Science.gov

Sample records for energy plant cultivation

  1. [Retrospect and prospect of medicinal plants cultivation in China].

    PubMed

    Guo, Qiao-sheng; Wang, Chang-lin

    2015-09-01

    There is time-honored history and culture of medicinal plant cultivation in China. In the present review, the medicinal plant cultivation history in china was summarized, its current situation and question were analyzed, and the prospects of medicinal plant cultivation research were pointed out, with the purpose of accelerating the growth of medicinal plant cultivation research.

  2. High-power LEDs for plant cultivation

    NASA Astrophysics Data System (ADS)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  3. Uranium uptake by hydroponically cultivated crop plants.

    PubMed

    Soudek, Petr; Petrová, Sárka; Benešová, Dagmar; Dvořáková, Marcela; Vaněk, Tomáš

    2011-06-01

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC(50) value about 0.1mM. Cucumis sativa represented the most resistant plant to uranium (EC(50)=0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1mM or 0.5mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Cultivation of Pleurotus ostreatus on weed plants.

    PubMed

    Das, Nirmalendu; Mukherjee, Mina

    2007-10-01

    Oyster mushroom, Pleurotus ostreatus (Jacq.:Fr.) Kumm. ITCC 3308 (collected from Indian Type Culture Collection, IARI, New Delhi, India, 110012) was grown on dry weed plants, Leonotis sp, Sida acuta, Parthenium argentatum, Ageratum conyzoides, Cassia sophera, Tephrosia purpurea and Lantana camara. Leonotis sp. was the best substrate in fruit body production of P. ostreatus when it was mixed with rice straw (1:1, wet wt/wet wt) for mushroom cultivation. The fruiting time for P. ostreatus was also less on Leonotis sp. than on any other weed substrates tested in the present investigation. T. purpurea was the least suited weed for oyster mushroom cultivation. The main problem of oyster mushroom cultivation on weed substrates was found to be low yield in the second flush that could be overcome by blending weed plants with rice straw. The protein contents of the fruit bodies obtained from Cassia sophera, Parthenium argentatum and Leonotis sp. were not only better than rice straw but also from the rice straw supplemented weeds.

  5. Modelling of the Nutrient Medium for Plants Cultivation in Spaceflight

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.

    2016-07-01

    MODELLING OF THE NUTRIENT MEDIUM FOR PLANTS CULTIVATION IN SPACEFLIGHT Nechitajlo G.S.*, Rakhmetova A.A.**, Bogoslovskaja O.A.**, Ol'hovskay I.P.**, Glushchenko N.N.** *Emanuel Institute of Biochemical Physics of Russian Academy of Sciences (IBCP RAS) mail: spacemal@mail.ru **V.L. Talrose Institute for Energy Problems of Chemical Physics of Russian Academy of Science (INEPCP RAS) mail: nnglu@ mail.ru The valuable life and fruitful activity of cosmonauts and researchers in conditions of spaceflights and prolonged work at space stations are only possible with creating life area providing fresh air, natural food, comfortable psychological conditions, etc. The solution of that problem under space conditions seems impossible without use of high nano- and biotechnologies for plants growth. A priority should be given not only to choose species of growth plants in space, but also to improve conditions for their growth which includes optimal nourishing components for plants, preparation of nutrient mediums, illumination and temperature. We are deeply convinced that just manipulations with growing conditions for cultivated plants, but not genes changes, is a guarantee of success in the decision of this problem. For improving the method of plants growing on the artificial nutrient medium with balanced content of components, being necessary for growth and development of plants, we added essential metal elements: Fe, Zn, Cu - in an electroneutral state in the form of nanoparticles instead of sulfates or other easily dissolving salts. Nanoparticulated metals are known to have a number of advantages in comparison with salts: metals in an electroneutral form are characterized with the prolonged and multifunctional action, low toxicity per se and appearing to be much below the toxicity of the same metals in the ionic forms, accumulation as a reserve being used in biotic dozes, active distribution in bodies and organs of plants and stimulation of vital processes. A high reactivity

  6. Enhancement of efficiency in the use of light for cultivation of plants in controlled ecological systems

    NASA Technical Reports Server (NTRS)

    Mashinsky, A. L.; Oreshkin, V. I.; Nechitailo, G. S.

    1994-01-01

    The problems of plant cultivation with the use of artificial lighting are related to energetics and, initially, to the lack of effective sources for photosynthesis, secondly to the necessity to supply a system with a considerable power in the form of light energy and to remove transformed thermal energy, and finally to economic considerations. These problems are solved by three ways: by the choice of effective radiation sources, design approaches, and technological methods of cultivation. Here we shall consider the first two ways.

  7. [Review on application of plant growth retardants in medicinal plants cultivation].

    PubMed

    Zhai, Yu-Yao; Guo, Bao-Lin; Cheng, Ming

    2013-09-01

    Plant growth retardants are widely used in cultivation of medicinal plant, but there is still lack of scientific guidance. In order to guide the use of plant growth retardants in medicinal plant cultivation efficiently and reasonably, this paper reviewed the mechanism, function characteristic, plant and soil residue of plant growth retardants, such as chlorocholine chloride, mepiquat chloride, paclobutrazol, unicnazle and succinic acid, and summarized the application of plant growth retardants in medicinal plants cultivation in recent years, with focus on the effect of growth and yield of the officinal organs and secondary metabolites.

  8. Pellet plant energy simulator

    NASA Astrophysics Data System (ADS)

    Bordeasu, D.; Vasquez Pulido, T.; Nielsen, C.

    2016-02-01

    The Pellet Plant energy simulator is a software based on advanced algorithms which has the main purpose to see the response of a pellet plant regarding certain location conditions. It combines energy provided by a combined heat and power, and/or by a combustion chamber with the energy consumption of the pellet factory and information regarding weather conditions in order to predict the biomass consumption of the pellet factory together with the combined heat and power, and/or with the biomass consumption of the combustion chamber. The user of the software will not only be able to plan smart the biomass acquisition and estimate its cost, but also to plan smart the preventive maintenance (charcoal cleaning in case of a gasification plant) and use the pellet plant at the maximum output regarding weather conditions and biomass moisture. The software can also be used in order to execute a more precise feasibility study for a pellet plant in a certain location. The paper outlines the algorithm that supports the Pellet Plant Energy Simulator idea and presents preliminary tests results that supports the discussion and implementation of the system

  9. Energy-water nexus for mass cultivation of algae.

    PubMed

    Murphy, Cynthia Folsom; Allen, David T

    2011-07-01

    Microalgae are currently considered a potential feedstock for the production of biofuels. This work addresses the energy needed to manage the water used in the mass cultivation of saline, eukaryotic algae grown in open pond systems. Estimates of both direct and upstream energy requirements for obtaining, containing, and circulating water within algae cultivation systems are developed. Potential productivities are calculated for each of the 48 states within the continental U.S. based on theoretical photosynthetic efficiencies, growing season, and total available land area. Energy output in the form of algal biodiesel and the total energy content of algal biomass are compared to energy inputs required for water management. The analysis indicates that, for current technologies, energy required for water management alone is approximately seven times greater than energy output in the form of biodiesel and more than double that contained within the entire algal biomass. While this analysis addresses only currently identified species grown in an open-pond system, the water management requirements of any algae system will be substantial; therefore, it is critical that an energy assessment of water management requirements be performed for any cultivation technology and algal type in order to fully understand the energy balance of algae-derived biofuels.

  10. Allelopathic effects of ragweed (Ambrosia artemisiifolia L.) on cultivated plants.

    PubMed

    Lehoczky, E; Gólya, G; Szabó, R; Szalai, A

    2011-01-01

    During the past years ragweed has been coming to the forefront of interest in Hungary and in other European countries as well because its serious health risk. Results of the 5th National Weed Survey has proven that ragweed is the most important weed species on Hungarian field lands, its coverage shows a rising tendency in cereals moreover it not only occurs in cultivated plants. Allelopathic effects of aqueous extracts derived from different parts of ragweed plants (air dried leafy stems, seeds) on the germination and growth of other cultivated plants [maize (Zea mays L.), winter wheat (Triticum aestivum L.), rye (Secale cereale L.), oat (Avena sativa L.)] were studied. The extracts made for the trials were prepared with distilled water. Petri dishes were used for the germination experiments and distilled water was used as a control treatment. The seven days long experiment was carried out within a Binder-type thermostat under dark conditions. The germination percentage was checked in every two days and the growth of sprouts was evaluated after a week counting the germinated seeds and measuring the length of the radicle and plumule. The measured data were statistically analysed and the effect of extracts on germinating and length of sprouts were assessed.

  11. Cultivated Sub-Populations of Soil Microbiomes Retain Early Flowering Plant Trait.

    PubMed

    Panke-Buisse, Kevin; Lee, Stacey; Kao-Kniffin, Jenny

    2017-02-01

    The collection of microorganisms found in the root zone of soil, termed the rhizosphere microbiome, has been shown to impact plant growth and development. Here, we tease apart the function of the cultivable portion of the microbiome from the whole microbiome in retaining plant traits modified through artificial selection on flowering time. Specifically, the whole microbiome associated with earlier flowering time of Arabidopsis thaliana was cultivated on four types of solid media to create cultivated fractions of the microbiome. These cultivated microbiomes were subsequently preserved in glycerol, frozen, and revived to yield a portion of the cultivable fraction to compare (1) whole microbiome, (2) cultivable microbiome, and (3) revived, cultivable microbiome controls on early flowering time. Plants grown in soils inoculated with bacteria grown on 25 % Luria broth and 10 % tryptic soy agar retained the early flowering trait. An increase in leaf biomass with two of the cultivated microbiomes (49.4 and 38.5 %) contrasted the lowered biomass effect of the whole microbiome. Inoculation with the cultivated microbiomes that were cryopreserved in glycerol showed no effect on flowering time or leaf biomass. The results indicate that the cultivable portion of a plant's microbiome retains the early flowering effect in A. thaliana, but cryopreservation of the cultivated microbiomes disrupts the microbial effects on flowering time. Furthermore, the contrasting effects on leaf biomass (an indirect response from selection on early flowering time), seen with the whole microbiome versus the cultivable portion, suggests versatility in using cultivation methods to modify multiple traits of plants.

  12. [The question of chemically determined physiological resistence of cultivated plants].

    PubMed

    Breider, H

    1973-04-01

    A survey is given of the problems concerning chemically determined resistance in cultivated plants. Leaving aside resistances caused by anatomical and morphological characteristics as well as by immunological reactions and/or by phytoalexines, two main groups of substances, cytostatica (alcaloids acting upon mitoses) and biostatica (acting upon the cell plasm) are discussed in detail. Biostatica are defined as so-called preformed substances developed by the plants themselves and acting additatively and/or cumulatively by building up various levels of resistance towards pests, e.g. by lowering their fertility. In vertebrates (chicks) they proved responsible for direct damages to certain organs as well as for indirect disorders caused during the prenatal and postnatal development of their progenies.The relations between the two groups of chemicals are discussed from the point of view of resistance, considering the role of biostatica and cytostatica during evolution. There is evidence against biostatica being products of immunological reactions.

  13. Cultivation and breeding of Chinese medicinal plants in Germany.

    PubMed

    Heuberger, Heidi; Bauer, Rudolf; Friedl, Fritz; Heubl, Günther; Hummelsberger, Josef; Nögel, Rainer; Seidenberger, Rebecca; Torres-Londoño, Paula

    2010-12-01

    Chinese herbal medicine (CHM) is increasingly used in Germany and Europe. Due to the need for herbal drugs of consistent quality and reliable supply, methods for commercial field cultivation and post-harvest processing under south German conditions have been developed for selected plant species used in CHM since 1999. The project used an interdisciplinary approach covering all aspects from seed sourcing to medicinal application. This paper describes the outcome of the agricultural seed and field experiments, breeding program, botanical and chemical characterization of the experimental material, comparison of experimental and imported herbal material with respect to their pharmaceutical quality, transfer of production methods and plant material to specialized farmers, medicinal application and, finally, information for users along the chain of distribution about the benefits of the locally produced herbal material. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Botanical geographical aspects of plants cultivated in Medea's garden of medical plants in Colchis.

    PubMed

    Gagnidze, R; Khelaia, N; Margalitadze, N; Batsatsashvili, K; Churadze, M

    2009-04-01

    The aim of the present work is to make a detailed investigation of the dissemination and dispersion of the plants which were cultivated in Medea's garden of medical plants in Colchis. It was found that the plants in the Medea's garden were highly heterogeneous from the point of plant geography. Plants from humid and arid Mediterranean basin, Near, Minor and East Asia zones were found in Medea's garden. Among the most important were the plants of floristic centers of Mediterranean basin. Study of the botanical geographical aspects of medical plants gave us opportunities to establish optimal time of dissemination of medical plants diasporas in Colchis; this process is associated with climate oscillations of Holocene and intensive migrations of peoples of Mediterranean.

  15. Impacts of recent cultivation on genetic diversity pattern of a medicinal plant, Scutellaria baicalensis (Lamiaceae)

    PubMed Central

    2010-01-01

    Background Cultivation of medicinal plants is not only a means for meeting current and future demands for large volume production of plant-based drug and herbal remedies, but also a means of relieving harvest pressure on wild populations. Scutellaria baicalensis Georgi (Huang-qin or Chinese skullcap) is a very important medicinal plant in China. Over the past several decades, wild resource of this species has suffered rapid declines and large-scale cultivation was initiated to meet the increasing demand for its root. However, the genetic impacts of recent cultivation on S. baicalensis have never been evaluated. In this study, the genetic diversity and genetic structure of 28 wild and 22 cultivated populations were estimated using three polymorphic chloroplast fragments. The objectives of this study are to provide baseline data for preserving genetic resource of S. baicalensis and to evaluate the genetic impacts of recent cultivation on medicinal plants, which may be instructive to future cultivation projects of traditional Chinese medicinal plants. Results Thirty-two haplotypes of S. baicalensis (HapA-Y and Hap1-7) were identified when three chloroplast spacers were combined. These haplotypes constituted a shallow gene tree without obvious clusters for cultivated populations, suggesting multiple origins of cultivated S. baicalensis. Cultivated populations (hT = 0.832) maintained comparable genetic variation with wild populations (hT = 0.888), indicating a slight genetic bottleneck due to multiple origins of cultivation. However, a substantial amount of rare alleles (10 out of 25 haplotypes within wild populations) lost during the course of S. baicalensis cultivation. The genetic differentiation for cultivated group (GST = 0.220) was significantly lower than that of wild group (GST = 0.701). Isolation by distance analysis showed that the effect of geographical isolation on genetic structure was significant in wild populations (r = 0.4346, P < 0.0010), but not in

  16. PERSPECTIVE: Cultivating Strategic Foresight for Energy and Environmental Security

    SciTech Connect

    Bray, David A.; Costigan, Sean; Daum, Keith; Lavoix, Helene; Malone, Elizabeth L.; Pallaris, Chris

    2009-10-01

    Disastrous social, economic, and political instability can result from limited energy resources or deteriorating environmental conditions. Historically, understanding and preparing for potential turbulent events posed significant challenges for governments, due in part to complex connections and dependencies associated with multiple, inter-related issues. Moving forward, we propose world governments can better mitigate and even avert energy and environmental disasters by cultivating a shared, diverse community of physical and social scientists, engineers, security analysts, and other professionals from related fields to share concerns, discuss ideas, and coalesce key concepts from the vast amount of data available about energy and environmental issues. Bringing relevant parties from multiple disciplines into a dynamic, diverse, and more transparent forum will produce a greater range of discussion, deliberation, and feasible solutions to help address uncertain, global energy and environmental concerns of both the present-day and our future.

  17. Phylogeography of the wild and cultivated stimulant plant qat (Catha edulis, Celastraceae) in areas of historic cultivation1

    USDA-ARS?s Scientific Manuscript database

    Qat (Catha edulis, Celastraceae) is a woody plant species cultivated for its stimulant alkaloids. Qat is important to the economy and culture in large regions of Ethiopia, Kenya, and Yemen. Despite the importance of this species, the wild origins and dispersal of cultivars have only been described i...

  18. Human energy expenditure in lowland rice cultivation in Malaysia.

    PubMed

    Nawi, N M; Yahya, A; Chen, G; Bockari-Gevao, S M; Maraseni, T N

    2012-01-01

    A study was undertaken to evaluate the human energy consumption of various field operations involved in lowland rice cultivation in Malaysia. Based on recorded average heart rates, fertilizing was found to be the most strenuous operation, with an average heart rate of 138 beats min(-1). There were no significant differences in the average heart rates of the subjects among the individual tasks within the first plowing, second plowing, and harvesting operations, with the average heart rates for these three tasks being 116, 106, and 106 beats min(-1), respectively. The corresponding energy expenditures were 3.90, 3.43, and 3.35 kcal min(-1). Loading the seed into the blower tank and broadcasting the seed were the most critical tasks for the seed broadcasting operation, with average heart rates of 124 and 136 beats min(-1), respectively. The highest energy expenditure of 418.38 kcal ha(-1) was observed for seed broadcasting, and the lowest energy expenditure of 127.96 kcal ha(-1) was for second plowing. The total seasonal human energy expenditure for rice cultivation was estimated to be 5810.71 kcal ha(-1), 55.7% of which was spent on pesticide spraying. Although the sample size in this study was relatively small, the results indicated that human energy expenditure per unit area (kcal ha(-1)) was positively linked to the average heart rate of the subjects and negatively linked to the field capacity. Thus, mechanization of certain tasks could decrease worker physical effort and fatigue and increase production.

  19. UPTAKE AND PHYTOTRANSFORMATION OF ORGANOPHOSPHORUS PESTICIDES BY AXENICALLY CULTIVATED AQUATIC PLANTS

    EPA Science Inventory

    The uptake and phytotransformation of organophosphorus (OP) pesticides (malathion, demeton-S-methyl, and crufomate) was investigated in vitro using the axenically aquatic cultivated plants parrot feather (Myriophyllum aquaticum), duckweed (Spirodela oligorrhiza L.), and elodea (E...

  20. UPTAKE AND PHYTOTRANSFORMATION OF ORGANOPHOSPHORUS PESTICIDES BY AXENICALLY CULTIVATED AQUATIC PLANTS

    EPA Science Inventory

    The uptake and phytotransformation of organophosphorus (OP) pesticides (malathion, demeton-S-methyl, and crufomate) was investigated in vitro using the axenically aquatic cultivated plants parrot feather (Myriophyllum aquaticum), duckweed (Spirodela oligorrhiza L.), and elodea (E...

  1. Production of marine plant biomass: Management, cultivation, and genetic modification of macrophytic algae

    NASA Astrophysics Data System (ADS)

    Vandermeer, J. P.

    1982-12-01

    Every second of every day, the Sun's fusion reactions convert thousands of tons of hydrogen into helium with the release of almost unimaginable amounts of energy. Through the photosynthetic activity of plants, both aquatic and terrestrial, a small fraction of this energy is trapped and stored as plant biomass. The oceans cover a greater fraction of the globe than do the land masses, making it appropriate to consider their contribution to the total biomass production, and their potential as a source of raw materials for the extraction of chemicals and fuels. A rather broad synthesis, convering the total seaweed resource and some of the constraints placed on harvesting these plants, attempts to farm the oceans to increase the supply of desirable species, attempts to cultivate seaweeds in enclosures where environmental parameters are controlled, and finally, the limited amount of genetic manipulation that was applied to these plants was presented. Only the larger red and brown seaweeds were considered because they represent the bulk of the biomass.

  2. Optimized production planning model for a multi-plant cultivation system under uncertainty

    NASA Astrophysics Data System (ADS)

    Ke, Shunkui; Guo, Doudou; Niu, Qingliang; Huang, Danfeng

    2015-02-01

    An inexact multi-constraint programming model under uncertainty was developed by incorporating a production plan algorithm into the crop production optimization framework under the multi-plant collaborative cultivation system. In the production plan, orders from the customers are assigned to a suitable plant under the constraints of plant capabilities and uncertainty parameters to maximize profit and achieve customer satisfaction. The developed model and solution method were applied to a case study of a multi-plant collaborative cultivation system to verify its applicability. As determined in the case analysis involving different orders from customers, the period of plant production planning and the interval between orders can significantly affect system benefits. Through the analysis of uncertain parameters, reliable and practical decisions can be generated using the suggested model of a multi-plant collaborative cultivation system.

  3. Root exudates of wetland plants influenced by nutrient status and types of plant cultivation.

    PubMed

    Wu, Fu Yong; Chung, Anna King Chuen; Tam, Nora Fung Yee; Wong, Ming Hung

    2012-07-01

    The present study investigated the amounts of root exudates and composition of organic acids released from two wetland plants (Typha latifolia and Vetiver zizanioides) under two nutrient treatments: low level (0.786 mM N and 0.032 mM P) and high level (7.86 mM N and 0.32 mM P) and two types of plant cultivation: monoculture and co-culture of the two plants. Low nutrient treatment significantly (p < 0.05) increased the root exudates of T. latifolia during the initial growth period (1-21 d) and those of V. zizanioides and the co-culture during the whole growth period. The concentrations of dissolved organic carbon in the root exudates of the co-culture in the low nutrient treatment were 3.23-7.91 times of those in the high nutrient treatment during the medium growth period (7-28 d). The compositions of organic acids varied between the two plant species and between the two nutrient treatments. The pattern of organic acids was also different between the co-culture and the monoculture. Oxalic acid was by far the major organic acid exuded from the two wetland plants. The present study on root exudates suggests that co-culture of wetland plant species would be more useful in the reclamation of waste water than a monoculture system.

  4. [Content and distribution of active components in cultivated and wild Taxus chinensis var. mairei plants].

    PubMed

    Yu, Shao-Shuai; Sun, Qi-Wu; Zhang, Xiao-Ping; Tian, Sheng-Ni; Bo, Pei-Lei

    2012-10-01

    Taxus chinensis var. mairei is an endemic and endangered plant species in China. The resources of T. chinensis var. mairei have been excessively exploited due to its anti-cancer potential, accordingly, the extant T. chinensis var. mairei population is decreasing. In this paper, ultrasonic extraction and HPLC were adopted to determine the contents of active components paclitaxel, 7-xylosyltaxol and cephalomannine in cultivated and wild T. chinensis var. mairei plants, with the content distribution of these components in different parts of the plants having grown for different years and at different slope aspects investigated. There existed obvious differences in the contents of these active components between cultivated and wild T. chinensis var. mairei plants. The paclitaxel content in the wild plants was about 0.78 times more than that in the cultivated plants, whereas the 7-xylosyltaxol and cephalomannine contents were slishtly higher in the cultivated plants. The differences in the three active components contents between different parts and tree canopies of the plants were notable, being higher in barks and upper tree canopies. Four-year old plants had comparatively higher contents of paclitaxel, 7-xylosyltaxol and cephalomannine (0.08, 0.91 and 0.32 mg x g(-1), respectively), and the plants growing at sunny slope had higher contents of the three active components, with significant differences in the paclitaxel and 7-xylosyltaxol contents and unapparent difference in the cephalomannine content of the plants at shady slope. It was suggested that the accumulation of the three active components in T. chinensis var. mairei plants were closely related to the sunshine conditions. To appropriately increase the sunshine during the artificial cultivation of T. chinensis var. mairei would be beneficial to the accumulation of the three active components in T. chinensis var. mairei plants.

  5. Effects of hydraulic retention time on cultivation of indigenous microalgae as a renewable energy source using secondary effluent.

    PubMed

    Takabe, Yugo; Hidaka, Taira; Tsumori, Jun; Minamiyama, Mizuhiko

    2016-05-01

    Secondary effluent from wastewater treatment plants is suitable media for cultivating microalgae as a renewable energy source, and hydraulic retention time (HRT) control in culture is important to conduct well-planned outdoor indigenous microalgae cultivation with secondary effluent. This study revealed cultivation characteristics under various HRT by continuous 6-month experiments. In addition, effects of HRT on cultivation were determined by a mathematical model that described indigenous microalgae growth. Cultivated biomass mainly consisted of Chlorophyceae and its detritus regardless of HRT, and 5.93-14.8g/m(2)/day of biomass yield was obtained. The cultivated biomass had a stable higher heating value of 16kJ/g. Sensitivity analysis of the model suggests that HRT control had great effects on biomass yield, and 2-3days of HRT were recommended to obtain maximum biomass yield under certain weather conditions (temperature: approximately 12-25°C and solar radiation: approximately 8-19MJ/m(2)/day). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation.

    PubMed

    Cheema, Sardar Alam; Imran Khan, Muhammad; Shen, Chaofeng; Tang, Xianjin; Farooq, Muhammad; Chen, Lei; Zhang, Congkai; Chen, Yingxu

    2010-05-15

    The present study was conducted to investigate the capability of four plant species (tall fescue, ryegrass, alfalfa, and rape seed) grown alone and in combination to the degradation of phenanthrene and pyrene (polycyclic aromatic hydrocarbons, PAHs) in spiked soil. After 65 days of plant growth, plant biomass, dehydrogenase activity, water-soluble phenolic (WSP) compounds, plant uptake and accumulation and residual concentrations of phenanthrene and pyrene were determined. Our results showed that presence of vegetation significantly enhanced the dissipation of phenanthrene and pyrene from contaminated soils. Higher degradation rates of PAHs were observed in the combined plant cultivation (98.3-99.2% phenanthrene and 88.1-95.7% pyrene) compared to the single plant cultivation (97.0-98.0% phenanthrene and 79.8-86.0% pyrene). Contribution of direct plant uptake and accumulation of phenanthrene and pyrene was very low compared to the plant enhanced dissipation. By contrast, plant-promoted biodegradation was the predominant contribution to the remediation enhancement. The correlation analysis indicates a negative relation between biological activities (dehydrogenase activity and WSP compounds) and residual concentrations of phenanthrene and pyrene in planted soils. Our results suggest that phytoremediation could be a feasible choice for PAHs contaminated soil. Moreover, the combined plant cultivation has potential to enhance the process. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. Uptake of uranium and thorium by native and cultivated plants.

    PubMed

    Shtangeeva, I

    2010-06-01

    Large part of available literature on biogeochemistry of uranium and thorium refers to the studies performed either in highly contaminated areas or in nutrient solutions that have been artificially 'spiked' with radionuclides. Effects of background levels of natural radioactivity on soil-grown plants have not been studied to the same extent. In this paper, we summarised results of greenhouse and field experiments performed by the author from 2000 to 2006. We examined some of the factors affecting transfer of U and Th from soil to plants, differences in uptake of these radionuclides by different plants, relationships between U and Th in soil and in plants, and temporal variations of U and Th in different plant species. Concentrations of radionuclides (critical point for experimental studies on biogeochemistry of U and Th--rare trace elements in non-contaminated regions) and essential plant nutrients and trace elements were determined by instrumental neutron activation analysis. Copyright (c) 2008 Elsevier Ltd. All rights reserved.

  8. [Prospects of the cultivated medical plants in Georgia].

    PubMed

    Nanobashvili, N B; Lobzhanidze, M I

    2009-05-01

    The aim of the research is to give botanic description, to analyze chemical composition and medical properties of plants. The names of plants in Russian are also provided. The main areas of propagation of medicinal plants are identified. The period of collection is recommended. The most important features of raw materials and extracts are represented. The information about the therapeutic effectiveness of drugs is depicted.

  9. Ex situ cultivation affects genetic structure and diversity in arable plants.

    PubMed

    Brütting, C; Hensen, I; Wesche, K

    2013-05-01

    Worldwide, botanical gardens cultivate around 80,000 taxa, corresponding to approximately one-quarter of all vascular plants. Most cultivated taxa are, however, held in a small number of collections, and mostly only in small populations. Lack of genetic exchange and stochastic processes in small populations make them susceptible to detrimental genetic effects, which should be most severe in annual species, as sowing cycles are often short. In order to assess whether ex situ cultivation affects genetic diversity of annuals, five annual arable species with similar breeding systems were assessed with 42 in situ populations being compared to 20 ex situ populations using a random amplified polymorphic DNA (RAPD) analysis approach. Population sizes tended to be lower under ex situ cultivation and levels of genetic diversity also tended to be lower in four of the five species, with differences being significant in only two. Ex situ populations showed incomplete representation of alleles found in the wild. The duration of cultivation did not indicate any effect on genetic diversity. This implies that cultivation strategies resulted in different genetic structures in the garden populations. Although not unequivocally pronounced, differences nonetheless imply that conservation strategies in the involved gardens may need improvement. One option is cold storage of seeds, a practice that is not currently followed in the studied ex situ collections. This may reflect that the respective gardens focus on displaying living plant populations.

  10. Fertilizers and Mixed Crop Cultivation of Chromium Tolerant and Sensitive Plants under Chromium Toxicity

    PubMed Central

    Dheeba, B.; Sampathkumar, P.; Kannan, K.

    2015-01-01

    Zea mays (maize) and Vigna radiata (green gram) are found to be the chromium (Cr) tolerant and sensitive plants, respectively. In the present paper, we investigate the reduction of the toxicity of Cr in the sensitive plants by the mixed crop cultivation in the field using various amendments. Further, the potassium dichromate was used as the source of hexavalent Cr. The results indicated that Cr adversely affects both the growth and yield of plants. The soil properties vary with Cr and different fertilizer amendments and the yield of both plants were affected by Cr. We conclude that metal accumulation of seeds of green gram was higher than corn and the application of single fertilizer either farm yard manure (FYM) or nitrogen, phosphorous, and potassium (NPK) enhances the growth and yield of both the tolerant and sensitive plants in the mixed crop cultivations. PMID:25709647

  11. Influence of different cultivation methods on carbohydrate and lipid compositions and digestibility of energy of fruits and vegetables.

    PubMed

    Jørgensen, Henry; Knudsen, Knud Erik Bach; Lauridsen, Charlotte

    2012-11-01

    Environmental as well as cultivation factors may greatly influence the chemical composition of plants. The main factors affecting the chemical composition of foodstuff are level and type of fertilizer (conventional and organic cultivation systems), location or soil type, and year of harvest. Organic foods are defined as products that are produced under controlled cultivation conditions characterized by the absence of synthetic fertilisers and very restricted use of pesticides. Very limited information is available regarding the impact of organic cultivation systems on the composition of carbohydrates and fatty acids of fruits and vegetables. The objective was to investigate the influence of organic and conventional cultivation systems on the carbohydrate and fatty acid composition and digestibility of the energy of apple, carrot, kale, pea, potato, and rape seed oil. Carbohydrate and lignin values ranged from 584 g kg⁻¹ dry matter in kale to 910 g kg⁻¹ DM in potato, but with significant differences in the proportion of sugars, starch, non-starch polysaccharides, and lignin between the foodstuffs. Triacylglycerol was the major lipid class in pea, with 82% of total fatty acids, as opposed to apple, with only 35% of fatty acids of the ether extract. The most important factor influencing the digestibility of energy, and consequently faecal bulking, was the content of dietary fibre. The cultivation system had minor impact on the carbohydrate and lipid composition in the investigated foodstuffs or on the digestibility of energy when assessed in the rat model. Faecal bulking was related to dietary fibre in a linear fashion. Copyright © 2012 Society of Chemical Industry.

  12. Training Programmes Can Change Behaviour and Encourage the Cultivation of Over-Harvested Plant Species

    PubMed Central

    Williams, Sophie J.; Jones, Julia P. G.; Clubbe, Colin; Gibbons, James M.

    2012-01-01

    Cultivation of wild-harvested plant species has been proposed as a way of reducing over-exploitation of wild populations but lack of technical knowledge is thought to be a barrier preventing people from cultivating a new species. Training programmes are therefore used to increase technical knowledge to encourage people to adopt cultivation. We assessed the impact of a training programme aiming to encourage cultivation of xaté (Chamaedorea ernesti-augusti), an over-harvested palm from Central America. Five years after the training programme ended, we surveyed untrained and trained individuals focusing on four potential predictors of behaviour: technical knowledge, attitudes (what individuals think about a behaviour), subjective norms (what individuals perceive others to think of a behaviour) and perceived behavioural control (self assessment of whether individuals can enact the behaviour successfully). Whilst accounting for socioeconomic variables, we investigate the influence of training upon these behavioural predictors and examine the factors that determine whether people adopt cultivation of a novel species. Those who had been trained had higher levels of technical knowledge about xaté cultivation and higher belief in their ability to cultivate it while training was not associated with differences in attitudes or subjective norms. Technical knowledge and perceived behavioural control (along with socio-economic variables such as forest ownership and age) were predictors of whether individuals cultivate xaté. We suggest that training programmes can have a long lasting effect on individuals and can change behaviour. However, in many situations other barriers to cultivation, such as access to seeds or appropriate markets, will need to be addressed. PMID:22431993

  13. Harnessing energy from plant biomass.

    PubMed

    Chang, Michelle C Y

    2007-12-01

    Biofuels derived from renewable plant biomass offer a potential carbon-neutral replacement for current liquid transportation fuels. Progress toward this initiative requires development of new methods to engineer energy crops with the desired chemical composition and physical characteristics, depolymerize lignocellulose to fermentable units, and program microbial metabolism for efficient conversion of sugars to ethanol.

  14. Microbiota of radish plants, cultivated in closed and open ecological systems

    NASA Astrophysics Data System (ADS)

    Tirranen, L. S.

    It is common knowledge that microorganisms respond to environmental changes faster than other representatives of the living world. The major aim of this work was to examine and analyze the characteristics of the microbiota of radish culture, cultivated in the closed ecological system of human life-support Bios-3 and in an open system in different experiments. Microbial community of near-root, root zone and phyllosphere of radish were studied at the phases of seedlings, root formation, technical ripeness—by washing-off method—like microbiota of the substrate (expanded clay aggregate) and of the seeds of radish culture. Inoculation on appropriate media was made to count total quantity of anaerobic and aerobic bacteria, bacteria of coliform group, spore-forming, Proteus group, fluorescent, phytopathogenic bacteria, growing on Fermi medium, yeasts, microscopic fungi, Actinomyces. It was revealed that formation of the microbiota of radish plants depends on the age, plant cultivation technology and the specific conditions of the closed system. Composition of microbial conveyor-cultivated in phytotrons varied in quality and in quantity with plant growth phases—in the same manner as cultivation of even-aged soil and hydroponics monocultures which was determined by different qualitative and quantitative composition of root emissions in the course of plant vegetation. The higher plant component formed its own microbial complex different from that formed prior to closure. The microbial complex of vegetable polyculture is more diverse and stable than the monoculture of radish. We registered the changes in the species composition and microorganism quantity during plant cultivation in the closed system on a long-used solution. It was demonstrated that during the short-term (7 days) use of the nutrient solution in the experiments without system closing, the species composition of the microbiota of radish plants was more diverse in a multiple-aged vegetable polyculture (61

  15. Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor.

    PubMed

    Ozkan, Altan; Kinney, Kerry; Katz, Lynn; Berberoglu, Halil

    2012-06-01

    This paper reports the construction and performance of an algae biofilm photobioreactor that offers a significant reduction of the energy and water requirements of cultivation. The green alga Botryococcus braunii was cultivated as a biofilm. The system achieved a direct biomass harvest concentration of 96.4 kg/m(3) with a total lipid content 26.8% by dry weight and a productivity of 0.71 g/m(2) day, representing a light to biomass energy conversion efficiency of 2.02%. Moreover, it reduced the volume of water required to cultivate a kilogram of algal biomass by 45% and reduced the dewatering energy requirement by 99.7% compared to open ponds. Finally, the net energy ratio of the cultivation was 6.00 including dewatering. The current issues of this novel photobioreactor are also identified to further improve the system productivity and scaleup.

  16. Comparative study on Allium schoenoprasum cultivated plant and Allium schoenoprasum tissue culture organs antioxidant status.

    PubMed

    Stajner, D; Popović, B M; Calić-Dragosavac, D; Malenčić, D; Zdravković-Korać, S

    2011-11-01

    This study was designed to examine Allium schoenoprasum tissue culture organs antioxidant and scavenging activity and to make a comparison between Allium schoenoprasum cultivated plant and Allium schoenoprasum tissue culture organs antioxidant activity. This study reports the results on the root, stalk and leaf antioxidant enzyme activities (superoxide dismutase, catalase, guaiacol peroxidase and glutathione peroxidase), reduced glutathione quantity, flavonoids and soluble protein contents and quantities of malonyldialdehyde and ·OH radical. In Allium schoenoprasum tissue culture organs the total antioxidant capacity was determined by the FRAP method and scavenger activity by the DPPH method. The present results indicated that the crude extract of Allium schoenoprasum tissue culture exhibited antioxidant and scavenging abilities in all investigated plant parts, especially in the roots. According to our results, the tissue culture plants exhibited the highest activities in the roots in contrast to the cultivated plants where highest activities were observed in the leaves.

  17. Energy from fresh and brackish water aquatic plants

    SciTech Connect

    Benemann, J.R.

    1981-01-01

    Aquatic plants can achieve relatively high biomass productivities when compared to terrestrial plants because they need not be water-stressed and can be optimally supplied with nutrients. Based on literature reports, productivities in southern US regions of about 40 to 60 t/ha-yr (dry weight basis) can be predicted for green algae or marsh plants and about 80 t/ha-yr for water hyacinth. Higher productivities may be possible in exceptionally favorable locations by assuming development of advanced cultivation technologies and genetic selection of improved strains. The lack of established cultivation systems and low-cost harvesting processes imposes great uncertainties on the cost of biomass production by aquatic plants. Three potentially practical aquatic biomass energy systems are chemicals production from microalgae, alcohol production from marsh plants, and methane production from water hyacinths. At present, aquatic plants are not being used commercially as a fuel source any place in the world. Nevertheless, it is clear that aquatic plants have potentially high biomass productivities and, specifically for the case of microalgae, could produce a high-quality, high-value biomass suitable for conversion to fuels and extraction of other products. A list of the relative advantages and disadvantages of aquatic plant energy systems in comparison with the concepts of terrestrial tree or herbaceous plant energy farming is given. Three favorable aspects of aquatic plant biomass systems should be stressed - the relative short-term research and development effort that will be required to determine the practical feasibility of such systems, the continuous production nature of such systems, and the relative independence of aquatic biomass systems from soil characteristics and weather fluctuations. The fast generation times of most aquatic plants allow rapid data acquisition, as compared to even short-rotation trees.

  18. The Performance of a Miniature Plant Cultivation System Designed for Space Flight Application

    NASA Technical Reports Server (NTRS)

    Heyenga, Gerard; Kliss, Mark; Blackford, Cameron

    2005-01-01

    Constraints in both launch opportunities and the availability of in-flight resources for Shuttle and Space Station life science habitat facilities has presented a compelling impetus to improve the operational flexibility, efficiency and miniaturization of many of these systems. Such advances would not only invigorate the level of research being conducted in low Earth orbit but also present the opportunity to expand life science studies to outer space and planetary bodies. Work has been directed towards the development of a miniature plant cultivation module (PCM) capable of supporting the automated and controlled growth and spectral monitoring of small plant species such as Arabidopsis thaliana. This paper will present data on the operational performance and efficiency of the cultivation module, and the extent to which such a system may be used to support plant growth studies in low Earth orbit and beyond.

  19. The Performance of a Miniature Plant Cultivation System Designed for Space Flight Application

    NASA Technical Reports Server (NTRS)

    Heyenga, Gerard; Kliss, Mark; Blackford, Cameron

    2005-01-01

    Constraints in both launch opportunities and the availability of in-flight resources for Shuttle and Space Station life science habitat facilities has presented a compelling impetus to improve the operational flexibility, efficiency and miniaturization of many of these systems. Such advances would not only invigorate the level of research being conducted in low Earth orbit but also present the opportunity to expand life science studies to outer space and planetary bodies. Work has been directed towards the development of a miniature plant cultivation module (PCM) capable of supporting the automated and controlled growth and spectral monitoring of small plant species such as Arabidopsis thaliana. This paper will present data on the operational performance and efficiency of the cultivation module, and the extent to which such a system may be used to support plant growth studies in low Earth orbit and beyond.

