Science.gov

Sample records for energy photovoltaics program

  1. Photovoltaic Energy Program overview, fiscal year 1997

    SciTech Connect

    1998-02-01

    The US Department of Energy (DOE) Photovoltaic Energy Program fosters the widespread acceptance of photovoltaic (PV) technology and accelerates commercial use of US PV products. The Program is founded on a collaborative strategy involving industry, the research and development community, potential users, utilities, and state and federal agencies. There are three main Program elements: Systems Engineering and Applications, Technology Development, and Research and Development.

  2. NASA-OAST photovoltaic energy conversion program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  3. Photovoltaic energy program overview: Fiscal year 1994

    SciTech Connect

    1995-03-01

    This is the 1994 overview for the Photovoltaic Energy Program. The topics of this overview include cooperative research projects to improve PV systems and develop pre-commercial prototypes of new PV products, expanding understanding of the fundamental mechanisms governing the formation and performance of PV materials, and helping US industry enhance its leadership position in the PV market.

  4. Photovoltaic Energy Program Overview Fiscal Year 1996

    SciTech Connect

    1997-05-01

    Significant activities in the National Photovoltaic Program are reported for each of the three main program elements. In Research and Development, advances in thin-film materials and crystalline silicon materials are described. The Technology Development report describes activities in photovoltaic manufacturing technology, industrial expansion, module and array development, and testing photovoltaic system components. Systems Engineering and Applications projects described include projects with government agencies, projects with utilities, documentation of performance for international applications, and product certification.

  5. Photovoltaic energy program overview, fiscal year 1991

    SciTech Connect

    Not Available

    1992-02-01

    The Photovoltaics Program Plan, FY 1991--FY 1995 builds on the accomplishments of the past 5 years and broadens the scope of program activities for the future. The previous plan emphasized materials and PV cell research. Under the balanced new plan, the PV Program continues its commitment to strategic research and development (R D) into PV materials and processes, while also beginning work on PV systems and helping the PV industry encourage new markets for photovoltaics. A major challenge for the program is to assist the US PV industry in laying the foundation for at least 1000 MW of installed PV capacity in the United States and 500 MW internationally by 2000. As part of the new plan, the program expanded the scope of its activities in 1991. The PV Program is now addressing many new aspects of developing and commercializing photovoltaics. It is expanding activities with the US PV industry through the PV Manufacturing Technology (PVMaT) project, designed to address US manufacturers' immediate problems; providing technical assistance to potential end users such as electric utilities; and the program is turning its attention to encouraging new markets for PV. In 1991, for example, the PV Program initiated a new project with the PV industry to encourage a domestic market for PV applications in buildings and began cooperative ventures to support other countries such as Mexico to use PV in their rural electrification programs. This report reviews some of the development, fabrication and manufacturing advances in photovoltaics this year.

  6. Photovoltaic energy program overview, fiscal year 1991

    NASA Astrophysics Data System (ADS)

    1992-02-01

    The Photovoltaics Program Plan, FY 1991 to FY 1995 builds on the accomplishments of the past 5 years and broadens the scope of program activities for the future. The previous plan emphasized materials and PV cell research. Under the balanced new plan, the PV Program continues its commitment to strategic research and development (R&D) into PV materials and processes, while also beginning work on PV systems and helping the PV industry encourage new markets for photovoltaics. A major challenge for the program is to assist the US PV industry in laying the foundation for at least 1000 MW of installed PV capacity in the United States and 500 MW internationally by 2000. As part of the new plan, the program expanded the scope of its activities in 1991. The PV Program is now addressing many new aspects of developing and commercializing photovoltaics. It is expanding activities with the US PV industry through the PV Manufacturing Technology (PVMaT) project, designed to address US manufacturers' immediate problems; providing technical assistance to potential end users such as electric utilities; and the program is turning its attention to encouraging new markets for PV. In 1991, for example, the PV Program initiated a new project with the PV industry to encourage a domestic market for PV applications in buildings and began cooperative ventures to support other countries such as Mexico to use PV in their rural electrification programs. This report reviews some of the development, fabrication and manufacturing advances in photovoltaics this year.

  7. Department of Energy: Photovoltaics program - FY 1996

    SciTech Connect

    1996-12-31

    The National Photovoltaic Program supports efforts to make PV an important part of the US economy through three main program elements: Research and Development, Technology Development, and Systems Engineering and Applications. (1) Research and Development activities generate new ideas, test the latest scientific theories, and push the limits of PV efficiencies in laboratory and prototype materials and devices. (2) Technology Development activities apply laboratory innovations to products to improve PV technology and the manufacturing techniques used to produce PV systems for the market. (3) Systems Engineering and Applications activities help improve PV systems and validate these improvements through tests, measurements, and deployment of prototypes. In addition, applications research validates, sales, maintenance, and financing mechanisms worldwide. (4) Environmental, Health, Safety and Resource Characterization activities help to define environmental, health and safety issues for those facilities engaged in the manufacture of PV products and organizations engaged in PV research and development. All PV Program activities are planned and executed in close collaboration and partnership with the U.S. PV industry. The overall PV Program is planned to be a balanced effort of research, manufacturing development, and market development. Critical to the success of this strategy is the National Photovoltaic Program`s effort to reduce the cost of electricity generated by photovoltaic. The program is doing this in three primary ways: by making devices more efficient, by making PV systems less expensive, and by validating the technology through measurements, tests, and prototypes.

  8. NASA-OAST program in photovoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Flood, D. J.

    1982-01-01

    The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.

  9. Photovoltaic energy: Program overview, fiscal year 1990

    SciTech Connect

    Not Available

    1991-07-01

    This summary is prepared each year to provide an overview of the government-funded activities within the National Photovoltaics Program. The 1990 PV Program Achievements are listed. Launched the PV Manufacturing Technology initiative, designed to systematically lower PV module costs. Inaugurated the PV Concentrator Technologies Initiative by signing eight multiyear, cost-shared technology development subcontracts with concentrator companies. Established the PV Polycrystalline Thin-Film Initiative by signing six multiyear, cost-shared technology development subcontracts with six polycrystalline thin-film companies. Continued the Amorphous Silicon Project by awarding three new research and development contracts. Focused the resources of three program laboratories on finding solutions to industry's manufacturing problems: the Photovoltaic Device Fabrication Laboratory at Sandia National Laboratories and the Module Failure Analysis Laboratory and the Encapsulant Research Laboratory at SERI. Established an ongoing program to assist utilities in using PV for cost-effective, high-value applications. Completed nearly all of the construction planned for the first phase of PVUSA at Davis, California. Worked with the crystalline silicon PV industry on novel, low-cost cell fabrication processes and on resolving encapsulant problems. Took part in the development of qualification procedures tests for thin- and thick-film flat-plate modules and concentrator modules.

  10. SOLCOST-PHOTOVOLTAIC solar energy design program: Users guide

    NASA Astrophysics Data System (ADS)

    1980-10-01

    The SOLCOST-PHOTOVOLTAIC (PV) solar energy design program is a public domain interactive computer design tool intended for use by non-solar specialists to predict the long term performance for photovoltaic systems. A life cycle cost analysis is included along with an economic analysis which predicts energy costs for the photovoltaic system assuming ownership by an electric utility. SOLCOST-PV currently can evaluate flat plate arrays and concentrating arrays which use Fresnel lenses and passive cooling. An overview of the SOLCOST-PV capabilities and methodology is given. A detailed guide to the SOLCOST-PV input parameters is included, and examples showing typical interactive execution sessions and the resulting SOLCOST-PV output are presented. Appendices A and B provide additional information on the SOLCOST-PV analysis.

  11. An update on the Department of Energy's photovoltaic program

    NASA Technical Reports Server (NTRS)

    Benner, John P.; Fitzgerald, Mark

    1994-01-01

    Funding for the terrestrial photovoltaic's program is $78 million in 1994. This is more than double the minimum level reached in 1989 and runs counter to the general trend of decreasing budgets for Department of Energy (DOE) programs. During the past five years, the program has expanded its mission from research and development to also address manufacturing technology and commercialization assistance. These new activities are directed toward revitalizing the market to reinstate the rapid rate of sales growth needed to attract investment. The program is approaching balance among efforts in each of the three areas. This translates to a reduction in some of the R & D activities of most relevance to the space power community. On the other hand, some of the advancements in manufacturing may finally bring thin-film technologies to reality for space arrays. This talk will describe the status and direction of DOE program with an eye toward highlighting its impact on technology of interest for space.

  12. An update on the Department of Energy's photovoltaic program

    NASA Astrophysics Data System (ADS)

    Benner, John P.; Fitzgerald, Mark

    1994-09-01

    Funding for the terrestrial photovoltaic's program is $78 million in 1994. This is more than double the minimum level reached in 1989 and runs counter to the general trend of decreasing budgets for Department of Energy (DOE) programs. During the past five years, the program has expanded its mission from research and development to also address manufacturing technology and commercialization assistance. These new activities are directed toward revitalizing the market to reinstate the rapid rate of sales growth needed to attract investment. The program is approaching balance among efforts in each of the three areas. This translates to a reduction in some of the R & D activities of most relevance to the space power community. On the other hand, some of the advancements in manufacturing may finally bring thin-film technologies to reality for space arrays. This talk will describe the status and direction of DOE program with an eye toward highlighting its impact on technology of interest for space.

  13. Photovoltaic energy program summary. Volume 1: Overview, fiscal year 1988

    NASA Astrophysics Data System (ADS)

    1989-01-01

    1988 has been a year for major advances in photovoltaic (PV) technology. There has been unprecedented progress, both in the laboratory and in the industry along with more technical advances and worldwide market acceptance in new applications. If this year has been any barometer, photovoltaic energy products are rapidly moving toward the goal of supplying a part of U.S. utility power in the 1990s. This report reviews some of the technology achievements in photovoltaics this year.

  14. Photovoltaic energy program summary: Volume 1, Overview: Fiscal year 1988

    SciTech Connect

    Not Available

    1989-01-01

    1988 has been a year for major advances in photovoltaic (PV) technology. There has been unprecedented progress, both in the laboratory and in the industry. More technical advances. Worldwide market acceptance in new applications. If this year has been any barometer, photovoltaic energy products are rapidly moving toward the goal of supplying a part of US utility power in the 1990s. This report reviews some of the technology achievements in photovoltaics this year.

  15. Photovoltaic energy systems: Program summary fiscal year 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An overview of government funded activities in photovoltaic energy conversion research is given. Introductory information, a list of directing organizations, a list of acronyms and abbreviations, and an index of current contractors are given.

  16. Photovoltaic energy program in the State of Minas Gerais, Brazil

    SciTech Connect

    Diniz, A.S.A.C.; Prado, A.E.; Mendonca, M.S.C.C.; Almeida, F.Q.; Alvarenga, C.A.

    1997-12-31

    This paper describes the work done over the last years in the field of photovoltaic technology in the State of Minas Gerais, from its R and D to the Rural Electrification Program. The analysis of the global solar radiation data (over 5 kWh/m{sup 2}/day) has shown that photovoltaic systems can perform well all over the State, mainly in the north and Northeast regions of the state. The potential for the utilization of PV systems in Minas Gerais is large, mainly when considering the high number of consumers in rural remote areas that are not and cannot be supplied from CEMIG`s grid in the immediate future or in the long term. As a consequence of the demonstration projects, which have shown that photovoltaics can perform well and be cost effective in rural areas, a Rural Electrification Program was launched. To support it a training program has been set up.

  17. Photovoltaic energy

    NASA Astrophysics Data System (ADS)

    1990-01-01

    In 1989, the U.S. photovoltaic industry enjoyed a growth rate of 30 percent in sales for the second year in a row. This sends a message that the way we think about electricity is changing. Instead of big energy projects that perpetuate environmental and economic damage, there is a growing trend toward small renewable technologies that are well matched to end-user needs and operating conditions. As demand grows and markets expand, investment capital will be drawn to the industry and new growth trends will emerge. The photovoltaic industry around the world achieved record shipments also. Worldwide shipments of photovoltaic (PV) modules for 1989 totaled more than 40 megawatts (MW), nearly a 20 percent increase over last year's shipments. The previous two years showed increases in worldwide shipments of 23 and 25 percent, respectively. If this growth rate continues through the 1990s, as industry back orders would indicate, 300 to 1000 MW of PV-supplied power could be on line by 2000. Photovoltaic systems have low environmental impact and they are inexpensive to operate and maintain. Using solid-state technology, PV systems directly convert sunlight to electricity without high-temperature fluids or moving parts that could cause mechanical failure. This makes the technology very reliable.

  18. Photovoltaic Subcontract Program

    SciTech Connect

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  19. Thermionic photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  20. Photovoltaic test and demonstration project. [residential energy program

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The considered project consists of three subprojects related to applications, device performance and diagnostics, and endurance testing. The objectives of the applications subproject include the determination of the operating characteristics for a variety of photovoltaic conversion systems. A system test facility is being constructed in this connection and a prototype residence experiment is to be conducted. Market demand for solar cells is to be stimulated by demonstrating suitability of solar cells for specific near-term applications. Activities conducted in connection with device performance studies and diagnostics are also discussed along with developments in the area of endurance testing.

  1. Photovoltaic test and demonstration project. [residential energy program

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The considered project consists of three subprojects related to applications, device performance and diagnostics, and endurance testing. The objectives of the applications subproject include the determination of the operating characteristics for a variety of photovoltaic conversion systems. A system test facility is being constructed in this connection and a prototype residence experiment is to be conducted. Market demand for solar cells is to be stimulated by demonstrating suitability of solar cells for specific near-term applications. Activities conducted in connection with device performance studies and diagnostics are also discussed along with developments in the area of endurance testing.

  2. Photovoltaic energy program overview, fiscal year 1991. Programs in utility technologies

    SciTech Connect

    Not Available

    1992-02-01

    The Photovoltaics Program Plan, FY 1991--FY 1995 builds on the accomplishments of the past 5 years and broadens the scope of program activities for the future. The previous plan emphasized materials and PV cell research. Under the balanced new plan, the PV Program continues its commitment to strategic research and development (R&D) into PV materials and processes, while also beginning work on PV systems and helping the PV industry encourage new markets for photovoltaics. A major challenge for the program is to assist the US PV industry in laying the foundation for at least 1000 MW of installed PV capacity in the United States and 500 MW internationally by 2000. As part of the new plan, the program expanded the scope of its activities in 1991. The PV Program is now addressing many new aspects of developing and commercializing photovoltaics. It is expanding activities with the US PV industry through the PV Manufacturing Technology (PVMaT) project, designed to address US manufacturers` immediate problems; providing technical assistance to potential end users such as electric utilities; and the program is turning its attention to encouraging new markets for PV. In 1991, for example, the PV Program initiated a new project with the PV industry to encourage a domestic market for PV applications in buildings and began cooperative ventures to support other countries such as Mexico to use PV in their rural electrification programs. This report reviews some of the development, fabrication and manufacturing advances in photovoltaics this year.

  3. Solar Photovoltaic Energy.

    ERIC Educational Resources Information Center

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  4. Solar Photovoltaic Energy.

    ERIC Educational Resources Information Center

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  5. PHOTO: A computer simulation program for photovoltaic and hybrid energy systems. Document and user's guide

    NASA Astrophysics Data System (ADS)

    Manninen, L. M.; Lund, P. D.; Virkkula, A.

    1990-11-01

    The version 3.0 is described of the program package PHOTO for the simulation and sizing of hybrid power systems (photovoltaic and wind power plants) on IBM PC, XT, AT, PS/2 and compatibles. The minimum memory requirement is 260 kB. Graphical output is created with HALO'88 graphics subroutine library. In the simulation model, special attention is given to the battery storage unit. A backup generator can also be included in the system configuration. The dynamic method developed uses accurate system component models accounting for component interactions and losses in e.g. wiring and diodes. The photovoltaic array can operate in a maximum power mode or in a clamped voltage mode together with the other subsystems. Various control strategies can also be considered. Individual subsystem models were verified against real measurements. Illustrative simulation example is also discussed. The presented model can be used to simulate various system configurations accurately and evaluate system performance, such as energy flows and power losses in photovoltaic array, wind generator, backup generator, wiring, diodes, maximum power point tracking device, inverter and battery. Energy cost is also an important consideration.

  6. Photovoltaic Subcontract Program, FY 1991

    SciTech Connect

    Not Available

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  7. Photovoltaic Energy: Electricity from Sunlight

    SciTech Connect

    Cason, D.L.; Pitsenbarger, J.

    1996-03-01

    Photovoltaic Energy: Electricity from Sunlight (PHV) announces on a bimonthly basis the current worldwide information available on all aspects of photovoltaic amorphous technology, polycrystalline thin films, gallium arsenide, crystalline silicon, concentrator technology, and systems research. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements.

  8. NREL Photovoltaic Program FY 1993

    SciTech Connect

    Not Available

    1994-08-01

    This report reviews the in-house and subcontracted research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) Program from October 1, 1992, through September 30, 1993 (fiscal year [FY] 1993). The NREL PV Program is part of the U.S. Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The FY 1993 budget authority (BA) for carrying out the NREL PV Program was $40.1 million in operating funds and $0.9 million in capital equipment funds. An additional $4.8 million in capital equipment funds were made available for the new Solar Energy Research Facility (SERF) that will house the in-house PV laboratories beginning in FY 1994. Subcontract activities represent a major part of the NREL PV Program, with more than $23.7 million (nearly 59%) of the FY 1993 operating funds going to 70 subcontractors. In FY 1993, DOE assigned certain other PV subcontracting efforts to the DOE Golden Field Office (DOE/GO), and assigned responsibility for their technical support to the NREL PV Program. An example is the PV:BONUS (Building Opportunities in the U.S. for Photovoltaics) Project. These DOE/GO efforts are also reported in this document.

  9. Photovoltaics technology program summary

    NASA Astrophysics Data System (ADS)

    1985-05-01

    An adequate supply of energy at reasonable price is discussed. Economic efficiency and the following strategies to obtain it are suggested: (1) minimization of federal regulation in energy pricing; and (2) promote a balanced and mixed energy resource system. The development of photovoltaic energy conversion technology is summarized.

  10. Effects of expiration of the Federal energy tax credit on the National Photovoltaics Program

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Projected 1986 sales are significantly reduced as a direct result of system price increases following from expiration of the Federal energy tax credits. There would be greatly reduced emphasis on domestic electric utility applications. Indirect effects arising from unrealized economies of scale and reduced private investment in PV research and development (R&D) and in production facilities could have a very large cumulative adverse impact on the U.S. PV industry. The industry forecasts as much as fourfold reduction in 1990 sales if tax credits expire, compared with what sales would be with the credits. Because the National Photovoltaics Program is explicitly structured as a government partnership, large changes in the motivation or funding of either partner can affect Program success profoundly. Reduced industry participation implies that such industry tasks as industrialization and new product development would slow or halt. Those research areas receiving heavy R&D support from private PV manufacturers would be adversely affected.

  11. Photovoltaic Subcontract Program, FY 1990

    SciTech Connect

    Summers, K.A.

    1991-03-01

    This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

  12. The DOE photovoltaics program

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.

    1980-01-01

    As part of the National Solar Energy program, the US Department of Energy is now engaged in the development of technically feasible, low cost candidate component and system technologies to the point where technical readiness can be demonstrated by 1982. The overall strategy is to pursue parallel options that continue to show promise of meeting the program goals, thus increasing the probability that at least one technology will be successful. Included in technology development are both flat plate solar collectors and concentrator solar collectors, as well as the balance of system components, such as structures, power conditioning, power controls, protection, and storage. Generally, these last items are common to both flat plate and concentrator systems, but otherwise there is considerable disparity in design philosophy, photovoltaic cell requirements, and possible applications between the two systems. Objectives for research activities at NASA Lewis for stand alone applications, and at Sandia Laboratories where intermediate load center applications are addressed, are highlighted as well as college projects directed by Oak Ridge National Laboratory, and international applications managed by the Solar Energy Research Institute. Joint DOD/DOE effects for military applications are also summarized.

  13. BMDO photovoltaics program overview

    NASA Technical Reports Server (NTRS)

    Caveny, Leonard H.; Allen, Douglas M.

    1994-01-01

    This is an overview of the Ballistic Missile Defense Organization (BMDO) Photovoltaic Program. Areas discussed are: (1) BMDO advanced Solar Array program; (2) Brilliant Eyes type satellites; (3) Electric propulsion; (4) Contractor Solar arrays; (5) Iofee Concentrator and Cell development; (6) Entech linear mini-dome concentrator; and (7) Flight test update/plans.

  14. 2009 Technical Risk and Uncertainty Analysis of the U.S. Department of Energy's Solar Energy Technologies Program Concentrating Solar Power and Photovoltaics R&D

    SciTech Connect

    McVeigh, J.; Lausten, M.; Eugeni, E.; Soni, A.

    2010-11-01

    The U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP) conducted a 2009 Technical Risk and Uncertainty Analysis to better assess its cost goals for concentrating solar power (CSP) and photovoltaic (PV) systems, and to potentially rebalance its R&D portfolio. This report details the methodology, schedule, and results of this technical risk and uncertainty analysis.

  15. NREL Photovoltaic Program FY 1996 Annual Report

    SciTech Connect

    Not Available

    1997-08-01

    This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

  16. Photovoltaic conversion of laser energy

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1976-01-01

    The Schottky barrier photovoltaic converter is suggested as an alternative to the p/n junction photovoltaic devices for the conversion of laser energy to electrical energy. The structure, current, output, and voltage output of the Schottky device are summarized. The more advanced concepts of the multilayer Schottky barrier cell and the AMOS solar cell are briefly considered.

  17. Decentalized solar photovoltaic energy systems

    SciTech Connect

    Krupka, M. C.

    1980-09-01

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  18. NASA photovoltaic technology program

    SciTech Connect

    Mullin, J.P.; Loria, J.C.; Brandhorst, H.W. Jr.

    1984-01-01

    The NASA Office of Aeronautical and Space Technology OAST Program in space photovoltaics is reviewed. From the perspective of national landmark mission requirements and five year and 25-year long range plans, the texture of the program is revealed. Planar silicon and concentrator GaAs array technology advances are discussed. Advances in lightweight (50 micro cell) arrays and radiation tolerance research are presented. Recent progress in cascade cells and ultralightweight GaAs planar cells is noted. Progress in raising silicon cell voltage to its theoretical maximum is detailed. Advanced concepts such as plasmon converters and the Long Duration Exposure Facility LDEF flight experiments pertaining to solar cell and array technology are also shown.

  19. Annual Report: Photovoltaic Subcontract Program FY 1991

    SciTech Connect

    Summers, K. A.

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  20. Air Force Federal Photovoltaic Utilization Program

    NASA Astrophysics Data System (ADS)

    Wise, J. F.

    1985-03-01

    The technical and financial history of the Federal Photovoltaic Utilization Program within the US Air Force is briefly reported. The projects included microwave sites at Edwards Air Force Base, communication vans at Nellis Air Force Base Tactical Range, photovoltaic homes at Tyndal and Kirtland Air Force Bases, a community energy system at McClellan Air Force Base, and an aircraft arresting system that employs a photovoltaic power supply to drive engines that erect and remove barriers for keeping aircraft from travelling off the end of a runway.

  1. Photovoltaics program plan, FY 1991--FY 1995

    SciTech Connect

    Not Available

    1991-10-01

    This program plan describes the goals and philosophy of DOE National Photovoltaics Program and its major research and development activities for fiscal years (FY) 1991 through 1995. The plan represents a consensus among researchers and manufacturers, as well as current and potential users of photovoltaics (PV). It defines the activites that we believe are necessary to continue the rapid progress toward acceptance of photovoltaics as a serious candidate for cost-competitive electric power generation by the utility, transportation, buildings, and industrial sectors. A succesful National Photovoltaics Program will help achieve many of our national priorities. The mission of the National Photovoltaics Program is to help US industry to develop photovoltaic technology for large-scale generation of economically competitive electric power in the United States, making PV a significant part of our national energy mix. To fully achieve this, we must continue to work toward the long-term goals established in our previous program plan: reducing the price of delivered electricity to 5 to 6 cents per kilowatt-hour (kWh), increasing lifetimes to 30 years, and increasing module efficiencies to 15% for flat-plate and 25% for concentrator technologies. If progress continues at its current pace, we expect that the PV industry will have installed at least 1000 megawatts (MW) of capacity in the United States and 500 MW internationally by the year 2000.

  2. Photovoltaics Program: utility interface southwest regional workshop proceedings

    SciTech Connect

    1981-04-01

    This was the first of a series of regional workshops that will focus on the photovoltaic and utility interface, and the use of photovoltaics as a cogeneration option by utilities. The needs and constraints of the utilities are defined and an understanding is established of the capabilities and limitations of photovoltaic systems as an alternative electricity generation option by utilities. Utilities' viewpoints regarding large-scale central systems and small-scale, interconnected, distributed systems are given. The Public Utility Regulatory Policies Act and other economic, legislative, and regulatory factors affecting photovoltaic systems are discussed. Current status of photovoltaic systems with respect to the Department of Energy Photovoltaic Program is given. (LEW)

  3. Photovoltaic Subcontract Program. Annual report, FY 1992

    SciTech Connect

    Not Available

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  4. NREL photovoltaic program FY 1997 annual report

    SciTech Connect

    McConnell, R.D.; Hansen, A.; Smoller, S.

    1998-06-01

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the NREL PV Program from October 1, 1996, through September 30, 1997 (FY 1997). The NREL PV Program is part of the US Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996--2000. The FY 1997 budget authority for carrying out the NREL PV Program was $39.3 million in operating funds and $0.4 million in capital equipment funds. Subcontract activities represent a major part of the NREL PV Program, with $21.8 million (55% of PV funds) going to some 84 subcontractors. Cost sharing by industry added almost $8.8 million to the subcontract R and D activities with industry.

  5. Renewable Energy, Photovoltaic Systems Near Airfields: Electromagnetic Interference

    DTIC Science & Technology

    2015-04-01

    Electromagnetic Interference Geoff Dann, NAVFAC EXWC Chris Deline, National Renewable Energy Laboratory (NREL) Approved for public release; distrobution is...Renewable Energy, Photovoltaic Systems Near Airfields: Electromagnetic Interference Interagency Agreement 12-1869 5b. GRANT NUMBER NA 5c. PROGRAM...assessment of the impact of electromagnetic interference (EMI) from photovoltaic (PV) systems, on airfield electronic equipment. Existing literature

  6. Semiconductor electrolyte photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  7. Photovoltaic power - An important new energy option

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.

    1983-01-01

    A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.

  8. Photovoltaic power - An important new energy option

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.

    1983-01-01

    A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.

  9. Photovoltaics: Program overview, fiscal year 1992

    SciTech Connect

    Not Available

    1993-03-01

    The US DOE`s Photovoltaics program has helped photovoltaic technologies evolve from materials and concepts in the laboratories to competitive products rolling off automated assembly lines. This document is divided into the following sections: 1992 PV program accomplishments, expanding markets for photovoltaic systems, developing today`s systems with utilities and industry, working with industry to advance the technology, cooperative research to improve materials and devices, selected achievements in cooperative R and D, and PV program services. Figs, tabs.

  10. Photovoltaic Residential Applications Program Implementation Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.

    1980-01-01

    Two major aspects of the workshop are presented: (1) presentations on the Photovoltaic program and the National Solar Heating and Cooling Demonstration program, and (2) discussions on the issues pertinent to the Residential Application program.

  11. Annual Report: Photovoltaic Subcontract Program FY 1990

    SciTech Connect

    Summers, K. A.

    1991-03-01

    This report summarizes the progress of the Photovoltaic (PV) Subcontract Program of the Solar Energy Research Institute (SERI) from October 1, 1989 through September 30, 1990. The PV Subcontract Program is responsible for managing the subcontracted portion of SERI's PV Advanced Research and Development Project. In fiscal year 1990, this included more than 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of the subcontracts were with universities at a total funding of nearly $3.3 million. The six technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports on its progress.

  12. Photovoltaic Research in the Small Business Innovative Research Program

    SciTech Connect

    Bower, W.I.; Bulawka, A.

    1997-02-01

    The Small Business Innovative Research Program (SBIR) is currently authorized to be funded through September 30, 2000. The National Photovoltaics Program is a contributor to the Department of Energy (DOE) SBIR program. The small business photovoltaic industry has been benefiting from the SBIR program through awards that have funded basic research, new processes and products that have PV and other commercial applications. This paper provides information on SBIR opportunities, selected details of the SBIR program, statistics from the 1995 and 1996 DOE SBIR program, and methods for improving PV industry participation and success in the SBIR program. {copyright} {ital 1997 American Institute of Physics.}

  13. Photovoltaic Research in the Small Business Innovative Research Program

    NASA Astrophysics Data System (ADS)

    Bower, Ward I.; Bulawka, Alec

    1997-02-01

    The Small Business Innovative Research Program (SBIR) is currently authorized to be funded through September 30, 2000. The National Photovoltaics Program is a contributor to the Department of Energy (DOE) SBIR program. The small business photovoltaic industry has been benefiting from the SBIR program through awards that have funded basic research, new processes and products that have PV and other commercial applications. This paper provides information on SBIR opportunities, selected details of the SBIR program, statistics from the 1995 and 1996 DOE SBIR program, and methods for improving PV industry participation and success in the SBIR program.

  14. The JPL space photovoltaic program. [energy efficient so1 silicon solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.

    1979-01-01

    The development of energy efficient solar cells for space applications is discussed. The electrical performance of solar cells as a function of temperature and solar intensity and the influence of radiation and subsequent thermal annealing on the electrical behavior of cells are among the factors studied. Progress in GaAs solar cell development is reported with emphasis on improvement of output power and radiation resistance to demonstrate a solar cell array to meet the specific power and stability requirements of solar power satellites.

  15. Energy losses in photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Anis, Wagdy R.; Nour, M. Abdulsadek

    1994-10-01

    The maximum power generated by photovoltaic (PV) arrays is not fully used. During summer, the main cause for the energy loss is the system design that necessitates an oversizing of the PV array to supply the load during the winter season when the solar energy is limited. Other reasons that cause energy loss are: the mismatch between the array and the load or battery, the loss in the batteries, and the loss due to the PV array disconnect. The array disconnect loss takes place during summer season when the battery is fully charged. To avoid the disconnect loss, a novel battery voltage regulator (BVR) is used. This supplies the load directly from the array when the battery is fully charged. Energy losses have been analyzed and divided into fundamental (unavoidable) and non-fundamental losses. Both conventional (using a conventional BVR) and new (using a novel BVR) PV systems are studied. A load that consumes constant power for 24 h a day through the year is considered. The climatic condition of Cairo city is taken as the test case.

  16. International photovoltaic program. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-01-01

    The results of analyses conducted in preparation of an international photovoltaic marketing plan are summarized. Included are compilations of relevant statutes and existing Federal programs; strategies designed to expand the use of photovoltaics abroad; information on the domestic photovoltaic plan and its impact on the proposed international plan; perspectives on foreign competition; industry views on the international photovoltaic market and ideas about the how US government actions could affect this market;international financing issues; and information on issues affecting foreign policy and developing countries.

  17. Photovoltaic Program Branch annual report, FY 1989

    SciTech Connect

    Summers, K A

    1990-03-01

    This report summarizes the progress of the Photovoltaic (PV) Program Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30, 1989. The branch is responsible for managing the subcontracted portion of SERI's PV Advanced Research and Development Project. In fiscal year (FY) 1989, this included nearly 50 subcontracts, with a total annualized funding of approximately $13.1 million. Approximately two-thirds of the subcontracts were with universities, at a total funding of nearly $4 million. The six technical sections of the report cover the main areas of the subcontracted program: Amorphous Silicon Research, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, New Ideas, and University Participation. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1989, and future research directions. Each report will be cataloged individually.

  18. A sensitivity analysis of central flat-plate photovoltaic systems and implications for national photovoltaics program planning

    NASA Technical Reports Server (NTRS)

    Crosetti, M. R.

    1985-01-01

    The sensitivity of the National Photovoltaic Research Program goals to changes in individual photovoltaic system parameters is explored. Using the relationship between lifetime cost and system performance parameters, tests were made to see how overall photovoltaic system energy costs are affected by changes in the goals set for module cost and efficiency, system component costs and efficiencies, operation and maintenance costs, and indirect costs. The results are presented in tables and figures for easy reference.

  19. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    NASA Technical Reports Server (NTRS)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  20. Photovoltaic subsystem marketing and distribution model: programming manual. Final report

    SciTech Connect

    Not Available

    1982-07-01

    Complete documentation of the marketing and distribution (M and D) computer model is provided. The purpose is to estimate the costs of selling and transporting photovoltaic solar energy products from the manufacturer to the final customer. The model adjusts for the inflation and regional differences in marketing and distribution costs. The model consists of three major components: the marketing submodel, the distribution submodel, and the financial submodel. The computer program is explained including the input requirements, output reports, subprograms and operating environment. The program specifications discuss maintaining the validity of the data and potential improvements. An example for a photovoltaic concentrator collector demonstrates the application of the model.

  1. FEMP Renewable Energy Fact Sheet: Photovoltaics

    SciTech Connect

    1999-10-01

    Photovoltaic energy systems, which convert sunlight to electricity, can meet many different needs in Federal facilities. This fact sheet describes how photovoltaic (PV) energy systems can be used to provide electricity for lighting, communications, refrigeration, fans, signs, pumps, drilling equipment, emergency power packs, and cathodic (corrosion) protection, among others. Applications for PV power in Federal facilities include staff housing, parking areas, campgrounds, marinas, visitor centers, roadside communications equipment, ranger stations, underground pipelines, irrigation and disinfecting systems, and disaster response units. PV systems are particularly suitable and cost-effective for facilities that now use diesel power or that are in remote areas far from electric power lines.

  2. Photovoltaic Energy Valuation Model v 1.0

    SciTech Connect

    Klise Jamie Johnson, Geoffrey T.

    2012-01-09

    Currently, there is a need identified by Kennecott Land, as well as others in the real estate, appraisal and building industry to come up with a tool that is simple to use and can accurately value the electricity produced by a solar photovoltaic system. In the appraisal industry, comparable properties are used to help in the valuation of a residential property. Absent a comparable feature such as photovoltaic panels on a neighboring property, it is difficult for appraisers to assign a value to that system. In many cases, photovoltaic systems are assigned a value of $0, which essentially ignores the value of energy being produced and being saved by the homeowner relative to the cost of energy they would otherwise have to purchase from the local utility. There are multiple programs that can calculate the value of the energy produced in terms of the payback period and desired internal rate of return, but none employ the concept of discounting the future value of the energy produced at any period in the expected lifetime of a photovoltaic energy system. By creating this spreadsheet, a necessary gap has been filled. It is the expectation that this product will be included in training programs aimed towards the local appraisal community in Salt Lake County, Utah as well as expand into training offered at the national level through the Appraisal Institute. This software product is an excel spreadsheet that is used to calculate the present value of future energy production for photovoltaic electricity generating systems on residential and commercial properties. Visual Basic (VB) code within the spreadsheet allows user data to be passed to the PVWatts System Advisor Model webservice (http://www.nrel.gov/rredc/pvwatts/) and back into the spreadsheet to estimate the annual solar energy production in Salt Lake County, Utah (as well as anywhere in the U.S.). VB is also used for a discount rate calculation and calls the most current Fannie Mae 30-Year Fixed Rate 60-day

  3. Photovoltaics as a worldwide energy source

    SciTech Connect

    Jones, G.J.

    1991-12-31

    Photovoltaic energy systems have historically been treated as a bulk power generation source for the future. However, utilities and other agencies involved with electrification throughout the world are beginning to find photovoltaics a least-cost option to meet specific loads both for themselves and their customers, in both off-grid and grid-connected applications. These expanding markets offer the potential of hundreds of megawatts of sales in the coming decade, but a strategy addressing both industrial growth and user acceptance is necessary to capitalize on this opportunity. 11 refs.

  4. Photovoltaics as a worldwide energy source

    NASA Astrophysics Data System (ADS)

    Jones, G. J.

    Photovoltaic energy systems have historically been treated as a bulk power generation source for the future. However, utilities and other agencies involved with electrification throughout the world are beginning to find photovoltaics a least-cost option to meet specific loads both for themselves and their customers, in both off-grid and grid-connected applications. These expanding markets offer the potential of hundreds of megawatts of sales in the coming decade, but a strategy addressing both industrial growth and user acceptance is necessary to capitalize on this opportunity.

  5. NASA space photovoltaic research and technology programs

    SciTech Connect

    Mullin, J.P.; Flood, D.J.

    1982-06-01

    The NASA programs for increasing conversion efficiency, reduced mass and cost, and extending operating life of photovoltaic converters and arrays and for evaluating advanced solar array concepts are outlined. Research into radiation resistance and annealing, development of thin blankets, high-power low-cost arrays, and lightweight structures for near-Earth and planetary applications are discussed.

  6. Photovoltaic and photoelectrochemical conversion of solar energy.

    PubMed

    Grätzel, Michael

    2007-04-15

    The Sun provides approximately 100,000 terawatts to the Earth which is about 10000 times more than the present rate of the world's present energy consumption. Photovoltaic cells are being increasingly used to tap into this huge resource and will play a key role in future sustainable energy systems. So far, solid-state junction devices, usually made of silicon, crystalline or amorphous, and profiting from the experience and material availability resulting from the semiconductor industry, have dominated photovoltaic solar energy converters. These systems have by now attained a mature state serving a rapidly growing market, expected to rise to 300 GW by 2030. However, the cost of photovoltaic electricity production is still too high to be competitive with nuclear or fossil energy. Thin film photovoltaic cells made of CuInSe or CdTe are being increasingly employed along with amorphous silicon. The recently discovered cells based on mesoscopic inorganic or organic semiconductors commonly referred to as 'bulk' junctions due to their three-dimensional structure are very attractive alternatives which offer the prospect of very low cost fabrication. The prototype of this family of devices is the dye-sensitized solar cell (DSC), which accomplishes the optical absorption and the charge separation processes by the association of a sensitizer as light-absorbing material with a wide band gap semiconductor of mesoporous or nanocrystalline morphology. Research is booming also in the area of third generation photovoltaic cells where multi-junction devices and a recent breakthrough concerning multiple carrier generation in quantum dot absorbers offer promising perspectives.

  7. US National Photovoltaics Program and applications experiments in the intermediate sector

    SciTech Connect

    Rios, M.

    1980-01-01

    A brief overview of the US National Photovoltaics Program is presented. The Department of Energy (DOE) commercial readiness goals for photovoltaics technology are summarized and the role of the national labs, research centers, and institutes in the strategy for achievement of these goals is outlined. Some examples of the flat-plate and concentrator photovoltaics experiments that are under construction through the DOE Program Research and Development Announcements (PRDAs) are discussed. These experiments are intended to establish system feasibility and demonstrate the applicability of photovoltaics as an alternative energy source in the intermediate sector (industrial, commercial, and agricultural). Installed system costs for the proposed PRDAs are given and concentrator technology requirements for achievement of DOE commercial readiness goals are presented. Some new DOE activities intended to further assist the commercialization of photovoltaics are briefly outlined. These new activities include the completion of an International Photovoltaics Plan.

  8. Photovoltaics: Energy for the New Millenium

    NASA Astrophysics Data System (ADS)

    Surek, Thomas

    2000-04-01

    Photovoltaics (PV) is a semiconductor-based technology that directly converts sunlight to electricity. The stimulus for terrestrial PV started more than 25 years ago in response to the oil crises of the 1970s, which resulted in major government programs in the United States, Europe, Japan, and elsewhere. Ongoing concerns with the global environment, as well as the worldwide efforts to seek alternate, indigenous sources of energy, continue to drive the investment in PV research and deployment. Today, the manufacture, sale, and use of PV has become a billion-dollar industry worldwide, with nearly 200 megawatts (MW) of PV modules shipped in 1999. The twenty five years of research and development led to the discovery of new PV materials, devices, and fabrication approaches; continuing improvements in the efficiency and reliability of solar cells and modules; and lower PV module and system costs. This talk reviews the rapid progress that has occurred in PV technology from the laboratory to the marketplace, including reviews of the leading technology options, status and issues, and key industry players. New processes for fabricating PV materials and devices, and innovative PV approaches with low-cost potential are elements of an ongoing research program aimed at future advancements in PV cost and performance While major market opportunities continue to exist in the developing countries, where sizable populations are without any electricity, today's manufacturing expansions are fueled by market initiatives for grid-connected PV in residential and commercial buildings. The combinations of increased production capacities, with the attendant cost reductions as a result of economies of scale, are expected to lead to sustainable markets. A key to achieving the ultimate potential of PV is to continue to increase the sunlight-to-electricity conversion efficiencies and translate the laboratory successes to cost-competitive products. Building a robust technology base is essential

  9. Flat-plate solar array project of the US Department of Energy's National Photovoltaics Program: Ten years of progress

    NASA Technical Reports Server (NTRS)

    Christensen, Elmer

    1985-01-01

    The Flat-Plate Solar Array (FSA) Project, a Government-sponsored photovoltaics project, was initiated in January 1975 (previously named the Low-Cost Silicon Solar Array Project) to stimulate the development of PV systems for widespread use. Its goal then was to develop PV modules with 10% efficiency, a 20-year lifetime, and a selling price of $0.50 per peak watt of generating capacity (1975 dollars). It was recognized that cost reduction of PV solar-cell and module manufacturing was the key achievement needed if PV power systems were to be economically competitive for large-scale terrestrial use.

  10. Photovoltaic energy gas generating apparatus

    SciTech Connect

    Ahuja, O.

    1986-01-21

    This patent describes an apparatus for the recovery and storage of hydrogen, cathode gas, from water. The apparatus consists of: (A) and aquatic float, the float defining: (I) a cathode gas collection chamber, (II) at least one outlet to the collection chamber for withdrawing the collected gas, (III) elongate tubes extending downwardly from the collection chamber and in open communication, (IV) the displacement of the float creating a column of water within each elongate tube, (B) at least one cathode within each elongate tube, the cathodes extending downwardly from the upper ends of the elongate tube to a predetermined level, (C) at least one anode outside the elongate tubes extending downwardly from the float into the water, (D) a photovoltaic panel mounted on the collection chamber and in electrical communication with the cathodes and anodes to electrolyze the water and collect the electrolyzed cathode gas about the cathode within the elongate tubes. The electrolyzed cathode gas rises within the elongate tubes to collect within the collection chamber until the float rises above the predetermined level whereupon the electrolysis is automatically terminated as the cathodes and/or anodes rise above the water.

