, D.; de France, G.; Jacquot, B.; Labiche, M.; Lemmon, R.; Nanal, V.; Nyberg, J.; Pillay, R. G.; Raabe, R.; Ramachandran, K.; Scarpaci, J. A.; Simenel, C.; Stefan, I.; Timis, C. N.

    2010-10-01

    Differential cross sections for elastic-scattering and neutron-transfer reactions along with cross sections for fusion in the He8+Cu65 system are reported at energies above the Coulomb barrier (Elab= 19.9 and 30.6 MeV). The present work demonstrates the feasibility of using inclusive measurements of characteristic in-beam γ rays with low-intensity (~105 pps) radioactive ion beams to obtain the residue cross sections for fusion and neutron transfer. Exclusive measurements of γ rays in coincidence with light charged particles have been used to further characterize the direct reactions induced by this double-Borromean nucleus. Coupled reaction channels calculations are used to illustrate the important role played by the transfer channels and to help in understanding the influence of the structure of He8 on the reaction mechanism.

  5. Dynamical explanation for the anomaly in the diffuseness parameter of the nucleus-nucleus potential in heavy-ion fusion reactions

    NASA Astrophysics Data System (ADS)

    Zanganeh, V.; Gharaei, R.; Wang, N.

    2017-03-01

    The abnormally large diffuseness parameter of the Woods-Saxon (WS) potential in heavy-ion fusion reactions is explained for the first time based on the microscopic dynamics simulations. With the improved quantum molecular dynamic (ImQMD) model, we systematically explore the dynamical processes in the fusion reactions 12C+92Zr , 16O+92Zr , 28Si+92Zr , 35Cl+92Zr , 40Ca+46Ti , and 16O+154Sm . Without introducing any free model parameters or additional assumptions, the microscopic ImQMD model can reproduce the measured fusion cross sections of all selected colliding systems with good accuracy. Due to the dynamical evolutions of the density distributions in the fusion processes, the energy dependence of nucleus-nucleus potential can be clearly observed. Based on the dynamical nucleus-nucleus potential of the ImQMD simulations, we extract the corresponding diffuseness parameters of the WS potential. The obtained values locate in a range between a =0.83 and 1.17 fm at different incident energies. In addition, the regular decreasing trend for the diffuseness parameter with the increase of the incident energies is also observed.

  6. Reaction cross sections of the deformed halo nucleus 31Ne

    NASA Astrophysics Data System (ADS)

    Urata, Y.; Hagino, K.; Sagawa, H.

    2012-10-01

    Using the Glauber theory, we calculate reaction cross sections for the deformed halo nucleus 31Ne. To this end, we assume that the 31Ne nucleus takes the 30Ne+n structure. To take into account the rotational excitation of the core nucleus 30Ne, we employ the particle-rotor model (PRM). We compare the results to those in the adiabatic limit of PRM, that is, the Nilsson model, and show that the Nilsson model works reasonably well for the reaction cross sections of 31Ne. We also investigate the dependence of the reaction cross sections on the ground-state properties of 31Ne, such as the deformation parameter and the p-wave component in the ground-state wave function.

  7. From Cytoskeleton to Gene Expression: Actin in the Nucleus.

    PubMed

    Viita, Tiina; Vartiainen, Maria K

    2017-01-01

    Although most people still associate actin mainly with the cytoskeleton, several lines of evidence, with the earliest studies dating back to decades ago, have emphasized the importance of actin also inside the cell nucleus. Actin has been linked to many gene expression processes from gene activation to chromatin remodeling, but also to maintenance of genomic integrity and intranuclear movement of chromosomes and chromosomal loci. Recent advances in visualizing different forms and dynamic properties of nuclear actin have clearly advanced our understanding of the basic concepts by which actin operates in the nucleus. In this chapter we address the different breakthroughs in nuclear actin studies, as well as discuss the regulation nuclear actin and the importance of nuclear actin dynamics in relation to its different nuclear functions. Our aim is to highlight the fact that actin should be considered as an essential component of the cell nucleus, and its nuclear actions should be taken into account also in experiments on cytoplasmic actin networks.

  8. Actin-related proteins localized in the nucleus

    PubMed Central

    Oma, Yukako

    2011-01-01

    The actin family consists of conventional actin and actin-related proteins (ARPs), and the members show moderate similarity and share the same basal structure. Following the finding of various ARPs in the cytoplasm in the 1990s, multiple subfamilies that are localized predominantly in the nucleus were identified. Consistent with these cytological observations, subsequent biochemical analyses revealed the involvement of the nuclear ARPs in ATP-dependent chromatin-remodeling and histone acetyltransferase complexes. In addition to their contribution to chromatin remodeling, recent studies have shown that nuclear ARPs have roles in the organization of the nucleus that are independent of the activity of the above-mentioned complexes. Therefore, nuclear ARPs are recognized as novel key regulators of genome function, and affect not only the remodeling of chromatin but also the spatial arrangement and dynamics of chromatin within the nucleus. PMID:21647298

  9. The double-nucleus galactic merger Mkn 463

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Neff, S. G.

    1989-01-01

    Deep CCD imaging in broadband and forbidden O III wavelengths of the twin-nucleus active galaxy Markarian 463 is presented. These data show that the system has triple curved tails indicative of a strong tidal interaction and probable merger. Colors, morphology, and their implications are discussed. The forbidden O III line emission is seen to be extended and linear, perhaps filling twin cones with apex at the eastern optical nucleus. It is argued that this indicates nonisotropic radiation from an obscured AGN. Spatially resolved spectroscopy on and off the nuclei reveals that the radial velocities of the gas lie in a small range, unlike some other multiple nucleus systems. The nature of the emission-line regions is discussed, along with the evolutionary state of the system indicated by the present data and IR and radio data.

  10. Models of the spin state of the comet Halley nucleus

    NASA Technical Reports Server (NTRS)

    Julian, William H.

    1990-01-01

    Eight rotation precession models of the comet Halley nucleus have been proposed by eight authors. The eight models were evaluated in relation to the constraints imposed by: (1) the observed long axis directions at the Vega 1, Vega 2, and Giotto encounters; (2) the ground based emission periods harmonically related to 7.4 days; (3) the need for a two day spin period in the analysis of the jet morphology; (4) the Smith et al. constraint on the net long axis roll between Vega 2 and Giotto; (5) the resistance of the spin state of the nucleus to change due to the torque from the jets; and (6) the 7.4 day repetition of the spatial orientation of the nucleus. The eight constraints are briefly described.

  11. The Potential Roles of Actin in The Nucleus

    PubMed Central

    Falahzadeh, Khadijeh; Banaei-Esfahani, Amir; Shahhoseini, Maryam

    2015-01-01

    Over the past few decades, actin’s presence in the nucleus has been demonstrated. Actin is a key protein necessary for different nuclear processes. Although actin is well known for its functional role in dynamic behavior of the cytoskeleton, emerging studies are now highlighting new roles for actin. At the present time there is no doubt about the presence of actin in the nucleus. A number of studies have uncovered the functional involvement of actin in nuclear processes. Actin as one of the nuclear components has its own structured and functional rules, such as nuclear matrix association, chromatin remodeling, transcription by RNA polymerases I, II, III and mRNA processing. In this historical review, we attempt to provide an overview of our current understanding of the functions of actin in the nucleus. PMID:25870830

  12. Nucleus of Comet IRAS-Araki-Alcock (1983 VII)

    SciTech Connect

    Sekanina, Z.

    1988-06-01

    Optical, radar, infrared, UV, and microwave-continuum observations of Comet IRAS-Araki-Alcok were obtained in May 1983, the week of the comet's close approach to earth. The comet has a nucleus dimension and a rotation period which are similar to those of Comet Halley, but a different morphological signature (a persisting sunward fan-shaped coma). Time variations are noted in the projected nucleus cross section. Results suggest significant limb-darkening effects in the relevant domains of radio waves, and that the comet's interior must be extremely cold. It is found that the thermal-infrared fluxes from the inner coma of the comet are dominated by the nucleus. 63 references.

  13. Response Properties of Cochlear Nucleus Neurons in Monkeys

    PubMed Central

    Roth, G. Linn; Recio, A.

    2009-01-01

    Much of what is known about how the cochlear nuclei participate in mammalian hearing comes from studies of non-primate mammalian species. To determine to what extent the cochlear nuclei of primates resemble those of other mammalian orders, we have recorded responses to sound in three primate species: marmosets, Cynomolgus macaques, and squirrel monkeys. These recordings show that the same types of temporal firing patterns are found in primates that have been described in other mammals. Responses to tones of neurons in the ventral cochlear nucleus have similar tuning, latencies, post-stimulus time and interspike interval histograms as those recorded in non-primate cochlear nucleus neurons. In the dorsal cochlear nucleus, too, responses were similar. From these results it is evident that insights gained from non-primate studies can be applied to the peripheral auditory system of primates. PMID:19531377

  14. Organization of the nucleus magnocellularis and the nucleus laminaris in the barn owl: encoding and measuring interaural time differences.

    PubMed

    Carr, C E; Boudreau, R E

    1993-08-15

    The circuit from the cochlear nucleus magnocellularis to the nucleus laminaris supports the encoding and measurement of interaural time differences in the auditory brainstem. Specializations for the encoding of temporal information include the few and/or short dendrites and thick axons of the magnocellular and laminaris neurons, and the high degree of convergence in the circuit. Magnocellular cells have large cell bodies covered with somatic spines. The cells have few dendrites, and the number of dendrites decreases from low to high best frequency regions of the nucleus. Magnocellular neurons receive both auditory nerve terminals and GABAergic terminals with symmetric synapses and terminals filled with pleomorphic vesicles. The axonal projections of magnocellular neurons to the nucleus laminaris form maps of interaural time difference. About 100 magnocellular afferents from each side converge on each laminaris neuron, and the terminals from each side do not occupy separate domains on the cell. These terminals form punctate asymmetric synapses on both the dendrites and the cell bodies of laminaris neurons. Laminaris neurons also receive GABAergic terminals which form symmetric synapses. Laminaris neurons have oval cell bodies covered with very short dendrites. The cells in the low best frequency region of the nucleus laminaris have longer dendrites.

  15. Comparison of neuronal activities of external cuneate nucleus, spinocerebellar cortex and interpositus nucleus during passive movements of the rat's forelimb.

    PubMed

    Casabona, A; Valle, M S; Bosco, G; Perciavalle, V

    2008-11-11

    In this paper we examined the neuronal activities of external cuneate nucleus, spinocerebellar Purkinje cells and interpositus nucleus during passive forelimb movements in anesthetized rats with the aim of identifying common or different patterns of activation across structures. By means of principal components analysis, we identified two main patterns of discharge which explained most of the dataset variance. One component characterized the movement-related activity of external cuneate and spinocerebellar cortical neurons, while the other reflected neuronal activity of the interpositus nucleus. We also found that both principal components were related to global forelimb kinematics but, while most of the variance of the activity of external cuneate cells and spinocerebellar Purkinje cells was explained by the limb axis orientation and orientation velocity, interpositus neurons' firing was best related to length and length velocity. This difference in the forelimb kinematics representation observed in external cuneate nucleus and spinocerebellar cortex compared with the interpositus nucleus is discussed with respect to the specific role that these structures may play also during active control of limb movements.

  16. Brain networks modulated by subthalamic nucleus deep brain stimulation.

    PubMed

    Accolla, Ettore A; Herrojo Ruiz, Maria; Horn, Andreas; Schneider, Gerd-Helge; Schmitz-Hübsch, Tanja; Draganski, Bogdan; Kühn, Andrea A

    2016-09-01

    Deep brain stimulation of the subthalamic nucleus is an established treatment for the motor symptoms of Parkinson's disease. Given the frequent occurrence of stimulation-induced affective and cognitive adverse effects, a better understanding about the role of the subthalamic nucleus in non-motor functions is needed. The main goal of this study is to characterize anatomical circuits modulated by subthalamic deep brain stimulation, and infer about the inner organization of the nucleus in terms of motor and non-motor areas. Given its small size and anatomical intersubject variability, functional organization of the subthalamic nucleus is difficult to investigate in vivo with current methods. Here, we used local field potential recordings obtained from 10 patients with Parkinson's disease to identify a subthalamic area with an analogous electrophysiological signature, namely a predominant beta oscillatory activity. The spatial accuracy was improved by identifying a single contact per macroelectrode for its vicinity to the electrophysiological source of the beta oscillation. We then conducted whole brain probabilistic tractography seeding from the previously identified contacts, and further described connectivity modifications along the macroelectrode's main axis. The designated subthalamic 'beta' area projected predominantly to motor and premotor cortical regions additional to connections to limbic and associative areas. More ventral subthalamic areas showed predominant connectivity to medial temporal regions including amygdala and hippocampus. We interpret our findings as evidence for the convergence of different functional circuits within subthalamic nucleus' portions deemed to be appropriate as deep brain stimulation target to treat motor symptoms in Parkinson's disease. Potential clinical implications of our study are illustrated by an index case where deep brain stimulation of estimated predominant non-motor subthalamic nucleus induced hypomanic behaviour. © The

  17. Slow flow of passive neutrophils and sequestered nucleus into micropipette.

    PubMed

    Kaleridis, V; Athanassiou, G; Deligianni, D; Missirlis, Y

    2010-01-01

    In the present study, the role of the nucleus and its contribution to the deformability of the passive neutrophils was investigated. To determine the rheological properties of the nucleus and of the neutrophil itself, deformation tests on single neutrophil and sequestered nucleus have been performed by micropipette under low aspiration pressure (80 Pa = 2-3 Pcr). The stiffness of the nucleus was found to be larger than that of the neutrophil, and its viscosity was found almost ten-fold higher. A subpopulation of neutrophils (Sub-A) showed two phases of deformation, a first rapid phase and a second phase with a constant deformation rate up to their full entrance, with an apparent viscosity mu app-second-Phase(N Sub-A) = 286 +/- 123 Pa x s, calculated by the liquid drop model. Another subpopulation (Sub-B) of the tested neutrophils displayed three deformation phases: a first one reflecting the rapid entry of cell into the micropipette, a second with constant deformation rate, and a third phase, with a slower, also constant, deformation rate were recorded. The corresponding apparent viscosities were found as mu app-second-Phase(N Sub-B) = 341 +/- 94 Pa x s and mu app-third-Phase(N Sub-B) = 1651 +/- 734 Pa x s. The apparent viscosity values of the neutrophilic nucleus, mu app (N nucl) = 2468 +/- 1345 Pa x s and of the whole neutrophil calculated in the third phase of deformation, mu app-third-Phase(N Sub-B) = 1651 +/- 734 Pa.s were comparable. These results support our hypothesis that the nucleus plays a significant role in the mechanical and rheological behavior of the neutrophil, especially when it has to pass through openings much smaller than its size.