  20. Thermostability of plants in various light conditions of cultivation

    NASA Astrophysics Data System (ADS)

    Zavorueva, Elena

    2004-12-01

    At various levels of PHAR with the help of measurement of parameters of a slow induction of chlorophyll fluorescence at 682 and 734 nm in light culture conditions the thermostable estimation of cenosises of plants of wheat and radish in reply to action of the raise and damaging temperatures of air (35°C 20 hours, 45°C 7 hours) is carried out. Without dependence from a level of light exposure, the exposition of cenosises at 35°C did not result in irreversible changes of the photosynthetic device of plants. The minimal damage of cenosises of wheat and radish at influence of temperature of 45°C is observed at 150W/m2 of PHAR, and maximal - at intensities, close to a level of a compensatory point of photosynthesis of cenosises (50-70 W/m2 PHAR at a temperature of air of 24°C). The index of viability is most sensitive parameter in comparison with other parameters determined by a method of a slow induction of fluorescence at 682 and 734 nm. The character of its change in reply to action of the stress-factor coincides with changes of intensity of photosynthesis researched of cenosises.

  1. Cultivable endophytic bacteria from heavy metal(loid)-tolerant plants.

    PubMed

    Román-Ponce, Brenda; Ramos-Garza, Juan; Vásquez-Murrieta, María Soledad; Rivera-Orduña, Flor Nohemí; Chen, Wen Feng; Yan, Jun; Estrada-de Los Santos, Paulina; Wang, En Tao

    2016-12-01

    To evaluate the interactions among endophytes, plants and heavy metal/arsenic contamination, root endophytic bacteria of Prosopis laevigata (Humb and Bonpl. ex Willd) and Sphaeralcea angustifolia grown in a heavy metal(loid)-contaminated zone in San Luis Potosi, Mexico, were isolated and characterized. Greater abundance and species richness were found in Prosopis than in Sphaeralcea and in the nutrient Pb-Zn-rich hill than in the poor nutrient and As-Cu-rich mine tailing. The 25 species identified among the 60 isolates formed three groups in the correspondence analysis, relating to Prosopis/hill (11 species), Prosopis/mine tailing (4 species) and Sphaeralcea/hill (4 species), with six species ungrouped. Most of the isolates showed high or extremely high resistance to arsenic, such as ≥100 mM for As(V) and ≥20 mM for As(III), in mineral medium. These results demonstrated that the abundance and community composition of root endophytic bacteria were strongly affected by the concentration and type of the heavy metals and metalloids (arsenic), as well as the plant species.

  2. Medicinal plants cultivated in Bapedi traditional healers homegardens, Limpopo Province, South Africa.

    PubMed

    Semenya, S S; Potgieter, M J

    2014-01-01

    Plants used for medicinal purposes are very common feature in Bapedi traditional healer's home-gardens, but information about their diversity and application is not available. To investigate medicinal plants found in Bapedi healer's home-gardens, 51 traditional health practitioners were interviewed using a semi-structured questionnaire in 17 municipalities of the Limpopo Province of South Africa, during the first half of 2013. A total of 43 plant species (67.4% indigenous and 32.5% exotics) from 32 families, mostly from the Asteraceae and Apocynaceae (9.3% each) were documented. Species cultivated in home-gardens were used to treat three major groups of ailments that include sexually transmitted infections (44.1%), chronic diseases of life style (44.1%) and reproductive ailments (32.5%). The exotics Catharanthus roseus (54.9%) and Carica papaya (15.6%) was the most cultivated. Threatened (11.6%) and protected (6.9%) species are also present in home-gardens, mostly due to their unavailability in natural areas. This study concludes that the practice of cultivating medicinal plant species in home-gardens is a positive development that in the long term will sustain both species and accompanying indigenous knowledge, as well as preserve the cultural identity of the Bapedi.

  3. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters

    PubMed Central

    Martínez-Rodríguez, Julia del C.; la Mora-Amutio, Marcela De; Plascencia-Correa, Luis A.; Audelo-Regalado, Esmeralda; Guardado, Francisco R.; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J.; Escalante, Adelfo; Beltrán-García, Miguel J.; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. ‘Azul’ is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost. PMID:25763038

  4. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters.

    PubMed

    Martínez-Rodríguez, Julia del C; De la Mora-Amutio, Marcela; Plascencia-Correa, Luis A; Audelo-Regalado, Esmeralda; Guardado, Francisco R; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J; Escalante, Adelfo; Beltrán-García, Miguel J; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.

  5. Effects of indoor and outdoor cultivation conditions on (137) Cs concentrations in cultivated mushrooms produced after the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Tagami, Keiko; Uchida, Shigeo; Ishii, Nobuyoshi

    2017-01-01

    Radiocesium ((134) Cs and (137) Cs) in mushrooms has been a matter of public concern after the accident at Fukushima Daiichi Nuclear Power Plant. To minimize the internal dose by ingestion of cultivated mushrooms, the Japanese government set a guideline level with respect to the radiocesium concentration in bed-logs and mushroom beds; however, the effects of indoor and outdoor cultivation methods on radiocesium concentrations in cultivated mushrooms were not clear. The effects of indoor and outdoor cultivation on the radiocesium concentrations in mushroom were examined using published food monitoring data. (137) Cs concentration data in Lentinula edodes from the Aizu area in Fukushima Prefecture and seven prefectures outside Fukushima were used for the analysis. No statistically significant (137) Cs concentration differences were found between these two cultivation methods. Using detected (137) Cs data in shiitake, the geometric means from each prefecture were less than one-quarter of the standard limit (100 Bq kg(-1) ) for total radiocesium under both cultivation conditions. It was suspected that re-suspended radiocesium might have been taken up by mushrooms or that radiocesium might have been absorbed into the mushrooms from the soil in the outdoor cultures. However, neither effect was significant for cultivated mushrooms in the areas examined. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Assessing the regional impacts of increased energy maize cultivation on farmland birds.

    PubMed

    Brandt, Karoline; Glemnitz, Michael

    2014-02-01

    The increasing cultivation of energy crops in Germany substantially affects the habitat function of agricultural landscapes. Precise ex ante evaluations regarding the impacts of this cultivation on farmland bird populations are rare. The objective of this paper was to implement a methodology to assess the regional impacts of increasing energy maize cultivation on the habitat quality of agricultural lands for farmland birds. We selected five farmland bird indicator species with varying habitat demands. Using a crop suitability modelling approach, we analysed the availability of potential habitat areas according to different land use scenarios for a real landscape in Northeast Germany. The model was based on crop architecture, cultivation period, and landscape preconditions. Our results showed that the habitat suitability of different crops varied between bird species, and scenario calculations revealed an increase and a decrease in the size of the potential breeding and feeding habitats, respectively. The effects observed in scenario 1 (increased energy maize by 15%) were not reproduced in all cases in scenario 2 (increased energy maize by 30%). Spatial aggregation of energy maize resulted in a negative effect for some species. Changes in the composition of the farmland bird communities, the negative effects on farmland bird species limited in distribution and spread and the relevance of the type of agricultural land use being replaced by energy crops are also discussed. In conclusion, we suggest a trade-off between biodiversity and energy targets by identifying biodiversity-friendly energy cropping systems.

  7. Naturalization of plant populations: the role of cultivation and population size and density.

    PubMed

    Minton, Mark S; Mack, Richard N

    2010-10-01

    Field experimentation is required to assess the effects of environmental stochasticity on small immigrant plant populations-a widely understood but largely unexplored aspect of predicting any species' likelihood of naturalization and potential invasion. Cultivation can mitigate this stochasticity, although the outcome for a population under cultivation nevertheless varies enormously from extinction to persistence. Using factorial experiments, we investigated the effects of population size, density, and cultivation (irrigation) on the fate of founder populations for four alien species with different life history characteristics (Echinochloa frumentacea, Fagopyrum esculentum, Helianthus annuus, and Trifolium incarnatum) in eastern Washington, USA. The fate of founder populations was highly variable within and among the 3 years of experimentation and illustrates the often precarious environment encountered by plant immigrants. Larger founder populations produced more seeds (P < 0.001); the role of founder population size, however, differed among years. Irrigation resulted in higher percent survival (P < 0.001) and correspondingly larger net reproductive rate (R(0); P < 0.001). But the minimum level of irrigation for establishment, R(0) > 1, differed among years and species. Sowing density did not affect the likelihood of establishment for any species. Our results underscore the importance of environmental stochasticity in determining the fate of founder populations and the potential of cultivation and large population size in countering the long odds against naturalization. Any implementation of often proposed post-immigration field trials to assess the risk of an alien species becoming naturalized, a requisite step toward invasion, will need to assess different sizes of founder populations and the extent and character of cultivation (intentional or unintentional) that the immigrants might receive.

  8. Increase of a BLSS closure using mineralized human waste in plant cultivation on a neutral substrate

    NASA Astrophysics Data System (ADS)

    Gros, Jean-Bernard; Ushakova, Sofya; Tikhomirov, Alexander A.; Kudenko, Yurii; Lasseur, Christophe; Shikhov, V.; Anischenko, O.

    The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plants cultivation in a Biological Life Support System. The plants which are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitamin variety, were taken as the investigation objects. The plants were grown by hydroponics method on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During the plants growth a definite amount of human mineralized waste was added daily in the nutrient solution. The nutrient solution was not changed during the entire vegetation period. Estimation of the plant needs in macro elements was based on a total biological productivity equal to 0.04 kg.day--1 .m-2 . As the plant requirements in potassium exceeded the potassium content in human waste, water extract of wheat straw containing the required potassium amount was added to the nutrient solution. Knop's solution was used in the control experiments. The experiment and control plants did not show significant differences in their photosynthetic apparatus state and productivity. A small decrease in total productivity of the experimental plants was observed which can result in some reduction of ˆ2 production in a BLSS. Most I probably it is due to the reduced nitrogen use. Therefore in a real BLSS after the mineralization of human feces and urine, it will be efficient to implement a more complete oxidation of nitrogencontaining compounds system, including nitrification. In this case the plants, prospective representatives of the BLSS photosynthesizing unit, could be cultivated on the solutions mainly based on human mineralized waste.

  9. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media.

    PubMed

    Eevers, N; Gielen, M; Sánchez-López, A; Jaspers, S; White, J C; Vangronsveld, J; Weyens, N

    2015-07-01

    Many endophytes have beneficial effects on plants and can be exploited in biotechnological applications. Studies hypothesize that only 0.001-1% of all plant-associated bacteria are cultivable. Moreover, even after successful isolations, many endophytic bacteria often show reduced regrowth capacity. This research aimed to optimize isolation processes and culturing these bacteria afterwards. We compared several minimal and complex media in a screening. Beside the media themselves, two gelling agents and adding plant extract to media were investigated to enhance the number and diversity of endophytes as well as the growth capacity when regrown after isolation. In this work, 869 medium delivered the highest numbers of cultivable bacteria, as well as the highest diversity. When comparing gelling agents, no differences were observed in the numbers of bacteria. Adding plant extract to the media lead to a slight increase in diversity. However, when adding plant extract to improve the regrowth capacity, sharp increases of viable bacteria occurred in both rich and minimal media.

  10. Influence of shifting cultivation practices on soil-plant-beetle interactions.

    PubMed

    Ibrahim, Kalibulla Syed; Momin, Marcy D; Lalrotluanga, R; Rosangliana, David; Ghatak, Souvik; Zothansanga, R; Kumar, Nachimuthu Senthil; Gurusubramanian, Guruswami

    2016-08-01

    . The present study revealed the fact that shifting cultivation practice significantly affects the beetle species in terms of biodiversity pattern as well as evolutionary features. Spatiotemporal assessment of soil-plant-beetle interactions in shifting cultivation system and their influence in land degradation and ecology will be helpful in making biodiversity conservation decisions in the near future.

  11. Hormone and microorganism treatments in the cultivation of saffron (Crocus sativus L.) plants.

    PubMed

    Aytekin, Alper; Acikgoz, Aynur Ozkul

    2008-05-13

    The difficult cultivation of the saffron plant (Crocus Sativus L.) make the spice of the same name made from its dried stigmas very valuable. It is estimated that some 75,000 blossoms or 225,000 hand-picked stigmas are required to make a single pound of saffron, which explains why it is the world's most expensive spice. The aim of this study was to identify ways of increasing the fertility and production of saffron. For this purpose, the treatment of saffron bulbs with a synthetic growth hormone--a mixture of Polystimulins A6 and K--and two different microorganism based materials--biohumus or vermicompost and Effective Microorganisms (EM)--in four different ways (hormone alone, biohumus alone, EM alone and EM+biohumus) was investigated to determine whether these treatments have any statistically meaningful effects on corms and stigmas. It has been shown that EM + biohumus was the most effective choice for improved saffron cultivation.

  12. Increased BLSS closure using mineralized human waste in plant cultivation on a neutral substrate

    NASA Astrophysics Data System (ADS)

    Ushakova, S.; Tikhomirov, A.; Shikhov, V.; Kudenko, Yu.; Anischenko, O.; Gros, J.-B.; Lasseur, Ch.

    2009-10-01

    The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plant cultivation in a biological life support system (BLSS). Plants that are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitaminny variety, were used. The plants were grown hydroponically on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During plant growth, a determined amount of human mineralized waste was added daily to the nutrient solution. The nutrient solution remained unchanged throughout the vegetation period. Estimated plant requirements for macro-elements were based on a total biological productivity of 0.04 kg day -1 m -2. As the plant requirements for potassium exceeded the potassium content of human waste, a water extract of wheat straw containing the required amount of potassium was added to the nutrient solution. The Knop's solution was used in the control experiments. The experimental and control plants showed no significant differences in state or productivity of their photosynthetic apparatus. A small decrease in total productivity of the experimental plants was observed, which might result in some reduction of О 2 production in a BLSS.

  13. Non-cultivated plants present a season-long route of pesticide exposure for honey bees

    PubMed Central

    Long, Elizabeth Y.; Krupke, Christian H.

    2016-01-01

    Recent efforts to evaluate the contribution of neonicotinoid insecticides to worldwide pollinator declines have focused on honey bees and the chronic levels of exposure experienced when foraging on crops grown from neonicotinoid-treated seeds. However, few studies address non-crop plants as a potential route of pollinator exposure to neonicotinoid and other insecticides. Here we show that pollen collected by honey bee foragers in maize- and soybean-dominated landscapes is contaminated throughout the growing season with multiple agricultural pesticides, including the neonicotinoids used as seed treatments. Notably, however, the highest levels of contamination in pollen are pyrethroid insecticides targeting mosquitoes and other nuisance pests. Furthermore, pollen from crop plants represents only a tiny fraction of the total diversity of pollen resources used by honey bees in these landscapes, with the principle sources of pollen originating from non-cultivated plants. These findings provide fundamental information about the foraging habits of honey bees in these landscapes. PMID:27240870

  14. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America

    PubMed Central

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2015-01-01

    Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted. PMID:25717322

  15. Studies on cultivated ephedra plants in inner mongolia autonomous region and ningxia hui autonomous region.

    PubMed

    Kakiuchi, Nobuko; Nakajima, Ikumi; Kurita, Yukimasa; Long, Changfeng; Cai, Shaoqing; Mikage, Masayuki

    2006-04-01

    Progression of the desertification in northern China has been causing damage to wild Ephedra plants on which we depend for most of supply of the traditional herbal medicine, "Ma huang." The Chinese government encourages the cultivation of Ephedra plants, and Ephedra fields have been reclaimed in the original Ephedra habitats in recent years. We surveyed 7 Ephedra fields that have been recently developed in the Inner Mongolia Autonomous Region and Ningxia Hui Autonomous Region to collect information on Ephedra plant cultivation, especially pertaining to crop species. Specimens taken from those Ephedra fields were genetically and morphologically analyzed, and their ephedrine alkaloid content was examined. DNA analyses of Ephedra specimens, including DNA sequencing of ITS (internal transcribing sequence of nuclear ribosomal DNA) and trn L/F (intron of trnL and intergenic spacer between the trnL and trnF of chloroplast DNA) region and species-specific amplification of trn L/F were conducted to identify Ephedra species. Based on the results of DNA sequencing and morphological determination, the crops grown in 6 fields ware identified as Ephedra sinica, while co-planting of E. sinica and E. intermedia was found in one field where a higher appearance rate of plants with varied morphology from wild Ephedra plants was observed. Furthermore, direct sequencing of the PCR product of the trn L/F region of some specimens from the field and their species-specific PCR showed ambivalent result. Cloning and sequencing of the PCR product of the trn L/F region of those specimens DNA suggested their heteroplasmy, containing both E. sinica- and E. intermedia-type chloroplasts. On the other hand, the profile of the ephedrine alkaloid content was clearly correlated with the result of direct sequencing of the trn L/F region; the specimens showing the E. sinica-type sequence contained more ephedrine than pseudoephedrine, and the specimens of the E. intermedia-type more pseudoephedrine.

  16. Green bean biofortification for Si through soilless cultivation: plant response and Si bioaccessibility in pods.

    PubMed

    Montesano, Francesco Fabiano; D'Imperio, Massimiliano; Parente, Angelo; Cardinali, Angela; Renna, Massimiliano; Serio, Francesco

    2016-08-17

    Food plants biofortification for micronutrients is a tool for the nutritional value improvement of food. Soilless cultivation systems, with the optimal control of plant nutrition, represent a potential effective technique to increase the beneficial element content in plant tissues. Silicon (Si), which proper intake is recently recommended for its beneficial effects on bone health, presents good absorption in intestinal tract from green bean, a high-value vegetable crop. In this study we aimed to obtain Si biofortified green bean pods by using a Si-enriched nutrient solution in soilless system conditions, and to assess the influence of boiling and steaming cooking methods on Si content, color parameters and Si bioaccessibility (by using an in vitro digestion process) of pods. The Si concentration of pods was almost tripled as a result of the biofortification process, while the overall crop performance was not negatively influenced. The Si content of biofortified pods was higher than unbiofortified also after cooking, despite the cooking method used. Silicon bioaccessibility in cooked pods was more than tripled as a result of biofortification, while the process did not affect the visual quality of the product. Our results demonstrated that soilless cultivation can be successfully used for green bean Si biofortification.

  17. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species.

    PubMed

    Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; North, Gretchen; Visel, Axel; Partida-Martinez, Laila P; Tringe, Susannah G

    2016-01-01

    Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions.

  18. Green bean biofortification for Si through soilless cultivation: plant response and Si bioaccessibility in pods

    PubMed Central

    Montesano, Francesco Fabiano; D’Imperio, Massimiliano; Parente, Angelo; Cardinali, Angela; Renna, Massimiliano; Serio, Francesco

    2016-01-01

    Food plants biofortification for micronutrients is a tool for the nutritional value improvement of food. Soilless cultivation systems, with the optimal control of plant nutrition, represent a potential effective technique to increase the beneficial element content in plant tissues. Silicon (Si), which proper intake is recently recommended for its beneficial effects on bone health, presents good absorption in intestinal tract from green bean, a high-value vegetable crop. In this study we aimed to obtain Si biofortified green bean pods by using a Si-enriched nutrient solution in soilless system conditions, and to assess the influence of boiling and steaming cooking methods on Si content, color parameters and Si bioaccessibility (by using an in vitro digestion process) of pods. The Si concentration of pods was almost tripled as a result of the biofortification process, while the overall crop performance was not negatively influenced. The Si content of biofortified pods was higher than unbiofortified also after cooking, despite the cooking method used. Silicon bioaccessibility in cooked pods was more than tripled as a result of biofortification, while the process did not affect the visual quality of the product. Our results demonstrated that soilless cultivation can be successfully used for green bean Si biofortification. PMID:27530434

  19. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species

    DOE PAGES

    Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali; ...

    2015-10-15

    Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves,more » through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions.« less

  20. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species

    SciTech Connect

    Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; North, Gretchen; Visel, Axel; Partida-Martinez, Laila P.; Tringe, Susannah G.

    2015-10-15

    Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions.

  1. Plant Succession at the Edges of Two Abandoned Cultivated Fields on the Arid Lands Ecology Reserve

    SciTech Connect

    Simmons, Sally A.; Rickard, William H.

    2002-12-01

    How vegetation recovers from disturbances is an important question for land managers. We examined 500 m2 plots to determine the progress made by native herbaceous plant species in colonizing the edges of abandoned cultivated fields at different elevations and microclimates, but with similar soils in a big sagebrush/bluebunch wheatgrass steppe. Alien species, especially cheatgrass and cereal rye, were the major competitors to the natives. The native species with best potential for restoring steppe habitats were sulphur lupine, hawksbeard, bottlebrush squirreltail, needle-and-thread grass, Sandberg's bluegrass, and several lomatiums.

  2. Energy biomass characteristics of chosen plants

    NASA Astrophysics Data System (ADS)

    Szyszlak-Bargłowicz, J.; Zając, G.; Piekarski, W.

    2012-04-01

    The chosen energy plants species: willow, mallow and Miscanthus are presented. Result of analysis of combustion heat and heating value of these species biomass indicate on possibility of their utilization as fuel for combustion and energy and heat production.

  3. Specific detection of cultivable Helicobacter pylori cells from wastewater treatment plants.

    PubMed

    Moreno, Yolanda; Ferrús, M Antonía

    2012-10-01

    Helicobacter pylori is present in surface water and wastewater, and biofilms in drinking water systems have been reported as possible reservoirs of H. pylori. However, its ability to survive in an infectious state in the environment is hindered because it rapidly loses its cultivability. The aim of this study was to determine the presence of cultivable and therefore viable H. pylori in wastewater treatment plants to understand the role of wastewater in the pathogen's transmission. A modified filter technique was used to obtain a positive H. pylori culture, and specific detection of this pathogen was achieved with FISH and PCR techniques. A total of six positive H. pylori cultures were obtained from the water samples, and molecular techniques positively identified H. pylori in 21 culture-negative samples. The combination of a culturing procedure after sample filtration followed by the application of a molecular method, such as PCR or FISH, provides a specific tool for the detection, identification, and direct visualization of cultivable and therefore viable H. pylori cells from complex mixed communities such as water samples. © 2012 Blackwell Publishing Ltd.

  4. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    PubMed

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  5. Impact of planting date on sunflower beetle (Coleoptera: Chrysomelidae) infestation, damage, and parasitism in cultivated sunflower.

    PubMed

    Charlet, Laurence D; Knodel, Janet J

    2003-06-01

    The sunflower beetle, Zygogramma exclamationis (F.), is the major defoliating pest of sunflower (Helianthus annuus L.). Planting date was evaluated as a potential management tool in a variety of production regions throughout North Dakota from 1997 to 1999, for its impact on sunflower beetle population density of both adults and larvae, defoliation caused by both feeding stages, seed yield, oil content, and larval parasitism in cultivated sunflower. Results from this 3-yr study revealed that sunflower beetle adult and larval populations decreased as planting date was delayed. Delayed planting also reduced defoliation from adult and larval feeding, which is consistent with the lower numbers of the beetles present in the later seeded plots. Even a planting delay of only 1 wk was sufficient to significantly reduce feeding damage to the sunflower plant. Yield reduction caused by leaf destruction of the sunflower beetle adults and larvae was clearly evident in the first year of the study. The other component of sunflower yield, oil content, did not appear to be influenced by beetle feeding. The tachinid parasitoid, Myiopharus macellus (Rheinhard), appeared to be a significant mortality factor of sunflower beetle larvae at most locations regardless of the dates of planting, and was able to attack and parasitize the beetle at various larval densities. The results of this investigation showed the potential of delayed planting date as an effective integrated pest management tactic to reduce sunflower beetle adults, larvae, and their resulting defoliation. In addition, altering planting dates was compatible with biological control of the beetle, because delaying the planting date did not reduce the effectiveness of the parasitic fly, M. macellus, which attacks the sunflower beetle larvae.

  6. Use of cultivated plants and non-plant remedies for human and animal home-medication in Liubań district, Belarus.

    PubMed

    Sõukand, Renata; Hrynevich, Yanina; Prakofjewa, Julia; Valodzina, Tatsiana; Vasilyeva, Iryna; Paciupa, Jury; Shrubok, Aliaksandra; Hlushko, Aliaksei; Knureva, Yana; Litvinava, Yulia; Vyskvarka, Siarhei; Silivonchyk, Hanna; Paulava, Alena; Kõiva, Mare; Kalle, Raivo

    2017-10-03

    To use any domestic remedy, specific knowledge and skills are required. Simple logic dictates that the use of wild plants in the context of limited interaction with nature requires prior identification, while in the case of non-plant remedies and cultivated plants this step can be omitted. This paper aims to document the current and past uses of non-plant remedies and cultivated plants in the study region for human/animal medication; to analyze the human medicinal and veterinary use areas in the context of the remedy groups; to qualitatively compare the results with relevant historical publications; and to compare the intensity and purpose of use between the remedy groups. During field studies 134 semi-structured interviews were conducted with locals from 11 villages in the Liubań district of Belarus. Currently used home-remedies as well as those used in the past were documented by employing the folk history method. The subject was approached through health-related uses, not by way of remedies. Interview records were digitalized and structured in Detailed Use Records in order to ascertain local perceptions. An Informant Consensus Factor (FIC) was calculated for remedy groups as well as for different use categories. In the human medication area the use of nearby remedies was neither very diverse nor numerous: 266 DUR for 45 taxa belonging to 27 families were recorded for cultivated plants along with 188 DUR for 58 different non-plant remedies. The FIC values for both remedy groups were lower than for wild plants. In the ethnoveterinary medicine use area there were 48 DUR referring to the use of 14 cultivated plant taxa from 12 families and 72 DUR referring to the use of 31 non-plant remedies. The FIC value for the whole veterinary use area of cultivated plants was relatively low, yet similar to the FIC of wild plants. Differences between remedy groups were pronounced, indicating that in domestic human medicine cultivated plants and non-plant remedies are either

  7. High-power light-emitting diode based facility for plant cultivation

    NASA Astrophysics Data System (ADS)

    Tamulaitis, G.; Duchovskis, P.; Bliznikas, Z.; Breive, K.; Ulinskaite, R.; Brazaityte, A.; Novickovas, A.; Zukauskas, A.

    2005-09-01

    Based on perspectives of the development of semiconductor materials systems for high-power light-emitting diodes (LEDs), an illumination facility for greenhouse plant cultivation was designed with the dominating 640 nm photosynthetically active component delivered by AlGaInP LEDs and supplementary components from AlGaN (photothropic action, 455 nm) and AlGaAs (photosynthetic 660 nm and photomorphogenetic 735 nm) LEDs. Photosynthesis intensity, photosynthetic productivity and growth morphology as well as chlorophyll and phytohormone concentrations were investigated in radish and lettuce grown in phytotron chambers under the LED-based illuminators and under high-pressure sodium (HPS) lamps with an equivalent photon flux density. Advantages of the high-power LED-based illuminators over conventional HPS lamps, applicability of AlGaInP LEDs for photosynthesis and control of plant growth by circadian manipulation of a relatively weak far-red component were demonstrated.

  8. Tolerance of cultivated and wild plants of different taxonomy to soil contamination by kerosene.

    PubMed

    Sharonova, Natalia; Breus, Irina

    2012-05-01

    In laboratory experiments on leached chernozem contaminated by kerosene (1-15 wt.%), germination of 50 plants from 21 families (cultivated and wild, annual and perennial, mono- and dicotyledonous) as affected by kerosene type and concentration and plant features was determined. Tested plants formed three groups: more tolerant, less tolerant, and intolerant, in which relative germination was more than 70%, 30-70% and less than 30%, respectively. As parameters of soil phytotoxicity, effective kerosene concentrations (EC) causing germination depression of 10%, 25% and 50% were determined. EC values depended on the plant species and varied in a wide range of kerosene concentrations: 0.02-7.3% (EC(10)), 0.05-8.1% (EC(25)), and 0.2-12.7% (EC(50)). The reported data on germination in soils contaminated by oil and petrochemicals were generalized. The comparison showed that at very high contamination levels (10 and 15%) kerosene was 1.3-1.6 times more phytotoxic than diesel fuel and 1.3-1.4 times more toxic than crude oil, and at low (1 and 2%) and medium (3 and 5%) levels the toxicity of these contaminants was close differing by a factor of 1.1-1.2. Tolerance of plants to soil contamination had a species-specific nature and, on the average, decreased in the following range of families: Fabaceae (germination decrease of 10-60% as compared to an uncontaminated control)>Brassicaceae (5-70%)>Asteraceae (25-95%)>Poaceae (10-100%). The monocotyledonous species tested were characterized as medium- and low-stable to contamination, whereas representatives of dicotyledonous plants were met in all groups of tolerance. Tested wild plants, contrary to reference data on oil toxicity, were more sensitive to kerosene than cultivated. No correlation was observed between degree of plant tolerance to kerosene and mass of seeds. The evidence indicates factors as structure and properties of testa, structure of germ, type of storage compounds, and type of seed germination (underground or

  9. Selection of root-zone media for higher plant cultivation in space.

    PubMed

    Guo, Shuang-sheng; Ai, Wei-dang; Zhao, Cheng-jian; Han, Li-jun; Wang, Jian-xiao

    2004-04-01

    To investigate the cultivating effects of several mineral matters used as root-zone media for higher plant growth in space. Four kinds of artificial and natural mineral matters were used as plant root-zone media based on lots of investigation and analysis. Nutrient liquid was delivered into the media by a long capillary material, and roots of plants obtained nutrition and water from the media. The related parameters such as plant height and photosynthetic efficiency were measured and analyzed. The growing effect in a mixture of coarse and fine ceramic particles with equal quantity proportion was the best, that in fine ceramic particles was the second best, that in clinoptilolite particles was the third and that in diorite particles was the last. The mixture of coarse and fine ceramic particles with equal quantity possesses not only fine capillary action, but also good aerating ability, and therefore is capable of being utilized as an effective root-zone media for higher plants intended to be grown in space.

  10. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants

    PubMed Central

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant’s growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species. PMID:26974817

  11. Persistence of oxyfluorfen in soil, runoff water, sediment and plants of a sunflower cultivation.

    PubMed

    Mantzos, N; Karakitsou, A; Hela, D; Patakioutas, G; Leneti, E; Konstantinou, I

    2014-02-15

    A field dissipation and transport study of oxyfluorfen in a sunflower cultivation under Mediterranean conditions have been conducted in silty clay plots (cultivated and uncultivated) with two surface slopes (1% and 5%). The soil dissipation and transport of oxyfluorfen in runoff water and sediment, as well as the uptake by sunflower plants, were investigated over a period of 191 days. Among different kinetic models assayed, soil dissipation rate of oxyfluorfen was better described by first-order kinetics. The average half-life was 45 and 45.5 days in cultivated plots with soil slopes 5% and 1% respectively, and 50.9 and 52.9 days in uncultivated plots with soil slopes 5% and 1%. The herbicide was detected below the 10 cm soil layer 45 days after application (DAA). Limited amounts of oxyfluorfen were moved with runoff water and the cumulative losses from tilled and untilled plots with slope 5% were estimated at 0.007% and 0.005% of the initial applied active ingredient, while for the plots with slope of 1%, the respective values were 0.002% and 0.001%. The maximum concentration of oxyfluorfen in sediment ranged from 1.46 μg g(-1) in cultivated plot with soil slope 1% to 2.33 μg g(-1) in uncultivated plot with soil slope 5%. The cumulative losses from tilled and untilled plots with slope 5% were estimated at 0.217% and 0.170% while for the plots with slope of 1%, the respective values were 0.055% and 0.025%. Oxyfluorfen was detected in sunflower plants until the day of harvest; maximum concentrations in stems and leaves (0.042 μg g(-1)) were observed 33 DAA and in roots (0.025 μg g(-1)) 36 DAA. In conclusion, oxyfluorfen hardly moves into silty clay soil and exhibited low run-off potential so it represents a low risk herbicide for the contamination of ground and adjacent water resources.

  12. Wastewater treatment as an energy production plant

    NASA Astrophysics Data System (ADS)

    Samela, Daniel A.

    The objective of this research was to investigate the potential for net energy production at a Wastewater Treatment Plant (WWTP). Historically, wastewater treatment plants have been designed with the emphasis on process reliability and redundancy; efficient utilization of energy has not received equal consideration. With growing demands for energy and increased budgetary pressures in funding wastewater treatment plant costs, methods of reducing energy consumption and operating costs were explored in a new and novel direction pointed towards energy production rather than energy consumption. To estimate the potential for net energy production, a quantitative analysis was performed using a mathematical model which integrates the various unit operations to evaluate the overall plant energy balance. Secondary treatment performance analysis is included to ensure that the energy evaluation is consistent with plant treatment needs. Secondary treatment performance was conducted for activated sludge, trickling filters and RBCs. The equations for the mathematical model were developed independently for each unit operation by writing mass balance equations around the process units. The process units evaluated included those for preliminary treatment, primary treatment, secondary treatment, disinfection, and sludge treatment. Based on an analysis of both energy reduction and energy recovery methods, it was shown that net energy production at a secondary WWTP is possible utilizing technologies available today. Such technologies include those utilized for plant operations, as well as for energy recovery. The operation of fuel cells using digester gas represents one of the most significant new opportunities for energy recovery at wastewater facilities. The analysis predicts that a trickling filter WWTP utilizing commercial phosphoric acid fuel cells to recover energy from digester gas can provide for facility energy needs and have both electrical and thermal energy available for

  13. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems

    NASA Astrophysics Data System (ADS)

    Fagúndez, Jaime; Olea, Pedro P.; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  14. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems.

    PubMed

    Fagúndez, Jaime; Olea, Pedro P; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  15. Utilization of industrial dairy waste as microalgae cultivation medium : a potential study for sustainable energy resources

    NASA Astrophysics Data System (ADS)

    Nurmayani, S.; Sugiarti, Y.; Putra, R. H.

    2016-04-01

    Microalgae is one of biodiesel resources and call as third generation biofuel. Biodiesel is one alternative energy that being developed. So study about resource of biodiesel need a development, for the example is development the basic material such as microalgae. In this paper we explain the potential use of dairy waste from industry as a cultivation medium of microalgae for biodiesel production. Dairy waste from dairy industry contains 34.98% protein, 4.42% lactose, 9.77% fiber, 11.04% fat, 2.33% calcium, 1.05% phosfor, and 0.4 % magnesium, meaning that the dairy waste from dairy industry has a relatively high nutrient content and complete from a source of carbon, nitrogen and phosphorus as macro nutrients. The method in this paper is literature review to resulting a new conclusion about the potency of waste water from dairy industry as microalgae cultivation medium. Based on the study, the dairy waste from dairy industry has potency to be used as cultivation medium of Botryococcus braunii in the production of biodiesel, replacing the conventional cultivation medium.

  16. Untapped Endophytic Colonization and Plant Growth-Promoting Potential of the Genus Novosphingobium to Optimize Rice Cultivation

    PubMed Central

    Rangjaroen, Chakrapong; Sungthong, Rungroch; Rerkasem, Benjavan; Teaumroong, Neung; Noisangiam, Rujirek; Lumyong, Saisamorn

    2017-01-01

    With the aim of searching for potent diazotrophic bacteria that are free of public health concerns and optimize rice cultivation, the endophytic colonization and plant growth-promoting activities of some endophytic diazotrophic bacteria isolated from rice were evaluated. Among these bacteria, the emerging diazotrophic strains of the genus Novosphingobium effectively associated with rice plant interiors and consequently promoted the growth of rice, even with the lack of a nitrogen source. These results suggest that diazotrophic Novosphingobium is an alternative microbial resource for further development as a safe biological enhancer in the optimization of organic rice cultivation. PMID:28228608

  17. COMPARATIVE STUDIES OF HERPETOMONADS AND LEISHMANIAS : I. CULTIVATION OF HERPETOMONADS FROM INSECTS AND PLANTS.

    PubMed

    Noguchi, H; Tilden, E B

    1926-08-31

    Nine strains of herpetomonads have been isolated in pure culture from eight varieties of insects, and three strains from two species of plants. Four of the cultures were derived from latex-feeding insects (Oncopeltus fasciatus, Oncopeltus sp. ?, Lygaeus kalmii) and three from latex plants (Asclepias syriaca, Asclepias nivea), two from mosquitoes (Culex pipiens and Anopheles quadrimaculatus), one from the house fly (Musca domestica), and two from bluebottle flies. In addition impure cultures have been obtained from Oncopeltus cingulifer and from its plant host, Asclepias curassavica. The flagellates cultivated, all of which belong to the genus Herpetomonas, have been identified chiefly by their biological relationships, which will be described in detail in Part II of this report. The seven strains from latex-feeding insects and latex plants represent two distinct species, which have been designated H. oncopelti and H. lygaegorum. The two strains from mosquitoes proved to be the same organism and have been called Herpetomonas culicidarum. The culture obtained from Musca domestica contained larger individuals than those of any other strain, and the organism is morphologically distinct from either of the Calliphora strains. None of the fly flagellates cultivated could be identified with the. species H. muscae domesticae or H. calliphorae, and hence they have been given new names, Herpetomonas muscidarum, H. media, and H. parva. Blood agar plates were used for initial cultivation of the strains from insects and the semisolid leptospira medium for isolation of the plant flagellates. A number of the strains were purified by plating on acid blood agar, a procedure which reduces considerably the growth of bacterial contaminants. The Barber technique was utilized for isolation of the flagellates from flies, because of the very large number of bacteria found with them in these insects, and, in one or two instances, for the purification of impure cultures. Once they have been

  18. Ion exchange substrates for plant cultivation in extraterrestrial stations and space crafts

    NASA Astrophysics Data System (ADS)

    Soldatov, Vladimir

    2012-07-01

    Ion exchange substrates Biona were specially designed at the Belarus Academy of Sciences for plants cultivation in spacecrafts and extraterrestrial stations. The first versions of such substrates have been successfully used in several space experiments and in a long-term experiment in which three soviet test-spacemen spent a full year in hermetic cabin imitating a lunar station cabin (1067-1968). In this experiment the life support system included a section with about one ton of the ion exchange substrate, which was used to grow ten vegetations of different green cultures used in the food of the test persons. Due to failure of a number of Soviet space experiments, decay of the Soviet Union and the following economic crisis the research in this field carried out in Belarus were re-directed to the needs of usual agriculture, such as adaptation of cell cultures, growing seedlings, rootage of cuttings etc. At present ion exchange substrate Biona are produced in limited amounts at the experimental production plant of the Institute of Physical Organic Chemistry and used in a number of agricultural enterprises. New advanced substrates and technologies for their production have been developed during that time. In the presentation scientific principles of preparation and functioning of ion exchange substrates as well as results of their application for cultivation different plants are described. The ion exchange substrate is a mixture of cation and anion exchangers saturated in a certain proportions with all ions of macro and micro elements. These chemically bound ions are not released to water and become available for plants in exchange to their root metabolites. The substrates contain about 5% mass of nutrient elements far exceeding any other nutrient media for plants. They allow generating 3-5 kg of green biomass per kilogram of substrate without adding any fertilizers; they are sterile by the way of production and can be sterilized by usual methods; allow regeneration

  19. [A hydroponic cultivation system for rapid high-yield transient protein expression in Nicotiana plants under laboratory conditions].

    PubMed

    Mo, Qianzhen; Mai, Rongjia; Yang, Zhixiao; Chen, Minfang; Yang, Tiezhao; Lai, Huafang; Yang, Peiliang; Chen, Qiang; Zhou, Xiaohong

    2012-06-01

    To develop a hydroponic Nicotiana cultivation system for rapid and high-yield transient expression of recombinant proteins under laboratory conditions. To establish the hydroponic cultivation system, several parameters were examined to define the optimal conditions for the expression of recombinant proteins in plants. We used the green fluorescent protein (GFP) and the geminiviral plant transient expression vector as the model protein/expression vector. We examined the impact of Nicotiana species, the density and time of Agrobacterium infiltration, and the post-infiltration growth period on the accumulation of GFP. The expression levels of GFP in Nicotiana leaves were then examined by Western blotting and ELISA. Our data indicated that a hydroponic Nicotiana cultivation system with a light intensity of 9000 LX/layer, a light cycle of 16 h day/8 h night, a temperature regime of 28 degrees celsius; day/21 degrees celsius; night, and a relative humidity of 80% could support the optimal plant growth and protein expression. After agroinfiltration with pBYGFPDsRed.R/LBA4404, high levels of GFP expression were observed in both N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants cultured with this hydroponic cultivation system. An optimal GFP expression was achieved in both Nicotiana species leaves 4 days after infiltration by Agrobacterium with an OD(600) of 0.8. At a given time point, the average biomass of N. tobaccum (cv. Yuyan No.5) was significantly higher than that of N. benthamiana. The leaves from 6-week-old N. benthamiana plants and 5-week-old N. tobaccum (cv. Yuyan No.5) plants could be the optimal material for agroinfiltration. We have established a hydroponic cultivation system that allows robust growth of N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants and the optimal GFP expression in the artificial climate box.