  11. The Air Force concentrating photovoltaic array program

    NASA Technical Reports Server (NTRS)

    Geis, Jack W.

    1987-01-01

    A summary is given of Air Force solar concentrator projects beginning with the Rockwell International study program in 1977. The Satellite Materials Hardening Programs (SMATH) explored and developed techniques for hardening planar solar cell array power systems to the combined nuclear and laser radiation threat environments. A portion of program dollars was devoted to developing a preliminary design for a hardened solar concentrator. The results of the Survivable Concentrating Photovoltaic Array (SCOPA) program, and the design, fabrication and flight qualification of a hardened concentrator panel are discussed.

  12. Solar energy: Program summary document

    NASA Astrophysics Data System (ADS)

    1980-08-01

    Solar programs and the eight solar technologies are discussed, including biomass energy systems, photovoltaic energy systems, wind energy conversion systems, solar thermal power, ocean systems, agricultural and industrial process heat, active solar heating and cooling, passive and hybrid solar heating and cooling.

  13. Photovoltaics as a terrestrial energy source. Volume 1: An introduction

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1980-01-01

    Photovoltaic (PV) systems were examined their potential for terrestrial application and future development. Photovoltaic technology, existing and potential photovoltaic applications, and the National Photovoltaics Program are reviewed. The competitive environment for this electrical source, affected by the presence or absence of utility supplied power is evaluated in term of systems prices. The roles of technological breakthroughs, directed research and technology development, learning curves, and commercial demonstrations in the National Program are discussed. The potential for photovoltaics to displace oil consumption is examined, as are the potential benefits of employing PV in either central-station or non-utility owned, small, distributed systems.

  14. Information and guidelines for a proposed laboratory accreditation and product certification program for photovoltaic energy conversion systems

    NASA Astrophysics Data System (ADS)

    Thomas, D. B.

    1980-08-01

    An overview of the advantages and disadvantages of laboratory accreditation and product certification including economic factors that should be considered for such programs is presented. Detailed information is also provided on the two national programs for accrediting laboratories, the Department of Commerce National Voluntary Laboratory Accreditation Program and the American Association for Laboratory Accreditation. Information on the California and Florida state programs for laboratory accreditation and product certification of solar collector systems is given as examples of programs that were in operation for several years.

  15. Silicon nanowires for photovoltaic solar energy conversion.

    PubMed

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  16. NASA Programs in Space Photovoltaics

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1992-01-01

    Highlighted here are some of the current programs in advanced space solar cell and array development conducted by NASA in support of its future mission requirements. Recent developments are presented for a variety of solar cell types, including both single crystal and thin film cells. A brief description of an advanced concentrator array capable of AM0 efficiencies approaching 25 percent is also provided.

  17. PV Standards Work: Photovoltaic System and Component Certification, Test Facility Accreditation, and Solar Photovoltaic Energy Systems International Standards

    SciTech Connect

    Basso, T. S.; Chalmers, S.; Barikmo, H. O.

    2005-11-01

    This paper discusses efforts led by two companies (PowerMark Corporation and Sunset Technologies Inc.) to support both U.S. domestic and international photovoltaic (PV) system and component certification and test facility accreditation programs and the operation of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC-82) Photovoltaic Energy Systems. International and national PV certification/accreditation programs are successfully facilitating entry of only the highest quality PV products into the marketplace. Standards also continue to be a cornerstone for assuring global PV product conformity assessment, reducing non-tariff trade barriers, and ultimately improving PV products while lowering cost.

  18. Parametric study of laser photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  19. Summary results of an assessment of research projects in the National Photovoltaics Program

    SciTech Connect

    1995-07-01

    The Office of Energy Research (OER) undertook an assessment of 115 research projects (listed in Appendix A) sponsored by the National Photovoltaics Program. The Program is located within the Office of Energy Efficiency and Renewable Energy (EE). This report summarizes the results of that review. The Office of Solar Energy Conversion is responsible for the management of the National Photovoltaics Program. This program focuses on assisting US industry in development of fundamental technology to bring advanced photovoltaic energy systems to commercial use. The purpose of the assessment was to determine the following: (1) the quality of research of individual projects; (2) the impact of these individual projects on the mission of the program; and (3) the priority of future research opportunities.

  20. Photovoltaic energy systems: Design and installation

    NASA Astrophysics Data System (ADS)

    Buresch, M.

    The characteristics of solar radiation, the design of solar cells, and the installation of Si solar cell arrays for various applications are described. The discussion is limited to medium-scale photovoltaic systems, from 0.1-100 kW peak output, mounted in fixed flat plate modules, the simplest, most maintenance-free concept. Solar cell functioning principles are outlined, including the parasitic mechanisms which reduce cell efficiency. The magnitude, variations, and distribution of the global solar energy input are quantified. Consideration is given to series and parallel connected solar arrays, and to performance under a variable load. Array protection and failure detection are explored, as are integrated array power conditioning equipment comprising energy storage, voltage regulation, and ac to dc converters. Attention is also devoted to array mounting and matching solar cell systems to load.

  1. NASA's space energy technology program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Byers, D. C.; Ambrus, J. H.; Loria, J. C.

    1984-01-01

    NASA's Space Energy Systems program is concerned with the development of technology for space missions requiring high performance, such as geostationary orbit communication satellites and planetary spacecraft, and high capacity, such as the planned Space Station and lunar bases; these two requirements often lead to great differences in system design. The program accordingly addresses a wide range of candidate technologies, which encompasses photovoltaics, chemical energy conversion and storage, thermoelectric conversion, power management and distribution, and thermal management.

  2. Future of photovoltaic energy conversion in developing countries

    SciTech Connect

    Hogan, S.

    1980-04-01

    Recent studies reveal that photovoltaic energy conversion will be economically viable for usage in developing countries. An overview of programs designed to lower the costs of such conversion systems is presented. Government goals are reviewed, as well as application projects relative to rural usage. A summary of the state-of-the-art in both advanced research and commercially available technology is presented. It is concluded that with the range of the work being done, such systems will be viable for many rural applications within 5 years.

  3. Engineering Interfaces for Photovoltaic Energy Conversion

    NASA Astrophysics Data System (ADS)

    Bent, Stacey

    2011-03-01

    Dye-sensitized solar cells (DSSCs) and the related quantum dot-sensitized solar cells (QDSSCs) show promise as inexpensive, efficient next-generation photovoltaic technologies. A typical cell design consists of a sensitizer chemisorbed to a nanoporous Ti O2 substrate; the sensitizer absorbs a photon and an excited electron is injected into the Ti O2 where it diffuses to the anode. However, many devices suffer from a high rate of electron-hole recombination at the interface between Ti O2 and the hole conductive material, leading to reduced conversion efficiency. In this work we explore whether a passivating layer at the interface can improve efficiency by acting as a barrier against electron recombination. We have studied both organic and inorganic approaches to modifying the interfacial properties in DSSC and QDSSC devices. In studies of CdS-based QDSSCs, a series of organic self-assembled monolayers were formed at the interface, and their effect on CdS uptake and resulting optoelectronic and device properties was investigated. In DSSCs, nanoscale inorganic dielectric films of different thicknesses were applied to the interface using atomic layer deposition prior to dye absorption. The effect on device performance was measured experimentally and compared with predictions from kinetic models. The results of these investigations will be discussed in the context of the ability of interface engineering to improve photovoltaic energy conversion.

  4. Combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  5. Combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  6. Solar photovoltaic/thermal (hybrid) energy project

    NASA Astrophysics Data System (ADS)

    Sheldon, D. B.

    1981-09-01

    Development of photovoltaic/thermal (PV/T) collectors and residential heat pump systems is reported. Candidate collector and residential heat pump systems were evaluated using the TRNSYS computer program. It is found that combined heat pump and PV array is a promising method for achieving economical solar cooling. Where the cooling load is dominant, exclusively PV collectors rather than PV/T collectors are preferred. Where the heating load is dominant, the thermal component of PV/T collectors makes a significant contribution to heating a residence. PV/T collectors were developed whose combined efficiency approaches the efficiency of a double glazed, exclusively thermal collector. The design and operational problems of air source heat pumps are reviewed. Possible effects of compressor startup transients on PV power system operation are discussed.

  7. Photovoltaics as a terrestrial energy source. Volume 3: An overview

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1980-01-01

    Photovoltaic (PV) systems were evaluated in terms of their potential for terrestrial application A comprehensive overview of important issues which bear on photovoltaic (PV) systems development is presented. Studies of PV system costs, the societal implications of PV system development, and strategies in PV research and development in relationship to current energy policies are summarized.

  8. Photovoltaics as a terrestrial energy source. Volume 3: An overview

    NASA Astrophysics Data System (ADS)

    Smith, J. L.

    1980-10-01

    Photovoltaic (PV) systems were evaluated in terms of their potential for terrestrial application A comprehensive overview of important issues which bear on photovoltaic (PV) systems development is presented. Studies of PV system costs, the societal implications of PV system development, and strategies in PV research and development in relationship to current energy policies are summarized.

  9. Revitalize Electrical Program with Renewable Energy Focus

    ERIC Educational Resources Information Center

    Karns, Robert J.

    2012-01-01

    Starting a renewable energy technology (RET) program can be as simple as shifting the teaching and learning focus of a traditional electricity program toward energy production and energy control systems. Redirecting curriculum content and delivery to address photovoltaic solar (PV solar) technology and small wind generation systems is a natural…

  10. Revitalize Electrical Program with Renewable Energy Focus

    ERIC Educational Resources Information Center

    Karns, Robert J.

    2012-01-01

    Starting a renewable energy technology (RET) program can be as simple as shifting the teaching and learning focus of a traditional electricity program toward energy production and energy control systems. Redirecting curriculum content and delivery to address photovoltaic solar (PV solar) technology and small wind generation systems is a natural…

  11. Photovoltaic Subcontract Program, FY 1991. Annual report, [October 1, 1990--September 30, 1991

    SciTech Connect

    Not Available

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  12. Enhanced Reliability of Photovoltaic Systems with Energy Storage and Controls

    SciTech Connect

    Manz, D.; Schelenz, O.; Chandra, R.; Bose, S.; de Rooij, M.; Bebic, J.

    2008-02-01

    This report summarizes efforts to reconfigure loads during outages to allow individual customers the opportunity to enhance the reliability of their electric service through the management of their loads, photovoltaics, and energy storage devices.

  13. NREL Photovoltaic Program. FY 1994 annual report, October 1, 1993--September 30, 1994

    SciTech Connect

    1995-06-01

    This report summarizes the in-house and subcontracted research and development activities under the National renewable Energy Laboratory (NREL) Photovoltaics (PV) program for fiscal year 1994. Research is organized under the following areas; PV program management; crystalline silicon and advanced devices; thin-film PV technologies; PV manufacturing; PV module and system performance and engineering; and PV applications and markets.

  14. Photovoltaic (PV) Power Systems for Enhancing Energy Security

    DTIC Science & Technology

    2012-05-24

    Energy and Environment Technology Transition – Supporting DoD Readiness, Sustainability, and the Warfighter Photovoltaic (PV) Power Systems for...to 00-00-2012 4. TITLE AND SUBTITLE Photovoltaic (PV) Power Systems for Enhancing Energy Security 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...use of 235W solar panels Note [2] System AC Rating based upon typical .77 conversion factor from DC power to AC power ConsiderationNo. PV LAYOUT OPTION

  15. DOE project review Massachusetts Photovoltaic Program. Annual report, June 1989--July 1990

    SciTech Connect

    1996-06-01

    This is the third year of operations for work under the Cooperative Agreement between the Commonwealth of Massachusetts Photovoltaic Center and the U.S. Department of Energy. As a collaborative effort with shared resources, the activity at the Photovoltaic Center and the University of Lowell Photovoltaic Program has continued to advance the utilization and implementation of photovoltaic-powered systems into society. The programs and activities developed over the past three years have supported strategies that cover both international utilization as well as domestic application. Three major areas of activities have centered around the following themes: (1) The identification of market opportunities to enlarge sales potential for the photovoltaic industry. (2) The development of a knowledgeable infrastructure to support PV diffusion in Massachusetts, in the United States, and around the world. (3) The analysis of the physical, economic, and regulatory environment in which PV must compete with mature energy technologies. This past year has been an experience of contrasts for the Photovoltaic Center. Projects and activities have resulted in the successful completion of programs goals.

  16. Report on the photovoltaic RandD program in Hawaii

    SciTech Connect

    Neill, D.R.; Granborg, B.S.M.

    1986-12-01

    Photovoltaic systems provide one of the best options to generate energy in Hawaii, a state that is more than 90 percent dependent on imported oil for its energy supply. Hawaii's excellent year-round insolation rates will contribute to the success of solar energy projects. The Hawaii Natural Energy Institute's program to accelerate utilization of PV power in Hawaii has thus far consisted of a continuation of a 50-year data base of solar insolation; an experimental program with grid-connected residential PV systems; and public information dissemination on PV technology and performance. HNEI is now developing a program that includes: (1) compiling a solar data base that includes a full solar resource assessment, with spectral analysis and measurement of direct insolation, (2) tests of various PV devices relative to insolation; (3) test and evaluation of contemporary PV powered systems (e.g. water pumping, refrigeration, communication and stand-alone residential applications) under various tropical island conditions; and (4) a technology transfer effort aimed at Hawaii and other Pacific Basin islands, including cost-benefit and market analyses.

  17. A study of water electrolysis with photovoltaic solar energy conversion

    NASA Astrophysics Data System (ADS)

    Carpetis, C.

    The performance of the hydrogen production system consisting of the photovoltaic array and the water electrolysis unit is studied. The results of the calculation are compared with available experimental data and the performance of a hydrogen production plant by means of photovoltaic solar energy conversion is determined for two typical locations. A method for the estimation of the power matching conditions of the system solar array electrolysis unit is formulated to allow conclusions of general validity.

  18. PHOTOVOLTAIC AND THERMOELECTRIC SOLAR ENERGY CONVERSION USING THIN FILMS,

    DTIC Science & Technology

    Solar energy conversion by the use of thin films in photovoltaic and thermoelectric devices is discussed. Experimental work is presented on the fabrication of a thin film cadmium sulfide cell which utilizes the photovoltaic effect. A theoretical investigation is made of the temperature differences obtainable in space by using thin, light-weight plastic sheets, and the use of such plastics for thermoelectric generators is discussed. Temperature differences of several hundred centrigrade degrees can be obtained. (Author)

  19. Modular assembly of a photovoltaic solar energy receiver

    DOEpatents

    Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.

    1978-01-01

    There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

  20. Photovoltaics as a terrestrial energy source. Volume 2: System value

    NASA Astrophysics Data System (ADS)

    Smith, J. L.

    1980-10-01

    Assumptions and techniques employed by the electric utility industry and other electricity planners to make estimates of the future value of photovoltaic (PV) systems interconnected with U.S. electric utilities were examined. Existing estimates of PV value and their interpretation and limitations are discussed. PV value is defined as the marginal private savings accruing to potential PV owners. For utility-owned PV systems, these values are shown to be the after-tax savings in conventional fuel and capacity displaced by the PV output. For non-utility-owned (distributed) systems, the utility's savings in fuel and capacity must first be translated through the electric rate structure (prices) to the potential PV system owner. Base-case estimates of the average value of PV systems to U.S. utilities are presented. The relationship of these results to the PV Program price goals and current energy policy is discussed; the usefulness of PV output quantity goals is also reviewed.

  1. Photovoltaics as a terrestrial energy source. Volume 2: System value

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1980-01-01

    Assumptions and techniques employed by the electric utility industry and other electricity planners to make estimates of the future value of photovoltaic (PV) systems interconnected with U.S. electric utilities were examined. Existing estimates of PV value and their interpretation and limitations are discussed. PV value is defined as the marginal private savings accruing to potential PV owners. For utility-owned PV systems, these values are shown to be the after-tax savings in conventional fuel and capacity displaced by the PV output. For non-utility-owned (distributed) systems, the utility's savings in fuel and capacity must first be translated through the electric rate structure (prices) to the potential PV system owner. Base-case estimates of the average value of PV systems to U.S. utilities are presented. The relationship of these results to the PV Program price goals and current energy policy is discussed; the usefulness of PV output quantity goals is also reviewed.

  2. Assessment of the technology required to develop photovoltaic power system for large scale national energy applications

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1974-01-01

    A technical assessment of a program to develop photovoltaic power system technology for large-scale national energy applications was made by analyzing and judging the alternative candidate photovoltaic systems and development tasks. A program plan was constructed based on achieving the 10 year objective of a program to establish the practicability of large-scale terrestrial power installations using photovoltaic conversion arrays costing less than $0.50/peak W. Guidelines for the tasks of a 5 year program were derived from a set of 5 year objectives deduced from the 10 year objective. This report indicates the need for an early emphasis on the development of the single-crystal Si photovoltaic system for commercial utilization; a production goal of 5 x 10 to the 8th power peak W/year of $0.50 cells was projected for the year 1985. The developments of other photovoltaic conversion systems were assigned to longer range development roles. The status of the technology developments and the applicability of solar arrays in particular power installations, ranging from houses to central power plants, was scheduled to be verified in a series of demonstration projects. The budget recommended for the first 5 year phase of the program is $268.5M.

  3. Smart integrated energy monitoring and management system for standalone photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Abou-Elnour, Ali; Murad, Fahd S.; Al-Tayasna, Ibrahim S.; Abo-Elnor, Ossama

    2013-04-01

    In the present work, a computer based smart integrated energy monitoring and management system for standalone photovoltaic systems is designed and implemented. Monitoring, controlling, and recording features are fully obtained in the present system using an efficient programming environment. All required data are monitored as real-time data therefore the system status is continuously evaluated and decisions are made to take immediate actions. The energy consumption of different appliances are automatically controlled and optimized using a hierarchical self adaptive algorithm based on input data and real-time information provided by the system sensors. The proposed system is successfully implemented for photovoltaic modules under realistic operating conditions.

  4. Final Technical Report - Photovoltaics for You (PV4You) Program

    SciTech Connect

    Weissman, J. M.; Sherwood, L.; Pulaski, J.; Cook, C.; Kalland, S.; Haynes, J.

    2005-08-14

    In September 2000, the Interstate Renewable Energy Council (IREC) began its 5-year work on contract # DE-FGO3-00SF22116, the Photovoltaics for You (PV4You) Project. The objective was to develop and distribute information on photovoltaics and to educate key stakeholder groups including state government agencies, local government offices, consumer representative agencies, school officials and students, and Million Solar Roofs Partnerships. In addition, the project was to identify barriers to the deployment of photovoltaics and implement strategies to overcome them. Information dissemination and education was accomplished by publishing newsletters; creating a base of information, guides, and models on the www.irecusa.org and the www.millionsolarroofs.org web sites; convening workshops and seminars; engaging multiple stakeholders; and widening the solar network to include new consumers and decision makers. Two major web sites were maintained throughout the project cycle. The www.irecusa.org web site housed dedicated pages for Connecting to the Grid, Schools Going Solar, Community Outreach, and Certification & Training. The www.millionsolarroofs.org web site was created to serve the MSR Partnerships with news, interviews, key documents, and resource material. Through the course of this grant, the Interstate Renewable Energy Council has been supporting the Department of Energy's solar energy program goals by providing the Department with expertise services for their network of city, state, and community stakeholders. IREC has been the leading force at the state and federal levels regarding net metering and interconnection policy for photovoltaic systems. The principal goal and benefit of the interconnection and net metering work is to lower both barriers and cost for the installation of PV. IREC typically plays a leadership role among small generator stakeholders and has come to be relied upon for its expertise by industry and regulators. IREC also took a leadership

  5. Interim performance criteria for photovoltaic energy systems. [Glossary included

    SciTech Connect

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  6. Electric vehicle/photovoltaic test and evaluation program. Final report

    SciTech Connect

    1997-06-01

    The University of South Florida (USF) in collaboration with Florida utilities and other organizations have executed a research and development program for the test and evaluation of Electric Vehicles. Its activity as one of 13 US Department of Energy (DOE) Electric Vehicle Test Site Operators was funded by DOE and the Florida Energy Office (FEO). The purpose of this program was to determine the efficiency of electric vehicles under commuter and fleet conditions in Florida. An additional feature of this program was the development of a utility interconnected photovoltaic (PV) system for charging electric vehicles with solar energy. USF developed an effective and economical automated on board Mobile Data Acquisition System (MDAS) that records vehicle operating data with minimum operator interface. Computer programs were written by the USF team to achieve processing and analysis of the vehicles` MDAS data, again minimizing human involvement, human effort and human error. A large number of passenger cars, vans and pickup trucks were studied. Procedures for monitoring them were developed to a point where the equipment is commercially available and its operation has become routine. The nations first PV solar powered electric vehicle charging station and test facility was designed, developed and put into operation under this program. The charging station is capable of direct DC-DC (PV to battery) or AC-DC (power grid to battery) charging and it routes unused PV power to the University`s power grid for other use. The DC-DC charging system is more efficient, more dependable and safer than DC-AC-DC and traditional methods of DC-DC charging. A fortuitous correlation was observed between battery charging demand and solar power availability in commuter application of electric vehicles.

  7. Photovoltaics as an operating energy system

    SciTech Connect

    Jones, G.J.; Post, H.N.; Thomas, M.G.

    1988-01-01

    In the short time since the discovery of the modern solar cell in 1954, terrestrial photovoltaic power system technology has matured in all areas, from collector reliability to system and subsystem design and operations. Today's PV systems are finding widespread use in powering loads where conventional sources are either unavailable, unreliable, or too costly. A broad range of applications is possible because of the modularity of the technology---it can be used to power loads ranging from less than a watt to several megawatts. This inherent modularity makes PV an excellent choice to play a major role in rural electrification in the developing world. The future for grid-connected photovoltaic systems is also very promising. Indications are that several of today's technologies, at higher production rates and in megawatt-sized installations, will generate electricity in the vicinity of $0.12/kWh in the near future. 12 refs., 3 figs.

  8. Strained quantum well photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Freundlich, Alexandre (Inventor); Renaud, Philippe (Inventor); Vilela, Mauro Francisco (Inventor); Bensaoula, Abdelhak (Inventor)

    1998-01-01

    An indium phosphide photovoltaic cell is provided where one or more quantum wells are introduced between the conventional p-conductivity and n-conductivity indium phosphide layer. The approach allows the cell to convert the light over a wider range of wavelengths than a conventional single junction cell and in particular convert efficiently transparency losses of the indium phosphide conventional cell. The approach hence may be used to increase the cell current output. A method of fabrication of photovoltaic devices is provided where ternary InAsP and InGaAs alloys are used as well material in the quantum well region and results in an increase of the cell current output.

  9. Enhanced photovoltaic energy conversion using thermally based spectral shaping

    NASA Astrophysics Data System (ADS)

    Bierman, David M.; Lenert, Andrej; Chan, Walker R.; Bhatia, Bikram; Celanović, Ivan; Soljačić, Marin; Wang, Evelyn N.

    2016-06-01

    Solar thermophotovoltaic devices have the potential to enhance the performance of solar energy harvesting by converting broadband sunlight to narrow-band thermal radiation tuned for a photovoltaic cell. A direct comparison of the operation of a photovoltaic with and without a spectral converter is the most critical indicator of the promise of this technology. Here, we demonstrate enhanced device performance through the suppression of 80% of unconvertible photons by pairing a one-dimensional photonic crystal selective emitter with a tandem plasma-interference optical filter. We measured a solar-to-electrical conversion rate of 6.8%, exceeding the performance of the photovoltaic cell alone. The device operates more efficiently while reducing the heat generation rates in the photovoltaic cell by a factor of two at matching output power densities. We determined the theoretical limits, and discuss the implications of surpassing the Shockley-Queisser limit. Improving the performance of an unaltered photovoltaic cell provides an important framework for the design of high-efficiency solar energy converters.

  10. Photovoltaic and thermal energy conversion for solar powered satellites

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  11. Linear Fresnel lens photovoltaic concentrator program

    SciTech Connect

    Kull, J.; Maraschin, R.; Rafinejad, D.; Spencer, R.; Sutton, G.

    1983-08-01

    This report describes Acurex Corporation's design of a linear Fresnel lens Photovoltaic Concentrator Panel. The panel consists of four concentrator modules in an integrated structure. Each module is 10 ft long and has a 39.85 in aperture. The solar cell's active width is 0.90 in. and the cell-lens edge spacing is 23.39 in. There are 58 cells per module. A prototype panel was built and tested. Test results showed a peak electrical efficiency of 10.5% at the operating conditions of 800 W/m/sup 2/ insolation and 90/sup 0/F coolant temperature. The prototype exhibits the manufacturing and assembly concepts developed.

  12. Solar photovoltaic as an energy source for India

    SciTech Connect

    Anantha, A.

    1997-12-31

    Solar photovoltaic based power and energy systems are gaining recognition due to the availability and high solar insolation in most parts of India and its inherent advantage of direct conversion to power unlike a solar thermal system. Its application in remote areas, its advantage as a stand alone system, its environmental friendliness and its inexhaustibility are some of the positive features of this wonderful source of energy. However, the limitations of day and night cycle and high costs in comparison to other sources of energy apply partial brakes on its ready acceptance. More and more research is called for in the area of solar photovoltaics along with discovery of alternative materials with higher efficiency of conversion, reduced panel areas per kW and effective, economic and durable storage systems for sustained production of power. This source alone, if costs can be reduced substantially, can meet the entire requirement of the country. Solar photovoltaics can also be utilized for bulk power for grid interconnected applications. It has a good scope for utilization on the hybrid system, for pumping of drinking water and remote area power systems. This paper discusses all the features of the solar photovoltaic system, its cost comparison with other sources, its merits and demerits as of now, Government policy support, R and D efforts in India and strategies for commercialization.

  13. Potential environmental problems of photovoltaic energy technology

    SciTech Connect

    Hendrey, G.R.; Moskowitz, P.D.; Patten, D.; Berry, W.; Conway, H.L.

    1980-01-01

    Separate abstracts were prepared for the ten papers of this proceedings of a workshop held at Brookhaven National Laboratory in 1980. The purposes of this proceedings are to provide a preliminary identificaton and assessment of environmental hazards which might be realistically associated with growth of the photovoltaic industry, and to provide a reference for environmental considerations by obtaining a 1980 state-of-the-art assessment of growth anticipated for the industry. Currently the industry is considered to be in the early stages of development and several possible technological options are available for large-scale manufacturing as the industry grows. Estimates of the industrial emissions of materials considered to be potentially harmful in the environment were obtained by several different analytical methods. (KRM)

  14. Introducing a computer program devoted to renewable integration assessment of multi-field solar photovoltaic power plants

    SciTech Connect

    Gil, M.A.C.; Arroba, J.P.; Ibanez, J.C.; Criado, J.A.R.

    1996-11-01

    The objectives of this paper are to present a computer program devoted to the simulation of solar photovoltaic power plants, namely the assessment of their power generation technical potential. The most general configuration of a former program devoted to single-field photovoltaic generators has been extended and updated to multi-field systems. This program is also intended to provide capabilities in order to assess the integration of renewable energy resources. Mainly solar and wind energy systems will be considered, as well as pumped-storage stations, of which an example is included.

  15. Energy efficient two-phase cooling for concentrated photovoltaic arrays

    NASA Astrophysics Data System (ADS)

    Reeser, Alexander Douglas

    Concentrated sunlight focused on the aperture of a photovoltaic solar cell, coupled with high efficiency, triple junction cells can produce much greater power densities than traditional 1 sun photovoltaic cells. However, the large concentration ratios will lead to very high cell temperatures if not efficiently cooled by a thermal management system. Two phase, flow boiling is an attractive cooling option for such CPV arrays. In this work, two phase flow boiling in mini/microchannels and micro pin fin arrays will be explored as a possible CPV cooling technique. The most energy efficient microchannel design is chosen based on a least-material, least-energy analysis. Heat transfer and pressure drop obtained in micro pin fins will be compared to data in the recent literature and new correlations for heat transfer coefficient and pressure drop will be presented. The work concludes with an energy efficiency comparison of micro pin fins with geometrically similar microchannel geometry.

  16. Solar breeder: Energy payback time for silicon photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1977-01-01

    The energy expenditures of the prevailing manufacturing technology of terrestrial photovoltaic cells and panels were evaluated, including silicon reduction, silicon refinement, crystal growth, cell processing and panel building. Energy expenditures include direct energy, indirect energy, and energy in the form of equipment and overhead expenses. Payback times were development using a conventional solar cell as a test vehicle which allows for the comparison of its energy generating capability with the energies expended during the production process. It was found that the energy payback time for a typical solar panel produced by the prevailing technology is 6.4 years. Furthermore, this value drops to 3.8 years under more favorable conditions. Moreover, since the major energy use reductions in terrestrial manufacturing have occurred in cell processing, this payback time directly illustrates the areas where major future energy reductions can be made -- silicon refinement, crystal growth, and panel building.

  17. Lithium Ion Cell Development for Photovoltaic Energy Storage Applications

    SciTech Connect

    Babinec, Susan

    2012-02-08

    The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge

  18. New approaches to photovoltaic and photoelectrochemical energy conversion

    NASA Astrophysics Data System (ADS)

    Shah, S. Ismat; Lin, Hong-Ying; Miao, Yinghong; Schulz, Meghan E.

    2008-04-01

    In response to skyrocketing fuel costs and evidence of climate change, real technological progress is needed towards harnessing the clean power from the sun to drive human progress. Here we present two approaches to harnessing solar energy currently under investigation in our group. One involves novel photovoltaic cells using different sized quantum dots. Another uses proven photocatalysts to directly electrolyze water, producing hydrogen. The technological background will be discussed, as well as current state of the art and future research direction.

  19. Photovoltaic module energy rating procedure. Final subcontract report

    SciTech Connect

    Whitaker, C.M.; Newmiller, J.D.

    1998-01-01

    This document describes testing and computation procedures used to generate a photovoltaic Module Energy Rating (MER). The MER consists of 10 estimates of the amount of energy a single module of a particular type (make and model) will produce in one day. Module energy values are calculated for each of five different sets of weather conditions (defined by location and date) and two load types. Because reproduction of these exact testing conditions in the field or laboratory is not feasible, limited testing and modeling procedures and assumptions are specified.

  20. Photovoltaics: Program overview fiscal year 1993

    SciTech Connect

    Not Available

    1994-02-01

    This overview is divided into sections titled: 1993 PV program accomplishments, PV systems for today`s markets generate power and experience, systems development and testing prepares products for market, advances in manufacturing hasten availability of innovations, cooperative research improves PV technology, additional achievements in cooperative R&D, and summary of PV program services. Figs, tabs.

  1. Task V of the IEA Photovoltaic Power Systems Program: Implementing Accomplishments and Activities

    SciTech Connect

    Bower, Ward

    1999-06-10

    The International Energy Agency (IEA) is an energy forum for 24 industrialized countries and was established in 1974 as an autonomous body within the Organization for Economic Cooperation and Development (OECD). The IEA Photovoltaic Power Systems (PVPS) program implementing agreement was signed in 1993, and renewed for another five years in 1998. Twenty-two countries are collaborating under the auspices of the IEA in the PVPS to address common technical and informational barriers that often limit the rate at which photovoltaic technologies advance into the markets. Task V of the IEA PVPS is entitled "Grid Interconnection of Building-Integrated and Other Dispersed Photovoltaic Power Systems." The task sponsored a workshop in September 1997 on grid-interconnection of photovoltaic systems and is planning a second workshop to address impacts of more penetration of dispersed systems into the utility grid. This paper will summarize the accomplishments of Task V over the last five years and will detail the planned work for the next three years.

  2. Energy conversion approaches and materials for high-efficiency photovoltaics.

    PubMed

    Green, Martin A; Bremner, Stephen P

    2016-12-20

    The past five years have seen significant cost reductions in photovoltaics and a correspondingly strong increase in uptake, with photovoltaics now positioned to provide one of the lowest-cost options for future electricity generation. What is becoming clear as the industry develops is that area-related costs, such as costs of encapsulation and field-installation, are increasingly important components of the total costs of photovoltaic electricity generation, with this trend expected to continue. Improved energy-conversion efficiency directly reduces such costs, with increased manufacturing volume likely to drive down the additional costs associated with implementing higher efficiencies. This suggests the industry will evolve beyond the standard single-junction solar cells that currently dominate commercial production, where energy-conversion efficiencies are fundamentally constrained by Shockley-Queisser limits to practical values below 30%. This Review assesses the overall prospects for a range of approaches that can potentially exceed these limits, based on ultimate efficiency prospects, material requirements and developmental outlook.

  3. Energy conversion approaches and materials for high-efficiency photovoltaics

    NASA Astrophysics Data System (ADS)

    Green, Martin A.; Bremner, Stephen P.

    2017-01-01

    The past five years have seen significant cost reductions in photovoltaics and a correspondingly strong increase in uptake, with photovoltaics now positioned to provide one of the lowest-cost options for future electricity generation. What is becoming clear as the industry develops is that area-related costs, such as costs of encapsulation and field-installation, are increasingly important components of the total costs of photovoltaic electricity generation, with this trend expected to continue. Improved energy-conversion efficiency directly reduces such costs, with increased manufacturing volume likely to drive down the additional costs associated with implementing higher efficiencies. This suggests the industry will evolve beyond the standard single-junction solar cells that currently dominate commercial production, where energy-conversion efficiencies are fundamentally constrained by Shockley-Queisser limits to practical values below 30%. This Review assesses the overall prospects for a range of approaches that can potentially exceed these limits, based on ultimate efficiency prospects, material requirements and developmental outlook.

  4. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  5. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  6. Cost of photovoltaic energy systems as determined by balance-of-system costs

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.

    1978-01-01

    The effect of the balance-of-system (BOS), i.e., the total system less the modules, on photo-voltaic energy system costs is discussed for multikilowatt, flat-plate systems. Present BOS costs are in the range of 10 to 16 dollars per peak watt (1978 dollars). BOS costs represent approximately 50% of total system cost. The possibility of future BOS cost reduction is examined. It is concluded that, given the nature of BOS costs and the lack of comprehensive national effort focussed on cost reduction, it is unlikely that BOS costs will decline greatly in the next several years. This prognosis is contrasted with the expectations of the Department of Energy National Photovoltaic Program goals and pending legislation in the Congress which require a BOS cost reduction of an order of magnitude or more by the mid-1980s.

  7. Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device.

    PubMed

    Chien, Chih-Tao; Hiralal, Pritesh; Wang, Di-Yan; Huang, I-Sheng; Chen, Chia-Chun; Chen, Chun-Wei; Amaratunga, Gehan A J

    2015-06-24

    Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate.

  8. The Redox Flow System for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  9. Photovoltaics as a worldwide energy option: A case study in development strategy

    NASA Astrophysics Data System (ADS)

    Jones, G.; Pate, R.; Hill, R.

    Renewable energy technologies, such as solar thermal electric, photovoltaics (PV), and wind energy have made significant gains in cost and performance in the past decades. As a result, there have been high expectations on the part of the public for these sources to play a major role in future energy supply, especially as environmental concerns about conventional sources increase. Despite these past gains and high expectations, the global potential of renewable energy technologies still remains largely untapped, principally because of issues of industrialization and user acceptance. There is increasing recognition that government energy programs must incorporate a broader strategy than the traditional basic research role if they are to address these issues. Essential elements of this strategy are affordable technology, a healthy industry, sustained market growth, user acceptance, and equitable policy and financial environments. The U.S. Department of Energy (DOE) programs in solar electric conversion have already started the development of the required broader based effort. This paper presents the status of that work, using the U.S. National Photovoltaic Program as a case study.

  10. Photovoltaic module energy rating methodology development

    SciTech Connect

    Kroposki, B.; Myers, D.; Emery, K.; Mrig, L.; Whitaker, C.; Newmiller, J.

    1996-05-01

    A consensus-based methodology to calculate the energy output of a PV module will be described in this paper. The methodology develops a simple measure of PV module performance that provides for a realistic estimate of how a module will perform in specific applications. The approach makes use of the weather data profiles that describe conditions throughout the US and emphasizes performance differences between various module types. An industry-representative Technical Review Committee has been assembled to provide feedback and guidance on the strawman and final approach used in developing the methodology.

  11. Photovoltaic module energy rating methodology development

    SciTech Connect

    Kroposki, B.; Myers, D.; Emery, K.; Mrig, L.; Whitaker, C.; Newmiller, J.

    1996-05-01

    A consensus-based methodology to calculate the energy output of a PV module will be described in this paper. The methodology develops a simple measure of PV module performance that provides for a realistic estimate of how a module will perform in specific applications. The approach makes use of the weather data profiles that describe conditions throughout the United States and emphasizes performance differences between various module types. An industry-representative Technical Review Committee has been assembled to provide feedback and guidance on the strawman and final approach used in developing the methodology.

  12. Alpha Solarco`s Photovoltaic Concentrator Development program

    SciTech Connect

    Anderson, A.; Bailor, B.; Carroll, D.

    1995-10-01

    This report details the work done under Sandia`s Photovoltaic Concentrator Development contract, funded jointly by Alpha Solarco and the US Department of Energy. It discusses improvements made to the cell assembly and module design of Alpha Solarco`s point-focus, high-concentration photovoltaic module. The goals of this effort were to increase the module efficiency, reduce the manufacturing cost of the cell assembly, and increase product reliability. Redesign of the secondary optical element achieved a 4 percent increase in efficiency due to better cell fill factors and offtrack performance. New, lower cost materials were identified for the secondary optical element, the optical couple between the secondary optical element and the cell, and the cell assembly electrical insulator. Manufacturing process improvements and test equipment are also discussed.

  13. Design and development of hybrid energy generator (photovoltaics) with solar tracker

    NASA Astrophysics Data System (ADS)

    Mohiuddin, A. K. M.; Sabarudin, Mohamad Syabil Bin; Khan, Ahsan Ali; Izan Ihsan, Sany

    2017-03-01

    This paper is the outcome of a small scale hybrid energy generator (hydro and photovoltaic) project. It contains the photovoltaics part of the project. The demand of energy resources is increasing day by day. That is why people nowadays tend to move on and changes their energy usage from using fossil fuels to a cleaner and green energy like hydro energy, solar energy etc. Nevertheless, energy is hard to come by for people who live in remote areas and also campsites in the remote areas which need continuous energy sources to power the facilities. Thus, the purpose of this project is to design and develop a small scale hybrid energy generator to help people that are in need of power. This main objective of this project is to develop and analyze the effectiveness of solar trackers in order to increase the electricity generation from solar energy. Software like Solidworks and Arduino is used to sketch and construct the design and also to program the microcontroller respectively. Experimental results show the effectiveness of the designed solar tracker sytem.

  14. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    SciTech Connect

    Dasgupta, Neil; Yang, Peidong

    2013-01-23

    Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

  15. Nonlinear predictive energy management of residential buildings with photovoltaics & batteries

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Sun, Fengchun; Moura, Scott J.

    2016-09-01

    This paper studies a nonlinear predictive energy management strategy for a residential building with a rooftop photovoltaic (PV) system and second-life lithium-ion battery energy storage. A key novelty of this manuscript is closing the gap between building energy management formulations, advanced load forecasting techniques, and nonlinear battery/PV models. Additionally, we focus on the fundamental trade-off between lithium-ion battery aging and economic performance in energy management. The energy management problem is formulated as a model predictive controller (MPC). Simulation results demonstrate that the proposed control scheme achieves 96%-98% of the optimal performance given perfect forecasts over a long-term horizon. Moreover, the rate of battery capacity loss can be reduced by 25% with negligible losses in economic performance, through an appropriate cost function formulation.

  16. Bright Copper Plating Using Photovoltaic as an Energy Source

    NASA Astrophysics Data System (ADS)

    Fiala, Jozef; Michalíková, Anna

    2011-01-01

    The paper deals with utilization possibilities of solar energy (photovoltaic systems) and with transformation of this energy to chemical energy as well as its utilization in the surface treatment of metals by electrochemical processes. Surface treatments significantly contribute to the resulting quality of technical equipment. Surface treatments affect lifetime, serviceability, usability, availability and maintenance of equipment. This technology can be widely applied in machine industry in the future due to cheap electrical energy generation. Next advantage of this electrical energy generation is the decrease of negative environmental impact. The whole system is now usable for bright copper plating, but owing to the low capacity, we can use it only for the objects of small areas, around 1.10 dm2, 4.39 dm2 in ideal conditions.

  17. Advanced Photovoltaic Solar Array program status

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul M.

    1989-01-01

    The Advanced Photolvoltaic Solar Array (APSA) Program is discussed. The objective of the program is to demonstrate a producible array system by the end of this decade with a beginning-of-life (BOL) specific power of 130 W/kg at 10 kW as an intermediate milestone toward the ultimate goal of 300 W/kg at 25 kW by the year 2000. The near-term goal represents a significant improvement over existing rigid panel flight arrays (25 to 45 W/kg) and the first-generation flexible blanket NASA/OAST SAFE I array of the early 1980s, which was projected to provide about 60 W/kg BOL. The prototype wing hardware is in the last stages of fabrication and integration. The current status of the program is reported. The array configuration and key design details are shown. Projections are shown for future performance enhancements that may be expected through the use of advanced structural components and solar cells.

  18. Advanced Photovoltaic Solar Array program status

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul M.

    1989-01-01

    The Advanced Photolvoltaic Solar Array (APSA) Program is discussed. The objective of the program is to demonstrate a producible array system by the end of this decade with a beginning-of-life (BOL) specific power of 130 W/kg at 10 kW as an intermediate milestone toward the ultimate goal of 300 W/kg at 25 kW by the year 2000. The near-term goal represents a significant improvement over existing rigid panel flight arrays (25 to 45 W/kg) and the first-generation flexible blanket NASA/OAST SAFE I array of the early 1980s, which was projected to provide about 60 W/kg BOL. The prototype wing hardware is in the last stages of fabrication and integration. The current status of the program is reported. The array configuration and key design details are shown. Projections are shown for future performance enhancements that may be expected through the use of advanced structural components and solar cells.