  18. Morphometric study of dentate nucleus of cerebellum in Bangladeshi cadaver.

    PubMed

    Haque, M A; Khalil, M; Sultana, S Z; Mannan, S; Uddin, M M; Hossain, M; Ara, A; Choudhury, S; Shammi, N J

    2015-01-01

    This cross sectional descriptive study was done by using nonprobability sampling technique and performed by examining 63 (sixty three) cerebellum. Out of them 40 postmortem human cerebellum collected from Bangladeshi cadavers of both sexes (male 25 and female 15) age ranging from 5 to 60 years and 23 cerebellums from caesarian section of intrauterine death cases of both sexes (male 14 and female 9) age ranging from 34 to 41 weeks of gestation. Specimens were collected from dead bodies autopsied on different dates from April' 2009 to September' 2009 at the autopsy laboratory of department of Forensic Medicine and prenatal cases from Gynaecology and Obstetrics Department of Mymensingh Medical College, Mymensingh. The collected specimens were grouped into three age groups like Group A (28 to 42 weeks of gestation), Group B (5 to 30 years) and Group C (31 to 60 years) and, two sex groups (male and female) and two sides (right and left). A transverse section was made at the level of horizontal fissure, and length and breadth of dentate nucleus were measured by divider and scale. The mean (±SD) length and breadth of dentate nucleus was 8.619±2.995mm and 14.770±3.604mm respectively and it was observed that length and breadth of dentate nucleus increased with age upto certain level then slightly decreased in the late age Group C. In this study, differences of the mean length of dentate nucleus on both right and left sides were statistically moderately significant between age Groups A&B. The differences of mean breadth of dentate nucleus on both right and left side were statistically highly significant between age Groups A&B and moderately significant between age Groups A&C on right side and only significant on left side. The differences between male & female were statistically insignificant in length and breadth of dentate nucleus.

  19. Neurophysiological evaluation of the pedunculopontine nucleus in humans.

    PubMed

    Profice, P; Mazzone, P; Pilato, F; Dileone, M; Insola, A; Ranieri, F; Di Lazzaro, V

    2011-10-01

    The pedunculopontine nucleus (PPTg) is constituted by a heterogeneous cluster of neurons located in caudal mesencephalic tegmentum which projects to the thalamus to trigger thalamocortical rhythms and the brainstem to modulate muscle tone and locomotion. It has been investigated as potential deep brain stimulation (DBS) target for treating Parkinson's disease (PD) symptoms. Neurophysiological studies conducted in humans using DBS electrodes for exploring functional properties of PPTg in vivo, reviewed in this paper, demonstrated that the functional connections between PPTg and cortex, basal ganglia, brainstem network involved in sleep/wake control, and spinal cord can be explored in vivo and provided useful insights about the physiology of this nucleus and pathophysiology of PD.

  20. Figure Caption for pair of images of 'Comet Nucleus Q

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Figure Caption for pair of images of 'Comet Nucleus Q'. 21Jul94 Last Look at the Q-nuclei First image - March 30, 1994. Two Q-nuclei and a split nucleus, P. Second image - July 20, 1994. at T - 10 hours. Both nuclei still show no sign of further fragmentation, although the coma near each is being stretched out along the direction of motion. Both images were taken with the WFPC2 Planetary Camera using a red filter. Credit: H. A. Weaver and T. E. Smith

  1. Functions of long noncoding RNAs in the nucleus.

    PubMed

    Yu, Bin; Shan, Ge

    2016-04-25

    Nucleus is the residence and place of work for a plethora of long noncoding RNAs. Here, we provide a summary of the functions and functional mechanisms of several relatively well studied examples of nuclear long noncoding RNAs (lncRNAs) in the nucleus, such as Xist, NEAT1, MALAT1 and TERRA. The recently identified novel EIciRNA is also highlighted. These nuclear lncRNAs play a variety of roles with diverse molecular mechanisms in animal cells. We also discuss insights and concerns about current and future studies of nuclear lnc RNAs.

  2. Final State Interactions Effects in Neutrino-Nucleus Interactions

    SciTech Connect

    Golan, Tomasz; Juszczak, Cezary; Sobczyk, Jan T.

    2012-07-01

    Final State Interactions effects are discussed in the context of Monte Carlo simulations of neutrino-nucleus interactions. A role of Formation Time is explained and several models describing this effect are compared. Various observables which are sensitive to FSI effects are reviewed including pion-nucleus interaction and hadron yields in backward hemisphere. NuWro Monte Carlo neutrino event generator is described and its ability to understand neutral current $\\pi^0$ production data in $\\sim 1$ GeV neutrino flux experiments is demonstrated.

  3. Ice crystal and ice nucleus measurements in cap clouds

    NASA Technical Reports Server (NTRS)

    Vali, G.; Rogers, D. C.; Deshler, T. L.

    1982-01-01

    Ice nucleation in cap clouds over a mountain in Wyoming was examined with airborne instrumentation. Crosswind and wind parallel passes were made through the clouds, with data being taken on the ice crystal concentrations and sizes. A total of 141 penetrations of 26 separate days in temperatures ranging from -7 to -24 C were performed. Subsequent measurements were also made 100 km away from the mountain. The ice crystal concentrations measured showed good correlation with the ice nucleus content in winter time, midcontinental air masses in Wyoming. Further studies are recommended to determine if the variations in the ice nucleus population are the cause of the variability if ice crystal content.

  4. The Development of Hypertrophic Inferior Olivary Nucleus in Oculopalatal Tremor.

    PubMed

    Jun, Bokkwan

    2016-12-01

    Oculopalatal tremor is an acquired clinical condition resulting from the interruption of the dentato-rubro-olivary neuronal pathway. The signal change in inferior olivary nucleus and its hypertrophy on magnetic resonance imaging (MRI) can be observed prior to the development of symptomatic oculopalatal tremor. This is a case of the fourth cranial nerve palsy followed by oculopalatal tremor, and increased signal intensity in inferior olivary nucleus on MRI was observed in 7 months after damage to the dentate-rubro-olivary pathway and 5 months prior to the development of oscillopsia and oculopalatal tremor.

  5. Figure Caption for pair of images of 'Comet Nucleus Q

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Figure Caption for pair of images of 'Comet Nucleus Q'. 21Jul94 Last Look at the Q-nuclei First image - March 30, 1994. Two Q-nuclei and a split nucleus, P. Second image - July 20, 1994. at T - 10 hours. Both nuclei still show no sign of further fragmentation, although the coma near each is being stretched out along the direction of motion. Both images were taken with the WFPC2 Planetary Camera using a red filter. Credit: H. A. Weaver and T. E. Smith

  6. Like attracts like: getting RNA processing together in the nucleus.

    PubMed

    Lewis, J D; Tollervey, D

    2000-05-26

    Structures visible within the eukaryotic nucleus have fascinated generations of biologists. Recent data show that these structures form in response to gene expression and are highly dynamic in living cells. RNA processing and assembly require many factors but the nucleus apparently lacks any active transport system to deliver these to the RNAs. Instead, processing factors move by diffusion but are concentrated by transient association with functionally related components. At sites of high activity this gives rise to visible structures, with components in dynamic equilibrium with the surrounding nucleoplasm. Processing factors are recruited from this pool by cooperative binding to RNA substrates.

  7. Morphology of multiple-nucleus brightest cluster galaxies

    SciTech Connect

    Lauer, T.R.

    1988-02-01

    The morphology of high SNR CCD images of 16 multiple-nucleus brightest cluster galaxies is studied using an algorithm that models images of the systems as the line-of-sight superposition of normal elliptical galaxies. The algorithm is applied initially to the classic multiple-nucleus cD galaxy in A2199. Evidence is found suggestive of deep interpenetrating high-speed encounters by its secondaries. The interactions effects studied include noncentric isophotes, brightness profile effects, excess light around primary galaxies, and dynamical friction wakes. The results show that in many cases multiple systems are interacting systems. 42 references.

  8. The morphology of multiple-nucleus brightest cluster galaxies

    NASA Technical Reports Server (NTRS)

    Lauer, Tod R.

    1988-01-01

    The morphology of high SNR CCD images of 16 multiple-nucleus brightest cluster galaxies is studied using an algorithm that models images of the systems as the line-of-sight superposition of normal elliptical galaxies. The algorithm is applied initially to the classic multiple-nucleus cD galaxy in A2199. Evidence is found suggestive of deep interpenetrating high-speed encounters by its secondaries. The interactions effects studied include noncentric isophotes, brightness profile effects, excess light around primary galaxies, and dynamical friction wakes. The results show that in many cases multiple systems are interacting systems.

  9. Analysis of organic compounds in returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.

    1989-01-01

    Techniques for analysis of organic compounds in returned comet nucleus samples are described. Interstellar, chondritic and transitional organic components are discussed. Appropriate sampling procedures will be essential to the success of these analyses. It will be necessary to return samples that represent all the various regimes found in the nucleus, e.g., a complete core, volatile components (deep interior), and crustal components (surface minerals, rocks, processed organics such as macromolecular carbon and polymers). Furthermore, sampling, storage, return, and distribution of samples must be done under conditions that preclude contamination of the samples by terrestrial matter.

  10. Dual efferent projections of the trigeminal principal sensory nucleus to the thalamic ventroposteromedial nucleus in the squirrel monkey.

    PubMed

    Ganchrow, D; Mehler, W R

    1986-07-24

    Anterograde degeneration methods demonstrated two efferent components from the trigeminal principal sensory nucleus (PrV) to the thalamic ventroposteromedial nucleus (VPM) in the squirrel monkey: fibers from the dorsal PrV coursed within the central tegmental tract and terminated in a dorsoventromedial strip of the ipsilateral VPM; fibers from the ventral PrV mainly decussated caudal to the interpeduncular nucleus and terminated in the contralateral VPM exclusive of the sector receiving the dorsal PrV component, contralaterally. Adjacent Nissl sections showed an apparent increase in glial profiles accompanying an intense somal staining among the deafferented neuronal population in the VPM, coextensive with those regions in the VPM exhibiting terminal field degeneration.

  11. [Analgesic action of microinjection of neurokinin A into the lateral reticular nucleus and nucleus raphe magnus in rats].

    PubMed

    Yan, G P; Zhao, Y; Huang, Q E; Chen, W M

    1996-10-01

    Using the microinjection technique, the analgesic effect of neurokinin A (NKA) microinjected into the lateral reticular nucleus (LRN) and nucleus raphe magnus (NRM) was investigated in lightly pentobarbital-anesthetized rats using tail flick latency (TFL) as an index. Microinjection of NKA (0.5 microgram/0.5 microliter) into LRN significantly increased TFL lasting for 10 min (n = 12, P < 0.001). Microinjection of the same amount of NKA into NRM also produced evident increase in TFL for 5 min (n = 13, P < 0.001). The results indicate that NKA modulates pain reaction in both LRN and NRM in rats.

  12. [Repeated exposure in hypergravity: morphology of locus coeruleus, hypothalamic paraventricular nucleus and vagal nerve dorsal nucleus in rats].

    PubMed

    Krasnov, I B; Fidelina, O V; Gorbatiuk, O S; Vikhreva, O V

    2000-01-01

    As compared to analogous single rotation at 2 g and in contrast to 5-d single and repeated exposures to Coriolis accelerations, repeated 5-day hypergravity (2 g generated by centrifuge rotation) gave rise to structural alterations in rat's neurons of locus coeruleus, vasopressinergic neurons of the lateral magnocellular subnucleus paraventricular nucleus and nervi vagi dorsal nucleus suggesting involvement of these structures of brain in the mechanism of facilitation of adaptation to repeated long-term hypergravity. Results of the study point to the ability of mammals to remember changes in gravity. Findings of the study may help develop an algorithm of intermittent exposure to artificial gravity aboard space vehicle.

  13. Micro-structural Change During Nucleation: From Nucleus To Bicontinuous Morphology

    NASA Astrophysics Data System (ADS)

    Jeong, Seongmin; Jho, Yongseok; Zhou, Xin

    2015-11-01

    Although the microstructure of coexistence phase provides direct insights of the nucleation mechanism and their change is substantial in the phase transition, their study is limited due to the lack of suitable tools capturing the thermodynamically unstable transient states. We resolve this problem in computational study by introducing a generalized canonical ensemble simulation and investigate the morphological change of the nucleus during the water evaporation and condensation. We find that at very low pressure, where the transition is first order, classical nucleation theory holds approximately. A main nucleus is formed in the supersaturation near spinodal, and the overall shape of the nucleus is finite and compact. On increasing the pressure of the system, more nuclei are formed even before spinodal. They merge into a larger nuclei with a smaller free energy penalty to form ramified shapes. We suggest order parameters to describe the extent of fluctuation, and their relation to the free energy profile.

  14. Micro-structural Change During Nucleation: From Nucleus To Bicontinuous Morphology

    PubMed Central

    Jeong, Seongmin; Jho, Yongseok; Zhou, Xin

    2015-01-01

    Although the microstructure of coexistence phase provides direct insights of the nucleation mechanism and their change is substantial in the phase transition, their study is limited due to the lack of suitable tools capturing the thermodynamically unstable transient states. We resolve this problem in computational study by introducing a generalized canonical ensemble simulation and investigate the morphological change of the nucleus during the water evaporation and condensation. We find that at very low pressure, where the transition is first order, classical nucleation theory holds approximately. A main nucleus is formed in the supersaturation near spinodal, and the overall shape of the nucleus is finite and compact. On increasing the pressure of the system, more nuclei are formed even before spinodal. They merge into a larger nuclei with a smaller free energy penalty to form ramified shapes. We suggest order parameters to describe the extent of fluctuation, and their relation to the free energy profile. PMID:26526871

  15. Toroidal high-spin isomers in the nucleus 304120

    NASA Astrophysics Data System (ADS)

    Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.

    2017-05-01

    Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from

  16. Study of the variability of the nucleus of Centaurus A.

    NASA Astrophysics Data System (ADS)

    Fernandes de Mello Rabaca, D.; Abraham, Z.