  20. The content of macro- and microelements and the phosphatase activity of soils under a varied plant cultivation technology

    NASA Astrophysics Data System (ADS)

    Bartkowiak, A.; Lemanowicz, J.; Kobierski, M.

    2015-12-01

    The paper presents the results of the analyses of selected physicochemical properties and the activity of alkaline and acid phosphatase in the soils which differed in terms of plant cultivation technology. Profile sI represented arable land in the crop rotation with cereals dominating (medium intensive technology), without irrigation, while profile sII—represented arable land with vegetable crops cultivation (intensive technology), intensively fertilized and irrigated. The content of available phosphorus in the two soil profiles investigated ranged from 6.6 to 69.1 mg/kg. The highest contents of phosphorus available to plants were reported in the plough horizon of both soils, while the abundance of potassium and magnesium was highest in the illuvial horizon of both soils. The soil profiles investigated showed a significant variation in terms of the cultivation technologies applied. The contents of plant-available Cu and Zn in soil were low and they resulted in the inhibition of neither alkaline nor acid phosphatase. The intensive vegetable crops cultivation technology decreased the content of organic matter and increased the content of the nutrients in soil. Using the Ward method, it was found that relatively similar physicochemical and chemical properties were reported for the genetic horizons of both soil profiles, especially Ap horizon of the soil representing arable land with intensive cultivation of vegetable crops.

  1. Plant Profiles - Industrial Energy Management in Action

    SciTech Connect

    2001-02-01

    This 24-page brochure profiles industrial manufacturing firms who are achieving significant energy savings in their plants. The DOE Office of Industrial Technologies six plant-of-the-year nominees are featured, and an additional 10 projects from other companies are also highlighted. Information on OIT's awards and recognition process, and information on OIT and BestPractices is also included.

  2. Evaluation of hydrocarbon plants suitable for cultivation in Florida. [Euphorbia tirucalli, E. lathyris, and Asclepias curassavica

    SciTech Connect

    Dehgan, B.; Wang, S.C.

    1983-01-01

    Most of the hydrocarbon plants reported in the literature are not suitable for cultivation under Florida conditions. Preliminary results of field and greenhouse trials have indicated two species; Euphorbia tirucalli, which is suitable only for south Florida and Asclepias curassavica which has shown promise for the entire state. The hydrocarbon content of E. tirucalli increases with age of the plants (8.19-11.90%), whereas, that of A. curassavica is influenced positively by fertilization (3.62%) and negatively by supplemental irrigation (2.75%). A comparison between the results of field trials with A. curassavica in Florida and E. lathyris in California shows similar biomass yields under unirrigated conditions, despite 3.6 to 7.8 times greater nitrogen application for E. lathyris. Because of environmental conditions in Florida, E. lathyris is not capable of good growth. It is suggested that future research on hydrocarbon plants should concentrate on selection of individuals or species with vigorous, upright growth habits, low fertilizer-irrigation requirements and high hydrocarbon contents. 18 references.

  3. Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants.

    PubMed

    Peralta-Videa, Jose R; Hernandez-Viezcas, Jose A; Zhao, Lijuan; Diaz, Baltazar Corral; Ge, Yuan; Priester, John H; Holden, Patricia Ann; Gardea-Torresdey, Jorge L

    2014-07-01

    The aim of this study was to determine nutrient elements in soybean (Glycine max) plants cultivated in farm soil amended with nCeO2 at 0-1000 mg kg(-1) and nZnO at 0-500 mg kg(-1). Digested samples were analyzed by ICP-OES/MS. Compared to control, pods from nCeO2 at 1000 mg kg(-1) had significantly less Ca but more P and Cu, while pods from 100 mg kg(-1)nZnO had more Zn, Mn, and Cu. Plants treated with nZnO showed significant correlations among Zn, P, and S in pods with Zn in roots. Correlations among pod Zn/root Zn was r = 0.808 (p ≤ 0.01) and pod P/root P was r = 0.541 (p ≤ 0.05). The correlation among pod S/root S was r = -0.65 (p ≤ 0.01). While nCeO2 treatments exhibited significant correlations between pod Ca/root Ca (r = 0.645, p ≤ 0.05). The data suggest that nCeO2 and nZnO alter the nutritional value of soybean, which could affect the health of plants, humans, and animals. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Proteomic Analyses Provide Novel Insights into Plant Growth and Ginsenoside Biosynthesis in Forest Cultivated Panax ginseng (F. Ginseng)

    PubMed Central

    Ma, Rui; Sun, Liwei; Chen, Xuenan; Mei, Bing; Chang, Guijuan; Wang, Manying; Zhao, Daqing

    2016-01-01

    F. Ginseng (Panax ginseng) is planted in the forest to enhance the natural ginseng resources, which have an immense medicinal and economic value. The morphology of the cultivated plants becomes similar to that of wild growing ginseng (W. Ginseng) over the years. So far, there have been no studies highlighting the physiological or functional changes in F. Ginseng and its wild counterparts. In the present study, we used proteomic technologies (2DE and iTRAQ) coupled to mass spectrometry to compare W. Ginseng and F. Ginseng at various growth stages. Hierarchical cluster analysis based on protein abundance revealed that the protein expression profile of 25-year-old F. Ginseng was more like W. Ginseng than less 20-year-old F. Ginseng. We identified 192 differentially expressed protein spots in F. Ginseng. These protein spots increased with increase in growth years of F. Ginseng and were associated with proteins involved in energy metabolism, ginsenosides biosynthesis, and stress response. The mRNA, physiological, and metabolic analysis showed that the external morphology, protein expression profile, and ginsenoside synthesis ability of the F. Ginseng increased just like that of W. Ginseng with the increase in age. Our study represents the first characterization of the proteome of F. Ginseng during development and provides new insights into the metabolism and accumulation of ginsenosides. PMID:26858731

  5. Energy performance and greenhouse gas emissions of kelp cultivation for biogas and fertilizer recovery in Sweden.

    PubMed

    Pechsiri, Joseph S; Thomas, Jean-Baptiste E; Risén, Emma; Ribeiro, Mauricio S; Malmström, Maria E; Nylund, Göran M; Jansson, Anette; Welander, Ulrika; Pavia, Henrik; Gröndahl, Fredrik

    2016-12-15

    The cultivation of seaweed as a feedstock for third generation biofuels is gathering interest in Europe, however, many questions remain unanswered in practise, notably regarding scales of operation, energy returns on investment (EROI) and greenhouse gas (GHG) emissions, all of which are crucial to determine commercial viability. This study performed an energy and GHG emissions analysis, using EROI and GHG savings potential respectively, as indicators of commercial viability for two systems: the Swedish Seafarm project's seaweed cultivation (0.5ha), biogas and fertilizer biorefinery, and an estimation of the same system scaled up and adjusted to a cultivation of 10ha. Based on a conservative estimate of biogas yield, neither the 0.5ha case nor the up-scaled 10ha estimates met the (commercial viability) target EROI of 3, nor the European Union Renewable Energy Directive GHG savings target of 60% for biofuels, however the potential for commercial viability was substantially improved by scaling up operations: GHG emissions and energy demand, per unit of biogas, was almost halved by scaling operations up by a factor of twenty, thereby approaching the EROI and GHG savings targets set, under beneficial biogas production conditions. Further analysis identified processes whose optimisations would have a large impact on energy use and emissions (such as anaerobic digestion) as well as others embodying potential for further economies of scale (such as harvesting), both of which would be of interest for future developments of kelp to biogas and fertilizer biorefineries. Copyright © 2016. Published by Elsevier B.V.

  6. The Application of Advanced Cultivation Techniques in the Long Term Maintenance of Space Flight Plant Biological Systems

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.

    2003-01-01

    The development of the International Space Station (ISS) presents extensive opportunities for the implementation of long duration space life sciences studies. Continued attention has been placed in the development of plant growth chamber facilities capable of supporting the cultivation of plants in space flight microgravity conditions. The success of these facilities is largely dependent on their capacity to support the various growth requirements of test plant species. The cultivation requirements for higher plant species are generally complex, requiring specific levels of illumination, temperature, humidity, water, nutrients, and gas composition in order to achieve normal physiological growth and development. The supply of water, nutrients, and oxygen to the plant root system is a factor, which has proven to be particularly challenging in a microgravity space flight environment. The resolution of this issue is particularly important for the more intensive crop cultivation of plants envisaged in Nasa's advanced life support initiative. BioServe Space Technologies is a NASA, Research Partnership Center (RPC) at the University of Colorado, Boulder. BioServe has designed and operated various space flight plant habitat systems, and placed specific emphasis on the development and enhanced performance of subsystem components such as water and nutrient delivery, illumination, gas exchange and atmosphere control, temperature and humidity control. The further development and application of these subsystems to next generation habitats is of significant benefit and contribution towards the development of both the Space Plant biology and the Advanced Life Support Programs. The cooperative agreement between NASA Ames Research center and BioServe was established to support the further implementation of advanced cultivation techniques and protocols to plant habitat systems being coordinated at NASA Ames Research Center. Emphasis was placed on the implementation of passive

  7. The Application of Advanced Cultivation Techniques in the Long Term Maintenance of Space Flight Plant Biological Systems

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.

    2003-01-01

    The development of the International Space Station (ISS) presents extensive opportunities for the implementation of long duration space life sciences studies. Continued attention has been placed in the development of plant growth chamber facilities capable of supporting the cultivation of plants in space flight microgravity conditions. The success of these facilities is largely dependent on their capacity to support the various growth requirements of test plant species. The cultivation requirements for higher plant species are generally complex, requiring specific levels of illumination, temperature, humidity, water, nutrients, and gas composition in order to achieve normal physiological growth and development. The supply of water, nutrients, and oxygen to the plant root system is a factor, which has proven to be particularly challenging in a microgravity space flight environment. The resolution of this issue is particularly important for the more intensive crop cultivation of plants envisaged in Nasa's advanced life support initiative. BioServe Space Technologies is a NASA, Research Partnership Center (RPC) at the University of Colorado, Boulder. BioServe has designed and operated various space flight plant habitat systems, and placed specific emphasis on the development and enhanced performance of subsystem components such as water and nutrient delivery, illumination, gas exchange and atmosphere control, temperature and humidity control. The further development and application of these subsystems to next generation habitats is of significant benefit and contribution towards the development of both the Space Plant biology and the Advanced Life Support Programs. The cooperative agreement between NASA Ames Research center and BioServe was established to support the further implementation of advanced cultivation techniques and protocols to plant habitat systems being coordinated at NASA Ames Research Center. Emphasis was placed on the implementation of passive

  8. UPTAKE AND PHYTOTRANSFORMATION OF O,P'-DDT AND P,P'-DDT BY AXENICALLY CULTIVATED AQUATIC PLANTS

    EPA Science Inventory

    The uptake and phytotransformation of o,p'-DDT and p,p'-DDT were investigated in vitro using three axenically cultivated aquatic plants: parrot feather (Mariophyllum aquaticum), duckweed (Spirodela oligorrhiza), and elodea (Elodea canadensis). The decay profile of DDT from the aq...

  9. UPTAKE AND PHYTOTRANSFORMATION OF O,P'-DDT AND P,P'-DDT BY AXENICALLY CULTIVATED AQUATIC PLANTS

    EPA Science Inventory

    The uptake and phytotransformation of o,p'-DDT and p,p'-DDT were investigated in vitro using three axenically cultivated aquatic plants: parrot feather (Mariophyllum aquaticum), duckweed (Spirodela oligorrhiza), and elodea (Elodea canadensis). The decay profile of DDT from the aq...

  10. Identification of the terebrantian thrips (Insecta, Thysanoptera) associated with cultivated plants in Java, Indonesia

    PubMed Central

    Sartiami, Dewi; Mound, Laurence A.

    2013-01-01

    Abstract An illustrated identification key is provided to 49 species of Thysanoptera, Terebrantia that have been found in association with cultivated plants in Java. This is the first published identification system to this group of insects from Indonesia, and includes 15 species not previously recorded from Indonesia, and a further three species not previously recorded from Java. A table is provided indicating the plants from which thrips were taken. PMID:23794915

  11. Identification of the terebrantian thrips (Insecta, Thysanoptera) associated with cultivated plants in Java, Indonesia.

    PubMed

    Sartiami, Dewi; Mound, Laurence A

    2013-01-01

    An illustrated identification key is provided to 49 species of Thysanoptera, Terebrantia that have been found in association with cultivated plants in Java. This is the first published identification system to this group of insects from Indonesia, and includes 15 species not previously recorded from Indonesia, and a further three species not previously recorded from Java. A table is provided indicating the plants from which thrips were taken.

  12. Comparing anthracene and fluorene degradation in anthracene and fluorene-contaminated soil by single and mixed plant cultivation.

    PubMed

    Somtrakoon, Khanitta; Chouychai, Waraporn; Lee, Hung

    2014-01-01

    The ability of three plant species (sweet corn, cucumber, and winged bean) to remediate soil spiked with 138.9 and 95.9 mg of anthracene and fluorene per kg of dry soil, respectively, by single and double plant co-cultivation was investigated. After 15 and 30 days of transplantation, plant elongation, plant weight, chlorophyll content, and the content of each PAH in soil and plant tissues were determined. Based on PAH removal and plant health, winged bean was the most effective plant for phytoremediation when grown alone; percentage of fluorene and anthracene remaining in the rhizospheric soil after 30 days were 7.8% and 24.2%, respectively. The most effective combination of plants for phytoremediation was corn and winged bean; on day 30, amounts of fluorene and anthracene remaining in the winged bean rhizospheric soil were 3.4% and 14.3%, respectively; amounts of fluorene and anthracene remaining in the sweet corn rhizospheric soil were 4.1% and 8.8%, respectively. Co-cultivation of sweet corn and cucumber could remove fluorene to a higher extent than anthracene from soil within 15 days, but these plants did not survive and died before day 30. The amounts of fluorene remaining in the rhizospheric soil of corn and cucumber were only 14% and 17.3%, respectively, on day 15. No PAHs were detected in plant tissues. This suggests that phytostimulation of microbial degradation in the rhizosphere was most likely the mechanism by which the PAHs were removed from the spiked soil. The results show that co-cultivation of plants has merit in the phytoremediation of PAH-spiked soil.

  13. Photosynthesis and water relations in tomato plants cultivated long-term in media containing (+)-usnic acid.

    PubMed

    Latkowska, E; Lechowski, Z; Bialczyk, J; Pilarski, J

    2006-09-01

    The influence of (+)-usnic acid on rates of gas exchange (photosynthesis, respiration, and transpiration) in long-term cultivation of tomato plants was studied. The effect was dose-dependent. Plants grown in media containing the maximum concentration of (+)-usnic acid (30 muM) had photosynthetic and respiration rates reduced by 41% and 80%, respectively. The effect on photosynthesis rate may be the result of a multidirectional effect at various stages of this process, which at the highest usnic acid concentration underwent reduction: content of chlorophylls by 30%, carotenoids by 35%, and Hill reaction activity by 75%. Usnic acid also raises the susceptibility of chlorophyll to photodegradation. Under some conditions, transpiration was reduced by 2.1-fold in light and 3.7-fold in dark. This result was correlated with (1) an increase in the diffusive resistance of the stomata (3.1-fold in upper and 1.5-fold in lower surface of leaf), (2) a reduction of stomata density (by 60% on upper and 40% on lower surface), and (3) a 12.3-fold decrease in root hydraulic conductance.

  14. Cultivation of mesophilic soil crenarchaeotes in enrichment cultures from plant roots.

    PubMed

    Simon, Holly M; Jahn, Courtney E; Bergerud, Luke T; Sliwinski, Marek K; Weimer, Paul J; Willis, David K; Goodman, Robert M

    2005-08-01

    Because archaea are generally associated with extreme environments, detection of nonthermophilic members belonging to the archaeal division Crenarchaeota over the last decade was unexpected; they are surprisingly ubiquitous and abundant in nonextreme marine and terrestrial habitats. Metabolic characterization of these nonthermophilic crenarchaeotes has been impeded by their intractability toward isolation and growth in culture. From studies employing a combination of cultivation and molecular phylogenetic techniques (PCR-single-strand conformation polymorphism, sequence analysis of 16S rRNA genes, fluorescence in situ hybridization, and real-time PCR), we present evidence here that one of the two dominant phylotypes of Crenarchaeota that colonizes the roots of tomato plants grown in soil from a Wisconsin field is selectively enriched in mixed cultures amended with root extract. Clones recovered from enrichment cultures were found to group phylogenetically with sequences from clade C1b.A1. This work corroborates and extends our recent findings, indicating that the diversity of the crenarchaeal soil assemblage is influenced by the rhizosphere and that mesophilic soil crenarchaeotes are found associated with plant roots, and provides the first evidence for growth of nonthermophilic crenarchaeotes in culture.

  15. Feed-Back Moisture Sensor Control for the Delivery of Water to Plants Cultivated in Space

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Prenger, Jessica J.; Rouzan, Donna T.; Spinale, April C.; Murdoch, Trevor; Burtness, Kevin A.

    2005-01-01

    The development of a spaceflight-rated Porous Tube Insert Module (PTIM) nutrient delivery tray has facilitated a series of studies evaluating various aspects of water and nutrient delivery to plants as they would be cultivated in space. We report here on our first experiment using the PTIM with a software-driven feedback moisture sensor control strategy for maintaining root zone wetness level set-points. One-day-old wheat seedlings (Tritium aestivum cv Apogee; N=15) were inserted into each of three Substrate Compartments (SCs) pre-packed with 0.25-1 . mm Profile(TradeMark) substrate and maintained at root zone relative water content levels of 70, 80 and 90%. The SCs contained a bottom-situated porous tube around which a capillary mat was wrapped. Three Porous Tubes. were planted using similar protocols (but without the substrate) and also maintained at these three moisture level set-points. Half-strength modified Hoagland's nutrient solution was used to supply water and nutrients. Results on hardware performance, water usage rates and wheat developmental differences between the different experimental treatments are presented.

  16. Natural radioactivity in cultivated land in the vicinity of a phosphate fertilizer plant in Nigeria

    NASA Astrophysics Data System (ADS)

    Okeji, Mark C.; Agwu, Kenneth K.; Idigo, Felicitas U.

    2012-12-01

    Natural radioactivity in soil and vegetable samples in cultivated land in the vicinity of an active phosphate fertilizer plant in Kaduna, Nigeria was carried out to assess the potential radiological impact of the plant on its immediate environment. The activity counting was carried out using sodium iodide gamma spectrometry. The annual committed effective dose for two vegetables in the farmlands due to uranium (238U) and thorium (232Th) was assessed. The mean activity concentration of radionuclides in the soil samples ranges from 20.5±7.3 to 31.6±4.1 Bq kg-1 for 226Ra, 19.6±1.6 to 53.2±3.7 Bq kg-1 for 232Th and 203.9±6.3 to 253.6±9.5 Bq kg-1 for 40K. The annual intake of 238U and 232Th from consumption of okra were 1.9 Bq kg-1 and 5.22 Bq kg-1 and for tomatoes 2.66 Bq kg-1 and 5.1 Bq kg-1 respectively. The committed effective doses from consumption of okra and tomatoes were 0.1 μSv y-1 and 0.12 μSv y-1 respectively.

  17. Antagonistic interactions between endophytic cultivable bacterial communities isolated from the medicinal plant Echinacea purpurea.

    PubMed

    Maida, Isabel; Chiellini, Carolina; Mengoni, Alessio; Bosi, Emanuele; Firenzuoli, Fabio; Fondi, Marco; Fani, Renato

    2016-09-01

    In this work we have studied the antagonistic interactions existing among cultivable bacteria isolated from three ecological niches (rhizospheric soil, roots and stem/leaves) of the traditional natural medicinal plant Echinacea purpurea. The three compartments harboured different taxonomic assemblages of strains, which were previously reported to display different antibiotic resistance patterns, suggesting the presence of differential selective pressure due to antagonistic molecules in the three compartments. Antagonistic interactions were assayed by the cross-streak method and interpreted using a network-based analysis. In particular 'within-niche inhibition' and 'cross-niche inhibition' were evaluated among isolates associated with each compartment as well as between isolates retrieved from the three different compartments respectively. Data obtained indicated that bacteria isolated from the stem/leaves compartment were much more sensitive to the antagonistic activity than bacteria from roots and rhizospheric soil. Moreover, both the taxonomical position and the ecological niche might influence the antagonistic ability/sensitivity of different strains. Antagonism could play a significant role in contributing to the differentiation and structuring of plant-associated bacterial communities. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Biochar potential in intensive cultivation of Capsicum annuum L. (sweet pepper): crop yield and plant protection.

    PubMed

    Kumar, Abhay; Elad, Yigal; Tsechansky, Ludmila; Abrol, Vikas; Lew, Beni; Offenbach, Rivka; Graber, Ellen R

    2017-06-14

    The influence of various biochars on crop yield and disease resistance of Capsicum annuum L. (sweet pepper) under modern, high input, intensive net house cultivation was tested over the course of 2011-2014 in the Arava desert region of Israel. A pot experiment with Lactuca sativa L. (lettuce) grown in the absence of fertilizer employed the 3-year-old field trial soils to determine if biochar treatments contributed to soil intrinsic fertility. Biochar amendments resulted in a significant increase in the number and weight of pepper fruits over 3 years. Concomitant with the increased yield, biochar significantly decreased the severity of powdery mildew (Leveillula taurica) disease and broad mite (Polyphagotarsonemus latus) pest infestation. Biochar additions resulted in increased soil organic matter but did not influence the pH, electrical conductivity or soil or plant mineral nutrients. Intrinsic fertility experiments with lettuce showed that two of the four biochar-treated field soils had significant positive impacts on lettuce fresh weight and total chlorophyll, carotenoid and anthocyanin contents. Biochar-based soil management can enhance the functioning of intensive, commercial, net house production of peppers under the tested conditions, resulting in increased crop yield and plant resistance to disease over several years. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Feed-Back Moisture Sensor Control for the Delivery of Water to Plants Cultivated in Space

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Prenger, Jessica J.; Rouzan, Donna T.; Spinale, April C.; Murdoch, Trevor; Burtness, Kevin A.

    2005-01-01

    The development of a spaceflight-rated Porous Tube Insert Module (PTIM) nutrient delivery tray has facilitated a series of studies evaluating various aspects of water and nutrient delivery to plants as they would be cultivated in space. We report here on our first experiment using the PTIM with a software-driven feedback moisture sensor control strategy for maintaining root zone wetness level set-points. One-day-old wheat seedlings (Tritium aestivum cv Apogee; N=15) were inserted into each of three Substrate Compartments (SCs) pre-packed with 0.25-1 . mm Profile(TradeMark) substrate and maintained at root zone relative water content levels of 70, 80 and 90%. The SCs contained a bottom-situated porous tube around which a capillary mat was wrapped. Three Porous Tubes. were planted using similar protocols (but without the substrate) and also maintained at these three moisture level set-points. Half-strength modified Hoagland's nutrient solution was used to supply water and nutrients. Results on hardware performance, water usage rates and wheat developmental differences between the different experimental treatments are presented.

  20. Cultivation of Mesophilic Soil Crenarchaeotes in Enrichment Cultures from Plant Roots

    PubMed Central

    Simon, Holly M.; Jahn, Courtney E.; Bergerud, Luke T.; Sliwinski, Marek K.; Weimer, Paul J.; Willis, David K.; Goodman, Robert M.

    2005-01-01

    Because archaea are generally associated with extreme environments, detection of nonthermophilic members belonging to the archaeal division Crenarchaeota over the last decade was unexpected; they are surprisingly ubiquitous and abundant in nonextreme marine and terrestrial habitats. Metabolic characterization of these nonthermophilic crenarchaeotes has been impeded by their intractability toward isolation and growth in culture. From studies employing a combination of cultivation and molecular phylogenetic techniques (PCR-single-strand conformation polymorphism, sequence analysis of 16S rRNA genes, fluorescence in situ hybridization, and real-time PCR), we present evidence here that one of the two dominant phylotypes of Crenarchaeota that colonizes the roots of tomato plants grown in soil from a Wisconsin field is selectively enriched in mixed cultures amended with root extract. Clones recovered from enrichment cultures were found to group phylogenetically with sequences from clade C1b.A1. This work corroborates and extends our recent findings, indicating that the diversity of the crenarchaeal soil assemblage is influenced by the rhizosphere and that mesophilic soil crenarchaeotes are found associated with plant roots, and provides the first evidence for growth of nonthermophilic crenarchaeotes in culture. PMID:16085872

  1. Cultivating Research Skills: An interdisciplinary approach in training and supporting energy research

    NASA Astrophysics Data System (ADS)

    Winkler, H.; Carbajales-Dale, P.; Alschbach, E.

    2013-12-01

    Geoscience and energy research has essentially separate and diverse tracks and traditions, making the education process labor-intensive and burdensome. Using a combined forces approach to training, a multidisciplinary workshop on information and data sources and research skills was developed and offered through several departments at Stanford University. The popular workshops taught required skills to scientists - giving training on new technologies, access to restricted energy-related scientific and government databases, search strategies for data-driven resources, and visualization and geospatial analytics. Feedback and data suggest these workshops were fundamental as they set the foundation for subsequent learning opportunities for students and faculty. This session looks at the integration of the information workshops within multiple energy and geoscience programs and the importance of formally cultivating research and information skills.

  2. Trophic relations of Opatrum sabulosum (Coleoptera, Tenebrionidae) with leaves of cultivated and uncultivated species of herbaceous plants under laboratory conditions

    PubMed Central

    Brygadyrenko, Viktor V.; Nazimov, Sergii S.

    2015-01-01

    Abstract We carried out a quantitative assessment of the consumption of herbaceous plants by Opatrum sabulosum (Linnaeus, 1761) – a highly significant agricultural pest species. We researched the feeding preferences of this pest species with respect to 33 uncultivated and 22 cultivated plant species. This species of darkling beetle feeds on many uncultivated plant species, including those with hairy leaves and bitter milky sap, such as Scabiosa ucrainca (5.21 mg/specimen/24 hours), Euphorbia virgata (3.45), Solanum nigrum (3.32), Centauria scabiosa (2.47), Lamium album (2.41), Aristolochia clematitis (1.76), Chenopodium album (1.73), Arctium lappa (1.51), Asperula odorata (1.20). A high rate of leaf consumption is also characteristic for cultivated species, for example, Perilla nankinensis (5.05 mg/specimen/24 hours), Lycopersicon esculentum (3.75), Tropaeolum majus (3.29), Nicotiana tabacum (2.66), Rumex acetosa (1.96), Beta vulgaris (1.27). Opatrum sabulosum is capable of feeding on plants which are poisonous to cattle. This species of darkling beetle consumes 95.5% of the cultivated and 48.5% of the uncultivated herbaceous plants researched. PMID:25685032

  3. Trophic relations of Opatrumsabulosum (Coleoptera, Tenebrionidae) with leaves of cultivated and uncultivated species of herbaceous plants under laboratory conditions.

    PubMed

    Brygadyrenko, Viktor V; Nazimov, Sergii S

    2015-01-01

    We carried out a quantitative assessment of the consumption of herbaceous plants by Opatrumsabulosum (Linnaeus, 1761) - a highly significant agricultural pest species. We researched the feeding preferences of this pest species with respect to 33 uncultivated and 22 cultivated plant species. This species of darkling beetle feeds on many uncultivated plant species, including those with hairy leaves and bitter milky sap, such as Scabiosaucrainca (5.21 mg/specimen/24 hours), Euphorbiavirgata (3.45), Solanumnigrum (3.32), Centauriascabiosa (2.47), Lamiumalbum (2.41), Aristolochiaclematitis (1.76), Chenopodiumalbum (1.73), Arctiumlappa (1.51), Asperulaodorata (1.20). A high rate of leaf consumption is also characteristic for cultivated species, for example, Perillanankinensis (5.05 mg/specimen/24 hours), Lycopersiconesculentum (3.75), Tropaeolummajus (3.29), Nicotianatabacum (2.66), Rumexacetosa (1.96), Betavulgaris (1.27). Opatrumsabulosum is capable of feeding on plants which are poisonous to cattle. This species of darkling beetle consumes 95.5% of the cultivated and 48.5% of the uncultivated herbaceous plants researched.

  4. Energy in plant nutrition and pest control

    SciTech Connect

    Helsel, Z.

    1987-01-01

    This volume concentrates on the energy involved in plant nutrition and pest control for crop production. Fossil fuel energy used to produce fertilizers and pesticides is evaluated along with the amount, distribution and use of these fertilizers and pesticides throughout the world. Alternatives to the use of chemical fertilizers and pesticides, and specifically biological nitrogen fixation and the use of organic wastes are discussed in relation to their economic and energy replacement value. Methods for the conservation of nutrients and pesticides are considered. Finally, the energy balance of nutrients and pest control is reviewed in the light of the economic, policy and social issues of the alternative needs and uses.

  5. Tip Saves Energy, Money for Pennsylvania Plant

    EPA Pesticide Factsheets

    A wastewater treatment plant in Berks County, Pennsylvania is saving nearly $45,000 a year and reducing hundreds of metric tons of greenhouse gases since employing an energy conservation tip offered by the Water Protection Division in EPA’s R3 and PADEP.

  6. Can the cultivation of microalgae meet U.S. energy demands?

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2011-08-01

    As biofuels such as ethanol and esters become increasingly attractive alternatives to nonrenewable resources such as oil and coal, scientists have become interested in determining the feasibility of biofuels to help meet U.S. energy demands in light of governmental efforts to develop cleaner-burning, renewable fuels. Of particular interest are microalgae—single-celled, photosynthetic organisms—which have been shown to have high biomass yields per acre cultivated. But does the United States have the resources to cultivate microalgae as a viable alternative to fossil fuel consumption? To answer this question, Wigmosta et al. sought to quantify how much water and land would be needed for commercial-scale algal biofuel production, based on where production could feasibly occur. They find that with current technology, the United States has the potential to produce 220 billion liters per year of microalgal oil, equivalent to about 48% of current domestic imports. However, they caution that meeting this potential would require that roughly 5.5% of land in the continental United States and 3 times the amount of water currently used for irrigation be devoted to algal production, though optimizing the locations of microalgae production to maximize efficiency of water usage could significantly reduce water demands. These optimal locations include areas around the Great Lakes, the Gulf Coast, and the southeastern seaboard; these coastal locations would allow a 75% reduction in freshwater use and a 67% reduction in land use to cultivate biofuel resources. Moreover, biofuel production through these optimized locations could substitute for up to 17% of oil currently imported for transportation, indicating that with proper planning, U.S. goals for renewable fuels could be met. (Water Resources Research, doi:10.1029/2010WR009966, 2011)

  7. Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review.

    PubMed

    Guarrera, P M; Savo, V

    2013-04-19

    Many wild and cultivated plants are rich in mineral elements and bioactive compounds and are consumed for health purposes. Studies have demonstrated the curative properties of many of these food plants. In this paper, we discuss the properties of several plants with potential health benefits that have previously received little attention. This review provides an overview and critical discussion of food plants perceived by informants (emic view) as healthy or used as 'food medicine' in Italy. Pharmacological activity of these plants is explored, based upon published scientific research (etic view). Preparation methods, taste perception, toxicity and various potentialities of some food plants are also discussed. The present review includes literature available from 1877 to 2012. The information was collected from books, scientific papers, and abstracts that reported any plants used as food medicine in Italy. The perceived health properties were analyzed in the framework of recent international phytochemical and phytopharmacological literature. A total of 67 edible wild plants and 18 cultivated vegetables, distributed into 20 families, were reported by informants (in literature). Several plants were highly cited (e.g., Taraxacum officinale Webb., Crepis vesicaria L., Allium cepa L., Allium sativum L.). The most frequent health properties attributed to edible plants by the informants were: laxative (22 species), diuretic (15), digestive (11), galactagogue (8), antitussive (cough) (8), hypotensive (7), tonic (7), sedative (7), hypoglycemic (6). Some edible plants are promising for their potential health properties, such as Crepis vesicaria L., Sanguisorba minor Scop. and Sonchus oleraceus L. Several wild species were perceived by informants to maintain health but have never been studied from a phytochemical or pharmacological point of view: e.g., Asparagus albus L., Crepis leontodontoides All., Hyoseris radiata L. subsp. radiata, Phyteuma spicatum L. Copyright © 2013

  8. Air Storage System Energy Transfer (ASSET) plants

    NASA Astrophysics Data System (ADS)

    Stys, Z. S.

    1983-09-01

    The design features and performance capabilities of Air Storage System Energy Transfer (ASSET) plants for transferring off-peak utility electricity to on-peak hours are described. The plant operations involve compressing ambient air with an axial flow compressor and depositing it in an underground reservoir at 70 bar pressure. Released during a peaking cycle, the pressure is reduced to 43 bar, the air is heated to 550 C, passed through an expander after a turbine, and passed through a low pressure combustion chamber to be heated to 850 C. A West German plant built in 1978 to supply over 300 MW continuous power for up to two hours is detailed, noting its availability factor of nearly 98 percent and power delivery cost of $230/kW installed. A plant being constructed in Illinois will use limestone caverns as the air storage tank.

  9. The investigation of the possibility for using some wild and cultivated plants as hyperaccumulators of heavy metals from contaminated soil.

    PubMed

    Maric, Miroslava; Antonijevic, Milan; Alagic, Sladjana

    2013-02-01

    The copper production in Bor (East Serbia) during the last 100 years presents an important source of the pollution of environment. Dust, waste waters, tailing, and air pollutants influence the quality of soil, water, and air. Over 2,000 ha of fertile soil have been damaged by the flotation tailing from Bor's facilities. The goal of the present work has been to determine the content of Pb, Cu, and Fe in wild plants (17 species) naturally growing in the damaged soil and in fodder crops (nine species) planted at the same place. The content of Pb, Cu, and Fe has been analyzed in damaged soil as well. This study has also searched for native (wild) and cultivated plants which are able to grow in contaminated soil in the area of the intense industrial activity of copper production in Bor, which means that they can accumulate and tolerate heavy metals in their above-ground tissues. It has been found out that the content of all metals in contaminated soil decreases considerably at the end of the experiment. As it has been expected, all plant species could accumulate investigated metals. All tested plants, both wild-growing and cultivated plants, seem to be quite healthy on the substrate which contained extremely high concentrations of copper.

  10. Biological limits on nitrogen use for plant photosynthesis: a quantitative revision comparing cultivated and wild species.

    PubMed

    Rotundo, José L; Cipriotti, Pablo A

    2017-04-01

    The relationship between leaf photosynthesis and nitrogen is a critical production function for ecosystem functioning. Cultivated species have been studied in terms of this relationship, focusing on improving nitrogen (N) use, while wild species have been studied to evaluate leaf evolutionary patterns. A comprehensive comparison of cultivated vs wild species for this relevant function is currently lacking. We hypothesize that cultivated species show increased carbon assimilation per unit leaf N area compared with wild species as associated with artificial selection for resource-acquisition traits. We compiled published data on light-saturated photosynthesis (Amax ) and leaf nitrogen (LNarea ) for cultivated and wild species. The relationship between Amax and LNarea was evaluated using a frontier analysis (90(th) percentile) to benchmark the biological limit of nitrogen use for photosynthesis. Carbon assimilation in relation to leaf N was not consistently higher in cultivated species; out of 14 cultivated species, only wheat, rice, maize and sorghum showed higher ability to use N for photosynthesis compared with wild species. Results indicate that cultivated species have not surpassed the biological limit on nitrogen use observed for wild species. Future increases in photosynthesis based on natural variation need to be assisted by bioengineering of key enzymes to increase crop productivity. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Mitochondrial Energy and Redox Signaling in Plants

    PubMed Central

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  12. Cultivation and energy efficient harvesting of microalgae using thermoreversible sol-gel transition

    NASA Astrophysics Data System (ADS)

    Estime, Bendy; Ren, Dacheng; Sureshkumar, Radhakrishna

    2017-01-01

    Microalgae represent a promising source of renewable biomass for the production of biofuels and valuable chemicals. However, energy efficient cultivation and harvesting technologies are necessary to improve economic viability. A Tris-Acetate-Phosphate-Pluronic (TAPP) medium that undergoes a thermoreversible sol-gel transition is developed to efficiently culture and harvest microalgae without affecting the productivity as compared to that in traditional culture in a well-mixed suspension. After seeding microalgae in the TAPP medium in a solution phase at 15 °C, the temperature is increased by 7 °C to induce gelation. Within the gel, microalgae are observed to grow in large clusters rather than as isolated cells. The settling velocity of the microalgal clusters is approximately ten times larger than that of individual cells cultured in typical solution media. Such clusters are easily harvested gravimetrically by decreasing the temperature to bring the medium to a solution phase.

  13. Cultivation and energy efficient harvesting of microalgae using thermoreversible sol-gel transition

    PubMed Central

    Estime, Bendy; Ren, Dacheng; Sureshkumar, Radhakrishna

    2017-01-01

    Microalgae represent a promising source of renewable biomass for the production of biofuels and valuable chemicals. However, energy efficient cultivation and harvesting technologies are necessary to improve economic viability. A Tris-Acetate-Phosphate-Pluronic (TAPP) medium that undergoes a thermoreversible sol-gel transition is developed to efficiently culture and harvest microalgae without affecting the productivity as compared to that in traditional culture in a well-mixed suspension. After seeding microalgae in the TAPP medium in a solution phase at 15 °C, the temperature is increased by 7 °C to induce gelation. Within the gel, microalgae are observed to grow in large clusters rather than as isolated cells. The settling velocity of the microalgal clusters is approximately ten times larger than that of individual cells cultured in typical solution media. Such clusters are easily harvested gravimetrically by decreasing the temperature to bring the medium to a solution phase. PMID:28102313

  14. [Dynamic variance of intracellular metabolic energies under rhythmical control for dissolved oxygen in PHB mixed cultivation].

    PubMed

    Qian, Z W; Tohyama, M; Hua, Q; Shimizu, K

    2001-07-01

    The mixed cultivation using cheaper carbon source-wasted food material contained glucose and lactate at the same time was conducted in 5L fermentor, within which glucose was converted to lactate by L. delbrueckii in anaerobic condition and the lactate was converted to PHB by R. eutropha in aerobic condition. Considering dissolved oxygen concentration may affect the level of intracellular ATP and NADPH of the metabolic pathways for R. eutropha in lactate under autotrophy or heterotrophy, rhythmical oscillated control for DO based on chaos control method was consequently presented. This method was employed to satisfy two strains for opposite oxygen preferences, moreover, excite the intracellular metabolic energy simultaneously. The values examined through spectrophotofluorimetry represented that both ATP and NADPH exhibited fluctuations in accordance with the DO rhythm. By means of this control design, the concentration of PHB can be doubled than the usual under stable DO control.

  15. PFRU, a single dominant locus regulates the balance between sexual and asexual plant reproduction in cultivated strawberry.