  19. Analysis on Dissemination Conditions of Photovoltaics in Japan by Using Energy System Model MARKAL

    NASA Astrophysics Data System (ADS)

    Endo, Eiichi; Ichinohe, Masayuki

    The national target for PV capacity in Japan is 4. 82, GW in 2010, and several PV Roadmaps until 2030 are also described. To achieve the target, several support programs, such as subsidization to capital cost, Green Credit by the Green Power Certification System, buy-back under the Renewable Portfolio Standard low, have been already introduced. Carbon tax is still under consideration, but there are several analyses about possible carbon tax. The purpose of this paper is to analyze PV system sales price and subsidy through buy-back which make photovoltaics cost-competitive with other energy technologies and make the target for PV capacity achievable by 2030 in Japan under an expected carbon tax. For the analysis energy system of Japan is modeled by using MARKAL. Based on the results of analysis, under 6000, JPY/t-C carbon tax, photovoltaics needs subsidy for a while even if we taking both fuel savings and Green Credit into account. For attaining the national target for PV capacity in 2010, photovoltaics needs more expensive buy-back than that in present, but after 2010 necessary buy-back decreases gradually. If 120, JPY/W PV system sales price is attained by 2030, photovoltaics becomes cost-competitive without any supports. Subsidy through buy-back becomes almost unnecessary in 2030, if we can reduce it less than 170, JPY/W. The total necessary buy-back meets peak in 2025. It is much more than ongoing subsidy to capital cost of PV systems, but annual revenue from the assumed carbon tax can finance the annual total necessary buy-back. This means if photovoltaics can attain the targeted PV system sales price, we should support it for a while by spending carbon tax revenue effectively and efficiently.

  20. Fabrication of photovoltaic laser energy converterby MBE

    NASA Technical Reports Server (NTRS)

    Lu, Hamilton; Wang, Scott; Chan, W. S.

    1993-01-01

    A laser-energy converter, fabricated by molecular beam epitaxy (MBE), was developed. This converter is a stack of vertical p-n junctions connected in series by low-resistivity, lattice matched CoSi2 layers to achieve a high conversion efficiency. Special high-temperature electron-beam (e-beam) sources were developed especially for the MBE growth of the junctions and CoSi2 layers. Making use of the small (greater than 1.2 percent) lattice mismatch between CoSi2 and Si layers, high-quality and pinhole-free epilayers were achieved, providing a capability of fabricating all the junctions and connecting layers as a single growth process with one pumpdown. Well-defined multiple p-n junctions connected by CoSi2 layers were accomplished by employing a low growth temperature (greater than 700 C) and a low growth rate (less than 0.5 microns/hour). Producing negligible interdiffusion, the low growth temperature and rate also produced negligible pinholes in the CoSi2 layers. For the first time, a stack of three p-n junctions connected by two 10(exp -5) Ohm-cm CoSi2 layers was achieved, meeting the high conversion efficiency requirement. This process can now be optimized for high growth rate to form a practical converter with 10 p-n junctions in the stack.

  1. Review of Photovoltaic Energy Production Using Thin Film Modules

    NASA Astrophysics Data System (ADS)

    Gessert, Timothy

    2011-04-01

    It is now widely accepted that thin-film photovoltaic (PV) devices will be important contributors of new US electricity generation. The annual production of PV devices needed to meet conservative U.S. Department of Energy goals for 2050 represents ˜100 square miles of active module area (20 GW), or ˜200 times the total area of photovoltaic modules installed in the US by 2004. However, if the rate of growth observed in PV module production for the past eight years continues, 100 square miles of annual US PV production could be achieved as early as 2018. Further, the amount PV installed by 2036 could generate the entire 2004 US Total Energy Consumption (˜100 Quadrillion BTU's, i.e., the combined energy consumed in the US from petroleum, coal, natural gas, nuclear, and all renewable sources). Regardless of what assumptions are made, PV represents a significant future market for related materials and technologies. This talk will discuss thin-film PV devices within the context of the major PV technologies in production today, and indicate areas where improved material and device understanding would be beneficial. This work was performed with the support of US Department of Energy Contract No. DE-AC36-08-GO28308. This abstract is subject to government rights.

  2. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    NASA Astrophysics Data System (ADS)

    Lopez-Varo, Pilar; Bertoluzzi, Luca; Bisquert, Juan; Alexe, Marin; Coll, Mariona; Huang, Jinsong; Jimenez-Tejada, Juan Antonio; Kirchartz, Thomas; Nechache, Riad; Rosei, Federico; Yuan, Yongbo

    2016-10-01

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron-hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  3. PVREG - A photovoltaic voltage regulation investigation tool: Program reference manual

    SciTech Connect

    Garrett, D.L.; Sims, T.R.; Jones, R.A.; Jeter, S.M.

    1989-06-01

    This manual provides information for installing and maintaining the computer program PVREG, a program developed to study the impact of distributed photovoltaic systems on the voltage regulation of distribution systems. The manual describes installation on the Apollo workstation or the IBM PC-AT (or compatible), but the instructions and code description should be general enough to assist installation on other computers, also. The manual assumes that the user is well acquainted with the computer on which the program is to operate and with the operating system of that computer. The manual describes the program structure and models in detail and provides step-by-step installation instructions for both the Apollo and AT-compatible computers. 9 figs., 11 tabs.

  4. Energy Payback Time of a Rooftop Photovoltaic System in Greece

    NASA Astrophysics Data System (ADS)

    Rachoutis, E.; Koubogiannis, D.

    2016-11-01

    Life Cycle Analysis (LCA) is an important tool to quantitatively assess energy consumption and environmental impact of any product. Current research related to energy consumption in buildings moves towards Nearly Zero Energy Building (NZEB). In such a building, an important issue concerns the energy production by renewable sources, including on-site production. The most feasible way to achieve renewable energy utilization in a building level in Greece is by using rooftop Photovoltaic (PV) systems, also promoted in the last decade by the national legislation concerning energy conservation measures. Apart from cost-related issues and payback times, Embodied Energy (EE) and Embodied CO2 (ECO2) emissions have also to be considered against the anticipated corresponding savings. Using a particular PV system as a case study, its basic constitutive materials are determined and their masses are calculated. Embodied energy values are estimated by using embodied energy coefficients available in the international literature. Considering a specific geographic location in Greece for the building on which the PV is installed, the annual energy generated by the system is estimated based on its performance data and curves. The Energy and CO2 Payback Times (EPBT and CO2PBT) are estimated and assessed, as well as future work is suggested.

  5. Clean Energy Financing Programs

    EPA Pesticide Factsheets

    This page introduces resources that state and local governments can use to develop Clean Energy Finance Programs and reduce the financial barriers to implementing energy efficiency and renewable energy in their communities.

  6. Duluth Energy Efficiency Program

    EPA Pesticide Factsheets

    The City of Duluth developed the Duluth Energy Efficiency Program (DEEP) to create jobs, lessen the energy affordability gap faced by Duluth families, retain energy dollars currently exported from the city, and reduce Duluth's carbon footprint.

  7. Photovoltaic technology assessment

    SciTech Connect

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  8. Solar energy and the Third World: Photovoltaic applications and their implications in rural settings for Zaire

    NASA Astrophysics Data System (ADS)

    Badibanga, Maurice Kalombay

    Purpose. The purpose of this study was to explore and analyze the level of development attained by flat-plate photovoltaic systems operating around the world and to consider the possibility of using them as an energy solution for the rural areas of Zaire. Methodology. The study was conceived to answer research questions in the following areas: (1) Zaire's overall energy situation; (2) status of photovoltaic applications and their performance in other countries; (3) how the information from this study can be applied toward a possible solution of the energy problem in rural areas of Zaire. The Dual Case Study Method was the mainstay for data and information analysis, based principally on two plants: Tangaye Village PV in Burkina Faso and Kaw Village in French Guiana. Focused Synthesis was the main strategy used to gather the information and data. The analysis of information conveyed an idea of the level of technology readiness for flat-plate photovoltaics and the direction in which future research is headed. Findings and conclusions. The study found that (1) Zaire's rural areas (70 percent of the total population) are deficient in commercial energy provision, when compared to other countries; and (2) government policies, at the time the study took place, favored big projects which benefited mostly urban settings. The rural areas could benefit from photovoltaics, due to its modular and stand-alone characteristics, if it can be afforded by the government. Zaire's geographical position is conducive to successful implementation of the PV program, and is similar to the Tangaye and Kaw situations. Recommendations. (1) The government of Zaire should seriously assess its rural energy needs and consider photovoltaics as an energy solution. (2) Research and development work in the area of energy should be encouraged in the institutions of higher learning in Zaire, where efforts should be made to keep abreast of energy technology updates in developed countries. (3) Systems that

  9. Photovoltaic modules for PHENEF program at Georgetown University

    NASA Astrophysics Data System (ADS)

    Hoelscher, J. F.; Johnson, M. I.; Posey, M. L.

    Modules for the photovoltaic higher education national exempler facility project are described. The modules are designed for installation on the roof of the International Center at Georgetown University. The measurement accuracies and repeatability of the modules are the result of a program which consists of the following phases: establishment, verification, and compliance auditing. The modules are found to have an average power of 75.19 W measured at 28 C, AM 1.5, and 16.2 V, an encapsulated cell efficiency of 11.95 percent, and a module efficiency of 11.51 percent when the illuminated area is the area used in the efficiency calculation.

  10. Argonne Solar Energy Program annual report. Summary of solar program activities for fiscal year 1979

    SciTech Connect

    1980-06-01

    The R and D work done at Argonne National Laboratory on solar energy technologies during the period October 1, 1978 to September 30, 1979 is described. Technical areas included in the ANL solar program are solar energy collection, heating and cooling, thermal energy storage, ocean thermal energy conversion, photovoltaics, biomass conversion, satellite power systems, and solar liquid-metal MHD power systems.

  11. Development of a photovoltaic module energy ratings methodology

    SciTech Connect

    Kroposki, B; Mrig, L; Whitaker, C; Newmiller, J

    1995-05-01

    The National Renewable Energy Laboratory has begun work on developing a consensus-based approach to rating photovoltaic modules. This new approach was intended to address the limitations of the defacto standard module power rating at standard test conditions. Using technical input from a number of sources, and under the guidance of an industry-based technical review committee, the approach described in this paper was developed. The Module Energy Rating (MER) consists of 10 estimates of how much energy a single typical module of a particular type will produce in one day, one for each of 5 different weather/location combinations and 2 load-types. This paper presents an overview of the procedures required to generate an MER for any particular module type.

  12. Duke Energy Photovoltaic Integration Study: Carolinas Service Areas

    SciTech Connect

    Lu, Shuai; Samaan, Nader A.; Meng, Da; Chassin, Forrest S.; Zhang, Yu; Vyakaranam, Bharat; Warwick, William M.; Fuller, Jason C.; Diao, Ruisheng; Nguyen, Tony B.; Jin, Chunlian

    2014-03-01

    Solar energy collected using photovoltaic (PV) technology is a clean and renewable energy source that offers multiple benefits to the electric utility industry and its customers, such as cost predictability, reduced emissions, and loss reduction by distributed installations. Renewable energy goals established in North Carolina Senate Bill 3 (SB3), in combination with the state tax credit and decreases in the cost of energy from PV panels, have resulted in rapid solar power penetration within the Carolinas services areas of Duke Energy. Continued decreases in PV prices are expected to lead to greater PV penetration rates than currently required in SB3. Despite the potential benefits, significant penetration of PV energy is of concern to the utility industry because of its impact on operating reliability and integration cost to customers, and equally important, how any additional costs may be allocated to different customer groups. Some of these impacts might become limiting factors for PV energy, especially growing distributed generation installed at customer sites. Recognizing the importance of renewable energy developments for a sustainable energy future and economic growth, Duke Energy has commissioned this study to simulate the effects of high-PV penetration rates and to initiate the process of quantifying the impacts. The objective of the study is to inform resource plans, guide operation improvements, and drive infrastructure investments for a steady and smooth transition to a new energy mix that provides optimal values to customers. The study team consists of experts from Pacific Northwest National Laboratory (PNNL), Power Costs, Inc. (PCI), Clean Power Research (CPR), Alstom Grid, and Duke Energy. PNNL, PCI, and CPR performed the study on generation impacts; Duke Energy modeled the transmission cases; and distribution simulations were conducted by Alstom Grid. PNNL analyzed the results from each work stream and produced the report.

  13. Analysis of Photovoltaic System Energy Performance Evaluation Method

    SciTech Connect

    Kurtz, S.; Newmiller, J.; Kimber, A.; Flottemesch, R.; Riley, E.; Dierauf, T.; McKee, J.; Krishnani, P.

    2013-11-01

    Documentation of the energy yield of a large photovoltaic (PV) system over a substantial period can be useful to measure a performance guarantee, as an assessment of the health of the system, for verification of a performance model to then be applied to a new system, or for a variety of other purposes. Although the measurement of this performance metric might appear to be straight forward, there are a number of subtleties associated with variations in weather and imperfect data collection that complicate the determination and data analysis. A performance assessment is most valuable when it is completed with a very low uncertainty and when the subtleties are systematically addressed, yet currently no standard exists to guide this process. This report summarizes a draft methodology for an Energy Performance Evaluation Method, the philosophy behind the draft method, and the lessons that were learned by implementing the method.

  14. Methodological Guidelines on Net Energy Analysis of Photovoltaic Electricity

    SciTech Connect

    Raugei, Marco; Frischknecht, Rolf; Olson, Carol; Sinha, Parikhit; Heath, Garvin

    2016-01-01

    Net Energy Analysis (NEA) is a structured, comprehensive method of quantifying the extent to which a given energy source is able to provide a net energy gain (i.e., an energy surplus) to the end user, after accounting for all the energy losses occurring along the chain of processes that are required to exploit it (i.e., for its extraction, processing and transformation into a usable energy carrier, and delivery to the end user), as well as for all the additional energy 'investments' that are required in order to carry out the same chain of processes. However, this general framework leaves the individual practitioner with a range of choices that can affect the results and thus, the conclusions of a NEA study. The current IEA PVPS guidelines were developed to provide guidance on assuring consistency, balance, and quality to enhance the credibility and reliability of the results from photovoltaic (PV) NEAs. The guidelines represent a consensus among the authors -- PV NEA experts in North America, Europe, and Asia -- for assumptions made on PV performance, process inputs and outputs, methods of analysis, and reporting of the results. Guidance is given on photovoltaic-specific parameters used as inputs in NEA and on choices and assumptions in inventory data analysis and on implementation of modelling approaches. A consistent approach towards system modelling, the functional unit, the system boundaries and allocation aspects enhances the credibility of PV electricity NEA studies and enables balanced NEA-based comparisons of different electricity producing technologies. This document provides an in-depth discussion of a common metric of NEA, namely the energy return on investment (EROI), and how this is to be interpreted vis-a-vis the deceptively similar-sounding metrics in the field of Life Cycle Assessment (LCA): cumulative energy demand (CED) and non-renewable cumulative energy demand (nr-CED) per unit output. Specifically, a number of key differences are highlighted

  15. Advanced photovoltaic solar array program - A preliminary assessment

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J.; Stella, P.

    1986-01-01

    Two solar array designs developed for the Advanced Photovoltaic Solar Array program are described. The goal of the program is to develop solar arrays with higher mass specific power and power density and good robustness. The specific design requirements are: a beginning-of-life value of 130 W/kg, and end-of-life goals of 105 W/kg and 110 W/sq m. The two array-wing designs consisted of a single blanket. The differences in the blanket material (25 micron-thick Kapton versus 50 micron-thick carbon-loaded Kapton), solar cells (100 micron-thick wrap around versus 50 micron-thick 2 x 4 cm planar contact cells), and performance objectives (proposed industry requirements versus mission objectives) of the two designs are examined.

  16. Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development

    PubMed Central

    Louwen, Atse; van Sark, Wilfried G. J. H. M.; Faaij, André P. C.; Schropp, Ruud E. I.

    2016-01-01

    Since the 1970s, installed solar photovoltaic capacity has grown tremendously to 230 gigawatt worldwide in 2015, with a growth rate between 1975 and 2015 of 45%. This rapid growth has led to concerns regarding the energy consumption and greenhouse gas emissions of photovoltaics production. We present a review of 40 years of photovoltaics development, analysing the development of energy demand and greenhouse gas emissions associated with photovoltaics production. Here we show strong downward trends of environmental impact of photovoltaics production, following the experience curve law. For every doubling of installed photovoltaic capacity, energy use decreases by 13 and 12% and greenhouse gas footprints by 17 and 24%, for poly- and monocrystalline based photovoltaic systems, respectively. As a result, we show a break-even between the cumulative disadvantages and benefits of photovoltaics, for both energy use and greenhouse gas emissions, occurs between 1997 and 2018, depending on photovoltaic performance and model uncertainties. PMID:27922591

  17. Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development

    NASA Astrophysics Data System (ADS)

    Louwen, Atse; van Sark, Wilfried G. J. H. M.; Faaij, André P. C.; Schropp, Ruud E. I.

    2016-12-01

    Since the 1970s, installed solar photovoltaic capacity has grown tremendously to 230 gigawatt worldwide in 2015, with a growth rate between 1975 and 2015 of 45%. This rapid growth has led to concerns regarding the energy consumption and greenhouse gas emissions of photovoltaics production. We present a review of 40 years of photovoltaics development, analysing the development of energy demand and greenhouse gas emissions associated with photovoltaics production. Here we show strong downward trends of environmental impact of photovoltaics production, following the experience curve law. For every doubling of installed photovoltaic capacity, energy use decreases by 13 and 12% and greenhouse gas footprints by 17 and 24%, for poly- and monocrystalline based photovoltaic systems, respectively. As a result, we show a break-even between the cumulative disadvantages and benefits of photovoltaics, for both energy use and greenhouse gas emissions, occurs between 1997 and 2018, depending on photovoltaic performance and model uncertainties.

  18. Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development.

    PubMed

    Louwen, Atse; van Sark, Wilfried G J H M; Faaij, André P C; Schropp, Ruud E I

    2016-12-06

    Since the 1970s, installed solar photovoltaic capacity has grown tremendously to 230 gigawatt worldwide in 2015, with a growth rate between 1975 and 2015 of 45%. This rapid growth has led to concerns regarding the energy consumption and greenhouse gas emissions of photovoltaics production. We present a review of 40 years of photovoltaics development, analysing the development of energy demand and greenhouse gas emissions associated with photovoltaics production. Here we show strong downward trends of environmental impact of photovoltaics production, following the experience curve law. For every doubling of installed photovoltaic capacity, energy use decreases by 13 and 12% and greenhouse gas footprints by 17 and 24%, for poly- and monocrystalline based photovoltaic systems, respectively. As a result, we show a break-even between the cumulative disadvantages and benefits of photovoltaics, for both energy use and greenhouse gas emissions, occurs between 1997 and 2018, depending on photovoltaic performance and model uncertainties.

  19. Computational Analysis of Energy Pooling to Harvest Low-Energy Solar Energy in Organic Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Lacount, Michael; Shaheen, Sean; Rumbles, Garry; van de Lagemaat, Jao; Hu, Nan; Ostrowski, Dave; Lusk, Mark

    2014-03-01

    Current photovoltaic energy conversions do not typically utilize low energy sunlight absorption, leaving large sections of the solar spectrum untapped. It is possible, though, to absorb such radiation, generating low-energy excitons, and then pool them to create higher energy excitons, which can result in an increase in efficiency. Calculation of the rates at which such upconversion processes occur requires an accounting of all possible molecular quantum electrodynamics (QED) pathways. There are two paths associated with the upconversion. The cooperative mechanism involves a three-body interaction in which low energy excitons are transferred sequentially onto an acceptor molecule. The accretive pathway, requires that an exciton transfer its energy to a second exciton that subsequently transfers its energy to the acceptor molecule. We have computationally modeled both types of molecular QED obtaining rates using a combination of DFT and many-body Green function theory. The simulation platform is exercised by considering upconversion events associated with material composed of a high energy absorbing core of hexabenzocoronene (HBC) and low energy absorbing arms of oligothiophene. In addition, we make estimates for all competing processes in order to judge the relative efficiencies of these two processes.

  20. Analysis of the economics of photovoltaic-diesel-battery energy systems for remote applications

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.

    1983-01-01

    Computer simulations were conducted to analyze the performance and operating cost of a photovoltaic energy source combined with a diesel generator system and battery storage. The simulations were based on the load demand profiles used for the design of an all photovoltaic energy system installed in the remote Papago Indian Village of Schuchuli, Arizona. Twenty year simulations were run using solar insolation data from Phoenix SOLMET tapes. Total energy produced, energy consumed, operation and maintenance costs were calculated. The life cycle and levelized energy costs were determined for a variety of system configurations (i.e., varying amounts of photovoltaic array and battery storage).

  1. Clean Energy Programs

    EPA Pesticide Factsheets

    This webpage links to U.S. Environmental Protection Agency's voluntary programs that focus on helping individuals, and the public and private sector expand their use of energy efficiency and renewable energy.

  2. Proceedings of the First ERDA Semiannual Solar Photovoltaic Conversion Program Conference

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Organization, basic research and applied technology for the Solar Photovoltaic Conversion Program are outlined. The program aims to provide a technology base for low cost thin film solar cells and solar arrays.

  3. Photovoltaic development in Argentina

    SciTech Connect

    Godfrin, E.M.; Duran, J.C.; Frigerio, A.; Moragues, J.A.

    1994-12-31

    A critical assessment of the photovoltaic program in Argentina is presented. Research and development activities on photovoltaic cells as well as industrial and technological development are still in the initial stages. Activities accomplished by the Atomic Energy Commission (CNEA) and the Institute of Technology Development for the Chemical industry (INTEC) are briefly described. The evolution of photovoltaic installations in Argentina is analyzed and accumulative data up to 1993 are given. A summary of the potential market for photovoltaic systems in the short and medium term is presented.

  4. Energy production advantage of independent subcell connection for multijunction photovoltaics

    DOE PAGES

    Warmann, Emily C.; Atwater, Harry A.

    2016-07-07

    Increasing the number of subcells in a multijunction or "spectrum splitting" photovoltaic improves efficiency under the standard AM1.5D design spectrum, but it can lower efficiency under spectra that differ from the standard if the subcells are connected electrically in series. Using atmospheric data and the SMARTS multiple scattering and absorption model, we simulated sunny day spectra over 1 year for five locations in the United States and determined the annual energy production of spectrum splitting ensembles with 2-20 subcells connected electrically in series or independently. While electrically independent subcells have a small efficiency advantage over series-connected ensembles under the AM1.5Dmore » design spectrum, they have a pronounced energy production advantage under realistic spectra over 1 year. Simulated energy production increased with subcell number for the electrically independent ensembles, but it peaked at 8-10 subcells for those connected in series. As a result, electrically independent ensembles with 20 subcells produce up to 27% more energy annually than the series-connected 20-subcell ensemble. This energy production advantage persists when clouds are accounted for.« less

  5. Geothermal energy program overview

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  6. Management of excess energy in autonomous photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Ofry, E.; Singer, S.

    1983-01-01

    The installation and use of a variable complementary load for absorbing electrical energy generated by photovoltaic cells (PV) in excess of that needed by the normal load or the battery storage system is described. The excesses are expected to occur due to periodic variations in the solar input during the year. Using the 48-panel PV array at Tel Aviv University as an example, it is shown that overproduction of power by only a few percent per day can lead to degraded battery performance, thereby requiring a quick discharge path once the battery bank is fully charged. Connecting the circuit to heat radiators, air conditioners, or ventilation devices to cool the battery system is demonstrated to avoid the battery overheating problem which would arise from overcharging. A block diagram is furnished of a connection to a fan to provide ventilation around the battery system.

  7. Control and performance of a photovoltaic-thermal energy system

    NASA Astrophysics Data System (ADS)

    Bazques, E. O.

    1983-12-01

    The control of a photovoltaic/thermal energy (PV/T) system in general and optimization of performance in particular through use of modern (state space) control methods, stochastic weather inputs, and second law of thermodynamics analysis is addressed. Significant improvement in system performance is noted using optimal control when compared to conventional on/off, multilevel, or proportional controllers for deterministic weather forcing functions. Optimal system control, analyzed first through use of Pontryagin's Minimum Principle and then implemented by specification of a quadratic performance index and solution of matrix Riccati equations, is shown to be a viable and useful strategy for these hybrid systems. Stochastic weather techniques which incorporate temperature/insolation probability density matrices and least square constants are found to be a valid method for reducing simulation requirements as long as weather persistence effects are taken into account through use of information derived from Markov transition matrices.

  8. The Redox flow system for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Odonnell, P.; Gahn, R. F.

    1976-01-01

    A new method of storage was applied to a solar photovoltaic system. The storage method is a redox flow system which utilizes the oxidation-reduction capability of two soluble electrochemical redox couples for its storage capacity. The particular variant described separates the charging and discharging function of the system such that the electrochemical couples are simultaneously charged and discharged in separate parts of the system. The solar array had 12 solar cells; wired in order to give a range of voltages and currents. The system stored the solar energy so that a load could be run continually day and night. The main advantages of the redox system are that it can accept a charge in the low voltage range and produce a relatively constant output regardless of solar activity.

  9. Brightness Rural Electrification Program: Renewable Energy in China

    SciTech Connect

    Not Available

    2004-04-01

    Fact sheet describes China's New Brightness Rural Electrification Program to provide electricity for 23 million people in remote areas of China using renewable energy such as wind energy and solar power (photovoltaics). Targets, results, and progress are described. Regions targeted are Inner Mongolia, Tibet, and Gansu.

  10. Ocean energy program summary

    SciTech Connect

    Not Available

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71{percent} of the earth's surface, this stored energy is realized as waves, currents, and thermal salinity gradients. The purpose of the federal Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy in a cost-effective and environmentally acceptable manner. The OET Program seeks to develop ocean energy technology to a point where the commercial sector can assess whether applications of the technology are viable energy conversion alternatives or supplements to systems. Past studies conducted by the US Department of Energy (DOE) have identified ocean thermal energy conversion (OTEC) as the largest potential contributor to United States energy supplies from the ocean resource. As a result, the OET Program concentrates on research to advance OTEC technology. Current program emphasis has shifted to open-cycle OTEC power system research because the closed-cycle OTEC system is at a more advanced stage of development and has already attracted industrial interest. During FY 1989, the OET Program focused primarily on the technical uncertainties associated with near-shore open-cycle OTEC systems ranging in size from 2 to 15 MW{sub e}. Activities were performed under three major program elements: thermodynamic research and analysis, experimental verification and testing, and materials and structures research. These efforts addressed a variety of technical problems whose resolution is crucial to demonstrating the viability of open-cycle OTEC technology. This publications is one of a series of documents on the Renewable Energy programs sponsored by the US Department of Energy. An overview of all the programs is available, entitled Programs in Renewable Energy.

  11. Photovoltaic array environmental protection program. [in Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Bilger, Kevin M.; Gjerde, Helen B.; Sater, Bernard L.

    1989-01-01

    During the photovoltaic array environmental protection program, a coating material, application technique, and design approach intended to protect flexible solar array blankets during a nominal fifteen-year operating lifetime were developed. Numerous thin-film coatings for protecting the Kapton polyimide material used in the construction of the Space Station Freedom flexible solar array blanket were evaluated. The critical solar array design features and protection measures are discussed with special emphasis on the effects of solar array fabrication and flexible printed circuit manufacturing processes on coating durability. The results of the mechanical and environmental test evaluation, including oxygen plasma, neutral oxygen beam, and UV/charged-particle combined exposure, are discussed. These results led to the selection of a silicon dioxide thin-film coating to protect the solar array blanket from the low-earth-orbit atomic oxygen environment.

  12. Photovoltaic market analysis program: Background, model development, applications and extensions

    NASA Astrophysics Data System (ADS)

    Lilien, G. L.; Fuller, F. H.

    1981-04-01

    Tools and procedures to help guide government spending decisions associated with stimulating photovoltaic market penetration were developed. The program has three main components: (1) theoretical analysis aimed at understanding qualitatively what general types of policies are likely to be most cost effective in stimulating PV market penetration; (2) operational model developent (PV1), providing a user oriented tool to study quantitatively the relative effectiveness of specific government spending options and (3) field measurements, aimed at providing objective estimates of the parameters used in the diffusion model used in PV1. Existing models of solar technology diffusion are reviewed and the structure of the PV1 model is described. Theoretical results on optimal strategies for spending federal market development and subsidy funds are reviewed. The validity of these results is checked by comparing them with PV1 projections of penetration and cost forecasts for 15 government policy strategies which are simulated on the PV1 model.

  13. The block program approach to photovoltaic module development

    NASA Technical Reports Server (NTRS)

    Smokler, M. I.; Otth, D. H.; Ross, R. G., Jr.

    1985-01-01

    A series of photovoltaic module development activities, designated Blocks I through V, used increasingly refined requirements together with extensive testing and failure analysis to assist industry in developing the most advanced modules possible. The block program approach is described and the design details are given for all modules developed, highlighting the blockwise improvements. The success of this approach is demonstrated by the fact that most design details of the Block V modules have been adopted internationally. Instrumental to this success have been the steady improvements in design and test specifications that have guided module development. The experience gained since development of the Block-V specification is being incorporated into a Block VI Design and Test Specification, which includes upgraded and revised application-specific requirements. Highlights of this Block VI specification are also described.

  14. Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.

    PubMed

    Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel

    2017-08-24

    Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Programs in Renewable Energy

    SciTech Connect

    Not Available

    1990-01-01

    Our nation faces significant challenges as we enter the 1990s: securing a reliable supply of competitively priced energy, improving the quality of our environment, and increasing our share of foreign markets for goods and services. The US Department of Energy's (DOE) Programs in Renewable Energy are working toward meeting these challenges by developing the technologies that make use of our nation's largest energy resource: renewable energy. The sunlight, wind biomass, flowing water, ocean energy, and geothermal energy that make up the renewable energy resource can be found throughout our nation. These resources can provide all the forms of energy our nation needs: liquid fuels, electricity, and heating and cooling. Renewable energy meets about 10% of our need for these forms of energy today, yet the potential contribution is many times greater. DOE's Programs in Renewable Energy are working side-by-side with American industry to develop the technologies that convert renewable energy resources into practical, cost-competitive energy. After a decade of progress in research, several of these technologies are poised to make large contributions during the 1990s and beyond. This booklet provides an overview of the renewable energy programs and their plans for FY 1990. Sources of additional information are listed at the back of the booklet. 48 figs., 4 tabs.

  16. Energy and environmental analysis of a linear concentrating photovoltaic system

    NASA Astrophysics Data System (ADS)

    Kerzmann, Tony

    The world is facing an imminent energy supply crisis. In order to sustain and increase our energy supply in an environmentally-conscious manner, it is necessary to advance renewable technologies. Despite this urgency, however, it is paramount to consider the larger environmental effects associated with using renewable energy resources. This research is meant to better understand linear concentrating photovoltaics (LCPVs) from an engineering and environmental standpoint. In order to analyze the LCPV system, a simulation and life cycle assessment (LCA) were developed. The LCPV system serves two major purposes: it produces electricity, and waste heat is collected for heating use. There are three parts to the LCPV simulation. The first part simulates the multijunction cell output so as to calculate the temperature-dependent electricity generation. The second part simulates the cell cooling and waste heat recovery system using a model consisting of heat transfer and fluid flow equations. The waste heat recovery in the LCPV system was linked to a hot water storage system, which was also modeled. Coupling the waste heat recovery simulation and the hot water storage system gives an overall integrated system that is useful for system design, optimization, and acts as a stepping stone for future multijunction cell Photovoltaic/Thermal (PV/T) systems. Finally, all of the LCPV system components were coded in Engineering Equation Solver (EES) and were used in an energy analysis under actual weather and solar conditions for the Phoenix, AZ, region. The life cycle assessment for the LCPV system allowed for an environmental analysis of the system where areas of the highest environmental impact were pinpointed. While conducting the LCA research, each component of the system was analyzed from a resource extraction, production, and use standpoint. The collective production processes of each LCPV system component were gathered into a single inventory of materials and energy flows

  17. The adoption of residential solar photovoltaic systems in the presence of a financial incentive: A case study of consumer experiences with the Renewable Energy Standard Offer Program in Ontario (Canada)

    NASA Astrophysics Data System (ADS)

    Adachi, Christopher William Junji

    2009-12-01

    Traditionally, high initial capital costs and lengthy payback periods have been identified as the most significant barriers that limit the diffusion of solar photovoltaic (PV) systems. In response, the Ontario Government, through the Ontario Power Authority (OPA), introduced the Renewable Energy Standard Offer Program (RESOP) in November, 2006. The RESOP offers owners of solar PV systems with a generation capacity under 10MW a 20 year contract to sell electricity back to the grid at a guaranteed rate of $0.42/kWh. While it is the intent of incentive programs such as the RESOP to begin to lower financial barriers in order to increase the uptake of solar PV systems, there is no guarantee that the level of participation will in fact rise. The "on-the-ground" manner in which consumers interact with such an incentive program ultimately determines its effectiveness. The purpose of this thesis is to analyze the relationship between the RESOP and solar PV system consumers. To act on this purpose, the experiences of current RESOP participants are presented, wherein the factors that are either hindering or promoting utilization of the RESOP and the adoption of solar PV systems are identified. This thesis was conducted in three phases--a literature review, preliminary key informant interviews, and primary RESOP participant interviews--with each phase informing the scope and design of the subsequent stage. First, a literature survey was completed to identify and to understand the potential drivers and barriers to the adoption of a solar PV system from the perspective of a consumer. Second, nine key informant interviews were completed to gain further understanding regarding the specific intricacies of the drivers and barriers in the case of Ontario, as well as the overall adoption system in the province. These interviews were conducted between July and September, 2008. Third, interviews with 24 RESOP participants were conducted; they constitute the primary data set. These

  18. Latest developments in the Advanced Photovoltaic Solar Array Program

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1990-01-01

    In 1985, the Advanced Photovoltaic Solar Array (APSA) Program was established to demonstrate a producible array system with a specific power greater than 130 W/kg at a 10-kW (BOL) power level. The latest program phase completed fabrication and initial functional testing of a prototype wing representative of a full-scale 5-kW (BOL) wing (except truncated in length to about 1 kW), with weight characteristics that could meet the 130-W/kg (BOL) specific power goal using thin silicon solar cell modules and weight-efficient structural components. The wing configuration and key design details are reviewed, along with results from key component-level and wing-level tests. Projections for future enhancements that may be expected through the use of advanced solar cells and structural components are shown. Performance estimates are given for solar electric propulsion orbital transfer missions through the Van Allen radiation belts. The latest APSA program plans are presented.

  19. Ocean energy program summary

    NASA Astrophysics Data System (ADS)

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71 percent of the earth's surface, they collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the U.S. Department of Energy's (DOE) Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy cost effectively and in a way that does not harm the environment. The program seeks to develop ocean energy technology to a point where industry can accurately assess whether the technology is a viable energy conversion alternative, or supplement, to current power generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the OET Program is concentrating on research that advances the OTEC technology. The program also continues to monitor and study developments in wave energy, ocean current, and salinity gradient concepts; but it is not actively developing these technologies now.

  20. SIMWEST: A simulation model for wind and photovoltaic energy storage systems (CDC user's manual), volume 1

    NASA Technical Reports Server (NTRS)

    Warren, A. W.; Esinger, A. W.

    1979-01-01

    Procedures are given for using the SIMWEST program on CDC 6000 series computers. This expanded software package includes wind and/or photovoltaic systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel, and pneumatic).

  1. Renewable Energy, Photovoltaic Systems Near Airfields. Electromagnetic Interference

    SciTech Connect

    Deline, Chris; Dann, Geoff

    2015-04-01

    Recent increases in photovoltaic (PV) systems on Department of the Navy (DON) land and potential siting near airfields prompted Commander, Naval Installations Command to fund the Naval Facilities Engineering Command to evaluate the impact of electromagnetic interference (EMI) from PV systems on airfield electronic equipment. Naval Facilities Engineering and Expeditionary Warfare Center tasked Department of Energy National Renewable Energy laboratory (NREL) to conduct the assessment. PV systems often include high-speed switching semiconductor circuits to convert the voltage produced by the PV arrays to the voltage needed by the end user. Switching circuits inherently produce electromagnetic radiation at harmonics of the switching frequency. In this report, existing literature is summarized and tests to measure emissions and mitigation methods are discussed. The literature shows that the emissions from typical PV systems are low strength and unlikely to cause interference to most airfield electronic systems. With diligent procurement and siting of PV systems, including specifications for FCC Part 15 Class A compliant equipment and a 250-foot setback from communication equipment, NREL anticipates little to no EMI impact on nearby communications or telemetry equipment.

  2. Realizing Efficient Energy Harvesting from Organic Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong

    Organic photovoltaic cells (OPVs) are emerging field of research in renewable energy. The development of OPVs in recent years has made this technology viable for many niche applications. In order to realize widespread application however, the power conversion efficiency requires further improvement. The efficiency of an OPV depends on the short-circuit current density (JSC), open-circuit voltage (VOC) and fill factor (FF). For state-of-the-art devices, JSC is mostly optimized with the application of novel low-bandgap materials and a bulk heterojunction device architecture (internal quantum efficiency approaching 100%). The remaining limiting factors are the low VOC and FF. This work focuses on overcoming these bottlenecks for improved efficiency. Temperature dependent measurements of device performance are used to examine both charge transfer and exciton ionization process in OPVs. The results permit an improved understanding of the intrinsic limit for VOC in various device architectures and provide insight on device operation. Efforts have also been directed at engineering device architecture for optimized FF, realizing a very high efficiency of 8% for vapor deposited small molecule OPVs. With collaborators, new molecules with tailored desired energy levels are being designed for further improvements in efficiency. A new type of hybrid organic-inorganic perovskite material is also included in this study. By addressing processing issues and anomalous hysteresis effects, a very high efficiency of 19.1% is achieved. Moving forward, topics including engineering film crystallinity, exploring tandem architectures and understanding degradation mechanisms will further push OPVs toward broad commercialization.

  3. Exciton management in organic photovoltaic multidonor energy cascades.

    PubMed

    Griffith, Olga L; Forrest, Stephen R

    2014-05-14

    Multilayer donor regions in organic photovoltaics show improved power conversion efficiency when arranged in decreasing exciton energy order from the anode to the acceptor interface. These so-called "energy cascades" drive exciton transfer from the anode to the dissociating interface while reducing exciton quenching and allowing improved overlap with the solar spectrum. Here we investigate the relative importance of exciton transfer and blocking in a donor cascade employing diphenyltetracene (D1), rubrene (D2), and tetraphenyldibenzoperiflanthene (D3) whose optical gaps monotonically decrease from D1 to D3. In this structure, D1 blocks excitons from quenching at the anode, D2 accepts transfer of excitons from D1 and blocks excitons at the interface between D2 and D3, and D3 contributes the most to the photocurrent due to its strong absorption at visible wavelengths, while also determining the open circuit voltage. We observe singlet exciton Förster transfer from D1 to D2 to D3 consistent with cascade operation. The power conversion efficiency of the optimized cascade OPV with a C60 acceptor layer is 7.1 ± 0.4%, which is significantly higher than bilayer devices made with only the individual donors. We develop a quantitative model to identify the dominant exciton processes that govern the photocurrent generation in multilayer organic structures.

  4. Solar photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Forney, R. G.

    1978-01-01

    The Department of Energy's photovoltaic program is outlined. The main objective of the program is the development of low cost reliable terrestrial photovoltaic systems. A second objective is to foster widespread use of the system in residential, industrial and commercial application. The system is reviewed by examining each component; silicon solar cell, silicon solar cell modules, advanced development modules and power systems. Cost and applications of the system are discussed.

  5. Statistical Energy Analysis Program

    NASA Technical Reports Server (NTRS)

    Ferebee, R. C.; Trudell, R. W.; Yano, L. I.; Nygaard, S. I.

    1985-01-01

    Statistical Energy Analysis (SEA) is powerful tool for estimating highfrequency vibration spectra of complex structural systems and incorporated into computer program. Basic SEA analysis procedure divided into three steps: Idealization, parameter generation, and problem solution. SEA computer program written in FORTRAN V for batch execution.

  6. Statistical Energy Analysis Program

    NASA Technical Reports Server (NTRS)

    Ferebee, R. C.; Trudell, R. W.; Yano, L. I.; Nygaard, S. I.

    1985-01-01

    Statistical Energy Analysis (SEA) is powerful tool for estimating highfrequency vibration spectra of complex structural systems and incorporated into computer program. Basic SEA analysis procedure divided into three steps: Idealization, parameter generation, and problem solution. SEA computer program written in FORTRAN V for batch execution.

  7. Organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Leo, Karl

    2016-08-01

    Organic photovoltaics are on the verge of revolutionizing building-integrated photovoltaics. For other applications, however, several basic open scientific questions need answering to, in particular, further improve energy-conversion efficiency and lifetime.

  8. Best practices for photovoltaic household electrification programs: Lessons from experiences in selected countries. World Bank Technical Paper No. 324

    SciTech Connect

    Cabraal, A.; Cosgrove-Davies, M.; Schaeffer, L.

    1996-09-01

    The report draws on case studies of recent experiences in the Dominican Republic, Indonesia, the Philippines, and Sri Lanka to the identify key ingredients of successful residential photovoltaic (PV) electrification programs and ways of overcoming financial and institutional barriers to the use of PV systems. The report concludes that PV systems are a viable complement to grid-based energy services delivery and that these systems have a cost-effective niche and market potential within the rural electrification framework.

  9. The characteristic analysis of the solar energy photovoltaic power generation system

    NASA Astrophysics Data System (ADS)

    Liu, B.; Li, K.; Niu, D. D.; Jin, Y. A.; Liu, Y.

    2017-01-01

    Solar energy is an inexhaustible, clean, renewable energy source. Photovoltaic cells are a key component in solar power generation, so thorough research on output characteristics is of far-reaching importance. In this paper, an illumination model and a photovoltaic power station output power model were established, and simulation analysis was conducted using Matlab and other software. The analysis evaluated the condition of solar energy resources in the Baicheng region in the western part of Jilin province, China. The characteristic curve of the power output from a photovoltaic power station was obtained by simulation calculation. It was shown that the monthly average output power of the photovoltaic power station is affected by seasonal changes; the output power is higher in summer and autumn, and lower in spring and winter.

  10. Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Hu, Xiaosong; Moura, Scott; Yin, Xiaofeng; Pickert, Volker

    2016-11-01

    Energy management strategies are instrumental in the performance and economy of smart homes integrating renewable energy and energy storage. This article focuses on stochastic energy management of a smart home with PEV (plug-in electric vehicle) energy storage and photovoltaic (PV) array. It is motivated by the challenges associated with sustainable energy supplies and the local energy storage opportunity provided by vehicle electrification. This paper seeks to minimize a consumer's energy charges under a time-of-use tariff, while satisfying home power demand and PEV charging requirements, and accommodating the variability of solar power. First, the random-variable models are developed, including Markov Chain model of PEV mobility, as well as predictive models of home power demand and PV power supply. Second, a stochastic optimal control problem is mathematically formulated for managing the power flow among energy sources in the smart home. Finally, based on time-varying electricity price, we systematically examine the performance of the proposed control strategy. As a result, the electric cost is 493.6% less for a Tesla Model S with optimal stochastic dynamic programming (SDP) control relative to the no optimal control case, and it is by 175.89% for a Nissan Leaf.