    1990-11-01

    ABSTRACT. This work consists in the study of the variability of the nucleus of the peculiar galaxy NGC 5128 (Centaurus A) at the radio continuum frequency of 43 GHz. The data were obtained with the 13.7 m itapetinga Radiotelescope. The radio source presents a pair of inner radio lobes and a compact variable nucleus. The observational technique used was scans through the inner radio lobes and the nucleus. The quasi- simultaneous measurements of the flux density of each source allowed us to derive accurately the relative flux between them, and to obtain the real variability of the nucleus. RESUMO. Este trabalho consiste no estudo da variabilidade do nucleo da galaxia peculiar NGC 5128 (Centaurus A) no de radio na de 43 GHz. Os dados foram obtidos com 0 Radiotelescopio do Itapetinga. A radio fonte apresenta um par de lobulos internos e um nucleo compacto variavel. A tetnica observacional utilizada foi a de varreduras passando pelos lobulos e pelo nucleo. As medidas quase simultaneas da densidade de fluxo de cada fonte permitiu obter precisa- mente 0 fluxo relativo entre elas e a variabilidade real do nucleo. Keq woit : GALAXIES-RADIO

  17. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    SciTech Connect

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  18. mRNA-Producing Pseudo-nucleus System.

    PubMed

    Shin, Seung Won; Park, Kyung Soo; Shin, Woo Jung; Um, Soong Ho

    2015-11-04

    A pseudo-eukaryotic nucleus (PEN) system consisting of a gene-containing DNA hydrogel encapsulated in a liposome is fabricated. Owing to the structural characteristics of gene-containing DNA hydrogel, mRNA transcription efficiency is promoted 2.57-fold. Through the use of PEN as a platform for mRNA delivery to the cytosol, prolonged protein translation is achieved.

  19. Antidromic activation of the isthmo-optic nucleus

    PubMed Central

    Holden, A. L.

    1968-01-01

    1. This paper describes experiments carried out to record from output cells in the isthmo-optic nucleus. 2. One-hundred and twenty-seven axonal responses were fired at fixed latency from the optic nerve-head. 3. Ninety-nine cell responses were fired trans-synaptically from the optic nerve-head. 4. Ninety-four cells were activated antidromically from the optic nerve-head. 5. Tectal tracks could be recognized by the field potential profile of the N-wave, R-wave and P-wave, and by the occurrence of fixed latency axonal responses and trans-synaptically fired cells. 6. Tectal tracks were verified histologically. 7. Tracks yielding antidromically activated cells were traced histologically to the isthmo-optic nucleus. 8. The antidromic A-wave could be recorded from the nucleus, corresponding in timing to the invasion of cell bodies. 9. Somatic records in the nucleus could be recognized by their duration, conformation, and A—B blocking. 10. When antidromic discharge was interacted with orthodromic firing, collision evidence could be provided, showing that the orthodromic impulse travels centrifugally to the retina. ImagesFig. 3Fig. 4 PMID:5675042

  20. A continuing controversy: Has the cometary nucleus been resolved?

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1976-01-01

    Evidence is presented for classifying cometary nuclei into two basic types, described by core mantle and coreless models. Mass loss related nongravitational effects in a comet's motion as a function of time are included in considering gradual evaporation of an icy envelope surrounding the meteoric matrix in the core of the nucleus.

  1. Altered morphology of the nucleus accumbens in persistent developmental stuttering.

    PubMed

    Neef, Nicole E; Bütfering, Christoph; Auer, Tibor; Metzger, F Luise; Euler, Harald A; Frahm, Jens; Paulus, Walter; Sommer, Martin

    2017-05-24

    Neuroimaging studies in persistent developmental stuttering repeatedly report altered basal ganglia functions. Together with thalamus and cerebellum, these structures mediate sensorimotor functions and thus represent a plausible link between stuttering and neuroanatomy. However, stuttering is a complex, multifactorial disorder. Besides sensorimotor functions, emotional and social-motivational factors constitute major aspects of the disorder. Here, we investigated cortical and subcortical gray matter regions to study whether persistent developmental stuttering is also linked to alterations of limbic structures. The study included 33 right-handed participants who stutter and 34 right-handed control participants matched for sex, age, and education. Structural images were acquired using magnetic resonance imaging to estimate volumetric characteristics of the nucleus accumbens, hippocampus, amygdala, pallidum, putamen, caudate nucleus, and thalamus. Volumetric comparisons and vertex-based shape comparisons revealed structural differences. The right nucleus accumbens was larger in participants who stutter compared to controls. Recent theories of basal ganglia functions suggest that the nucleus accumbens is a motivation-to-movement interface. A speaker intends to reach communicative goals, but stuttering can derail these efforts. It is therefore highly plausible to find alterations in the motivation-to-movement interface in stuttering. While behavioral studies of stuttering sought to find links between the limbic and sensorimotor system, we provide the first neuroimaging evidence of alterations in the limbic system. Thus, our findings might initialize a unified neurobiological framework of persistent developmental stuttering that integrates sensorimotor and social-motivational neuroanatomical circuitries. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. High-spin states in the 94Nb nucleus

    NASA Astrophysics Data System (ADS)

    Mărginean, N.; Bucurescu, D.; Căta-Danil, Ghe.; Căta-Danil, I.; Ivaşcu, M.; Ur, C. A.

    2000-09-01

    High-spin states have been studied for the first time in the 94Nb nucleus with the reaction 82Se(19F,α3nγ) at 68 MeV. A cascade of transitions has been observed, based on the (6)+ ground state and extending up to 6.5 MeV excitation and spin of about 19.

  3. Motility proteins and the origin of the nucleus.

    PubMed

    Dolan, Michael F; Melnitsky, Hannah; Margulis, Lynn; Kolnicki, Robin

    2002-11-01

    Hypotheses on the origin of eukaryotic cells must account for the origin of the microtubular cytoskeletal structures (including the mitotic spindle, undulipodium/cilium (so-called flagellum) and other structures underlain by the 9(2)+2 microtubular axoneme) in addition to the membrane-bounded nucleus. Whereas bacteria with membrane-bounded nucleoids have been described, no precedent for mitotic, cytoskeletal, or axonemal microtubular structures are known in prokaryotes. Molecular phylogenetic analyses indicate that the cells of the earliest-branching lineages of eukaryotes contain the karyomastigont cytoskeletal system. These protist cells divide via an extranuclear spindle and a persistent nuclear membrane. We suggest that this association between the centriole/kinetosome axoneme (undulipodium) and the nucleus existed from the earliest stage of eukaryotic cell evolution. We interpret the karyomastigont to be a legacy of the symbiosis between thermoacidophilic archaebacteria and motile eubacteria from which the first eukaryote evolved. Mutually inconsistent hypotheses for the origin of the nucleus are reviewed and sequenced proteins of cell motility are discussed because of their potential value in resolving this problem. A correlation of fossil evidence with modern cell and microbiological studies leads us to the karyomastigont theory of the origin of the nucleus.

  4. Calcium-regulated import of myosin IC into the nucleus.

    PubMed

    Maly, Ivan V; Hofmann, Wilma A

    2016-06-01

    Myosin IC is a molecular motor involved in intracellular transport, cell motility, and transcription. Its mechanical properties are regulated by calcium via calmodulin binding, and its functions in the nucleus depend on import from the cytoplasm. The import has recently been shown to be mediated by the nuclear localization signal located within the calmodulin-binding domain. In the present paper, it is demonstrated that mutations in the calmodulin-binding sequence shift the intracellular distribution of myosin IC to the nucleus. The redistribution is displayed by isoform B, described originally as the "nuclear myosin," but is particularly pronounced with isoform C, the normally cytoplasmic isoform. Furthermore, experimental elevation of the intracellular calcium concentration induces a rapid import of myosin into the nucleus. The import is blocked by the importin β inhibitor importazole. These findings are consistent with a mechanism whereby calmodulin binding prevents recognition of the nuclear localization sequence by importin β, and the steric inhibition of import is released by cell signaling leading to the intracellular calcium elevation. The results establish a mechanistic connection between the calcium regulation of the motor function of myosin IC in the cytoplasm and the induction of its import into the nucleus. © 2016 Wiley Periodicals, Inc.

  5. Piecemeal Microautophagy of the Nucleus Requires the Core Macroautophagy Genes

    PubMed Central

    Krick, R.; Muehe, Y.; Prick, T.; Bremer, S.; Schlotterhose, P.; Eskelinen, E.-L.; Millen, J.; Goldfarb, D. S.

    2008-01-01

    Autophagy is a diverse family of processes that transport cytoplasm and organelles into the lysosome/vacuole lumen for degradation. During macroautophagy cargo is packaged in autophagosomes that fuse with the lysosome/vacuole. During microautophagy cargo is directly engulfed by the lysosome/vacuole membrane. Piecemeal microautophagy of the nucleus (PMN) occurs in Saccharomyces cerevisiae at nucleus-vacuole (NV) junctions and results in the pinching-off and release into the vacuole of nonessential portions of the nucleus. Previous studies concluded macroautophagy ATG genes are not absolutely required for PMN. Here we report using two biochemical assays that PMN is efficiently inhibited in atg mutant cells: PMN blebs are produced, but vesicles are rarely released into the vacuole lumen. Electron microscopy of arrested PMN structures in atg7, atg8, and atg9 mutant cells suggests that NV-junction–associated micronuclei may normally be released from the nucleus before their complete enclosure by the vacuole membrane. In this regard PMN is similar to the microautophagy of peroxisomes (micropexophagy), where the side of the peroxisome opposite the engulfing vacuole is capped by a structure called the “micropexophagy-specific membrane apparatus” (MIPA). The MIPA contains Atg proteins and facilitates terminal enclosure and fusion steps. PMN does not require the complete vacuole homotypic fusion genes. We conclude that a spectrum of ATG genes is required for the terminal vacuole enclosure and fusion stages of PMN. PMID:18701704

  6. Synthesis of the Furan Nucleus Promoted by Ytterbium Triflate.

    PubMed

    Taddeo, Vito Alessandro; Genovese, Salvatore; Epifano, Francesco; Fiorito, Serena

    2015-11-01

    An efficient synthesis of differently substituted furans from acetylene dicarboxylates and β-dicarbonyl compounds is described. The furan nucleus was built by means of an Yb(OTf)3 catalyzed cycloaddition reaction yielding desired adducts in 91%-98% yield.

  7. Turn Up the Volume: Uncovering Nucleus Size Control Mechanisms.

    PubMed

    Good, Matthew C

    2015-06-08

    Reporting in Developmental Cell, Hara and Merten (2015) apply the use of microfabrication and in vitro analysis in cell-free extracts to the old problem of nuclear size control. The authors make insights into the regulation of nuclear growth that potentially explain the widely reported correlation between nucleus size and cell size.

  8. Octopus Cells in the Posteroventral Cochlear Nucleus Provide the Main Excitatory Input to the Superior Paraolivary Nucleus.

    PubMed

    Felix Ii, Richard A; Gourévitch, Boris; Gómez-Álvarez, Marcelo; Leijon, Sara C M; Saldaña, Enrique; Magnusson, Anna K

    2017-01-01

    Auditory streaming enables perception and interpretation of complex acoustic environments that contain competing sound sources. At early stages of central processing, sounds are segregated into separate streams representing attributes that later merge into acoustic objects. Streaming of temporal cues is critical for perceiving vocal communication, such as human speech, but our understanding of circuits that underlie this process is lacking, particularly at subcortical levels. The superior paraolivary nucleus (SPON), a prominent group of inhibitory neurons in the mammalian brainstem, has been implicated in processing temporal information needed for the segmentation of ongoing complex sounds into discrete events. The SPON requires temporally precise and robust excitatory input(s) to convey information about the steep rise in sound amplitude that marks the onset of voiced sound elements. Unfortunately, the sources of excitation to the SPON and the impact of these inputs on the behavior of SPON neurons have yet to be resolved. Using anatomical tract tracing and immunohistochemistry, we identified octopus cells in the contralateral cochlear nucleus (CN) as the primary source of excitatory input to the SPON. Cluster analysis of miniature excitatory events also indicated that the majority of SPON neurons receive one type of excitatory input. Precise octopus cell-driven onset spiking coupled with transient offset spiking make SPON responses well-suited to signal transitions in sound energy contained in vocalizations. Targets of octopus cell projections, including the SPON, are strongly implicated in the processing of temporal sound features, which suggests a common pathway that conveys information critical for perception of complex natural sounds.

  9. Octopus Cells in the Posteroventral Cochlear Nucleus Provide the Main Excitatory Input to the Superior Paraolivary Nucleus

    PubMed Central

    Felix II, Richard A.; Gourévitch, Boris; Gómez-Álvarez, Marcelo; Leijon, Sara C. M.; Saldaña, Enrique; Magnusson, Anna K.

    2017-01-01

    Auditory streaming enables perception and interpretation of complex acoustic environments that contain competing sound sources. At early stages of central processing, sounds are segregated into separate streams representing attributes that later merge into acoustic objects. Streaming of temporal cues is critical for perceiving vocal communication, such as human speech, but our understanding of circuits that underlie this process is lacking, particularly at subcortical levels. The superior paraolivary nucleus (SPON), a prominent group of inhibitory neurons in the mammalian brainstem, has been implicated in processing temporal information needed for the segmentation of ongoing complex sounds into discrete events. The SPON requires temporally precise and robust excitatory input(s) to convey information about the steep rise in sound amplitude that marks the onset of voiced sound elements. Unfortunately, the sources of excitation to the SPON and the impact of these inputs on the behavior of SPON neurons have yet to be resolved. Using anatomical tract tracing and immunohistochemistry, we identified octopus cells in the contralateral cochlear nucleus (CN) as the primary source of excitatory input to the SPON. Cluster analysis of miniature excitatory events also indicated that the majority of SPON neurons receive one type of excitatory input. Precise octopus cell-driven onset spiking coupled with transient offset spiking make SPON responses well-suited to signal transitions in sound energy contained in vocalizations. Targets of octopus cell projections, including the SPON, are strongly implicated in the processing of temporal sound features, which suggests a common pathway that conveys information critical for perception of complex natural sounds. PMID:28620283

  10. A search for the production of direct leptons in nucleon-nucleus and nucleus-nucleus collisions

    SciTech Connect

    Kirk, P.N.