    PubMed

    Gaston, Amèlia; Perrotte, Justine; Lerceteau-Köhler, Estelle; Rousseau-Gueutin, Mathieu; Petit, Aurélie; Hernould, Michel; Rothan, Christophe; Denoyes, Béatrice

    2013-04-01

    Strawberry (Fragaria sp.) stands as an interesting model for studying flowering behaviour and its relationship with asexual plant reproduction in polycarpic perennial plants. Strawberry produces both inflorescences and stolons (also called runners), which are lateral stems growing at the soil surface and producing new clone plants. In this study, the flowering and runnering behaviour of two cultivated octoploid strawberry (Fragaria × ananassa Duch., 2n = 8× = 56) genotypes, a seasonal flowering genotype CF1116 and a perpetual flowering genotype Capitola, were studied along the growing season. The genetic bases of the perpetual flowering and runnering traits were investigated further using a pseudo full-sibling F1 population issued from a cross between these two genotypes. The results showed that a single major quantitative trait locus (QTL) named FaPFRU controlled both traits in the cultivated octoploid strawberry. This locus was not orthologous to the loci affecting perpetual flowering (SFL) and runnering (R) in Fragaria vesca, therefore suggesting different genetic control of perpetual flowering and runnering in the diploid and octoploid Fragaria spp. Furthermore, the FaPFRU QTL displayed opposite effects on flowering (positive effect) and on runnering (negative effect), indicating that both traits share common physiological control. These results suggest that this locus plays a major role in strawberry plant fitness by controlling the balance between sexual and asexual plant reproduction.

  16. Influence of plant genotype on the cultivable fungi associated to tomato rhizosphere and roots in different soils.

    PubMed

    Poli, Anna; Lazzari, Alexandra; Prigione, Valeria; Voyron, Samuele; Spadaro, Davide; Varese, Giovanna Cristina

    2016-01-01

    Rhizosphere and root-associated microbiota are crucial in determining plant health and in increasing productivity of agricultural crops. To date, research has mainly focused on the bacterial dimension of the microbiota. However, interest in the mycobiota is increasing, since fungi play a key role in soil ecosystems. We examined the effect of plant genotype, soil, and of Fusarium oxysporum f. sp. lycopersici (Fol) on the cultivable component of rhizosphere and root-associated mycobiota of tomato. Resistant and susceptible varieties were cultivated on two different soils (A and B), under glasshouse conditions. Isolated fungi were identified by morphological and molecular approaches. Differences were found between the rhizosphere and the roots, which in general displayed a lower number of species. The structure of the mycobiota was significantly affected by the soil type in the rhizosphere as well as by the plant genotype within the roots (NPERMANOVA, p < 0.05). The addition of Fol changed the community structure, particularly in soil A, where Penicillium spp. and Fusarium spp. were the dominant responding fungi. Overall, the results indicated that i) soil type and plant genotype affect the fungal communities; ii) plant roots select few species from the rhizosphere; and iii) the fungal community structure is influenced by Fol. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  17. [Employment of associative bacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium].

    PubMed

    Belimov, A A; Kunakova, A M; Safronova, V I; Stepanok, V V; Iudkin, L Iu; Alekseev, Iu V; Kozhemiakov, A P

    2004-01-01

    In laboratory experiments, the rhizobacteria Azospirillum lipoferum 137, Arthrobacter mysorens 7, Agrobacterium radiobacter 10, and Flavobacterium sp. L30 were found to have a relatively high resistance to the toxic heavy metals lead and cadmium (except that strain L30 was found to be sensitive to Cd). When introduced by means of seed bacterization, the heavy metal-resistant strains actively colonized the rhizosphere of barley plants cultivated in uncontaminated and contaminated soils. In both pot and field experiments, seed bacterization improved the growth of barley plants and the uptake of nutrient elements from soil contaminated with Pb and Cd. The bacterization also prevented the accumulation of Pb and Cd in barley plants, thereby mitigating the toxic effect of these heavy metals on the plants.

  18. Limited genetic exchanges between populations of an insect pest living on uncultivated and related cultivated host plants

    PubMed Central

    Vialatte, Aude; Dedryver, Charles-Antoine; Simon, Jean-Christophe; Galman, Marina; Plantegenest, Manuel

    2005-01-01

    Habitats in agroecosystems are ephemeral, and are characterized by frequent disturbances forcing pest species to successively colonize various hosts belonging either to the cultivated or to the uncultivated part of the agricultural landscape. The role of wild habitats as reservoirs or refuges for the aphid Sitobion avenae that colonize cultivated fields was assessed by investigating the genetic structure of populations collected on both cereal crops (wheat, barley and oat) and uncultivated hosts (Yorkshire fog, cocksfoot, bulbous oatgrass and tall oatgrass) in western France. Classical genetic analyses and Bayesian clustering algorithms indicate that genetic differentiation is high between populations collected on uncultivated hosts and on crops, revealing a relatively limited gene flow between the uncultivated margins and the cultivated part of the agroecosystem. A closer genetic relatedness was observed between populations living on plants belonging to the same tribe (Triticeae, Poeae and Aveneae tribes) where aphid genotypes appeared not to be specialized on a single host, but rather using a group of related plant species. Causes of this ecological differentiation and its implications for integrated pest management of S. avenae as cereals pest are discussed. PMID:16024367

  19. Limited genetic exchanges between populations of an insect pest living on uncultivated and related cultivated host plants.

    PubMed

    Vialatte, Aude; Dedryver, Charles-Antoine; Simon, Jean-Christophe; Galman, Marina; Plantegenest, Manuel

    2005-05-22

    Habitats in agroecosystems are ephemeral, and are characterized by frequent disturbances forcing pest species to successively colonize various hosts belonging either to the cultivated or to the uncultivated part of the agricultural landscape. The role of wild habitats as reservoirs or refuges for the aphid Sitobion avenae that colonize cultivated fields was assessed by investigating the genetic structure of populations collected on both cereal crops (wheat, barley and oat) and uncultivated hosts (Yorkshire fog, cocksfoot, bulbous oatgrass and tall oatgrass) in western France. Classical genetic analyses and Bayesian clustering algorithms indicate that genetic differentiation is high between populations collected on uncultivated hosts and on crops, revealing a relatively limited gene flow between the uncultivated margins and the cultivated part of the agroecosystem. A closer genetic relatedness was observed between populations living on plants belonging to the same tribe (Triticeae, Poeae and Aveneae tribes) where aphid genotypes appeared not to be specialized on a single host, but rather using a group of related plant species. Causes of this ecological differentiation and its implications for integrated pest management of S. avenae as cereals pest are discussed.

  20. [Detection of agent "zhuanggenling" and investigation of utilization of plant growth retardants in traditional Chinese medicine cultivation].

    PubMed

    Zhai, Yu-yao; Guo, Bao-lin; Huang, Wen-hua

    2015-02-01

    Plant growth retardant as one of plant growth regulator can inhibit the cell division, elongation and growth rate in shoot apical meristem (SAM), which can be reversed by gibberellin regulate the product of photosynthesis transfer to the root and rhizome part. As commonly used plant growth retardant, paclobutrazol, uniconazole, chlorocholine chloride, mepiquat chloride, choline chloride and daminozide are used to promote the growth of root and rhizome, call as "zhuanggenling", "pengdasu", "pengdaji" etc. Single or recombination of plant growth regulator is registered as pesticide, and called as pesticide "zhuanggenling" in this paper. Growth regulator which registered as a foliar fertilizer or fertilization was called agricultural fertilizer "zhuanggenling" in this paper. The author investigate the usage of "zhuanggenling" in the root and rhizome of medicinal plants cultivation from 2012 to 2014 in Sichuan province, Huangyuan town, Mianyang (Ophiopogonis Radix); Pengzhou Aoping town (Chuanxiong Rhizoma); Pengshan Xiejia town (Alismatis Rhizoma); Jiangyou Taiping town and Zhangming town (Aconiti Lateralis Radix Praeparata); Yunnan Wenshan (Notoginseng Radix et Rhizoma); Henan province, Wuzhidafeng Town (Rehmanniae Radix, Achyranthis Bidentatae Radix, Dioscoreae Rhizoma); Gansu Min county (Codonopsis Radix, Angelicae Sinensis Radix); Gansu Li county (Rhei Radix et Rhizoma). The result showed that "zhuanggenling" were applied in the most medicinal plant cultivation except Rhei Radix et Rhizoma. It has been applied widespreadly in Ophiopogonis Radix, Alismatis Rhizoma, Achyranthis Bidentatae Radix, Codonopsis Radix; Rehmanniae Radix, commonly in Angelicae Sinensis Radix application, and occasionally in Chuanxiong Rhizoma, Aconiti Lateralis Radix Praeparata, Notoginseng Radix et Rhizoma and Dioscoreae Rhizoma. In 53 collected sample from plantation areas, fifteen (28%) were pesticide "zhuanggenling", thirty-eight (72%) were pesticide "zhuanggenling". UPLC analysis

  1. Comparison of antioxidant activity of the fruits derived from in vitro propagated and traditionally cultivated tayberry plants.

    PubMed

    Zayova, Ely G; Stancheva, Ira V; Geneva, Maria P; Petrova, Maria I; Dimitrova, Ludmila I

    2016-08-01

    Tayberry is a hybrid between Rubus fruticosus L. and Rubus idaeus L. These fruits contain valuable vitamins and antioxidants. An effective protocol for micropropagation of tayberry plants is here described. Different concentrations of cytokinins (6-benzylaminopurine, zeatin, and 6-(γ,γ-dimethylallylamino)purine) were added in Murashige and Skoog, 1962 (MS) medium to micropropagation using stem tip and nodal explants. The highest propagation rate was recorded on MS medium containing 2 mg L(-1) zeatin, where the shoot formation resulted in 3.4 shoots per stem tip explant after 4 weeks of culture. It was found that half-strength MS medium with 0.1 mg L(-1) indole-3-butyric acid was the best for plant rooting. For ex vitro acclimatization of plants, the mixture of peat, soil, and perlite (1:1:1 v/v/v) was the most suitable planting substrate for hardening. The micropropagation protocol described in this study might be useful for the production of healthy plant materials. Tayberry fruits from in vitro propagated plants and adapted to the field conditions possessed higher antioxidant capacity in comparison to traditionally cultivated plants. Fruit extracts of micropropagated tayberry plants and adapted to field conditions can be used as a rich source of natural antioxidants. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Dynamics and Reversibility of the DNA Methylation Landscape of Grapevine Plants (Vitis vinifera) Stressed by In Vitro Cultivation and Thermotherapy.

    PubMed

    Baránek, Miroslav; Čechová, Jana; Raddová, Jana; Holleinová, Věra; Ondrušíková, Eva; Pidra, Miroslav

    2015-01-01

    There is relatively little information concerning long-term alterations in DNA methylation following exposure of plants to environmental stress. As little is known about the ratio of non-heritable changes in DNA methylation and mitotically-inherited methylation changes, dynamics and reversibility of the DNA methylation states were investigated in grapevine plants (Vitis vinifera) stressed by in vitro cultivation. It was observed that significant part of induced epigenetic changes could be repeatedly established by exposure to particular planting and stress conditions. However, once stress conditions were discontinued, many methylation changes gradually reverted and plants returned to epigenetic states similar to those of maternal plants. In fact, in the period of one to three years after in vitro cultivation it was difficult to distinguish the epigenetic states of somaclones and maternal plants. Forty percent of the observed epigenetic changes disappeared within a year subsequent to termination of stress conditions ending and these probably reflect changes caused by transient and reversible stress-responsive acclimation mechanisms. However, sixty percent of DNA methylation diversity remained after 1 year and probably represents mitotically-inherited epimutations. Sequencing of regions remaining variable between maternal and regenerant plants revealed that 29.3% of sequences corresponded to non-coding regions of grapevine genome. Eight sequences (19.5%) corresponded to previously identified genes and the remaining ones (51.2%) were annotated as "hypothetical proteins" based on their similarity to genes described in other species, including genes likely to undergo methylation changes following exposure to stress (V. vinifera gypsy-type retrotransposon Gret1, auxin-responsive transcription factor 6-like, SAM-dependent carboxyl methyltransferase).

  3. Dynamics and Reversibility of the DNA Methylation Landscape of Grapevine Plants (Vitis vinifera) Stressed by In Vitro Cultivation and Thermotherapy

    PubMed Central

    Baránek, Miroslav; Čechová, Jana; Raddová, Jana; Holleinová, Věra; Ondrušíková, Eva

    2015-01-01

    There is relatively little information concerning long-term alterations in DNA methylation following exposure of plants to environmental stress. As little is known about the ratio of non-heritable changes in DNA methylation and mitotically-inherited methylation changes, dynamics and reversibility of the DNA methylation states were investigated in grapevine plants (Vitis vinifera) stressed by in vitro cultivation. It was observed that significant part of induced epigenetic changes could be repeatedly established by exposure to particular planting and stress conditions. However, once stress conditions were discontinued, many methylation changes gradually reverted and plants returned to epigenetic states similar to those of maternal plants. In fact, in the period of one to three years after in vitro cultivation it was difficult to distinguish the epigenetic states of somaclones and maternal plants. Forty percent of the observed epigenetic changes disappeared within a year subsequent to termination of stress conditions ending and these probably reflect changes caused by transient and reversible stress-responsive acclimation mechanisms. However, sixty percent of DNA methylation diversity remained after 1 year and probably represents mitotically-inherited epimutations. Sequencing of regions remaining variable between maternal and regenerant plants revealed that 29.3% of sequences corresponded to non-coding regions of grapevine genome. Eight sequences (19.5%) corresponded to previously identified genes and the remaining ones (51.2%) were annotated as “hypothetical proteins” based on their similarity to genes described in other species, including genes likely to undergo methylation changes following exposure to stress (V. vinifera gypsy-type retrotransposon Gret1, auxin-responsive transcription factor 6-like, SAM-dependent carboxyl methyltransferase). PMID:25973746

  4. EPA Announces 2015 Energy Star Certified Manufacturing Plants

    EPA Pesticide Factsheets

    WASHINGTON -- The U.S. Environmental Protection Agency (EPA) announced today that 70 manufacturing plants have achieved Energy Star certification for their superior energy performance in 2015. Together, these manufacturing plants saved a significant

  5. Solar energy applications at Army ammunition plants

    NASA Astrophysics Data System (ADS)

    Lowry, A. P.; Moy, S. M.

    1982-06-01

    The Army Ammunition Plants use significant quantities of fossil fuels. To reduce dependence on these scarce, costly, and non-renewable fuels, a study was conducted to investigate potential solar energy applications at the AAPs. Solar energy is a low-level energy source which is best applied to low temperature applications. It can be used at the AAPs to preheat boiler feedwater, provide hot air for dry-houses, provide domestic hot water and heat for administration buildings, and provide hot water for manufacturing processes such as metal cleaning, phosphating, and X-ray film processing. Use of the flat plate collectors, evacuated tube collectors, or solar ponds with the possible addition of a heat pump, offers reasonably economical means of applying solar technology to AAP needs.

  6. [Changes of plant community biomass and soil nutrients during the vegetation succession on abandoned cultivated land in desert steppe region].

    PubMed

    An, Hui; Yang, Xin-Guo; Liu, Bing-Ru; Li, Xue-Bin; He, Xiu-Zhen; Song, Nai-Ping

    2011-12-01

    By the method of substituting temporal serial with spatial serial, and taking five abandoned cultivated lands with different ages (1, 4, 9, 12, and 20 years) in desert steppe region as test objects, this paper studied the change characteristics of plant community biomass and soil nutrients during vegetation succession. With the increasing abandoned years, the plant community aboveground biomass on the abandoned lands increased after an initial decrease, whereas the total nitrogen, total phosphorus, organic carbon contents, and carbon density in 0-60 cm soil layer increased first, decreased then, and increased again, with the maximum values of soil total nitrogen and phosphorus contents appeared on the abandoned lands with the ages 4 and 20 years. During vegetation succession, the effects of soil total nitrogen and organic carbon on plant community biomass were greater than those of soil total phosphorus and soil bulk density.

  7. Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions.

    PubMed

    Singh, Devesh; Buhmann, Anne K; Flowers, Tim J; Seal, Charlotte E; Papenbrock, Jutta

    2014-11-10

    Rising sea levels and salinization of groundwater due to global climate change result in fast-dwindling sources of freshwater. Therefore, it is important to find alternatives to grow food crops and vegetables. Halophytes are naturally evolved salt-tolerant plants that are adapted to grow in environments that inhibit the growth of most glycophytic crop plants substantially. Members of the Salicornioideae are promising candidates for saline agriculture due to their high tolerance to salinity. Our aim was to develop genetically characterized lines of Salicornia and Sarcocornia for further breeding and to determine optimal cultivation conditions. To obtain a large and diverse genetic pool, seeds were collected from different countries and ecological conditions. The external transcribed spacer (ETS) sequence of 62 Salicornia and Sarcocornia accessions was analysed: ETS sequence data showed a clear distinction between the two genera and between different Salicornia taxa. However, in some cases the ETS was not sufficiently variable to resolve morphologically distinct species. For the determination of optimal cultivation conditions, experiments on germination, seedling establishment and growth to a harvestable size were performed using different accessions of Salicornia spp. Experiments revealed that the percentage germination was greatest at lower salinities and with temperatures of 20/10 °C (day/night). Salicornia spp. produced more harvestable biomass in hydroponic culture than in sand culture, but the nutrient concentration requires optimization as hydroponically grown plants showed symptoms of stress. Salicornia ramosissima produced more harvestable biomass than Salicornia dolichostachya in artificial sea water containing 257 mM NaCl. Based on preliminary tests on ease of cultivation, gain in biomass, morphology and taste, S. dolichostachya was investigated in more detail, and the optimal salinity for seedling establishment was found to be 100 mM. Harvesting of S

  8. Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions

    PubMed Central

    Singh, Devesh; Buhmann, Anne K.; Flowers, Tim J.; Seal, Charlotte E.; Papenbrock, Jutta

    2014-01-01

    Rising sea levels and salinization of groundwater due to global climate change result in fast-dwindling sources of freshwater. Therefore, it is important to find alternatives to grow food crops and vegetables. Halophytes are naturally evolved salt-tolerant plants that are adapted to grow in environments that inhibit the growth of most glycophytic crop plants substantially. Members of the Salicornioideae are promising candidates for saline agriculture due to their high tolerance to salinity. Our aim was to develop genetically characterized lines of Salicornia and Sarcocornia for further breeding and to determine optimal cultivation conditions. To obtain a large and diverse genetic pool, seeds were collected from different countries and ecological conditions. The external transcribed spacer (ETS) sequence of 62 Salicornia and Sarcocornia accessions was analysed: ETS sequence data showed a clear distinction between the two genera and between different Salicornia taxa. However, in some cases the ETS was not sufficiently variable to resolve morphologically distinct species. For the determination of optimal cultivation conditions, experiments on germination, seedling establishment and growth to a harvestable size were performed using different accessions of Salicornia spp. Experiments revealed that the percentage germination was greatest at lower salinities and with temperatures of 20/10 °C (day/night). Salicornia spp. produced more harvestable biomass in hydroponic culture than in sand culture, but the nutrient concentration requires optimization as hydroponically grown plants showed symptoms of stress. Salicornia ramosissima produced more harvestable biomass than Salicornia dolichostachya in artificial sea water containing 257 mM NaCl. Based on preliminary tests on ease of cultivation, gain in biomass, morphology and taste, S. dolichostachya was investigated in more detail, and the optimal salinity for seedling establishment was found to be 100 mM. Harvesting of S

  9. Jatropha curcas L., a multipurpose stress resistant plant with a potential for ethnomedicine and renewable energy.

    PubMed

    Debnath, Mousumi; Bisen, P S

    2008-08-01

    Jatropha curcas is a stress--resistant perennial plant growing on marginal soils. This plant is widespread throughout arid and semiarid tropical regions of the world and has been used as a traditional folk medicine in many countries. J.curcas is a source of several secondary metabolites of medicinal importance. The leaf, fruits, latex and bark contain glycosides, tannins, phytosterols, flavonoids and steroidal sapogenins that exhibit wide ranging medicinal properties. The plant products exhibit anti-bacterial and anti-fungal activities. The paper highlights the ability of various metabolites present in the plant to act as therapeutic agents and plant protectants. The plant is designated as an energy plant and use of J.curcas oil as biodiesel is a promising and commercially viable alternative to diesel oil. The seeds of the plant are not only a source of biodiesel but also contain several metabolites of pharmaceutical importance. Commercial exploitation for biopharmaceuticals and bio-energy production are some of the prospective future potential of this plant. Further reclamation of wastelands and dry lands is also possible with J.curcas cultivation.

  10. Goji Berry: Quality Assessment and Crop Adaptation of Plants Cultivated in Tuscany (Italy) by Combination of Carotenoid and DNA Analyses.

    PubMed

    Capecchi, Giada; Goti, Emanuele; Nicolai, Elena; Bergonzi, Maria Camilla; Monnanni, Roberto; Bilia, Anna Rita

    2015-06-01

    In this study HPLC analysis for the evaluation of carotenoids and DNA barcoding are reported for three different samples of Lycium cultivated in Tuscany (Italy). These two analytical methods can represent integrative methods for quality control of goji, giving also crucial information on the plant adaptation to different environments. Hence, carotenoids represent the quality markers proposed by the monograph of the European Pharmacopoeia, while DNA barcoding can differentiate between species and populations and is useful for the detection of the homogeneity of the samples.

  11. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species.

    USDA-ARS?s Scientific Manuscript database

    The primary goal of this research was to investigate the prokaryotic and fungal communities associated with the bulk soil, the rhizosphere, the phyllosphere, and the root and leaf endospheres, for three Agave species: the cultivated Agave tequilana and the native species, A. salmiana and A. deserti ...

  12. [Feasibility of the use of degraded inedible biomass of plants as a nutrient liquid for hydroponic cultivation].

    PubMed

    Guo, S S; Ai, W D; Hou, W H; Shi, W W

    2001-10-01

    Objective. To demonstrate that the recycled liquid, which originated from lettuce inedible biomass degraded by fixed microorganism (correction of microorgannism) and enzyme, can be used as a nutrient solution for lettuce hydroponic cultivation. Method. After biologically degrading the weighted, oven-dried and milled leaves and roots of lettuce in a biological reactor under aerobic condition, the original effluent and its supplemented effluent were used as nutrients for lettuce hydroponic cultivation. Result. The average dried weight (ADW) of lettuce from the original effluent group was approximately half of that from the control group, and the ADW from supplemented effluent group was about equal to that from the control group; some qualities of the lettuce such as a relatively lower content of NO3- from both the original effluent group and the supplemented effluent one improved, and some of those such as a relatively higher content of NO2- dropped. Conclusion. The biologically-degraded effluent was able to be used as nutrient solution for lettuce hydroponic cultivation, although the effects of the inorganic ion-supplemented effluent were much better; the plants of lettuce from the biologically-degraded effluent were safely edible.

  13. Utility scale baseload wind energy plants

    SciTech Connect

    Cavallo, A.J.

    1997-09-01

    Wind generated electricity can be transformed from an intermittent to a baseload power supply cost-effectively by taking advantage of the fundamental properties of wind and by the efficient utilization of compressed air energy storage (CAES) systems. A utility scale wind-CAES-transmission system can have a 95% capacity factor at a cost of delivered electricity that is about 15% greater than a conventional wind energy system with a 34% capacity factor. This approach has several compelling advantages. It is based on existing technology and makes best use of costly transmission lines. It produces electricity that is the technical equivalent of that from fossil fuel or nuclear power stations. It minimizes greenhouse gas and other fossil fuel pollution, and is an industrial scale system. And in many cases, the increased value of the plant output will more than compensate for the added cost of the storage system.

  14. Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality

    PubMed Central

    Xiong, Jing; Tian, Yongqiang; Wang, Jingguo; Liu, Wei; Chen, Qing

    2017-01-01

    Rockwool (RC) and peat are two common substrates used worldwide in horticultural crop production. In recent years environmental and ecological concerns raised the demand for reducing the use of RC and peat. Although coconut coir (CC) has been increasingly used as an alternative to RC and peat, it is still needed to comprehensively evaluate the feasibility of CC before widely used. To meet this need, CC, RC, and peat-vermiculite (PVC) cultivations were used as tomato cultivation substrates to evaluate their effects on EC, pH and mineral ions in root-zone solution and drainage, nutrient uptake by crops, nutrient balance of cultivation system, plant growth and fruit quality. In general, CC significantly increased K and S uptake by crops, photosynthesis, individual fruit weight and total fruit yield compared to RC, and increased P and K uptake by crops and total fruit yield compared to PVC. Moreover, CC significantly increased organic acid of fruit in first truss compared to both RC and PVC. The uncredited nutrient was overally lower under CC than under RC and PVC (the lower, the better). For all substrates, the blossom-end rot (BER) of fruit increased gradually from 3rd to 13th trusses. The BER of fruit was not significantly influenced by CC compared to RC or PVC, but was sginificantly decreased by PVC compared to RC. Our results infer that CC was a potential substrate that could be widely used in tomato production. However, the inhibition of BER was still a challenge when CC was used as cultivation substrate for tomato. PMID:28824665

  15. Virtual Simulation of Vision 21 Energy Plants

    SciTech Connect

    Syamlal, Madhava; Felix, Paul E.; Osawe, Maxwell O.; Fiveland, Woodrow A.; Sloan, David G.; Zitney, Stephen E.; Joop, Frank; Cleetus, Joseph; Lapshin, Igor B.

    2001-11-06

    The Vision 21 Energy plants will be designed by combining several individual power, chemical, and fuel-conversion technologies. These independently developed technologies or technology modules can be interchanged and combined to form the complete Vision 21 plant that achieves the needed level of efficiency and environmental performance at affordable costs. The knowledge about each technology module must be captured in computer models so that the models can be linked together to simulate the entire Vision 21 power plant in a Virtual Simulation environment. Eventually the Virtual Simulation will find application in conceptual design, final design, plant operation and control, and operator training. In this project we take the first step towards developing such a Vision 21 Simulator. There are two main knowledge domains of a plant--the process domain (what is in the pipes), and the physical domain (the pipes and equipment that make up the plant). Over the past few decades, commercial software tools have been developed for each of these functions. However, there are three main problems that inhibit the design and operation of power plants: (1) Many of these tools, largely developed for chemicals and refining, have not been widely adopted in the power industry. (2) Tools are not integrated across functions. For example, the knowledge represented by computational fluid dynamics (CFD) models of equipment is not used in process-level simulations. (3) No tool exists for readily integrating the design and behavioral knowledge about components. These problems must be overcome to develop the Vision 21 Simulator. In this project our major objective is to achieve a seamless integration of equipment-level and process-level models and apply the integrated software to power plant simulations. Specifically we are developing user-friendly tools for linking process models (Aspen Plus) with detailed equipment models (FLUENT CFD and other proprietary models). Such integration will

  16. Towards energy positive wastewater treatment plants.

    PubMed

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m(3), (or 0.087 kWh/m(3), if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  17. Time since Introduction, Seed Mass, and Genome Size Predict Successful Invaders among the Cultivated Vascular Plants of Hawaii

    PubMed Central

    Schmidt, John Paul; Drake, John M.

    2011-01-01

    Extensive economic and environmental damage has been caused by invasive exotic plant species in many ecosystems worldwide. Many comparative studies have therefore attempted to predict, from biological traits, which species among the pool of naturalized non-natives become invasive. However, few studies have investigated which species establish and/or become pests from the larger pool of introduced species and controlled for time since introduction. Here we present results from a study aimed at quantifying predicting three classes of invasive species cultivated in Hawaii. Of 7,866 ornamental species cultivated in Hawaii between 1840 and 1999, 420 (5.3%) species naturalized, 141 (1.8%) have been classified as weeds, and 39 (0.5%) were listed by the state of Hawaii as noxious. Of the 815 species introduced >80 years ago, 253 (31%) have naturalized, 90 (11%) are classed as weeds, and 22 (3%) as noxious by the state of Hawaii. Using boosted regression trees we classified each group with nearly 90% accuracy, despite incompleteness of data and the low proportion of naturalized or pest species. Key biological predictors were seed mass and highest chromosome number standardized by genus which, when data on residence time was removed, were able to predict all three groups with 76–82% accuracy. We conclude that, when focused on a single region, screening for potential weeds or noxious plants based on a small set of biological traits can be achieved with sufficient accuracy for policy and management purposes. PMID:21407804

  18. Uncovering the Cultivable Microbial Diversity of Costa Rican Beetles and Its Ability to Break Down Plant Cell Wall Components

    PubMed Central

    Vargas-Asensio, Gabriel; Pinto-Tomas, Adrian; Rivera, Beatriz; Hernandez, Myriam; Hernandez, Carlos; Soto-Montero, Silvia; Murillo, Catalina; Sherman, David H.; Tamayo-Castillo, Giselle

    2014-01-01

    Coleopterans are the most diverse insect order described to date. These organisms have acquired an array of survival mechanisms through their evolution, including highly efficient digestive systems. Therefore, the coleopteran intestinal microbiota constitutes an important source of novel plant cell wall-degrading enzymes with potential biotechnological applications. We isolated and described the cultivable fungi, actinomycetes and aerobic eubacteria associated with the gut of larvae and adults from six different beetle families colonizing decomposing logs in protected Costa Rican ecosystems. We obtained 611 isolates and performed phylogenetic analyses using the ITS region (fungi) and 16S rDNA (bacteria). The majority of fungal isolates belonged to the order Hypocreales (26% of 169 total), while the majority of actinomycetes belonged to the genus Streptomyces (86% of 241 total). Finally, we isolated 201 bacteria spanning 19 different families belonging into four phyla: Firmicutes, α, β and γ-proteobacteria. Subsequently, we focused on microbes isolated from Passalid beetles to test their ability to degrade plant cell wall polymers. Highest scores in these assays were achieved by a fungal isolate (Anthostomella sp.), two Streptomyces and one Bacillus bacterial isolates. Our study demonstrates that Costa Rican beetles harbor several types of cultivable microbes, some of which may be involved in symbiotic relationships that enable the insect to digest complex polymers such as lignocellulose. PMID:25411842

  19. Uncovering the cultivable microbial diversity of costa rican beetles and its ability to break down plant cell wall components.

    PubMed

    Vargas-Asensio, Gabriel; Pinto-Tomas, Adrian; Rivera, Beatriz; Hernandez, Myriam; Hernandez, Carlos; Soto-Montero, Silvia; Murillo, Catalina; Sherman, David H; Tamayo-Castillo, Giselle

    2014-01-01

    Coleopterans are the most diverse insect order described to date. These organisms have acquired an array of survival mechanisms through their evolution, including highly efficient digestive systems. Therefore, the coleopteran intestinal microbiota constitutes an important source of novel plant cell wall-degrading enzymes with potential biotechnological applications. We isolated and described the cultivable fungi, actinomycetes and aerobic eubacteria associated with the gut of larvae and adults from six different beetle families colonizing decomposing logs in protected Costa Rican ecosystems. We obtained 611 isolates and performed phylogenetic analyses using the ITS region (fungi) and 16S rDNA (bacteria). The majority of fungal isolates belonged to the order Hypocreales (26% of 169 total), while the majority of actinomycetes belonged to the genus Streptomyces (86% of 241 total). Finally, we isolated 201 bacteria spanning 19 different families belonging into four phyla: Firmicutes, α, β and γ-proteobacteria. Subsequently, we focused on microbes isolated from Passalid beetles to test their ability to degrade plant cell wall polymers. Highest scores in these assays were achieved by a fungal isolate (Anthostomella sp.), two Streptomyces and one Bacillus bacterial isolates. Our study demonstrates that Costa Rican beetles harbor several types of cultivable microbes, some of which may be involved in symbiotic relationships that enable the insect to digest complex polymers such as lignocellulose.

  20. Time since introduction, seed mass, and genome size predict successful invaders among the cultivated vascular plants of Hawaii.

    PubMed

    Schmidt, John Paul; Drake, John M

    2011-03-02

    Extensive economic and environmental damage has been caused by invasive exotic plant species in many ecosystems worldwide. Many comparative studies have therefore attempted to predict, from biological traits, which species among the pool of naturalized non-natives become invasive. However, few studies have investigated which species establish and/or become pests from the larger pool of introduced species and controlled for time since introduction. Here we present results from a study aimed at quantifying predicting three classes of invasive species cultivated in Hawaii. Of 7,866 ornamental species cultivated in Hawaii between 1840 and 1999, 420 (5.3%) species naturalized, 141 (1.8%) have been classified as weeds, and 39 (0.5%) were listed by the state of Hawaii as noxious. Of the 815 species introduced >80 years ago, 253 (31%) have naturalized, 90 (11%) are classed as weeds, and 22 (3%) as noxious by the state of Hawaii. Using boosted regression trees we classified each group with nearly 90% accuracy, despite incompleteness of data and the low proportion of naturalized or pest species. Key biological predictors were seed mass and highest chromosome number standardized by genus which, when data on residence time was removed, were able to predict all three groups with 76-82% accuracy. We conclude that, when focused on a single region, screening for potential weeds or noxious plants based on a small set of biological traits can be achieved with sufficient accuracy for policy and management purposes.

  1. Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton.

    PubMed

    Irizarry, I; White, J F

    2017-04-01

    Cotton seeds are frequently treated with acid to remove fibres and reduce seed-transmitted diseases. This process also eliminates beneficial bacteria on the seed surface. The goal of this research was to seek and apply beneficial bacteria to acid delinted cotton seeds to evaluate their growth-promoting and salt stress alleviating effects in seedlings. Bacteria were isolated from non-cultivated plants in the Malvaceae. Seeds were collected from Portia tree (Thespesia populnea) and wild cotton (Gossypium hirsutum) from coastal and arid areas of Puerto Rico. Bacillus amyloliquefaciens, Curtobacterium oceanosedimentum and Pseudomonas oryzihabitans were inoculated onto acid delinted cotton seeds. Bacteria increased cotton seed germination and length of emerging seedling radicles. Cotton seeds were inoculated with B. amyloliquefaciens to evaluate growth and root architecture of non-stressed and salt stressed seedlings. Inoculating cotton seeds with B. amyloliquefaciens led to a greater percentage of seedlings with expanded cotyledons after 8 days, enhanced primary and lateral root growth, and altered root architecture. Similar results were obtained when okra seeds were inoculated with B. amyloliquefaciens. The data supported the hypothesis that non-cultivated plants in the Malvaceae growing in stressful environments possess bacteria that promote growth, alter root architecture and alleviate salt stress of cotton and okra seedlings. This study demonstrated the effects of applying beneficial bacteria on acid delinted cotton seeds. Inoculating seeds with salt stress alleviating bacteria could improve the growth of crop seedlings that are vulnerable to soil salinization. © 2017 The Society for Applied Microbiology.

  2. District Energy Corporation SW 40th Street Thermal Energy Plant

    SciTech Connect

    Davlin, Thomas

    2014-06-06

    The overall deliverable from the project is the design, construction and commissioning of a detention facility heating and cooling system that minimizes ownership costs and maximizes efficiency (and therefore minimizes environmental impact). The primary deliverables were the proof of concept for the application of geothermal systems for an institutional facility and the ongoing, quarterly system operating data downloads to the Department of Energy . The primary advantage of geothermal based heat pump systems is the higher efficiency of the system compared to a conventional chiller, boiler, cooling tower based system. The higher efficiency results in a smaller environmental foot print and lower energy costs for the detention facility owner, Lancaster County. The higher efficiency for building cooling is primarily due to a more constant compressor condensing temperature with the geothermal well field acting as a thermal “sink” (in place of the conventional system’s cooling tower). In the heating mode, Ground Couple Heat Pump (GCHP) systems benefits from the advantage of a heat pump Coefficient of Performance (COP) of approximately 3.6, significantly better than a conventional gas boiler. The geothermal well field acting as a thermal “source” allows the heat pumps to operate efficiently in the heating mode regardless of ambient temperatures. The well field is partially located in a wetland with a high water table so, over time, the project will be able to identify the thermal loading characteristics of a well field located in a high water table location. The project demonstrated how a large geothermal well field can be installed in a wetland area in an economical and environmentally sound manner. Finally, the SW 40th Street Thermal Energy Plant project demonstrates the benefits of providing domestic hot water energy, as well as space heating, to help balance well filed thermal loading in a cooling dominated application. During the period of August 2012 thru

  3. Cultivation of Podospora anserina on soybean hulls results in an efficient enzyme cocktail for plant biomass hydrolysis.

    PubMed

    Mäkelä, Miia R; Bouzid, Ourdia; Robl, Diogo; Post, Harm; Peng, Mao; Heck, Albert; Altelaar, Maarten; de Vries, Ronald P

    2017-07-25

    The coprophilic ascomycete fungus Podospora anserina was cultivated on three different plant biomasses, i.e. cotton seed hulls (CSH), soybean hulls (SBH) and acid-pretreated wheat straw (WS) for four days, and the potential of the produced enzyme mixtures was compared in the enzymatic saccharification of the corresponding lignocellulose feedstocks. The enzyme cocktail P. anserina produced after three days of growth on SBH showed superior capacity to release reducing sugars from all tested plant biomass feedstocks compared to the enzyme mixtures from CSH and WS cultures. Detailed proteomics analysis of the culture supernatants revealed that SBH contained the most diverse set of enzymes targeted on plant cell wall polymers and was particularly abundant in xylan, mannan and pectin acting enzymes. The importance of lytic polysaccharide monooxygenases (LPMOs) in plant biomass deconstruction was supported by identification of 20 out of 33 AA9 LPMOs in the SBH cultures. The results highlight the suitability of P. anserina as a source of plant cell wall degrading enzymes for biotechnological applications and the importance of selecting the most optimal substrate for the production of enzyme mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station.

    PubMed

    Kittang, A-I; Iversen, T-H; Fossum, K R; Mazars, C; Carnero-Diaz, E; Boucheron-Dubuisson, E; Le Disquet, I; Legué, V; Herranz, R; Pereda-Loth, V; Medina, F J

    2014-05-01

    Space experiments provide a unique opportunity to advance our knowledge of how plants respond to the space environment, and specifically to the absence of gravity. The European Modular Cultivation System (EMCS) has been designed as a dedicated facility to improve and standardise plant growth in the International Space Station (ISS). The EMCS is equipped with two centrifuges to perform experiments in microgravity and with variable gravity levels up to 2.0 g. Seven experiments have been performed since the EMCS was operational on the ISS. The objectives of these experiments aimed to elucidate phototropic responses (experiments TROPI-1 and -2), root gravitropic sensing (GRAVI-1), circumnutation (MULTIGEN-1), cell wall dynamics and gravity resistance (Cell wall/Resist wall), proteomic identification of signalling players (GENARA-A) and mechanism of InsP3 signalling (Plant signalling). The role of light in cell proliferation and plant development in the absence of gravity is being analysed in an on-going experiment (Seedling growth). Based on the lessons learned from the acquired experience, three preselected ISS experiments have been merged and implemented as a single project (Plant development) to study early phases of seedling development. A Topical Team initiated by European Space Agency (ESA), involving experienced scientists on Arabidopsis space research experiments, aims at establishing a coordinated, long-term scientific strategy to understand the role of gravity in Arabidopsis growth and development using already existing or planned new hardware.

  5. The cultivation of energy crops for biogas production and the application of digestates are characterized by high variability of CO2 exchange and soil organic C stock changes

    NASA Astrophysics Data System (ADS)

    Augustin, Juergen; Fiedler, Sebastian; Heintze, Gawan; Rohwer, Marcus; Prescher, Anne-Katrin; Pohl, Madlen; Jurisch, Nicole; Hagemann, Ulrike

    2017-04-01

    variable positive and negative C budgets. This indicates that, in most cases, neither the selected crops nor the application of anaerobic digestates were sufficient to compensate for SOC losses. Apparently, the potential of anaerobic digestates to maintain or increase SOC stocks is considerably smaller than expected. If continuous decreases of SOC stocks due to energy crop cultivation are to be avoided, additional studies on the optimization of crop rotations (selection of plants with high C input), and digestate fertilization (type of digestate, amount and application technique) are required. A continuously improved version of the methodology used in this study promises faster and more precise results than classic long-term field trials.

  6. Energy fluxes and surface characteristics over a cultivated area in Benin: daily and seasonal dynamics

    NASA Astrophysics Data System (ADS)

    Mamadou, O.; Cohard, J. M.; Galle, S.; Awanou, C. N.; Diedhiou, A.; Kounouhewa, B.; Peugeot, C.