  11. Do photovoltaics have a future

    NASA Technical Reports Server (NTRS)

    Williams, B. F.

    1979-01-01

    There is major concern as to the economic practicality of widespread terrestrial use because of the high cost of the photovoltaic arrays themselves. Based on their high efficiency, photovoltaic collectors should be one of the cheapest forms of energy generators known. Present photovoltaic panels are violating the trend of lower costs with increasing efficiency due to their reliance on expensive materials. A medium technology solution should provide electricity competitive with the existing medium to high technology energy generators such as oil, coal, gas, and nuclear fission thermal plants. Programs to reduce the cost of silicon and develop reliable thin film materials have a realistic chance of producing cost effective photovoltaic panels.

  12. SERI Wind Energy Program

    SciTech Connect

    Noun, R. J.

    1983-06-01

    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  13. Photovoltaic Systems Test Facilities: Existing capabilities compilation

    NASA Technical Reports Server (NTRS)

    Volkmer, K.

    1982-01-01

    A general description of photovoltaic systems test facilities (PV-STFs) operated under the U.S. Department of Energy's photovoltaics program is given. Descriptions of a number of privately operated facilities having test capabilities appropriate to photovoltaic hardware development are given. A summary of specific, representative test capabilities at the system and subsystem level is presented for each listed facility. The range of system and subsystem test capabilities available to serve the needs of both the photovoltaics program and the private sector photovoltaics industry is given.

  14. Energy Innovation Acceleration Program

    SciTech Connect

    Wolfson, Johanna

    2015-06-15

    The Energy Innovation Acceleration Program (IAP) – also called U-Launch – has had a significant impact on early stage clean energy companies in the Northeast and on the clean energy economy in the Northeast, not only during program execution (2010-2014), but continuing into the future. Key results include: Leverage ratio of 105:1; $105M in follow-on funding (upon $1M investment by EERE); At least 19 commercial products launched; At least 17 new industry partnerships formed; At least $6.5M in revenue generated; >140 jobs created; 60% of assisted companies received follow-on funding within 1 year of program completion; In addition to the direct measurable program results summarized above, two primary lessons emerged from our work executing Energy IAP:; Validation and demonstration awards have an outsized, ‘tipping-point’ effect for startups looking to secure investments and strategic partnerships. An ecosystem approach is valuable, but an approach that evaluates the needs of individual companies and then draws from diverse ecosystem resources to fill them, is most valuable of all.

  15. Renewable energy water supply - Mexico program summary

    SciTech Connect

    Foster, R.

    1997-12-01

    This paper describes a program directed by the US Agency for International Development and Sandia National Laboratory which installed sustainable energy sources in the form of photovoltaic modules and wind energy systems in rural Mexico to pump water and provide solar distillation services. The paper describes the guidelines which appeared most responsible for success as: promote an integrated development program; install quality systems that develop confidence; instill local project ownership; train local industry and project developers; develop a local maintenance infrastructure; provide users training and operations guide; develop clear lines of responsibilities for system upkeep. The paper emphasizes the importance of training. It also presents much collected data as to the characteristics and performance of the installed systems.

  16. State Energy Program Operations Manual

    SciTech Connect

    Office of Building Technology, State and Community Programs

    1999-03-17

    The State Energy Program Operations Manual is a reference tool for the states and the program officials at the U.S. Department of Energy's Office of Building Technology, State and Community Programs and Regional Support Offices as well as State Energy Offices. The Manual contains information needed to apply for and administer the State Energy Program, including program history, application rules and requirements, and program administration and monitoring requirements.

  17. Superior Valley photovoltaic power processing and system controller evaluation

    SciTech Connect

    Bonn, R.; Ginn, J.; Zirzow, J.; Sittler, G.

    1995-11-01

    Sandia National Laboratories, sponsored by the US Department of Energy`s Office of Energy Management, conducts the photovoltaic balance-of-system program. Under this program, Sandia supports the Department of Defense Strategic Environmental Research Development Plan, SERDP, which is advancing the use of photovoltaics in operational DoD facilities. This report details the acceptance testing of the first of these photovoltaic hybrid systems: the Superior Valley photovoltaic-diesel hybrid system. This is the first of several photovoltaic installations for the Department of Defense. The system hardware tested at Sandia included an inverter, maximum power trackers, and a system controller.

  18. Suppressing recombination in polymer photovoltaic devices via energy-level cascades.

    PubMed

    Tan, Zhi-Kuang; Johnson, Kerr; Vaynzof, Yana; Bakulin, Artem A; Chua, Lay-Lay; Ho, Peter K H; Friend, Richard H

    2013-08-14

    An energy cascading structure is designed in a polymer photovoltaic device to suppress recombination and improve quantum yields. By the insertion of a thin polymer interlayer with intermediate energy levels, electrons and holes can effectively shuttle away from each other while being spatially separated from recombination. An increase in open-circuit voltage and short-circuit current are observed in modified devices.

  19. Renewable Energy Certificate Program

    SciTech Connect

    Gwendolyn S. Andersen

    2012-07-17

    This project was primarily to develop and implement a curriculum which will train undergraduate and graduate students at the University seeking a degree as well as training for enrollees in a special certification program to prepare individuals to be employed in a broad range of occupations in the field of renewable energy and energy conservation. Curriculum development was by teams of Saint Francis University Faculty in the Business Administration and Science Departments and industry experts. Students seeking undergraduate and graduate degrees are able to enroll in courses offered within these departments which will combine theory and hands-on training in the various elements of wind power development. For example, the business department curriculum areas include economic modeling, finance, contracting, etc. The science areas include meteorology, energy conversion and projection, species identification, habitat protection, field data collection and analysis, etc.

  20. Geothermal energy program summary

    SciTech Connect

    Not Available

    1990-01-01

    The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

  1. 205 kW Photovoltaic (PV) System Installed on the U.S. Department of Energy's Forrestal Building

    SciTech Connect

    2009-01-18

    Fact sheet on the installation of a photovoltaic system providing renewable energy for the U.S. Department of Energy and providing leadership for meeting Federal goals in the use of renewable energy technologies.

  2. Mathematical modeling of a photovoltaic-laser energy converter for iodine laser radiation

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Heinbockel, John H.

    1987-01-01

    Space-based laser power systems will require converters to change laser radiation into electricity. Vertical junction photovoltaic converters are promising devices for this use. A promising laser for the laser power station is the t-C4F9I laser which emits radiation at a wavelength of 1.315 microns. This paper describes the results of mathematical modeling of a photovoltaic-laser energy converter for use with this laser. The material for this photovoltaic converter is Ga(53)In(47)As which has a bandgap energy of 0.94 eV, slightly below the energy of the laser photons (0.943 eV). Results of a study optimizing the converter parameters are presented. Calculated efficiency for a 1000 vertical junction converter is 42.5 percent at a power density of 1 x 10 to the 3d power w/sq cm.

  3. Impurity photovoltaic effect: Fundamental energy conversion efficiency limits

    NASA Astrophysics Data System (ADS)

    Brown, Andrew S.; Green, Martin A.

    2002-08-01

    In the past, minimal improvements have been predicted for efficiency enhancement of solar cells using the impurity photovoltaic (IPV) effect, where optical excitation through midgap defect levels allows the use of long wavelength photons to increase the conversion efficiency of sunlight to electricity. In the present work, the principle of detailed balance is used to calculate the limiting efficiency of solar cells with the inclusion of the impurity photovoltaic effect, in the idealized case when all transitions are assumed to be radiative. Based on these calculations, the limiting efficiency of the IPV device with a large number of different defect species is determined to be 77.2%. The terrestrial performance of the IPV device is also investigated by comparing its spectral sensitivity with that of tandem solar cell designs.

  4. Current challenges in organic photovoltaic solar energy conversion.

    PubMed

    Schlenker, Cody W; Thompson, Mark E

    2012-01-01

    Over the last 10 years, significant interest in utilizing conjugated organic molecules for solid-state solar to electric conversion has produced rapid improvement in device efficiencies. Organic photovoltaic (OPV) devices are attractive for their compatibility with low-cost processing techniques and thin-film applicability to flexible and conformal applications. However, many of the processes that lead to power losses in these systems still remain poorly understood, posing a significant challenge for the future efficiency improvements required to make these devices an attractive solar technology. While semiconductor band models have been employed to describe OPV operation, a more appropriate molecular picture of the pertinent processes is beginning to emerge. This chapter presents mechanisms of OPV device operation, based on the bound molecular nature of the involved transient species. With the intention to underscore the importance of considering both thermodynamic and kinetic factors, recent progress in elucidating molecular characteristics that dictate photovoltage losses in heterojunction organic photovoltaics is also discussed.

  5. Army Programs: Army Energy Program

    DTIC Science & Technology

    2007-11-02

    successful implementation of energy efficiency, water conservation, and solar and other renew- able energy projects in performance evaluations. (5...17. Energy Policy for Leased DOD Facilities In accordance with the Federal Property Regulations (41 CFR, CHP 101, 1 July 1991) and Section 544(b)(2) of...t i o n , o r h o u s e k e e p i n g w i l l n o t b e included. Renewable energy Solar thermal (SOL), wind (WND), geother- m a l ( G E O ) , g e o

  6. Integrated photovoltaic-thermal solar energy conversion systems

    NASA Technical Reports Server (NTRS)

    Samara, G. A.

    1975-01-01

    A combined photovoltaic/thermal collector has been built and is now being tested. Initial tests have concentrated on evaluating the thermal efficiency of the collector before and after the silicon cells are mounted. With likely improvements in bonding between cells and receiver and in the absorptivity of the cells, thermal efficiencies greater than 50% can be expected for the combined receiver operating at 100 C.

  7. Large impact of reorganization energy on photovoltaic conversion due to interfacial charge-transfer transitions.

    PubMed

    Fujisawa, Jun-ichi

    2015-05-14

    Interfacial charge-transfer (ICT) transitions are expected to be a novel charge-separation mechanism for efficient photovoltaic conversion featuring one-step charge separation without energy loss. Photovoltaic conversion due to ICT transitions has been investigated using several TiO2-organic hybrid materials that show organic-to-inorganic ICT transitions in the visible region. In applications of ICT transitions to photovoltaic conversion, there is a significant problem that rapid carrier recombination is caused by organic-inorganic electronic coupling that is necessary for the ICT transitions. In order to solve this problem, in this work, I have theoretically studied light-to-current conversions due to the ICT transitions on the basis of the Marcus theory with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. An apparent correlation between the reported incident photon-to-current conversion efficiencies (IPCE) and calculated reorganization energies was clearly found, in which the IPCE increases with decreasing the reorganization energy consistent with the Marcus theory in the inverted region. This activation-energy dependence was systematically explained by the equation formulated by the Marcus theory based on a simple excited-state kinetic scheme. This result indicates that the reduction of the reorganization energy can suppress the carrier recombination and enhance the IPCE. The reorganization energy is predominantly governed by the structural change in the chemical-adsorption moiety between the ground and ICT excited states. This work provides crucial knowledge for efficient photovoltaic conversion due to ICT transitions.

  8. Energy Program annual report

    SciTech Connect

    Borg, I.Y.

    1988-02-01

    The national economy is particularly dependent on efficient electrical generation and transportation. Electrical demand continues to grow and will increasingly rely on coal and nuclear fuels. The nuclear power industry still has not found a solution to the problem of disposing of the waste produced by nuclear reactors. Although coal is in ample supply and the infrastructure is in place for its utilization, environmental problems and improved conversion processes remain technical challenges. In the case of transportation, the nation depends almost exclusively on liquid fuels with attendant reliance on imported oil. Economic alternates---synfuels from coal, natural gas, and oil shale, or fuel cells and batteries---have yet to be developed or perfected so as to impact the marketplace. Inefficiencies in energy conversion in almost all phases of resource utilization remain. These collective problems are the focus of the Energy Program.

  9. Energy production estimation for Kosh-Agach grid-tie photovoltaic power plant for different photovoltaic module types

    NASA Astrophysics Data System (ADS)

    Gabderakhmanova, T. S.; Kiseleva, S. V.; Frid, S. E.; Tarasenko, A. B.

    2016-11-01

    This paper is devoted to calculation of yearly energy production, demanded area and capital costs for first Russian 5 MW grid-tie photovoltaic (PV) plant in Altay Republic that is named Kosh-Agach. Simple linear calculation model, involving average solar radiation and temperature data, grid-tie inverter power-efficiency dependence and PV modules parameters is proposed. Monthly and yearly energy production, equipment costs and demanded area for PV plant are estimated for mono-, polycrystalline and amorphous modules. Calculation includes three types of initial radiation and temperature data—average day for every month from NASA SSE, average radiation and temperature for each day of the year from NASA POWER and typical meteorology year generated from average data for every month. The peculiarities for each type of initial data and their influence on results are discussed.

  10. Forecasting of Hourly Photovoltaic Energy in Canarian Electrical System

    NASA Astrophysics Data System (ADS)

    Henriquez, D.; Castaño, C.; Nebot, R.; Piernavieja, G.; Rodriguez, A.

    2010-09-01

    The Canarian Archipelago face similar problems as most insular region lacking of endogenous conventional energy resources and not connected to continental electrical grids. A consequence of the "insular fact" is the existence of isolated electrical systems that are very difficult to interconnect due to the considerable sea depths between the islands. Currently, the Canary Islands have six isolated electrical systems, only one utility generating most of the electricity (burning fuel), a recently arrived TSO (REE) and still a low implementation of Renewable Energy Resources (RES). The low level of RES deployment is a consequence of two main facts: the weakness of the stand-alone grids (from 12 MW in El Hierro up to only 1 GW in Gran Canaria) and the lack of space to install RES systems (more than 50% of the land protected due to environmental reasons). To increase the penetration of renewable energy generation, like solar or wind energy, is necessary to develop tools to manage them. The penetration of non manageable sources into weak grids like the Canarian ones causes a big problem to the grid operator. There are currently 104 MW of PV connected to the islands grids (Dec. 2009) and additional 150 MW under licensing. This power presents a serious challenge for the operation and stability of the electrical system. ITC, together with the local TSO (Red Eléctrica de España, REE) started in 2008 and R&D project to develop a PV energy prediction tool for the six Canarian Insular electrical systems. The objective is to supply reliable information for hourly forecast of the generation dispatch programme and to predict daily solar radiation patterns, in order to help program spinning reserves. ITC has approached the task of weather forecasting using different numerical model (MM5 and WRF) in combination with MSG (Meteosat Second Generation) images. From the online data recorded at several monitored PV plants and meteorological stations, PV nominal power and energy produced

  11. Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center

    DOE Data Explorer

    This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

  12. FEMP Renewable Energy Program Overview

    SciTech Connect

    2010-07-14

    Fact sheet describing how the U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) provides Federal agencies with information, guidance, and assistance in using renewable energy.

  13. Workshop proceedings: Photovoltaic conversion of solar energy for terrestrial applications. Volume 2: Invited papers

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A photovoltaic device development plan is reported that considers technological as well as economical aspects of single crystal silicon, polycrystal silicon, cadmium sulfide/copper sulfide thin films, as well as other materials and devices for solar cell energy conversion systems.

  14. Solar Glitter: Low Cost, Solar Energy Harvesting with Microsystems Enabled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Nelson, Jeffrey

    2012-03-01

    The sun covers our environment with energy harvesting opportunities throughout the day. Although great progress has been made in developing low-cost, solar photovoltaic technologies to harvest the suns energy, the traditional silicon-based PV module format has remained unchanged for almost 40 years, thereby limiting energy harvesting to rooftops and large open spaces. Thin-film and building-integrated photovoltaics have increased the opportunity for energy harvesting, but suffer from low-efficiency. We have developed, based on micro-electro-mechanical systems (MEMs) and other microsystems technology, a new approach to solar photovoltaics applicable in a wide range of environments -- Microsystems Enabled Photovoltaics (MEPV). MEPV solar cells made from crystalline silicon or III-V compound semiconductors (for example, GaAs) are 5-20 microns thick and with lateral dimensions of 250 microns to 1 mm. These solar cells minimize the amount of expensive semiconductor used, but retain the high efficiency of crystalline materials, and allow novel module and system designs not possible with traditional approaches. This talk will outline the science and engineering of MEPV technology, and highlight several novel applications.

  15. Documents of the JPL Photovoltaics Program Analysis and Integration Center: An annotated bibliography

    NASA Technical Reports Server (NTRS)

    Pearson, A. M.

    1985-01-01

    A bibliography of internal and external documents produced by the Jet Propulsion Laboratory, based on the work performed by the Photovoltaics Program Analysis and Integration Center, is presented with annotations. As shown in the Table of Contents, the bibliography is divided into three subject areas: (1) Assessments, (2) Methdological Studies, and (3) Supporting Studies. Annotated abstracts are presented for 20 papers.

  16. NV Energy Large-Scale Photovoltaic Integration Study: Intra-Hour Dispatch and AGC Simulation

    SciTech Connect

    Lu, Shuai; Etingov, Pavel V.; Meng, Da; Guo, Xinxin; Jin, Chunlian; Samaan, Nader A.

    2013-01-02

    The uncertainty and variability with photovoltaic (PV) generation make it very challenging to balance power system generation and load, especially under high penetration cases. Higher reserve requirements and more cycling of conventional generators are generally anticipated for large-scale PV integration. However, whether the existing generation fleet is flexible enough to handle the variations and how well the system can maintain its control performance are difficult to predict. The goal of this project is to develop a software program that can perform intra-hour dispatch and automatic generation control (AGC) simulation, by which the balancing operations of a system can be simulated to answer the questions posed above. The simulator, named Electric System Intra-Hour Operation Simulator (ESIOS), uses the NV Energy southern system as a study case, and models the system’s generator configurations, AGC functions, and operator actions to balance system generation and load. Actual dispatch of AGC generators and control performance under various PV penetration levels can be predicted by running ESIOS. With data about the load, generation, and generator characteristics, ESIOS can perform similar simulations and assess variable generation integration impacts for other systems as well. This report describes the design of the simulator and presents the study results showing the PV impacts on NV Energy real-time operations.

  17. A photovoltaic industry overview - The results of a survey on photovoltaic technology industrialization

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.; Costogue, E. N.; Thornhill, J. W.; Shimada, K.

    1981-01-01

    The National Photovoltaics Program of the United States Department of Energy has the objective of bringing photovoltaic power systems to a point where they can supply a significant portion of the United States energy requirements by the year 2000. This is planned to be accomplished through substantial research and technology development activities aimed at achieving major cost reductions and market penetration. This paper presents information derived from a limited survey performed to obtain photovoltaic industry attitudes concerning industrialization, and to determine current industry plans to meet the DOE program goals. Silicon material production, a key photovoltaic manufacturing industry, is highlighted with regards to implementation of technology improvement and silicon material supply outlook.

  18. A photovoltaic industry overview - The results of a survey on photovoltaic technology industrialization

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.; Costogue, E. N.; Thornhill, J. W.; Shimada, K.

    1981-01-01

    The National Photovoltaics Program of the United States Department of Energy has the objective of bringing photovoltaic power systems to a point where they can supply a significant portion of the United States energy requirements by the year 2000. This is planned to be accomplished through substantial research and technology development activities aimed at achieving major cost reductions and market penetration. This paper presents information derived from a limited survey performed to obtain photovoltaic industry attitudes concerning industrialization, and to determine current industry plans to meet the DOE program goals. Silicon material production, a key photovoltaic manufacturing industry, is highlighted with regards to implementation of technology improvement and silicon material supply outlook.

  19. The mini-dome Fresnel lens photovoltaic concentrator array - Current program status

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; O'Neill, Mark J.; Fraas, Lewis

    1991-01-01

    Over the last seven years, NASA Lewis, ENTECH, and Boeing have been developing a high-efficiency, lightweight space photovoltaic concentrator array. The authors report the current status of the mini-dome Fresnel lens concentrator program, emphasizing the latest results on the fabrication and testing of a space-qualifiable version of the concentrator lens and panel structure. Calculations indicated that such an array can achieve 300 W/sq m at a specific power of 100 W/kg. The authors describe the current status of component and prototype panel testing and the preliminary development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) flight experiment.

  20. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  1. Harvesting energy from the sun---photovoltaic panel apparatus

    NASA Astrophysics Data System (ADS)

    Riccio, David; Schier, Walter

    2011-04-01

    Two 11 cm x 18 cm photovoltaic panels are mounted on a modified ballistic pendulum apparatus that was retired from service in our labs. Its heavy base with pivoted arm provides a stable mount with angle adjustment. Residential PV panel installations group the panels both in series and in parallel, extract maximum power from these groupings, and deal with varying intensity due to changing light conditions. Measurements in the undergraduate lab with a bare light bulb simultaneously provide characteristic graphs of current vs voltage, power vs voltage, load resistance vs voltage for PV panels singly, in series, or in parallel. Also intensity dependence on angle and on distance to the light source are studied in the lab. A custom junction box with a variable load resistor connects the PV panels to PASCO's interface box with voltage and current leads. PASCO's Data Studio is used to record and analyze the graphs.

  2. Energy analysis of facade-integrated photovoltaic systems applied to UAE commercial buildings

    SciTech Connect

    Radhi, Hassan

    2010-12-15

    Developments in the design and manufacture of photovoltaic cells have recently been a growing concern in the UAE. At present, the embodied energy pay-back time (EPBT) is the criterion used for comparing the viability of such technology against other forms. However, the impact of PV technology on the thermal performance of buildings is not considered at the time of EPBT estimation. If additional energy savings gained over the PV system life are also included, the total EPBT could be shorter. This paper explores the variation of the total energy of building integrated photovoltaic systems (BiPV) as a wall cladding system applied to the UAE commercial sector and shows that the ratio between PV output and saving in energy due to PV panels is within the range of 1:3-1:4. The result indicates that for the southern and western facades in the UAE, the embodied energy pay-back time for photovoltaic system is within the range of 12-13 years. When reductions in operational energy are considered, the pay-back time is reduced to 3.0-3.2 years. This study comes to the conclusion that the reduction in operational energy due to PV panels represents an important factor in the estimation of EPBT. (author)

  3. SCARLET Photovoltaic Concentrator Array Selected for Flight Under NASA's New Millennium Program

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.

    1997-01-01

    The NASA Lewis Research Center continues to demonstrate its expertise in the development and implementation of advanced space power systems. For example, during the past year, the NASA New Millennium Program selected the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) photovoltaic array as the power system for its Deep Space-1 (DS-1) mission. This Jet Propulsion Laboratory (JPL) managed DS-1 mission, which represents the first operational flight of a photovoltaic concentrator array, will provide a baseline for the use of this technology in a variety of future government and commercial applications. SCARLET is a joint NASA Lewis/Ballistic Missile Defense Organization program to develop advanced photovoltaic array technology that uses a unique refractive concentrator design to focus sunlight onto a line of photovoltaic cells located below the optical element. The general concept is based on previous work conducted at Lewis under a Small Business Innovation Research (SBIR) contract with AEC-Able Engineering, Inc., for the Multiple Experiments to Earth Orbit and Return (METEOR) spacecraft. The SCARLET II design selected by the New Millennium Program is a direct adaptation of the smaller SCARLET I array built for METEOR. Even though SCARLET I was lost during a launch failure in October 1995, the hardware (designed, built, and flight qualified within 6 months) provided invaluable information and experience that led to the selection of this technology as the primary power source for DS-1.

  4. Life Cycle Assessment Projection of Photovoltaic Cells: A Case Study on Energy Demand of Quantum Wire Based Photovoltaic Technology Research

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shilpi

    With increasing clean-energy demand, photovoltaic (PV) technologies have gained attention as potential long-term alternative to fossil fuel energy. However, PV research and manufacture still utilize fossil fuel-powered grid electricity. With continuous enhancement of solar conversion efficiency, it is imperative to assess whether overall life cycle efficiency is also being enhanced. Many new-material PV technologies are still in their research phase, and life cycle analyses of these technologies have not yet been performed. For best results, grid dependency must be minimized for PV research, and this can be accomplished by an analytical instrument called Life Cycle Assessment (LCA). LCA is the study of environmental impacts of a product throughout its life cycle. While there are some non-recoverable costs of research, energy is precious, and the PV research community should be aware of its energy consumption. LCA can help identify options for energy conservation through process optimization. A case study was conducted on the energy demand of a test-bed emerging PV technology using life cycle assessment methodology. The test-bed system chosen for this study was a new-material PV cell. The objective was to quantify the total energy demand for the research phase of the test-bed solar cell's life cycle. The objective was accomplished by collecting primary data on energy consumption for each process in the development of this solar cell. It was found that 937 kWh of energy was consumed for performing research on a single sample of the solar cell. For comparison, this energy consumption is 83% of Arkansas's average monthly residential electricity consumption. Life cycle inventory analysis showed that heating, ventilation, and air conditioning consumed the bulk of the energy of research. It is to be noted that the processes studied as part of the solar cell test-bed system are representative of a research process only. Life cycle thinking can identify energy hot-spots and

  5. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell (RFC) energy storage system based on high temperature solid oxide fuel cell (SOFC) technology is described. The reactants are stored as gases in lightweight insulated pressure vessels. The product water is stored as a liquid in saturated equilibrium with the fuel gas. The system functions as a secondary battery and is applicable to darkside energy storage for solar photovoltaics.

  6. High-efficiency, monolithic, multi-bandgap, tandem, photovoltaic energy converters

    DOEpatents

    Wanlass, Mark W

    2014-05-27

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  7. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters

    DOEpatents

    Wanlass, Mark W [Golden, CO

    2011-11-29

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  8. Photovoltaics in Japan

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1985-01-01

    Report surveys status of research and development on photovoltaics in Japan. Report based on literature searches, private communications, and visits by author to Japanese facilities. Included in survey are Sunshine Project, national program to develop energy sources; industrial development at private firms; and work at academic institutions.

  9. Hawaii Energy Strategy: Program guide

    SciTech Connect

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii`s energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii`s energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  10. An empirical study on energy efficiency improvement through photovoltaic systems and a LED lighting control system

    NASA Astrophysics Data System (ADS)

    Choi, Young Kwan; Lee, Jae Hyeong

    2015-09-01

    In this research, a facility was constructed and its performance was analyzed to improve the energy efficiency of a vertical-type water treatment building. After the design and construction of a fixed tilt Photovoltaic in Building (PVIB) on the rooftop using a crystalline silicon solar cell module and photovoltaic generator integrated with the building by using a Building Integrated Photovoltaic System (BIPV), a thin-film module on the rooftop and outer wall of water treatment building, and the generation efficiency was analyzed. Also, a DC distribution was established for use of a brushless DC (BLDC) pump motor, and the existing lighting-facility-based manual on-off method was turned into a system for energy conservation by controlling light emitting diode (LED) through a wireless motion sensor and dimming control. In addition, a Building Energy Management System (BEMS) for a real-time analysis of the energy efficiency for a vertical0type water treatment building was prepared and tested. The vertical-type water treatment building developed in this study is currently operating the BEMS. The vertical-type water treatment building reported in this paper is expected to reduce energy consumption by about 30% compared to existing water treatment systems.

  11. Wind Energy Program: Top 10 Program Accomplishments

    SciTech Connect

    2009-01-18

    Brochure on the top accomplishments of the Wind Energy Program, including the development of large wind machines, small machines for the residential market, wind tunnel testing, computer codes for modeling wind systems, high definition wind maps, and successful collaborations.

  12. Ovshinsky Sustainable Energy Fellowship: Excitonics for Transparent Photovoltaics

    NASA Astrophysics Data System (ADS)

    Lunt, Richard

    Room-­temperature excitonic materials offer new opportunities for low­-cost photovoltaic (PV) systems and provide prospects for unique solar harvesting science and applications. In the first part of this talk, I will introduce our pioneering work on developing transparent PVs that are creating a new paradigm for seamless solar harvesting around buildings, automobiles, and mobile electronics. These devices are enabled by the manipulation of excitonic semiconductor materials with selective harvesting in the near­infrared and ultraviolet components of the solar spectrum. I will describe key photophysical properties, outline the thermodynamic and practical limits to these new classes of materials and devices, and briefly discuss their commercial impact for a range of applications. In the second part, I will describe the development of a new series organic salts that allow tunable photoresponse from 900nm to 1600nm, an unprecedented range for small­molecule semiconductors. These organic salts also enable precise tuning of frontier orbital levels and heterojunction interface gaps through anion alloying that result in voltages near the thermodynamic limit. This design strategy can further enable rapid development of efficient and low­cost multijunction devices (both opaque and transparent) with complimentary response across the solar spectrum.

  13. Photovoltaics Informatics: Harnessing Energy Science via Data-Driven Approaches

    SciTech Connect

    Suh, C.; Munch, K.; Biagioni, D.; Glynn, S.; Scharf, J.; Contreras, M. A.; Perkins, J. D.; Nelson, B. P.; Jones, W. B.

    2011-01-01

    We discuss our current research focus on photovoltaic (PV) informatics, which is dedicated to functionality enhancement of solar materials through data management and data mining-aided, integrated computational materials engineering (ICME) for rapid screening and identification of multi-scale processing/structure/property/performance relationships. Our current PV informatics research ranges from transparent conducting oxides (TCO) to solar absorber materials. As a test bed, we report on examples of our current data management system for PV research and advanced data mining to improve the performance of solar cells such as CuIn{sub x}Ga{sub 1-x}Se{sub 2} (CIGS) aiming at low-cost and high-rate processes. For the PV data management, we show recent developments of a strategy for data modeling, collection and aggregation methods, and construction of data interfaces, which enable proper archiving and data handling for data mining. For scientific data mining, the value of high-dimensional visualizations and non-linear dimensionality reduction is demonstrated to quantitatively assess how process conditions or properties are interconnected in the context of the development of Al-doped ZnO (AZO) thin films as the TCO layers for CIGS devices. Such relationships between processing and property of TCOs lead to optimal process design toward enhanced performance of CIGS cells/devices.

  14. Tariffs Can Be Structured to Encourage Photovoltaic Energy

    SciTech Connect

    Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

    2008-08-31

    The solar power market is growing at a quickening pace, fueled by an array of national and local initiatives and policies aimed at improving the value proposition of customer-sited photovoltaic (PV) systems. Though these policies take many forms, they commonly include up-front capital cost rebates or ongoing production incentives, supplemented by net metering requirements to ensure that customer-sited PV systems offset the full retail rate of the customer-hosts. Somewhat less recognized is the role of retail rate design, beyond net metering, on the customer-economics of grid-connected PV. Over the life of a PV system, utility bill savings represent a substantial portion of the overall economic value received by the customer. At the same time, the design of retail electricity rates, particularly for commercial and industrial customers, can vary quite substantially. Understanding how specific differences in rate design affect the value of customer-sited PV is therefore essential to supporting the continued growth of this market.

  15. Investigation of energy management strategies for photovoltaic systems - A predictive control algorithm

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Eltimsahy, A. H.

    1983-01-01

    The present investigation is concerned with the formulation of energy management strategies for stand-alone photovoltaic (PV) systems, taking into account a basic control algorithm for a possible predictive, (and adaptive) controller. The control system controls the flow of energy in the system according to the amount of energy available, and predicts the appropriate control set-points based on the energy (insolation) available by using an appropriate system model. Aspects of adaptation to the conditions of the system are also considered. Attention is given to a statistical analysis technique, the analysis inputs, the analysis procedure, and details regarding the basic control algorithm.

  16. Investigation of energy management strategies for photovoltaic systems - A predictive control algorithm

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Eltimsahy, A. H.

    1983-01-01

    The present investigation is concerned with the formulation of energy management strategies for stand-alone photovoltaic (PV) systems, taking into account a basic control algorithm for a possible predictive, (and adaptive) controller. The control system controls the flow of energy in the system according to the amount of energy available, and predicts the appropriate control set-points based on the energy (insolation) available by using an appropriate system model. Aspects of adaptation to the conditions of the system are also considered. Attention is given to a statistical analysis technique, the analysis inputs, the analysis procedure, and details regarding the basic control algorithm.

  17. Maximally concentrating optics for photovoltaic solar energy conversion

    SciTech Connect

    Winston, R.; O'Gallagher, J.; Ning, X.

    1986-02-27

    The use of a two-stage concentrator with a fresnel lens primary and a non-imaging dielectric totally internally reflecting secondary, has unique advantages for photovoltaic concentration. This new design has a much larger acceptance angle than the conventional lens-cell concentrating system. In the continuation of this research, an optimally designed prototype which employs a 13.6-cm diameter flat fresnel tons as the primary focusing device, a dielectric compound hyperbolic concentrator (DCHC) as secondary and a 1-cm diameter high-concentration cell for electricity conversion has been built, tested and analyzed. Measurements under sunlight show that it has an angular acceptance of [plus minus]3.6 degrees, which is dramatically better than the [plus minus]0.5 degree achievable without a secondary concentrator. This performance agrees well with theoretical ray-tracing predictions. The secondary shows an optical efficiency of (91[plus minus]2)% at normal incidence. Combining with the primary fresnel tens which has an optical efficiency of (82[plus minus]2)%, tho two-stage system yields a total optical efficiency of (7l[plus minus]2)%. The measurement of the system electrical performance yielded a net electrical efficiency of 11.9%. No problems associated with non-uniform cell illumination were found, as evidenced by the excellent fill factor of (79[plus minus]2)% measured under concentration. The secondary geometrical properties and the optimal two-stage design procedures for various primary- cell combinations were systematical studied. A general design principle has been developed.

  18. Optoelectronic insights into the photovoltaic losses from photocurrent, voltage, and energy perspectives

    NASA Astrophysics Data System (ADS)

    Shang, Aixue; An, Yidan; Ma, Dong; Li, Xiaofeng

    2017-08-01

    Photocurrent and voltage losses are the fundamental limitations for improving the efficiency of photovoltaic devices. It is indeed that a comprehensive and quantitative differentiation of the performance degradation in solar cells will promote the understanding of photovoltaic physics as well as provide a useful guidance to design highly-efficient and cost-effective solar cells. Based on optoelectronic simulation that addresses electromagnetic and carrier-transport responses in a coupled finite-element method, we report a detailed quantitative analysis of photocurrent and voltage losses in solar cells. We not only concentrate on the wavelength-dependent photocurrent loss, but also quantify the variations of photocurrent and operating voltage under different forward electrical biases. Further, the device output power and power losses due to carrier recombination, thermalization, Joule heat, and Peltier heat are studied through the optoelectronic simulation. The deep insight into the gains and losses of the photocurrent, voltage, and energy will contribute to the accurate clarifications of the performance degradation of photovoltaic devices, enabling a better control of the photovoltaic behaviors for high performance.

  19. A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage.

    PubMed

    Miñambres-Marcos, Víctor Manuel; Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín; Milanés-Montero, María Isabel

    2017-08-11

    The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don't address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests.

  20. Development of low-cost silicon crystal growth techniques for terrestrial photovoltaic solar energy conversion

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1976-01-01

    Because of the growing need for new sources of electrical energy, photovoltaic solar energy conversion is being developed. Photovoltaic devices are now being produced mainly from silicon wafers obtained from the slicing and polishing of cylindrically shaped single crystal ingots. Inherently high-cost processes now being used must either be eliminated or modified to provide low-cost crystalline silicon. Basic to this pursuit is the development of new or modified methods of crystal growth and, if necessary, crystal cutting. If silicon could be grown in a form requiring no cutting, a significant cost saving would potentially be realized. Therefore, several techniques for growth in the form of ribbons or sheets are being explored. In addition, novel techniques for low-cost ingot growth and cutting are under investigation.

  1. Development of low-cost silicon crystal growth techniques for terrestrial photovoltaic solar energy conversion

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1976-01-01

    Because of the growing need for new sources of electrical energy, photovoltaic solar energy conversion is being developed. Photovoltaic devices are now being produced mainly from silicon wafers obtained from the slicing and polishing of cylindrically shaped single crystal ingots. Inherently high-cost processes now being used must either be eliminated or modified to provide low-cost crystalline silicon. Basic to this pursuit is the development of new or modified methods of crystal growth and, if necessary, crystal cutting. If silicon could be grown in a form requiring no cutting, a significant cost saving would potentially be realized. Therefore, several techniques for growth in the form of ribbons or sheets are being explored. In addition, novel techniques for low-cost ingot growth and cutting are under investigation.

  2. Battery testing for photovoltaic applications

    SciTech Connect

    Hund, T.

    1996-11-01

    Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

  3. Photovoltaic materials.

    PubMed

    Perez-Albuerne, E A; Tyan, Y S

    1980-05-23

    Solid-state photovoltaic cells are feasible devices for converting solar energy directly to electricity. Recent cost reductions have spurred an incipient industry, but further advances in materials science and technology are needed before photovoltaic cells can compete with other sources for the supply of large amounts of energy. In this article energy loss mechanisms in solid-state photovoltaic cells are examined and related to materials properties. Various systems under development are reviewed which illustrate some key concepts, opportunities, and problems of this most promising emerging technology. Areas where contributions from innovative materials research would have a significant effect are also indicated.

  4. SERI solar energy storage program

    NASA Astrophysics Data System (ADS)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-02-01

    Research on advanced technologies, system analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage program are presented. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications.

  5. Benchmarking concentrating photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Duerr, Fabian; Muthirayan, Buvaneshwari; Meuret, Youri; Thienpont, Hugo

    2010-08-01

    Integral to photovoltaics is the need to provide improved economic viability. To achieve this goal, photovoltaic technology has to be able to harness more light at less cost. A large variety of concentrating photovoltaic concepts has provided cause for pursuit. To obtain a detailed profitability analysis, a flexible evaluation is crucial for benchmarking the cost-performance of this variety of concentrating photovoltaic concepts. To save time and capital, a way to estimate the cost-performance of a complete solar energy system is to use computer aided modeling. In this work a benchmark tool is introduced based on a modular programming concept. The overall implementation is done in MATLAB whereas Advanced Systems Analysis Program (ASAP) is used for ray tracing calculations. This allows for a flexible and extendable structuring of all important modules, namely an advanced source modeling including time and local dependence, and an advanced optical system analysis of various optical designs to obtain an evaluation of the figure of merit. An important figure of merit: the energy yield for a given photovoltaic system at a geographical position over a specific period, can be calculated.

  6. A low-power photovoltaic system with energy storage for radio communications: Description and design methodology

    NASA Technical Reports Server (NTRS)

    Chapman, C. P.; Chapman, P. D.; Lewison, A. H.

    1982-01-01

    A low power photovoltaic system was constructed with approximately 500 amp hours of battery energy storage to provide power to an emergency amateur radio communications center. The system can power the communications center for about 72 hours of continuous nonsun operation. Complete construction details and a design methodology algorithm are given with abundant engineering data and adequate theory to allow similar systems to be constructed, scaled up or down, with minimum design effort.

  7. Low-power photovoltaic system with energy storage for radio communications. Description and design methodology

    SciTech Connect

    Chapman, C.P.; Chapman, P.D.; Lewison, A.H.

    1982-01-15

    A low-power photovoltaic system was constructed with approximately 500 amp-hours of battery energy storage to provide power to an emergency amateur radio communications center. The system can power the communications center for about 72 hours of continuous no-sun operation. Complete construction details and a design methodology algorithm are given with abundant engineering data and adequate theory to allow similar systems to be constructed, scaled up or down, with minimum design effort.

  8. A low-power photovoltaic system with energy storage for radio communications: description and design methodology

    SciTech Connect

    Chapman, C.P.; Chapman, P.D.

    1982-01-01

    A low power photovoltaic system was constructed with approximately 500 amp hours of battery energy storage to provide power to an emergency amateur radio communications center. The system can power the communications center for about 72 hours of continuous nonsun operation. Complete construction details and a design methodology algorithm are given with abundant engineering data and adequate theory to allow similar systems to be constructed, scaled up or down, with minimum design effort.

  9. Fossil energy program. Summary document

    SciTech Connect

    1980-05-01

    This program summary document presents a comprehensive overview of the research, development, and demonstration (RD and D) activities that will be performed in FY 1981 by the Assistant Secretary for Fossil Energy (ASFE), US Department of Energy (DOE). The ASFE technology programs for the fossil resources of coal, petroleum (including oil shale) and gas have been established with the goal of making substantive contributions to the nation's future supply and efficienty use of energy. On April 29, 1977, the Administration submitted to Congress the National Energy Plan (NEP) and accompanying legislative proposals designed to establish a coherent energy policy structure for the United States. Congress passed the National Energy Act (NEA) on October 15, 1978, which allows implementation of the vital parts of the NEP. The NEP was supplemented by additional energy policy statements culminating in the President's address on July 15, 1979, presenting a program to further reduce dependence on imported petroleum. The passage of the NEA-related energy programs represent specific steps by the Administration and Congress to reorganize, redirect, and clarify the role of the Federal Government in the formulation and execution of national energy policy and programs. The energy technology RD and D prog4rams carried out by ASFE are an important part of the Federal Government's effort to provide the combination and amounts of energy resources needed to ensure national security and continued economic growth.

  10. Solar energy and job creation benefits of photovoltaics in times of high unemployment

    SciTech Connect

    Hohmeyer, O.H.

    1994-12-31

    Solar energy is normally discussed under the aspects of its medium to long term contribution to the global energy supply and its present cost. The situation is characterized by the benefits of an abundant renewable energy supply option o the one side and comparatively high internal energy production costs of solar energy on the other. Besides the environmental and health benefits of renewables not taken into account in cost comparisons, solar energy has a significantly higher job creation potential as conventional energy supply options. The paper gives an introduction into the basic methodological aspects of comparing job creation effects of different energy technologies and reports on the latest results of ongoing research on the specific effects of photovoltaics as compared to conventional electricity generation.

  11. Experimental investigation of static ice refrigeration air conditioning system driven by distributed photovoltaic energy system

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Li, M.; Luo, X.; Wang, Y. F.; Yu, Q. F.; Hassanien, R. H. E.

    2016-08-01

    The static ice refrigeration air conditioning system (SIRACS) driven by distributed photovoltaic energy system (DPES) was proposed and the test experiment have been investigated in this paper. Results revealed that system energy utilization efficiency is low because energy losses were high in ice making process of ice slide maker. So the immersed evaporator and co-integrated exchanger were suggested in system structure optimization analysis and the system COP was improved nearly 40%. At the same time, we have researched that ice thickness and ice super-cooled temperature changed along with time and the relationship between system COP and ice thickness was obtained.