    1990-12-01

    This report discusses the following topics: subthreshold production experiment; testing and selection of PCOS amplifiers; transverse energy detector; development of a sensitive new amplifiers; single-lepton experiment. (LSP)

  11. Physical interrelation of volatile and refractories in a cometary nucleus

    NASA Astrophysics Data System (ADS)

    Fulle, Marco; Alice Team; Stern, Alan; CONSTERT Team; Kofman, Wlodek; COSIMA Team; Hilchenbach, Martin; GIADA Team; Rotundi, Alessandra; MIDAS Team; Bentley, Mark; MIRO Team; Hofstadter, Mark; OSIRIS Team; Sierks, Holger; ROSINA Team; Altwegg, Kathrin; RPC Team; Nilsson, Hans; Burch, James; Eriksson, Anders; Heinz-Glassmeier, Karl; Henri, Pierre; Carr, Christopher; RSI Team; Paetzold, Martin; , VIRTIS Team; Capaccioni, Fabrizio; Lander Team; Boehnhardt, Hermann; Bibring, Jean-Pierre; IDS Team; Gruen, Eberhard; Fulchignoni, Marcello; Weissman, Paul; Project Scientist Team; Taylor, Matt; Buratti, Bonnie; Altobelli, Nicolas; Choukroun, Mathieu; Ground-Based Observations Team; Snodgrass, Colin

    2016-10-01

    The Rosetta mission has been taking measurements of its target comet Comet 67P/Churyumov-Gerasimenko since early 2014 and will complete operations at the end of September 2016. The mission Science Management Plan, in 1994, laid out the the prime goals and themes of the mission. These five themes were: 1) To study the global characterisation of the Nuclues, the determination of the dynamics properties , surface morpholy and composition of the comet. 2) Examination of the Chemical, Mineralogical and isotopic compositions of volatiles and refractories in a cometary nucleus.3) Physical interrelation of volatile and refractories in a cometary nucleus4) Study the development of cometary activity and the process in the surface layer of the nucleus and in the inner coma5) The origins of comets, the relationship between cometary and interstellar material and the implications for the origin of the solar system,To cover all aspects of the Rosetta mission in this special Show case session, this abstracts is one of 5, with this particular presentation focusing on theme 3, in particular on a) The dust-to-gas ratio; b) distributed sources of volatiles; c) seasonal evolution of the dust size distribution.a) The dust-to-gas ratio has been provided by coma observations measuring the gas and dust loss rates from the nucleus surface. The ratio of these two loss rates provides a lower limit of the dust-to-gas ratio at the nucleus surface, since it does not take into account the largest chunks unable to leave the nucleus, or falling back due to the dominant gravity. We review the value inferred so far, its time evolution, and new techniques to directly measure it in the nucleus.b) Evidences offered by Rosetta observations of gas sublimating from dust particles are up to now faint. We report the few available observations and an estimate of the probable average water content in dust particles inferred by 3D gas-dynamical codes of 67P coma.c) The dust-size distribution tunes the sizes

  12. Stopping power measurements with 17-GeV/c protons at the AGS or inclusive proton spectra from proton-nucleus interactions at 17 GeV/c

    SciTech Connect

    Remsberg, L.P.; Barton, D.S.; Bunce, G.; Carroll, A.S.; Chu, Y.Y.; Cumming, J.B.; Haustein, P.E.; Katcoff, S.; Ludlam, T.; Makdisi, Y.I.

    1984-01-01

    The problem of nuclear stopping power and its importance to the study of nucleus-nucleus collisions at very high energies was brought to general attention one year ago at Quark Matter 83 by Busza and Goldhaber. In this context, nuclear stopping power can be thought of as the rate of energy (or rapidity) loss of a proton traversing nuclear matter. It does not directly address the important question of energy deposition. Busza and Goldhaber showed that knowledge of nuclear stopping power is needed to estimate the minimum center-of-mass energy required in nucleus-nucleus collisions to ensure the production of very high temperatures at low baryon density. At cm energies of about 1 to 10 GeV/A, the stopping power is important in the estimation of the maximum baryon densities attainable in nucleus-nucleus collisions. The data presented are more relevant to this latter point.

  13. GAS ACCRETION IN THE M32 NUCLEUS: PAST AND PRESENT

    SciTech Connect

    Seth, Anil C.

    2010-12-10

    Using adaptive optics assisted Gemini/NIFS data, I study the present and past gas accretion in the central 3'' of the M32 nucleus. From changes in the spectral slope and CO line depths near the center, I find evidence for unresolved dust emission resulting from black hole (BH) accretion. With a luminosity of {approx}2 x 10{sup 38} erg s{sup -1}, this dust emission appears to be the most luminous tracer of current BH accretion, 2 orders of magnitude more luminous than previously detected X-ray emission. These observations suggest that using high-resolution infrared data to search for dust emission may be an effective way to detect other nearby, low-luminosity BHs, such as those in globular clusters. I also examine the fossil evidence of gas accretion contained in the kinematics of the stars in the nucleus. The higher order moments (h3 and h4) of the line-of-sight velocity distribution show patterns that are remarkably similar to those seen on larger scales in elliptical galaxies and in gas-rich merger simulations. The kinematics suggests the presence of two components in the M32 nucleus, a dominant disk overlying a pressure supported component. I discuss possible formation scenarios for the M32 nucleus in the context of the kinematic data as well as previous stellar population studies. The kinematic measurements presented here are the highest quality available for the nucleus of M32, and may be useful for any future dynamical models of this benchmark system.

  14. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder.

    PubMed

    Mallet, Luc; Polosan, Mircea; Jaafari, Nematollah; Baup, Nicolas; Welter, Marie-Laure; Fontaine, Denys; du Montcel, Sophie Tezenas; Yelnik, Jérôme; Chéreau, Isabelle; Arbus, Christophe; Raoul, Sylvie; Aouizerate, Bruno; Damier, Philippe; Chabardès, Stephan; Czernecki, Virginie; Ardouin, Claire; Krebs, Marie-Odile; Bardinet, Eric; Chaynes, Patrick; Burbaud, Pierre; Cornu, Philippe; Derost, Philippe; Bougerol, Thierry; Bataille, Benoit; Mattei, Vianney; Dormont, Didier; Devaux, Bertrand; Vérin, Marc; Houeto, Jean-Luc; Pollak, Pierre; Benabid, Alim-Louis; Agid, Yves; Krack, Paul; Millet, Bruno; Pelissolo, Antoine

    2008-11-13

    Severe, refractory obsessive-compulsive disorder (OCD) is a disabling condition. Stimulation of the subthalamic nucleus, a procedure that is already validated for the treatment of movement disorders, has been proposed as a therapeutic option. In this 10-month, crossover, double-blind, multicenter study assessing the efficacy and safety of stimulation of the subthalamic nucleus, we randomly assigned eight patients with highly refractory OCD to undergo active stimulation of the subthalamic nucleus followed by sham stimulation and eight to undergo sham stimulation followed by active stimulation. The primary outcome measure was the severity of OCD, as assessed by the Yale-Brown Obsessive Compulsive Scale (Y-BOCS), at the end of two 3-month periods. General psychopathologic findings, functioning, and tolerance were assessed with the use of standardized psychiatric scales, the Global Assessment of Functioning (GAF) scale, and neuropsychological tests. After active stimulation of the subthalamic nucleus, the Y-BOCS score (on a scale from 0 to 40, with lower scores indicating less severe symptoms) was significantly lower than the score after sham stimulation (mean [+/-SD], 19+/-8 vs. 28+/-7; P=0.01), and the GAF score (on a scale from 1 to 90, with higher scores indicating higher levels of functioning) was significantly higher (56+/-14 vs. 43+/-8, P=0.005). The ratings of neuropsychological measures, depression, and anxiety were not modified by stimulation. There were 15 serious adverse events overall, including 1 intracerebral hemorrhage and 2 infections; there were also 23 nonserious adverse events. These preliminary findings suggest that stimulation of the subthalamic nucleus may reduce the symptoms of severe forms of OCD but is associated with a substantial risk of serious adverse events. (ClinicalTrials.gov number, NCT00169377.) 2008 Massachusetts Medical Society

  15. Ultrastructural study of the nucleus Cuneiformis in the cat.

    PubMed

    Gioia, M; Bianchi, R

    1987-01-01

    The Cuneiformis nucleus (Cu.n.) is a reticular nucleus of the mesencephalic tegmentum which is involved in several functions and particularly in locomotor activities. While the physiological properties and the nervous connections of the nucleus have been studied, there is no data about its ultrastructure. Therefore, we investigated this region in cat at the electron microscope and with morphoquantitative methods to clarify its ultrastructural organization and particularly the characteristics of its synaptic complex. The neurons are small and medium in size, with a high nucleo-cytoplasmic ratio and a modest rough endoplasmic reticulum organization. The neuropil is very extensive. Myelinated axons are very numerous. Dendritic profiles whose plasmalemma is almost completely covered by synaptic boutons are observed frequently. There are few somatic synapses; 81% have symmetrical junctions and 23% have round vesicles only. There are numerous synapses in the neuropil, 40% having asymmetrical junctions and 60% containing round vesicles only. The greater functional complexity indicated by the morphological data and the greater extension of the neuropil synapses with respect to that of the somatic ones, suggest that the neuropil is the main site of modulation and integration of the inputs to the nucleus. A highly significant statistical difference between the sizes of the somatic vesicles and those of the neuropil was found. This may point to the presence of distinct populations of vesicles, which may be correlated with the variety of substances (neurotransmitters, neuropeptides etc ...) found in the nucleus. The remarkable ultrastructural similarity between the Cu.n. and the periaqueductal gray matter is discussed.

  16. Cytoskeletal tension induces the polarized architecture of the nucleus

    PubMed Central

    Kim, Dong-Hwee; Wirtz, Denis

    2016-01-01

    The nuclear lamina is a thin filamentous meshwork that provides mechanical support to the nucleus and regulates essential cellular processes such as DNA replication, chromatin organization, cell division, and differentiation. Isolated horizontal imaging using fluorescence and electron microscopy has long suggested that the nuclear lamina is composed of structurally different A-type and B-type lamin proteins and nuclear lamin-associated membrane proteins that together form a thin layer that is spatially isotropic with no apparent difference in molecular content or density between the top and bottom of the nucleus. Chromosomes are condensed differently along the radial direction from the periphery of the nucleus to the nuclear center; therefore, chromatin accessibility for gene expression is different along the nuclear radius. However, 3D confocal reconstruction reveals instead that major lamin protein lamin A/C forms an apically polarized Frisbee-like dome structure in the nucleus of adherent cells. Here we show that both A-type lamins and transcriptionally active chromatins are vertically polarized by the tension exercised by the perinuclear actin cap (or actin cap) that is composed of highly contractile actomyosin fibers organized at the apical surface of the nucleus. Mechanical coupling between actin cap and lamina through LINC (linkers of nucleoskeleton and cytoskeleton) protein complexes induces an apical distribution of transcription-active subnucleolar compartments and epigenetic markers of transcription-active genes. This study reveals that intranuclear structures, such as nuclear lamina and chromosomal architecture, are apically polarized through the extranuclear perinuclear actin cap in a wide range of somatic adherent cells. PMID:25701041

  17. Structures and functions in the crowded nucleus: new biophysical insights

    NASA Astrophysics Data System (ADS)

    Hancock, Ronald

    2014-09-01

    Concepts and methods from the physical sciences have catalysed remarkable progress in understanding the cell nucleus in recent years. To share this excitement with physicists and encourage their interest in this field, this review offers an overview of how the physics which underlies structures and functions in the nucleus is becoming more clear thanks to methods which have been developed to simulate and study macromolecules, polymers, and colloids. The environment in the nucleus is very crowded with macromolecules, making entropic (depletion) forces major determinants of interactions. Simulation and experiments are consistent with their key role in forming membraneless compartments such as nucleoli, PML and Cajal bodies, and discrete "territories" for chromosomes. The chromosomes, giant linear polyelectrolyte polymers, exist in vivo in a state like a polymer melt. Looped conformations are predicted in crowded conditions, and have been confirmed experimentally and are central to the regulation of gene expression. Polymer theory has revealed how the chromosomes are so highly compacted in the nucleus, forming a "crumpled globule" with fractal properties which avoids knots and entanglements in DNA while allowing facile accessibility for its replication and transcription. Entropic repulsion between looped polymers can explain the confinement of each chromosome to a discrete region of the nucleus. Crowding and looping are predicted to facilitate finding the specific targets of factors which modulate activities of DNA. Simulation shows that entropic effects contribute to finding and repairing potentially lethal double-strand breaks in DNA by increasing the mobility of the broken ends, favouring their juxtaposition for repair. Signaling pathways are strongly influenced by crowding, which favours a processive mode of response (consecutive reactions without releasing substrates). This new information contributes to understanding the sometimes counter-intuitive consequences.

  18. How the nucleus and mitochondria communicate in energy production during stress: nuclear MtATP6, an early-stress responsive gene, regulates the mitochondrial F₁F₀-ATP synthase complex.

    PubMed

    Moghadam, Ali Asghar; Ebrahimie, Eemaeil; Taghavi, Seyed Mohsen; Niazi, Ali; Babgohari, Mahbobeh Zamani; Deihimi, Tahereh; Djavaheri, Mohammad; Ramezani, Amin

    2013-07-01

    A small number of stress-responsive genes, such as those of the mitochondrial F1F0-ATP synthase complex, are encoded by both the nucleus and mitochondria. The regulatory mechanism of these joint products is mysterious. The expression of 6-kDa subunit (MtATP6), a relatively uncharacterized nucleus-encoded subunit of F0 part, was measured during salinity stress in salt-tolerant and salt-sensitive cultivated wheat genotypes, as well as in the wild wheat genotypes, Triticum and Aegilops using qRT-PCR. The MtATP6 expression was suddenly induced 3 h after NaCl treatment in all genotypes, indicating an early inducible stress-responsive behavior. Promoter analysis showed that the MtATP6 promoter includes cis-acting elements such as ABRE, MYC, MYB, GTLs, and W-boxes, suggesting a role for this gene in abscisic acid-mediated signaling, energy metabolism, and stress response. It seems that 6-kDa subunit, as an early response gene and nuclear regulatory factor, translocates to mitochondria and completes the F1F0-ATP synthase complex to enhance ATP production and maintain ion homeostasis under stress conditions. These communications between nucleus and mitochondria are required for inducing mitochondrial responses to stress pathways. Dual targeting of 6-kDa subunit may comprise as a mean of inter-organelle communication and save energy for the cell. Interestingly, MtATP6 showed higher and longer expression in the salt-tolerant wheat and the wild genotypes compared to the salt-sensitive genotype. Apparently, salt-sensitive genotypes have lower ATP production efficiency and weaker energy management than wild genotypes; a stress tolerance mechanism that has not been transferred to cultivated genotypes.