    2014-03-01

    Latent and sensible heat surface fluxes are key factors of the western African monsoon dynamics. However, few long-term observations of these land surface fluxes are available; these are needed to increase understanding of the underlying processes and assess their impacts on the energy and water cycles at the surface-atmosphere interface. This study analyzes turbulent fluxes of one full year, measured with the eddy covariance technique, over a cultivated area in northern Benin (western Africa). The study site is part of the long-term AMMA-CATCH (African Monsoon Multidisciplinary Analysis-Coupling of the Tropical Atmosphere and Hydrological Cycle) hydrological observatory. The flux partitioning was investigated through the evaporative fraction (EF) and the Bowen ratio (β) at both seasonal and daily scales. Finally, the surface conductance (Gs) and the decoupling coefficient (Ω) were calculated and compared with specific bare soil or canopy models. Four contrasting seasons were identified and characterized by their typical daily energy cycles. The results pointed out the contrasting seasonal variations of sensible and latent heat fluxes due to changing atmospheric and surface conditions. In the dry season, the sensible heat fluxes were largely dominant (β ~ 10) and a low but significant evapotranspiration was measured (EF = 0.08); this was attributed to a few neighboring bushes, possibly fed by the water table. During the wet season, after the monsoon onset, surface conditions barely affected the evaporative fraction (EF), which remained steady (EF = 0.75); the latent heat flux was dominant and the Bowen ration (β) was about 0.4. During the dry-to-wet and wet-to-dry transition seasons, both EF and β were highly variable, as they depended on the atmospheric forcing or the response to isolated rains. A complete surface-atmosphere decoupling was never observed in 2008 (0 < Ω < 0.6), which suggests a systematic mixing of the air within the canopy with the

  7. Interactions of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes plants cultivated in a gnotobiotic system.

    PubMed

    Jablasone, Julietta; Warriner, Keith; Griffiths, Mansel

    2005-03-01

    The growth and persistence of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes on a diverse range of plant types over extended cultivation periods was studied. When introduced on the seed of carrot, cress, lettuce, radish, spinach and tomato all the pathogens became rapidly established shortly after germination, attaining cell densities of the order of 5.5-6.5 log cfu/g. In general, Es. coli O157:H7 and L. monocytogenes became established and persisted at significantly higher levels on seedlings (9 days post-germination) than Salmonella. Es. coli O157:H7 became internalized in cress, lettuce, radish and spinach seedlings but was not recovered within the tissues of mature plants. Internalization of Salmonella was also observed in lettuce and radish but not cress or spinach seedlings. In contrast, L. monocytogenes did not internalize within seedlings but did persist on the surface of plants throughout the cultivation period. Co-inoculation of isolates recovered from the rhizosphere of plants did not significantly affect the numbers or persistence of human pathogens. The only exception was with Enterobacter cloacae, which reduced Es. coli O157:H7 Ph1 and L. monocytogenes levels by ca. 1 log cfu/g on lettuce. With the bioluminescent phenotype of Es. coli O157:H7 Ph1, it was demonstrated that the human pathogen became established on the roots of growing plants. Scanning electron micrographs of root seedlings suggested that Es. coli O157:H7 Ph1 preferentially colonized the root junctions of seedlings. It is proposed that such colonization sites enhanced the persistence of Es. coli O157:H7 on plants and facilitated internalization within developing seedlings. The results suggest that the risk associated with internalized human pathogens in salad vegetables at harvest is low. Nevertheless, the introduction of human pathogens at an early stage of plant development could enhance their persistence in the rhizosphere. The implications of the study

  8. Energy conservation in small meat, poultry and dairy processing plants

    SciTech Connect

    Hausen, C.L.; Fields, E.L.; Huff, R.C.

    1983-06-01

    Energy audits were performed in twenty-three small (generally under 50 employees) meat, poultry and dairy processing plants. Energy conservation opportunities with the greatest potential for net gain in a plant are listed and discussed. Relationships between product throughput and energy consumption are reported.

  9. Changes in operational procedures to improve spaceflight experiments in plant biology in the European Modular Cultivation System

    NASA Astrophysics Data System (ADS)

    Kiss, John Z.; Aanes, Gjert; Schiefloe, Mona; Coelho, Liz H. F.; Millar, Katherine D. L.; Edelmann, Richard E.

    2014-03-01

    The microgravity environment aboard orbiting spacecraft has provided a unique laboratory to explore topics in basic plant biology as well as applied research on the use of plants in bioregenerative life support systems. Our group has utilized the European Modular Cultivation System (EMCS) aboard the International Space Station (ISS) to study plant growth, development, tropisms, and gene expression in a series of spaceflight experiments. The most current project performed on the ISS was termed Seedling Growth-1 (SG-1) which builds on the previous TROPI (for tropisms) experiments performed in 2006 and 2010. Major technical and operational changes in SG-1 (launched in March 2013) compared to the TROPI experiments include: (1) improvements in lighting conditions within the EMCS to optimize the environment for phototropism studies, (2) the use of infrared illumination to provide high-quality images of the seedlings, (3) modifications in procedures used in flight to improve the focus and overall quality of the images, and (4) changes in the atmospheric conditions in the EMCS incubator. In SG-1, a novel red-light-based phototropism in roots and hypocotyls of seedlings that was noted in TROPI was confirmed and now can be more precisely characterized based on the improvements in procedures. The lessons learned from sequential experiments in the TROPI hardware provide insights to other researchers developing space experiments in plant biology.

  10. Photosynthetic activity and growth analysis of the plant {Costus spicatus} cultivated under different light conditions

    NASA Astrophysics Data System (ADS)

    Campos, V. M.; Pasin, L. A. A. P.; Barja, P. R.

    2008-01-01

    The aim of the present work was to evaluate the effect of different radiance levels (25%, 50% and 100% of full sunlight) in growth (height, leaf area, number of leaves) and photosynthetic activity of the plant Costus spicatus, popularly known in Brazil as Caninha do Brejo. Photoacoustic (PA) measurements were performed in order to evaluate comparatively the photosynthetic activity rate of plants submitted to different light intensity regimes. The results obtained show that plants maintained under low light intensity levels (25% of sunlight) presented higher height, leaf area and number of leaves, while plants grown under full sunlight presented higher radicular length. PA measurements indicated higher photosynthetic rate for plants grown under 50% of full sunlight, but plants developed under 25% of full sunlight (75% shading) presented the fastest response to light incidence (photosynthetic induction).

  11. Energy fluxes and surface characteristics over a cultivated area in Benin: daily and seasonal dynamics

    NASA Astrophysics Data System (ADS)

    Mamadou, O.; Cohard, J. M.; Galle, S.; Awanou, C. N.; Diedhiou, A.; Kounouhewa, B.; Peugeot, C.

    2013-08-01

    Latent and sensible heat fluxes are known as key factors in the West African monsoon dynamics. However, few long-term observations of these land surface fluxes are available to document their impact in the climate variability of this region. The present study took advantage of the Sudanian site of the AMMA-CATCH (African Monsoon Multidisciplinary Analysis - Coupling the Tropical Atmosphere and Hydrological Cycle) observatory where turbulent fluxes were measured using the eddy covariance technique. One full year of data of energy budget over a cultivated site located in northern Benin was examined. Four contrasted seasons were identified and detailed focusing on their corresponding daily cycles. The flux partitioning was investigated through the evaporative fraction (EF) and the Bowen ratio (β) at both seasonal and daily scales. Finally, the surface conductance (Gs) and the decoupling coefficient (Ω) were calculated and confronted with specific bare soil or canopy models to identify the main processes for each season. The results pointed out the contrasted seasonal variations of sensible and latent heat fluxes due to changing atmospheric and surface conditions. During the wet season, surface conditions barely affected EF, which remained in steady regime (EF = 0.75), while latent heat flux was dominant and β was about 0.4. During the transitional periods, both EF and β were highly variable. A low but significant evapotranspiration was measured in the dry season (EF = 0.08) attributed to few scattered bushes, distributed on a bare area, possibly fed by the water table. Nevertheless, sensible heat fluxes were largely dominant (β ~ 10) during dry season. Moreover, β revealed the ligneous vegetation flowering dynamics during the dry season. The results also showed a strong surface atmosphere coupling, which suggests a systematic mixing of the flow within the canopy with the atmospheric surface layer whatever the atmospheric conditions and vegetation height

  12. AVESTAR Center for Operational Excellence of Clean Energy Plants

    SciTech Connect

    Zitney, Stephen

    2012-01-01

    To address challenges in attaining operational excellence for clean energy plants, the U.S. Department of Energy's National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR{trademark}). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This presentation will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission energy plants.

  13. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    SciTech Connect

    Worrell, Ernst; Angelini, Tana; Masanet, Eric

    2010-07-27

    In the United States, industry spends over $100 billion annually to power its manufacturing plants. Companies also spend on maintenance, capital outlay, and energy services. Improving energy efficiency is vital to reduce these costs and increase earnings. Many cost-effective opportunities to reduce energy consumption are available, and this Energy Guide discusses energy-efficiency practices and energy-efficient technologies that can be applied over a broad spectrum of companies. Strategies in the guide address hot water and steam, compressed air, pumps, motors, fans, lighting, refrigeration, and heating, ventilation, and air conditioning. This guide includes descriptions of expected energy and cost savings, based on real-world applications, typical payback periods, and references to more detailed information. The information in this Energy Guide is intended to help energy and plant managers achieve cost-effective energy reductions while maintaining product quality. Further research on the economics of all measures--as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  14. Salicylic acid elicitation during cultivation of the peppermint plant improves anti-diabetic effects of its infusions.

    PubMed

    Figueroa-Pérez, Marely G; Gallegos-Corona, Marco A; Ramos-Gomez, Minerva; Reynoso-Camacho, Rosalía

    2015-06-01

    Peppermint (Mentha piperita) infusions represent an important source of bioactive compounds with health benefits, which can be enhanced by applying salicylic acid (SA) during plant cultivation. The aim of this study was to evaluate the effect of SA (0, 0.5 and 2 mM) during peppermint cultivation on the chemical profile of saponins and alkaloids, as well as the anti-diabetic properties of the resulting infusions. The results showed that a 2 mM SA treatment significantly improved the chemical profiles of the infusions. Furthermore, the administration of 2 mM SA-treated peppermint infusions for 4 weeks to a high-fat diet/streptozotocin-induced diabetic rats decreased serum glucose levels (up to 25%) and increased serum insulin levels (up to 75%) as compared with the diabetic control. This can be related to the observed protection on pancreatic β-cells. Furthermore, 0.5 and 2 mM SA-treated peppermint infusions decreased LDL (24 and 47%, respectively) and increased HDL levels (18 and 37%, respectively). In addition, all groups treated with peppermint infusions had lower serum and liver triglyceride contents, where 2 mM SA peppermint infusion showed the highest effect (44% and 56%, respectively). This is probably caused by its higher capacity to inhibit pancreatic lipase activity and lipid absorption. Moreover, SA-treated peppermint infusions improved the steatosis score in diabetic rat liver and decreased serum transaminase levels, probably as a result of the increase in steroidal saponins and alkaloids, such as trigonellin. Therefore, the application of 2 mM SA during cultivation of peppermint could be used to improve the anti-diabetic properties of peppermint infusions.

  15. Cultivation of vancomycin-resistant enterococci and methicillin-resistant staphylococci from input and output samples of German biogas plants.

    PubMed

    Glaeser, Stefanie P; Sowinsky, Olivia; Brunner, Jana S; Dott, Wolfgang; Kämpfer, Peter

    2016-03-01

    Vancomycin-resistant enterococci (VRE) and methicillin-resistant staphylococci (MRS) were detected in two mesophilic German biogas plants (BGPs) using selective pre-enrichment methods combined with cultivation on CHROMagar media and antibiotic resistance gene screening. Genetic fingerprinting and 16S rRNA gene sequencing showed the presence of enterococci isolated by the VRE selective cultivation (67 isolates) in input and output samples of BGPs. In contrast, MRS (44 isolates) were detected in input, but in none of the output samples. Enterococcus isolates showed highest 16S rRNA gene sequence similarity (>99.8%) to E. lemanii, E. casseliflavus/E. gallinarium or E. devriesei/E. pseudoavium/E. viikkiensis and carried vanA, vanB and/or vanC1 genes. Enterococcus faecium and E. faecalis VRE were not detected, but isolates closely related to those species (>99.9% 16S rRNA gene sequence similarity) were detected by the MRS selective cultivation methods. Staphylococcus isolates shared highest 16S rRNA gene sequence similarity (>99.9%) with S. haemolyticus, S. lentus and S. sciuri and carried mecA genes. Methicillin-resistant S. aureus (MRSA) were not detected. In summary, manure from livestock husbandry contained both, VRE and MRS. VRE were also detected in output samples, indicating that enterococci with vancomycin resistance genes could be release into the environment by the application of BGP output material as biofertilizers. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Mineral content of culinary and medicinal plants cultivated by Hmong refugees living in Sacramento, California.

    PubMed

    Corlett, Jan L; Clegg, Michael S; Keen, Carl L; Grivetti, Louis E

    2002-03-01

    Since the end of the American-Vietnamese War in 1975, more than 1.5 million refugees from Southeast Asia have resettled in the United States. Included among these displaced persons were the Hmong from Laos, a subsistence-based, shifting-cultivation, agricultural society. Hmong who resettled in urban areas have viewed vacant lots adjacent to urban dwellings as potential garden sites for production of familiar herbs and vegetables. In the present study exotic culinary and medicinal herbs grown by Hmong refugees in Sacramento, California were identified and analyzed for mineral composition. The herbs grown in these urban gardens were significant ingredients of Hmong recipes, and herb leaves, or infusions of steamed herb leaves were widely consumed as a component of pregnancy and post-partum diets. Six common species, Acorus gramineus, aff. Angelica, Dendranthema indicum, Eupatorium lindleyana, Sedum aff. sarmentosum, and Sedum aff. spectabile, were used in combination to season chicken. Polygonum odoratum, also widely cultivated, was used to season fish. Exotic culinary-medicinal species with highest mineral profiles included: Basella alba (Ca, Mg, Mn, Zn); Houttuynia cordata (Fe, Mg, Mn); Justica gendarussa (Ca, Mg, Zn); and Polygonum odoratum (Ca, Mg, Mn). While vacant lots sometimes are heavy metal contamination sites, we found no detectable levels of arsenic, cadmium, chromium, or lead in the samples analyzed.

  17. Non-allergenic native and cultivated plants in Oklahoma: landscaping without hay fever.

    PubMed

    Levetin, E; Buck, P

    1984-03-01

    Many common landscaping plants produce allergenic pollen. Hay fever patients can reduce their exposure to aeroallergens by selecting non-allergenic species for yards, lawns and streets. The plants listed here are non-allergenic (hypo-allergenic) and possess characteristics desired for landscaping. Categories described include trees, shrubs, vines, perennial herbs and grasses.

  18. Traditional agroecosystems as conservatories and incubators of cultivated plant varietal diversity: the case of fig (Ficus carica L.) in Morocco.

    PubMed

    Achtak, Hafid; Ater, Mohammed; Oukabli, Ahmed; Santoni, Sylvain; Kjellberg, Finn; Khadari, Bouchaib

    2010-02-18

    Traditional agroecosystems are known to host both large crop species diversity and high within crop genetic diversity. In a context of global change, this diversity may be needed to feed the world. Are these agroecosystems museums (i.e. large core collections) or cradles of diversity? We investigated this question for a clonally propagated plant, fig (Ficus carica), within its native range, in Morocco, but as far away as possible from supposed centers of domestication. Fig varieties were locally numerous. They were found to be mainly highly local and corresponded to clones propagated vegetatively. Nevertheless these clones were often sufficiently old to have accumulated somatic mutations for selected traits (fig skin color) and at neutral loci (microsatellite markers). Further the pattern of spatial genetic structure was similar to the pattern expected in natural population for a mutation/drift/migration model at equilibrium, with homogeneous levels of local genetic diversity throughout Moroccan traditional agroecosystems. We conclude that traditional agroecosystems constitue active incubators of varietal diversity even for clonally propagated crop species, and even when varieties correspond to clones that are often old. As only female fig is cultivated, wild fig and cultivated fig probably constitute a single evolutionary unit within these traditional agroecosystems. Core collections, however useful, are museums and hence cannot serve the same functions as traditional agroecosystems.

  19. Traditional agroecosystems as conservatories and incubators of cultivated plant varietal diversity: the case of fig (Ficus carica L.) in Morocco

    PubMed Central

    2010-01-01

    Background Traditional agroecosystems are known to host both large crop species diversity and high within crop genetic diversity. In a context of global change, this diversity may be needed to feed the world. Are these agroecosystems museums (i.e. large core collections) or cradles of diversity? We investigated this question for a clonally propagated plant, fig (Ficus carica), within its native range, in Morocco, but as far away as possible from supposed centers of domestication. Results Fig varieties were locally numerous. They were found to be mainly highly local and corresponded to clones propagated vegetatively. Nevertheless these clones were often sufficiently old to have accumulated somatic mutations for selected traits (fig skin color) and at neutral loci (microsatellite markers). Further the pattern of spatial genetic structure was similar to the pattern expected in natural population for a mutation/drift/migration model at equilibrium, with homogeneous levels of local genetic diversity throughout Moroccan traditional agroecosystems. Conclusions We conclude that traditional agroecosystems constitue active incubators of varietal diversity even for clonally propagated crop species, and even when varieties correspond to clones that are often old. As only female fig is cultivated, wild fig and cultivated fig probably constitute a single evolutionary unit within these traditional agroecosystems. Core collections, however useful, are museums and hence cannot serve the same functions as traditional agroecosystems. PMID:20167055

  20. Seed-borne viral dsRNA elements in three cultivated Raphanus and Brassica plants suggest three cryptoviruses.

    PubMed

    Li, Liqiang; Liu, Jianning; Zhang, Qiong; Fu, Runying; Zhu, Xiwu; Li, Chao; Chen, Jishuang

    2016-04-01

    Since the 1970s, several dsRNA viruses, including Radish yellow edge virus, Raphanus sativus virus 1, Raphanus sativus virus 2, and Raphanus sativus virus 3, have been identified and reported as infecting radish. In the present study, in conjunction with a survey of seed-borne viruses in cultivated Brassica and Raphanus using the dsRNA diagnostic method, we discovered 3 novel cryptoviruses that infect Brassica and Raphanus: Raphanus sativus partitivirus 1, which infects radish (Raphanus sativus); Sinapis alba cryptic virus 1, which infects Sinapis alba; and Brassica rapa cryptic virus 1 (BrCV1), which infects Brassica rapa. The genomic organization of these cryptoviruses was analyzed and characterized. BrCV1 might represent the first plant partitivirus found in Gammapartitivirus. Additionally, the evolutionary relationships among all of the partitiviruses reported in Raphanus and Brassica were analyzed.

  1. [Survey and analysis of circulation and cultivation of medicinal plants in Tangchang county].

    PubMed

    Wang, Si-cheng

    2014-12-01

    The article sort out the main planting information of Chinese medicinal materials in Tanchang county from 2012 to 2014, through doing a questionnaire survey, setting technical training and communicating with people who plant, process, and sell the Chinese medicinal materials in the main producing area in 25 villages and towns of Tanchang county. By analyzing the results, the author pointed out the current situation of Chinese medicinal material planting, processing, trading and also the existing problems, and gave a proposal and strategy to the industrial development of Chinese medicinal materials, therefore, set an example to the development of the county territory.

  2. Wind Plant Preconstruction Energy Estimates. Current Practice and Opportunities

    SciTech Connect

    Clifton, Andrew; Smith, Aaron; Fields, Michael

    2016-04-19

    Understanding the amount of energy that will be harvested by a wind power plant each year and the variability of that energy is essential to assessing and potentially improving the financial viability of that power plant. The preconstruction energy estimate process predicts the amount of energy--with uncertainty estimates--that a wind power plant will deliver to the point of revenue. This report describes the preconstruction energy estimate process from a technical perspective and seeks to provide insight into the financial implications associated with each step.

  3. Benchmarks for the energy demand of nutrient removal plants.

    PubMed

    Nowak, O

    2003-01-01

    The energy demand of municipal wastewater treatment plants for nutrient removal equipped with primary clarifiers, activated sludge system, anaerobic sludge digestion, and CHP is evaluated theoretically, on the basis of COD balances. Operational experience from energy-efficient Austrian treatment plants confirms that the demand on external electrical energy can be kept as low as 5 to 10 kWh/(pe.a) depending on the N:COD ratio in the raw wastewater. A low N:COD ratio helps to keep not only the effluent nitrogen load low, but also the energy demand. Measures to minimise the energy demand at treatment plants and to reduce the nitrogen load are discussed.

  4. AVESTAR Center for Operational Excellence of Clean Energy Plants

    SciTech Connect

    Zitney, Stephen

    2012-05-01

    To address challenges in attaining operational excellence for clean energy plants, the U.S.Department of Energy’s National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR™). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This presentation will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission energy plants.

  5. Growth and anaerobic digestion characteristics of microalgae cultivated using various types of sewage.

    PubMed

    Hidaka, Taira; Inoue, Kenichiro; Suzuki, Yutaka; Tsumori, Jun

    2014-10-01

    Microalgal cultivation combined with anaerobic digestion at wastewater treatment plants is promising to recover energy. This study investigated the growth and anaerobic digestion characteristics of microalgae cultivated using nutrients in sewage. Microalgae were cultivated using primary effluent, secondary effluent, and dewatering filtrate. Microscopic observation indicated that Chlorella was cultivated using dewatering filtrate of anaerobic digestion without controlling the type of species. Batch anaerobic digestion experiments with digested sludge showed that the methane conversion ratio of the cultivated mixture was approximately 40-65%. Different cultivation time did not affect the microalgal contents. Methane recovery mass was 0.13NL-methane/L-cultivation liquor. The C/N ratio of the cultivated mixture was approximately 3-5, but the apparent ammonia release ratio was smaller than that of sewage sludge during digestion. These results proved the applicability of methane recovery from microalgae cultivated using nutrients included in anaerobically digested sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Application of PIXE analysis to investigation of plants cultivated with contaminated soil of Fukushima

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Terakawa, A.; Matsuyama, S.; Ishizaki, A.; Arai, H.; Osada, N.; Sugai, H.; Takahashi, H.; Sera, K.; Sasaki, H.; Sasaki, K.; Sawamura, T.

    2014-08-01

    We present a method to research low radioactive cesium contaminated plants by the use of PIXE analysis. Highly contaminated regions still remain in the Fukushima prefecture. We collected wild plants growing in this area, that is, Butterbur, Welsh onion, Alpine leek and White clover and measured their specific activities of 137Cs and 40K. We also measured 137Cs and 40K specific activities of soil under these plants. Soil-to-plant transfer factors of 137Cs were ∼0.02 for 4 wild plants and those of 40K were ∼0.5 except for White clover. Using PIXE analysis, we measured the concentration of mineral elements in these plants. Among mineral elements, we noted the concentrations of additional alkali metal elements such as Na, K and Rb. The experimental results showed that the concentration of Rb was proportional to the specific activities of 137Cs except for Welsh onion and other elements had no strong correlation with 137Cs. These results indicate that there may be correlations between the adsorption of Cs and Rb.

  7. A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico.

    PubMed

    Estrada, Paulina; Mavingui, Patrick; Cournoyer, Benoit; Fontaine, Fanette; Balandreau, Jacques; Caballero-Mellado, Jesus

    2002-04-01

    In the frame of a survey of potentially endophytic N2-fixing Burkholderia associated with maize in Mexico, its country of origin, the soil of an indigenous maize field near Oaxaca was studied. Under laboratory conditions, plant seedlings of two ancient maize varieties were used as a trap to select endophyte candidates from the soil sample. Among the N2 fixers isolated from inside plant tissues and able to grow on PCAT medium, the most abundant isolates belonged to genus Burkholderia (API 20NE, rrs sequences). Representative isolates obtained from roots and shoots of different plants appeared identical (rrs and nifH RFLP), showing that they were closely related. In addition, their 16S rDNA sequences differed from described Burkholderia species and, phylogenetically, they constituted a separate deep-branching new lineage in genus Burkholderia. This indicated that these isolates probably constituted a new species. An inoculation experiment confirmed that these N2-fixing Burkholderia isolates could densely colonize the plant tissues of maize. More isolates of this group were subsequently obtained from field-grown maize and teosinte plants. It was hypothesized that strains of this species had developed a sort of primitive symbiosis with one of their host plants, teosinte, which persisted during the domestication of teosinte into maize.

  8. The model of the controllable radiation source for stimulation of growth and maturing of fruits of cultivated plants

    NASA Astrophysics Data System (ADS)

    Shkavro, Anastasia I.; Peretyagin, Vladimir S.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2017-02-01

    The description of the LED optical-electronic lighting system of plants for stimulation of growth and maturing of fruits of different cultures is provided in this work. Also the results of experimental research on the selection of components are presented. The results of energy calculations and 3D modeling of the distribution of the radiation fluxes generated from the source are included. Moreover, the design of optoelectronic plant lighting system layout was proposed.

  9. Power Plants: A Plant-Based Energy Curriculum for Grades 5 through 8.

    ERIC Educational Resources Information Center

    National Gardening Association, Burlington, VT.

    The ability to utilize and change energy is one of the most fundamental characteristics of living things. Plants have the unique ability to change light energy into the chemical energy on which human beings depend for such things as fuel and food. Through the activities in this book students examine how plants and other living things use and…

  10. [Study on the nitrogen and phosphorus uptake ability of four plants cultivated on floating-bed].

    PubMed

    Wu, Jian-Qiang; Wang, Min; Wu, Jian; Jiang, Yue; Sun, Cong-Jun; Cao, Yong

    2011-04-01

    Plant floating-bed tested engineering was constructed for eutrophication control in Dian-shan Lake, the characteristics and nutrient uptake abilities of Canna indica, Iris pseudacorus, Thalia dealbata and Lythrum salicaria were compared. It shows that using upper and lower nylon nets to fix the plants on the floating-bed is beneficial for them to grow and reproduce rapidly. Survival rates of Canna indica, lris pseudacorus, Thalia dealbata and Lythrum salicaria are 83.33%, 83.33%, 76.67% and 53.33% respectively. Ramets of Canna indica and Thalia dealbata are 64 and 78 respectively in November, and the biomass (fresh weight) of these two plants are 32.0 and 38.6 kg per individual plant. Nitrogen (N) and phosphorus (P) content in stems/leaves of Canna indica and Thalia dealbata are greater than those in roots. The ratio between stems/leaves and roots of N, P content in Canna indica are 1.40 and 1.21 respectively, while 1.59 and 1.08 in Thalia dealbata. The difference of cumulative N, P content in plants is mostly on account of different plant biomass. N uptake ability of Thalia dealbata is the highest, which is 457.11 g per square; Canna indica has the highest P uptake ability, which is 41.29 g per square. N, P uptake ability of stems/leaves in Canna indica are 2.17 and 1.86 times higher than that of roots, while 1.73 and 1.17 times higher respectively in Thalia dealbata. Thus, Canna indica and Thalia dealbata are recommended as the floating-bed plants to control the eutrophication in Dian-shan Lake.

  11. Ecological specialization of the aphid Aphis gossypii Glover on cultivated host plants.

    PubMed

    Carletto, J; Lombaert, E; Chavigny, P; Brévault, T; Lapchin, L; Vanlerberghe-Masutti, F

    2009-05-01

    Many plant-feeding insect species considered to be polyphagous are in fact composed of genetically differentiated sympatric populations that use different hosts and between which gene flow still exists. We studied the population genetic structure of the cotton-melon aphid Aphis gossypii that is considered as one of the most polyphagous aphid species. We used eight microsatellites to analyse the genetic diversity of numerous samples of A. gossypii collected over several years at a large geographical scale on annual crops from different plant families. The number of multilocus genotypes detected was extremely low and the genotypes were found to be associated with host plants. Five host races were unambiguously identified (Cucurbitaceae, cotton, eggplant, potato and chili- or sweet pepper). These host races were dominated by asexual clones. Plant transfer experiments using several specialized clones further confirmed the existence of host-associated trade-offs. Finally, both genetic and experimental data suggested that plants of the genus Hibiscus may be used as refuge for the specialized clones. Resource abundance is discussed as a key factor involved in the process of ecological specialization in A. gossypii.

  12. Solar Power Plants: Dark Horse in the Energy Stable

    ERIC Educational Resources Information Center

    Caputo, Richard S.

    1977-01-01

    Twelfth in a series of reports on solar energy, this article provides information relating to the following questions: (1) economic cost of solar-thermal-electric central power plants; (2) cost comparison with nuclear or coal plants; (3) locations of this energy source; and (4) its use and social costs. (CS)

  13. Solar Power Plants: Dark Horse in the Energy Stable

    ERIC Educational Resources Information Center

    Caputo, Richard S.

    1977-01-01

    Twelfth in a series of reports on solar energy, this article provides information relating to the following questions: (1) economic cost of solar-thermal-electric central power plants; (2) cost comparison with nuclear or coal plants; (3) locations of this energy source; and (4) its use and social costs. (CS)

  14. Impact of planting dates on a seed maggot, Neotephritis finalis (Diptera: Tephritidae), and sunflower bud moth (Lepidoptera: Tortricidae) damage in cultivated sunflower

    USDA-ARS?s Scientific Manuscript database

    Neotephritis finalis (Loew) (Diptera: Tephritidae), and sunflower bud moth, Suleima helianthana (Riley) (Lepidoptera: Tortricidae) are major head-infesting insect pests of cultivated sunflower (Helianthus annuus L.). Planting date was evaluated as a cultural pest management strategy for control of N...

  15. Effect of Medicinal Plants Cultivation on the Physicochemical Properties of Leached Chernozem

    NASA Astrophysics Data System (ADS)

    Svistova, I. D.; Stekol'nikov, K. E.; Paramonov, A. Yu.; Kuvshinova, N. M.

    2016-02-01

    For the first time, a nonspecific neutralizing effect of rhizodeposits of medicinal plants has been found in a leached chernozem. The neutralization of actual, exchangeable, and total acidity of the soil takes place against the background of a decrease in the activity of calcium ions in the soil solution. It can be supposed that this effect is due to the release of secondary metabolites of phenol nature in the rhizodeposits. These substances can change the anionic composition of the soil adsorption complex. Plant species with the maximum effect on the composition of the soil adsorption complex have been identified.

  16. Exploring Plants, Insects, and Animals: Opportunities for Cultivating Empathy in Children

    ERIC Educational Resources Information Center

    Belz, Paul

    2012-01-01

    Imagine what a child can learn by slithering across the ground like a worm or snail! Children learn many things from their connections with beautiful living things such as flowers and rabbits. Many adults are surprised when young scientists identify with "yucky" animals and plants. A child who connects with creatures ranging from the cuddly to the…

  17. Exploring Plants, Insects, and Animals: Opportunities for Cultivating Empathy in Children

    ERIC Educational Resources Information Center

    Belz, Paul

    2012-01-01

    Imagine what a child can learn by slithering across the ground like a worm or snail! Children learn many things from their connections with beautiful living things such as flowers and rabbits. Many adults are surprised when young scientists identify with "yucky" animals and plants. A child who connects with creatures ranging from the cuddly to the…

  18. Harvesting the biosynthetic machineries that cultivate a variety of indispensable plant natural products

    PubMed Central

    Vickery, Christopher R; La Clair, James J; Burkart, Michael D; Noel, Joseph P

    2016-01-01

    Plants are a sustainable resource for valuable natural chemicals best illustrated by large-scale farming centered on specific products. Here, we review recent discoveries of plant metabolic pathways producing natural products with unconventional biomolecular structures. Prenylation of polyketides by aromatic prenyltransferases (aPTases) ties together two of the major groups of plant specialized chemicals, terpenoids and polyketides, providing a core modification leading to new bioactivities and downstream metabolic processing. Moreover, PTases that biosynthesize Z-terpenoid precursors for small molecules such as lycosantalene have recently been found in the tomato family. Gaps in our understanding of how economically important compounds such as cannabinoids are produced are being identified using next-generation ‘omics’ to rapidly advance biochemical breakthroughs at an unprecedented rate. For instance, olivetolic acid cyclase, a polyketide synthase (PKS) co-factor from Cannabis sativa, directs the proper cyclization of a polyketide intermediate. Elucidations of spatial and temporal arrangements of biosynthetic enzymes into metabolons, such as those used to control the efficient production of natural polymers such as rubber and defensive small molecules such as linamarin and lotaustralin, provide blueprints for engineering streamlined production of plant products. PMID:26851514

  19. D-Root: a system for cultivating plants with the roots in darkness or under different light conditions.

    PubMed

    Silva-Navas, Javier; Moreno-Risueno, Miguel A; Manzano, Concepción; Pallero-Baena, Mercedes; Navarro-Neila, Sara; Téllez-Robledo, Bárbara; Garcia-Mina, Jose M; Baigorri, Roberto; Gallego, Francisco Javier; del Pozo, Juan C

    2015-10-01

    In nature roots grow in the dark and away from light (negative phototropism). However, most current research in root biology has been carried out with the root system grown in the presence of light. Here, we have engineered a device, called Dark-Root (D-Root), to grow plants in vitro with the aerial part exposed to the normal light/dark photoperiod while the roots are in the dark or exposed to specific wavelengths or light intensities. D-Root provides an efficient system for cultivating a large number of seedlings and easily characterizing root architecture in the dark. At the morphological level, root illumination shortens root length and promotes early emergence of lateral roots, therefore inducing expansion of the root system. Surprisingly, root illumination also affects shoot development, including flowering time. Our analyses also show that root illumination alters the proper response to hormones or abiotic stress (e.g. salt or osmotic stress) and nutrient starvation, enhancing inhibition of root growth. In conclusion, D-Root provides a growing system closer to the natural one for assaying Arabidopsis plants, and therefore its use will contribute to a better understanding of the mechanisms involved in root development, hormonal signaling and stress responses.

  20. Cultivation-Independent Characterization of Methylobacterium Populations in the Plant Phyllosphere by Automated Ribosomal Intergenic Spacer Analysis▿ †

    PubMed Central

    Knief, Claudia; Frances, Lisa; Cantet, Franck; Vorholt, Julia A.

    2008-01-01

    Bacteria of the genus Methylobacterium are widespread in the environment, but their ecological role in ecosystems, such as the plant phyllosphere, is not very well understood. To gain better insight into the distribution of different Methylobacterium species in diverse ecosystems, a rapid and specific cultivation-independent method for detection of these organisms and analysis of their community structure is needed. Therefore, 16S rRNA gene-targeted primers specific for this genus were designed and evaluated. These primers were used in PCR in combination with a reverse primer that binds to the tRNAAla gene, which is located upstream of the 23S rRNA gene in the 16S-23S intergenic spacer (IGS). PCR products that were of different lengths were obtained due to the length heterogeneity of the IGS of different Methylobacterium species. This length variation allowed generation of fingerprints of Methylobacterium communities in environmental samples by automated ribosomal intergenic spacer analysis. The Methylobacterium communities on leaves of different plant species in a natural field were compared using this method. The new method allows rapid comparisons of Methylobacterium communities and is thus a useful tool to study Methylobacterium communities in different ecosystems. PMID:18263752

  1. Steviol glycosides targeted analysis in leaves of Stevia rebaudiana (Bertoni) from plants cultivated under chilling stress conditions.

    PubMed

    Soufi, Sihem; D'Urso, Gilda; Pizza, Cosimo; Rezgui, Salah; Bettaieb, Taoufik; Montoro, Paola

    2016-01-01

    Stevia rebaudiana is an important agricultural crop for the production of a high-potency natural sweetener, sensitive to low temperature during the developmental stage. Stimulation of chilling stress with a pre-treatment with endogenous signalling components and in particular with salicylic acid (SA), hydrogen peroxide (H2O2), 6-benzylaminopurine (BAP) and calcium chloride (CaCl2) could induce tolerance to chilling and could constitute a suitable way to maintain quality and quantity of steviol glycosides under controlled artificial environment. In the present work the effects of different putative signalling molecules on the morpho-physiological parameters were evaluated, and a specific method for the quali-quantitative analysis of steviol glycosides in S. rebaudiana plants cultivated under controlled conditions was developed, by using LC-ESI-FT (Orbitrap) MS, LC-ESI-QqQ-MS/MS and multivariate data analysis. This approach underlined that the pre-treatment has influence on the production of secondary metabolites. In particular Stevia plants characterised by higher contents of rebaudioside A and stevioside, were identified.

  2. Do cultivated varieties of native plants have the ability to outperform their wild relatives?

    PubMed

    Schröder, Roland; Prasse, Rüdiger

    2013-01-01

    Vast amounts of cultivars of native plants are annually introduced into the semi-natural range of their wild relatives for re-vegetation and restoration. As cultivars are often selected towards enhanced biomass production and might transfer these traits into wild relatives by hybridization, it is suggested that cultivars and the wild × cultivar hybrids are competitively superior to their wild relatives. The release of such varieties may therefore result in unintended changes in native vegetation. In this study we examined for two species frequently used in re-vegetation (Plantago lanceolata and Lotus corniculatus) whether cultivars and artificially generated intra-specific wild × cultivar hybrids may produce a higher vegetative and generative biomass than their wilds. For that purpose a competition experiment was conducted for two growing seasons in a common garden. Every plant type was growing (a.) alone, (b.) in pairwise combination with a similar plant type and (c.) in pairwise interaction with a different plant type. When competing with wilds cultivars of both species showed larger biomass production than their wilds in the first year only and hybrids showed larger biomass production than their wild relatives in both study years. As biomass production is an important factor determining fitness and competitive ability, we conclude that cultivars and hybrids are competitively superior their wild relatives. However, cultivars of both species experienced large fitness reductions (nearly complete mortality in L. corniculatus) due to local climatic conditions. We conclude that cultivars are good competitors only as long as they are not subjected to stressful environmental factors. As hybrids seemed to inherit both the ability to cope with the local climatic conditions from their wild parents as well as the enhanced competitive strength from their cultivars, we regard them as strong competitors and assume that they are able to outperform their wilds at least over

  3. [Autotoxicity of aqueous extracts from plant of cultivated Astragalus membranaceus var. mongholicus].

    PubMed

    Zhang, Xin-Hui; Lang, Duo-Yong; Chen, Jing; Zhao, Yun-Sheng; Wu, Xiu-Li; Fu, Xue-Yan

    2014-02-01

    To exploring the relationship between continuous cropping obstacle and autotoxicity of Astragalus membranaceus var. mongholicus, autotoxic effect of plant aqueous extract were determined. Distilled water (CK), aqueous extract of plant, including root, stem and leaf (12.5, 25, 50 and 100 mg/mL respectively)were applied to testing their effect on early growth of Astragalus membranaceus var. mongholicus. Specifically, seed germination rate, germination index, emergence rate, elongation of radical and embryo, and seedling vigor index were determined. The aqueous extract of root, stem, and leaf at 25 mg/mL significantly inhibited the seed germination and seedling growth of Astragalus membranaceus var. mongholicus, and this inhibitory effect generally increased with the increase of the concentration of aqueous extracts. To the comprehensive allelopathic effect, the extracts from Astragalus membranaceus var. mongholicus stem were more inhibitory than those from leaf and root. The germination index and seedling vigor index were more sensitive to extract than other determined parameters. Aqueous extracts from Astragalus membranaceus var. mongholicus plant gave inhibitory effects on Astragalus. membranaceus var. mongholicus germination and seedling growth, and this inhibitory effect generally increased with the increases of aqueous extract concentration at a certain ranges. In conclusion, there is an autotoxicity in continuous cropping of Astragalus membranaceus var. mongholicus.

  4. Selected phenolic compounds in cultivated plants: ecologic functions, health implications, and modulation by pesticides.