  12. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  13. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  14. Performance advantages of two-axis tracking for large flat-plate photovoltaic energy systems

    SciTech Connect

    Gay, C.F.; Wilson, J.H.; Yerkes, J.W.

    1982-09-01

    Daily and annual energy-delivery performance is compared for large-scale fixed-array and two-axis tracking photovoltaic generating systems similar to the ASI Project at Lugo, California. Systems of equal peak-watt rating and systems of different sizes but equal annual energy output are compared in the Lugo setting. Site sensitivities are discussed. For the site studied, it is observed that a fixed-array system would use about 40% more modules than a two-axis tracking system, for equal annual energy.

  15. Performance advantages of two-axis tracking for large flat-plate photovoltaic energy systems

    NASA Astrophysics Data System (ADS)

    Gay, C. F.; Yerkes, J. W.; Wilson, J. H.

    Daily and annual energy-delivery performance is compared for large-scale fixed-array and two-axis tracking photovoltaic generating systems similar to the ASI Project at Lugo, CA. Systems of equal peak-watt rating and systems of different sizes but equal annual energy output are compared in the Lugo setting. Site sensitivities are discussed. For the site studied, it is observed that a fixed-array system would use about 40 percent more modules than a two-axis tracking system, for equal annual energy.

  16. Conservation and solar energy program: congressional budget request, FY 1982

    SciTech Connect

    1981-01-01

    Funding summaries are presented for the Conservation and Solar Energy Program funding information and program overview on energy conservation (Volume 7 of 7, DOE/CR-0011/2) are included for the Buildings and Community Systems, Industrial, Transportation; State and Local, Multi-Sector, Energy Impact Assistance, and Residential/Commercial retrofit programs. Funding information and program overviews on solar technology (Volume 2 of 7, DOE/CR-011/2) are included for Active and Passive Solar Heating and Cooling, Photovoltaics Energy Systems, Solar Thermal Power Systems, Biomass Energy Systems, Wind Energy Conversion Systems, Ocean Systems, Solar International Activities, Solar Information Systems, SERI Facility, MX-RES, Program Direction, and Alcohol Fuels programs. Information and overviews on energy production, demonstration, and distribution (Volume 6 of 7, DOE/CR-0011/2) are given for the solar program. A funding summary and a program overview are included for electrochemical and physical and chemical storage systems as appearing in DOE/CR-0011/2, Volume 3 of 7. Relevant tabulated data from the FY 1981. Request to the Congress are presented for Supplementals, Rescissions, and Deferrals. (MCW)

  17. Deep space network energy program

    NASA Technical Reports Server (NTRS)

    Friesema, S. E.

    1980-01-01

    If the Deep Space Network is to exist in a cost effective and reliable manner in the next decade, the problems presented by international energy cost increases and energy availability must be addressed. The Deep Space Network Energy Program was established to implement solutions compatible with the ongoing development of the total network.

  18. University Crystalline Silicon Photovoltaics Research and Development

    SciTech Connect

    Ajeet Rohatgi; Vijay Yelundur; Abasifreke Ebong; Dong Seop Kim

    2008-08-18

    The overall goal of the program is to advance the current state of crystalline silicon solar cell technology to make photovoltaics more competitive with conventional energy sources. This program emphasizes fundamental and applied research that results in low-cost, high-efficiency cells on commercial silicon substrates with strong involvement of the PV industry, and support a very strong photovoltaics education program in the US based on classroom education and hands-on training in the laboratory.

  19. Sustainable Energy Services Program

    EPA Pesticide Factsheets

    Cary, North Carolina, is an EPA Climate Showcase Community. EPA’s Climate Showcase Communities Program helps local governments and tribal nations pilot innovative, cost-effective and replicable community-based greenhouse gas reduction projects.

  20. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  1. Navy Energy Program

    DTIC Science & Technology

    2011-05-01

    Diego Solar PV 14 Recent Energy Successes For More Information: Check out our Energy, Environment and Climate Change website at...oResources stewardship oEnvironmental impact • Watch maturing technology and invest when/where viable ( Solar , Wind) • Partner to develop needed...Efficient Ship Systems Example: Solid State Lighting DDG-51 Hybrid Electric Drive Test Platform: USS TRUXTUN Enhance capability by enabling fuel

  2. Photovoltaic systems overview

    NASA Technical Reports Server (NTRS)

    Hesse, J. L.

    1981-01-01

    Selected photovoltaic systems currently under user-environment field test by the U.S. Department of Energy Photovoltaics Program are discussed, and operational results are summarized. There are many systems in the stand-alone sector that are cost effective now. As proven products become available, distributed residential, commercial, institutional and industrial on-site systems should be able to displace significant amounts of centrally-generated electricity throughout most of the United States. Finally, utilities should ultimately be able to augment their generating capacity with larger-scale systems. Field experience and industry interface has led to excellent overall product performance.

  3. Thermophotovoltaic Energy Conversion Development Program

    NASA Technical Reports Server (NTRS)

    Shukla, Kailash; Doyle, Edward; Becker, Frederick

    1998-01-01

    Completely integrated thermophotovoltaic (TPV) power sources in the range of 100 to 500 watts are being developed. The technical approach taken in this project focuses on optimizing the integrated performance of the primary subsystems in order to yield high energy conversion efficiency and cost effectiveness. An important aspect of the approach is the use of a narrow band fibrous emitter radiating to a bandgap matched photovoltaic array to minimize thermal and optical recuperation requirements, as well as the non-recoverable heat losses. For the prototype system, fibrous ytterbia emitters radiating in a narrow band centered at 980 nm are matched with high efficiency silicon photoconverters. The integrated system includes a dielectric stack filter for optical energy recovery and a ceramic recuperator for thermal energy recovery. The prototype TPV system uses a rapid mix distributed fuel delivery system with controlled feeding of the fuel and heated air into a flame at the surface of the emitter. This makes it possible to operate at air preheat temperatures well above the auto-ignition temperature of the fuel thereby substantially increasing the system efficiency. The system has been operated with air preheat temperatures up to 1367 K and has produced a uniform narrow band radiation over the surface of the emitter with this approach. The design of the system is described and test data for the system and some of the key components are presented. The results from a system model, which show the impact of various parameters on system performance, are also discussed.

  4. Preliminary Design of a Solar Photovoltaic Array for Net-Zero Energy Buildings at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.; DeYoung, Russell J.

    2012-01-01

    An investigation was conducted to evaluate photovoltaic (solar electric systems) systems for a single building at NASA Langley as a representative case for alternative sustainable power generation. Building 1250 in the Science Directorate is comprised of office and laboratory space, and currently uses approximately 250,000 kW/month of electrical power with a projected use of 200,000 kW/month with additional conservation measures. The installation would be applied towards a goal for having Building 1250 classified as a net-zero energy building as it would produce as much energy as it uses over the course of a year. Based on the facility s electrical demand, a photovoltaic system and associated hardware were characterized to determine the optimal system, and understand the possible impacts from its deployment. The findings of this investigation reveal that the 1.9 MW photovoltaic electrical system provides favorable and robust results. The solar electric system should supply the needed sustainable power solution especially if operation and maintenance of the system will be considered a significant component of the system deployment.

  5. Photovoltaic concentrator optical system design: Solar energy engineering from physics to field

    NASA Astrophysics Data System (ADS)

    Coughenour, Blake Michael

    This dissertation describes the design, development, and field validation of a concentrator photovoltaic (CPV) solar energy system. The challenges of creating a highly efficient yet low-cost system architecture come from many sources. The solid-state physics of photovoltaic devices present fundamental limits to photoelectron conversion efficiency, while the electrical and thermal characteristics of widely available materials limit the design arena. Furthermore, the need for high solar spectral throughput, evenly concentrated sunlight, and tolerance to off-axis pointing places strict illumination requirements on the optical design. To be commercially viable, the cost associated with all components must be minimized so that when taken together, the absolute installed cost of the system in kWh is lower than any other solar energy method, and competitive with fossil fuel power generation. The work detailed herein focuses specifically on unique optical design and illumination concepts discovered when developing a viable commercial CPV system. By designing from the ground up with the fundamental physics of photovoltaic devices and the required system tolerances in mind, a select range of optical designs are determined and modeled. Component cost analysis, assembly effort, and development time frame further influence design choices to arrive at a final optical system design. When coupled with the collecting mirror, the final optical hardware unit placed at the focus generates more than 800W, yet is small and lightweight enough to hold in your hand. After fabrication and installation, the completed system's illumination, spectral, and thermal performance is validated with on-sun operational testing.

  6. Increasing light coupling in a photovoltaic film by tuning nanoparticle shape with substrate surface energy

    NASA Astrophysics Data System (ADS)

    Kataria, Devika; Krishnamoorthy, Kothandam; Iyer, S. Sundar Kumar

    2017-08-01

    Tuning metal nanoparticle (MNP) contact angle on the surface it is formed can help maximise the useful optical coupling in photovoltaic films by localized surface plasmon (LSP) resonance—opening up the possibility of building improved photovoltaic cells. In this work experimental demonstration of optical absorption increase in copper phthalocyanine (CuPc) films by tuning silver MNP shape by changing its contact angles with substrate has been reported. Thin films of poly3,4 ethylenedioxythiophene: sodium dodecycl sulphate (PEDOT:SDS) with different surface energies were formed on indium tin oxide (ITO) coated glass by electro-deposition. Silver MNPs thermally evaporated directly on ozonised ITO as well as on the PEDOT:SDS films showed contact angles ranging from 60° to 125°. The CuPc layer was deposited on top of the MNPs. For the samples studied, best optical absorption in the CuPc layer was for a contact angle of 110°.

  7. Building Integrated Photovoltaic (BIPV) Roofs for Sustainability and Energy Efficiency

    DTIC Science & Technology

    2014-04-01

    Zonen CMP3 second- class pyranometer . The device was attached to a Campbell Scientific leveling mount, which was in turn affixed to the south end... Pyranometer Apogee SP-215 Energy Meter Veris H-8163-0200-1-3 5.5.1 Calibration of Equipment ROOFER EMS does not require calibration

  8. Building Integrated Photovoltaic (BIPV) Roofs for Sustainability and Energy Efficiency

    DTIC Science & Technology

    2013-09-10

    crystalline silicon PV. However, a-Si cells can be manufactured at lower temperatures and deposited on low-cost substrates. The less energy intensive...W/ INTEGRATED DC & AC DISCONNECTS INVERTER INSTAlLATIOI’I NOTE: IF ’<ALL MOUNTED ASBESTOS INSPECTION NEEDED INVERTER OET AIL: !;CAl£: 1/𔃻· -r

  9. Silicon Schottky photovoltaic diodes for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Anderson, W. A.

    1975-01-01

    Various factors in Schottky barrier solar cell fabrication are evaluated in order to improve understanding of the current flow mechanism and to isolate processing variables that improve efficiency. Results of finger design, substrate resistivity, surface finishing and activation energy studies are detailed. An increased fill factor was obtained by baking of the vacuum system to remove moisture.

  10. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed by members of the USRA (Universities Space Research Association) contract team during the six months during the reporting period (10/95 - 3/96) and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science, Archive Research Center (HEASARC), and others.

  11. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed-by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, visiting the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA); X-ray Timing Experiment (XTE); X-ray Spectrometer (XRS); Astro-E; High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  12. Energy comparison between solar thermal power plant and photovoltaic power plant

    NASA Astrophysics Data System (ADS)

    Novosel, Urška; Avsec, Jurij

    2017-07-01

    The combined use of renewable energy and alternative energy systems and better efficiency of energy devices is a promising approach to reduce effects due to global warming in the world. On the basis of first and second law of thermodynamics we could optimize the processes in the energy sector. The presented paper shows the comparison between solar thermal power plant and photovoltaic power plant in terms of energy, exergy and life cycle analysis. Solar thermal power plant produces electricity with basic Rankine cycle, using solar tower and solar mirrors to produce high fluid temperature. Heat from the solar system is transferred by using a heat exchanger to Rankine cycle. Both power plants produce hydrogen via electrolysis. The paper shows the global efficiency of the system, regarding production of the energy system.

  13. Correlation between the Open-Circuit Voltage and Charge Transfer State Energy in Organic Photovoltaic Cells.

    PubMed

    Zou, Yunlong; Holmes, Russell J

    2015-08-26

    In order to further improve the performance of organic photovoltaic cells (OPVs), it is essential to better understand the factors that limit the open-circuit voltage (VOC). Previous work has sought to correlate the value of VOC in donor-acceptor (D-A) OPVs to the interface energy level offset (EDA). In this work, measurements of electroluminescence are used to extract the charge transfer (CT) state energy for multiple small molecule D-A pairings. The CT state as measured from electroluminescence is found to show better correlation to the maximum VOC than EDA. The difference between EDA and the CT state energy is attributed to the Coulombic binding energy of the CT state. This correlation is demonstrated explicitly by inserting an insulating spacer layer between the donor and acceptor materials, reducing the binding energy of the CT state and increasing the measured VOC. These results demonstrate a direct correlation between maximum VOC and CT state energy.

  14. Geothermal energy program summary

    NASA Astrophysics Data System (ADS)

    1990-01-01

    Geothermal Energy Technology and the steps necessary to place it into service are reviewed. Specific topics covered are: four types of geothermal resources; putting the resource to work; power generation; FY 1989 accomplishments; hard rock penetration; conversion technology; and geopressured brine research.

  15. Geothermal energy program summary

    SciTech Connect

    Not Available

    1990-01-01

    This document reviews Geothermal Energy Technology and the steps necessary to place it into service. Specific topics covered are: four types of geothermal resources; putting the resource to work; power generation; FY 1989 accomplishments; hard rock penetration; conversion technology; and geopressured brine research. 16 figs. (FSD)

  16. Wind energy systems: program summary

    SciTech Connect

    1980-05-01

    The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

  17. Some Guidelines for Energy Programs

    ERIC Educational Resources Information Center

    Kryger, King C.

    1977-01-01

    This article offers guidelines for educational programs developed for the purpose of educating students and adults on the seriousness of the energy crises and the steps that must be taken to cope with it. (JD)

  18. Geothermal energy: 1992 program overview

    SciTech Connect

    Not Available

    1993-04-01

    Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

  19. Conservation and renewable energy program

    NASA Astrophysics Data System (ADS)

    Vaughan, K. H.

    1990-04-01

    This bibliography lists reports and selected papers published under the Oak Ridge National Laboratory Conservation and Renewable Energy Program from 1986 through February 1990. Most of the documents in the bibliography are available from Oak Ridge National Laboratory.

  20. The OSHA and EPA programs on preventing chemical accidents and potential applications in the photovoltaic industry

    SciTech Connect

    Fthenakis, V.M.

    1996-08-01

    OSHA issued in 1992, the Process Safety Management (PSM) of Highly Hazardous Substances. This rule requires owners/operators of facilities that handle hazardous chemicals in quantities greater than the listed thresholds to establish all the elements of a PSM. EPA has issued in June 1996, the rules for a Risk Management Program which also refers to specific substances and threshold quantities. These rules are applicable to all the facilities that use or store any of 139 regulated substances at quantities ranging from 100 lb to 10,000 lb. The RMP rule covers off-site hazards, while the OSHA Process Safety Management (PSM) rule covers worker safety issues within the plant boundary. Some of the listed substances may be found in photovoltaic manufacturing facilities. This brief report presents the basic elements of these two rules and discusses their potential applicability in the photovoltaic industry.

  1. Energy efficiency buildings program

    NASA Astrophysics Data System (ADS)

    1981-05-01

    Progress is reported in developing techniques for auditing the energy performance of buildings. The ventilation of buildings and indoor air quality is discussed from the viewpoint of (1) combustion generated pollutants; (2) organic contaminants; (3) radon emanation, measurements, and control; (4) strategies for the field monitoring of indoor air quality; and (5) mechanical ventilation systems using air-to-air heat exchanges. The development of energy efficient windows to provide optimum daylight with minimal thermal losses in cold weather and minimum thermal gain in hot weather is considered as well as the production of high frequency solid state ballasts for fluorescent lights to provide more efficient lighting at a 25% savings over conventional core ballasts. Data compilation, analysis, and demonstration activities are summarized.

  2. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45 % energy conversion efficiency.

    PubMed

    Yang, Zhibin; Sun, Hao; Chen, Tao; Qiu, Longbin; Luo, Yongfeng; Peng, Huisheng

    2013-07-15

    Wired for light: Novel wire-shaped photovoltaic devices have been developed from graphene/Pt composite fibers. The high flexibility, mechanical strength, and electrical conductivity of graphene composite fibers resulted in a maximum energy conversion efficiency of 8.45 %, which is much higher than that of other wire-shaped photovoltaic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Power Management Integrated Circuit for Indoor Photovoltaic Energy Harvesting System

    NASA Astrophysics Data System (ADS)

    Jain, Vipul

    In today's world, power dissipation is a main concern for battery operated mobile devices. Key design decisions are being governed by power rather than area/delay because power requirements are growing more stringent every year. Hence, a hybrid power management system is proposed, which uses both a solar panel to harvest energy from indoor lighting and a battery to power the load. The system tracks the maximum power point of the solar panel and regulates the battery and microcontroller output load voltages through the use of an on-chip switched-capacitor DC-DC converter. System performance is verified through simulation at the 180nm technology node and is made to be integrated on-chip with 0.25 second startup time, 79% efficiency, --8/+14% ripple on the load, an average 1micro A of quiescent current (3.7micro W of power) and total on-chip area of 1.8mm2 .

  4. Health, safety and environmental issues relating to cadmium usage in photovoltaic energy systems

    SciTech Connect

    Moskowitz, P.D.; Fthenakis, V.M. ); Zweibel, K. )

    1989-12-01

    This paper discusses the current technology base and hazards associated with two promising thin-film photovoltaic cells that contain cadmium compounds -- cadmium telluride (CdTe) and copper indium diselenide (CuInSe{sub 2}). More specifically, this paper summarizes the toxicological information on cadmium (Cd) compounds; evaluates potential health, safety and environmental hazards associated with cadmium usage in the photovoltaics industry; describes regulatory requirements associated with the use, handling and disposal of cadmium compounds; and lists management options to permit the safe and continued use of these materials. Handling of cadmium in photovoltaic production can present hazards to health, safety and the environment. Prior recognition of these hazards can allow device manufacturers and regulators to implement appropriate and readily available hazard management strategies. Hazards associated with product use (i.e., array fires) and disposal remain controversial and partially unresolved. The most likely effects that could be expected would be those associated with chronic low-level exposures to cadmium wastes. Because of the general immobility of the cadmium present in these devices and availability of environmental and biomonitoring protocols, chronic hazards can be monitored, and remediated if necessary. Nevertheless, concern about cadmium hazards should continue to be emphasized to ensure that health, safety and environmental issues are properly managed. At the same time, the potential role that these systems can play in ameliorating some important health and environmental hazards related to other energy systems should not be ignored. 27 refs., 5 figs., 2 tabs.

  5. Hybrid micro-scale photovoltaics for enhanced energy conversion across all irradiation conditions

    NASA Astrophysics Data System (ADS)

    Agrawal, Gautam

    A novel hybrid photovoltaics (HPV) architecture is presented that integrates high-performance micro-optics-based concentrator photovoltaics (CPV) array technology with a 1-sun photovoltaic (PV) cell within a low-profile panel structure. The approach simultaneously captures the direct solar radiation components with arrayed high-efficiency CPV cells and the diffuse solar components with an underlying wide-area PV cell. Performance analyses predict that the hybrid approach will significantly enhance the average energy produced per unit area for the full range of diffuse/direct radiation patterns across the USA. Furthermore, cost analyses indicate that the hybrid concept may be financially attractive for a wide range of locations. Indoor and outdoor experimental evaluation of a micro-optical system designed for use in a hybrid architecture verified that a large proportion of the direct radiation component was concentrated onto emulated micro-cell regions while most of the diffuse radiation and the remaining direct radiation was collected in the 1-sun cell area.

  6. Energy Harvesting for GaAs Photovoltaics Under Low-Flux Indoor Lighting Conditions.

    PubMed

    Teran, Alan S; Moon, Eunseong; Lim, Wootaek; Kim, Gyouho; Lee, Inhee; Blaauw, David; Phillips, Jamie D

    2016-07-01

    GaAs photovoltaics are promising candidates for indoor energy harvesting to power small-scale (≈1 mm(2)) electronics. This application has stringent requirements on dark current, recombination, and shunt leakage paths due to low-light conditions and small device dimensions. The power conversion efficiency and the limiting mechanisms in GaAs photovoltaic cells under indoor lighting conditions are studied experimentally. Voltage is limited by generation-recombination dark current attributed to perimeter sidewall surface recombination based on the measurements of variable cell area. Bulk and perimeter recombination coefficients of 1.464 pA/mm(2) and 0.2816 pA/mm, respectively, were extracted from dark current measurements. Resulting power conversion efficiency is strongly dependent on cell area, where current GaAs of 1-mm(2) indoor photovoltaic cells demonstrates power conversion efficiency of approximately 19% at 580 lx of white LED illumination. Reductions in both bulk and perimeter sidewall recombination are required to increase maximum efficiency (while maintaining small cell area near 1 mm(2)) to approach the theoretical power conversion efficiency of 40% for GaAs cells under typical indoor lighting conditions.

  7. Energy Harvesting for GaAs Photovoltaics Under Low-Flux Indoor Lighting Conditions

    PubMed Central

    Teran, Alan S.; Moon, Eunseong; Lim, Wootaek; Kim, Gyouho; Lee, Inhee; Blaauw, David; Phillips, Jamie D.

    2016-01-01

    GaAs photovoltaics are promising candidates for indoor energy harvesting to power small-scale (≈1 mm2) electronics. This application has stringent requirements on dark current, recombination, and shunt leakage paths due to low-light conditions and small device dimensions. The power conversion efficiency and the limiting mechanisms in GaAs photovoltaic cells under indoor lighting conditions are studied experimentally. Voltage is limited by generation–recombination dark current attributed to perimeter sidewall surface recombination based on the measurements of variable cell area. Bulk and perimeter recombination coefficients of 1.464 pA/mm2 and 0.2816 pA/mm, respectively, were extracted from dark current measurements. Resulting power conversion efficiency is strongly dependent on cell area, where current GaAs of 1-mm2 indoor photovoltaic cells demonstrates power conversion efficiency of approximately 19% at 580 lx of white LED illumination. Reductions in both bulk and perimeter sidewall recombination are required to increase maximum efficiency (while maintaining small cell area near 1 mm2) to approach the theoretical power conversion efficiency of 40% for GaAs cells under typical indoor lighting conditions. PMID:28133394

  8. ENergy and Power Evaluation Program

    SciTech Connect

    1996-11-01

    In the late 1970s, national and international attention began to focus on energy issues. Efforts were initiated to design and test analytical tools that could be used to assist energy planners in evaluating energy systems, particularly in developing countries. In 1984, the United States Department of Energy (DOE) commissioned Argonne National Laboratory`s Decision and Information Sciences Division (DIS) to incorporate a set of analytical tools into a personal computer-based package for distribution in developing countries. The package developed by DIS staff, the ENergy and Power Evaluation Program (ENPEP), covers the range of issues that energy planners must face: economic development, energy demand projections, supply-and-demand balancing, energy system expansion, and environmental impact analysis. Following the original DOE-supported development effort, the International Atomic Energy Agency (IAEA), with the assistance from the US Department of State (DOS) and the US Department of Energy (DOE), provided ENPEP training, distribution, and technical support to many countries. ENPEP is now in use in over 60 countries and is an international standard for energy planning tools. More than 500 energy experts have been trained in the use of the entire ENPEP package or some of its modules during the international training courses organized by the IAEA in collaboration with Argonne`s Decision and Information Sciences (DIS) Division and the Division of Educational Programs (DEP). This report contains the ENPEP program which can be download from the internet. Described in this report is the description of ENPEP Program, news, forums, online support and contacts.

  9. Aquifer thermal energy storage program

    NASA Technical Reports Server (NTRS)

    Fox, K.

    1980-01-01

    The purpose of the Aquifer Thermal Energy Storage Demonstration Program is to stimulate the interest of industry by demonstrating the feasibility of using a geological formation for seasonal thermal energy storage, thereby, reducing crude oil consumption, minimizing thermal pollution, and significantly reducing utility capital investments required to account for peak power requirements. This purpose will be served if several diverse projects can be operated which will demonstrate the technical, economic, environmental, and institutional feasibility of aquifer thermal energy storage systems.

  10. Bio-Inspired Photon Absorption and Energy Transfer for Next Generation Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Magsi, Komal

    Nature's solar energy harvesting system, photosynthesis, serves as a model for photon absorption, spectra broadening, and energy transfer. Photosynthesis harvests light far differently than photovoltaic cells. These differences offer both engineering opportunity and scientific challenges since not all of the natural photon absorption mechanisms have been understood. In return, solar cells can be a very sensitive probe for the absorption characteristics of molecules capable of transferring charge to a conductive interface. The objective of this scientific work is the advancement of next generation photovoltaics through the development and application of natural photo-energy transfer processes. Two scientific methods were used in the development and application of enhancing photon absorption and transfer. First, a detailed analysis of photovoltaic front surface fluorescent spectral modification and light scattering by hetero-structure was conducted. Phosphor based spectral down-conversion is a well-known laser technology. The theoretical calculations presented here indicate that parasitic losses and light scattering within the spectral range are large enough to offset any expected gains. The second approach for enhancing photon absorption is based on bio-inspired mechanisms. Key to the utilization of these natural processes is the development of a detailed scientific understanding and the application of these processes to cost effective systems and devices. In this work both aspects are investigated. Dye type solar cells were prepared and tested as a function of Chlorophyll (or Sodium-Copper Chlorophyllin) and accessory dyes. Forster has shown that the fluorescence ratio of Chlorophyll is modified and broadened by separate photon absorption (sensitized absorption) through interaction with nearby accessory pigments. This work used the dye type solar cell as a diagnostic tool by which to investigate photon absorption and photon energy transfer. These experiments shed

  11. Seasonal Thermal Energy Storage Program

    NASA Technical Reports Server (NTRS)

    Minor, J. E.

    1980-01-01

    The Seasonal Thermal Energy Storage (STES) Program designed to demonstrate the storage and retrieval of energy on a seasonal basis using heat or cold available from waste or other sources during a surplus period is described. Factors considered include reduction of peak period demand and electric utility load problems and establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The initial thrust of the STES Program toward utilization of ground water systems (aquifers) for thermal energy storage is emphasized.

  12. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    NASA Astrophysics Data System (ADS)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-10-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  13. National Orange Show Photovoltaic Demonstration

    SciTech Connect

    Dan Jimenez Sheri Raborn, CPA; Tom Baker

    2008-03-31

    National Orange Show Photovoltaic Demonstration created a 400KW Photovoltaic self-generation plant at the National Orange Show Events Center (NOS). The NOS owns a 120-acre state fairground where it operates an events center and produces an annual citrus fair known as the Orange Show. The NOS governing board wanted to employ cost-saving programs for annual energy expenses. It is hoped the Photovoltaic program will result in overall savings for the NOS, help reduce the State's energy demands as relating to electrical power consumption, improve quality of life within the affected grid area as well as increase the energy efficiency of buildings at our venue. In addition, the potential to reduce operational expenses would have a tremendous effect on the ability of the NOS to service its community.

  14. A Photovoltaic System Payback Calculator

    SciTech Connect

    Riley, Daniel M.; Fleming, Jeffrey E.; Gallegos, Gerald R.

    2016-06-01

    The Roof Asset Management Program (RAMP) is a DOE NNSA initiative to manage roof repairs and replacement at NNSA facilities. In some cases, installation of a photovoltaic system on new roofs may be possible and desired for financial reasons and to meet federal renewable energy goals. One method to quantify the financial benefits of PV systems is the payback period, or the length of time required for a PV system to generate energy value equivalent to the system's cost. Sandia Laboratories created a simple spreadsheet-based solar energy valuation tool for use by RAMP personnel to quickly evaluate the estimated payback period of prospective or installed photovoltaic systems.

  15. Energy Performance Impacts from Competing Low-slope Roofing Choices and Photovoltaic Technologies

    NASA Astrophysics Data System (ADS)

    Nagengast, Amy L.

    With such a vast quantity of space, commercial low-slope roofs offer significant potential for sustainable roofing technology deployment. Specifically, building energy performance can be improved by installing rooftop energy technologies such as photovoltaic (PV) panels, and/or including designs such as white or green roofs instead of traditional black. This research aims to inform and support roof decisions through quantified energy performance impacts across roof choices and photovoltaic technologies. The primary dataset for this research was measured over a 16 month period (May 24, 2011 to October 13, 2012) from a large field experiment in Pittsburgh, Pennsylvania on top of a commercial warehouse with white, black and green roof sections, each with portions covered by polycrystalline photovoltaic panels. Results from the Pittsburgh experiment were extended to three different cities (San Diego, CA; Huntsville, AL; and Phoenix, AZ) chosen to represent a wide range of irradiance and temperature values. First, this research evaluated the difference in electricity production from a green-moss roof and black roof underneath photovoltaic panels to determine if the green roof's cooler air increases the panel efficiency. Second, separate studies examine 1) average hourly heat flux by month for unobstructed and shaded roof membranes 2) heat flux peak time delay, and 3) air temperature across roof types. Results of this research show green roofs slightly increased (0.8-1.5%) PV panel efficiency in temperatures approximately at or above 25° C (77°F) compared to black roofs. However in cool climates, like Pittsburgh, the roof type under the PV panels had little overall impact on PV performance when considering year round temperatures. Instead, roof decisions should place a stronger emphasis on heat flux impacts. The green roof outperformed both black and white roofs at minimizing total conductive heat flux. These heat flow values were used to develop a new, straight

  16. Federal Wind Energy Research Program

    SciTech Connect

    Not Available

    1991-10-01

    The Office of Program Analysis (OPA) undertook an assessment of 55 research projects sponsored by the Federal Wind Energy Research Program. This report summarizes the results of that review. In accordance with statue and policy guidance, the program's research has targeted the sciences of wind turbine dynamics and the development of advanced components and systems. Wind turbine research has focused on atmospheric fluid dynamics, aerodynamics, and structural dynamics. Rating factors including project scientific and technical merit, appropriateness and level of innovation of the technical approach, quality of the project team, productivity, and probable impact on the program's mission. Each project was also given an overall evaluation supported with written comments. 1 fig.

  17. Department of Energy Nuclear Energy Standards Program

    SciTech Connect

    Silver, E.G.

    1980-01-01

    The policy with respect to the development and use of standards in the Department of Energy (DOE) programs concerned with maintaining and developing the nuclear option for the civilian sector (both in the form of the currently used light water reactors and for advanced concepts including the Liquid Metal Fast Breeder Reactor), is embodied in a Nuclear Standards Policy, issued in 1978, whose perspectives and philosophy are discussed.

  18. Thermal energy storage program description

    SciTech Connect

    Reimers, E.

    1989-03-01

    The U.S. Department of Energy (DOE) has sponsored applied research, development, and demonstration of technologies aimed at reducing energy consumption and encouraging replacement of premium fuels (notably oil) with renewable or abundant indigenous fuels. One of the technologies identified as being able to contribute to these goals is thermal energy storage (TES). Based on the potential for TES to contribute to the historic mission of the DOE and to address emerging energy issues related to the environment, a program to develop specific TES technologies for diurnal, industrial, and seasonal applications is underway. Currently, the program is directed toward three major application targets: (1) TES development for efficient off-peak building heating and cooling, (2) development of advanced TES building materials, and (3) TES development to reduce industrial energy consumption.

  19. 1992 DOE/Sandia crystalline photovoltaic technology project review meeting

    SciTech Connect

    Maish, A.

    1992-07-01

    This document serves as the proceedings for the annual project review meeting held by Sandia National Laboratories` Photovoltaic Technology and Photovoltaic Evaluation Departments. It contains information supplied by organizations making presentations at the meeting, which was held July 14--15, 1992 at the Sheraton Old Town Hotel in Albuquerque, New Mexico. Overview sessions covered the Department of Energy (DOE) program, including those at Sandia and the National Renewable Energy Laboratory (NREL), and non-DOE programs, including the EPRI concentrator collector program, The Japanese crystalline silicon program, and some concentrating photovoltaic activities in Europe. Additional sessions included papers on Sandia`s Photovoltaic Device Fabrication Laboratory`s collaborative research, cell processing research, the activities of the participants in the Concentrator Initiative Program, and photovoltaic technology evaluation at Sandia and NREL.

  20. Energy distribution design on the photovoltaic cell array of the SSPS-OMEGA concept

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Zhang, Yiqun; Fan, Guanheng; Wang, Dongxu; Li, Xun

    2017-05-01

    Solar energy collection and conversion is of great significance to the power transmission of the Space Solar Power Station (SSPS), and has influences on the overall system, technologically and economically. For the proposed SSPS-OMEGA concept, the original conceptual design had non-uniform energy distribution and excessive energy density in local areas, which would cause decreases in its optical and electric performance. Aiming at this point, firstly, this paper evaluates the optical performance of the OMEGA concept via ray trace technique. Secondly, the generatrix geometry design of the photovoltaic (PV) cell array based on Bézier curve is carried out to obtain optimal optical performance available for efficient response to sunrays. After that numerical examples achieve good collection efficiency and suitable energy distribution. Finally, modular construction for the main concentrator and its influence on optical performance are investigated. Moreover, the effect of the orbital motion and tracking error are analyzed to provide reference for the realization of the OMEGA.

  1. Highly efficient hybrid energy generator: coupled organic photovoltaic device and randomly oriented electrospun poly(vinylidene fluoride) nanofiber.

    PubMed

    Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun

    2013-03-01

    A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.

  2. The NASA program in Space Energy Conversion Research and Technology

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    1982-01-01

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  3. Energy conversion and storage program

    NASA Astrophysics Data System (ADS)

    1990-12-01

    The Energy Conversion and Storage Program applies chemical and chemical engineering principles to solve problems in (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy storage; (4) characterization of complex chemical processes; and (5) the application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, and advanced methods of analysis. The following five areas are discussed: electrochemical energy storage and conversion; microstructured materials; biotechnology; fossil fuels; and high temperature superconducting processing. Papers have been processed separately for inclusion on the data base.

  4. Amorphous silicon photovoltaic devices

    DOEpatents

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  5. High density photovoltaic

    SciTech Connect

    Haigh, R.E.; Jacobson, G.F.; Wojtczuk, S.

    1997-10-14

    Photovoltaic technology can directly generate high voltages in a solid state material through the series interconnect of many photovoltaic diodes. We are investigating the feasibility of developing an electrically isolated, high-voltage power supply using miniature photovoltaic devices that convert optical energy to electrical energy.

  6. Mechanically flexible nanoscale silicon integrated circuits powered by photovoltaic energy harvesters

    NASA Astrophysics Data System (ADS)

    Shahrjerdi, D.; Bedell, S. W.; Khakifirooz, A.; Cheng, K.

    2016-03-01

    In this work, we demonstrate mechanically flexible extremely thin silicon on insulator (ETSOI) ring oscillators with a stage delay of ∼16 ps at a power supply voltage of 0.9 V. Extensive electrical analyses of the flexible ETSOI devices reveal the unchanged properties of the devices during the layer transfer process. Furthermore, we discuss the use of flexible silicon and gallium arsenide photovoltaic energy harvesters for powering flexible ETSOI ring oscillators under different illumination conditions. Our results illustrate innovative pathways for the implementation of optically powered flexible ETSOI technology in future flexible hybrid electronics.

  7. Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment

    PubMed Central

    Klein, Andreas; Körber, Christoph; Wachau, André; Säuberlich, Frank; Gassenbauer, Yvonne; Harvey, Steven P.; Proffit, Diana E.; Mason, Thomas O.

    2010-01-01

    Doping limits, band gaps, work functions and energy band alignments of undoped and donor-doped transparent conducting oxides ZnO, In2O3, and SnO2 as accessed by X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS) are summarized and compared. The presented collection provides an extensive data set of technologically relevant electronic properties of photovoltaic transparent electrode materials and illustrates how these relate to the underlying defect chemistry, the dependence of surface dipoles on crystallographic orientation and/or surface termination, and Fermi level pinning. PMID:28883359

  8. Linkages from DOE's Solar Photovoltaic R&D to Commercial Renewable Power from Solar Energy

    SciTech Connect

    Ruegg, Rosalie; Thomas, Patrick

    2011-04-01

    DOE's Solar Photovoltaic R&D Subprogram promotes the development of cost-effective systems for directly converting solar energy into electricity for residential, commercial, and industrial applications. This study was commissioned to assess the extent to which the knowledge outputs of R&D funded by the DOE Solar PV subprogram are linked to downstream developments in commercial renewable power. A second purpose was to identify spillovers of the resulting knowledge to other areas of application. A third purpose was to lend support to a parallel benefit-cost study by contributing evidence of attribution of benefits to DOE.

  9. A photovoltaic-driven and energy-autonomous CMOS implantable sensor.

    PubMed

    Ayazian, Sahar; Akhavan, Vahid A; Soenen, Eric; Hassibi, Arjang

    2012-08-01

    An energy-autonomous, photovoltaic (PV)-driven and MRI-compatible CMOS implantable sensor is presented. On-chip P+/N-well diode arrays are used as CMOS-compatible PV cells to harvest μW's of power from the light that penetrates into the tissue. In this 2.5 mm × 2.5 mm sub-μW integrated system, the in-vivo physiological signals are first measured by using a subthreshold ring oscillator-based sensor, the acquired data is then modulated into a frequency-shift keying (FSK) signal, and finally transmitted neuromorphically to the skin surface by using a pair of polarized electrodes.

  10. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    SciTech Connect

    Hoen, Ben; Wiser, Ryan; Thayer, Mark; Cappers, Peter

    2012-04-15

    Relatively little research exists estimating the marginal impacts of photovoltaic (PV) energy systems on home sale prices. Using a large dataset of California homes that sold from 2000 through mid-2009, we find strong evidence, despite a variety of robustness checks, that existing homes with PV systems sold for a premium over comparable homes without PV systems, implying a near full return on investment. Premiums for new homes are found to be considerably lower than those for existing homes, implying, potentially, a tradeoff between price and sales velocity. The results have significant implications for homeowners, builders, appraisers, lenders, and policymakers.

  11. ASTM Photovoltaic Performance Standards: Their Use at the National Renewable Energy Lab

    SciTech Connect

    Emery, K.

    2007-07-01

    The performance of photovoltaic devices is typically rated in terms of their peak power with respect to a specific spectrum, total irradiance and temperature. The PV Cell and Module Performance Laboratory at the National Renewable Energy Laboratory in Golden, Colo., has been measuring the performance of cells and modules for the U.S. terrestrial PV community since 1980. NREL typically calibrates 200 cells and modules per month. The laboratory follows the procedures described in ASTM International standards for calibrating its primary reference cells (E 1125), spectral responsivity measurements (E 1021), secondary reference cells (E 948), secondary modules (E 1036), concentrator modules (E 2527), and multi-junction cells and modules (E 2236).

  12. Reliability and cost evaluation of small isolated power systems containing photovoltaic and wind energy

    NASA Astrophysics Data System (ADS)

    Karki, Rajesh

    Renewable energy application in electric power systems is growing rapidly worldwide due to enhanced public concerns for adverse environmental impacts and escalation in energy costs associated with the use of conventional energy sources. Photovoltaics and wind energy sources are being increasingly recognized as cost effective generation sources. A comprehensive evaluation of reliability and cost is required to analyze the actual benefits of utilizing these energy sources. The reliability aspects of utilizing renewable energy sources have largely been ignored in the past due the relatively insignificant contribution of these sources in major power systems, and consequently due to the lack of appropriate techniques. Renewable energy sources have the potential to play a significant role in the electrical energy requirements of small isolated power systems which are primarily supplied by costly diesel fuel. A relatively high renewable energy penetration can significantly reduce the system fuel costs but can also have considerable impact on the system reliability. Small isolated systems routinely plan their generating facilities using deterministic adequacy methods that cannot incorporate the highly erratic behavior of renewable energy sources. The utilization of a single probabilistic risk index has not been generally accepted in small isolated system evaluation despite its utilization in most large power utilities. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy. This thesis presents an evaluation model for small isolated systems containing renewable energy sources by integrating simulation models that generate appropriate atmospheric data, evaluate chronological renewable power outputs and combine total available energy and load to provide useful system indices. A software tool SIPSREL+ has been developed which generates

  13. Energy from Municipal Waste Program

    NASA Astrophysics Data System (ADS)

    1992-05-01

    Each year Americans throw away 3 quads of energy in the form of municipal waste and pay 6 billion dollars for the privilege. Only about 21 percent of our municipal wastes are used productively to generate electricity or produce new products by recycling. In 1990, waste-to-energy (WTE) plants and recycling efforts contributed roughly half a quad of energy in the form of electricity and reduced energy use. This productive use of waste avoided the disposal of about 50 million tons of wastes to landfills in that year. The Administration National Energy Strategy (NES) estimates that with proper Federal, State, local, and private action the electric generating capacity of WTE facilities could increase 600 percent by 2010 and by over 1200 percent by 2030, compared to 1990 capacity. This would result in about 55 gigawatts (GW) of capacity by 2030, up from roughly 4 GW today. The Department of Energy (DOE) supports an integrated approach to waste management that includes source reduction, WTE, recycling, and landfilling as complementary pieces of a solution to the municipal waste disposal problem. The Energy from Municipal Waste Program, described in this plan, seeks to minimize the productive use of municipal waste as an energy resource to improving its economic and environmental characteristics. While the Program focuses on WTE systems, it is conducted as part of a larger Federal effort that includes source reduction and recycling of wastes to save energy.

  14. Energy Conversion and Storage Program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  15. Density functional calculations on structural materials for nuclear energy applications and functional materials for photovoltaic energy applications (abstract only).

    PubMed

    Domain, C; Olsson, P; Becquart, C S; Legris, A; Guillemoles, J F

    2008-02-13

    Ab initio density functional theory calculations are carried out in order to predict the evolution of structural materials under aggressive working conditions such as cases with exposure to corrosion and irradiation, as well as to predict and investigate the properties of functional materials for photovoltaic energy applications. Structural metallic materials used in nuclear facilities are subjected to irradiation which induces the creation of large amounts of point defects. These defects interact with each other as well as with the different elements constituting the alloys, which leads to modifications of the microstructure and the mechanical properties. VASP (Vienna Ab initio Simulation Package) has been used to determine the properties of point defect clusters and also those of extended defects such as dislocations. The resulting quantities, such as interaction energies and migration energies, are used in larger scale simulation methods in order to build predictive tools. For photovoltaic energy applications, ab initio calculations are used in order to search for new semiconductors and possible element substitutions for existing ones in order to improve their efficiency.