  19. Stefin B Interacts with Histones and Cathepsin L in the Nucleus*

    PubMed Central

    Čeru, Slavko; Konjar, Špela; Maher, Katarina; Repnik, Urška; Križaj, Igor; Benčina, Mojca; Renko, Miha; Nepveu, Alain; Žerovnik, Eva; Turk, Boris; Kopitar-Jerala, Nataša

    2010-01-01

    Stefin B (cystatin B) is an endogenous inhibitor of cysteine proteinases localized in the nucleus and the cytosol. Loss-of-function mutations in the stefin B gene (CSTB) gene were reported in patients with Unverricht-Lundborg disease (EPM1). We have identified an interaction between stefin B and nucleosomes, specifically with histones H2A.Z, H2B, and H3. In synchronized T98G cells, stefin B co-immunoprecipitated with histone H3, predominantly in the G1 phase of the cell cycle. Stefin B-deficient mouse embryonic fibroblasts entered S phase earlier than wild type mouse embryonic fibroblasts. In contrast, increased expression of stefin B in the nucleus delayed cell cycle progression in T98G cells. The delay in cell cycle progression was associated with the inhibition of cathepsin L in the nucleus, as judged from the decreased cleavage of the CUX1 transcription factor. In vitro, inhibition of cathepsin L by stefin B was potentiated in the presence of histones, whereas histones alone did not affect the cathepsin L activity. Interaction of stefin B with the Met-75 truncated form of cathepsin L in the nucleus was confirmed by fluorescence resonance energy transfer experiments in the living cells. Stefin B could thus play an important role in regulating the proteolytic activity of cathepsin L in the nucleus, protecting substrates such as transcription factors from its proteolytic processing. PMID:20075068

  20. Incompatibility of nucleus and mitochondria causes xenomitochondrial cybrid unviable across human, mouse, and pig cells.

    PubMed

    Yu, Guanghui; Tian, Jianhui; Yin, Jingdong; Li, Qiuyan; Zhao, Xingbo

    2014-04-03

    The nucleus and mitochondria are on correlative dependence; they interact in the process of protein transportation and energy metabolism. The compatibility of nucleus and mitochondria is essential for interspecies somatic cell nuclear transfer (iSCNT) and xenomitochondrial cybrid. In order to test the compatibility of nucleus and mitochondria among human, mouse, and pig cells, we compared the performances of cybrids that fused inter- and intra-species. The ρ0 cells from human and pig cell lines were created as nucleus donors which were transfected with GFP-neo for cell selective system in advance, and mitochondria donor cells were labeled by Mitochondria-RFP. Human and mouse platelets were also used as a mitochondrial donor. Results indicated that all interspecies cybrids declined to die in 2-4 d after the cell fusion in the selection medium, while intraspecies cybrid cells survived and formed stable clones. As a conclusion, the incompatibility between nucleus and mitochondria is the critical factor for the formation of interspecies cybrids.

  1. Nucleation and growth of a core-shell composite nucleus by diffusion

    NASA Astrophysics Data System (ADS)

    Iwamatsu, Masao

    2017-04-01

    The critical radius of a core-shell-type nucleus grown by diffusion in a phase-separated solution is studied. A kinetic critical radius rather than the thermodynamic critical radius of standard classical nucleation theory can be defined from the diffusional growth equations. It is shown that there exist two kinetic critical radii for the core-shell-type nucleus, for which both the inner-core radius and the outer-shell radius will be stationary. Therefore, these two critical radii correspond to a single critical point of the nucleation path with a single energy barrier even though the nucleation looks like a two-step process. The two radii are given by formulas similar to that of classical nucleation theory if the Ostwald-Freundlich boundary condition is imposed at the surface of the inner nucleus and that of the outer shell. The subsequent growth of a core-shell-type postcritical nucleus follows the classical picture of Ostwald's step rule. Our result is consistent with some of the experimental and numerical results which suggest the core-shell-type critical nucleus.

  2. Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus?

    PubMed

    Bell, P J

    2001-09-01

    In the theory of viral eukaryogenesis I propose here, the eukaryotic nucleus evolved from a complex DNA virus. It is proposed that the virus established a persistent presence in the cytoplasm of a methanogenic mycoplasma and evolved into the eukaryotic nucleus by acquiring a set of essential genes from the host genome and eventually usurping its role. It is proposed that several characteristic features of the eukaryotic nucleus derive from its viral ancestry. These include mRNA capping, linear chromosomes, and separation of transcription from translation. In the model, phagocytosis and other membrane fusion-based processes are derived from viral membrane fusion processes and evolved in concert with the nucleus. The coevolution of phagocytosis and the nucleus rendered much of the host archaeal genome redundant since the protoeukaryote could obtain raw materials and energy by engulfing bacterial syntrophs/prey. This redundancy allowed loss of the archaeal chromosome, generating an organism with eukaryotic features. The evolution of phagocytosis allowed the eukaryotes to be the first organisms to occupy the niche of predator.

  3. Critical evaluation of the anatomical location of the Barrington nucleus: relevance for deep brain stimulation surgery of pedunculopontine tegmental nucleus.

    PubMed

    Blanco, Lisette; Yuste, Jose Enrique; Carrillo-de Sauvage, María Angeles; Gómez, Aurora; Fernández-Villalba, Emiliano; Avilés-Olmos, Itciar; Limousin, Patricia; Zrinzo, Ludvic; Herrero, María Trinidad

    2013-09-05

    Deep brain stimulation (DBS) has become the standard surgical procedure for advanced Parkinson's disease (PD). Recently, the pedunculopontine tegmental nucleus (PPN) has emerged as a potential target for DBS in patients whose quality of life is compromised by freezing of gait and falls. To date, only a few groups have published their long-term clinical experience with PPN stimulation. Bearing in mind that the Barrington (Bar) nucleus and some adjacent nuclei (also known as the micturition centre) are close to the PPN and may be affected by DBS, the aim of the present study was to review the anatomical location of this structure in human and other species. To this end, the Bar nucleus area was analysed in mouse, monkey and human tissues, paying particular attention to the anatomical position in humans, where it has been largely overlooked. Results confirm that anatomical location renders the Bar nucleus susceptible to influence by the PPN DBS lead or to diffusion of electrical current. This may have an undesirable impact on the quality of life of patients.

  4. Extraction of structure functions for lepton-nucleus scattering in the quasi-elastic region

    NASA Astrophysics Data System (ADS)

    Kim, K. S.; Kim, Hungchong; Cheoun, Myung-Ki; So, W. Y.

    2016-12-01

    Within the framework of a relativistic single-particle model, we calculate inclusive electron-nucleus scattering by electromagnetic current, and neutrino-nucleus scattering by neutral and charged current in the quasi-elastic region. The longitudinal, the transverse, and the transverse-interference structure functions are extracted from the theoretical cross section by using the Rosenbluth separation method at fixed momentum transfer and scattering angle and then compared with each other from the viewpoint of these current interactions. The position of peak for the electron scattering shifts to higher energy transfer than that for the neutrino scattering. The axial and pseudoscalar terms turn out to play an important role in the neutrino-nucleus scattering.

  5. Results from FNAL E745 on neutrino-nucleus interactions (EMC effect and hadron formation)

    SciTech Connect

    Kitagaki, T. . Bubble Chamber Physics Lab.)

    1989-01-01

    The dark tracks (stubs) in high energy neutrino-nucleus interactions in the Tohoku High Resolution Freon Bubble Chamber are investigated. Classifying events into groups by using the dark tracks, correlations between the dark track production and neutrino interactions are studied. Events without dark tracks comprise a reasonable sample of events which occurred on quasi-free nucleons inside nucleus. By comparing the groups using the no dark track group as a comparison sample instead of neutrino-deuterium events, the EMC effect and hadron formation are investigated. This method provides new results which differ somewhat from the conventional data for the EMC effect and formation-rescattering. 10 refs., 17 figs.

  6. Propagator modifications in elastic nucleon-nucleus scattering within the spectator expansion

    NASA Astrophysics Data System (ADS)

    Chinn, C. R.; Elster, Ch.; Thaler, R. M.; Weppner, S. P.

    1995-10-01

    The theory of the elastic scattering of a nucleon from a nucleus is presented in the form of a spectator expansion of the optical potential. Particular attention is paid to the treatment of the free projectile-nucleus propagator when the coupling of the struck target nucleon to the residual target must be taken into consideration. First order calculations within this framework are shown for neutron total cross sections and for proton scattering for a number of target nuclides at a variety of energies. The calculated values of these observables are in very good agreement with measurement.

  7. Nucleus-nucleus collisions at very high energies

    SciTech Connect

    Hansen, O.

    1990-01-01

    The present report covers the material of two lectures. The first part, contains a collection of useful formulae from relativistic kinematics and deals with invariant cross sections and multiplicities. The remainder of the paper is on strangeness production in relativistic heavy ion collisions. Some elementary rules for particle production in nucleon-nucleon interactions are presented. This paper also contains arguments on why one expects enhanced strange particle production from the quark-gluon plasma. Next is presented some selected data on strangeness production in Si + Au and other interactions at 14.6 GeV/c per nucleon and from S + S at 200 GeV/c per nucleon. Some conclusions drawn from the experimental results are presented. 10 refs.

  8. Characteristics of central collision events in Fe-nucleus interactions for 20 - 60 GeV/nucleon

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Drake, S.; Derrickson, J. H.; Fountain, W.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.

    1985-01-01

    A counter emulsion hybrid chamber in Japanese-American Cooperative Emulsion Experiment (JACEE-3) was flown on a balloon at the altitude (5.4 g/sq cm) in 1982 with the objective of probing the heavy nuclear collisions above 20 GeV per nucleon. In the energy region, it is suggested that nucleus-nucleus collisions provide dense collisions complex through compression and secondary particle production. In the lower energy region, an evidence of collective flow has been reported. And also, at higher energy region, it has been argued that nucleus has rather large stopping power. In this paper, the high multiplicity characteristics of Fe nucleus central collisions with energies 20 to 50 GeV/nucleon are presented. This is considered to be relevant to compressibility and collective flow of nuclear matter.

  9. Momentum Driving: Which Physical Processes Dominate Active Galactic Nucleus Feedback?

    NASA Astrophysics Data System (ADS)

    Ostriker, Jeremiah P.; Choi, Ena; Ciotti, Luca; Novak, Gregory S.; Proga, Daniel

    2010-10-01

    The deposition of mechanical feedback from a supermassive black hole (SMBH) in an active galactic nucleus into the surrounding galaxy occurs via broad-line winds which must carry mass and radial momentum as well as energy. The effect can be summarized by the dimensionless parameter η ={\\dot{M}_outf}/{\\dot{M}_acc}= {2 ɛ_wc^2}/{v_w^2} where epsilonw (≡ \\dot{E}_w/(\\dot{M}_accc^2)) is the efficiency with which accreted matter is turned into wind energy in the disk surrounding the central SMBH. The outflowing mass and momentum are proportional to η, and many prior treatments have essentially assumed that η = 0. We perform one- and two-dimensional simulations and find that the growth of the central SMBH is very sensitive to the inclusion of the mass and momentum driving but is insensitive to the assumed mechanical efficiency. For example in representative calculations, the omission of momentum and mass feedback leads to a hundred-fold increase in the mass of the SMBH to over 1010 M sun. When allowance is made for momentum driving, the final SMBH mass is much lower and the wind efficiencies that lead to the most observationally acceptable results are relatively low with epsilonw <~ 10-4.

  10. Responses of primate caudal parabrachial nucleus and Kolliker-fuse nucleus neurons to whole body rotation

    NASA Technical Reports Server (NTRS)

    Balaban, Carey D.; McGee, David M.; Zhou, Jianxun; Scudder, Charles A.

    2002-01-01

    The caudal aspect of the parabrachial (PBN) and Kolliker-Fuse (KF) nuclei receive vestibular nuclear and visceral afferent information and are connected reciprocally with the spinal cord, hypothalamus, amygdala, and limbic cortex. Hence, they may be important sites of vestibulo-visceral integration, particularly for the development of affective responses to gravitoinertial challenges. Extracellular recordings were made from caudal PBN cells in three alert, adult female Macaca nemestrina through an implanted chamber. Sinusoidal and position trapezoid angular whole body rotation was delivered in yaw, roll, pitch, and vertical semicircular canal planes. Sites were confirmed histologically. Units that responded during rotation were located in lateral and medial PBN and KF caudal to the trochlear nerve at sites that were confirmed anatomically to receive superior vestibular nucleus afferents. Responses to whole-body angular rotation were modeled as a sum of three signals: angular velocity, a leaky integration of angular velocity, and vertical position. All neurons displayed angular velocity and integrated angular velocity sensitivity, but only 60% of the neurons were position-sensitive. These responses to vertical rotation could display symmetric, asymmetric, or fully rectified cosinusoidal spatial tuning about a best orientation in different cells. The spatial properties of velocity and integrated velocity and position responses were independent for all position-sensitive neurons; the angular velocity and integrated angular velocity signals showed independent spatial tuning in the position-insensitive neurons. Individual units showed one of three different orientations of their excitatory axis of velocity rotation sensitivity: vertical-plane-only responses, positive elevation responses (vertical plane plus ipsilateral yaw), and negative elevation axis responses (vertical plane plus negative yaw). The interactions between the velocity and integrated velocity components

  11. Responses of primate caudal parabrachial nucleus and Kolliker-fuse nucleus neurons to whole body rotation

    NASA Technical Reports Server (NTRS)

    Balaban, Carey D.; McGee, David M.; Zhou, Jianxun; Scudder, Charles A.

    2002-01-01

    The caudal aspect of the parabrachial (PBN) and Kolliker-Fuse (KF) nuclei receive vestibular nuclear and visceral afferent information and are connected reciprocally with the spinal cord, hypothalamus, amygdala, and limbic cortex. Hence, they may be important sites of vestibulo-visceral integration, particularly for the development of affective responses to gravitoinertial challenges. Extracellular recordings were made from caudal PBN cells in three alert, adult female Macaca nemestrina through an implanted chamber. Sinusoidal and position trapezoid angular whole body rotation was delivered in yaw, roll, pitch, and vertical semicircular canal planes. Sites were confirmed histologically. Units that responded during rotation were located in lateral and medial PBN and KF caudal to the trochlear nerve at sites that were confirmed anatomically to receive superior vestibular nucleus afferents. Responses to whole-body angular rotation were modeled as a sum of three signals: angular velocity, a leaky integration of angular velocity, and vertical position. All neurons displayed angular velocity and integrated angular velocity sensitivity, but only 60% of the neurons were position-sensitive. These responses to vertical rotation could display symmetric, asymmetric, or fully rectified cosinusoidal spatial tuning about a best orientation in different cells. The spatial properties of velocity and integrated velocity and position responses were independent for all position-sensitive neurons; the angular velocity and integrated angular velocity signals showed independent spatial tuning in the position-insensitive neurons. Individual units showed one of three different orientations of their excitatory axis of velocity rotation sensitivity: vertical-plane-only responses, positive elevation responses (vertical plane plus ipsilateral yaw), and negative elevation axis responses (vertical plane plus negative yaw). The interactions between the velocity and integrated velocity components

  12. Scaling violation in hadron-nucleus interaction

    NASA Technical Reports Server (NTRS)

    Verbetski, Y. G.; Garsevanishvili, L. P.; Kotlyarevski, D. M.; Ladaria, N. K.; Tatalashvili, N. G.; Tsomaya, P. V.; Sherer, N. I.; Shabelski, Y. M.; Stemanetyan, G. Z.