    PubMed Central

    Daniel, O; Meier, M S; Schlatter, J; Frischknecht, P

    1999-01-01

    Phenolic compounds are widely distributed in the plant kingdom. Plant tissues may contain up to several grams per kilogram. External stimuli such as microbial infections, ultraviolet radiation, and chemical stressors induce their synthesis. The phenolic compounds resveratrol, flavonoids, and furanocoumarins have many ecologic functions and affect human health. Ecologic functions include defense against microbial pathogens and herbivorous animals. Phenolic compounds may have both beneficial and toxic effects on human health. Effects on low-density lipoproteins and aggregation of platelets are beneficial because they reduce the risk of coronary heart disease. Mutagenic, cancerogenic, and phototoxic effects are risk factors of human health. The synthesis of phenolic compounds in plants can be modulated by the application of herbicides and, to a lesser extent, insecticides and fungicides. The effects on ecosystem functioning and human health are complex and cannot be predicted with great certainty. The consequences of the combined natural and pesticide-induced modulating effects for ecologic functions and human health should be further evaluated. PMID:10229712

  5. Genetic diversity of cultivable plant growth-promoting rhizobacteria in Korea.

    PubMed

    Kim, Won-Il; Cho, Won Kyong; Kim, Su-Nam; Chu, Hyosub; Ryu, Kyoung-Yul; Yun, Jong-Chul; Park, Chang-Seuk

    2011-08-01

    To elucidate the biodiversity of plant growth-promoting rhizobacteria (PGPR) in Korea, 7,638 bacteria isolated from the rhizosphere of plant species growing in many different regions were screened. A large number of PGPR were identified by testing the ability of each isolate to promote the growth of cucumber seedlings. After redundant rhizobacteria were removed via amplified rDNA restriction analysis, 90 strains were finally selected as PGPR. On the basis of 16S ribosomal RNA sequences, 68 Gram-positive (76%) and 22 Gram-negative (24%) isolates were assigned to 21 genera and 47 species. Of these genera, Bacillus (32 species) made up the largest complement, followed by Paenibacillus (19) and Pseudomonas (11). Phylogenetic analysis showed that most of the Grampositive PGPR fell into two categories: low- and high- G+C (Actinobacteria) strains. The Gram-negative PGPR were distributed in three categories: alpha-proteobacteria, beta- proteobacteria, and gamma-proteobacteria. To our knowledge, this is the largest screening study designed to isolate diverse PGPR. The enlarged understanding of PGPR genetic diversity provided herein will expand the knowledge base regarding beneficial plant-microbe interactions. The outcome of this research may have a practical effect on crop production methodologies.

  6. Influence of plant roots on electrical resistivity measurements of cultivated soil columns

    NASA Astrophysics Data System (ADS)

    Maloteau, Sophie; Blanchy, Guillaume; Javaux, Mathieu; Garré, Sarah

    2016-04-01

    Electrical resistivity methods have been widely used for the last 40 years in many fields: groundwater investigation, soil and water pollution, engineering application for subsurface surveys, etc. Many factors can influence the electrical resistivity of a media, and thus influence the ERT measurements. Among those factors, it is known that plant roots affect bulk electrical resistivity. However, this impact is not yet well understood. The goals of this experiment are to quantify the effect of plant roots on electrical resistivity of the soil subsurface and to map a plant roots system in space and time with ERT technique in a soil column. For this research, it is assumed that roots system affect the electrical properties of the rhizosphere. Indeed the root activity (by transporting ions, releasing exudates, changing the soil structure,…) will modify the rhizosphere electrical conductivity (Lobet G. et al, 2013). This experiment is included in a bigger research project about the influence of roots system on geophysics measurements. Measurements are made on cylinders of 45 cm high and a diameter of 20 cm, filled with saturated loam on which seeds of Brachypodium distachyon (L.) Beauv. are sowed. Columns are equipped with electrodes, TDR probes and temperature sensors. Experiments are conducted at Gembloux Agro-Bio Tech, in a growing chamber with controlled conditions: temperature of the air is fixed to 20° C, photoperiod is equal to 14 hours, photosynthetically active radiation is equal to 200 μmol m-2s-1, and air relative humidity is fixed to 80 %. Columns are fully saturated the first day of the measurements duration then no more irrigation is done till the end of the experiment. The poster will report the first results analysis of the electrical resistivity distribution in the soil columns through space and time. These results will be discussed according to the plant development and other controlled factors. Water content of the soil will also be detailed

  7. Building a field- and model-based climatology of local water and energy cycles in the cultivated Sahel - annual budgets and seasonality

    NASA Astrophysics Data System (ADS)

    Velluet, C.; Demarty, J.; Cappelaere, B.; Braud, I.; Issoufou, H. B.-A.; Boulain, N.; Ramier, D.; Mainassara, I.; Charvet, G.; Boucher, M.; Chazarin, J.-P.; Oï, M.; Yahou, H.; Maidaji, B.; Arpin-Pont, F.; Benarrosh, N.; Mahamane, A.; Nazoumou, Y.; Favreau, G.; Seghieri, J.

    2014-05-01

    In the African Sahel, energy and water cycling at the land surface is pivotal for regional climate, water resources and land productivity, yet it is still extremely poorly documented. As a step towards a comprehensive climatological description of surface fluxes in this area, this study provides estimates of average annual budgets and seasonal cycles for two main land use types of the cultivated Sahelian belt, rainfed millet crop and fallow bush. These estimates build on the combination of a 7 year field dataset from two typical plots in southwestern Niger with detailed physically-based soil-plant-atmosphere modelling, yielding a continuous, comprehensive set of water and energy flux and storage variables over the 7 year period. In this study case in particular, blending field data with mechanistic modelling is considered as making best use of available data and knowledge for such purpose. It extends observations by reconstructing missing data and extrapolating to unobserved variables or periods. Furthermore, model constraining with observations compromises between extraction of observational information content and integration of process understanding, hence accounting for data imprecision and departure from physical laws. Climatological averages of all water and energy variables, with associated sampling uncertainty, are derived at annual to subseasonal scales from the 7 year series produced. Similarities and differences in the two ecosystems behaviors are highlighted. Mean annual evapotranspiration is found to represent ~82-85% of rainfall for both systems, but with different soil evaporation/plant transpiration partitioning and different seasonal distribution. The remainder consists entirely of runoff for the fallow, whereas drainage and runoff stand in a 40-60% proportion for the millet field. These results should provide a robust reference for the surface energy- and water-related studies needed in this region. The model developed in this context has the

  8. ENERGY PRODUCTION AND POLLUTION PREVENTION AT SEWAGE TREATMENT PLANTS USING FUEL CELL POWER PLANTS

    EPA Science Inventory

    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  9. ENERGY PRODUCTION AND POLLUTION PREVENTION AT SEWAGE TREATMENT PLANTS USING FUEL CELL POWER PLANTS

    EPA Science Inventory

    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  10. GSTF1 Gene Expression Analysis in Cultivated Wheat Plants under Salinity and ABA Treatments.

    PubMed

    Niazi, Ali; Ramezani, Amin; Dinari, Ali

    2014-03-01

    Most plants encounter stress such as drought and salinity that adversely affect growth, development and crop productivity. The expression of the gene glutathione-s-transferases (GST) extends throughout various protective mechanisms in plants and allows them to adapt to unfavorable environmental conditions. GSTF1 (the first phi GSTFs class) gene expression patterns in the wheat cultivars Mahuti and Alamut were studied under salt and ABA treatments using a qRT-PCR technique. Results showed that gene expression patterns were significantly different in these two cultivars. Data showed that in Mahuti, there was an increase of transcript accumulation under salt and ABA treatments at 3h, 10h and 72h respectively. In Alamut, however, the pattern of transcript accumulation was different; the maximum was at 3h. In contrast, there were no significant differences observed between the cultivars for GSTF1 gene expression profiles at three levels of NaCl concentration (50, 100, and 200 mM) or in ABA (Abscisic Acid) treatment. It is likely that difference of gene expression patterns between the cultivars (Mahuti as a salt tolerant cultivar and Alamut as a salt sensitive cultivar) is due to distinct signaling pathways which activate GSTF1 expression. Lack of a significant difference between the GSTF1 gene expression profile under salt and ABA treatments suggests that the GSTF1 gene is not induced by stress stimuli. Of course it is possible that other levels of NaCl and ABA treatments cause a change in the GSTF1 gene.

  11. Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Radziah, Othman; Shamshuddin, Jusop; Razi, Ismail Mohd

    2015-02-20

    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase.

  12. Energy Conservation Study on Darigold Fluid Milk Plant, Issaquah, Washington.

    SciTech Connect

    Seton, Johnson & Odell, Inc.

    1985-01-15

    This report presents the findings of an energy study done at Darigold dairy products plant in Issaquah, Washington. The study includes all electrical energy using systems at the plant, but does not address specific modifications to process equipment or the gas boilers. The Issaquah Darigold plant receives milk and cream, which are stored in large, insulated silos. These raw products are then processed into butter, cottage cheese, buttermilk, yogurt, sour cream, and powdered milk. This plant produces the majority of the butter used in the state of Washington. The Issaquah plant purchases electricity from Puget Sound Power and Light Company. The plant is on Schedule 31, primary metering. The plant provides transformers to step down the voltage to 480, 240, and 120 volts as needed. Based on utility bills for the period from July 1983 through July 1984, the Issaquah Darigold plant consumed 7,134,300 kWh at a total cost of $218,703.78 and 1,600,633 therms at a total cost of $889,687.48. Energy use for this period is shown in Figures 1.1 to 1.5. Demand charges account for approximately 23% of the total electrical bill for this period, while reactive charges account for less than 0.5%. The electrical usage for the plant was divided into process energy uses, as summarized in Figure 1.2. This breakdown is based on a 311-day processing schedule, with Sunday clean-up and holidays composing the 54 days of downtime.

  13. [The study of the genetic effects in generation of pea plants cultivated during the whole cycle of ontogenesis on the board of RS ISS].

    PubMed

    Gostimskiĭ, S A; Levinskikh, M A; Sychev, V N; Kokaeva, Z G; Dribnokhodova, O P; Khartina, G A; Bingham, G

    2007-08-01

    Results of studies on growth and development of offspring of two genetically marked dwarf pea lines planted during the whole ontogenesis cycle in the Lada space greenhouse on board of Russian Segment of International Space Station (RS ISS) are presented. The offspring of M1 and M2 plants grown from seeds formed during space flight was examined under conditions of Earth-based. Cultivation. It had been shown that growth and developmental characteristics, frequency of chromosome aberrations in primary root meristem and level of molecular polymorphism revealed in individual plants via RAPD method show no significant differences between offspring of "space-grown" and control seeds.

  14. [Research on output and quality of Panax notoginseng and annual change characteristics of N, P and K nutrients of planting soil under stereo-cultivation].

    PubMed

    Huang, Chun-mei; Cui, Xiu-ming; Lan, Lei; Chen, Wei-dong; Wang, Cheng-xiao; Yang, Xiao-yan; Lu, Da-hui; Yang, Ye

    2015-08-01

    The output and agronomic characters of 3-year-old Panax notoginseng cultured under stereo structure (upper, middle and down layers) were investigated, and the annual change of N, P and K of its planting soil were also studied. Results showed that, compared with field cultured Panax notoginseng, growth vigour and output of stereo-cultivation were significantly lower. But the total production of the 3 layers was 1.6 times of field. The growth vigor and production of P. notoginseng was in the order of upper layer > middle layer > down layer. The content of ginsenoside in rhizome, root tuber and hair root of P. notoginseng was in the order of upper layer > field > middle layer > down layer. Organic matter content and pH of stereo-cultivation soil decreased with the prolonging of planting time, which with the same trend of yield. Organic matter content of stereo-cultivation soil was significantly higher than field, but the pH was significantly lower. Contents of total and available N, P and K in stereo-cultivation soil and field decreased with the prolonging of planting time. The content of N and P were in the order of upper layer > middle layer > yield > down layer, the content of K was in the order of upper layer > middle layer > down layer > yield. Compared with field, the proportion of N and P in the organ of underground (rhizome, root tuber and hair root) of upper layer were increased, while decreased in middle and down layers. Proportion of K in underground decreased significantly of the 3 layers. In conclusion, the agronomic characters and production of stereo-cultivation were significantly lower than that of yield. But the total production of the 3 layers were significantly higher than field of unit area. And the aim of improving land utilization efficiency was achieved. Nutritions in the soil of stereo-cultivation were enough to support the development of P. notoginseng, which was not the cause of weak growth and low production. The absorbing ability of P

  15. The Cultivated Classroom.

    ERIC Educational Resources Information Center

    Schilder, Rosalind

    1983-01-01

    Teachers who follow this monthly schedule for starting and cultivating plants in their classrooms can look forward to blooms and greenery throughout the year. Advice on choosing plants, making cuttings, forcing bulbs, rooting sweet potatoes and pineapples, and holding a Mother's Day plant sale is included. (PP)

  16. The Cultivated Classroom.

    ERIC Educational Resources Information Center

    Schilder, Rosalind

    1983-01-01

    Teachers who follow this monthly schedule for starting and cultivating plants in their classrooms can look forward to blooms and greenery throughout the year. Advice on choosing plants, making cuttings, forcing bulbs, rooting sweet potatoes and pineapples, and holding a Mother's Day plant sale is included. (PP)

  17. Flexible operation of thermal plants with integrated energy storage technologies

    NASA Astrophysics Data System (ADS)

    Koytsoumpa, Efthymia Ioanna; Bergins, Christian; Kakaras, Emmanouil

    2017-08-01

    The energy system in the EU requires today as well as towards 2030 to 2050 significant amounts of thermal power plants in combination with the continuously increasing share of Renewables Energy Sources (RES) to assure the grid stability and to secure electricity supply as well as to provide heat. The operation of the conventional fleet should be harmonised with the fluctuating renewable energy sources and their intermittent electricity production. Flexible thermal plants should be able to reach their lowest minimum load capabilities while keeping the efficiency drop moderate as well as to increase their ramp up and down rates. A novel approach for integrating energy storage as an evolutionary measure to overcome many of the challenges, which arise from increasing RES and balancing with thermal power is presented. Energy storage technologies such as Power to Fuel, Liquid Air Energy Storage and Batteries are investigated in conjunction with flexible power plants.

  18. GSTF1 Gene Expression Analysis in Cultivated Wheat Plants under Salinity and ABA Treatments

    PubMed Central

    Niazi, Ali; Ramezani, Amin; Dinari, Ali

    2014-01-01

    Most plants encounter stress such as drought and salinity that adversely affect growth, development and crop productivity. The expression of the gene glutathione-s-transferases (GST) extends throughout various protective mechanisms in plants and allows them to adapt to unfavorable environmental conditions. GSTF1 (the first phi GSTFs class) gene expression patterns in the wheat cultivars Mahuti and Alamut were studied under salt and ABA treatments using a qRT-PCR technique. Results showed that gene expression patterns were significantly different in these two cultivars. Data showed that in Mahuti, there was an increase of transcript accumulation under salt and ABA treatments at 3h, 10h and 72h respectively. In Alamut, however, the pattern of transcript accumulation was different; the maximum was at 3h. In contrast, there were no significant differences observed between the cultivars for GSTF1 gene expression profiles at three levels of NaCl concentration (50, 100, and 200 mM) or in ABA (Abscisic Acid) treatment. It is likely that difference of gene expression patterns between the cultivars (Mahuti as a salt tolerant cultivar and Alamut as a salt sensitive cultivar) is due to distinct signaling pathways which activate GSTF1 expression. Lack of a significant difference between the GSTF1 gene expression profile under salt and ABA treatments suggests that the GSTF1 gene is not induced by stress stimuli. Of course it is possible that other levels of NaCl and ABA treatments cause a change in the GSTF1 gene. PMID:27843973

  19. Energy prices and substitution in United States manufacturing plants

    NASA Astrophysics Data System (ADS)

    Grim, Cheryl

    Persistent regional disparities in electricity prices, growth in wholesale power markets, and recent deregulation attempts have intensified interest in the performance of the U.S. electric power industry, while skyrocketing fuel prices have brought renewed interest in the effect of changes in prices of all energy types on the U.S. economy. This dissertation examines energy prices and substitution between energy types in U.S. manufacturing. I use a newly constructed database that includes information on purchased electricity and electricity expenditures for more than 48,000 plants per year and additional data on the utilities that supply electricity to study the distribution of electricity prices paid by U.S. manufacturing plants from 1963 to 2000. I find a large compression in the dispersion of electricity prices from 1963 to 1978 due primarily to a decrease in quantity discounts for large electricity purchasers. I also find that spatial dispersion in retail electricity prices among states, counties and utility service territories is large, rises over time for smaller purchasers, and does not diminish as wholesale power markets expand in the 1990s. In addition, I examine energy type consumption patterns, prices, and substitution in U.S. manufacturing plants. I develop a plant-level dataset for 1998 with data on consumption and expenditures on energy and non-energy production inputs, output, and other plant characteristics. I find energy type consumption patterns vary widely across manufacturing plants. Further, I find a large amount of dispersion across plants in the prices paid for electricity, oil, natural gas, and coal. These high levels of dispersion are accounted for by the plant's location, industry, and purchase quantity. Finally, I present estimates of own- and cross-price elasticities of demand for both the energy and non-energy production inputs.

  20. Energy conservation study on Simplot potato processing plant, Heyburn, Idaho

    SciTech Connect

    Not Available

    1985-03-01

    This report presents the findings of an energy study done at the Simplot potato processing plant in Heyburn, Idaho. The study includes all electrical energy using systems at the plant but does not address specific modifications to process equipment. The plant receives raw potatoes and produces a mixture of pre-fried and frozen potato products including french fries and pre-formed patties, a dehydrated frozen product, starch, and processes and ships raw potatoes. The plant also contains a box line that makes cardboard cartons for all Simplot plants. The plant contains all necessary equipment and processes to produce a finished product and has long-term cold storage. 13 figs., 16 tabs.

  1. Energy comparison between solar thermal power plant and photovoltaic power plant

    NASA Astrophysics Data System (ADS)

    Novosel, Urška; Avsec, Jurij

    2017-07-01

    The combined use of renewable energy and alternative energy systems and better efficiency of energy devices is a promising approach to reduce effects due to global warming in the world. On the basis of first and second law of thermodynamics we could optimize the processes in the energy sector. The presented paper shows the comparison between solar thermal power plant and photovoltaic power plant in terms of energy, exergy and life cycle analysis. Solar thermal power plant produces electricity with basic Rankine cycle, using solar tower and solar mirrors to produce high fluid temperature. Heat from the solar system is transferred by using a heat exchanger to Rankine cycle. Both power plants produce hydrogen via electrolysis. The paper shows the global efficiency of the system, regarding production of the energy system.

  2. Development of a mathematical model for growth and oxygen transfer in in vitro plant hairy root cultivations.

    PubMed

    Palavalli, Rajashekar Reddy; Srivastava, Smita; Srivastava, Ashok Kumar

    2012-07-01

    Genetically transformed, "Hairy roots" once developed can serve as a stable parent culture for in vitro production of plant secondary metabolites. However, the major bottleneck in the commercial exploitation of hairy roots remains its successful scale-up due to oxygen transfer limitation in three-dimensionally growing hairy root mass. Mass transfer resistances near the gas-liquid and liquid-solid boundary layer affect the oxygen delivery to the growing hairy roots. In addition, the diffusional mass transfer limitation due to increasing size of the root ball (matrix) with growth also plays a limiting role in the oxygen transfer rate. In the present study, a mathematical model is developed which describes the oxygen transfer kinetics in the growing Azadirachta indica hairy root matrix as a case study for offline simulation of process control strategies ensuring non-limiting concentrations of oxygen in the medium throughout the hairy root cultivation period. The unstructured model simulates the effect of oxygen transfer limitation in terms of efficiency factor (η) on specific growth rate (μ) of the hairy root biomass. The model is able to predict effectively the onset of oxygen transfer limitation in the inner core of the growing hairy root matrix such that the bulk oxygen concentration can be increased so as to prevent the subsequent inhibition in growth of the hairy root biomass due to oxygen transfer (diffusional) limitation.

  3. Operational energy performance assessment system of municipal wastewater treatment plants.

    PubMed

    Yang, Lingbo; Zeng, Siyu; Chen, Jining; He, Miao; Yang, Wan

    2010-01-01

    Based on the statistical analysis of operational energy consumption and its influential factors from data of 599 Chinese WWTPs in 2006, it is noticed that the most influential factors include treatment technology adopted, treated sewage amount, removed pollutants amount, etc. Using the conclusion above, this paper sets up an integrated system of operational energy performance assessment for municipal wastewater treatment plants. Combining with result from on-spot research and model simulation, the calculating method of benchmark value and score of 7 energy efficiency indicators grouped into 3 levels is stated. Applying the assessment system to three plants, its applicability and objectivity are proved and suggestions to improve energy performance are provided.

  4. Effects of elevated ultraviolet-B radiation on native and cultivated plants of southern Africa.

    PubMed

    Musil, Charles F; Chimphango, Samson B M; Dakora, Felix D

    2002-07-01

    Seventeen herb, shrub and tree species of commercial and ecological importance in southern Africa were exposed at one location to ultraviolet-B (UV-B, 280-315 nm) radiation approx. 35 % above clear-sky background (control). The aims were to assess how UV-B affects canopy area, dry mass, and some biochemical and morphological properties of leaves, and to investigate whether differences between species are related to growth form of the plants. There was no pattern of response to UV-B related to growth form. Leaves of trees had altered chlorophyll a and b, carotenoid and flavonoid concentrations, but those of shrubs or herbs did not. Non-structural carbohydrates were unaffected. Smaller canopy areas and dry masses were observed under enhanced UV-B, but these were not statistically different among growth forms. There was a general insensitivity of species to elevated UV-B. Only five species had significantly altered leaf biochemical and morphological properties, canopy area and dry mass, the changes differing in magnitude. There was no consistent pattern of change in leaf thickness or biochemical composition with increased UV-B. Correlation analyses did not support the view that growth is less negatively affected in species with thick leaves or in those where leaf thickness increases, or in species with naturally high leaf flavonoid contents or that are able to synthesize additional flavonoids in response to UV-B enhancement. The analyses did not support the hypothesis that growth was inhibited by starch accumulation in leaves under elevated UV-B. However, changes in leaf shape did correlate with canopy area and dry mass, showing the importance of photomorphogenetic changes caused by UV-B which affect species' performance. We conclude that generalizations on plant sensitivity to UV-B based on growth form and functional type could be misleading, and that the great majority of economically important species of the region are likely to be insensitive to future UV

  5. Microbial Community Dynamics and Response to Plant Growth-Promoting Microorganisms in the Rhizosphere of Four Common Food Crops Cultivated in Hydroponics.

    PubMed

    Sheridan, C; Depuydt, P; De Ro, M; Petit, C; Van Gysegem, E; Delaere, P; Dixon, M; Stasiak, M; Aciksöz, S B; Frossard, E; Paradiso, R; De Pascale, S; Ventorino, V; De Meyer, T; Sas, B; Geelen, D

    2017-02-01

    Plant growth promoting microorganisms (PGPMs) of the plant root zone microbiome have received limited attention in hydroponic cultivation systems. In the framework of a project aimed at the development of a biological life support system for manned missions in space, we investigated the effects of PGPMs on four common food crops (durum and bread wheat, potato and soybean) cultivated in recirculating hydroponic systems for a whole life cycle. Each crop was inoculated with a commercial PGPM mixture and the composition of the microbial communities associated with their root rhizosphere, rhizoplane/endosphere and with the recirculating nutrient solution was characterised through 16S- and ITS-targeted Illumina MiSeq sequencing. PGPM addition was shown to induce changes in the composition of these communities, though these changes varied both between crops and over time. Microbial communities of PGPM-treated plants were shown to be more stable over time. Though additional development is required, this study highlights the potential benefits that PGPMs may confer to plants grown in hydroponic systems, particularly when cultivated in extreme environments such as space.

  6. Energy Resiliency for Marine Corps Logistics Base Production Plant Barstow

    DTIC Science & Technology

    2014-12-01

    energy options that are aligned reduce PPB’s greenhouse emissions, dependencies on limited resow-ces, increase energy efficiency and use of Renewable...provides feasible energy options that are aligned reduce PPB’s greenhouse emissions, dependencies on limited resources, increase energy efficiency...its xix current utility baseline electricity usage, Production Plant Barstow greenhouse emissions total 1070.59 metric tons per year. Assuming

  7. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization.

    PubMed

    Compant, Stéphane; Mitter, Birgit; Colli-Mull, Juan Gualberto; Gangl, Helmut; Sessitsch, Angela

    2011-07-01

    Endophytic bacteria can colonize various plants and organs. However, endophytes colonizing plant reproductive organs have been rarely analyzed. In this study, endophytes colonizing flowers as well as berries and seeds of grapevine plants grown under natural conditions were investigated by cultivation as well as by fluorescence in situ hybridization. For comparison, bacteria were additionally isolated from other plant parts and the rhizosphere and characterized. Flowers, fruits, and seeds hosted various endophytic bacteria. Some taxa were specifically isolated from plant reproductive organs, whereas others were also detected in the rhizosphere, endorhiza or grape inflo/infructescence stalk at the flowering or berry harvest stage. Microscopic analysis by fluorescence in situ hybridization of resin-embedded samples confirmed the presence of the isolated taxa in plant reproductive organs and enabled us to localize them within the plant. Gammaproteobacteria (including Pseudomonas spp.) and Firmicutes (including Bacillus spp.) were visualized inside the epidermis and xylem of ovary and/or inside flower ovules. Firmicutes, mainly Bacillus spp. were additionally visualized inside berries, in the intercellular spaces of pulp cells and/or xylem of pulp, but also along some cell walls inside parts of seeds. Analysis of cultivable bacteria as well as microscopic results indicated that certain endophytic bacteria can colonize flowers, berries, or seeds. Our results also indicated that some specific taxa may not only derive from the root environment but also from other sources such as the anthosphere.

  8. Bioluminescence for determining energy state of plants

    NASA Technical Reports Server (NTRS)

    Ching, T. M.

    1975-01-01

    Bioluminescence produced by the luciferin-luciferase system is a very sensitive assay for ATP content in extracts of plant materials. The ATP test for seed and pollen viability and vigor is presented, along with prediction of high growth potential and productivity in new crosses and selections of breeding materials. ATP as an indicator for environmental quality, stresses, and metabolic regulation is also considered.

  9. Energy conversion/power plant cost-cutting

    SciTech Connect

    Nichols, K.

    1996-12-31

    This presentation by Kenneth Nichols, Barber-Nichols, Inc., is about cost-cutting in the energy conversion phase and power plant phase of geothermal energy production. Mr. Nichols discusses several ways in which improvements could be made, including: use of more efficient compressors and other equipment as they become available, anticipating reservoir resource decline and planning for it, running smaller binary systems independent of human operators, and designing plants so that they are relatively maintenance-free.

  10. Are Wave and Tidal Energy Plants New Green Technologies?

    PubMed

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  11. Chemical Composition and Antimicrobial Activities of Essential Oils of Some Coniferous Plants Cultivated in Egypt.

    PubMed

    Ibrahim, Taghreed A; El-Hela, Atef A; El-Hefnawy, Hala M; Al-Taweel, Areej M; Perveen, Shagufta

    2017-01-01

    Family Cupressaceae is the largest coniferous plant family. Essential oils of many species belonging to family Cupressaceae are known to have several biological activities specially antimicrobial activity. The essential oils from aerial parts of Calocedrus decurrens Torr., Cupressus sempervirens stricta L. and Tetraclinis articulata (Vahl) Mast. were prepared by hydrodistillation. The chemical composition of the essential oils has been elucidated by gas chromatography-mass spectroscopy analysis. The prepared essential oils were examined against selected species of Gram-positive, Gram-negative bacteria and Candida species. Broth dilution methods were used to detect minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC). Sixteen compounds were identified in the essential oils of both Calocedrus decurrens and Cupressus sempervirens L. and fifteen compounds were identified in the essential oil of Tetraclinis articulata. δ-3-Carene (43.10%), (+)-Cedrol (74.03%) and Camphor (21.23%) were the major constituents in the essential oils of Calocedrus decurrens, Cupressus sempervirens L. and Tetraclinis articulata, respectively. The essential oils showed strong antimicrobial activities against the selected microorganisms in concentration range 0.02 3- 3.03 µL/mL. This study could contribute to the chemotaxonomic characterization of family Cupressaceae. In addition, it proved that the essential oils under investigation possess potential antimicrobial properties.

  12. Chemical Composition and Antimicrobial Activities of Essential Oils of Some Coniferous Plants Cultivated in Egypt

    PubMed Central

    Ibrahim, Taghreed A.; El-Hela, Atef A.; El-Hefnawy, Hala M.; Al-Taweel, Areej M.; Perveen, Shagufta

    2017-01-01

    Family Cupressaceae is the largest coniferous plant family. Essential oils of many species belonging to family Cupressaceae are known to have several biological activities specially antimicrobial activity. The essential oils from aerial parts of Calocedrus decurrens Torr., Cupressus sempervirens stricta L. and Tetraclinis articulata (Vahl) Mast. were prepared by hydrodistillation. The chemical composition of the essential oils has been elucidated by gas chromatography-mass spectroscopy analysis. The prepared essential oils were examined against selected species of Gram-positive, Gram-negative bacteria and Candida species. Broth dilution methods were used to detect minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC). Sixteen compounds were identified in the essential oils of both Calocedrus decurrens and Cupressus sempervirens L. and fifteen compounds were identified in the essential oil of Tetraclinis articulata. δ-3-Carene (43.10%), (+)-Cedrol (74.03%) and Camphor (21.23%) were the major constituents in the essential oils of Calocedrus decurrens, Cupressus sempervirens L. and Tetraclinis articulata, respectively. The essential oils showed strong antimicrobial activities against the selected microorganisms in concentration range 0.02 3- 3.03 µL/mL. This study could contribute to the chemotaxonomic characterization of family Cupressaceae. In addition, it proved that the essential oils under investigation possess potential antimicrobial properties. PMID:28496486

  13. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant.

    PubMed

    Wang, Liang; Min, Min; Li, Yecong; Chen, Paul; Chen, Yifeng; Liu, Yuhuan; Wang, Yingkuan; Ruan, Roger

    2010-10-01

    The objective of this study was to evaluate the growth of green algae Chlorella sp. on wastewaters sampled from four different points of the treatment process flow of a local municipal wastewater treatment plant (MWTP) and how well the algal growth removed nitrogen, phosphorus, chemical oxygen demand (COD), and metal ions from the wastewaters. The four wastewaters were wastewater before primary settling (#1 wastewater), wastewater after primary settling (#2 wastewater), wastewater after activated sludge tank (#3 wastewater), and centrate (#4 wastewater), which is the wastewater generated in sludge centrifuge. The average specific growth rates in the exponential period were 0.412, 0.429, 0.343, and 0.948 day(-1) for wastewaters #1, #2, #3, and #4, respectively. The removal rates of NH4-N were 82.4%, 74.7%, and 78.3% for wastewaters #1, #2, and #4, respectively. For #3 wastewater, 62.5% of NO3-N, the major inorganic nitrogen form, was removed with 6.3-fold of NO2-N generated. From wastewaters #1, #2, and #4, 83.2%, 90.6%, and 85.6% phosphorus and 50.9%, 56.5%, and 83.0% COD were removed, respectively. Only 4.7% was removed in #3 wastewater and the COD in #3 wastewater increased slightly after algal growth, probably due to the excretion of small photosynthetic organic molecules by algae. Metal ions, especially Al, Ca, Fe, Mg, and Mn in centrate, were found to be removed very efficiently. The results of this study suggest that growing algae in nutrient-rich centrate offers a new option of applying algal process in MWTP to manage the nutrient load for the aeration tank to which the centrate is returned, serving the dual roles of nutrient reduction and valuable biofuel feedstock production.

  14. Sustained NIK-mediated antiviral signalling confers broad-spectrum tolerance to begomoviruses in cultivated plants

    PubMed Central

    Condori-Apfata, Jorge A.; Coco, Daniela; Deguchi, Michihito; Loriato, Virgílio A.P.; Pereira, Welison A.; Alfenas-Zerbini, Poliane; Zerbini, Francisco M.; Inoue-Nagata, Alice K.; Santos, Anesia A.; Chory, Joanne; Silva, Fabyano F.; Fontes, Elizabeth P.B.

    2016-01-01

    Begomovirus-associated epidemics currently threaten tomato production worldwide due to the emergence of highly pathogenic virus species and the proliferation of a whitefly B biotype vector that is adapted to tomato. To generate an efficient defence against begomovirus, we modulated the activity of the immune defence receptor nuclear shuttle protein (NSP)-interacting kinase (NIK) in tomato plants; NIK is a virulence target of the begomovirus NSP during infection. Mutation of T474 within the kinase activation loop promoted the constitutive activation of NIK-mediated defences, resulting in the down-regulation of translation-related genes and the suppression of global translation. Consistent with these findings, transgenic lines harbouring an activating mutation (T474D) were tolerant to the tomato-infecting begomoviruses ToYSV and ToSRV. This phenotype was associated with reduced loading of coat protein viral mRNA in actively translating polysomes, lower infection efficiency and reduced accumulation of viral DNA in systemic leaves. Our results also add some relevant insights into the mechanism underlying the NIK-mediated defence. We observed that the mock-inoculated T474D-overexpressing lines showed a constitutively infected wild-type transcriptome, indicating that the activation of the NIK-mediated signalling pathway triggers a typical response to begomovirus infection. In addition, the gain-of-function mutant T474D could sustain an activated NIK-mediated antiviral response in the absence of the virus, further confirming that phosphorylation of Thr-474 is the crucial event that leads to the activation of the kinase. PMID:25688422

  15. High efficiency waste to energy facility -- Pilot plant design

    SciTech Connect

    Orita, Norihiko; Kawahara, Yuuzou; Takahashi, Kazuyoshi; Yamauchi, Toru; Hosoda, Takuo

    1998-07-01

    Waste To Energy facilities are commonly acceptable to the environment and give benefits in two main areas: one is a hygienic waste disposal and another is waste heat energy recovery to save fossil fuel consumption. Recovered energy is used for electricity supply, and it is required to increase the efficiency of refuse to electric energy conversion, and to spread the plant construction throughout the country of Japan, by the government. The national project started in 1992, and pilot plant design details were established in 1995. The objective of the project is to get 30% of energy conversion efficiency through the measure by raising the steam temperature and pressure to 500 C and 9.8 MPa respectively. The pilot plant is operating under the design conditions, which verify the success of applied technologies. This paper describes key technologies which were used to design the refuse burning boiler, which generates the highest steam temperature and pressure steam.

  16. Spatial-temporal variation of marginal land suitable for energy plants from 1990 to 2010 in China

    PubMed Central

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Zhuang, Dafang; Huang, Yaohuan

    2014-01-01

    Energy plants are the main source of bioenergy which will play an increasingly important role in future energy supplies. With limited cultivated land resources in China, the development of energy plants may primarily rely on the marginal land. In this study, based on the land use data from 1990 to 2010(every 5 years is a period) and other auxiliary data, the distribution of marginal land suitable for energy plants was determined using multi-factors integrated assessment method. The variation of land use type and spatial distribution of marginal land suitable for energy plants of different decades were analyzed. The results indicate that the total amount of marginal land suitable for energy plants decreased from 136.501 million ha to 114.225 million ha from 1990 to 2010. The reduced land use types are primarily shrub land, sparse forest land, moderate dense grassland and sparse grassland, and large variation areas are located in Guangxi, Tibet, Heilongjiang, Xinjiang and Inner Mongolia. The results of this study will provide more effective data reference and decision making support for the long-term planning of bioenergy resources. PMID:25056520

  17. Analysis of life cycle assessment of food/energy/waste systems and development and analysis of microalgae cultivation/wastewater treatment inclusive system

    NASA Astrophysics Data System (ADS)

    Armstrong, Kristina Ochsner

    Across the world, crises in food, energy, land and water resources, as well as waste and greenhouse gas accumulation are inspiring research into the interactions among these environmental pressures. In the food/energy/waste problem set, most of the research is focused on describing the antagonistic relationships between food, energy and waste; these relationships are often analyzed with life cycle assessment (LCA). These analyses often include reporting of metrics of environmental performance with few functional units, often focusing on energy use, productivity and environmental impact while neglecting water use, food nutrition and safety. Additionally, they are often attributional studies with small scope which report location-specific parameters only. This thesis puts forth a series of recommendations to amend the current practice of LCA to combat these limitations and then utilizes these suggestions to analyze a synergistic food/waste/energy system. As an example analysis, this thesis describes the effect of combining wastewater treatment and microalgae cultivation on the productivity and scalability of the synergistic system. To ameliorate the high nutrient and water demands of microalgae cultivation, many studies suggest that microalgae be cultivated in wastewater so as to achieve large scale and low environmental costs. While cultivation studies have found this to be true, none explore the viability of the substitution in terms of productivity and scale-up. The results of this study suggest that while the integrated system may be suitable for low-intensity microalgae cultivation, for freshwater microalgae species or wastewater treatment it is not suitable for high intensity salt water microalgae cultivation. This study shows that the integration could result in reduced lipid content, high wastewater requirements, no greenhouse gas emissions benefit and only a small energy benefit.

  18. [A feasibility study on the highly-efficient electronic fluorescent lamp used as a lighting source for cultivation of higher plant in space].

    PubMed

    Guo, S S; Xu, B

    1999-08-01

    To testify that the Highly-efficient Electronic Fluorescent Lamp (HEFL) can be used as a sole lighting source for the cultivation of higher plants in space. The HEFL was utilized as the lighting source for the culture of three varieties of Luctuca sativa L in the lately-constructed Space Higher Plant Cultivation Ground-based Experimental Facility(SHPCGEF). Other culturing conditions were: temperature 20 +/- 0.2 degrees C, relative humidity (75 +/- 1)%, average photosynthetic active radiation (PAR) 70 micromol m-2 s-1 PPF, average wind velocity 0.45 m/s, photoperiod 24 h light/0 h dark, peat + vermiculite substrate culture, useful growing area 1.2 m2, growing period 28 d, one variety was cultured at every batch. Following plant maturing and being harvested, observations of external morphology of above-ground parts of the plants, measurements and calculations of edible biomass output and photosynthetic efficiency, analysis of nutrient compositions such as proteins, fats, carbohydrates, amino acids, vitamins and elemental compositions of lettuce leaves, and comparisons with formerly-related experiments were made. All of the above-mentioned targets met our demands, some of them were superior to the results of other similar experiments. The HEFL can completely meet the needs for the growth and development of some higher plants planned to be grown in space, its physical characters basically accord with the demands, so it can be utilized as the only lighting source for higher plant growth in space environmental conditions.

  19. Remediation of metal-contaminated land for plant cultivation in the Arctic/subarctic region

    NASA Astrophysics Data System (ADS)

    Kikuchi, Ryunosuke; Gorbacheva, Tamara T.; Ferreira, Carla S.

    2017-04-01

    Hazardous activities and/or industries involve the use, storage or disposal of hazardous substances. These substances can sometimes contaminate the soil, which can remain contaminated for many years. The metals can have severe effects of on ecosystems. In the Arctic/subarctic regions, the Kola Peninsula (66-70°N and 28°30'-41°30'E) in Russia is one of the seriously polluted regions: close to the nickel-copper smelters, the deposition of metal pollutants has severely damaged the soil and ground vegetation, resulting in a desert area. An area of 10-15 km around the smelters on the Kola Peninsula is today dry sandy and stony ground. A great amount of financial aid is usually required to recover theland. Considering cost performance, a pilot-scale (4ha) field test was carried out to investigate how to apply municipal sewage sludge for rehabilitation of degraded land near the Ni-Cu smelter complex on the Kola Peninsula. The above-mentioned field test for soil rehabilitation was performed while smelting activities were going on; thus, the survey fields were suffering from pollution emitted by the metallurgical industry, and may continue to suffer in the future. After the composting of sewage sludge, the artificial substratum made from the compost was introduced to the test field for the polluted-land remediation, and then willows, birches and grasses were planted on the substratum. The following remarkable points in pollution load were observed between the background field and the rehabilitation test field (e.g. polluted land): (i) the annual precipitation amount of SO42- (5668 g/ha) in the rehabilitation test field was over 5 times greater than that in the background field; (ii) the Pb amount (1.5 g/ha) in the rehabilitation test field was 29 times greater than that in the background field; (iii) the Co amount (10.9 g/ha) in the rehabilitation test field was 54 times greater than that in the background field; (iv) the Cu amount (752 g/ha) in the rehabilitation field

  20. Analysis on energy consumption index system of thermal power plant

    NASA Astrophysics Data System (ADS)

    Qian, J. B.; Zhang, N.; Li, H. F.