  16. Wind energy technology program summary

    NASA Astrophysics Data System (ADS)

    1984-10-01

    The purpose of the Federal Wind Energy Technology Program is to perform research that will enable the private sector to develop and utilize safe, reliable, and efficient wind energy systems. Generic research will provide the technology base and scientific understanding necessary to allow industry to develop wind energy systems competitive with conventional energy sources. The goal of the DOE wind program is to improve the basic understanding of aerodynamics and structural dynamics in order to more accurately predict wind turbine aerodynamic performance, natural resonance frequencies, and structural loads. Areas included in the research plan being developed for the next five years include: advanced fluid dynamics, aerodynamics research, structural dynamics research, and advanced components and systems research, including multimegawatt (MOD-5) development.

  17. Customized color patterning of photovoltaic cells

    SciTech Connect

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Okandan, Murat; Lentine, Anthony L.; Resnick, Paul J.; Gupta, Vipin P.

    2016-11-15

    Photovoltaic cells and photovoltaic modules, as well as methods of making and using such photovoltaic cells and photovoltaic modules, are disclosed. More particularly, embodiments of the photovoltaic cells selectively reflect visible light to provide the photovoltaic cells with a colorized appearance. Photovoltaic modules combining colorized photovoltaic cells may be used to harvest solar energy while providing a customized appearance, e.g., an image or pattern.

  18. Photovoltaic performance and the energy landscape of CH3NH3PbI3.

    PubMed

    Zhou, Yecheng; Huang, Fuzhi; Cheng, Yi-Bing; Gray-Weale, Angus

    2015-09-21

    Photovoltaic cells with absorbing layers of certain perovskites have power conversion efficiencies up to 20%. Among these materials, CH3NH3PbI3 is widely used. Here we use density-functional theory to calculate the energies and rotational energy barriers of a methylammonium ion in the α or β phase of CH3NH3PbI3 with differently oriented neighbouring methylammonium ions. Our results suggest the methylammonium ions in CH3NH3PbI3 prefer to rotate collectively, and to be parallel to their neighbours. Changes in polarization on rotation of methylammonium ions are two to three times larger than those on relaxation of the lead ion from the centre of its coordination shell. The preferences for parallel configuration and concerted rotation, with the polarisation changes, are consistent with ferroelectricity in the material, and indicate that this polarisation is governed by methylammonium orientational correlations. We show that the field due to this polarisation is strong enough to screen the field hindering charge transport, and find this screening field in agreement with experiment. We examine two possible mechanisms for the effect of methylammonium ion rotation on photovoltaic performance. One is that rearrangement of methylammoniums promotes the creation and transport of charge carriers. Some effective masses change greatly, but changes in band structure with methylammonium rotation are not large enough to explain current-voltage hysteresis behaviour. The second possible mechanism is that polarization screens the hindering electric field, which arises from charge accumulation in the transport layers. Polarization changes on methylammonium rotation favour this second mechanism, suggesting that collective reorientation of methylammonium ions in the bulk crystal are in significant part responsible for the hysteresis and power conversion characteristics of CH3NH3PbI3 photovoltaic cells.

  19. Adaptive Harmonic Detection Control of Grid Interfaced Solar Photovoltaic Energy System with Power Quality Improvement

    NASA Astrophysics Data System (ADS)

    Singh, B.; Goel, S.

    2015-03-01

    This paper presents a grid interfaced solar photovoltaic (SPV) energy system with a novel adaptive harmonic detection control for power quality improvement at ac mains under balanced as well as unbalanced and distorted supply conditions. The SPV energy system is capable of compensation of linear and nonlinear loads with the objectives of load balancing, harmonics elimination, power factor correction and terminal voltage regulation. The proposed control increases the utilization of PV infrastructure and brings down its effective cost due to its other benefits. The adaptive harmonic detection control algorithm is used to detect the fundamental active power component of load currents which are subsequently used for reference source currents estimation. An instantaneous symmetrical component theory is used to obtain instantaneous positive sequence point of common coupling (PCC) voltages which are used to derive inphase and quadrature phase voltage templates. The proposed grid interfaced PV energy system is modelled and simulated in MATLAB Simulink and its performance is verified under various operating conditions.

  20. Exciton Energy Transfer from Halide Terminated Nanocrystals to Graphene in Solar Photovoltaics

    NASA Astrophysics Data System (ADS)

    Ajayi, Obafunso; Abramson, Justin; Anderson, Nicholas; Owen, Jonathan; Zhao, Yue; Kim, Phillip; Gesuele, Felice; Wong, Chee Wei

    2011-03-01

    Graphene, a zero-gap semiconductor, has been identified as an ideal electrode for nanocrystal solar cell photovoltaic applications due to its high carrier mobility. Further advances in efficient current extraction are required towards this end. We investigate the resonant energy transfer dynamics between photoexcited nanocrystals and graphene, where the energy transfer rate is characterized by the fluorescent quenching of the quantum dots in the presence of graphene. Energy transfer has been shown to have a d -4 dependence on the nanocrystal distance from the graphene surface, with a correction due to blinking statistics. We investigate this relationship with single and few layer graphene. We study halide-terminated CdSe quantum dots; where the absence of the insulating outershell improves the electronic coupling of the donor-acceptor system leads to improved electron transfer. We observe quenching of the halide terminated nanocrystals on graphene, with the quenching factor ρ defined as IQ /IG (the relative intensities on quartz and graphene).

  1. Thin-film-based CdTe photovoltaic module characterization: Measurements and energy prediction improvement

    NASA Astrophysics Data System (ADS)

    Lay-Ekuakille, A.; Arnesano, A.; Vergallo, P.

    2013-01-01

    Photovoltaic characterization is a topic of major interest in the field of renewable energy. Monocrystalline and polycrystalline modules are mostly used and, hence characterized since many laboratories have data of them. Conversely, cadmium telluride (CdTe), as thin-film module are, in some circumstances, difficult to be used for energy prediction. This work covers outdoor testing of photovoltaic modules, in particular that regarding CdTe ones. The scope is to obtain temperature coefficients that best predict the energy production. A First Solar (K-275) module has been used for the purposes of this research. Outdoor characterizations were performed at Department of Innovation Engineering, University of Salento, Lecce, Italy. The location of Lecce city represents a typical site in the South Italy. The module was exposed outdoor and tested under clear sky conditions as well as under cloudy sky ones. During testing, the global-inclined irradiance varied between 0 and 1500 W/m2. About 37 000 I-V characteristics were acquired, allowing to process temperature coefficients as a function of irradiance and ambient temperature. The module was characterized by measuring the full temperature-irradiance matrix in the range from 50 to 1300 W/m2 and from -1 to 40 W/m2 from October 2011 to February 2012. Afterwards, the module energy output, under real conditions, was calculated with the "matrix method" of SUPSI-ISAAC and the results were compared with the five months energy output data of the same module measured with the outdoor energy yield facility in Lecce.

  2. Thin-film-based CdTe photovoltaic module characterization: measurements and energy prediction improvement.

    PubMed

    Lay-Ekuakille, A; Arnesano, A; Vergallo, P

    2013-01-01

    Photovoltaic characterization is a topic of major interest in the field of renewable energy. Monocrystalline and polycrystalline modules are mostly used and, hence characterized since many laboratories have data of them. Conversely, cadmium telluride (CdTe), as thin-film module are, in some circumstances, difficult to be used for energy prediction. This work covers outdoor testing of photovoltaic modules, in particular that regarding CdTe ones. The scope is to obtain temperature coefficients that best predict the energy production. A First Solar (K-275) module has been used for the purposes of this research. Outdoor characterizations were performed at Department of Innovation Engineering, University of Salento, Lecce, Italy. The location of Lecce city represents a typical site in the South Italy. The module was exposed outdoor and tested under clear sky conditions as well as under cloudy sky ones. During testing, the global-inclined irradiance varied between 0 and 1500 W/m(2). About 37,000 I-V characteristics were acquired, allowing to process temperature coefficients as a function of irradiance and ambient temperature. The module was characterized by measuring the full temperature-irradiance matrix in the range from 50 to 1300 W/m(2) and from -1 to 40 W/m(2) from October 2011 to February 2012. Afterwards, the module energy output, under real conditions, was calculated with the "matrix method" of SUPSI-ISAAC and the results were compared with the five months energy output data of the same module measured with the outdoor energy yield facility in Lecce.

  3. Indicators to determine winning renewable energy technologies with an application to photovoltaics.

    PubMed

    Grossmann, Wolf D; Grossmann, Iris; Steininger, Karl

    2010-07-01

    Several forms of renewable energy compete for supremacy or for an appropriate role in global energy supply. A form of renewable energy can only play an important role in global energy supply if it fulfills several basic requirements. Its capacity must allow supplying a considerable fraction of present and future energy demand, all materials for its production must be readily available, land demand must not be prohibitive, and prices must reach grid parity in the nearer future. Moreover, a renewable energy technology can only be acceptable if it is politically safe. We supply a collection of indicators which allow assessing competing forms of renewable energy and elucidate why surprise is still a major factor in this field, calling for adaptive management. Photovoltaics (PV) are used as an example of a renewable energy source that looks highly promising, possibly supplemented by solar thermal electricity production (ST). We also show why energy use will contribute to land use problems and discuss ways in which the right choice of renewables may be indispensible in solving these problems.

  4. Potential high efficiency solar cells: Applications from space photovoltaic research

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  5. ERDA's Chemical Energy Storage Program

    NASA Technical Reports Server (NTRS)

    Swisher, J. H.; Kelley, J. H.

    1977-01-01

    The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.

  6. Wind Energy Career Development Program

    SciTech Connect

    Gwen Andersen

    2012-03-29

    Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

  7. ERDA's Chemical Energy Storage Program

    NASA Technical Reports Server (NTRS)

    Swisher, J. H.; Kelley, J. H.

    1977-01-01

    The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.

  8. Energy Conversion and Storage Program

    SciTech Connect

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  9. A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage

    PubMed Central

    Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín

    2017-01-01

    The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don’t address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests. PMID:28800102

  10. High-Efficiency Photovoltaic Energy Conversion using Surface Acoustic Waves in Piezoelectric Semiconductors

    NASA Astrophysics Data System (ADS)

    Yakovenko, Victor

    2010-03-01

    We propose a radically new design for photovoltaic energy conversion using surface acoustic waves (SAWs) in piezoelectric semiconductors. The periodically modulated electric field from SAW spatially separates photogenerated electrons and holes to the maxima and minima of SAW, thus preventing their recombination. The segregated electrons and holes are transported by the moving SAW to the collecting electrodes of two types, which produce dc electric output. Recent experiments [1] using SAWs in GaAs have demonstrated the photon to current conversion efficiency of 85%. These experiments were designed for photon counting, but we propose to adapt these techniques for highly efficient photovoltaic energy conversion. The advantages are that the electron-hole segregation takes place in the whole volume where SAW is present, and the electrons and holes are transported in the organized, collective manner at high speed, as opposed to random diffusion in conventional devices.[4pt] [1] S. J. Jiao, P. D. Batista, K. Biermann, R. Hey, and P. V. Santos, J. Appl. Phys. 106, 053708 (2009).

  11. Relationship between the energy levels and the photovoltaic properties of oligothiophenes.

    PubMed

    Lim, Eunhee

    2014-08-01

    A series of linear π-conjugated oligothiophenes, α,α'-dihexylquinquethiophene (DH5T), 2,5-bis(5'-hexyl-2,2'-bithiophene-5-yl)thieno[3,2-b]thiophene (DH5TT), and α,α'-dihexylheptathiophene (DH7T), has been synthesized using the Suzuki coupling reaction. The optical and electrochemical properties of oligothiophenes were easily tuned by controlling the thiophene number. The UV-vis absorption and photoluminescence (PL) spectra are gradually red-shifted on going from DH5T and DH5TT to DH7T due to the increase in α-conjugation length. The energy band gap decreased as the oligothiophene length increased. The optical band gaps of DH5T, DH5TT, and DH7T occur at 2.39, 2.25, and 2.01 eV, respectively. Bulk heterojunction organic photovoltaic cells (OPVs) fabricated from oligomers showed the power conversion efficiency of 0.45-0.8% under AM 1.5 (100 mW/cm2). Among them, DH5T showed the best OPV performance of an open circuit voltage (VOC) of 0.51 V, short-circuit current (JSC) of 4.25 mA/cm2, and fill factor (FF) of 0.37, resulting in the power conversion efficiency of 0.80%. Moreover, the relationship between conjugation length and photovoltaic properties was systematically investigated in terms of the energy band gap and open circuit voltage (VOC).

  12. Energy Industry Powers CTE Program

    ERIC Educational Resources Information Center

    Khokhar, Amy

    2012-01-01

    Michael Fields is a recent graduate of Buckeye Union High School in Buckeye, Arizona. Fields is enrolled in the Estrella Mountain Community College (EMCC) Get Into Energy program, which means he is well on his way to a promising career. Specializing in power plant technology, in two years he will earn a certificate that will all but guarantee a…

  13. Energy Industry Powers CTE Program

    ERIC Educational Resources Information Center

    Khokhar, Amy

    2012-01-01

    Michael Fields is a recent graduate of Buckeye Union High School in Buckeye, Arizona. Fields is enrolled in the Estrella Mountain Community College (EMCC) Get Into Energy program, which means he is well on his way to a promising career. Specializing in power plant technology, in two years he will earn a certificate that will all but guarantee a…

  14. Appendix I - GPRA06 solar energy technologies program documentation

    SciTech Connect

    None, None

    2009-01-18

    This appendix provides detailed information on the assumptions and methods employed to estimate the benefits of EERE’s Solar Energy Technologies Program. The benefits analysis for the Solar Program utilized both NEMS and MARKAL as the analytical tools for estimating the Program’s benefits. As will be discussed below, a number of assumptions and structural modifications to the models were made in order to represent the suite of solar technologies funded by the program as accurately as possible (Photovoltaics, Concentrating Solar Power and Solar Water Heating). Many of the assumptions used in the FY06 analysis are the same as or similar to those employed in the FY05 analysis; however, two key changes are important to highlight up-front. First, the AEO2004 analysis used a new set of reference case assumptions with respect to photovoltaic technology cost reductions. The new sets of reference case assumptions are very similar to the Solar Program’s targets for PV. This shift in assumptions necessitated developing a new approach for estimating the baseline (i.e., no program) input assumptions for PV. Second, the FY06 analysis included CSP technology benefits – CSP benefits were not included in the FY05 analysis.

  15. Energy efficiency buildings program, FY 1980

    SciTech Connect

    Not Available

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  16. Wind energy: Program overview, FY 1992

    SciTech Connect

    Not Available

    1993-06-01

    The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

  17. Northeast Regional Biomass Energy Program

    SciTech Connect

    O'Connell, R.A.

    1992-02-01

    The Northeast Regional Biomass Program (NRBP) is entering its ninth year of operation. The management and the objectives have virtually remained unchanged and are stated as follows. The program conducted by NRBP has three basic features: (1) a state grant component that provides funds (with a 50 percent matching requirement) to each of the states in the region to strengthen and integrate the work of state agencies involved in biomass energy; (2) a series of technical reports and studies in areas that have been identified as being of critical importance to the development of biomass energy in the region; and (3) a continuous long range planning component with heavy private sector involvement that helps to identify activities necessary to spur greater development and use of biomass energy in the Northeast.

  18. Northeast Regional Biomass Energy Program

    SciTech Connect

    O'Connell, R.A.

    1992-04-01

    The Northeast Regional Biomass Program (NRBP) is entering its ninth year of operation. The management and the objectives have virtually remained unchanged and are stated as follows. The program conducted by NRBP has three basic features: (1) a state grant component that provides funds (with a 50 percent matching requirement) to each of the states in the region to strengthen and integrate the work of state agencies involved in biomass energy; (2) a series of technical reports and studies in areas that have been identified as being of critical importance to the development of biomass energy in the region; and (3) a continuous long range planning component with heavy private sector involvement that helps to identify activities necessary to spur greater development and use of biomass energy in the Northeast.

  19. The NASA Energy Conservation Program

    NASA Technical Reports Server (NTRS)

    Gaffney, G. P.

    1977-01-01

    Large energy-intensive research and test equipment at NASA installations is identified, and methods for reducing energy consumption outlined. However, some of the research facilities are involved in developing more efficient, fuel-conserving aircraft, and tradeoffs between immediate and long-term conservation may be necessary. Major programs for conservation include: computer-based systems to automatically monitor and control utility consumption; a steam-producing solid waste incinerator; and a computer-based cost analysis technique to engineer more efficient heating and cooling of buildings. Alternate energy sources in operation or under evaluation include: solar collectors; electric vehicles; and ultrasonically emulsified fuel to attain higher combustion efficiency. Management support, cooperative participation by employees, and effective reporting systems for conservation programs, are also discussed.

  20. The NASA Energy Conservation Program

    NASA Technical Reports Server (NTRS)

    Gaffney, G. P.

    1977-01-01

    Large energy-intensive research and test equipment at NASA installations is identified, and methods for reducing energy consumption outlined. However, some of the research facilities are involved in developing more efficient, fuel-conserving aircraft, and tradeoffs between immediate and long-term conservation may be necessary. Major programs for conservation include: computer-based systems to automatically monitor and control utility consumption; a steam-producing solid waste incinerator; and a computer-based cost analysis technique to engineer more efficient heating and cooling of buildings. Alternate energy sources in operation or under evaluation include: solar collectors; electric vehicles; and ultrasonically emulsified fuel to attain higher combustion efficiency. Management support, cooperative participation by employees, and effective reporting systems for conservation programs, are also discussed.

  1. Experimental comparison between several photovoltaic panels, regarding the solar energy collection

    SciTech Connect

    Lorenzo, E.; Laspiur, A.; Molledo, A.G.; Romero, S.L.

    1984-05-01

    This paper summarizes the results of an experiment carried out at the Instituto de Energia Solar of the Universidad Politecnica de Madrid, whose main objective is the analysis of the energy collected by different kinds of photovoltaic panels. Special interest is paid to the study of bifacial flat panels and static concentrators using bifacial solar cells. Using the annual energy collected by a conventional static-monofacial flat panel as a basis for comparison, results show that static bifacial flat panels collect 60% more. The use of a two-axis tracking causes an increase of 40% and the combination of a bifacial flat panel with a two-axes tracking causes an increase of 80%. Finally, it is shown that the performance of static concentrators and monofacial flat panels is very similar.

  2. Directing energy transport in organic photovoltaic cells using interfacial exciton gates.

    PubMed

    Menke, S Matthew; Mullenbach, Tyler K; Holmes, Russell J

    2015-04-28

    Exciton transport in organic semiconductors is a critical, mediating process in many optoelectronic devices. Often, the diffusive and subdiffusive nature of excitons in these systems can limit device performance, motivating the development of strategies to direct exciton transport. In this work, directed exciton transport is achieved with the incorporation of exciton permeable interfaces. These interfaces introduce a symmetry-breaking imbalance in exciton energy transfer, leading to directed motion. Despite their obvious utility for enhanced exciton harvesting in organic photovoltaic cells (OPVs), the emergent properties of these interfaces are as yet uncharacterized. Here, directed exciton transport is conclusively demonstrated in both dilute donor and energy-cascade OPVs where judicious optimization of the interface allows exciton transport to the donor-acceptor heterojunction to occur considerably faster than when relying on simple diffusion. Generalized systems incorporating multiple exciton permeable interfaces are also explored, demonstrating the ability to further harness this phenomenon and expeditiously direct exciton motion, overcoming the diffusive limit.

  3. Energy Star Lighting Verification Program

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-09-30

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and results of Cycle Seven of PEARL program during the period of April 2006 to September 2006, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC continued receiving the CFL samples purchased by sponsors and finished performing the sphere testing for all CFL models at 100 hours of life. After that LRC aged the CFL samples to 1000 hours of life, and then performed sphere testing for all CFL models at 1000 hours of life. Then the CFLs were placed on the test rack to be aged to 40% of their rated life. Rapid Cycle Stress Test was also performed for all models using different sets of CFL samples.

  4. Energy Star Lighting Verification Program

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2007-03-31

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and results of Cycle Seven and Cycle Eight of PEARL program during the period of October 2006 to March 2007, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC finished performing the sphere testing for all CFL models in Cycle Seven at 40% of their rated life. LRC also performed re-test of Rapid Cycle Stress Test, under the request of DOE, for five CFL models that failed the Rapid Cycle Stress Test in Cycle Seven. From January 2007 to March 2007, LRC coordinated the procuring efforts for the CFL models that were selected for Cycle Eight.

  5. Identifying solar energy potentials and intensifying the climate-friendly use of photovoltaics within urban areas.

    NASA Astrophysics Data System (ADS)

    de Lange, N.

    2016-04-01

    Limited non-renewable fossil energy reserves and the essential ideas of sustainability have caused an increase in the demand for solar energy. The intensified use of renewable energy in Germany is primarily encouraged by the German renewable-energy-law. Solar panels mounted on roofs generate electricity using the energy radiated from the sun by taking advantage of the photovoltaic effect. However, not every roof is usable for power generation through solar energy. Therefore, web-based solar energy registers for multiple regions in Germany have been developed that provide detailed information on roofs suitable for carrying solar panels. The analyses are based on a digital object model derived from airborne laser scanning data of high accuracy and a fully automated technology to classify the points. First, roof points are separated according to their single roof sides and are converted into polygons. Then, exposure, slope, size of the roof, and particularly shading effects are computed to calculate the solar potential of each roof side. The web-GIS provides detailed information about the roof's suitability, such as the installable capacity and the expected generation of electricity. Thus, it helps house owners to calculate their investment and later revenues.

  6. Hydrogen as the solar energy translator. [in photochemical and photovoltaic processes

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.

    1979-01-01

    Many concepts are being investigated to convert sunlight to workable energy forms with emphasis on electricity and thermal energy. The electrical alternatives include direct conversion of photons to electricity via photovoltaic solar cells and solar/thermal production of electricity via heat-energy cycles. Solar cells, when commercialized, are expected to have efficiencies of about 12 to 14 percent. The cells would be active about eight hours per day. However, solar-operated water-splitting process research, initiated through JPL, shows promise for direct production of hydrogen from sunlight with efficiencies of up to 35 to 40 percent. The hydrogen, a valuable commodity in itself, can also serve as a storable energy form, easily and efficiently converted to electricity by fuel cells and other advanced-technology devices on a 24-hour basis or on demand with an overall efficiency of 25 to 30 percent. Thus, hydrogen serves as the fundamental translator of energy from its solar form to electrical form more effectively, and possibly more efficiently, than direct conversion. Hydrogen also can produce other chemical energy forms using solar energy.

  7. Dynamic modeling of hybrid energy storage systems coupled to photovoltaic generation in residential applications

    NASA Astrophysics Data System (ADS)

    Maclay, James D.; Brouwer, Jacob; Samuelsen, G. Scott

    A model of a photovoltaic (PV) powered residence in stand-alone configuration was developed and evaluated. The model assesses the sizing, capital costs, control strategies, and efficiencies of reversible fuel cells (RFC), batteries, and ultra-capacitors (UC) both individually, and in combination, as hybrid energy storage devices. The choice of control strategy for a hybrid energy storage system is found to have a significant impact on system efficiency, hydrogen production and component utilization. A hybrid energy storage system comprised of batteries and RFC has the advantage of reduced cost (compared to using a RFC as the sole energy storage device), high system efficiency and hydrogen energy production capacity. A control strategy that preferentially used the RFC before the battery in meeting load demand allows both grid independent operation and better RFC utilization compared to a system that preferentially used the battery before the RFC. Ultra-capacitors coupled with a RFC in a hybrid energy storage system contain insufficient energy density to meet dynamic power demands typical of residential applications.

  8. Study of low energy density photovoltaic applications under varying rate structures

    NASA Astrophysics Data System (ADS)

    Parker, C. D.

    1984-09-01

    A study to identify and rank low energy density photovoltaic applications and to do detailed analyses and tradeoff studies of the best applications was completed. Low energy density applications are those with peak power requirements of 60 Wp/sq m of floor space, or less, and a commensurate total daytime energy consumption. Four locations for the PV applications, one to represent each of the four geographic regions of the United States were specified. Existing energy consumption data bases and building inventories were studied to identify and rank low energy density applications. Four applications were identified; a branch bank, a day care center, an automotive service center, and distributor warehouse. The 16 application/site pairs were examined. Conceptual designs were generated for each and hour-by-hour energy requirements for typical year for each application/site pair were determined. A PV system was specified for each building at each site, and the performance of each PV system in meeting the building load in the same typical year was determined. The economics of each application was evaluated for a range of on and off peak rates for backup energy and for a range of sellback ratios.

  9. Hydrogen as the solar energy translator. [in photochemical and photovoltaic processes

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.

    1979-01-01

    Many concepts are being investigated to convert sunlight to workable energy forms with emphasis on electricity and thermal energy. The electrical alternatives include direct conversion of photons to electricity via photovoltaic solar cells and solar/thermal production of electricity via heat-energy cycles. Solar cells, when commercialized, are expected to have efficiencies of about 12 to 14 percent. The cells would be active about eight hours per day. However, solar-operated water-splitting process research, initiated through JPL, shows promise for direct production of hydrogen from sunlight with efficiencies of up to 35 to 40 percent. The hydrogen, a valuable commodity in itself, can also serve as a storable energy form, easily and efficiently converted to electricity by fuel cells and other advanced-technology devices on a 24-hour basis or on demand with an overall efficiency of 25 to 30 percent. Thus, hydrogen serves as the fundamental translator of energy from its solar form to electrical form more effectively, and possibly more efficiently, than direct conversion. Hydrogen also can produce other chemical energy forms using solar energy.

  10. Low-income Renewable Energy Programs: Case Studies of State Policy in California and Massachusetts

    NASA Astrophysics Data System (ADS)

    Kelly, Kaitlin

    Energy policies aimed at reducing the burden of monthly utility costs on low-income families have been established since the 1970s. Energy use impacts low-income families and organizations through housing specific costs, health and wellness, and opportunity costs. States have begun to run renewable energy installation programs aimed at reducing costs for low-income communities. This thesis examines two of these programs, the solar photovoltaic policies in California as part of the Single Family Affordable Solar Housing and Multi-family Affordable Solar Housing programs, and the Low-income Solar Housing program in Massachusetts. Lessons learned from reviewing these programs are that renewable energy programs are an effective strategy for reducing utility costs for low-income communities, but that the total effectiveness of the program is dependent on removing cost barriers, implementing energy efficiency improvements, and increasing consumer education through established community networks and relationships.

  11. Energy level alignment at C60/DTDCTB/PEDOT:PSS interfaces in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Yoo, Jisu; Jung, Kwanwook; Jeong, Junkyeong; Hyun, Gyeongho; Lee, Hyunbok; Yi, Yeonjin

    2017-04-01

    The electronic structure of a narrow band gap small molecule ditolylaminothienyl-benzothiadiazole-dicyanovinylene (DTDCTB), possessing a donor-acceptor-acceptor configuration, was investigated with regard to its application as an efficient donor material in organic photovoltaics (OPVs). The interfacial orbital alignment of C60/DTDCTB/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was determined using in situ ultraviolet photoelectron and inverse photoelectron spectroscopic methods. The ionization energy and electron affinity values of DTDCTB were measured to be 5.27 eV and 3.65 eV, respectively, and thus a very small transport gap of 1.62 eV was evaluated. Large band bending of DTDCTB on PEDOT:PSS was observed, resulting in a low hole extraction barrier. Additionally, the photovoltaic gap between the highest occupied molecular orbital level of the DTDCTB donor and the lowest unoccupied molecular orbital level of the C60 acceptor was estimated to be 1.30 eV, which is known to be the theoretical maximum open-circuit voltage in OPVs employing the C60/DTDCTB active layer. The unique electronic structures of DTDCTB contributed toward the recently reported excellent power conversion efficiencies of OPVs containing a DTDCTB donor material.

  12. Conjugated polymer/nanocrystal nanocomposites for renewable energy applications in photovoltaics and photocatalysis.

    PubMed

    Su, Yu-Wei; Lin, Wei-Hao; Hsu, Yung-Jung; Wei, Kung-Hwa

    2014-11-01

    Conjugated polymer/nanocrystal composites have attracted much attention for use in renewable energy applications because of their versatile and synergistic optical and electronic properties. Upon absorbing photons, charge separation occurs in the nanocrystals, generating electrons and holes for photocurrent flow or reduction/oxidation (redox) reactions under proper conditions. Incorporating these nanocrystals into conjugated polymers can complement the visible light absorption range of the polymers for photovoltaics applications or allow the polymers to sensitize or immobilize the nanocrystals for photocatalysis. Here, the current developments of conjugated polymer/nanocrystal nanocomposites for bulk heterojunction-type photovoltaics incorporating Cd- and Pb-based nanocrystals or quantum dots are reviewed. The effects of manipulating the organic ligands and the concentration of the nanocrystal precursor, critical factors that affect the shape and aggregation of the nanocrystals, are also discussed. In the conclusion, the mechanisms through which conjugated polymers can sensitize semiconductor nanocrystals (TiO2 , ZnO) to ensure efficient charge separation, as well as how they can support immobilized nanocrystals for use in photocatalysis, are addressed.

  13. Central station market development strategies for photovoltaics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Federal market development strategies designed to accelerate the market penetration of central station applications of photovoltaic energy system are analyzed. Since no specific goals were set for the commercialization of central station applications, strategic principles are explored which, when coupled with specific objectives for central stations, can produce a market development implementation plan. The study includes (1) background information on the National Photovoltaic Program, photovoltaic technology, and central stations; (2) a brief market assessment; (3) a discussion of the viewpoints of the electric utility industry with respect to solar energy; (4) a discussion of commercialization issues; and (5) strategy principles. It is recommended that a set of specific goals and objectives be defined for the photovoltaic central station program, and that these goals and objectives evolve into an implementation plan that identifies the appropriate federal role.

  14. Performance characteristics of a combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  15. Photovoltaic Power System and Power Distribution Demonstration for the Desert RATS Program

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony; Jakupca, Ian; Mintz, Toby; Herlacher, Mike; Hussey, Sam

    2012-01-01

    A stand alone, mobile photovoltaic power system along with a cable deployment system was designed and constructed to take part in the Desert Research And Technology Studies (RATS) lunar surface human interaction evaluation program at Cinder Lake, Arizona. The power system consisted of a photovoltaic array/battery system. It is capable of providing 1 kW of electrical power. The system outputs were 48 V DC, 110 V AC, and 220 V AC. A cable reel with 200 m of power cable was used to provide power from the trailer to a remote location. The cable reel was installed on a small trailer. The reel was powered to provide low to no tension deployment of the cable. The cable was connected to the 220 V AC output of the power system trailer. The power was then converted back to 110 V AC on the cable deployment trailer for use at the remote site. The Scout lunar rover demonstration vehicle was used to tow the cable trailer and deploy the power cable. This deployment was performed under a number of operational scenarios, manned operation, remote operation and tele-robotically. Once deployed, the cable was used to provide power, from the power system trailer, to run various operational tasks at the remote location.

  16. Battery Energy Storage Systems to Mitigate the Variability of Photovoltaic Power Generation

    NASA Astrophysics Data System (ADS)

    Gurganus, Heath Alan

    Methods of generating renewable energy such as through solar photovoltaic (PV) cells and wind turbines offer great promise in terms of a reduced carbon footprint and overall impact on the environment. However, these methods also share the attribute of being highly stochastic, meaning they are variable in such a way that is difficult to forecast with sufficient accuracy. While solar power currently constitutes a small amount of generating potential in most regions, the cost of photovoltaics continues to decline and a trend has emerged to build larger PV plants than was once feasible. This has brought the matter of increased variability to the forefront of research in the industry. Energy storage has been proposed as a means of mitigating this increased variability --- and thus reducing the need to utilize traditional spinning reserves --- as well as offering auxiliary grid services such as peak-shifting and frequency control. This thesis addresses the feasibility of using electrochemical storage methods (i.e. batteries) to decrease the ramp rates of PV power plants. By building a simulation of a grid-connected PV array and a typical Battery Energy Storage System (BESS) in the NetLogo simulation environment, I have created a parameterized tool that can be tailored to describe almost any potential PV setup. This thesis describes the design and function of this model, and makes a case for the accuracy of its measurements by comparing its simulated output to that of well-documented real world sites. Finally, a set of recommendations for the design and operational parameters of such a system are then put forth based on the results of several experiments performed using this model.

  17. Weatherization and Intergovernmental Program - State Energy Program Helps States Plan and Implement Energy Efficiency

    SciTech Connect

    2010-06-01

    State energy offices use SEP funds to develop state plans that identify opportunities for adopting renewable energy and energy efficiency technologies, and implementing programs to improve energy sustainability.

  18. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.

    PubMed

    Wong, Wai-Yeung; Ho, Cheuk-Lam

    2010-09-21

    Energy remains one of the world's great challenges. Growing concerns about limited fossil fuel resources and the accumulation of CO(2) in the atmosphere from burning those fuels have stimulated tremendous academic and industrial interest. Researchers are focusing both on developing inexpensive renewable energy resources and on improving the technologies for energy conversion. Solar energy has the capacity to meet increasing global energy needs. Harvesting energy directly from sunlight using photovoltaic technology significantly reduces atmospheric emissions, avoiding the detrimental effects of these gases on the environment. Currently inorganic semiconductors dominate the solar cell production market, but these materials require high technology production and expensive materials, making electricity produced in this manner too costly to compete with conventional sources of electricity. Researchers have successfully fabricated efficient organic-based polymer solar cells (PSCs) as a lower cost alternative. Recently, metalated conjugated polymers have shown exceptional promise as donor materials in bulk-heterojunction solar cells and are emerging as viable alternatives to the all-organic congeners currently in use. Among these metalated conjugated polymers, soluble platinum(II)-containing poly(arylene ethynylene)s of variable bandgaps (∼1.4-3.0 eV) represent attractive candidates for a cost-effective, lightweight solar-energy conversion platform. This Account highlights and discusses the recent advances of this research frontier in organometallic photovoltaics. The emerging use of low-bandgap soluble platinum-acetylide polymers in PSCs offers a new and versatile strategy to capture sunlight for efficient solar power generation. Properties of these polyplatinynes--including their chemical structures, absorption coefficients, bandgaps, charge mobilities, accessibility of triplet excitons, molecular weights, and blend film morphologies--critically influence the device

  19. Potential of Solar Energy in Kota Kinabalu, Sabah: An Estimate Using a Photovoltaic System Model

    NASA Astrophysics Data System (ADS)

    Markos, F. M.; Sentian, J.

    2016-04-01

    Solar energy is becoming popular as an alternative renewable energy to conventional energy source, particularly in the tropics, where duration and intensity of solar radiation are longer. This study is to assess the potential of solar energy generated from solar for Kota Kinabalu, a rapidly developing city in the State of Sabah, Malaysia. A year data of solar radiation was obtained using pyranometer, which was located at Universiti Malaysia Sabah (6.0367° N, 116.1186° E). It was concluded that the annual average solar radiation received in Kota Kinabalu was 182 W/m2. In estimating the potential energy generated from solar for Kota Kinabalu city area, a photovoltaic (PV) system model was used. The results showed that, Kota Kinabalu is estimated to produce 29,794 kWh/m2 of electricity from the solar radiation received in a year. This is equivalent to 0.014 MW of electricity produced just by using one solar panel. Considering the power demand in Sabah by 2020 is 1,331 MW, this model showed that the solar energy can contribute around 4% of energy for power demand, with 1 MW capacity of the PV system. 1 MW of PV system installation will require about 0.0328% from total area of the city. This assessment could suggest that, exploration for solar power energy as an alternative source of renewable energy in the city can be optimised and designed to attain significant higher percentage of contribution to the energy demand in the state.

  20. Cost Analysis of Utilizing Electric Vehicles and Photovoltaic Solar Energy in the United States Marine Corps Commercial Vehicle Fleet

    DTIC Science & Technology

    2009-12-01

    The purpose of this MBA project is to examine the upfront cost associated with purchasing electric vehicles and installing photovoltaic (PV) solar...analysis for implementing Low Speed Vehicle (LSV), Pure Electric Vehicles (PEV), and PV solar electric energy in the United States Marine Corps commercial vehicle fleet at Marine Corps Logistics Base Barstow.

  1. Workshop proceedings: Photovoltaic conversion of solar energy for terrestrial applications. Volume 1: Working group and panel reports

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Technological aspects of solar energy conversion by photovoltaic cells are considered. The advantage of the single crystal silicon solar cell approach is developed through comparisons with polycrystalline silicon, cadmium sulfide/copper sulfide thin film cells, and other materials and devices.

  2. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    PubMed

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  3. Photovoltaic energy production map of Greece based on simulated and measured data

    NASA Astrophysics Data System (ADS)

    Vokas, Georgios A.; Lagogiannis, Konstantinos V.; Papageorgas, Panagiotis; Salame, Takla

    2017-02-01

    The aim of this research is in one hand to reveal the real energy production of a medium scale Photovoltaic (PV) plant located at different sites in Greece and on the other to compare measured data to the predicted ones resulted from one well-known, PV simulation software. During the last ten years a capacity of more than 2,5 GWp of PV systems has been installed in Greece. Almost 37% of the installations are ranged from 10 to 100 kWp due to favorable Feed-in-Tariff policy pricing, according to the Greek regulation. Previous investigations proved a remarkable difference between measured and predicted energy production in Greece regarding all PV systems technologies. For the purposes of this study more than 250 medium scale PV plants have been measured and more than 850 annually energy production data series for those parks have been collected. Those data constitute a great sample that has been compared to more than 225 simulations data resulted by a well-known web software for PV systems energy yield calculations with improved solar radiation database. Additionally, in order to have a visual feeling concerning the real PV energy yield footprint in Greece, an updated map has been developed and illustrated, providing a useful tool for both business and academic purposes.

  4. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment.

    PubMed

    Wang, Wei; Tadé, Moses O; Shao, Zongping

    2015-08-07

    Meeting the growing global energy demand is one of the important challenges of the 21st century. Currently over 80% of the world's energy requirements are supplied by the combustion of fossil fuels, which promotes global warming and has deleterious effects on our environment. Moreover, fossil fuels are non-renewable energy and will eventually be exhausted due to the high consumption rate. A new type of alternative energy that is clean, renewable and inexpensive is urgently needed. Several candidates are currently available such as hydraulic power, wind force and nuclear power. Solar energy is particularly attractive because it is essentially clean and inexhaustible. A year's worth of sunlight would provide more than 100 times the energy of the world's entire known fossil fuel reserves. Photocatalysis and photovoltaics are two of the most important routes for the utilization of solar energy. However, environmental protection is also critical to realize a sustainable future, and water pollution is a serious problem of current society. Photocatalysis is also an essential route for the degradation of organic dyes in wastewater. A type of compound with the defined structure of perovskite (ABX3) was observed to play important roles in photocatalysis and photovoltaics. These materials can be used as photocatalysts for water splitting reaction for hydrogen production and photo-degradation of organic dyes in wastewater as well as for photoanodes in dye-sensitized solar cells and light absorbers in perovskite-based solar cells for electricity generation. In this review paper, the recent progress of perovskites for applications in these fields is comprehensively summarized. A description of the basic principles of the water splitting reaction, photo-degradation of organic dyes and solar cells as well as the requirements for efficient photocatalysts is first provided. Then, emphasis is placed on the designation and strategies for perovskite catalysts to improve their

  5. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    SciTech Connect

    Hoen, Ben; Cappers, Pete; Wiser, Ryan; Thayer, Mark

    2011-04-12

    An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that provides estimates of the marginal impacts of those PV systems on home sale prices. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. We find strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, from roughly $4 to $6.4/watt across the full dataset, to approximately $2.3/watt for new homes, to more than $6/watt for existing homes. A number of ideas for further research are suggested.

  6. Photovoltaic Calibrations at the National Renewable Energy Laboratory and Uncertainty Analysis Following the ISO 17025 Guidelines

    SciTech Connect

    Emery, Keith

    2016-09-01

    The measurement of photovoltaic (PV) performance with respect to reference conditions requires measuring current versus voltage for a given tabular reference spectrum, junction temperature, and total irradiance. This report presents the procedures implemented by the PV Cell and Module Performance Characterization Group at the National Renewable Energy Laboratory (NREL) to achieve the lowest practical uncertainty. A rigorous uncertainty analysis of these procedures is presented, which follows the International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement. This uncertainty analysis is required for the team’s laboratory accreditation under ISO standard 17025, “General Requirements for the Competence of Testing and Calibration Laboratories.” The report also discusses additional areas where the uncertainty can be reduced.

  7. Integration of Photovoltaics into Building Energy Usage through Advanced Control of Rooftop Unit

    SciTech Connect

    Starke, Michael R; Nutaro, James J; Irminger, Philip; Ollis, Benjamin; Kuruganti, Phani Teja; Fugate, David L

    2014-01-01

    This paper presents a computational approach to forecast photovoltaic (PV) power in kW based on a neural network linkage of publicly available cloud cover data and on-site solar irradiance sensor data. We also describe a control approach to utilize rooftop air conditioning units (RTUs) to support renewable integration. The PV forecasting method is validated using data from a rooftop PV panel installed on the Distributed Energy, Communications, and Controls (DECC) laboratory at Oak Ridge National Laboratory. The validation occurs in multiple phases to ensure that each component of the approach is the best representation of the actual expected output. The control of the RTU is based on model predictive methods.

  8. A thermo-electric system using concentrated solar energy with photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Wong, K.-F. V.; Dorney, S.

    The work reported here is a preliminary study of a thermo-electric system using concentrated solar radiation with photovoltaic cells. The system incorporated a novel concentrating system with the designed purpose of utilizing those portions of the solar spectrum that the silicon solar cells were not responsive to. The experimental set-up consisted of a 3.8 cm diameter glass tube, 76.2 cm long with the glass silicon cells positioned at equal intervals on its underside. Fresnel lenses were placed so that the incoming solar radiation was concentrated onto the silicon cells. The glass tube was filled with water which absorbed energy from the solar radiation before it reached the cells. The water had its temperature raised nine degrees Fahrenheit while also allowing the solar cells to produce approximately 0.05 watt. This results in an efficiency of around 35 percent. The results obtained are preliminary, and represent typical conditions in south Florida.