    1985-01-01

    The scaling violation within the pionization region in the energy range of 0.2 to 2.0 TeV is shown on the basis of the analysis of angular characteristics in the interactions of the cosmic radiation hadrons with the nuclei of various substances (CH2, Al, Cu, Pb).

  13. The classical pion field in a nucleus

    NASA Astrophysics Data System (ADS)

    Ripka, Georges

    2008-12-01

    A self-consistent symmetry arises when the nucleon angular momentum j and the isospin t are coupled to a grand spin G. Closed G shells become sources of a classical pion field with a hedgehog shape. Although the amplitude of the pion field, as measured by the chiral angle, is small, it is found to perturb significantly the energies of the nucleon orbits.

  14. Project Physics Reader 6, The Nucleus.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    As a supplement to Project Physics Unit 6, a collection of articles is presented in this reader for student browsing. Five excerpts are concerned with the nuclear energy revolution, the 20th birthday and possible consequences of the atomic age, a scientist's view of science, and relations between mathematics and physics. Six book passages are…

  15. Project Physics Handbook 6, The Nucleus.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Five experiments and nine activities are presented in this Unit 6 handbook. The experiments are related to random events, ranges of alpha and beta particles, half-lives, and radioactive tracers. The activities are concerned with the energy measurement in beta radiation, demonstration with sugar cubes, ionization by radioactivity, magnetic…

  16. Project Physics Reader 6, The Nucleus.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    As a supplement to Project Physics Unit 6, a collection of articles is presented in this reader for student browsing. Five excerpts are concerned with the nuclear energy revolution, the 20th birthday and possible consequences of the atomic age, a scientist's view of science, and relations between mathematics and physics. Six book passages are…

  17. Regional difference in sex steroid action on formation of morphological sex differences in the anteroventral periventricular nucleus and principal nucleus of the bed nucleus of the stria terminalis.

    PubMed

    Kanaya, Moeko; Tsuda, Mumeko C; Sagoshi, Shoko; Nagata, Kazuyo; Morimoto, Chihiro; Thu, Chaw Kyi Tha; Toda, Katsumi; Kato, Shigeaki; Ogawa, Sonoko; Tsukahara, Shinji

    2014-01-01

    Sex steroid action is critical to form sexually dimorphic nuclei, although it is not fully understood. We previously reported that masculinization of the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), which is larger and has more neurons in males than in females, involves aromatized testosterone that acts via estrogen receptor-α (ERα), but not estrogen receptor-β (ERβ). Here, we examined sex steroid action on the formation of the anteroventral periventricular nucleus (AVPV) that is larger and has more neurons in females. Morphometrical analysis of transgenic mice lacking aromatase, ERα, or ERβ genes revealed that the volume and neuron number of the male AVPV were significantly increased by deletion of aromatase and ERα genes, but not the ERβ gene. We further examined the AVPV and BNSTp of androgen receptor knockout (ARKO) mice. The volume and neuron number of the male BNSTp were smaller in ARKO mice than those in wild-type mice, while no significant effect of ARKO was found on the AVPV and female BNSTp. We also examined aromatase, ERα, and AR mRNA levels in the AVPV and BNSTp of wild-type and ARKO mice on embryonic day (ED) 18 and postnatal day (PD) 4. AR mRNA in the BNSTp and AVPV of wild-type mice was not expressed on ED18 and emerged on PD4. In the AVPV, the aromatase mRNA level was higher on ED18, although the ERα mRNA level was higher on PD4 without any effect of AR gene deletion. Aromatase and ERα mRNA levels in the male BNSTp were significantly increased on PD4 by AR gene deletion. These results suggest that estradiol signaling via ERα during the perinatal period and testosterone signaling via AR during the postnatal period are required for masculinization of the BNSTp, whereas the former is sufficient to defeminize the AVPV.

  18. Regional Difference in Sex Steroid Action on Formation of Morphological Sex Differences in the Anteroventral Periventricular Nucleus and Principal Nucleus of the Bed Nucleus of the Stria Terminalis

    PubMed Central

    Kanaya, Moeko; Tsuda, Mumeko C.; Sagoshi, Shoko; Nagata, Kazuyo; Morimoto, Chihiro; Tha Thu, Chaw Kyi; Toda, Katsumi; Kato, Shigeaki; Ogawa, Sonoko; Tsukahara, Shinji

    2014-01-01

    Sex steroid action is critical to form sexually dimorphic nuclei, although it is not fully understood. We previously reported that masculinization of the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), which is larger and has more neurons in males than in females, involves aromatized testosterone that acts via estrogen receptor-α (ERα), but not estrogen receptor-β (ERβ). Here, we examined sex steroid action on the formation of the anteroventral periventricular nucleus (AVPV) that is larger and has more neurons in females. Morphometrical analysis of transgenic mice lacking aromatase, ERα, or ERβ genes revealed that the volume and neuron number of the male AVPV were significantly increased by deletion of aromatase and ERα genes, but not the ERβ gene. We further examined the AVPV and BNSTp of androgen receptor knockout (ARKO) mice. The volume and neuron number of the male BNSTp were smaller in ARKO mice than those in wild-type mice, while no significant effect of ARKO was found on the AVPV and female BNSTp. We also examined aromatase, ERα, and AR mRNA levels in the AVPV and BNSTp of wild-type and ARKO mice on embryonic day (ED) 18 and postnatal day (PD) 4. AR mRNA in the BNSTp and AVPV of wild-type mice was not expressed on ED18 and emerged on PD4. In the AVPV, the aromatase mRNA level was higher on ED18, although the ERα mRNA level was higher on PD4 without any effect of AR gene deletion. Aromatase and ERα mRNA levels in the male BNSTp were significantly increased on PD4 by AR gene deletion. These results suggest that estradiol signaling via ERα during the perinatal period and testosterone signaling via AR during the postnatal period are required for masculinization of the BNSTp, whereas the former is sufficient to defeminize the AVPV. PMID:25398007

  19. Physical meaning of the multiplicities of emitted nucleons in hadron-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    The analysis of experimental data on hadron-nucleus collisions at energies from about 2 up to about 400 GeV was performed in order to discover a physical meaning of the multiplicity of emitted nucleons. Simple relations between the multiplicities and the thickness of the nuclear matter layer involved in collisions were obtained.

  20. IBM-1 calculations towards the neutron-rich nucleus {sup 106}Zr

    SciTech Connect

    Lalkovski, Stefan

    2009-04-15

    The neutron-rich N=66 isotonic and A=106 isobaric chains, covering regions with varying types of collectivity, are interpreted in the framework of the interacting boson model. Level energies and electric quadrupole transition probabilities are compared with available experimental information. The calculations for the known nuclei in the two chains are extrapolated toward the neutron-rich nucleus {sup 106}Zr.

  1. The Screening Effect in Electromagnetic Production of Electron Positron Pairs in Relativistic Nucleus-Atom Collisions

    NASA Technical Reports Server (NTRS)

    Wu, Jianshi; Derrickson, J. H.; Parnell, T. A.; Strayer, M. R.

    1999-01-01

    We study the screening effects of the atomic electrons in the electromagnetic production of electron-positron pairs in relativistic nucleus-atom collisions for fixed target experiments. Our results are contrasted with those obtained in bare collisions, with particular attention given to its dependence on the beam energy and the target atom.

  2. Development of injectable hydrogels for nucleus pulposus replacement

    NASA Astrophysics Data System (ADS)

    Thomas, Jonathan D.

    Intervertebral disc degeneration has been reported as the underlying cause for 75% of cases of lower back pain and is marked by dehydration of the nucleus pulposus within the intervertebral disc. There have been many implant designs to replace the nucleus pulposus. Some researchers have proposed the replacement of the nucleus pulposus with hydrogel materials. The insertion of devices made from these materials further compromises the annulus of the disc. An ideal nucleus replacement could be injected into the disc space and form a solid in vivo. However, injectable replacements using curing elastomers and thermoplastic materials are not ideal because of the potentially harmful exothermic heat evolved from their reactions and the toxicity of the reactants used. We propose a hydrogel system that can be injected as a liquid at 25°C and solidified to yield a hydrogel within the intervertebral disc at 37°C. In aqueous solutions, these polymers have Lower Critical Solution Temperatures (LCST) between 25-37°C, making them unique candidate materials for this application. Poly(N-isopropylacrylamide) (PNIPAAm) is the most widely studied LCST polymer due to its drastic transition near body temperature. However, by itself, pure PNIPAAm forms a hydrogel that has low water content and can readily undergo plastic deformation. To increase the water content and impart elasticity to PNIPAAm hydrogels, grafted and branched hydrogel systems were created that incorporated the thermogelling PNIPAAm and hydrophilic poly(ethylene glycol) (PEG). In this research, the effects of polymer composition and monomer to initiator ratio, which controls polymer MW, on the in vitro swelling properties (mass, chemical, and compressive mechanical stability) of hydrogels formed from aqueous solutions of these polymers were evaluated. Immersion studies were also conducted in solutions to simulate the osmotic environment of the nucleus pulposus. The effects of repeated compression and unloading cycles

  3. Quasi-elastic neutrino-nucleus reactions

    NASA Astrophysics Data System (ADS)

    Valverde, M.; Nieves, J.; Amaro, J. E.

    2006-05-01

    The quasi-elastic contribution of the nuclear inclusive electron scattering model developed in [A. Gil, J. Nieves, and E. Oset: Nucl. Phys. A 627 (1997) 543] is extended to the study of electroweak charged current induced nuclear reactions at intermediate energies of interest for future neutrino oscillation experiments. The model accounts for long-range nuclear (RPA) correlations, final state interaction and Coulomb corrections. RPA correlations are shown to play a crucial role in the whole range of neutrino energies, up to 500 MeV, studied in this work. Predictions for inclusive muon capture for different nuclei, and for the reactions 12C(ν μ , μ -)X and 12C(ν e, e-)X near threshold are also given.

  4. Actomyosin Pulls to Advance the Nucleus in a Migrating Tissue Cell

    PubMed Central

    Wu, Jun; Kent, Ian A.; Shekhar, Nandini; Chancellor, T.J.; Mendonca, Agnes; Dickinson, Richard B.; Lele, Tanmay P.

    2014-01-01

    The cytoskeletal forces involved in translocating the nucleus in a migrating tissue cell remain unresolved. Previous studies have variously implicated actomyosin-generated pushing or pulling forces on the nucleus, as well as pulling by nucleus-bound microtubule motors. We found that the nucleus in an isolated migrating cell can move forward without any trailing-edge detachment. When a new lamellipodium was triggered with photoactivation of Rac1, the nucleus moved toward the new lamellipodium. This forward motion required both nuclear-cytoskeletal linkages and myosin activity. Apical or basal actomyosin bundles were found not to translate with the nucleus. Although microtubules dampen fluctuations in nuclear position, they are not required for forward translocation of the nucleus during cell migration. Trailing-edge detachment and pulling with a microneedle produced motion and deformation of the nucleus suggestive of a mechanical coupling between the nucleus and the trailing edge. Significantly, decoupling the nucleus from the cytoskeleton with KASH overexpression greatly decreased the frequency of trailing-edge detachment. Collectively, these results explain how the nucleus is moved in a crawling fibroblast and raise the possibility that forces could be transmitted from the front to the back of the cell through the nucleus. PMID:24411232

  5. The Nucleus of Translating as One Critical Concern in Translation Pedagogy and Assessment.

    ERIC Educational Resources Information Center

    Hu, Helen Chau

    1999-01-01

    Studies the translation of nonliterary texts. The objective is to associate the nucleus of translating with the value of a source-language text, advancing the claim that appropriately translating the nucleus is among the most important concerns, and to propose an approach to assessment for translation quality based on how the nucleus is rendered.…

  6. Actomyosin pulls to advance the nucleus in a migrating tissue cell.

    PubMed

    Wu, Jun; Kent, Ian A; Shekhar, Nandini; Chancellor, T J; Mendonca, Agnes; Dickinson, Richard B; Lele, Tanmay P

    2014-01-07

    The cytoskeletal forces involved in translocating the nucleus in a migrating tissue cell remain unresolved. Previous studies have variously implicated actomyosin-generated pushing or pulling forces on the nucleus, as well as pulling by nucleus-bound microtubule motors. We found that the nucleus in an isolated migrating cell can move forward without any trailing-edge detachment. When a new lamellipodium was triggered with photoactivation of Rac1, the nucleus moved toward the new lamellipodium. This forward motion required both nuclear-cytoskeletal linkages and myosin activity. Apical or basal actomyosin bundles were found not to translate with the nucleus. Although microtubules dampen fluctuations in nuclear position, they are not required for forward translocation of the nucleus during cell migration. Trailing-edge detachment and pulling with a microneedle produced motion and deformation of the nucleus suggestive of a mechanical coupling between the nucleus and the trailing edge. Significantly, decoupling the nucleus from the cytoskeleton with KASH overexpression greatly decreased the frequency of trailing-edge detachment. Collectively, these results explain how the nucleus is moved in a crawling fibroblast and raise the possibility that forces could be transmitted from the front to the back of the cell through the nucleus.

  7. Formation of a crystal nucleus from liquid

    PubMed Central

    Kawasaki, Takeshi; Tanaka, Hajime

    2010-01-01

    Crystallization is one of the most fundamental nonequilibrium phenomena universal to a variety of materials. It has so far been assumed that a supercooled liquid is in a “homogeneous disordered state” before crystallization. Contrary to this common belief, we reveal that a supercooled colloidal liquid is actually not homogeneous, but has transient medium-range structural order. We find that nucleation preferentially takes place in regions of high structural order via wetting effects, which reduce the crystal–liquid interfacial energy significantly and thus promotes crystal nucleation. This novel scenario provides a clue to solving a long-standing mystery concerning a large discrepancy between the rigorous numerical estimation of the nucleation rate on the basis of the classical nucleation theory and the experimentally observed ones. Our finding may shed light not only on the mechanism of crystal nucleation, but also on the fundamental nature of a supercooled liquid state. PMID:20663951

  8. Expression of gastrointestinal nesfatin-1 and gastric emptying in ventromedial hypothalamic nucleus- and ventrolateral hypothalamic nucleus-lesioned rats.