    2017-05-01

    Currently, the increasingly tense situation in the context of resources, energy conservation is a realistic choice to ease the energy constraint contradictions, reduce energy consumption thermal power plants has become an inevitable development direction. And combined with computer network technology to build thermal power “small index” to monitor and optimize the management system, the power plant is the application of information technology and to meet the power requirements of the product market competition. This paper, first described the research status of thermal power saving theory, then attempted to establish the small index system and build “small index” monitoring and optimization management system in thermal power plant. Finally elaborated key issues in the field of small thermal power plant technical and economic indicators to be further studied and resolved.

  1. Identifying Energy Savings in Water and Wastewater Plants - West Virginia

    SciTech Connect

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  2. Identifying Energy Savings in Water and Wastewater Plants - Illinois

    SciTech Connect

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  3. Identifying Energy Savings in Water and Wastewater Plants - Indiana

    SciTech Connect

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  4. Identifying Energy Savings in Water and Wastewater Plants - Wisconsin

    SciTech Connect

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  5. Identifying Energy Savings in Water and Wastewater Plants - Iowa

    SciTech Connect

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  6. [Historical research of cinchona cultivation in Japan (Part 2). Useful tropical plants introduced from Java and India in the early Meiji era].

    PubMed

    Nagumo, Seiji; Sasaki, Yohei; Takido, Michio

    2010-01-01

    In the early Meiji era, Takeaki Enomoto made a proposal to the government that cinchona and coffee seedlings be introduced to Japan. In response, the Meiji government dispatched Masatsugu Takeda of the Ministry of Internal Affairs to Java and India from March to August 1878 for the purpose of investigating useful plants of tropical origin and introducing them to Japan. This paper clarifies the route to those destinations and the plants obtained locally. Using the seeds obtained from India during his travels, the cultivation of cinchona was attempted in 1882 for the first time in Japan. In Ogasawara, coffee cultivation was conducted, again for the first time in Japan, using coffee seeds brought back from Java. The cultivation of coffee was successful and served as the foundation of the Ogasawara coffee that exists to this day. Takeda also introduced a number of books and materials related to useful tropical plants available as a result of his travels, which contributed to the promotion of new industries and businesses in the Meiji era.

  7. Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances.

    PubMed

    Menger-Krug, Eve; Niederste-Hollenberg, Jutta; Hillenbrand, Thomas; Hiessl, Harald

    2012-11-06

    Integrating microalgae systems (MAS) at municipal wastewater treatment plants (WWTPs) to produce of bioenergy offers many potential synergies. Improved energy balances provide a strong incentive for WWTPs to integrate MAS, but it is crucial that WWTPs maintain their barrier function to protect water resources. We perform a prospective analysis of energy and emission balances of a WWTP with integrated MAS, based on a substance flow analysis of the elements carbon (C), nitrogen (N), and phosphorus (P). These elements are the main ingredients of wastewater, and the key nutrients for algae growth. We propose a process design which relies solely on resources from wastewater with no external input of water, fertilizer or CO(2). The whole process chain, from cultivation to production of bioelectricity, takes place at the WWTP. Our results show that MAS can considerably improve energy balances of WWTPs without any external resource input. With optimistic assumptions, they can turn WWTPs into net energy producers. While intensive C recycling in MAS considerably improves the energy balance, we show that it also impacts on effluent quality. We discuss the importance of nonharvested biomass for effluent quality and highlight harvesting efficiency as key factor for energy and emission balances of MAS at WWTP.

  8. Phytotoxicity evaluation of five pharmaceutical pollutants detected in surface water on germination and growth of cultivated and spontaneous plants.

    PubMed

    D'Abrosca, Brigida; Fiorentino, Antonio; Izzo, Angelina; Cefarelli, Giuseppe; Pascarella, Maria Teresa; Uzzo, Piera; Monaco, Pietro

    2008-02-15

    The phytotoxicity of 5 pharmaceuticals detected in Italian rivers, atorvastatin (7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-propan-2-yl-pyrrol-1-yl]-3,5-dihydroxy-heptanoic acid), gemfibrozil (5-(2,5-dimethylphenoxy)-2,2-dimethyl-pentanoic acid), tamoxifene (2-[4-(1,2-diphenylbut-1-enyl)phenoxy]-N,N-dimethyl-ethanamine), ethinyl estradiol (17-ethynyl-13-methyl-7,8,9,11, 12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3,17-diol) and sildenafil (methyl-9-propyl-2,4,7,8-tetrazabicyclo[4.3.0] nona-3,8,10-trien-5-one), has been assessed in a laboratory model. The treatment system consists of three main successive sections. The first one includes the phytotoxic evaluation of the single compounds on crops, Lactuca sativa (lettuce), Dacus carota subsp. sativa (carrot), and Lycopersicon esculentum (tomato), until the 10(-9) M, concentration lower then the environmental amounts. The second section includes the phytotoxicity assessment of all the selected chemicals on wild species, Avena fatua (wild oats), Amaranthus retroflexus (redroot pigweed), Lolium perenne (perennial ryegrass), Taraxacum officinale (common dandelion), and Chenopodium album (lambsquarter), at the same concentration as previously used. The third section of the procedure includes the evaluation of the effects of the five pharmaceuticals, at 1 microM and 1 nM environmental concentrations, on the metabolism of L. sativa. The variation of the composition of the photosynthetic pigments, sugars, lipids, phenols, fatty acids and flavonoids in lettuce seedlings exposed to the pollutants in respect to the blank was evaluated. The results of the phytotoxicity assays showed the possibility of a notable impact on the different vegetal communities and evidenced different sensitivity among cultivated and wild species, probably due to the different plant physiology.

  9. EPA Announces 2015 ENERGY STAR Certified Manufacturing Plants, Marathon plant in Garyville, La, among those recognized

    EPA Pesticide Factsheets

    DALLAS - (Feb. 24, 2016) The U.S. Environmental Protection Agency (EPA) announced today that the Marathon Louisiana Refining Division in Garyville, La., is among the 70 manufacturing plants across the nation that achieved ENERGY STAR certification f

  10. Sustainable Biosolids/Renewable Energy Plant

    SciTech Connect

    Marshall, Steven D.; Smith, Arenee Fanchon Teena

    2016-09-01

    In keeping with its designation as being Florida’s first “Green City”, the City's primary purpose of this project is to process and dispose of biosolids and yard wastes in a manner that results in the production of thermal, electrical, gas, or some other form of energy. This project was completed in two budget periods. Budget period one of the project consisted of a feasibility evaluation to determine potential applicable technologies, budget period two consisted of project design.

  11. Energy pattern analysis of a wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Singh, Pratima; Carliell-Marquet, Cynthia; Kansal, Arun

    2012-09-01

    Various forms of energy are used during a wastewater treatment process like electrical, manual, fuel, chemical etc. Most of the earlier studies have focused only on electrical energy intensity of large-scale centralized wastewater treatment plants (WWTPs). This paper presents a methodological framework for analysing manual, mechanical, chemical and electrical energy consumption in a small-scaled WWTP. The methodology has been demonstrated on a small-scale WWTP in an institutional area. Total energy intensity of the plant is 1.046 kWh/m3 of wastewater treated. Electrical energy is only about half of the total energy consumption. Manual energy also has a significant share, which means that the small-scale treatment plants offer significant employment opportunities in newly industrializing countries and replaces fossil fuel-based energy with renewable. There is a lack of sufficient data in the literature for comparison, and few studies have reported values that vary significantly due to the difference in scale, scope of the study and the choice of the treatment technologies. Replication of similar studies and generation of data in this area will offer directions for decision on choice of the scale of wastewater treatment process from the considerations of energy and climate change mitigation strategies.

  12. Propagation and Introduction of Arnica montana L. into Cultivation: A Step to Reduce the Pressure on Endangered and High-Valued Medicinal Plant Species

    PubMed Central

    2013-01-01

    Arnica montana (L.) is an endangered and endemic medicinal plant species in Europe. The pressure on natural sources of this plant is alleviated by a suitable use of arnica resources in the European region and introduction into cultivation. The objective of this study was to describe the impact of different ways of plant propagation and introduction on the growth and reproduction mode of this species. During the six consecutive years of the field experiment, the vegetative and reproductive traits were monitored, and survival time was assessed. The particular ways of arnica plant propagation and introduction determined all the intrinsic species traits and plant survival. The values of the characteristics studied indicated good acclimatization of the arnica ecotype to the climatic conditions of eastern Poland. Practical implications from the data presented here include the possibility of using the presented modes of arnica propagation and introduction in the short- and long-term perspective of arnica cultivation, which can give a possibility of better adjustment of raw material production. PMID:24282381

  13. Propagation and introduction of Arnica montana L. into cultivation: a step to reduce the pressure on endangered and high-valued medicinal plant species.

    PubMed

    Sugier, Danuta; Sugier, Piotr; Gawlik-Dziki, Urszula

    2013-01-01

    Arnica montana (L.) is an endangered and endemic medicinal plant species in Europe. The pressure on natural sources of this plant is alleviated by a suitable use of arnica resources in the European region and introduction into cultivation. The objective of this study was to describe the impact of different ways of plant propagation and introduction on the growth and reproduction mode of this species. During the six consecutive years of the field experiment, the vegetative and reproductive traits were monitored, and survival time was assessed. The particular ways of arnica plant propagation and introduction determined all the intrinsic species traits and plant survival. The values of the characteristics studied indicated good acclimatization of the arnica ecotype to the climatic conditions of eastern Poland. Practical implications from the data presented here include the possibility of using the presented modes of arnica propagation and introduction in the short- and long-term perspective of arnica cultivation, which can give a possibility of better adjustment of raw material production.

  14. Genetic relationships among wild and cultivated accessions of curry leaf plant (Murraya koenigii (L.) Spreng.), as revealed by DNA fingerprinting methods.

    PubMed

    Verma, Sushma; Rana, T S

    2013-02-01

    Murraya koenigii (L.) Spreng. (Rutaceae), is an aromatic plant and much valued for its flavor, nutritive and medicinal properties. In this study, three DNA fingerprinting methods viz., random amplification of polymorphic DNA (RAPD), directed amplification of minisatellite DNA (DAMD), and inter-simple sequence repeat (ISSR), were used to unravel the genetic variability and relationships across 92 wild and cultivated M. koenigii accessions. A total of 310, 102, and 184, DNA fragments were amplified using 20 RAPD, 5 DAMD, and 13 ISSR primers, revealing 95.80, 96.07, and 96.73% polymorphism, respectively, across all accessions. The average polymorphic information content value obtained with RAPD, DAMD, and ISSR markers was 0.244, 0.250, and 0.281, respectively. The UPGMA tree, based on Jaccard's similarity coefficient generated from the cumulative (RAPD, DAMD, and ISSR) band data showed two distinct clusters, clearly separating wild and cultivated accessions in the dendrogram. Percentage polymorphism, gene diversity (H), and Shannon information index (I) estimates were higher in cultivated accessions compared to wild accessions. The overall high level of polymorphism and varied range of genetic distances revealed a wide genetic base in M. koenigii accessions. The study suggests that RAPD, DAMD, and ISSR markers are highly useful to unravel the genetic variability in wild and cultivated accessions of M. koenigii.

  15. Impact of planting dates on a seed maggot, Neotephritis finalis (Diptera: Tephritidae), and sunflower bud moth (Lepidoptera: Tortricidae) damage in cultivated sunflower.

    PubMed

    Knodel, Janet J; Ganehiarachchi, G A S M; Beauzay, Patrick B; Chirumamilla, Anitha; Charlet, Laurence D

    2011-08-01

    Neotephritisfinalis (Loew) (Diptera: Tephritidae), and sunflower bud moth, Suleima helianthana (Riley) (Lepidoptera: Tortricidae) are major head-infesting insect pests of cultivated sunflower (Helianthus annuus L.). Planting date was evaluated as a cultural pest management strategy for control of N. finalis and S. helianthana in several production regions of North Dakota during 2009 and 2010. Results of the nine site-year study revealed that late planting date (early to mid-June) reduced damage ratings and percentage of damaged heads for N. finalis compared with early planting dates (mid- to late May). Visual observations of adult N. finalis found that the majority of flies were found in the early planted sunflower (78.2%) compared with the late planted sunflower (21.8%). Late planting date also reduced the percentage of S. helianthana damaged heads compared with early planting dates. Yield losses were reduced with late planting date when populations of N. finalis and S. helianthana were high enough to cause damage. Results of this study showed that delayed planting is an effective integrated pest management strategy that can reduce head damage caused by N. finalis and S. helianthana and mitigate yield losses.

  16. Wind Plant Cost of Energy: Past and Future (Presentation)

    SciTech Connect

    Hand, M.

    2013-03-01

    This presentation examines trends in wind plant cost of energy over the last several decades and discusses methods and examples of projections for future cost trends. First, the presentation explores cost trends for wind energy from the 1980s, where there had been an overall downward trend in wind plant energy costs. Underlying factors that influenced these trends, including turbine technology innovation for lower wind speed sites, are explored. Next, the presentation looks at projections for the future development of wind energy costs and discusses a variety of methods for establishing these projections including the use of learning curves, qualitative assessment using expert elicitation, and engineering-based analysis. A comparison of the methods is provided to explore their relative merits. Finally, a brief introduction is provided for the U.S. Department of Energy program-wide shift towards an integrative use of qualitative and quantitative methods for assessing the potential impacts of wind plant technology innovations on reducing the wind plant cost of energy.

  17. Evaluating the landscape impact of renewable energy plants

    NASA Astrophysics Data System (ADS)

    Ioannidis, Romanos; Koutsoyiannis, Demetris

    2017-04-01

    Different types of renewable energy have been on an ongoing competition with each other. There has been a lot of research comparing the most common types of renewable energy plants in relation with their efficiency, cost and environmental impact. However, few papers so far have attempted to analyse their impact on landscape and there has never been in depth research on which type of renewable energy causes the least impact on the natural, cultural and aesthetic characteristics of a landscape. This seems to be a significant omission given the vast areas of land already covered with renewable energy plants and the worldwide plans for many more renewable energy projects in the future. Meanwhile, the low aesthetic quality of renewable energy plants has already been an obstacle to their further development, with several relevant examples from countries such as Spain and the Netherlands. There have even been cases where aesthetic degradation is the primary or even the single argument of the opposition to proposed plants. In any case, the aesthetic design and the integration of renewable energy plants into the landscape should really be important design parameters if we plan those projects to truly be sustainable and to be considered complete works of engineering. To initiate dialogue over those aspects of renewable energy, we provide a first comparison on hydro, solar and wind energy. To materialize this comparison, we use data from existing dams, photovoltaic and wind farms. Initially, the average area per MW covered by each type of energy plant is calculated and then evaluated qualitatively from a landscape-impact perspective. Although the area affected is comparable in these three cases, the analysis of the data suggests that dams offer a considerable amount of advantages compared to the other two types of plants. This conclusion arises from the fact that dams, whose basic impact to the landscape is the creation of an artificial lake, contribute much less to the

  18. Drying of medicinal plants with solar energy utilization

    SciTech Connect

    Wisniewski, G.

    1997-10-01

    In the paper, a potential of solar energy for drying of medicinal plants in Polish conditions is estimated and development of solar drying technologies is presented. The results of economic assessment of flat-plate solar collectors applied for drying of medicinal plants on a farm are promising. In some specific conditions, e.g. drying of wild grown medicinal plants in remote areas, even application of photovoltaic modules for driving of a fan of a solar dryer is a profitable option and enables easy control of the drying air temperature.

  19. Mass cultivation of microalgae on animal wastewater: a sequential two-stage cultivation process for energy crop and omega-3-rich animal feed production.

    PubMed

    Zhou, Wenguang; Hu, Bing; Li, Yecong; Min, Min; Mohr, Michael; Du, Zhenyi; Chen, Paul; Ruan, Roger

    2012-09-01

    In this study, 97 microalgal strains purchased from algae bank and 50 microalgal strains isolated from local waters in Minnesota were screened for their adaptability growing on a 20-fold diluted digested swine manure wastewater (DSMW). A pool of candidate strains well adapted to the DSMW was established through a high-throughput screening process. Two top-performing facultative heterotrophic strains with high growth rate (0.536 day(-1) for UMN 271 and 0.433 day(-1) for UMN 231) and one strain with high omega-3 unsaturated fatty acid (EPA, 3.75 % of total fatty acids for UMN 231) were selected. Subsequently, a sequential two-stage mixo-photoautotrophic culture strategy was developed for biofuel and animal feed production as well as simultaneous swine wastewater treatment using above two strains. The maximal biomass concentration and lipid content at the first and second stages reached 2.03 g/L and 23.0 %, and 0.83 g/L and 19.0 % for UMN 271 and UMN 231, respectively. The maximal nutrient removals for total phosphorus and ammonia after second-stage cultivation were 100 and 89.46 %, respectively. The experiments showed that this sequential two-stage cultivation process has great potential for economically viable and environmentally friendly production of both renewable biofuel and high-value animal feed and at the same time for animal wastewater treatment.

  20. Utica Corporation Plant-Wide Energy Assessment Report Final Summary (Entrance to Utica Corporation's Whitesboro Plant)

    SciTech Connect

    2002-03-01

    Utica Corporation conducted a plant-wide energy assessment of the manufacturing processes and utilities at its facility in Whiteboro, NY. As a result of the assessment, the company is now implementing six energy conservation projects that will result in significant cost savings and efficiency improvements.

  1. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation.

    PubMed

    Song, X D; Xue, X Y; Chen, D Z; He, P J; Dai, X H

    2014-08-01

    Applying biochar products from sewage sludge (SS) pyrolysis as soil amendment for plant cultivation was investigated in this study with special attention paid to heavy metal accumulation in the plants when pyrolysis temperature and biochar-to-soil mass ratio (C:S) were changed. Biochar obtained at four different temperatures were adopted as soil amendment for Allium sativum L. garlic plant cultivation. Experimental results revealed that biochars were rich in nutrient contents and they improved garlic yields. Although contents of heavy metals including As, Zn, Pb, Ni, Cd, Cr and Cu, etc. were elevated in the biochars compared to local soil, they fell within the acceptable limits for land application and SS is a suitable biochar resource, especially biochar produced at 450°C had rich micropores, relatively stable functional groups in structure and rugged surface to contact well with soil, conducive to its usage as a biochar. The garlic grew faster when planted in the biochar-amended soil and had higher final dry matter yields than those planted in the reference soil, especially biochar produced at 450°C corresponding to the highest final yields. The C:S ratio related to the highest garlic yields changed when the pyrolysis temperature was changed and this ratio was 1:4 for the biochar produced at 450°C. General heavy metal accumulation in the garlic occurred only for the most enriched Zn and Cu, and mainly in the roots & bulbs; in addition this bioaccumulation was increasing as leaching from biochar increased but not increasing with C:S ratio. The garlic planted in soil amended with biochar of 450°C contained the lowest level of heavy metals compared to other biochars. Those results indicated that heavy metal accumulation in plants can be inhibited through proper pyrolysis temperature choice and prevention of heavy metal leaching from the SS biochar. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A preliminary review of energy savings from EADC plant audits

    SciTech Connect

    Wilfert, G.L.; Kinzey, B.R.; Kaae, P.S.

    1993-03-01

    This paper reviews the long-term energy savings attributed to industrial plant energy audits conducted under the US Department of Energy`s (DOE`s) Energy Analysis and Diagnostic Center (EADC) Program. By the end of FY91, this program is expected to have performed over 3600 plant energy audits since it began in late 1976. During FY91, 500 of the 3600 are expected to be completed. Currently, 18 universities participate in the program. DOE`s expansion plan, as specified in the National Energy Strategy, calls for adding three universities to the program during FY92. This review, requested by the OIT as part of their program planning effort, is preliminary and limited in scope. The primary purpose of this paper is to independently assess the accuracy of past energy savings reporting, specifically: whether a 2-year assessment horizon for identifying implemented ECOs captures all the ECOs implemented under the program whether the number of implemented ECOs and thus, the energy savings associated with program audits, significantly decrease in years 3 through 7 after the audit.

  3. Genetic Diversity and Demographic History of Wild and Cultivated/Naturalised Plant Populations: Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae)

    PubMed Central

    Rešetnik, Ivana; Baričevič, Dea; Batîr Rusu, Diana; Carović-Stanko, Klaudija; Chatzopoulou, Paschalina; Dajić-Stevanović, Zora; Gonceariuc, Maria; Grdiša, Martina; Greguraš, Danijela; Ibraliu, Alban; Jug-Dujaković, Marija; Krasniqi, Elez; Liber, Zlatko; Murtić, Senad; Pećanac, Dragana; Radosavljević, Ivan; Stefkov, Gjoshe; Stešević, Danijela; Šoštarić, Ivan; Šatović, Zlatko

    2016-01-01

    Dalmatian sage (Salvia officinalis L., Lamiaceae) is a well-known aromatic and medicinal Mediterranean plant that is native in coastal regions of the western Balkan and southern Apennine Peninsulas and is commonly cultivated worldwide. It is widely used in the food, pharmaceutical and cosmetic industries. Knowledge of its genetic diversity and spatiotemporal patterns is important for plant breeding programmes and conservation. We used eight microsatellite markers to investigate evolutionary history of indigenous populations as well as genetic diversity and structure within and among indigenous and cultivated/naturalised populations distributed across the Balkan Peninsula. The results showed a clear separation between the indigenous and cultivated/naturalised groups, with the cultivated material originating from one restricted geographical area. Most of the genetic diversity in both groups was attributable to differences among individuals within populations, although spatial genetic analysis of indigenous populations indicated the existence of isolation by distance. Geographical structuring of indigenous populations was found using clustering analysis, with three sub-clusters of indigenous populations. The highest level of gene diversity and the greatest number of private alleles were found in the central part of the eastern Adriatic coast, while decreases in gene diversity and number of private alleles were evident towards the northwestern Adriatic coast and southern and eastern regions of the Balkan Peninsula. The results of Ecological Niche Modelling during Last Glacial Maximum and Approximate Bayesian Computation suggested two plausible evolutionary trajectories: 1) the species survived in the glacial refugium in southern Adriatic coastal region with subsequent colonization events towards northern, eastern and southern Balkan Peninsula; 2) species survived in several refugia exhibiting concurrent divergence into three genetic groups. The insight into genetic

  4. Genetic Diversity and Demographic History of Wild and Cultivated/Naturalised Plant Populations: Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae).

    PubMed

    Rešetnik, Ivana; Baričevič, Dea; Batîr Rusu, Diana; Carović-Stanko, Klaudija; Chatzopoulou, Paschalina; Dajić-Stevanović, Zora; Gonceariuc, Maria; Grdiša, Martina; Greguraš, Danijela; Ibraliu, Alban; Jug-Dujaković, Marija; Krasniqi, Elez; Liber, Zlatko; Murtić, Senad; Pećanac, Dragana; Radosavljević, Ivan; Stefkov, Gjoshe; Stešević, Danijela; Šoštarić, Ivan; Šatović, Zlatko

    2016-01-01

    Dalmatian sage (Salvia officinalis L., Lamiaceae) is a well-known aromatic and medicinal Mediterranean plant that is native in coastal regions of the western Balkan and southern Apennine Peninsulas and is commonly cultivated worldwide. It is widely used in the food, pharmaceutical and cosmetic industries. Knowledge of its genetic diversity and spatiotemporal patterns is important for plant breeding programmes and conservation. We used eight microsatellite markers to investigate evolutionary history of indigenous populations as well as genetic diversity and structure within and among indigenous and cultivated/naturalised populations distributed across the Balkan Peninsula. The results showed a clear separation between the indigenous and cultivated/naturalised groups, with the cultivated material originating from one restricted geographical area. Most of the genetic diversity in both groups was attributable to differences among individuals within populations, although spatial genetic analysis of indigenous populations indicated the existence of isolation by distance. Geographical structuring of indigenous populations was found using clustering analysis, with three sub-clusters of indigenous populations. The highest level of gene diversity and the greatest number of private alleles were found in the central part of the eastern Adriatic coast, while decreases in gene diversity and number of private alleles were evident towards the northwestern Adriatic coast and southern and eastern regions of the Balkan Peninsula. The results of Ecological Niche Modelling during Last Glacial Maximum and Approximate Bayesian Computation suggested two plausible evolutionary trajectories: 1) the species survived in the glacial refugium in southern Adriatic coastal region with subsequent colonization events towards northern, eastern and southern Balkan Peninsula; 2) species survived in several refugia exhibiting concurrent divergence into three genetic groups. The insight into genetic

  5. Energy audit in small wastewater treatment plants: methodology, energy consumption indicators, and lessons learned.

    PubMed

    Foladori, P; Vaccari, M; Vitali, F

    2015-01-01

    Energy audits in wastewater treatment plants (WWTPs) reveal large differences in the energy consumption in the various stages, depending also on the indicators used in the audits. This work is aimed at formulating a suitable methodology to perform audits in WWTPs and identifying the most suitable key energy consumption indicators for comparison among different plants and benchmarking. Hydraulic-based stages, stages based on chemical oxygen demand, sludge-based stages and building stages were distinguished in WWTPs and analysed with different energy indicators. Detailed energy audits were carried out on five small WWTPs treating less than 10,000 population equivalent and using continuous data for 2 years. The plants have in common a low designed capacity utilization (52% on average) and equipment oversizing which leads to waste of energy in the absence of controls and inverters (a common situation in small plants). The study confirms that there are several opportunities for reducing energy consumption in small WWTPs: in addition to the pumping of influent wastewater and aeration, small plants demonstrate low energy efficiency in recirculation of settled sludge and in aerobic stabilization. Denitrification above 75% is ensured through intermittent aeration and without recirculation of mixed liquor. Automation in place of manual controls is mandatory in illumination and electrical heating.

  6. Accumulation of germanium and rare earth elements in functional groups of selected energy crops cultivated on two different soils

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balázs

    2016-04-01

    A field experiment was conducted to investigate the uptake of Ge and selected REEs in functional groups of selected crop species. Five species belonging to the functional group of grasses (Hordeum vulgare, Zea mays, Avena sativa, Panicum miliaceum and Phalaris arundinacea) and four species from the group of herbs (Lupinus albus, Lupinus angustifolius, Fagopyrum esculentum and Brassica napus) were cultivated in parallel on two soils with slightly alkaline (soil A: pH = 7.8) and slightly acidic (soil B: pH = 6.8) conditions. After harvest, concentrations of Ge, La, Nd, Gd, Er, P, Fe, Mn and Si in shoot tissues were determined with ICP-MS. Concentrations of Ge were significantly higher in grasses than in herbs. Conversely, concentrations of La and Nd were significantly higher in herbs, than in grasses. Highest concentrations were measured in Brassica napus (REEs) and Zea mays (Ge). Concentrations of Ge significantly correlated with that of Si in the shoots showing low concentrations in herbs and high concentrations in grasses, indicating a common mechanism during the uptake in grasses. Concentrations of REEs correlated significantly with that of Fe, indicating increasing concentrations of REEs with increasing concentrations of Fe. Cultivation of species on the slightly acidic soil significantly increased the uptake Ge in Lupinus albus and Phalaris arundinacea and the uptake of La and Nd in all species except of Phalaris arundinacea. This study demonstrated that commonly used field crops could be regarded as suitable candidates for a phytomining of Ge and REEs, since these species develop high yields of shoots, high concentrations of elements and are widely used in agricultural practice. Under soil conditions where bioavailability of Ge and REEs is expected to be low (soil A) accumulation can be estimated at 1.8 g/ha Ge in Z. mays and 3.7 g/ha REEs (1.5 g/ha La, 1.4 g/ha Nd, 0.6 g/ha Gd, 0.3 g/ha Er), respectively, in B. napus, assuming a constant high efficiency of

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  8. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.

    PubMed

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-02-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications.

  9. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves

    PubMed Central

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-01-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications. PMID:24151938

  10. Safe use of metal-contaminated agricultural land by cultivation of energy maize (Zea mays).

    PubMed

    Van Slycken, S; Witters, N; Meers, E; Peene, A; Michels, E; Adriaensen, K; Ruttens, A; Vangronsveld, J; Du Laing, G; Wierinck, I; Van Dael, M; Van Passel, S; Tack, F M G

    2013-07-01

    Production of food crops on trace element-contaminated agricultural lands in the Campine region (Belgium) can be problematic as legal threshold values for safe use of these crops can be exceeded. Conventional sanitation of vast areas is too expensive and alternatives need to be investigated. Zea mays on a trace element-contaminated soil in the region showed an average yield of 53 ± 10 Mg fresh or 20 ± 3 Mg dry biomass ha(-1). Whole plant Cd concentrations complied with legal threshold values for animal feed. Moreover, threshold values for use in anaerobic digestion were met. Biogas production potential did not differ between maize grown on contaminated and non-contaminated soils. Results suggested favorable perspectives for farmers to generate non-food crops profitably, although effective soil cleaning would be very slow. This demonstrates that a valuable and sustainable alternative use can be generated for moderately contaminated soils on which conventional agriculture is impaired.

  11. Accumulation and Translocation of Essential and Nonessential Elements by Tomato Plants (Solanum lycopersicum) Cultivated in Open-Air Plots under Organic or Conventional Farming Techniques.

    PubMed

    Liñero, Olaia; Cidad, Maite; Carrero, Jose Antonio; Nguyen, Christophe; de Diego, Alberto

    2015-11-04

    A 5-month experiment was performed to study the accumulation of several inorganic elements in tomato plants cultivated using organic or synthetic fertilizer. Plants were harvested in triplicate at six sampling dates during their life cycle. Statistical and chemometric analysis of data indicated the sequestration of toxic elements and of Na, Zn, Fe, and Co in roots, while the rest of the elements, including Cd, were mainly translocated to aboveground organs. A general decreasing trend in element concentrations with time was observed for most of them. A negative correlation between some element concentrations and ripening stage of fruits was identified. Conventionally grown plants seemed to accumulate more Cd and Tl in their tissues, while organic ones were richer in some nutrients. However, there was no clear effect of the fertilizer used (organic vs synthetic) on the elemental composition of fruits.

  12. The Utilization of a Space Flight Plant Growth Chamber in the Cultivation of Salad Crop Species: A Prelude to a Salad Machine

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.; Hoehn, A.; Stodieck, L. S.; Kliss, M.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The application of bioregenerative life support systems provides an attractive approach to minimize resupply requirement and ultimate self-sufficiency on long duration manned missions in space. The on-board cultivation of salad-type vegetables for crew consumption has been proposed as a first step approach towards reducing a total reliance on the resupply of food. The recent advances in the development of space flight plant growth facilities such as the Plant Generic Bioprocessing Apparatus (PGBA) have established a firm technical basis upon which the implementation of a 'salad machine' concept may be achieved. A presentation on ground based studies will be made evaluating (a) the operational performance of the PGBA facility in a crop production mode and (b) the qualitative and quantitative value of salad plant material produced within the chamber.

  13. The Utilization of a Space Flight Plant Growth Chamber in the Cultivation of Salad Crop Species: A Prelude to a Salad Machine

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.; Hoehn, A.; Stodieck, L. S.; Kliss, M.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The application of bioregenerative life support systems provides an attractive approach to minimize resupply requirement and ultimate self-sufficiency on long duration manned missions in space. The on-board cultivation of salad-type vegetables for crew consumption has been proposed as a first step approach towards reducing a total reliance on the resupply of food. The recent advances in the development of space flight plant growth facilities such as the Plant Generic Bioprocessing Apparatus (PGBA) have established a firm technical basis upon which the implementation of a 'salad machine' concept may be achieved. A presentation on ground based studies will be made evaluating (a) the operational performance of the PGBA facility in a crop production mode and (b) the qualitative and quantitative value of salad plant material produced within the chamber.

  14. A preliminary review of energy savings from EADC plant audits

    SciTech Connect

    Wilfert, G.L.; Kinzey, B.R.; Kaae, P.S.

    1993-01-01

    This paper reviews the long-term energy savings attributed to industrial plant energy audits conducted under the US Department of Energy's (DOE's) Energy Analysis and Diagnostic Center (EADC) Program. By the end of FY91, this program is expected to have performed over 3600 plant energy audits since it began in late 1976. During FY91, 500 of the 3600 are expected to be completed. Currently, 18 universities participate in the program. DOE's expansion plan, as specified in the National Energy Strategy, calls for adding three universities to the program during FY92. This review, requested by the OIT as part of their program planning effort, is preliminary and limited in scope. The primary purpose of this paper is to independently assess the accuracy of past energy savings reporting, specifically: whether a 2-year assessment horizon for identifying implemented ECOs captures all the ECOs implemented under the program whether the number of implemented ECOs and thus, the energy savings associated with program audits, significantly decrease in years 3 through 7 after the audit.

  15. Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity.

    PubMed

    De Block, Marc; Van Lijsebettens, Mieke

    2011-06-01

    The importance of energy metabolism in plant performance and plant productivity is conceptually well recognized. In the eighties, several independent studies in Lolium perenne (ryegrass), Zea mays (maize), and Festuca arundinacea (tall fescue) correlated low respiration rates with high yields. Similar reports in the nineties largely confirmed this correlation in Solanum lycopersicum (tomato) and Cucumis sativus (cucumber). However, selection for reduced respiration does not always result in high-yielding cultivars. Indeed, the ratio between energy content and respiration, defined here as energy efficiency, rather than respiration on its own, has a major impact on the yield potential of a crop. Besides energy efficiency, energy homeostasis, representing the balance between energy production and consumption in a changing environment, also contributes to an enhanced plant performance and this happens mainly through an increased stress tolerance. Although a few single gene approaches look promising, probably whole interacting networks have to be modulated, as is done by classical breeding, to improve the energy status of plants. Recent developments show that both energy efficiency and energy homeostasis have an epigenetic component that can be directed and stabilized by artificial selection (i.e. selective breeding). This novel approach offers new opportunities to improve yield potential and stress tolerance in a wide variety of crops.

  16. Educators benefit from energy information centers at nuclear plant sites

    SciTech Connect

    Krcma-Olson, L.

    1994-12-31

    While issues like dry storage, low-level waste storage, radiation, and license extension are projects with a technical perspective that need to be planned and executed at nuclear power plants, more difficult is the political perspective-gaining public acceptance to allow these projects to proceed. And public perception is predicated on the way plant neighbors and community members understand, accept, and trust the plants. Community educators are a key audience. Annually, U.S. information centers host about one million visitors; roughly half of them are school children who will soon join the ranks of voters, taxpayers, utility customers, and employees. Programs for educators and their classes vary from tours of centers that include computer games and video programs on energy-related topics to audio-visual presentations by center personnel. Some facilities have environmental activities such as hatcheries or nature trails, while others offer plant tours to specific age groups.

  17. The energy trilogy: An integrated sustainability model to bridge wastewater treatment plant energy and emissions gaps

    NASA Astrophysics Data System (ADS)

    Al-Talibi, A. Adhim

    An estimated 4% of national energy consumption is used for drinking water and wastewater services. Despite the awareness and optimization initiatives for energy conservation, energy consumption is on the rise owing to population and urbanization expansion and to commercial and industrial business advancement. The principal concern is since energy consumption grows, the higher will be the energy production demand, leading to an increase in CO2 footprints and the contribution to global warming potential. This research is in the area of energy-water nexus, focusing on wastewater treatment plant (WWTP) energy trilogy -- the group of three related entities, which includes processes: (1) consuming energy, (2) producing energy, and (3) the resulting -- CO2 equivalents. Detailed and measurable energy information is not readily obtained for wastewater facilities, specifically during facility preliminary design phases. These limitations call for data-intensive research approach on GHG emissions quantification, plant efficiencies and source reduction techniques. To achieve these goals, this research introduced a model integrating all plant processes and their pertinent energy sources. In a comprehensive and "Energy Source-to-Effluent Discharge" pattern, this model is capable of bridging the gaps of WWTP energy, facilitating plant designers' decision-making for meeting energy assessment, sustainability and the environmental regulatory compliance. Protocols for estimating common emissions sources are available such as for fuels, whereas, site-specific emissions for other sources have to be developed and are captured in this research. The dissertation objectives were met through an extensive study of the relevant literature, models and tools, originating comprehensive lists of processes and energy sources for WWTPs, locating estimation formulas for each source, identifying site specific emissions factors, and linking the sources in a mathematical model for site specific CO2 e

  18. Modeling effects of inter-annual variability in meteorological and land use conditions on coupled water and energy cycling in the cultivated African Sahel

    NASA Astrophysics Data System (ADS)

    Velluet, C.; Demarty, J.; Cappelaere, B.; Braud, I.; Boulain, N.; Favreau, G.; Charvet, G.; Ramier, D.; Issoufou, H.; Boucher, M.; Mainassara, I.; Chazarin, J.; Oï, M.; Yahou, H.; Benarrosh, N.; Ibrahim, M.

    2012-12-01

    In the dry tropics in general and in the African Sahel in particular, hydro-ecosystems are very sensitive to climate variability and land management. In the Niamey region of South-West Niger, a severe multi-decadal drought together with large-scale vegetation clearing coincided with an unexpected increase in surface and ground water resources. Such an apparent paradoxical situation illustrates the complex way in which climate and land cover interactions control the Sahelian water cycle dynamics. This stresses the importance of understanding and reliably modeling water/energy transfers in the local soil-plant-atmosphere system, under contrasted meteorological and surface conditions. This study investigates the effects of the inter-annual variability of meteorological and land use conditions on the coupled water and energy cycles in the cultivated Sahel over a 5-year period. This is based on a comprehensive multi-year field dataset acquired for a millet crop field and a fallow savannah, the two main land cover types of South-West Niger (Wankama catchment in the mesoscale AMMA-CATCH Niger observatory, part of the French-initiated RBV network). It includes atmospheric forcing, seasonal course of vegetation phenology, soil properties and model validation variables (net radiation, turbulent fluxes, soil heat/water profiles), for the two fields. The study area is typical of Central Sahel conditions, with 400-600 mm annual rainfall concentrated in the 4-5 month wet season. Soils are mainly sandy and prone to surface crusting, leading to a strong vertical contrast in hydrodynamic properties. The SiSPAT process-based model used solves the 1D mass and heat transfer system of equations in the soil, including vapor phase and coupled with a two-component (bare soil and vegetation) water and energy budget at the surface-atmosphere interface. The study explores whether such a model can be accurately calibrated and validated for the two sites using realistic-parameter values. The

  19. DOE`s nuclear energy plant optimization program

    SciTech Connect

    Harrison, D.; Savage, C.D.; Singh, B.P.

    1999-09-01

    In December 1997, the United States agreed to the Kyoto Protocol on Climate Change that outlines specific greenhouse gas emissions reduction requirements. A key element of this protocol is binding emissions targets and timetables. The Protocol calls for the United States to reach emissions targets 7% below 1990 emissions levels over the 5-yr period from 2008 to 2012. A key element to achieving this goal will be the continued safe and economic operation of the Nation`s 104 nuclear power plants. These plants provide >20% of the Nation`s electricity, and nearly one-half of the 50 states receive >25% of their electricity from nuclear power. DOE`s current Strategic Plan specifies that the United States maintain its nuclear energy option and improve the efficiency of existing plants as part of its energy portfolio, in the interest of national security. As a result, DOE proposed two new nuclear energy R and D programs for fiscal year (FY) 1999: the Nuclear Energy Research Initiative (NERI), a peer-reviewed, competitively selected R and D program in advanced concepts, and the Nuclear Energy Plant Optimization Program (NEPO). NERI was authorized and received initial funding of $19 million for its first year. NEPO was not funded in 1999 but has been reintroduced in the FY 2000 budget request. NEPO will be a jointly funded R and D program with industry through the Electric Power Research Institute (EPRI) and will address those issues that could hinder continued safe operation of the Nation`s operating nuclear power plants. The FY 2000 funding request to Congress for NEPO is $5 million.