  9. Field test analysis of concentrator photovoltaic system focusing on average photon energy and temperature

    NASA Astrophysics Data System (ADS)

    Husna, Husyira Al; Ota, Yasuyuki; Minemoto, Takashi; Nishioka, Kensuke

    2015-08-01

    The concentrator photovoltaic (CPV) system is unique and different from the common flat-plate PV system. It uses a multi-junction solar cell and a Fresnel lens to concentrate direct solar radiation onto the cell while tracking the sun throughout the day. The cell efficiency could reach over 40% under high concentration ratio. In this study, we analyzed a one year set of environmental condition data of the University of Miyazaki, Japan, where the CPV system was installed. Performance ratio (PR) was discussed to describe the system’s performance. Meanwhile, the average photon energy (APE) was used to describe the spectrum distribution at the site where the CPV system was installed. A circuit simulator network was used to simulate the CPV system electrical characteristics under various environmental conditions. As for the result, we found that the PR of the CPV systems depends on the APE level rather than the cell temperature.

  10. Graphene-based photovoltaic cells for near-field thermal energy conversion.

    PubMed

    Messina, Riccardo; Ben-Abdallah, Philippe

    2013-01-01

    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. While their efficiency is limited in far field by the Schockley-Queisser limit, in near field the heat flux transferred to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular for a source supporting a surface mode. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. In this paper we propose a modified thermophotovoltaic device in which the cell is covered by a graphene sheet. By discussing the transmission coefficient and the spectral properties of the flux, we show that both the cell efficiency and the produced current can be enhanced, paving the way to promising developments for the production of electricity from waste heat.

  11. Three-dimensional models of conventional and vertical junction laser-photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Walker, Gilbert H.

    1988-01-01

    Three-dimensional models of both conventional planar junction and vertical junction photovoltaic energy converters have been constructed. The models are a set of linear partial differential equations and take into account many photoconverter design parameters. The model is applied to Si photoconverters; however, the model may be used with other semiconductors. When used with a Nd laser, the conversion efficiency of the Si vertical junction photoconverter is 47 percent, whereas the efficiency for the conventional planar Si photoconverter is only 17 percent. A parametric study of the Si vertical junction photoconverter is then done in order to describe the optimum converter for use with the 1.06-micron Nd laser. The efficiency of this optimized vertical junction converter is 44 percent at 1 kW/sq cm.

  12. Building automation: Photovoltaic assisted thermal comfort management system for energy saving

    NASA Astrophysics Data System (ADS)

    Reyasudin Basir Khan, M.; Jidin, Razali; Pasupuleti, Jagadeesh; Azwa Shaaya, Sharifah

    2013-06-01

    Building automation plays an important key role in the means to reduce building energy consumption and to provide comfort for building occupants. It is often that air conditioning system operating features ignored in building automation which can result in thermal discomfort among building occupants. Most automation system for building is expensive and incurs high maintenance cost. Such system also does not support electricity demand side management system such as load shifting. This paper discusses on centralized monitoring system for room temperature and photovoltaic (PV) output for feasibility study of PV assisted air conditioning system in small office buildings. The architecture of the system consists of PV modules and sensor nodes located at each room. Wireless sensor network technology (WSN) been used for data transmission. The data from temperature sensors and PV modules transmitted to the host personal computer (PC) wirelessly using Zigbee modules. Microcontroller based USB data acquisition device used to receive data from sensor nodes and displays the data on PC.

  13. Improved Coefficient Calculator for the California Energy Commission 6 Parameter Photovoltaic Module Model

    SciTech Connect

    Dobos, A. P.

    2012-05-01

    This paper describes an improved algorithm for calculating the six parameters required by the California Energy Commission (CEC) photovoltaic (PV) Calculator module model. Rebate applications in California require results from the CEC PV model, and thus depend on an up-to-date database of module characteristics. Currently, adding new modules to the database requires calculating operational coefficients using a general purpose equation solver - a cumbersome process for the 300+ modules added on average every month. The combination of empirical regressions and heuristic methods presented herein achieve automated convergence for 99.87% of the 5487 modules in the CEC database and greatly enhance the accuracy and efficiency by which new modules can be characterized and approved for use. The added robustness also permits general purpose use of the CEC/6 parameter module model by modelers and system analysts when standard module specifications are known, even if the module does not exist in a preprocessed database.

  14. Mast material test program (MAMATEP). [for Solar Array Assembly of Space Station Photovoltaic Power Module

    NASA Technical Reports Server (NTRS)

    Ciancone, Michael L.; Rutledge, Sharon K.

    1988-01-01

    The MAMATEP program, which is aimed at verifying the need for and evaluating the performance of various protection techniques for the solar array assembly mast of the Space Station photovoltaic power module, is discussed. Coated and uncoated mast material samples have been environmentally tested and evaluated, before and after testing, in terms of mass and bending modulus. The protective coatings include CV-1144 silicone, a Ni/Al/InSn eutectic, and an open-weave Al braid. Long-term plasma asher results from unprotected samples indicate that, even though fiberglass-epoxy samples degrade, a protection technique may not be necessary to ensure structural integrity. A protection technique, however, may be desirable to limit or contain the amount of debris generated by the degradation of the fiberglass-epoxy.

  15. NSF presentation. [summary on energy conversion research program

    NASA Technical Reports Server (NTRS)

    Morse, F. H.

    1973-01-01

    Wind energy conversion research is considered in the framework of the national energy problem. Research and development efforts for the practical application of solar energy -- including wind energy -- as alternative energy supplies are assessed in: (1) Heating and cooling of buildings; (2) photovoltaic energy conversion; (3) solar thermal energy conversion; (4) wind energy conversion; (5) ocean thermal energy conversion; (6) photosynthetic production of organic matter; and (7) conversion of organic matter into fuels.

  16. Efficiency Evaluation of a Photovoltaic System Simultaneously Generating Solar Electricity and Hydrogen for Energy Storage

    NASA Astrophysics Data System (ADS)

    Abermann, S.

    2012-10-01

    The direct combination of a photovoltaic system with an energy storage component appears desirable since it produces and stores electrical energy simultaneously, enabling it to compensate power generation fluctuations and supply sufficient energy during low- or non-irradiation periods. A novel concept based on hydrogenated amorphous silicon (a-Si:H) triple-junction solar cells, as for example a-Si:H/a-SiGe:H/a-SiGe:H, and a solar water splitting system integrating a polymer electrolyte membrane (PEM) electrolyser is presented. The thin film layer-by-layer concept allows large-area module fabrication applicable to buildings, and exhibits strong cost-reduction potential as compared to similar concepts. The evaluation shows that it is possible to achieve a sufficient voltage of greater than 1.5 V for effective water splitting with the a-Si based solar cell. Nevertheless, in the case of grid-connection, the actual energy production cost for hydrogen storage by the proposed system is currently too high.

  17. Optical properties of ITO nanocoatings for photovoltaic and energy building applications

    NASA Astrophysics Data System (ADS)

    Kaplani, E.; Kaplanis, S.; Panagiotaras, D.; Stathatos, E.

    2014-10-01

    Targeting energy savings in buildings, photovoltaics and other sectors, significant research activity is nowadays focused on the production of spectral selective nanocoatings. In the present study an ITO coating on glass substrate is prepared from ITO powder, characterized and analysed. The spectral transmittance and reflectance of the ITO coated glass and of two other commercially developed ITO coatings on glass substrate were measured and compared. Furthermore, a simulation algorithm was developed to determine the optical properties of the ITO coatings in the visible, solar and near infrared regions in order to assess the impact of the ITO coatings in the energy performance of buildings, and particularly the application in smart windows. In addition, the current density produced by a PV assuming each of the ITO coated glass served as a cover was computed, in order to assess their effect in PV performance. The preliminary ITO coating prepared and the two other coatings exhibit different optical properties and, thus, have different impact on energy performance. The analysis assists in a better understanding of the desired optical properties of nanocoatings for improved energy performance in PV and buildings.

  18. US participation in the International Energy Program

    NASA Astrophysics Data System (ADS)

    Issues relating to the international energy program, including issues concerning U.S. participation are considered. Extending participation of U.S. oil companies in the international energy program is also considered.

  19. Model Energy Efficiency Program Impact Evaluation Guide

    EPA Pesticide Factsheets

    This document provides guidance on model approaches for calculating energy, demand, and emissions savings resulting from energy efficiency programs. It describes several standard approaches that can be used in order to make these programs more efficient.

  20. 77 FR 14509 - State Energy Program and Energy Efficiency and Conservation Block Grant (EECBG) Program; Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... Energy Program and Energy Efficiency and Conservation Block Grant (EECBG) Program; Request for Information AGENCY: Office of Energy Efficiency and Renewable Energy and Office of the General Counsel... mechanisms by grantees of the State Energy Program (SEP) and Energy Efficiency and Conservation Block...

  1. Holographic lens spectrum splitting photovoltaic system for increased diffuse collection and annual energy yield

    NASA Astrophysics Data System (ADS)

    Vorndran, Shelby D.; Wu, Yuechen; Ayala, Silvana; Kostuk, Raymond K.

    2015-09-01

    Concentrating and spectrum splitting photovoltaic (PV) modules have a limited acceptance angle and thus suffer from optical loss under off-axis illumination. This loss manifests itself as a substantial reduction in energy yield in locations where a significant portion of insulation is diffuse. In this work, a spectrum splitting PV system is designed to efficiently collect and convert light in a range of illumination conditions. The system uses a holographic lens to concentrate shortwavelength light onto a smaller, more expensive indium gallium phosphide (InGaP) PV cell. The high efficiency PV cell near the axis is surrounded with silicon (Si), a less expensive material that collects a broader portion of the solar spectrum. Under direct illumination, the device achieves increased conversion efficiency from spectrum splitting. Under diffuse illumination, the device collects light with efficiency comparable to a flat-panel Si module. Design of the holographic lens is discussed. Optical efficiency and power output of the module under a range of illumination conditions from direct to diffuse are simulated with non-sequential raytracing software. Using direct and diffuse Typical Metrological Year (TMY3) irradiance measurements, annual energy yield of the module is calculated for several installation sites. Energy yield of the spectrum splitting module is compared to that of a full flat-panel Si reference module.

  2. Energy-cascade organic photovoltaic devices incorporating a host-guest architecture.

    PubMed

    Menke, S Matthew; Holmes, Russell J

    2015-02-04

    In planar heterojunction organic photovoltaic devices (OPVs), broad spectral coverage can be realized by incorporating multiple molecular absorbers in an energy-cascade architecture. Here, this approach is combined with a host-guest donor layer architecture previously shown to optimize exciton transport for the fluorescent organic semiconductor boron subphthalocyanine chloride (SubPc) when diluted in an optically transparent host. In order to maximize the absorption efficiency, energy-cascade OPVs that utilize both photoactive host and guest donor materials are examined using the pairing of SubPc and boron subnaphthalocyanine chloride (SubNc), respectively. In a planar heterojunction architecture, excitons generated on the SubPc host rapidly energy transfer to the SubNc guest, where they may migrate toward the dissociating, donor-acceptor interface. Overall, the incorporation of a photoactive host leads to a 13% enhancement in the short-circuit current density and a 20% enhancement in the power conversion efficiency relative to an optimized host-guest OPV combining SubNc with a nonabsorbing host. This work underscores the potential for further design refinements in planar heterojunction OPVs and demonstrates progress toward the effective separation of functionality between constituent OPV materials.

  3. Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems.

    PubMed

    Zhai, Pei; Williams, Eric D

    2010-10-15

    This paper advances the life cycle assessment (LCA) of photovoltaic systems by expanding the boundary of the included processes using hybrid LCA and accounting for the technology-driven dynamics of embodied energy and carbon emissions. Hybrid LCA is an extended method that combines bottom-up process-sum and top-down economic input-output (EIO) methods. In 2007, the embodied energy was 4354 MJ/m(2) and the energy payback time (EPBT) was 2.2 years for a multicrystalline silicon PV system under 1700 kWh/m(2)/yr of solar radiation. These results are higher than those of process-sum LCA by approximately 60%, indicating that processes excluded in process-sum LCA, such as transportation, are significant. Even though PV is a low-carbon technology, the difference between hybrid and process-sum results for 10% penetration of PV in the U.S. electrical grid is 0.13% of total current grid emissions. Extending LCA from the process-sum to hybrid analysis makes a significant difference. Dynamics are characterized through a retrospective analysis and future outlook for PV manufacturing from 2001 to 2011. During this decade, the embodied carbon fell substantially, from 60 g CO(2)/kWh in 2001 to 21 g/kWh in 2011, indicating that technological progress is realizing reductions in embodied environmental impacts as well as lower module price.

  4. Tribal Energy Program, Assisting Tribes to Realize Their Energy Visions (Brochure), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Not Available

    2013-06-01

    This 12-page brochure provides an overview of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Tribal Energy Program and describes the financial, technical, and educational assistance it provides to help tribes develop their renewable energy resources and reduce their energy consumption.

  5. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response

    DOE PAGES

    Raugei, Marco; Sgouridis, Sgouris; Murphy, David; ...

    2017-01-01

    A recent paper by Ferroni and Hopkirk (2016) asserts that the ERoEI (also referred to as EROI) of photovoltaic (PV) systems is so low that they actually act as net energy sinks, rather than delivering energy to society. Such claim, if accurate, would call into question many energy investment decisions. In the same paper, a comparison is also drawn between PV and nuclear electricity. We have carefully analysed this paper, and found methodological inconsistencies and calculation errors that, in combination, render its conclusions not scientifically sound. Ferroni and Hopkirk adopt 'extended' boundaries for their analysis of PV without acknowledging thatmore » such choice of boundaries makes their results incompatible with those for all other technologies that have been analysed using more conventional boundaries, including nuclear energy with which the authors engage in multiple inconsistent comparisons. In addition, they use out-dated information, make invalid assumptions on PV specifications and other key parameters, and conduct calculation errors, including double counting. Here in this paper, we provide revised EROI calculations for PV electricity in Switzerland, adopting both conventional and 'extended' system boundaries, to contrast with their results, which points to an order-of-magnitude underestimate of the EROI of PV in Switzerland by Ferroni and Hopkirk.« less

  6. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response

    SciTech Connect

    Raugei, Marco; Sgouridis, Sgouris; Murphy, David; Fthenakis, Vasilis; Frischknecht, Rolf; Breyer, Christian; Bardi, Ugo; Barnhart, Charles; Buckley, Alastair; Carbajales-Dale, Michael; Csala, Denes; de Wild-Scholten, Mariska; Heath, Garvin; Jæger-Waldau, Arnulf; Jones, Christopher; Keller, Arthur; Leccisi, Enrica; Mancarella, Pierluigi; Pearsall, Nicola; Siegel, Adam; Sinke, Wim; Stolz, Philippe

    2017-01-01

    A recent paper by Ferroni and Hopkirk (2016) asserts that the ERoEI (also referred to as EROI) of photovoltaic (PV) systems is so low that they actually act as net energy sinks, rather than delivering energy to society. Such claim, if accurate, would call into question many energy investment decisions. In the same paper, a comparison is also drawn between PV and nuclear electricity. We have carefully analysed this paper, and found methodological inconsistencies and calculation errors that, in combination, render its conclusions not scientifically sound. Ferroni and Hopkirk adopt 'extended' boundaries for their analysis of PV without acknowledging that such choice of boundaries makes their results incompatible with those for all other technologies that have been analysed using more conventional boundaries, including nuclear energy with which the authors engage in multiple inconsistent comparisons. In addition, they use out-dated information, make invalid assumptions on PV specifications and other key parameters, and conduct calculation errors, including double counting. Here in this paper, we provide revised EROI calculations for PV electricity in Switzerland, adopting both conventional and 'extended' system boundaries, to contrast with their results, which points to an order-of-magnitude underestimate of the EROI of PV in Switzerland by Ferroni and Hopkirk.

  7. The influence of mineral dust particles on the energy output of photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Roesch, C.; Eltahir, E. A. B.; Al-awwad, Z.; Alqatari, S.; Cziczo, D. J.; Roesch, M.

    2016-12-01

    The city of Al Khafji in Saudi Arabia plans to provide a regular supply of desalinated water from the Persian Gulf while simultaneously cutting back on the usage of fossil fuels. The power for the high energy-consuming reverse osmosis (RO) process will be derived from photovoltaic (PV) cells as a cleaner and resource-conserving means of energy production. Numerous sun hours (yearly 3000) makes the Persian Gulf region's geographical location appropriate for applying PV techniques at this scale. A major concern for PV power generation is mineral dust from desert regions accumulating on surfaces and thereby reducing the energy output. This study aims to show the impact of dust particles on the PV energy reduction by examining dust samples from various Persian Gulf regions. Bulk samples were collected at the surface. The experimental setup involved a sealed container with a solar panel unit (SPU), including an adjustable mounting plate, solar cells (amorphous and monocrystalline), and a pyranometer (SMP3, Kipp & Zonen Inc.). A Tungsten Halogen lamp was used as the light source. Dust particles were aerosolized with a shaker (Multi-Wrist shaker, Lab line). Different techniques were applied to characterize each sample: the particle size distributions were measured using an Optical Particle Sizer (OPS, TSI Inc.), the chemical composition was analyzed using the Particle Analysis by Mass Spectrometry (PALMS) instrument, and Transmission Electron Microscope Energy-Dispersive X-ray spectroscopy (TEM-EDX) was used to define morphology, size and structure. Preliminary results show that the energy output is affected by aerosol morphology (monodisperse, polydisperse), composition and solar cell type.

  8. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.

    PubMed

    Alexander, Jessica A; Scheltens, Frank J; Drummy, Lawrence F; Durstock, Michael F; Hage, Fredrik S; Ramasse, Quentin M; McComb, David W

    2017-09-01

    Advances in electron monochromator technology are providing opportunities for high energy resolution (10 - 200meV) electron energy-loss spectroscopy (EELS) to be performed in the scanning transmission electron microscope (STEM). The energy-loss near-edge structure in core-loss spectroscopy is often limited by core-hole lifetimes rather than the energy spread of the incident illumination. However, in the valence-loss region, the reduced width of the zero loss peak makes it possible to resolve clearly and unambiguously spectral features at very low energy-losses (<3eV). In this contribution, high-resolution EELS was used to investigate four materials commonly used in organic photovoltaics (OPVs): poly(3-hexlythiophene) (P3HT), [6,6] phenyl-C61 butyric acid methyl ester (PCBM), copper phthalocyanine (CuPc), and fullerene (C60). Data was collected on two different monochromated instruments - a Nion UltraSTEM 100 MC 'HERMES' and a FEI Titan(3) 60-300 Image-Corrected S/TEM - using energy resolutions (as defined by the zero loss peak full-width at half-maximum) of 35meV and 175meV, respectively. The data was acquired to allow deconvolution of plural scattering, and Kramers-Kronig analysis was utilized to extract the complex dielectric functions. The real and imaginary parts of the complex dielectric functions obtained from the two instruments were compared to evaluate if the enhanced resolution in the Nion provides new opto-electronic information for these organic materials. The differences between the spectra are discussed, and the implications for STEM-EELS studies of advanced materials are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Second program on energy research and technologies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The second major energy research and development program is described. Renewable and nonrenewable energy resources are presented which include nuclear technology and future energy sources, like fusion. The current status and outlook for future progress are given.

  10. Developing an Undergraduate Program in Energy Systems

    NASA Astrophysics Data System (ADS)

    Fanchi, John

    2010-10-01

    Texas Christian University (TCU) is developing an undergraduate program in engineering that prepares students to become engineers with an emphasis in energy systems. Courses in the program include an overview of energy in society that is suitable for the general student population; a technical overview of traditional energy (coal, oil and gas), nuclear energy, and renewable energy; and courses that cover more specialized energy topics. Students participating in this program will improve their understanding of energy systems; be introduced to outstanding scientific and engineering problems; learn about the role of energy in a global and societal context; and evaluate contemporary issues associated with energy. The energy systems curriculum will improve student understanding of activities that are a major component of the economy. As engineering students graduate with an energy systems emphasis, they will take their places in society with a much more sophisticated understanding of energy-related issues affecting their community. This talk will present the status of the new program.

  11. Renewable energy powered membrane technology. 1. Development and characterization of a photovoltaic hybrid membrane system.

    PubMed

    Schäfer, A I; Broeckmann, A; Richards, B S

    2007-02-01

    In isolated communities where potable water sources as well as energy grids are limited or nonexistent, treating brackish groundwater aquifers with small-scale desalination systems can be a viable alternative to existing water infrastructures. Given the unavailability of power in many such situations, renewable energy is an obvious solution to power such systems. However, renewable energy is an intermittent power supply and with regards to the performance of intermittently operated desalination systems, only very limited experience exists, both with regards to efficiency as well as water quality. In this paper, this lack of knowledge is addressed by evaluating a system operated with varying parameters (pressure and flow) with constant power as a step toward defining a safe operating window, and they provide a basis for interpreting future data obtained with a renewable energy source. Field trials were performed on a brackish (5300 mg/L TDS; 8290 microS/cm) bore in Central Australia with a photovoltaic-powered membrane filtration (PV-membrane) system. Four nanofiltration and reverse osmosis membranes (BW30, ESPA4, NF90, TFC-S) and a number of operation parameter combinations (transmembrane pressure, feed flow, TFC-S) and operating parameters transmembrane pressure and feed flow were investigated to find the best operating conditions for maximum drinking water production and minimum specific energy consumption (SEC). The ESPA4 membrane performed best for this brackish source, producing 250 L/h of excellent drinking water (257 mg/L TDS; 400 microS/ cm) at an SEC of 1.2 kWh/m3. The issue of brine disposal or reuse is also discussed and the article compares the salinity of the produced brine with livestock water. Since the feedwater is disinfected physically using ultrafiltration (UF), the brine is free from bacteria and most viruses and hence can be seen more as a reusable product stream than a waste stream with a disposal problem.

  12. Energy efficiency design strategies for buildings with grid-connected photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Yimprayoon, Chanikarn

    The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in

  13. Improving Photovoltaic Energy Production with Fiber-Optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Hausner, M. B.; Berli, M.

    2014-12-01

    The efficiency of solar photovoltaic (PV) generators declines sharply with increased temperatures. Peak solar exposure often occurs at the same time as peak temperatures, but solar PV installations are typically designed based on solar angle. In temperate areas, the peak temperatures may not be high enough to induce significant efficiency losses. In some of the areas with the greatest potential for solar development, however, summer air temperatures regularly reach 45 °C and PV panel temperatures exceed the air temperatures. Here we present a preliminary model of a PV array intended to optimize solar production in a hot and arid environment. The model begins with the diurnal and seasonal cycles in the angle and elevation of the sun, but also includes a meteorology-driven energy balance to project the temperatures of the PV panels and supporting structure. The model will be calibrated and parameterized using a solar array at the Desert Research Institute's (DRI) Renewable Energy Deployment and Display (REDD) facility in Reno, Nevada, and validated with a similar array at DRI's Las Vegas campus. Optical fibers will be installed on the PV panels and structural supports and interrogated by a distributed temperature sensor (DTS) to record the spatial and temporal variations in temperature. Combining the simulated panel temperatures, the efficiency-temperature relationship for the panels, and the known solar cycles at a site will allow us to optimize the design of future PV collectors (i.e., the aspect and angle of panels) for given production goals.

  14. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts

    SciTech Connect

    Gong, Jian; Darling, Seth B.; You, Fengqi

    2015-01-01

    The past few years have witnessed a rapid evolution of perovskite solar cells, an unprecedented photovoltaic (PV) technology with both relatively low cost and high power conversion efficiency. In this paper, we perform a life cycle assessment for two types of solution-processed perovskite solar modules to shed light on the environmental performance of this promising class of PVs. One module is equipped with FTO glass, a gold cathode, and mesoporous TiO2 scaffold; the other is equipped with ITO glass, a silver cathode, and ZnO thin film. We develop comprehensive life cycle inventories (LCIs) for all components used in the modules. Based on the LCI results, we conduct life cycle impact assessment for 16 common life cycle impact indicators, Eco-indicator 99, and two sustainable indicators: the energy payback time (EPBT) and the CO2 emission factor. We compare the results of Eco-indicator 99, the EPBT, and the CO2 emission factor among existing PV technologies, and further perform uncertainty analysis and sensitivity analysis for the two modules. The results demonstrate that perovskite solar modules possess the shortest EPBT, and future research should be directed to improving the system performance ratio and the device lifetime, and reducing precious metal consumption and energy-intensive operations in order to lower the CO2 emission factor.

  15. Energy payback and CO{sub 2} gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences

    SciTech Connect

    Kulcinski, G.L.

    2002-12-01

    A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES).

  16. Programming models for energy-aware systems

    NASA Astrophysics Data System (ADS)

    Zhu, Haitao

    Energy efficiency is an important goal of modern computing, with direct impact on system operational cost, reliability, usability and environmental sustainability. This dissertation describes the design and implementation of two innovative programming languages for constructing energy-aware systems. First, it introduces ET, a strongly typed programming language to promote and facilitate energy-aware programming, with a novel type system design called Energy Types. Energy Types is built upon a key insight into today's energy-efficient systems and applications: despite the popular perception that energy and power can only be described in joules and watts, real-world energy management is often based on discrete phases and modes, which in turn can be reasoned about by type systems very effectively. A phase characterizes a distinct pattern of program workload, and a mode represents an energy state the program is expected to execute in. Energy Types is designed to reason about energy phases and energy modes, bringing programmers into the optimization of energy management. Second, the dissertation develops Eco, an energy-aware programming language centering around sustainability. A sustainable program built from Eco is able to adaptively adjusts its own behaviors to stay on a given energy budget, avoiding both deficit that would lead to battery drain or CPU overheating, and surplus that could have been used to improve the quality of the program output. Sustainability is viewed as a form of supply and demand matching, and a sustainable program consistently maintains the equilibrium between supply and demand. ET is implemented as a prototyped compiler for smartphone programming on Android, and Eco is implemented as a minimal extension to Java. Programming practices and benchmarking experiments in these two new languages showed that ET can lead to significant energy savings for Android Apps and Eco can efficiently promote battery awareness and temperature awareness in real

  17. Photovoltaics: electricity from sunlight

    SciTech Connect

    Not Available

    1984-09-01

    The role of photovoltaic power in the world's energy mix is discussed. The role of the US federal government in the research and development of photovoltaic technology is described as one of undertaking long-range, high-risk research and development in areas that industry is not likely to pursue because of the costs and risks involved. The commercial growth of photovoltaic technology is alluded to briefly, and the basic operating theory of photovoltaic conversion is introduced. Numerous applications of photovoltaic technology are described, including uses in communications, rural electrification, waer pumping, corrosion protectio, navigational aids, and railroads, as well as utility network power. The economics of photovoltaic power are discussed, and the products and technology of the US photovoltaic industry are described. (LEW)

  18. Sub-nanometre resolution imaging of polymer-fullerene photovoltaic blends using energy-filtered scanning electron microscopy.

    PubMed

    Masters, Robert C; Pearson, Andrew J; Glen, Tom S; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M; Lidzey, David G; Rodenburg, Cornelia

    2015-04-24

    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials.

  19. Sub-nanometre resolution imaging of polymer–fullerene photovoltaic blends using energy-filtered scanning electron microscopy

    PubMed Central

    Masters, Robert C.; Pearson, Andrew J.; Glen, Tom S.; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M.; Lidzey, David G.; Rodenburg, Cornelia

    2015-01-01

    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials. PMID:25906738

  20. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide: Photoelectrochemical and photovoltaic approaches

    NASA Astrophysics Data System (ADS)

    Sathrum, Aaron John

    The sun is the most abundant resource of renewable energy available to the Earth. More energy strikes the surface of the earth in one hour than all primary energy consumption by humanity in an entire year. However, solar energy is intermittent, and if it is to become a major contributor to the electricity supply, an inexpensive and reliable form of massive energy storage will be necessary. The ability to convert solar electricity into a liquid fuel is an attractive solution to the energy storage problem. A challenging goal will be to use only H2O and CO2 as feedstocks for making synthetic hydrocarbon fuels. Electroreduction of CO2 to liquid fuels necessitates the use of efficient electrocatalysts to increase efficiency and rate for the essential development of practical industrial processes. Two approaches towards the storage of energy in chemical bonds are investigated. The photoelectrocatalytic production of CO using CO2 as a feedstock demonstrates the capture of solar energy and subsequent electrochemical conversion into a useful chemical commodity. CO2 is reduced at illuminated p-Silicon (p-Si) cathodes using the electrocatalyst fac-Re(2,2'-bipyridyl)CO 3Cl at a 440 mV less anodic potential when compared to a glassy carbon electrode. Cyclic voltammograms of the electrocatalyst with CO2 show an increase in current at the second reduction wave. In the second approach, a fully integrated system for a directly coupled solar photovoltaic driven CO2 electrolyzer was built and characterized. The design and theoretical voltage requirements show a minimum practical voltage of 3.4 V even though the thermodynamic minimum is only 1.33 V. The balancing of a non-linear power supply to a non-linear load reveals a self-stabilizing nature. An overall solar conversion efficiency (ηTOT) of 2.1% is achieved by using the electrocatalyst Re(4,4'-di-tert-butyl-2,2'-bipyridine)(CO) 3Cl. Theoretical calculations predict an upper efficiency limit of 21% for a single junction solar cell

  1. Making an Energy Conservation Program Work.

    ERIC Educational Resources Information Center

    Rump, Erwin E.; Hunter, James L.

    The first step of an energy conservation program is to monitor energy consumption. A system is explained that, in order to determine which buildings are energy efficient (considering all types of energy that a building might use), monitors total energy consumption. All such consumptions can be reduced to a common denominator: Barrels of Energy…

  2. Making an Energy Conservation Program Work.

    ERIC Educational Resources Information Center

    Rump, Erwin E.; Hunter, James L.

    The first step of an energy conservation program is to monitor energy consumption. A system is explained that, in order to determine which buildings are energy efficient (considering all types of energy that a building might use), monitors total energy consumption. All such consumptions can be reduced to a common denominator: Barrels of Energy…

  3. A Case Analysis of Energy Savings Performance Contract Projects and Photovoltaic Energy at Fort Bliss, El Paso, Texas

    DTIC Science & Technology

    2006-06-01

    Policy Act of 2005 signed in August, 2005 further extended the Energy Savings Performance Contract program until October, 2016 . D. DOE PROGRAM...energy savings performance contract (IDIQ ESPC). 72 The contractor shall provide, at no capital cost to the Government, all labor, material, and...Safety Code (NESC) $ National Fire Protection Association ( NFPA ) Standards including, but not limited to NFPA 101 - Life Safety Code $ National

  4. Equity implications of utility energy conservation programs

    SciTech Connect

    Sutherland, R.J.

    1994-03-15

    This paper uses the Residential Energy Consumption Survey undertaken by the Energy Information Administration in 1990 to estimate the statistical association between household income and participation in electric utility energy conservation programs and the association between participation and the electricity consumption. The results indicate that utility rebates, energy audits, load management programs and other conservation measures tend to be undertaken at greater frequency by high income households than by low income households. Participants in conservation programs tend to occupy relatively new and energy efficient residences and undertake conservation measures other than utility programs, which suggests that utility sponsored programs are substitutes for other conservation investments. Electricity consumption during 1990 is not significantly less for households participating in utility programs than for nonparticipants, which also implies that utility conservation programs are displacing other conservation investments. Apparently, utility programs are not avoiding costs of new construction and instead are transferring wealth, particularly to high income participating households.

  5. Energy Analysis Program 1990 annual report

    SciTech Connect

    Not Available

    1992-01-01

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, ``Energy Efficiency, Developing Countries, and Eastern Europe,`` part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program`s researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

  6. Underground Energy Storage Program. 1983 annual summary

    SciTech Connect

    Kannberg, L.D.

    1984-06-01

    The Underground Energy Storage Program approach, structure, history, and milestones are described. Technical activities and progress in the Seasonal Thermal Energy Storage and Compressed Air Energy Storage components of the program are then summarized, documenting the work performed and progress made toward resolving and eliminating technical and economic barriers associated with those technologies. (LEW)

  7. Utility-Scale Photovoltaic Deployment Scenarios of the Western United States: Implications for Solar Energy Zones in Nevada

    SciTech Connect

    Frew, Bethany; Mai, Trieu; Krishnan, Venkat; Haase, Scott

    2016-12-01

    In this study, we use the National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment System (ReEDS) capacity expansion model to estimate utility-scale photovoltaic (UPV) deployment trends from present day through 2030. The analysis seeks to inform the U.S. Bureau of Land Management's (BLM's) planning activities related to UPV development on federal lands in Nevada as part of the Resource Management Plan (RMP) revision for the Las Vegas and Pahrump field offices. These planning activities include assessing the demand for new or expanded additional Solar Energy Zones (SEZ), per the process outlined in BLM's Western Solar Plan process.

  8. An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California

    SciTech Connect

    Hoen, Ben; Cappers, Peter; Wiser, Ryan; Thayer, Mark

    2011-04-19

    An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that estimates the marginal impacts of those PV systems on home sale prices. A clearer understanding of these possible impacts might influence the decisions of homeowners considering the installation of a PV system, homebuyers considering the purchase of a home with PV already installed, and new home builders considering including PV as an optional or standard product on their homes. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. It finds strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, on average, from roughly $4 to $5.5/watt across a large number of hedonic and repeat sales model specifications and robustness tests. When expressed as a ratio of the sales price premium of PV to estimated annual energy cost savings associated with PV, an average ratio of 14:1 to 19:1 can be calculated; these results are consistent with those of the more-extensive existing literature on the impact of energy efficiency on sales prices. When the data are split among new and existing homes, however, PV system premiums are markedly affected. New homes with PV show premiums of $2.3-2.6/watt, while existing homes with PV show premiums of more than $6/watt. Reasons for this discrepancy are suggested, yet further research is warranted. A number of other areas where future research would be useful are also highlighted.

  9. Integrated wireless sensor network and real time smart controlling and monitoring system for efficient energy management in standalone photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Abou-Elnour, Ali; Thabt, A.; Helmy, S.; Kashf, Y.; Hadad, Y.; Tarique, M.; Abo-Elnor, Ossama

    2014-04-01

    In the present work, wireless sensor network and smart real-time controlling and monitoring system are integrated for efficient energy management of standalone photovoltaic system. The proposed system has two main components namely the monitoring and controlling system and the wireless communication system. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee wireless modules have been used to implement the wireless system. The main functions of monitoring and controlling unit is to efficiently control the energy consumption form the photovoltaic system based on accurate determination of the periods of times at which the loads are required to be operated. The wireless communication system send the data from the monitoring and controlling unit to the loads at which desired switching operations are performed. The wireless communication system also continuously feeds the monitoring and controlling unit with updated input data from the sensors and from the photovoltaic module send to calculate and record the generated, the consumed, and the stored energy to apply load switching saving schemes if necessary. It has to be mentioned that our proposed system is a low cost and low power system because and it is flexible to be upgraded to fulfill additional users' requirements.

  10. Energy Analysis Program 1990 annual report

    SciTech Connect

    Not Available

    1992-01-01

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, Energy Efficiency, Developing Countries, and Eastern Europe,'' part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program's researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

  11. Energy Efficiency Program Administrators and Building Energy Codes

    EPA Pesticide Factsheets

    This brief explores how energy efficiency program administrators have helped advance building energy codes at federal, state, and local levels—using technical, institutional, financial, and other resources—and discusses potential next steps.

  12. An optimal control strategy for DC bus voltage regulation in photovoltaic system with battery energy storage.

    PubMed

    Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M A

    2014-01-01

    This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.

  13. An Optimal Control Strategy for DC Bus Voltage Regulation in Photovoltaic System with Battery Energy Storage

    PubMed Central

    Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M. A.

    2014-01-01

    This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods. PMID:24883374

  14. Multichromophoric energy sensitization of C{sub 60} for organic photovoltaics

    SciTech Connect

    Bartynski, Andrew N.; Trinh, Cong; Kirlikovali, Kent O.; Thompson, Mark E.

    2014-09-15

    In organic photovoltaics (OPVs), photocurrent generation is limited by absorption and exciton diffusion in the active layer. In this work, we describe the energy sensitization of C{sub 60} simultaneously by two chromophores at high volume concentrations (50%). This sensitization strategy takes advantage of the intense absorption of the sensitizers and the exceptional electron conduction and exciton diffusion length of C{sub 60} resulting in a 30% increase in photoresponse of the C{sub 60}-based sensitized acceptor layer between λ = 450 nm and 670 nm and power conversion efficiency under simulated AM 1.5 G illumination. In (2,4-bis[4-(N,N-diphenylamino)-2,6-dihydroxyphenyl] squaraine)/C{sub 60} devices, sensitization results in an increase in J{sub SC} from 6.5 ± 0.2 mA/cm{sup 2} to 8.6 ± 0.2 mA/cm{sup 2} without compromising V{sub OC} or FF. These results demonstrate the robust nature of this sensitization scheme and its broad potential for application in OPVs.

  15. The use of solar energy - photovoltaic - in hydrogen production and arid zones like Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Sayigh, A. A. M.

    This paper deals with the use of photovoltaic technology for the production of hydrogen from water by electrolysis. First of all the amount of electricity needed for this process was assessed, then various types of solar cell systems to generate the electricity needed were discussed and the best system was established. Some of the investigations involved testing of solar cells with concentrators and with fixed tilt or tracking devices. Several small panels of solar cells were used in testing the effect of local dust and sand as well as the fixed tilt in the area of Riyadh. The cost of producing hydrogen by electrolysis using electricity from a conventional grid was calculated. This cost was compared with the cost of production of hydrogen if a solar cell array was used. The paper outlines the continuous price increase of oil to produce electricity and the rapid decrease in price of solar cells. Both these advances will lead to a cheaper way of producing hydrogen by solar energy. In addition it is shown that technology is almost trouble free and requires very little know-how as far as operation is concerned.

  16. An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.

    SciTech Connect

    Cappers, Peter; Wiser, Ryan; Thayer, Mark; Hoen, Ben

    2011-04-12

    An increasing number of homes with existing photovoltaic (PV) energy systems have sold in the U.S., yet relatively little research exists that estimates the marginal impacts of those PV systems on the sales price. A clearer understanding of these effects might influence the decisions of homeowners, home buyers and PV home builders. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. Across a large number of hedonic and repeat sales model specifications and robustness tests, the analysis finds strong evidence that homes with PV systems sold for a premium over comparable homes without. The effects range, on average, from approximately $3.9 to $6.4 per installed watt (DC), with most models coalescing near $5.5/watt, which corresponds to a premium of approximately $17,000 for a 3,100 watt system. The research also shows that, as PV systems age, the premium enjoyed at the time of home sale decreases. Additionally, existing homes with PV systems are found to have commanded a larger sales price premium than new homes with similarly sized PV systems. Reasons for this discrepancy are suggested, yet further research is warranted in this area as well as a number of other areas that are highlighted.

  17. Analysis of energy production with different photovoltaic technologies in the Colombian geography

    NASA Astrophysics Data System (ADS)

    Muñoz, Y.; Zafra, D.; Acevedo, V.; Ospino, A.

    2014-06-01

    This research has analyzed the photovoltaic technologies, Polycrystalline silicon, Monocrystalline Silicon, GIS, Cadmium Tellurium and Amorphous Silicon; in eight cities of the Colombian territory, in order to obtain a clear idea of what is the most appropriate for each city or region studied. PVsyst simulation software has been used to study in detail each photovoltaic technology, for an installed capacity of 100kW knowing the specific data of losses by temperature, mismatch, efficiency, wiring, angle inclination of the arrangement, among others

  18. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    SciTech Connect

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.

  19. Photovoltaic applications in rural areas of the developing world. World Bank technical paper energy series

    SciTech Connect

    Foley, G.

    1995-12-31

    The report examines the rural energy context within which PV programs must fit. The first chapter reviews the present position of PV technology and briefly describes the kit and systems commercially available for use in the rural areas of the developing world. The second chapter examines the rural energy background, describing how people manage to meet their energy needs across the huge areas of the developing world that remain untouched by conventional rural electrification programs. The next chapter looks at conventional rural electrification programs, their merits, and their inevitably limited scope. The fourth chapter looks at the potential niches for PVs, and how they compare in cost and level of service with their competition. A brief review of PV experience to date and the lessons learned is given in the fifth chapter, and the final chapter looks at the role of governments and funding agencies.

  20. Utility-scale photovoltaic concentrators

    SciTech Connect

    None, None

    2009-01-18

    The photovoltaics concentrators section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  1. SERI solar energy storage program

    NASA Astrophysics Data System (ADS)

    Baylin, F.; Copeland, R. J.; Kotch, A.; Kriz, T.; Luft, W.; Nix, R. G.; Wright, J. O.

    1982-05-01

    Thermal energy storage technologies are identified for specific solar thermal applications. The capabilities and limitations of direct-contact thermal storage and thermochemical energy storage and transport are examined. Storage of energy from active solar thermal systems for industrial process heat and the heating of buildings is analyzed and seasonal energy storage is covered. The coordination of numerous thermal energy storage research and development activities is described.

  2. Residential photovoltaic system designs

    SciTech Connect

    Russell, M. C.

    1981-01-01

    A project to develop Residential Photovoltaic Systems has begun at Massachusetts Institute of Technology Lincoln Laboratory with the construction and testing of five Prototype Systems. All of these systems utilize a roof-mounted photovoltaic array and allow excess solar-generated electric energy to be fed back to the local utility grid, eliminating the need for on-site storage. Residential photovoltaic system design issues are discussed and specific features of the five Prototype Systems now under test are presented.

  3. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Manser, Joseph S.

    travel 220 nm over the course of 2 ns after photoexcitation, with an extrapolated diffusion length greater than one micrometer over the full excited state lifetime. The solution-processability of metal halide perovskites necessarily raises questions as to the properties of the solvated precursors and their connection to the final solid-state perovskite phase. Through structural and steady-state and time-resolved absorption studies, the important link between the excited state properties of the precursor components, composed of solvated and solid-state halometallate complexes, and CH3NH3PbI3 is evinced. This connection provides insight into optical nonlinearities and electronic properties of the perovskite phase. Fundamental studies of CH 3NH3PbI3 ultimately serve as a foundation for application of this and other related materials in high-performance devices. In the final chapter, the operation of CH3NH3PbI 3 solar cells in a tandem architecture is presented. The quest for economic, large scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. In light of this, we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard terrestrial one sun illumination, the photoanode-photovoltaic architecture, in conjunction with an earthabundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially

  4. Energy analysis program, FY 1979

    NASA Astrophysics Data System (ADS)

    1980-04-01

    Energy analysis attempts to understand the volitional choices of energy use and supply available to human society, and the multi-faceted consequences of choosing any one of them. Topics deal with economic impacts; assessments of regional issues and impacts; air quality evaluation; institutional and political issues in California power plant siting; assessment of environmental standards; water issues; characterization of aquatic systems dissolved oxygen profiles; modeling; computer-generated interactive graphics; energy assessment in Hawaii; solar energy in communities; utilities solar financial data; population impacts of geothermal development; energy conservation in colleges and residential sectors; energy policy; decision making; building energy performance standards; standards for residential appliances; and impact of energy performance standards on demand for peak electrical energy.