    PubMed

    Tian, Zi-Bin; Deng, Run-Jun; Sun, Gui-Rong; Wei, Liang-Zhou; Kong, Xin-Juan; Ding, Xue-Li; Jing, Xue; Zhang, Cui-Ping; Ge, Yin-Lin

    2014-06-14

    To determine the expression levels of gastrointestinal nesfatin-1 in ventromedial hypothalamic nucleus (VMH)-lesioned (obese) and ventrolateral hypothalamic nucleus (VLH)-lesioned (lean) rats that exhibit an imbalance in their energy metabolism and gastric mobility. Male Wistar rats were randomly divided into a VMH-lesioned group, a VLH-lesioned group, and their respective sham-operated groups. The animals had free access to food and water, and their diets and weights were monitored after surgery. Reverse transcription-polymerase chain reaction and immunostaining were used to analyse the levels of NUCB2 mRNA and nesfatin-1 immunoreactive (IR) cells in the stomach, duodenum, small intestine, and colon, respectively. Gastric emptying was also assessed using a modified phenol red-methylcellulose recovery method. The VMH-lesioned rats fed normal chow exhibited markedly greater food intake and body weight gain, whereas the VLH-lesioned rats exhibited markedly lower food intake and body weight gain. NUCB2/nesfatin-1 IR cells were localised in the lower third and middle portion of the gastric mucosal gland and in the submucous layer of the enteric tract. Compared with their respective controls, gastric emptying was enhanced in the VMH-lesioned rats (85.94% ± 2.27%), whereas the VLH lesions exhibited inhibitory effects on gastric emptying (29.12% ± 1.62%). In the VMH-lesioned rats, the levels of NUCB2 mRNA and nesfatin-1 protein were significantly increased in the stomach and duodenum and reduced in the small intestine. In addition, the levels of NUCB2 mRNA and nesfatin-1 protein in the VLH-lesioned rats were decreased in the stomach, duodenum, and small intestine. Our study demonstrated that nesfatin-1 level in the stomach and duodenum is positively correlated with body mass. Additionally, there is a positive relationship between gastric emptying and body mass. The results of this study indicate that gastrointestinal nesfatin-1 may play a significant role in gastric

  9. Glucocorticoid rhythms control the rhythm of expression of the clock protein, Period2, in oval nucleus of the bed nucleus of the stria terminalis and central nucleus of the amygdala in rats.

    PubMed

    Segall, L A; Perrin, J S; Walker, C-D; Stewart, J; Amir, S

    2006-07-07

    We investigated the involvement of the adrenal glucocorticoid, corticosterone, in the control of the rhythmic expression of the circadian clock protein, Period2, in forebrain nuclei known to be sensitive to glucocorticoids, stressors and drugs of abuse, the oval nucleus of the bed nucleus of the stria terminalis and the central nucleus of the amygdala. We found previously that the daily rhythm of Period2 in these nuclei is uniquely dependent on the integrity of the adrenal glands (Amir S, Lamont EW, Robinson B, Stewart J (2004) A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis. J Neurosci 24:781-790; Lamont EW, Robinson B, Stewart J, Amir S (2005) The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc Natl Acad Sci U S A 102:4180-4184). We now show that, in rats, in the absence of the adrenals, corticosterone replacement via the drinking water, which is associated with daily fluctuations in corticosterone levels, restores the rhythm of Period2 in the oval nucleus of the bed nucleus of the stria terminalis and central nucleus of the amygdala. Corticosterone replacement via constant-release pellets has no effect. These results underscore the importance of circadian glucocorticoid signaling in Period2 rhythms in the oval nucleus of the bed nucleus of the stria terminalis and central nucleus of the amygdala and suggest a novel mechanism whereby stressors, drugs of abuse, and other abnormal states that affect the patterns of circulating glucocorticoids can alter the functional output of these nuclei.

  10. Experiments on parity violation in the compound nucleus

    SciTech Connect

    Bowman, J.D.

    1996-09-01

    Results from experiments that measure parity-violating longitudinal asymmetries in the scattering of epithermal neutrons from compound-nuclear resonances at the Manuel Lujan Neutron Scattering Center at Los Alamos are discussed. Parity non-conserving asymmetries have been observed for many p-wave resonances in a single target. Measurements were performed on several nuclei in the mass region of A-100 and A-230. The statistical model of the compound nucleus provides a theoretical basis for extracting mean-squared matrix elements from the experimental asymmetry data, and for interpreting the mean-squared matrix elements. The constraints on the weak meson-exchange couplings calculated from the compound-nucleus asymmetry data agree qualitatively with the results from few-body and light-nuclei experiments. For all nuclei but {sup 232}Th measured asymmetries have random signs. For {sup 232}Th eight of eight measured asymmetries are positive. This phenomenon is discussed in terms or doorway models.

  11. Towards a Deeper Understanding of the Nucleus with Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Ormand, Erich

    2006-10-01

    Despite more than fifty years of study, many questions about now nuclei are put together remain. While nuclei near the valley of stability have provided a wealth of information, they are not sufficient to provide us with a comprehensive and unified description of the nucleus. Especially lacking is an accurate picture of those exotic species that are the basis of cosmic alchemy. The missing pieces in the puzzle can be filled in with a determined experimental and theoretical effort focusing on nuclei lying far from the valley of stability. Here, I will outline the intellectual challenges that can be addressed by proposed exotic-beam facilities, and how new experimental data will quide and refine theoretical descriptions of the nucleus.

  12. Maps of interaural delay in the owl's nucleus laminaris

    PubMed Central

    Shah, Sahil; McColgan, Thomas; Ashida, Go; Kuokkanen, Paula T.; Brill, Sandra; Kempter, Richard; Wagner, Hermann

    2015-01-01

    Axons from the nucleus magnocellularis form a presynaptic map of interaural time differences (ITDs) in the nucleus laminaris (NL). These inputs generate a field potential that varies systematically with recording position and can be used to measure the map of ITDs. In the barn owl, the representation of best ITD shifts with mediolateral position in NL, so as to form continuous, smoothly overlapping maps of ITD with iso-ITD contours that are not parallel to the NL border. Frontal space (0°) is, however, represented throughout and thus overrepresented with respect to the periphery. Measurements of presynaptic conduction delay, combined with a model of delay line conduction velocity, reveal that conduction delays can account for the mediolateral shifts in the map of ITD. PMID:26224776

  13. Direct Observation of Nanoparticle-Cancer Cell Nucleus Interactions

    PubMed Central

    Dam, Duncan Hieu M.; Lee, Jung Heon; Sisco, Patrick N.; Co, Dick T.; Zhang, Ming; Wasielewski, Michael R.; Odom, Teri W.

    2012-01-01

    We report the direct visualization of interactions between drug-loaded nanoparticles and the cancer cell nucleus. Nanoconstructs composed of nucleolin-specific aptamers and gold nanostars were actively transported to the nucleus and induced major changes to the nuclear phenotype via nuclear envelope invaginations near the site of the construct. The number of local deformations could be increased by ultra-fast, light-triggered release of the aptamers from the surface of the gold nanostars. Cancer cells with more nuclear envelope folding showed increased caspase 3 and 7 activity (apoptosis) as well as decreased cell viability. This newly revealed correlation between drug-induced changes in nuclear phenotype and increased therapeutic efficacy could provide new insight for nuclear-targeted cancer therapy. PMID:22424173

  14. Leading neutrons from polarized proton-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2017-03-01

    Leading neutron production on protons is known to be subject to strong absorptive corrections, which have been under debate for a long time. On nuclear targets these corrections are significantly enhanced and push the partial cross sections of neutron production to the very periphery of the nucleus. As a result, the A-dependences of inclusive and diffractive neutron production turn out to be similar. The mechanism of π-a1 interference, which successfully explained the observed single-spin asymmetry of neutrons in polarized pp interactions, is extended here to polarized pA collisions. Corrected for nuclear effects it explains quite well the magnitude and sign of the asymmetry AN observed in inelastic events, resulting in a violent break up of the nucleus. However the excessive magnitude of AN observed in the diffractive sample, remains a challenge.

  15. Volume regulation and shape bifurcation in the cell nucleus

    PubMed Central

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M.; Wirtz, Denis; Sun, Sean X.

    2015-01-01

    ABSTRACT Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. PMID:26243474

  16. Highlight on the dynamic organization of the nucleus.

    PubMed

    Thorpe, Stephen D; Charpentier, Myriam

    2017-01-02

    The last decade has seen rapid advances in our understanding of the proteins of the nuclear envelope, which have multiple roles including positioning the nucleus, maintaining its structural organization, and in events ranging from mitosis and meiosis to chromatin positioning and gene expression. Diverse new and stimulating results relating to nuclear organization and genome function from across kingdoms were presented in a session stream entitled "Dynamic Organization of the Nucleus" at this year's Society of Experimental Biology (SEB) meeting in Brighton, UK (July 2016). This was the first session stream run by the Nuclear Dynamics Special Interest Group, which was organized by David Evans, Katja Graumann (both Oxford Brookes University, UK) and Iris Meier (Ohio State University, USA). The session featured presentations on areas relating to nuclear organization across kingdoms including the nuclear envelope, chromatin organization, and genome function.

  17. Triple F - A Comet Nucleus Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  18. IC5063: A merger with a hidden luminous active nucleus

    NASA Technical Reports Server (NTRS)

    Colina, L.; Sparks, W. B.; Macchetto, F. D.

    1990-01-01

    IC5063 is a nearby galaxy classified as an SO and containing a system of dust lanes parallel to its major optical axis (Danziger, Goss and Wellington, 1981; Bergeron, Durret and Boksenberg, 1983). Extended emission line regions with high excitation properties have been detected over distances of up to 19 kpc from the nucleus. This galaxy has been classified as Seyfert 2 on the basis of its emission line spectrum. These characteristics make IC5063 one of the best candidates for a merger remnant and an excellent candidate for a hidden luminous active nucleus. Based on new broad and narrow band images and long-slit spectroscopy obtained at the ESO 3.6 m telescope, the authors present some preliminary results supporting this hypothesis.

  19. Structure in the nucleus of NGC 1068 at 10 microns

    NASA Technical Reports Server (NTRS)

    Tresch-Fienberg, R.; Fazio, G. G.; Gezari, D. Y.; Hoffmann, W. F.; Lamb, G. M.; Shu, P. K.; Mccreight, C. R.

    1987-01-01

    New 8 to 13 micron array camera images of the central kiloparsec of Seyfert 2 galaxy NGC 1068 resolve structure that is similar to that observed at visible and radio wavelengths. The images reveal an infrared source which is extended and asymmetric, with its long axis oriented at P.A. 33 deg. Maps of the spatial distribution of 8 to 13 micron color temperature and warm dust opacity are derived from the multiwavelength infrared images. The results suggest that there exist two pointlike luminosity sources in the central regions of NGC 1068, with the brighter source at the nucleus and the fainter one some 100 pc to the northeast. This geometry strengthens the possibility that the 10 micron emission observed from grains in the nucleus is powered by a nonthermal source. In the context of earlier visible and radio studies, these results considerably strengthen the case for jet induced star formation in NGC 1068.

  20. The abnormal nucleus as a cause of congenital facial palsy

    PubMed Central

    Jemec, B.; Grobbelaar, A.; Harrison, D.

    2000-01-01

    BACKGROUND—Congenital facial palsy (CFP) is clinically defined as facial palsy present at birth. It is associated with considerable disfigurement and causes functional and emotional problems for the affected child. The aetiology of the majority of cases however, remains elusive.
AIMS—To investigate the role of a neuroanatomical abnormality as a cause of unilateral CFP.
METHODS—Magnetic resonance imaging (MRI) scans were performed on 21 patients with unilateral CFP. Fifteen patients had unilateral CFP only; six suffered from syndromes which can include unilateral CFP.
RESULTS—Of the 15 patients with unilateral CFP only, four (27%) had an abnormal nucleus or an abnormal weighting of this area on the MRI scan, compared to one (17%) of the remaining six patients.
CONCLUSION—Developmental abnormalities of the facial nucleus itself constitute an important, and previously ignored, cause of monosymptomatic unilateral CFP.

 PMID:10952650

  1. Cell Autonomy and Synchrony of Suprachiasmatic Nucleus Circadian Oscillators

    PubMed Central

    Mohawk, Jennifer A.; Takahashi, Joseph S.

    2013-01-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of the master circadian pacemaker in mammals. The individual cells of the SCN are capable of functioning independently from one another and therefore must form a cohesive circadian network through intercellular coupling. The network properties of the SCN lead to coordination of circadian rhythms among its neurons and neuronal subpopulations. There is increasing evidence for multiple interconnected oscillators within the SCN, and in this Review, we will highlight recent advances in our understanding of the complex organization and function of the cellular and network-level SCN clock. Understanding the way in which synchrony is achieved between cells in the SCN will provide insight into the means by which this important nucleus orchestrates circadian rhythms throughout the organism. PMID:21665298

  2. Deformations and magnetic rotations in the Ni60 nucleus

    NASA Astrophysics Data System (ADS)

    Torres, D. A.; Cristancho, F.; Andersson, L.-L.; Johansson, E. K.; Rudolph, D.; Fahlander, C.; Ekman, J.; Du Rietz, R.; Andreoiu, C.; Carpenter, M. P.; Seweryniak, D.; Zhu, S.; Charity, R. J.; Chiara, C. J.; Hoel, C.; Pechenaya, O. L.; Reviol, W.; Sarantites, D. G.; Sobotka, L. G.; Baktash, C.; Yu, C.-H.; Carlsson, B. G.; Ragnarsson, I.

    2008-11-01

    Data from three experiments using the heavy-ion fusion evaporation-reaction 36Ar+28Si have been combined to study high-spin states in the residual nucleus Ni60, which is populated via the evaporation of four protons from the compound nucleus Ge64. The GAMMASPHERE array was used for all the experiments in conjunction with a 4π charged-particle detector arrays (MICROBALL, LUWUSIA) and neutron detectors (NEUTRON SHELL) to allow for the detection of γ rays in coincidence with the evaporated particles. An extended Ni60 level scheme is presented, comprising more than 270γ-ray transitions and 110 excited states. Their spins and parities have been assigned via directional correlations of γ rays emitted from oriented states. Spherical shell-model calculations in the fp-shell characterize some of the low-spin states, while the experimental results of the rotational bands are analyzed with configuration-dependent cranked Nilsson-Strutinsky calculations.