  5. Biomass energy systems program summary

    SciTech Connect

    1980-07-01

    Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

  6. SERI Solar-Energy-Storage Program

    NASA Astrophysics Data System (ADS)

    Wyman, C. E.

    1981-08-01

    The program provides research, system analysis, and assessments of thermal energy storage and transport in support of the Thermal Energy Storage Program of the DOE Division of Energy Storage Technology; emphasis is on thermal energy storage for solar thermal power and process heat applications and on thermal energy transport. Currently, research is in progress on direct-contact thermal energy storage and thermochemical energy storage and transport. In addition, SERI is directing the definition of new concepts for thermal energy storage and supporting research on thermal energy transport by sensible and latent heat media. SERI is performing systems analyses of thermal energy storage for solar thermal application and coordinating thermal energy storage activities for solar applications.

  7. Photovoltaics (PV) as an Eligible Measure in Residential PACE Programs: Benefits and Challenges (Fact Sheet)

    SciTech Connect

    Coughlin, J.

    2010-06-01

    Property Assessed Clean Energy (PACE) financing is one of several new financial models broadening access to clean energy by addressing the barrier of initial capital cost. The majority of the PACE programs in the market today include PV as an eligible measure. PV appeals to homeowners as a way to reduce utility bills, self-generate sustainable power, increase energy independence and demonstrate a commitment to the environment. If substantial state incentives for PV exist, PV projects can be economic under PACE, especially when partnered with good net metering policies. At the same time, PV is expensive relative to other eligible measures with a return on investment horizon that might exceed program targets. This fact sheet reviews the benefits and potential challenges of including PV in PACE programs.

  8. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    SciTech Connect

    Steward, D.; Zuboy, J.

    2014-10-01

    Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

  9. Enabling a flexible exchange of energy of a photovoltaic plant with the grid by means of a controlled storage system

    NASA Astrophysics Data System (ADS)

    Lazzari, R.; Parma, C.; De Marco, A.; Bittanti, S.

    2015-07-01

    In this paper, we describe a control strategy for a photovoltaic (PV) power plant equipped with an energy storage system (ESS), based on lithium-ion battery. The plant consists of the following units: the PV generator, the energy storage system, the DC-bus and the inverter. The control, organised in a hierarchical manner, maximises the self-consumption of the local load unit. In particular, the ESS action performs power balance in case of low solar radiation or surplus of PV generation, thus managing the power exchange variability at the plant with the grid. The implemented control strategy is under testing in RSE pilot test facility in Milan, Italy.

  10. Research recommendations for ac interfacing between electric utility transmission and distribution systems and wind, photovoltaics, and OTEC energy systems

    NASA Astrophysics Data System (ADS)

    Longrigg, P.; Buell, E. H.

    1985-03-01

    Work that deals semiquantitatively with many integration problems that may have to be solved as wind, photovoltaic, and ocean energy systems are tied into electrical transmission utility grids is documented. The problems that will arise as these distributed storage and generation (DSG) energy systems are integrated into the electric utility grids are not yet fully known, and their extent may depend on the level of penetration of the DSGs into the grid network. Aspects of DSG integration covered are fuse and relay coordination, harmonics, communications, control protocols, safety, and artificial intelligence (computer driven controls). An appendix on the effects of electromagnetic pulse is also included.

  11. Photovoltaics - 10 years after Cherry Hill

    NASA Astrophysics Data System (ADS)

    Ralph, E. L.

    The status of R&D programs connected with photovoltaic (PV) systems 10 years after the Cherry Hill workshop on 'Photovoltaic Conversion of Solar Energy for Terrestrial Applications' is assessed. The five categories of research recommended by the Cherry Hill Workshop are listed in a table together with their recommended research budget allocations. The workshop categories include: single-crystal Si cells; poly-Si cells; systems and diagnostics. Categories for thin film CdS/Cu2S and CuInSe2 cells are also included. The roles of government and private utility companies in providing adequate financial support for PV research programs is emphasized.

  12. Energy Storage Requirements for Achieving 50% Penetration of Solar Photovoltaic Energy in California

    SciTech Connect

    Denholm, Paul; Margolis, Robert

    2016-09-01

    We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generators under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.

  13. Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California

    SciTech Connect

    Denholm, Paul; Margolis, Robert

    2016-08-01

    We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generators under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.

  14. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system.

    PubMed

    Richards, B S; Capão, D P S; Schäfer, A I

    2008-06-15

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration--nanofiltration/reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating brackish groundwater in outback Australia. The renewable energy powered membrane (RE-membrane) system is designed to supply clean drinking water to a remote community of about 50 inhabitants. The performance of the RE-membrane system over four different solar days is summarized using four different NF membranes (BW30, NF90, ESPA4, TFC-S), and examined in more detail for the BW30 membrane. On an Australian spring day, the system produced 1.1 m3 of permeate with an average conductivity of 0.28 mS x cm(-1), recovering 28% of the brackish (8.29 mS x cm(-1) conductivity) feedwater with an average specific energy consumption of 2.3 kWh x m(-3). The RE-membrane system tolerated large fluctuations in solar irradiance (500--1200 W x m(-2)), resulting in only small increases in the permeate conductivity. When equipped with the NF90 (cloudy day) and ESPA4 (rainy day) membranes, the system was still able to produce 1.36 m(-3) and 0.85 m(-3) of good quality permeate, respectively. The TFC-S membrane was not able to produce adequate water quality from the bore water tested. It is concluded that batteryless operation is a simple and robust way to operate such systems under conditions ranging from clear skies to medium cloud cover.

  15. The SERI solar energy storage program

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  16. The SERI solar energy storage program

    NASA Astrophysics Data System (ADS)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-03-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  17. Photovoltaic properties of polymer films

    NASA Astrophysics Data System (ADS)

    Reucroft, P. J.; Ullal, H.

    1980-03-01

    The effect of metal electrode and film thickness on the photovoltaic energy conversion efficiency in (1:1) mole ratio films of poly (N-vinylcarbazole) (PVK) and 2,4,7-trinitrofluorenone (TNF) has been investigated. Low work function metals increase the Schottky barrier height which leads to increases in the photovoltaic energy conversion efficiency. A ten-fold decrease in film thickness produces a thousand-fold increase in photovoltaic energy conversion efficiency. A theoretical model which assumes that the photovoltaic current is limited by Child's law predicts photovoltaic efficiencies which are in good agreement with the measured efficiencies.

  18. A study of potential high band-gap photovoltaic materials for a two step photon intermediate technique in fission energy conversion. Final report

    SciTech Connect

    Prelas, M.A.

    1996-01-24

    This report describes progress made to develop a high bandgap photovoltaic materials for direct conversion to electricity of excimer radiation produced by fission energy pumped laser. This report summarizes the major achievements in sections. The first section covers n-type diamond. The second section covers forced diffusion. The third section covers radiation effects. The fourth section covers progress in Schottky barrier and heterojunction photovoltaic cells. The fifth section covers cell and reactor development.

  19. Visualization of phase evolution in model organic photovoltaic structures via energy-filtered transmission electron microscopy.

    PubMed

    Herzing, Andrew A; Ro, Hyun Wook; Soles, Christopher L; DeLongchamp, Dean M

    2013-09-24

    The morphology of the active layer in an organic photovoltaic bulk-heterojunction device is controlled by the extent and nature of phase separation during processing. We have studied the effects of fullerene crystallinity during heat treatment in model structures consisting of a layer of poly(3-hexylthiophene) (P3HT) sandwiched between two layers of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Utilizing a combination of focused ion-beam milling and energy-filtered transmission electron microscopy, we monitored the local changes in phase distribution as a function of annealing time at 140 °C. In both cases, dissolution of PCBM within the surrounding P3HT was directly visualized and quantitatively described. In the absence of crystalline PCBM, the overall phase distribution remained stable after intermediate annealing times up to 60 s, whereas microscale PCBM aggregates were observed after annealing for 300 s. Aggregate growth proceeded vertically from the substrate interface via uptake of PCBM from the surrounding region, resulting in a large PCBM-depleted region in their vicinity. When precrystallized PCBM was present, amorphous PCBM was observed to segregate from the intermediate P3HT layer and ripen the crystalline PCBM underneath, owing to the far lower solubility of crystalline PCBM within P3HT. This process occurred rapidly, with segregation already evident after annealing for 10 s and with uptake of nearly all of the amorphous PCBM by the crystalline layer after 60 s. No microscale aggregates were observed in the precrystallized system, even after annealing for 300 s.

  20. OUT Success Stories: Photovoltaics in the National Parks

    SciTech Connect

    Pitchford, P.

    2000-08-31

    As part of its energy management program, the National Park Service (NPS) has been actively promoting energy conservation and the greater use of renewable energy technologies such as photovoltaics (PV). PV is proving to be a very effective way to produce electricity in our parks.

  1. Overview of Federal wind energy program

    NASA Technical Reports Server (NTRS)

    Ancona, D. F.

    1979-01-01

    The objectives and strategies of the Federal wind energy program are described. Changes in the program structure and some of the additions to the program are included. Upcoming organizational changes and some budget items are discussed, with particular emphasis on recent significant events regarding new approvals.

  2. Encircled energy correction method for raytrace programs

    NASA Technical Reports Server (NTRS)

    Dantzler, Andrew A.

    1988-01-01

    Program adjustments to increase the accuracy of the diffraction-based encircled energy analysis algorithms of the optical design computer programs ACCOS-V and SYNOPSYS are proposed. It is noted that the erroneous algorithms are based on the incorrect assumption that all the energy in a diffraction point spread function is contained within a circle of finite radius. Using these adjustments, more accurate encircled energy results are obtained for circles of radii less than or equal to the 100 percent boundary.

  3. Preliminary Analysis of the Jobs and Economic Impacts of Renewable Energy Projects Supported by the §1603Treasury Grant Program

    SciTech Connect

    Steinberg, Daniel; Porro, Gian; Goldberg, Marshall

    2012-04-01

    This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the §1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the §1603 grant program.

  4. Preliminary Analysis of the Jobs and Economic Impacts of Renewable Energy Projects Supported by the §1603 Treasury Grant Program

    SciTech Connect

    Steinberg, Daniel; Porro, Gian; Goldberg, Marshall

    2012-04-09

    This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the §1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the §1603 grant program.

  5. Preliminary Analysis of the Jobs and Economic Impacts of Renewable Energy Projects Supported by the ..Section..1603 Treasury Grant Program

    SciTech Connect

    Steinberg, D.; Porro, G.; Goldberg, M.

    2012-04-01

    This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the Section 1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the Section 1603 grant program.

  6. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  7. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  8. Microsystems Enabled Photovoltaics

    ScienceCinema

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2016-07-12

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  9. Microsystems Enabled Photovoltaics

    SciTech Connect

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2012-07-02

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  10. Base Program on Energy Related Research

    SciTech Connect

    Western Research Institute

    2008-06-30

    The main objective of the Base Research Program was to conduct both fundamental and applied research that will assist industry in developing, deploying, and commercializing efficient, nonpolluting fossil energy technologies that can compete effectively in meeting the energy requirements of the Nation. In that regard, tasks proposed under the WRI research areas were aligned with DOE objectives of secure and reliable energy; clean power generation; development of hydrogen resources; energy efficiency and development of innovative fuels from low and no-cost sources. The goal of the Base Research Program was to develop innovative technology solutions that will: (1) Increase the production of United States energy resources--coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. This report summarizes the accomplishments of the overall Base Program. This document represents a stand-alone Final Report for the entire Program. It should be noted that an interim report describing the Program achievements was prepared in 2003 covering the progress made under various tasks completed during the first five years of this Program.

  11. 77 FR 54839 - Energy Efficiency and Conservation Loan Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... Energy Efficiency and Conservation Loan Program AGENCY: Rural Utilities Service, USDA. ACTION: Notice of... assistance in support of energy efficiency programs (EE Programs) sponsored and implemented by...

  12. State Energy Efficiency Program Evaluation Inventory

    EIA Publications

    2013-01-01

    The focus of this inventory, some of which has been placed into a searchable spreadsheet, is to support the National Energy Modeling System (NEMS) and to research cost information in state-mandated energy efficiency program evaluations – e.g., for use in updating analytic and modeling assumptions used by the U.S. Energy Information Administration (EIA).

  13. The 1987 Photovoltaics Annual Systems Symposium: Agenda and abstracts

    NASA Astrophysics Data System (ADS)

    Chapman, R. N.

    1987-02-01

    The 1987 Photovoltaic Annual Systems Symposium (PASS'87) is being held at La Mansion Hotel, February 18, 19, and 20, 1987, in Austin, Texas. The meeting is sponsored by Sandia National Laboratories, the US Department of Energy, and the City of Austin Electric Utility Department. This document contains a summary of the findings from PASS'86, the agenda for PASS'87, and extended abstracts describing the PASS'87 presentations. The technical program is divided into five sessions: Department of Energy Program Directions, National and State Photovoltaic Activities, Subsystem Technology, Utility Interface Issues, and Stand-Alone Systems. A panel discussion scheduled for the afternoon of the 19th will focus on the utilities' perception of photovoltaics. A tour of Austin's 300 kW Solar Photovoltaic Test Facility is available to those attending the symposium.

  14. Charge versus Energy Transfer Effects in High-Performance Perylene Diimide Photovoltaic Blend Films.

    PubMed

    Singh, Ranbir; Shivanna, Ravichandran; Iosifidis, Agathaggelos; Butt, Hans-Jürgen; Floudas, George; Narayan, K S; Keivanidis, Panagiotis E

    2015-11-11

    Perylene diimide (PDI)-based organic photovoltaic devices can potentially deliver high power conversion efficiency values provided the photon energy absorbed is utilized efficiently in charge transfer (CT) reactions instead of being consumed in nonradiative energy transfer (ET) steps. Hitherto, it remains unclear whether ET or CT primarily drives the photoluminescence (PL) quenching of the PDI excimer state in PDI-based blend films. Here, we affirm the key role of the thermally assisted PDI excimer diffusion and subsequent CT reaction in the process of PDI excimer PL deactivation. For our study we perform PL quenching experiments in the model PDI-based composite made of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2-6-diyl] (PBDTTT-CT) polymeric donor mixed with the N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (PDI) acceptor. Despite the strong spectral overlap between the PDI excimer PL emission and UV-vis absorption of PBDTTT-CT, two main observations indicate that no significant ET component operates in the overall PL quenching: the PL intensity of the PDI excimer (i) increases with decreasing temperature and (ii) remains unaffected even in the presence of 10 wt % content of the PBDTTT-CT quencher. Temperature-dependent wide-angle X-ray scattering experiments further indicate that nonradiative resonance ET is highly improbable due to the large size of PDI domains. The dominance of the CT over the ET process is verified by the high performance of devices with an optimum composition of 30:70 PBDTTT-CT:PDI. By adding 0.4 vol % of 1,8-diiodooctane we verify the plasticization of the polymer side chains that balances the charge transport properties of the PBDTTT-CT:PDI composite and results in additional improvement in the device efficiency. The temperature-dependent spectral width of the PDI excimer PL band suggests the presence of energetic disorder in the

  15. Home Energy Affordability Loan Program

    EPA Pesticide Factsheets

    Little Rock, Arkansas, is an EPA Climate Showcase Community. EPA’s Climate Showcase Communities Program helps local governments and tribal nations pilot innovative, cost-effective and replicable community-based greenhouse gas reduction projects.

  16. Batteries for solar energy systems -- A program at Sandia National Laboratories

    SciTech Connect

    1981-12-31

    DOE has selected Sandia National Laboratories as its lead laboratory to direct a program to develop and test batteries for electrical storage in a variety of solar applications. Initial emphasis is on storage in photovoltaic systems, but wind-energy and solar-thermal systems will be considered later. The BSSAP program is divided functionally into five tasks: Task 1--battery requirements analysis; Task 2--laboratory evaluation; Task 3--PV advanced systems tests; Task 4--applied experiments; Task 5--battery research and development. This report briefly discusses these tasks.

  17. Evaluation of a photovoltaic energy mechatronics system with a built-in quadratic maximum power point tracking algorithm

    SciTech Connect

    Chao, R.M.; Ko, S.H.; Lin, I.H.; Pai, F.S.; Chang, C.C.

    2009-12-15

    The historically high cost of crude oil price is stimulating research into solar (green) energy as an alternative energy source. In general, applications with large solar energy output require a maximum power point tracking (MPPT) algorithm to optimize the power generated by the photovoltaic effect. This work aims to provide a stand-alone solution for solar energy applications by integrating a DC/DC buck converter to a newly developed quadratic MPPT algorithm along with its appropriate software and hardware. The quadratic MPPT method utilizes three previously used duty cycles with their corresponding power outputs. It approaches the maximum value by using a second order polynomial formula, which converges faster than the existing MPPT algorithm. The hardware implementation takes advantage of the real-time controller system from National Instruments, USA. Experimental results have shown that the proposed solar mechatronics system can correctly and effectively track the maximum power point without any difficulties. (author)

  18. Rural Energy Savings Program Act

    THOMAS, 111th Congress

    Rep. Clyburn, James E. [D-SC-6

    2010-03-09

    09/20/2010 Received in the Senate and Read twice and referred to the Committee on Energy and Natural Resources. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  19. Rural Energy Savings Program Act

    THOMAS, 111th Congress

    Sen. Merkley, Jeff [D-OR

    2010-03-10

    Senate - 06/17/2010 Committee on Agriculture, Nutrition, and Forestry Subcommittee on Energy. Hearings held. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  20. Rural Energy Savings Program Act

    THOMAS, 111th Congress

    Sen. Merkley, Jeff [D-OR

    2010-03-10

    06/17/2010 Committee on Agriculture, Nutrition, and Forestry Subcommittee on Energy. Hearings held. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  1. Rural Energy Savings Program Act

    THOMAS, 111th Congress

    Rep. Clyburn, James E. [D-SC-6

    2010-03-09

    09/20/2010 Received in the Senate and Read twice and referred to the Committee on Energy and Natural Resources. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  2. Rural Energy Savings Program Act

    THOMAS, 111th Congress

    Sen. Merkley, Jeff [D-OR

    2010-03-10

    06/17/2010 Committee on Agriculture, Nutrition, and Forestry Subcommittee on Energy. Hearings held. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  3. Retrospective Benefit-Cost Evaluation of DOE Investment in Photovoltaic Energy Systems

    SciTech Connect

    O'Connor, Alan C.; Loomis, Ross J.; Braun, Fern M.

    2010-08-01

    This study is a retrospective analysis of net benefits accruing from DOE's investment in photovoltaic (PV) technology development. The study employed a technology cluster approach. That is, benefits measured for a subset of technologies in a meaningful cluster, or portfolio, of technologies were compared to the total investment in the cluster to provide a lower bound measure of return for the entire cluster.

  4. Qualification testing of flat-plate photovoltaic modules

    SciTech Connect

    Hoffman, A.R.; Griffith, J.S.; Ross, R.G. Jr.

    1982-08-01

    The placement of photovoltaic modules in various applications, in climates and locations throughout the world, results in different degrees and combinations of environmental and electrical stress. Early detection of module reliability deficiencies via laboratory testing is necessary for achieving long, satisfactory field service. This overview paper describes qualification testing techniques being used in the US Department of Energy's flat-plate terrestrial photovoltaic development program in terms of their significance, rationale for specified levels and durations, and test results.

  5. Qualification testing of flat-plate photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Griffith, J. S.; Ross, R. G., Jr.

    1982-01-01

    The placement of photovoltaic modules in various applications, in climates and locations throughout the world, results in different degrees and combinations of environmental and electrical stress. Early detection of module reliability deficiencies via laboratory testing is necessary for achieving long, satisfactory field service. This overview paper describes qualification testing techniques being used in the US Department of Energy's flat-plate terrestrial photovoltaic development program in terms of their significance, rationale for specified levels and durations, and test results.

  6. Ultrafast broadband laser spectroscopy reveals energy and charge transfer in novel donor-acceptor triads for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Roland, T.; Hernandez Ramirez, G.; Léonard, J.; Méry, S.; Haacke, S.

    2011-02-01

    Triggered by the quest for new organic materials and micro-structures for photovoltaic applications, a novel class of donor-acceptor-donor (DAD) triads extended with siloxane chains has been synthesized in our labs. Because of the siloxane chains, the molecules self-organize into a smectic liquid crystal phase, resulting in a stacking of the DAD cores.We report here a preliminary study of the ultrafast dynamics of energy and charge transfer studied by femtosecond broadband transient absorption experiments on isolated triads in chloroform.

  7. Solar Energy Prospecting in Remote Alaska: An Economic Analysis of Solar Photovoltaics in the Last Frontier State

    SciTech Connect

    Schwabe, Paul

    2016-02-11

    This report provides a high-level examination of the potential economics of solar energy in rural Alaska across a geographically diverse sample of remote Alaska Native villages throughout the state. It analyzes at a high level what combination of diesel fuel prices, solar resource quality, and photovoltaic (PV) system costs could lead to an economically competitive moderate-scale PV installation at a remote village. The goal of this analysis is to provide a baseline economic assessment to highlight the possible economic opportunities for solar PV in rural Alaska for both the public and private sectors.

  8. DNA-quantum dot sensing platform with combined Förster resonance energy transfer and photovoltaic effect

    NASA Astrophysics Data System (ADS)

    Qi, Huijie; Wang, Lixiang; Wong, Ka-wai; Du, Zuliang

    2009-04-01

    A special DNA sensing platform based on a network of hybrid DNA-quantum dot system was designed and fabricated. Upon attachment of hybridized complementary DNA sequences, the molecular switch system can exhibit both photoinduced Förster resonance energy transfer (FRET) and photovoltaic (PV) effects simultaneously, but will give much weakened or no effect for the capture of hybridized products from "mismatched" DNA sequences. This dual sensing scheme based on combined FRET and PV effects can safeguard the accuracy of sensing, as FRET and PV can be singly induced even in the case of mismatch.

  9. Wind Energy Education and Training Programs (Postcard)

    SciTech Connect

    Not Available

    2012-07-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce to support it. The Wind Powering America website features a map of wind energy education and training program locations at community colleges, universities, and other institutions in the United States. The map includes links to contacts and program details. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for wind energy education and training programs episodes.

  10. Basic Energy Sciences Program Update

    SciTech Connect

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, and operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.

  11. Minimization of the energy storage requirements of a stand-alone wind power installation by means of photovoltaic panels

    NASA Astrophysics Data System (ADS)

    Kaldellis, J. K.; Kostas, P.; Filios, A.

    2006-07-01

    Autonomous wind power systems are among the most interesting and environmentally friendly technological solutions for the electrification of remote consumers. In many cases, however, the battery contribution to the initial or the total operational cost is found to be dominant, discouraging further penetration of the available wind resource. This is basically the case for areas possessing a medium-low wind potential. On the other hand, several isolated consumers are located in regions having the regular benefit of an abundant and reliable solar energy supply. In this context the present study investigates the possibility of reducing the battery size of a stand-alone wind power installation by incorporating a small photovoltaic generator. For this purpose an integrated energy production installation based exclusively on renewable energy resources is hereby proposed. Subsequently a new numerical algorithm is developed that is able to estimate the appropriate dimensions of a similar system. According to the results obtained by long-term experimental measurements, the introduction of the photovoltaic panels considerably improves the operational and financial behaviour of the complete installation owing to the imposed significant battery capacity diminution. Copyright

  12. The NASA Aircraft Energy Efficiency Program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1978-01-01

    The objective of the NASA Aircraft Energy Efficiency Program is to accelerate the development of advanced technology for more energy-efficient subsonic transport aircraft. This program will have application to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s. Six major technology projects were defined that could result in fuel savings in commercial aircraft: (1) Engine Component Improvement, (2) Energy Efficient Engine, (3) Advanced Turboprops, (4) Energy Efficiency Transport (aerodynamically speaking), (5) Laminar Flow Control, and (6) Composite Primary Structures.

  13. The NASA Aircraft Energy Efficiency Program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1978-01-01

    The objective of the NASA Aircraft Energy Efficiency Program is to accelerate the development of advanced technology for more energy-efficient subsonic transport aircraft. This program will have application to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s. Six major technology projects were defined that could result in fuel savings in commercial aircraft: (1) Engine Component Improvement, (2) Energy Efficient Engine, (3) Advanced Turboprops, (4) Energy Efficiency Transport (aerodynamically speaking), (5) Laminar Flow Control, and (6) Composite Primary Structures.

  14. High Energy Astrophysics Program (HEAP)

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella; Corcoran, Michael; Drake, Stephen; McGlynn, Thomas A.; Snowden, Stephen; Mukai, Koji; Cannizzo, John; Lochner, James; Rots, Arnold; Christian, Eric; hide

    1998-01-01

    This report reviews activities performed by the members of the USRA contract team during the 6 months of the reporting period and projected activities during the coming 6 months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in astrophysics. Supported missions include advanced Satellite for Cosmology and Astrophysics (ASCA), X-Ray Timing Experiment (XTE), X-Ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC) and others.

  15. High Energy Astrophysics Program (HEAP)

    NASA Technical Reports Server (NTRS)

    Angelini, L.

    1998-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  16. The USGS World Energy Program

    USGS Publications Warehouse

    Ahlbrandt, Thomas S.

    1997-01-01

    The world has recently experienced rapid change to market-driven economies and increasing reliance on petroleum supplies from areas of political instability. The interplay of unprecedented growth of the global population, increasing worldwide energy demand, and political instability in two major petroleum exporting regions (the former Soviet Union and the Middle East) requires that the United States maintains a current, reliable, objective assessment of the world's energy resources. The need is compounded by the environmental implications of rapid increases in coal use in the Far East and international pressure on consumption of fossil fuels.

  17. Photovoltaic subsystem production cost model (SAMIS)

    NASA Astrophysics Data System (ADS)

    1982-07-01

    A complete introduction to the SAMIS model is provided. The purpose of the model is to estimate the costs of manufacturing photovoltaic solar energy products. The model procedure for estimating the long run or steady-state manufacturing cost is divided into four submodels: manufacturing process submodel, factory construction and staffing algorithm, capital requirements submodel, and the financial model of the firm. The model has been applied by Sandia National Laboratories for DOE's National Photovoltaics Program to assess the commercial viability of new solar energy manufacturing processes. However, given the proper input data, the model structure is flexible enough to support the design and analysis of any manufacturing industry. This document explains what the model can and cannot do, and what data is required. An example for a photovoltaic power conditioning unit demonstrates the application of the model.

  18. Mobile Energy Laboratory energy-efficiency testing programs

    NASA Astrophysics Data System (ADS)

    Parker, G. B.; Currie, J. W.

    1991-09-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the first and second quarters of fiscal year (FY) 1991. The MELs, developed by the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at Federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the U.S. Department of Energy, U.S. Army, U.S. Air Force, U.S. Navy, and other Federal agencies.

  19. Mobile Energy Laboratory energy-efficiency testing programs

    SciTech Connect

    Parker, G.B.; Currie, J.W.

    1991-09-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the first and second quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  20. Mobile Energy Laboratory energy-efficiency testing programs

    SciTech Connect

    Parker, G B; Currie, J W

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  1. US Coast Guard participation in the Federal Photovoltaic Utilization Program. Final technical report

    SciTech Connect

    Not Available

    1986-03-05

    The US Coast Guard began investigating solar photovoltaic arrays as power sources for marine aids to navigation in 1974. After several years of research and development effort the decision was made to convert the power systems of over 10,000 minor aids to navigation from expensive and environmentally hazardous primary batteries to solar power.

  2. US Coast Guard participation in the Federal Photovoltaic Utilization Program. Final Technical report

    SciTech Connect

    Not Available

    1986-03-05

    The US Coast Guard began investigating solar photovoltaic arrays as power sources for marine aids to navigation in 1974. After several years of research and development effort, the decision was made to convert the power systems of over 10,000 minor aids to navigation from expensive and environmentally hazardous primary batteries to solar power.

  3. Hawaii Energy Strategy program. Annual report 1993

    SciTech Connect

    Not Available

    1993-12-31

    This is the second annual report on the Hawaii Energy Strategy (HES) program which began on March 2, 1992, under a Cooperative Agreement (FCO3-92F19l68) with the United States Department of Energy (USDOE). The HES program is scheduled for completion by December 31, 1994. As outlined in the Statement of Joint Objectives. The purpose of the study is to develop an integrated State of Hawaii energy strategy, including an assessment of the State`s fossil fuel reserve requirements and the most effective way to meet those needs, the availability and practicality of increasing the use of native energy resources, potential alternative fossil energy technologies such as coal gasification and potential energy efficiency measures which could lead to demand reduction. This work contributes to the (US)DOE mission, will reduce the State`s vulnerability to energy supply disruptions and contributes to the public good.

  4. The National Geothermal Energy Research Program

    NASA Technical Reports Server (NTRS)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  5. Rural Energy Savings Program Act

    THOMAS, 111th Congress

    Rep. Clyburn, James E. [D-SC-6

    2010-03-09

    Senate - 09/20/2010 Received in the Senate and Read twice and referred to the Committee on Energy and Natural Resources. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  6. Blazing the energy trail: The Municipal Energy Management Program

    SciTech Connect

    Not Available

    1994-12-01

    The Urban Consortium Energy Task Force pioneers energy and environmental solutions for US cities and counties. When local officials participate in the task force, they open the door to many resources for their communities. The US is entering a period of renewed interest in energy management. Improvements in municipal energy management allow communities to free up energy operating funds to meet other needs. These improvements can even keep energy dollars in the community through the purchase of services and products used to save energy. With this idea in mind, the US Department of Energy Municipal Energy Management Program has funded more than 250 projects that demonstrate innovative energy technologies and management tools in cities and counties through the Urban Consortium Energy Task Force (UCETF). UCETF helps the US Department of Energy foster municipal energy management through networks with cities and urbanized counties and through links with three national associations of local governments. UCETF provides funding for projects that demonstrate innovative and realistic technologies, strategies, and methods that help urban America become more energy efficient and environmentally responsible. The task force provides technical support to local jurisdictions selected for projects. UCETF also shares information about successful energy management projects with cities and counties throughout the country via technical reports and project papers. The descriptions included here capsulize a sample of UCETF`s demonstration projects around the country.

  7. Integrating Photovoltaic Systems into Low-Income Housing Developments: A Case Study on the Creation of a New Residential Financing Model and Low-Income Resident Job Training Program, September 2011 (Brochure)

    SciTech Connect

    Dean, J.; Smith-Dreier, C.; Mekonnen, G.; Hawthorne, W.

    2011-09-01

    This case study covers the process of successfully integrating photovoltaic (PV) systems into a low-income housing development in northeast Denver, Colorado, focusing specifically on a new financing model and job training. The Northeast Denver Housing Center (NDHC), working in cooperation with Del Norte Neighborhood Development Corporation, Groundwork Denver, and the National Renewable Energy Laboratory (NREL), was able to finance the PV system installations by blending private equity funding with utility rebates, federal tax credits, and public sector funding. A grant provided by the Governor's Energy Office allowed for the creation of the new financing model. In addition, the program incorporated an innovative low-income job training program and an energy conservation incentive program.

  8. Biomass-energy-technology program summary

    NASA Astrophysics Data System (ADS)

    1982-06-01

    An account is given of the ongoing research, development, and demonstration efforts of the Biomass Energy Technology program. Descriptions are given for each of the program projects funded and/or in existence during Fiscal Year 1981, reflecting their status as of September 30, 1981. The summaries are grouped as follows: feedstock production, conversion systems, market development, and general support and analysis.

  9. DET/MPS - The GSFC Energy Balance Programs

    NASA Technical Reports Server (NTRS)

    Jagielski, J. M.

    1994-01-01

    Direct Energy Transfer (DET) and MultiMission Spacecraft Modular Power System (MPS) computer programs perform mathematical modeling and simulation to aid in design and analysis of DET and MPS spacecraft power system performance in order to determine energy balance of subsystem. DET spacecraft power system feeds output of solar photovoltaic array and nickel cadmium batteries directly to spacecraft bus. MPS system, Standard Power Regulator Unit (SPRU) utilized to operate array at array's peak power point. DET and MPS perform minute-by-minute simulation of performance of power system. Results of simulation focus mainly on output of solar array and characteristics of batteries. Both packages limited in terms of orbital mechanics, they have sufficient capability to calculate data on eclipses and performance of arrays for circular or near-circular orbits. DET and MPS written in FORTRAN-77 with some VAX FORTRAN-type extensions. Both available in three versions: GSC-13374, for DEC VAX-series computers running VMS. GSC-13443, for UNIX-based computers. GSC-13444, for Apple Macintosh computers.

  10. Status report on a solar photovoltaic concentrating energy system for a hospital in Hawaii

    SciTech Connect

    Seki, A.; Curtis, G.; Yuen, P.

    1983-06-01

    The largest parabolic concentrating photovoltaic/solar thermal system in the U.S. began producing electricity and hot water for a hospital on the island of Kauai, Hawaii in November 1981. Each of the 80 parabolic collectors is 6 feet by 10 feet and concentrates incident sunlight on photovoltaic cells mounted on two faces of the receiver at the focus. Although the 35 kilowatt system has been designed to produce 22,000 net kilowatt-hours per year of electricity and 620,000 gallons of 180 F water, electrical output (12 to 15 kilowatt-hours per day) is only 20 percent of that expected, primarily because insolation at the site has been only 40 percent of predicted values. A second problem with fungal attack on the receivers has been solved by better sealing. The system has also withstood a hurricane with negligible damage.

  11. Integration of plug-in hybrid electric vehicles (PHEV) with grid connected residential photovoltaic energy systems

    NASA Astrophysics Data System (ADS)

    Nagarajan, Adarsh; Shireen, Wajiha

    2013-06-01

    This paper proposes an approach for integrating Plug-In Hybrid Electric Vehicles (PHEV) to an existing residential photovoltaic system, to control and optimize the power consumption of residential load. Control involves determining the source from which residential load will be catered, where as optimization of power flow reduces the stress on the grid. The system built to achieve the goal is a combination of the existing residential photovoltaic system, PHEV, Power Conditioning Unit (PCU), and a controller. The PCU involves two DC-DC Boost Converters and an inverter. This paper emphasizes on developing the controller logic and its implementation in order to accommodate the flexibility and benefits of the proposed integrated system. The proposed controller logic has been simulated using MATLAB SIMULINK and further implemented using Digital Signal Processor (DSP) microcontroller, TMS320F28035, from Texas Instruments

  12. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  13. Strategy Plan Strengthens Energy Conservation Program.

    ERIC Educational Resources Information Center

    Minning, William R.

    1987-01-01

    The United States Department of Energy's Schools and Hospitals Program has been popular among schools. The necessity of locating nonfederal resources to achieve energy management warrants (1) developing a strategy of evaluation among schools and (2) market research and analysis. (CJH)

  14. Technical applications of solar energy. Project photovoltaic systems and project selective coatings

    NASA Astrophysics Data System (ADS)

    Gindele, K.; Honstetter, K.; Karl, H.; Koehl, M.; Lehner, G.; Mast, M.; Spohn, C.; Wagner, A.

    1983-12-01

    Long time stability of photovoltaic generators, hybrid collectors, and measuring devices for solar cells and solar cell generators were investigated. No aging of electrical features is stated after 6 yr working, while thermal and electrical efficiencies of collectors amount to 70% and 8% respectively. Radiative properties of selective coatings were measured, composition and structure of selective surfaces, vapor deposition methods (e.g., cermet-coatings), and chemical methods (e.g., cooper-oxide) were investigated.

  15. Health, safety and environmental issues relating to cadmium usage in photovoltaic energy systems

    SciTech Connect

    Moskowitz, P.D.; Fthenakis, V.M. ); Zweibel, K. )

    1990-01-01

    This paper discusses the current technology base and hazards associated with two promising thin-film photovoltaic cells that contain cadmium compounds--cadmium telluride (CdTe) and copper indium deselenide (CuInSe{sub 2}). More specifically, this paper summarized the toxicological information on cadmium (Cd) compounds;evaluates potential health, safety and environmental hazards associated with cadmium usage in the photovoltaics industry; describes regulatory requirements associated with the use, handling and disposal of cadmium compounds; and lists management options to permit the safe and continued use of these materials. Handling of cadmium in photovoltaic production can present hazards to health, safety and the environment. Prior recognition of these hazards can allow device manufacturers and regulators to implement appropriate and readily available hazard management strategies. Hazards associated with product use (i.e., array fires) and disposal remain controversial and partially unresolved. The most likely effects that could be expected would be those associated with chronic low-level exposures to cadmium wastes. Because of the general immobility of the cadmium present in these devices and availability of environmental and biomonitoring protocols, chronic hazards can be monitored, and remediated if necessary. 26 refs., 5 figs., 2 tabs.

  16. Economics of Future Growth in Photovoltaics Manufacturing; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Basore, Paul; Chung, Donald; Buonassisi, Tonio

    2015-06-14

    The past decade’s record of growth in the photovoltaic manufacturing industry indicates that global investment in manufacturing capacity for photovoltaic modules tends to increase in proportion to the size of the industry. The slope of this proportionality determines how fast the industry will grow in the future. Two key parameters determine this slope. One is the annual global investment in manufacturing capacity normalized to the manufacturing capacity for the previous year (capacity-normalized capital investment rate, CapIR, units $/W). The other is how much capital investment is required for each watt of annual manufacturing capacity, normalized to the service life of the assets (capacity-normalized capital demand rate, CapDR, units $/W). If these two parameters remain unchanged from the values they have held for the past few years, global manufacturing capacity will peak in the next few years and then decline. However, it only takes a small improvement in CapIR to ensure future growth in photovoltaics. Any accompanying improvement in CapDR will accelerate that growth.

  17. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.

    PubMed

    Li, Yongfang

    2012-05-15

    Bulk heterojunction (BHJ) polymer solar cells (PSCs) sandwich a blend layer of conjugated polymer donor and fullerene derivative acceptor between a transparent ITO positive electrode and a low work function metal negative electrode. In comparison with traditional inorganic semiconductor solar cells, PSCs offer a simpler device structure, easier fabrication, lower cost, and lighter weight, and these structures can be fabricated into flexible devices. But currently the power conversion efficiency (PCE) of the PSCs is not sufficient for future commercialization. The polymer donors and fullerene derivative acceptors are the key photovoltaic materials that will need to be optimized for high-performance PSCs. In this Account, I discuss the basic requirements and scientific issues in the molecular design of high efficiency photovoltaic molecules. I also summarize recent progress in electronic energy level engineering and absorption spectral broadening of the donor and acceptor photovoltaic materials by my research group and others. For high-efficiency conjugated polymer donors, key requirements are a narrower energy bandgap (E(g)) and broad absorption, relatively lower-lying HOMO (the highest occupied molecular orbital) level, and higher hole mobility. There are three strategies to meet these requirements: D-A copolymerization for narrower E(g) and lower-lying HOMO, substitution with electron-withdrawing groups for lower-lying HOMO, and two-dimensional conjugation for broad absorption and higher hole mobility. Moreover, better main chain planarity and less side chain steric hindrance could strengthen π-π stacking and increase hole mobility. Furthermore, the molecular weight of the polymers also influences their photovoltaic performance. To produce high efficiency photovoltaic polymers, researchers should attempt to increase molecular weight while maintaining solubility. High-efficiency D-A copolymers have been obtained by using benzodithiophene (BDT), dithienosilole

  18. SLC Energy Upgrade Program at SLAC

    SciTech Connect

    Loew, G.A.; Allen, M.A.; Cassel, R.L.; Dean, N.R.; Konrad, G.T.; Koontz, R.F.; Lebacqz, J.V.

    1985-03-01

    The SLAC Linear Collider (SLC) must reach a nominal center-of-mass energy of 100 GeV to fulfill its high energy physics goals. This paper describes the energy upgrade program that is being implemented on the SLAC linear accelerator to meet these goals. It includes a discussion of the design requirements and available technical options, the rationale for the adopted solution, and the technical problems involved in the engineering and production of klystrons and modulators.

  19. Nanostructured photovoltaics

    NASA Astrophysics Data System (ADS)

    Fu, Lan; Tan, H. Hoe; Jagadish, Chennupati

    2013-01-01

    Energy and the environment are two of the most important global issues that we currently face. The development of clean and sustainable energy resources is essential to reduce greenhouse gas emission and meet our ever-increasing demand for energy. Over the last decade photovoltaics, as one of the leading technologies to meet these challenges, has seen a continuous increase in research, development and investment. Meanwhile, nanotechnology, which is considered to be the technology of the future, is gradually revolutionizing our everyday life through adaptation and incorporation into many traditional technologies, particularly energy-related technologies, such as photovoltaics. While the record for the highest efficiency is firmly held by multijunction III-V solar cells, there has never been a shortage of new research effort put into improving the efficiencies of all types of solar cells and making them more cost effective. In particular, there have been extensive and exciting developments in employing nanostructures; features with different low dimensionalities, such as quantum wells, nanowires, nanotubes, nanoparticles and quantum dots, have been incorporated into existing photovoltaic technologies to enhance their performance and/or reduce their cost. Investigations into light trapping using plasmonic nanostructures to effectively increase light absorption in various solar cells are also being rigorously pursued. In addition, nanotechnology provides researchers with great opportunities to explore the new ideas and physics offered by nanostructures to implement advanced solar cell concepts such as hot carrier, multi-exciton and intermediate band solar cells. This special issue of Journal of Physics D: Applied Physics contains selected papers on nanostructured photovoltaics written by researchers in their respective fields of expertise. These papers capture the current excitement, as well as addressing some open questions in the field, covering topics including the

  20. Basic photovoltaics

    SciTech Connect

    Zweibel, K.

    1984-01-01

    Here is a photovoltaics guide that converts highly technical information into language that can be understood by both scientists and non-scientists. It provides an introduction to solar cell technology, explaining how PV cells work, how they are manufactured, and how they are put together into effective energy-producing systems. The authors investigate a new PV technology based on an altered form of silicon capable of producing conversion efficiencies of 10% to 15%. They explain the PV effect, loss mechanisms, and advances in fabrication methods.