  3. The size-wise nucleus: nuclear volume control in eukaryotes.

    PubMed

    Huber, Michael D; Gerace, Larry

    2007-11-19

    Eukaryotic cells have an "awareness" of their volume and organellar volumes, and maintain a nuclear size that is proportional to the total cell size. New studies in budding and fission yeast have examined the relationship between cell and nuclear volumes. It was found that the size of the nucleus remains proportional to cell size in a wide range of genetic backgrounds and growth conditions that alter cell volume and DNA content. Moreover, in multinucleated fission yeast cells, Neumann and Nurse (see p. 593 of this issue) found that the sizes of individual nuclei are controlled by the relative amount of cytoplasm surrounding each nucleus. These results highlight a role of the cytoplasm in nuclear size control.

  4. The cellular mastermind(?) – Mechanotransduction and the nucleus

    PubMed Central

    Kaminski, Ashley; Fedorchak, Gregory R.; Lammerding, Jan

    2015-01-01

    Cells respond to mechanical stimulation by activation of specific signaling pathways and genes that allow the cell to adapt to its dynamic physical environment. How cells sense the various mechanical inputs and translate them into biochemical signals remains an area of active investigation. Recent reports suggest that the cell nucleus may be directly implicated in this cellular mechanotransduction process. In this chapter, we discuss how forces applied to the cell surface and cytoplasm induce changes in nuclear structure and organization, which could directly affect gene expression, while also highlighting the complex interplay between nuclear structural proteins and transcriptional regulators that may further modulate mechanotransduction signaling. Taken together, these findings paint a picture of the nucleus as a central hub in cellular mechanotransduction—both structurally and biochemically—with important implications in physiology and disease. PMID:25081618

  5. Electromagnetic properties of the Beryllium-11 nucleus in Halo EFT

    NASA Astrophysics Data System (ADS)

    Phillips, D. R.; Hammer, H.-W.

    2010-04-01

    We compute electromagnetic properties of the Beryllium-11 nucleus using an effective field theory that exploits the separation of scales in this halo system. We fix the parameters of the EFT from measured data on levels and scattering lengths in the 10Be plus neutron system. We then obtain predictions for the B(E1) strength of the 1/2+ to 1/2- transition in the 11Be nucleus. We also compute the charge radius of the ground state of 11Be. Agreement with experiment within the expected accuracy of a leading-order computation in this EFT is obtained. We also indicate how higher-order corrections that affect both s-wave and p-wave 10 Be-neutron interactions will affect our results.

  6. Progressive activation of paratrigeminal nucleus during entrance to hibernation

    SciTech Connect

    Kilduff, T.S.; Sharp, F.R.; Heller, H.C. Univ. of California, San Francisco Veterans Administration Medical Center, San Francisco, CA )

    1988-07-01

    The paratrigeminal nucleus (Pa5) undergoes a progressive increase in its uptake of 2-({sup 14}C)deoxyglucose (2DG) relative to other brain structures during entrance to hibernation in the ground squirrel. This highly significant increase results in the Pa5 becoming the most highly labeled brain region during hibernation, even though it exhibits one of the lowest levels of 2DG uptake in the brain during the nonhibernating state. The progressive activation of the Pa5 observed during entrance is reversed during arousal from hibernation. These observations and the neuroanatomical projections of the Pa5 implicate this nucleus as playing a role in the entrance and maintenance of the hibernating state.

  7. Control of cell nucleus shapes via micropillar patterns.

    PubMed

    Pan, Zhen; Yan, Ce; Peng, Rong; Zhao, Yingchun; He, Yao; Ding, Jiandong

    2012-02-01

    We herein report a material technique to control the shapes of cell nuclei by the design of the microtopography of substrates to which the cells adhere. Poly(D,L-lactide-co-glycolide) (PLGA) micropillars or micropits of a series of height or depth were fabricated, and some surprising self deformation of the nuclei of bone marrow stromal cells (BMSCs) was found in the case of micropillars with a sufficient height. Despite severe nucleus deformation, BMSCs kept the ability of proliferation and differentiation. We further demonstrated that the shapes of cell nuclei could be regulated by the appropriate micropillar patterns. Besides circular and elliptoid shapes, some unusual nucleus shapes of BMSCs have been achieved, such as square, cross, dumbbell, and asymmetric sphere-protrusion.

  8. Direct observation of nanoparticle-cancer cell nucleus interactions.

    PubMed

    Dam, Duncan Hieu M; Lee, Jung Heon; Sisco, Patrick N; Co, Dick T; Zhang, Ming; Wasielewski, Michael R; Odom, Teri W

    2012-04-24

    We report the direct visualization of interactions between drug-loaded nanoparticles and the cancer cell nucleus. Nanoconstructs composed of nucleolin-specific aptamers and gold nanostars were actively transported to the nucleus and induced major changes to the nuclear phenotype via nuclear envelope invaginations near the site of the construct. The number of local deformations could be increased by ultrafast, light-triggered release of the aptamers from the surface of the gold nanostars. Cancer cells with more nuclear envelope folding showed increased caspase 3 and 7 activity (apoptosis) as well as decreased cell viability. This newly revealed correlation between drug-induced changes in nuclear phenotype and increased therapeutic efficacy could provide new insight for nuclear-targeted cancer therapy.

  9. Volume regulation and shape bifurcation in the cell nucleus.

    PubMed

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M; Wirtz, Denis; Sun, Sean X

    2015-09-15

    Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation.

  10. Triple F - A Comet Nucleus Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Kueppers, Michael; Keller, H. U.; Kuehrt, E.; A'Hearn, M. F.; Altwegg, K.; Bertrand, R.; Busemann, H.; Capria, M. T.; Colangeli, L.; Davidsson, B.; hide

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-andgo sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  11. Exporting RNA from the nucleus to the cytoplasm.

    PubMed

    Köhler, Alwin; Hurt, Ed

    2007-10-01

    The transport of RNA molecules from the nucleus to the cytoplasm is fundamental for gene expression. The different RNA species that are produced in the nucleus are exported through the nuclear pore complexes via mobile export receptors. Small RNAs (such as tRNAs and microRNAs) follow relatively simple export routes by binding directly to export receptors. Large RNAs (such as ribosomal RNAs and mRNAs) assemble into complicated ribonucleoprotein (RNP) particles and recruit their exporters via class-specific adaptor proteins. Export of mRNAs is unique as it is extensively coupled to transcription (in yeast) and splicing (in metazoa). Understanding the mechanisms that connect RNP formation with export is a major challenge in the field.

  12. Soluble spiroperidol binding factors from bovine caudate nucleus.

    PubMed

    Winkler, M H; Berl, S

    1982-09-01

    Several properties of soluble spiroperidol binding factors separated from bovine caudate nucleus have been investigated by a previously unreported procedure. Data consistent with high particle weight and rapid binding equilibration are reported for high-affinity (+)butaclamol-sensitive components of a digitonin extract. A slower sedimenting component is found that also exhibits high affinity for spiroperidol but is not sensitive to (+)butaclamol. Centrifugation of a caudate nucleus homogenate yields a supernatant that appears to contain a component that exhibits spiroperidol binding that is more sensitive to displacement by (-) than by (+)butaclamol. The procedure used effects rapid separation of bound from unbound tritiated ligand on short columns of Sephadex G-15 followed by extrusion and sectioning of the Sephadex. The radioactivity remaining with each section is determined. The procedure is very rapid; the addition of active phases or the changing of the ionic environment, which may disturb the equilibrium, is avoided; and recovery of the protein free of bound ligand is easily affected.

  13. Developmental Changes in Synaptic Distribution in Arcuate Nucleus Neurons

    PubMed Central

    Kirigiti, Melissa A.; Baquero, Karalee C.; Lee, Shin J.; Smith, M. Susan; Grove, Kevin L.

    2015-01-01

    Neurons coexpressing neuropeptide Y, agouti-related peptide, and GABA (NAG) play an important role in ingestive behavior and are located in the arcuate nucleus of the hypothalamus. NAG neurons receive both GABAergic and glutamatergic synaptic inputs, however, the developmental time course of synaptic input organization of NAG neurons in mice is unknown. In this study, we show that these neurons have low numbers of GABAergic synapses and that GABA is inhibitory to NAG neurons during early postnatal period. In contrast, glutamatergic inputs onto NAG neurons are relatively abundant by P13 and are comparatively similar to the levels observed in the adult. As mice reach adulthood (9–10 weeks), GABAergic tone onto NAG neurons increases. At this age, NAG neurons received similar numbers of inhibitory and EPSCs. To further differentiate age-associated changes in synaptic distribution, 17- to 18-week-old lean and diet-induced obesity (DIO) mice were studied. Surprisingly, NAG neurons from lean adult mice exhibit a reduction in the GABAergic synapses compared with younger adults. Conversely, DIO mice display reductions in the number of GABAergic and glutamatergic inputs onto NAG neurons. Based on these experiments, we propose that synaptic distribution in NAG neurons is continuously restructuring throughout development to accommodate the animals' energy requirements. PMID:26041922

  14. Ab initio description of the exotic unbound 7He nucleus

    DOE PAGES

    Baroni, Simone; Navratil, Petr; Quaglioni, Sofia

    2013-01-11

    In this study, the neutron-rich unbound 7He nucleus has been the subject of many experimental investigations. While the ground-state 3/2– resonance is well established, there is a controversy concerning the excited 1/2– resonance reported in some experiments as low lying and narrow (ER~1 MeV, Γ≤1 MeV) while in others as very broad and located at a higher energy. This issue cannot be addressed by ab initio theoretical calculations based on traditional bound-state methods. We introduce a new unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model, a bound-state technique, with the no-coremore » shell model combined with the resonating-group method, a nuclear scattering technique. Our calculations describe the ground-state resonance in agreement with experiment and, at the same time, predict a broad 1/2– resonance above 2 MeV.« less

  15. D¯ D meson pair production in antiproton-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Shyam, R.; Tsushima, K.

    2016-10-01

    We study the D ¯D (D¯0D0 and D-D+) charm meson pair production in antiproton (p ¯) induced reactions on nuclei at beam energies ranging from threshold to several GeV. Our model is based on an effective Lagrangian approach that has only the baryon-meson degrees of freedom and involves the physical hadron masses. The reaction proceeds via the t -channel exchanges of Λc+, Σc+, and Σc++ baryons in the initial collision of the antiproton with one of the protons of the target nucleus. The medium effects on the exchanged baryons are included by incorporating in the corresponding propagators, the effective charm baryon masses calculated within a quark-meson coupling (QMC) model. The wave functions of the bound proton have been determined within the QMC model as well as in a phenomenological model where they are obtained by solving the Dirac equation with appropriate scalar and vector potentials. The initial- and final-state distortion effects have been approximated by using an eikonal approximation-based procedure. Detailed numerical results are presented for total and double differential cross sections for the D¯0D0 and D-D+ production reactions on 16O and 90Zr targets. It is noted that at p ¯ beam momenta of interest to the P ¯ ANDA experiment, medium effects lead to noticeable enhancements in the charm meson production cross sections.

  16. Halo Nucleus 11Be: A Spectroscopic Study via Neutron Transfer

    SciTech Connect

    Schmitt, Kyle; Jones, K. L.; Bey, A.; Ahn, S.H.; Bardayan, Daniel W; Blackmon, Jeffery C; Brown, S.; Chae, Kyung Yuk; Chipps, K.; Cizewski, J. A.; Kozub, R. L.; Liang, J Felix; Matei, Catalin; Matos, M.; Moazen, Brian H; Nesaraja, Caroline D; Nunes, F. M.; O'Malley, Patrick; Pain, Steven D; Peters, W. A.; Pittman, S. T.; Wilson, G.

    2012-01-01

    The best examples of halo nuclei, exotic systems with a diffuse nuclear cloud surrounding a tightly bound core, are found in the light, neutron-rich region, where the halo neutrons experience only weak binding and a weak, or no, potential barrier. Modern direct-reaction measurement techniques provide powerful probes of the structure of exotic nuclei. Despite more than four decades of these studies on the benchmark one-neutron halo nucleus 11Be, the spectroscopic factors for the two bound states remain poorly constrained. In the present work, the 10Be d;p reaction has been used in inverse kinematics at four beam energies to study the structure of 11Be. The spectroscopic factors extracted using the adiabatic model were found to be consistent across the four measurements and were largely insensitive to the optical potential used. The extracted spectroscopic factor for a neutron in an n j 2s1=2 state coupled to the ground state of 10Be is 0.71(5). For the first excited state at 0.32 MeV, a spectroscopic factor of 0.62(4) is found for the halo neutron in a 1p1=2 state.

  17. Study of Comet Nucleus Gamma-Ray Spectrometer Penetration System

    NASA Technical Reports Server (NTRS)

    Adams, G. L.; Amundsen, R. J.; Beardsley, R. W.; Cash, R. H.; Clark, B. C.; Knight, T. C. D.; Martin, J. P.; Monti, P.; Outteridge, D. A.; Plaster, W. D.

    1986-01-01

    A penetrator system has been suggested as an approach for making in situ measurements of the composition and physical properties of the nucleus of a comet. This study has examined in detail the feasibility of implementing the penetrator concept. The penetrator system and mission designs have been developed and iterated in sufficient detail to provide a high level of confidence that the concept can be implemented within the constraints of the Mariner Mark 2 spacecraft.

  18. Methods and compositions for targeting macromolecules into the nucleus

    DOEpatents

    Chook, Yuh Min

    2013-06-25

    The present invention includes compositions, methods and kits for directing an agent across the nuclear membrane of a cell. The present invention includes a Karyopherin beta2 translocation motif in a polypeptide having a slightly positively charged region or a slightly hydrophobic region and one or more R/K/H-X.sub.(2-5)-P-Y motifs. The polypeptide targets the agent into the cell nucleus.

  19. Emission of charged particles from excited compound nucleus

    SciTech Connect

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.

    2010-11-24

    The formation and decay of excited compound nucleus are studied within the dinuclear system model[1]. The cross sections of complex fragment emission are calculated and compared with experimental data for the reactions {sup 3}He+{sup 108}Ag, {sup 78,82}Kr+{sup 12}C. Angular momentum dependence of cluster emission in {sup 78}Kr+{sup 12}C and {sup 40}Ca+{sup 78}Kr reactions is demonstrated.

  20. Exotic atoms, K-nucleus scattering and hypernuclei

    SciTech Connect

    Barnes, P. D.

    1981-01-01

    Recent progress in exotic atom physics, kaon-nucleus scattering, and hypernuclear physics is reviewed. Specific problems discussed include searches for muon-nucleon interactions beyond QED, a comparison of data and recent calculation of K/sup + -/ + /sup 12/C elastic and inelastic scattering, as well as recent studies of ..sigma.. and ..lambda.. hypernuclei including new data on the level structure of /sup 13/C/..lambda...