  20. Greenhouse gas emissions and plant characteristics from soil cultivated with sunflower (Helianthus annuus L.) and amended with organic or inorganic fertilizers.

    PubMed

    López-Valdez, F; Fernández-Luqueño, F; Luna-Suárez, S; Dendooven, L

    2011-12-15

    Agricultural application of wastewater sludge has become the most widespread method of disposal, but the environmental effects on soil, air, and crops must be considered. The effect of wastewater sludge or urea on sunflower's (Helianthus annuus L.) growth and yield, the soil properties, and the resulting CO(2) and N(2)O emissions are still unknown. The objectives of this study were to investigate: i) the effect on soil properties of organic or inorganic fertilizer added to agricultural soil cultivated with sunflower, ii) how urea or wastewater sludge increases CO(2) and N(2)O emissions from agricultural soil over short time periods, and iii) the effect on plant characteristics and yield of urea or wastewater sludge added to agricultural soil cultivated with sunflower. The sunflower was fertilized with wastewater sludge or urea or grown in unamended soil under greenhouse conditions while plant and soil characteristics, yield, and greenhouse gas emissions were monitored. Sludge and urea modified some soil characteristics at the onset of the experiment and during the first two months but not thereafter. Some plant characteristics were improved by sludge. Urea and sludge treatments increased the yield at similar rates, while sludge-amended soil significantly increased N(2)O emissions but not CO(2) emissions compared to the other amended or unamended soils. This implies that wastewater sludge increased the biomass and/or the yield; however, from a holistic point of view, using wastewater sludge as fertilizer should be viewed with concern.

  1. Accumulation of soil-borne aluminium, iron, manganese and zinc in plants cultivated in the region of Moanda (Gabon) and nutritional characteristics of the edible parts harvested.

    PubMed

    Ondo, Jean Aubin; Biyogo, Richard Menye; Eba, François; Prudent, Pascale; Fotio, Daniel; Ollui-Mboulou, Magloire; Omva-Zue, Joseph

    2013-08-15

    In central Africa, studies on the transfer of metals from soil to food crops, the composition of foods and the dietary intake of cultivated vegetables are scarce. In this study, aluminium (Al), iron (Fe), manganese (Mn) and zinc (Zn) transfer from naturally (pedogeochemically) contaminated soils into ten edible plants and human exposure to these metals via edible parts of the plants were investigated. The fertility of the soils studied was still satisfactory. Soil Al (33,029-40,031 mg kg(-1)), Fe (20,869 ± 1124 mg kg(-1)) and Zn (248.3 ± 37.9 mg kg(-1)) concentrations were consistent with those found in agricultural soils, but Mn concentrations were above those normally encountered in arable fields (10,000 mg kg(-1)). The results indicated a substantial accumulation of Fe in red roselle leaves and of Al, Mn and Zn in some leafy plants and okra (fruits). The present study highlights that adults consuming vegetables grown on naturally Mn-rich soils ingest significant amounts of Al, Mn and Zn. However, Zn amounts were below the recommended maximum tolerable levels for hazard risk. The study indicated that Al and Mn accumulation in food crops cultivated in the Moanda area of Gabon may represent a health hazard. However, the high levels of Zn in vegetables could be a pathway for Zn supplementation in human nutrition to reduce Zn deficiency in developing countries. © 2013 Society of Chemical Industry.

  2. Two parametric cell cycle analyses of plant cell suspension cultures with fragile, isolated nuclei to investigate heterogeneity in growth of batch cultivations.

    PubMed

    Haas, Christiane; Hegner, Richard; Helbig, Karsten; Bartels, Kristin; Bley, Thomas; Weber, Jost

    2016-06-01

    Plant cell suspensions are frequently considered to be heterogeneous with respect to growth in terms of progression of the cells through the cell cycle and biomass accumulation. Thus, segregated data of fractions in different cycle phases during cultivation is needed to develop robust production processes. Bromodeoxyuridine (BrdU) incorporation and BrdU-antibodies or 5-ethynyl-2'-deoxyuridine (EdU) click-it chemistry are frequently used to acquire such information. However, their use requires centrifugation steps that cannot be readily applied to sensitive cells, particularly if nuclei have to be extracted from the protective cellular milieu and envelopes for DNA analysis. Therefore, we have established a BrdU-Hoechst stain quenching protocol for analyzing nuclei directly isolated from delicate plant cell suspension cultures. After adding BrdU to test Harpagophytum procumbens cell suspension cultures the cell cycle distribution could be adequately resolved using its incorporation for the following 72 h (after which BrdU slowed biomass accumulation). Despite this limitation, the protocol allows resolution of the cell cycle distribution of cultures that cannot be analyzed using commonly applied methods due to the cells' fragility. The presented protocol enabled analysis of cycling heterogeneities in H. procumbens batch cultivations, and thus should facilitate process control of secondary metabolite production from fragile plant in vitro cultures. Biotechnol. Bioeng. 2016;113: 1244-1250. © 2015 Wiley Periodicals, Inc.

  3. Plant-Wide Energy Efficiency Assessment at the Arizona Portland Cement Plant in Rillito, Arizona

    SciTech Connect

    Stephen J. Coppinger, P.E.; Bruce Colburn, Ph.D., P.E., CEM

    2007-05-17

    A Department of Energy Plant-wide Assessment was undertaken by Arizona Portland Cement (APC) beginning in May 2005. The assessment was performed at APC’s cement production facility in Rillito, Arizona. The assessment included a compressed air evaluation along with a detailed process audit of plant operations and equipment. The purpose of this Energy Survey was to identify a series of energy cost savings opportunities at the Plant, and provide preliminary cost and savings estimates for the work. The assessment was successful in identifying projects that could provide annual savings of over $2.7 million at an estimated capital cost of $4.3 million. If implemented, these projects could amount to a savings of over 4.9 million kWh/yr and 384,420 MMBtu/year.

  4. SOME ASPECTS OF THE NATURAL CONTROL OF PLANT PARASITIC NEMATODES IN SOIL UNDER BROAD BEAN VICIA FABA L. CULTIVATED IN CROP ROTATION AND LONG-TERM MONOCULTURE.

    PubMed

    Skwiercz, A T; Damszel, M; Stefanovska, T; Rychcik, B

    2015-01-01

    Observations on population density of plant parasitic nematodes occurring in rhizosphere of broad bean cultivated in the crop rotation and long-term monoculture were performed during 2013-2014. 13 species were observed: Trichodorus primitivus, T. viruliferus, Paratrichodorus pachydermus, Criconema annuliferum, Paratylenchus projectus, Bitylenchus dubius, Merlinius brevidens, Pratylenchus fallax, P. flakkensis, P. neglectus, Heterodera triffolii, H. goettingiana, and Ditylenchus dipsaci. In monoculture plots 70-80% of eggs inside Heterodera cysts were colonized by pathogenic fungi (v.s. 50-62% of cysts from crop rotation). 12-18% of specimens of Pratylenchus species were colonized by the nematode-pathogenic bacteria: Bacillus penetrans.

  5. [Dendrobium officinale stereoscopic cultivation method].

    PubMed

    Si, Jin-Ping; Dong, Hong-Xiu; Liao, Xin-Yan; Zhu, Yu-Qiu; Li, Hui

    2014-12-01

    The study is aimed to make the most of available space of Dendrobium officinale cultivation facility, reveal the yield and functional components variation of stereoscopic cultivated D. officinale, and improve quality, yield and efficiency. The agronomic traits and yield variation of stereoscopic cultivated D. officinale were studied by operating field experiment. The content of polysaccharide and extractum were determined by using phenol-sulfuric acid method and 2010 edition of "Chinese Pharmacopoeia" Appendix X A. The results showed that the land utilization of stereoscopic cultivated D. officinale increased 2.74 times, the stems, leaves and their total fresh or dry weight in unit area of stereoscopic cultivated D. officinale were all heavier than those of the ground cultivated ones. There was no significant difference in polysaccharide content between stereoscopic cultivation and ground cultivation. But the extractum content and total content of polysaccharide and extractum were significantly higher than those of the ground cultivated ones. In additional, the polysaccharide content and total content of polysaccharide and extractum from the top two levels of stereoscopic culture matrix were significantly higher than that of the ones from the other levels and ground cultivation. Steroscopic cultivation can effectively improves the utilization of space and yield, while the total content of polysaccharides and extractum were significantly higher than that of the ground cultivated ones. The significant difference in Dendrobium polysaccharides among the plants from different height of stereo- scopic culture matrix may be associated with light factor.

  6. Conveyor Cultivation of the Halophytic Plant Salicornia europaea for the Recycling of NaCl from Human Liquid Waste in a Biological Life Support System.

    NASA Astrophysics Data System (ADS)

    Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    One problem in designing bioregenerative life support systems (BLSS) is developing technolo-gies to include human liquid and solid waste in intrasystem recycling. A specific task is recycling of NaCl excreted in urine by humans. We showed recently that this could be achieved through inclusion of the salt accumulating halophyte Salicornia europaea in the autotrophic compart-ment of the BLSS (Balnokin et al., ASR, 2010, in press). A model of NaCl circulation in BLSS with inclusion of S. europaea was based on the NaCl turnover in the human -urine -nutrient solution -S. europaea -human cycle. Mineralized urine was used as a basis for preparation of a nutrient solution for the halophyte cultivation. The shoots of the halophyte cultivated in the mineralized urine and containing NaCl could to be used by the BLSS inhabitants in their diets. In this report we describe cultivation of S. europaea which allows turnover of NaCl and produces daily shoot biomass containing Na+ and Cl- in quantities approximately equal to those excreted in daily human urine. The plants were grown in water culture in a climatic chamber under controlled conditions. A solution simulating mineralized urine (SSMU) was used as a basis for preparation of a nutri-ent solution for S. europaea cultivation. For continuous biomass production, seedlings of S. europaea, germinated preliminary in moist sand, were being transferred to the nutrient solu-tion at regular intervals (every two days). Duration of the conveyor operation was 112 days. During the first 56 days, the seedlings were being planted in SSMU diluted by a factor of 1.5 (2/3 SSMU). The same solution was introduced into the growth vessels as volumes of growth medium decreased due to plant transpiration. Starting from the 56th day as conveyor operation was initiated, the plants were being harvested every two days; the solutions from the discharged vessels were mixed with the fresh SSMU and the mixture was introduced into all other growth vessels of

  7. Environmental energy and evolutionary rates in flowering plants.

    PubMed Central

    Davies, T. Jonathan; Savolainen, Vincent; Chase, Mark W.; Moat, Justin; Barraclough, Timothy G.

    2004-01-01

    The latitudinal gradient in species richness is a pervasive feature of the living world, but its underlying causes remain unclear. We evaluated the hypothesis that environmental energy drives evolutionary rates and thereby diversification in flowering plants. We estimated energy levels across angiosperm family distributions in terms of evapotranspiration, temperature and UV radiation taken from satellite and climate databases. Using the most comprehensive DNA-based phylogenetic tree for angiosperms to date, analysis of 86 sister-family comparisons shows that molecular evolutionary rates have indeed been faster in high-energy regions, but that this is not an intermediate step between energy and diversity. Energy has strong, but independent effects on both species richness and molecular evolutionary rates. PMID:15475341

  8. Mono- and dichromatic LED illumination leads to enhanced growth and energy conversion for high-efficiency cultivation of microalgae for application in space.

    PubMed

    Wagner, Ines; Steinweg, Christian; Posten, Clemens

    2016-08-01

    Illumination with red and blue photons is known to be efficient for cultivation of higher plants. For microalgae cultivation, illumination with specific wavelengths rather than full spectrum illumination can be an alternative where there is a lack of knowledge about achievable biomass yields. This study deals with the usage of color LED illumination to cultivate microalgae integrated into closed life support systems for outer space. The goal is to quantify biomass yields using color illumination (red, blue, green and mixtures) compared to white light. Chlamydomonas reinhardtii was cultivated in plate reactors with color compared to white illumination regarding PCE, specific pigment concentration and cell size. Highest PCE values were achieved under low PFDs with a red/blue illumination (680 nm/447 nm) at a 90 to 10% molar ratio. At higher PFDs saturation effects can be observed resulting from light absorption characteristics and the linear part of PI curve. Cell size and aggregation are also influenced by the applied light color. Red/blue color illumination is a promising option applicable for microalgae-based modules of life support systems under low to saturating light intensities and double-sided illumination. Results of higher PCE with addition of blue photons to red light indicate an influence of sensory pigments.

  9. Dynamics of Short-Term Phosphorus Uptake by Intact Mycorrhizal and Non-mycorrhizal Maize Plants Grown in a Circulatory Semi-Hydroponic Cultivation System.

    PubMed

    Garcés-Ruiz, Mónica; Calonne-Salmon, Maryline; Plouznikoff, Katia; Misson, Coralie; Navarrete-Mier, Micaela; Cranenbrouck, Sylvie; Declerck, Stéphane

    2017-01-01

    A non-destructive cultivation system was developed to study the dynamics of phosphorus (Pi) uptake by mycorrhizal and non-mycorrhizal maize plantlets. The system consisted of a plant container connected via silicon tubes to a glass bottle containing a nutrient solution supplemented with Pi. The nutrient solution is pumped with a peristaltic pump to the upper part of the container via the silicon tubes and the solution percolate through the plantlet container back into the glass bottle. Pi is sampled from the glass bottle at regular intervals and concentration evaluated. Maize plantlets were colonized by the AMF Rhizophagus irregularis MUCL 41833 and Pi uptake quantified at fixed intervals (9, 21, and 42 h) from the depletion of the Pi in the nutrient solution flowing through the plantlets containers. Plants and fungus grew well in the perlite substrate. The concentration of Pi in the bottles followed an almost linear decrease over time, demonstrating a depletion of Pi in the circulating solution and a concomitant uptake/immobilization by the plantlet-AMF associates in the containers. The Pi uptake rate was significantly increased in the AMF-colonized plantlets (at 9 and 21 h) as compared to non-colonized plantlets, although no correlation was noticed with plant growth or P accumulation in shoots. The circulatory semi-hydroponic cultivation system developed was adequate for measuring Pi depletion in a nutrient solution and by corollary Pi uptake/immobilization by the plant-AMF associates. The measurements were non-destructive so that the time course of Pi uptake could be monitored without disturbing the growth of the plant and its fungal associate. The system further opens the door to study the dynamics of other micro and macro-nutrients as well as their uptake under stressed growth conditions such as salinity, pollution by hydrocarbon contaminants or potential toxic elements.

  10. Impact of energy maize cultivation and erosion on carbon gas exchange and soil organic carbon budgets in young moraine landscapes

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Hagemann, U.; Liebe, M.; Sommer, M.; Augustin, J.

    2012-04-01

    The hilly young moraine landscape of north-eastern Germany is dominated by the cultivation of energy crops like maize. It is suspected that this cultivation can increase erosion effects and lead to the release of soil carbon (C). Therefore, in an interdisciplinary approach, the CarboZALF project investigates the impact of various factors such as erosion on greenhouse gas (GHG) fluxes and C dynamics on the site and the landscape level. From the CarboZalf-D project site located in the Uckermark, we present measured and modeled GHG fluxes (CO2 and CH4) and C dynamics of maize on four erosion-related soil types: a) haplic luvisol, b) eroded haplic luvisol, c) haplic regosol (calcaric) and d) endogleyic colluvic regosol. CO2 flux measurements of ecosystem respiration (Reco) and net ecosystem exchange (NEE) were conducted every four weeks by using a non-flow-through non-steady-state closed chamber system (Livingston and Hutchinson 1995) based on Drösler (2005). Measurement gaps of NEE were filled by modeling the Reco fluxes using the Lloyd-Taylor (Lloyd and Taylor 1994) method and the gross primary production (GPP) fluxes using Michaelis-Menten (Michaelis and Menten 1913) modeling approach. Annual NEE balances were then calculated based on the modeled Reco and GPP fluxes. CH4 fluxes were measured bi-weekly using a static chamber system with interval sampling. The system C budget is the sum of annual NEE, C export and CH4-C values. The endogleyic colluvic regosol featured the highest uptake of CH4 (< 1 kg C ha-1 yr-1), but the impact of erosion on the cumulative CH4 fluxes was very small. However, erosion and deposition had a significant impact on GPP, NEE and the C export, but with little differences between the resulting annual C balances. All investigated soil types were C sinks, storing 620 - 2600 kg C ha-1 yr-1. We conclude that i) maize cultivation must not be accompanied by soil organic carbon loss; ii) erosion seems to cause spatial variability of GHG fluxes and

  11. Some alternate methods of energy recovery from reverse osmosis plants

    SciTech Connect

    Guy, D.B.; Singh, R.

    1982-07-01

    Only random information is available on the subject of energy recovery from reverse osmosis plants. This study includes an attempt to collect this information and bring it up to date. The equipment discussed includes classic turbines, reversed pump turbines, integrated hydroturbines and work exchangers, including integrated pump and power recovery units. A short description of each type of equipment is given, followed by advantages and disadvantages, including their state of development. Plants that are or will be using them are enumerated, as are some development possibilities.

  12. Thermal energy storage units for solar electric power plants

    NASA Astrophysics Data System (ADS)

    Gudkov, V. I.; Chakalev, K. N.

    Several types of heat storage units for solar power plants with thermodynamic cycles of energy conversion are examined, including specific-heat units (particularly water-vapor devices), thermochemical units, and phase-change units. The dependence of specific capital costs for heat storage units upon time of operation is discussed, and particular consideration is give to types of connections of specific-heat units into the thermal circuit of a power plant, and to a phase-change unit that uses a heat pipe for internal heat transport.

  13. Plant-derived food ingredients for stimulation of energy expenditure.

    PubMed

    Yuliana, Nancy Dewi; Korthout, Henrie; Wijaya, Christofora Hanny; Kim, Hye Kyong; Verpoorte, Robert

    2014-01-01

    The development of obesity is related to the regulation of energy intake, energy expenditure, and energy storage in the body. Increasing energy expenditure by inducing lipolysis followed by fat oxidation is one of the alternatives which could help to reverse this increasingly widespread condition. Currently, there is no approved drug targeting on stimulation of energy expenditure available. The use of herbal medicines has become a preferred alternative, supported by the classical consensus on the innocuity of herbal medicine vs synthetic drugs, something that often lacks a scientific basis (ban on Ephedra, for example). The inclusion of functional food in the daily diet has also been promoted although its efficacy requires further investigation. This review summarizes the results of recent work focused on the investigation of edible plant materials targeted at various important pathways related to stimulation of energy expenditure. The aim is to evaluate a number of plants that may be of interest for further studies because of their potential to provide novel lead compounds or functional foods which may be used to combat obesity, but require further studies to evaluate their antiobesity activity in humans.

  14. A Pilot Plant: The Fastest Path to Commercial Fusion Energy

    SciTech Connect

    Robert J. Goldston

    2010-03-03

    Considerable effort has been dedicated to determining the possible properties of a magneticconfinement fusion power plant, particularly in the U.S.1, Europe2 and Japan3. There has also been some effort to detail the development path to fusion energy, particularly in the U.S.4 Only limited attention has been given, in Japan5 and in China6, to the options for a specific device to form the bridge from the International Thermonuclear Experimental Reactor, ITER, to commercial fusion energy. Nor has much attention been paid, since 2003, to the synergies between magnetic and inertial fusion energy development. Here we consider, at a very high level, the possibility of a Qeng ≥ 1 Pilot Plant, with linear dimensions ~ 2/3 the linear dimensions of a commercial fusion power plant, as the needed bridge. As we examine the R&D needs for such a system we find significant synergies between the needs for the development of magnetic and inertial fusion energy.

  15. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  16. A Hydroponic Co-cultivation System for Simultaneous and Systematic Analysis of Plant/Microbe Molecular Interactions and Signaling.

    PubMed

    Nathoo, Naeem; Bernards, Mark A; MacDonald, Jacqueline; Yuan, Ze-Chun

    2017-07-22

    An experimental design mimicking natural plant-microbe interactions is very important to delineate the complex plant-microbe signaling processes. Arabidopsis thaliana-Agrobacterium tumefaciens provides an excellent model system to study bacterial pathogenesis and plant interactions. Previous studies of plant-Agrobacterium interactions have largely relied on plant cell suspension cultures, the artificial wounding of plants, or the artificial induction of microbial virulence factors or plant defenses by synthetic chemicals. However, these methods are distinct from the natural signaling in planta, where plants and microbes recognize and respond in spatial and temporal manners. This work presents a hydroponic cocultivation system where intact plants are supported by metal mesh screens and cocultivated with Agrobacterium. In this cocultivation system, no synthetic phytohormone or chemical that induces microbial virulence or plant defense is supplemented. The hydroponic cocultivation system closely resembles natural plant-microbe interactions and signaling homeostasis in planta. Plant roots can be separated from the medium containing Agrobacterium, and the signaling and responses of both the plant hosts and the interacting microbes can be investigated simultaneously and systematically. At any given timepoint/interval, plant tissues or bacteria can be harvested separately for various "omics" analyses, demonstrating the power and efficacy of this system. The hydroponic cocultivation system can be easily adapted to study: 1) the reciprocal signaling of diverse plant-microbe systems, 2) signaling between a plant host and multiple microbial species (i.e. microbial consortia or microbiomes), 3) how nutrients and chemicals are implicated in plant-microbe signaling, and 4) how microbes interact with plant hosts and contribute to plant tolerance to biotic or abiotic stresses.

  17. Use resources of human exometabolites of different oxidation levels for higher plants cultivation on the soil-like substrate as applied to closed ecosystems

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Alexander A.; Kudenko, Yurii; Ushakova, Sofya; Tirranen, Lyalya; Gribovskaya, Illiada; Gros, Jean-Bernard; Lasseur, Christophe

    The technology of ‘wet incineration' of human exometabolites and inedible plants biomass by means of H2 O2 in alternating electromagnetic field to increase a closure of mass exchange processes in bioregenerative life support systems (BLSS) was developed at the Institute of Biophysics of the Siberian Branch of Russian Academy of Sciences (Krasnoyarsk, Russia). Human exometabolites mineralized can be used in a nutrient solution for plants cultivation in the BLSS phototrophic link. The objective of the given work appears to be the study of use resources of human exometabolites of different oxidation levels processed by the abovementioned method for higher plants cultivation on the soil-like substrate (SLS). The mineralized human wastes were tested for the purpose of their sterility. Then the effect of human exometabolites of different oxidation levels both on wheat productivity and on the SLS microflora composition was examined. The SLS extract with a definite amount of human mineralized wastes was used as an irrigation solution. The conducted experiments demonstrated that the H2 O2 decreasing to 1 ml on 1 g of feces and to 0.25 ml on 1 ml of urine had not affected the sterility of mineralized human wastes. Wheat cultivation on the SLS with the addition in an irrigation solution of mineralized human wastes in the amount simulating 1/6 of a daily human diet showed the absence of basic dependence of plants productivity on oxidation level of human exometabolites. Yet the analysis of the microflora composition of the irrigation solutions demonstrated its dependence on the oxidation level of the exometabolites introduced. The amount of yeast-like fungi increased in 20 times in the solutions containing less oxidized exometabolites in comparison with the variant in which the human wastes were subjected to a full-scale oxidation. Besides, the solutions with less oxidized exometabolites displayed a bigger content of plant pathogenic bacteria and denitrifies. Consequently the

  18. Boiler tube failures in municipal waste-to-energy plants

    SciTech Connect

    Krause, H.H.; Wright, I.G.

    1996-01-01

    Waste-to-energy plants experienced increased boiler tube failures when the design changed from waste-heat boilers to radiant furnace waterwalls using superheat. Fireside attack by chlorine and sulfur compounds in refuse combustion products caused many forced outages in early European plants operating at high steam temperatures and pressures. Despite conservative steam conditions in the first US plants, failures occurred. As steam temperatures increased, corrosion problems multiplied. The problems have been alleviated by covering the waterwalls with either refractory or weld overlays of nickel-based alloys and using high nickel-chromium alloys for superheater tubes. Changes in furnace design to provide uniform combustion and avoid reducing conditions in the waterwall zone and to lower the gas temperature in the superheater also have helped minimize corrosion.

  19. A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology.

    PubMed

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-09-01

    The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software. Two case studies have been evaluated to assess the model's performance: (1) modelling the energy demand of two urban wastewater treatment plants based on conventional activated sludge and submerged anaerobic membrane bioreactor (AnMBR) technologies in steady-state conditions and (2) modelling the dynamics of reactor temperature and heat requirements in an AnMBR plant in unsteady-state conditions. The results indicate that the proposed model can be used to assess the energy performance of different wastewater treatment processes and would thus be useful, for example, WWTP design or upgrading or the development of new control strategies for energy savings.

  20. Impact of Biofuel Poplar Cultivation on Ground-Level Ozone and Premature Human Mortality Depends on Cultivar Selection and Planting Location.

    PubMed

    Ashworth, Kirsti; Wild, Oliver; Eller, Allyson S D; Hewitt, C Nick

    2015-07-21

    Isoprene and other volatile organic compounds emitted from vegetation play a key role in governing the formation of ground-level ozone. Emission rates of such compounds depend critically on the plant species. The cultivation of biofuel feedstocks will contribute to future land use change, altering the distribution of plant species and hence the magnitude and distribution of emissions. Here we use relationships between biomass yield and isoprene emissions derived from experimental data for 29 commercially available poplar hybrids to assess the impact that the large-scale cultivation of poplar for use as a biofuel feedstock will have on air quality, specifically ground-level ozone concentrations, in Europe. We show that the increases in ground-level ozone across Europe will increase the number of premature deaths attributable to ozone pollution each year by up to 6%. Substantial crop losses (up to ∼9 Mt y(-1) of wheat and maize) are also projected. We further demonstrate that these impacts are strongly dependent on the location of the poplar plantations, due to the prevailing meteorology, the population density, and the dominant crop type of the region. Our findings indicate the need for a concerted and centralized decision-making process that considers all aspects of future land use change in Europe, and not just the effect on greenhouse gas emissions.

  1. Neutron dose and energy spectra measurements at Savannah River Plant

    SciTech Connect

    Brackenbush, L.W.; Soldat, K.L.; Haggard, D.L.; Faust, L.G.; Tomeraasen, P.L.

    1987-08-01

    Because some workers have a high potential for significant neutron exposure, the Savannah River Plant (SRP) contracted with Pacific Northwest Laboratory (PNL) to verify the accuracy of neutron dosimetry at the plant. Energy spectrum and neutron dose measurements were made at the SRP calibrations laboratory and at several other locations. The energy spectra measurements were made using multisphere or Bonner sphere spectrometers,/sup 3/He spectrometers, and NE-213 liquid scintillator spectrometers. Neutron dose equivalent determinations were made using these instruments and others specifically designed to determine dose equivalent, such as the tissue equivalent proportional counter (TEPC). Survey instruments, such as the Eberline PNR-4, and the thermoluminescent dosimeter (TLD)-albedo and track etch dosimeters (TEDs) were also used. The TEPC, subjectively judged to provide the most accurate estimation of true dose equivalent, was used as the reference for comparison with other devices. 29 refs., 43 figs., 13 tabs.

  2. Energy efficiency in municipal wastewater treatment plants: Technology assessment

    SciTech Connect

    1995-11-01

    The New York State Energy Research and Development Authority (NYSERDA) estimates that municipal wastewater treatment plants (WWTPs) in New York State consume about 1.5 billion kWh of electricity each year for sewage treatment and sludge management based on the predominant types of treatment plants, the results of an energy use survey, and recent trends in the amounts of electricity WWTPs use nationwide. Electric utilities in New York State have encouraged demand-side management (DSM) to help control or lower energy costs and make energy available for new customers without constructing additional facilities. This report describes DSM opportunities for WWTPs in New York State; discusses the costs and benefits of several DSM measures; projects energy impact statewide of the DSM technologies; identifies the barrier to implementing DSM at WWTPs; and outlines one possible incentive that could stimulate widespread adoption of DSM by WWTP operators. The DSM technologies discussed are outfall hydropower, on-site generation, aeration efficiency, time-of-day electricity pricing, and storing wastewater.

  3. Improving the Energy Efficiency of Pumped-Storage Power Plants

    SciTech Connect

    Artyukh, S. F.; Galat, V. V.; Kuz’min, V. V.; Chervonenko, I. I.; Shakaryan, Yu. G.; Sokur, P. V.

    2015-01-15

    Possible ways to improve the energy efficiency of hydroelectric generating sets of pumped-storage power plants (PSPPs) are studied. The Kiev PSPP is used as an example to show how its generating sets can be upgraded. It is concluded based on studies conducted that synchronous motor-generators should be replaced with asynchronized motor-generators. The feasibility of changing over the turbine to variable-speed operation is shown.

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  5. Nevada Renewable Energy Training Project: Geothermal Power Plant Operators

    SciTech Connect

    Jim, Nichols

    2014-04-29

    The purpose of this project was to develop and institute a training program for certified geothermal power plant operators (GPO). An advisory board consisting of subject matter experts from the geothermal energy industry and academia identified the critical skill sets required for this profession. A 34-credit Certificate of Achievement (COA), Geothermal Power Plant Operator, was developed using eight existing courses and developing five new courses. Approval from the Nevada System of Higher Education Board of Regents was obtained. A 2,400 sq. ft. geothermal/fluid mechanics laboratory and a 3,000 sq. ft. outdoor demonstration laboratory were constructed for hands-on training. Students also participated in field trips to geothermal power plants in the region. The majority of students were able to complete the program in 2-3 semesters, depending on their level of math proficiency. Additionally the COA allowed students to continue to an Associate of Applied Science (AAS), Energy Technologies with an emphasis in Geothermal Energy (26 additional credits), if they desired. The COA and AAS are stackable degrees, which provide students with an ongoing career pathway. Articulation agreements with other NSHE institutions provide students with additional opportunities to pursue a Bachelor of Applied Science in Management or Instrumentation. Job placement for COA graduates has been excellent.

  6. Waterborne noise due to ocean thermal energy conversion plants

    SciTech Connect

    Janota, C.P.; Thompson, D.E.

    1983-07-01

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the seawater pumps is expected to dominate in the frequency range 10 Hz to 1 kHz. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  7. Potential of Using Solar Energy for Drinking Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Bukhary, S. S.; Batista, J.; Ahmad, S.

    2016-12-01

    Where water is essential to energy generation, energy usage is integral to life cycle processes of water extraction, treatment, distribution and disposal. Increasing population, climate change and greenhouse gas production challenges the water industry for energy conservation of the various water-related operations as well as limiting the associated carbon emissions. One of the ways to accomplish this is by incorporating renewable energy into the water sector. Treatment of drinking water, an important part of water life cycle processes, is vital for the health of any community. This study explores the feasibility of using solar energy for a drinking water treatment plant (DWTP) with the long-term goal of energy independence and sustainability. A 10 MGD groundwater DWTP in southwestern US was selected, using the treatment processes of coagulation, filtration and chlorination. Energy consumption in units of kWh/day and kWh/MG for each unit process was separately determined using industry accepted design criteria. Associated carbon emissions were evaluated in units of CO2 eq/MG. Based on the energy consumption and the existing real estate holdings, the DWTP was sized for distributed solar. Results showed that overall the motors used to operate the pumps including the groundwater intake pumps were the largest consumers of energy. Enough land was available around DWTP to deploy distributed solar. Results also showed that solar photovoltaics could potentially be used to meet the energy demands of the selected DWTP, but warrant the use of a large storage capacity, and thus increased costs. Carbon emissions related to solar based design were negligible compared to the original case. For future, this study can be used to analyze unit processes of other DWTP based on energy consumption, as well as for incorporating sustainability into the DWTP design.

  8. Dry matter and energy partitioning in plants under climatic stress

    SciTech Connect

    Bolhar-Nordenkampf, H.R.; Postl, W.F.; Meister, M.H.; Ledl, D.; Nemeth, K.; Ludlow, M.M.

    1996-12-31

    During ontogenesis plants distribute assimilates quite differently among their organs depending on the environmental conditions. In case of high sink capacity energetically cheap storing compounds such as carbohydrates and/or organic acids are formed, whereas during periods with low demand proteins and lipids may be accumulated. Besides ontogenesis, drought and increased CO{sub 2} are able to modify sink capacity and by this transients in the partitioning pattern of carbon are induced. Plants, well adapted to several dry seasons during the year are able to allocate carbon predominantly to below ground organs. During this period many leaves become senescent. In any case stems and remaining green leaves will loose dry matter and energy. With 80% of plants under investigation CO{sub 2} enrichment was shown to induce an enforced allocation of carbon to below ground organs. Roots and Rhizomes, beets and tubers act as a sink for the additionally fixed carbon. It was demonstrated that sink capacity is controlling photosynthetic activity. With respect to agricultural production, to ecosystems and to single plants, climatic change will modify productivity and plants distribution pattern as a consequence of quite different metabolic changes. These responses are depending on the effect of natural and anthropogenic stress factors on the use of enhanced CO{sub 2} and on the allocation of additionally formed assimilates.

  9. Joliet army ammunition plant, energy engineering analysis. Final report

    SciTech Connect

    1985-12-31

    This analysis is undertaken to assist the Joliet Army Ammunition Plant (JAAP) in meeting the goals established in the Army Facilities Energy Plan to reduce energy consumption by 20 percent by FY 85. Projects selected for implementation as a result of this analysis enable JAAP to achieve the FY 85 goal. These projects have been divided into standby status and mobilization status. Total annual energy savings for standby status from project implementation is expected to be approximately 296,000 MBTU`s. The total cost of project implementation is estimated at $2.8 million. The cost of implementing mobilization status projects (including Increment F projects), is estimated at $4.6 million.

  10. Diffusion and accumulation in cultivated vegetable plants of di-(2-ethylhexyl) phthalate (DEHP) from a plastic production factory.

    PubMed

    Du, Q Z; Wang, J W; Fu, X W; Xia, H L

    2010-08-01

    Di-(2-ethylhexyl) phthalate (DEHP) concentrations in the atmosphere and in four vegetable crops including Brassica chinensis L. (bok choy), Brassica campestris L. (field mustard), Vigna unguiculata Walp. (cowpea), and Solanum melongena L. (eggplant) cultivated on land surrounding a plastic production factory were determined. The air DEHP concentrations (means) at the sites 0.2, 0.4, 0.8, and 1.6 km away from the plastic production building were about 9.4-12.8, 5.8-9.6, 1.6-5.0, and 0.04-0.27 microg m(-3) dry weight (DW), respectively. Wind direction is a key factor influencing the measurable DEHP concentration of the air, which was highest in the downwind direction and lowest in the upwind direction, and thus the vegetables accumulated the highest DEHP contents in the downwind direction and the lowest quantities in the upwind direction. The highest DEHP accumulations content of bok choy, field mustard, eggplant, and cowpea were 52.0 +/- 3.1, 43.1 +/- 2.2, 36.2 +/- 2.8, and 19.4 +/- 0.47 mg kg(-1) DW, respectively. Safety estimation on the basis of the daily intake limit referenced by the US Environmental Protection Agency (USEPA) led to the conclusion that eating vegetables cultivated 0.2 km away from the plastic production building is not a food safety problem under normal conditions. A strong positive linear correlation between atmospheric DEHP concentration and DEHP content of the vegetable crops was found. The limits for air DEHP concentration for safe vegetable cultivation are 24.0, 34.8, 40.8, and 82.8 microg m(-3) for bok choy, field mustard, cowpea, and eggplant, respectively, by calculating from the equation of linear regression between air DEHP concentration and vegetable DEHP content.

  11. Detection of Legionella by cultivation and quantitative real-time polymerase chain reaction in biological waste water treatment plants in Norway.

    PubMed

    Lund, Vidar; Fonahn, Wenche; Pettersen, Jens Erik; Caugant, Dominique A; Ask, Eirik; Nysaeter, Ase

    2014-09-01

    Cases of Legionnaires' disease associated with biological treatment plants (BTPs) have been reported in six countries between 1997 and 2010. However, knowledge about the occurrence of Legionella in BTPs is scarce. Hence, we undertook a qualitative and quantitative screening for Legionella in BTPs treating waste water from municipalities and industries in Norway, to assess the transmission potential of Legionella from these installations. Thirty-three plants from different industries were sampled four times within 1 year. By cultivation, 21 (16%) of 130 analyses were positive for Legionella species and 12 (9%) of 130 analyses were positive for Legionella pneumophila. By quantitative real-time polymerase chain reaction (PCR), 433 (99%) of 437 analyses were positive for Legionella species and 218 (46%) of 470 analyses were positive for L. pneumophila. This survey indicates that PCR could be the preferable method for detection of Legionella in samples from BTPs. Sequence types of L. pneumophila associated with outbreaks in Norway were not identified from the BTPs. We showed that a waste water treatment plant with an aeration basin can produce high concentrations of Legionella. Therefore, these plants should be considered as a possible source of community-acquired Legionella infections.

  12. A novel plant-based-sea water culture media for in vitro cultivation and in situ recovery of the halophyte microbiome.

    PubMed

    Saleh, Mohamed Y; Sarhan, Mohamed S; Mourad, Elhussein F; Hamza, Mervat A; Abbas, Mohamed T; Othman, Amal A; Youssef, Hanan H; Morsi, Ahmed T; Youssef, Gehan H; El-Tahan, Mahmoud; Amer, Wafaa A; Fayez, Mohamed; Ruppel, Silke; Hegazi, Nabil A

    2017-11-01

    The plant-based-sea water culture medium is introduced to in vitro cultivation and in situ recovery of the microbiome of halophytes. The ice plant (Mesembryanthemum crystallinum) was used, in the form of juice and/or dehydrated plant powder packed in teabags, to supplement the natural sea water. The resulting culture medium enjoys the combinations of plant materials as rich source of nutrients and sea water exercising the required salt stress. As such without any supplements, the culture medium was sufficient and efficient to support very good in vitro growth of halotolerant bacteria. It was also capable to recover their in situ culturable populations in the phyllosphere, ecto-rhizosphere and endo-rhizosphere of halophytes prevailing in Lake Mariout, Egypt. When related to the total bacterial numbers measured for Suaeda pruinosa roots by quantitative-PCR, the proposed culture medium increased culturability (15.3-19.5%) compared to the conventional chemically-synthetic culture medium supplemented with (11.2%) or without (3.8%) NaCl. Based on 16S rRNA gene sequencing, representative isolates of halotolerant bacteria prevailed on such culture medium were closely related to Bacillus spp., Halomonas spp., and Kocuria spp. Seed germination tests on 25-50% sea water agar indicated positive interaction of such bacterial isolates with the germination and seedlings' growth of barley seeds.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  14. 3M: Hutchinson Plant Focuses on Heat Recovery and Cogeneration During Plant-Wide Energy-Efficiency Assessment

    SciTech Connect

    Not Available

    2003-06-01

    3M performed a plant-wide energy efficiency assessment at its Hutchinson, Minnesota, plant to identify energy- and cost-saving opportunities. Assessment staff developed four separate implementation packages that represented various combinations of energy-efficiency projects involving chiller consolidation, air compressor cooling improvements, a steam turbine used for cogeneration, and a heat recovery boiler for two of the plant's thermal oxidizers. Staff estimated that the plant could save 6 million kWh/yr in electricity and more than 200,000 MMBtu/yr in natural gas and fuel oil, and avoid energy costs of more than$1 million during the first year.

  15. Energy index decomposition methodology at the plant level

    NASA Astrophysics Data System (ADS)

    Kumphai, Wisit

    Scope and method of study. The dissertation explores the use of a high level energy intensity index as a facility-level energy performance monitoring indicator with a goal of developing a methodology for an economically based energy performance monitoring system that incorporates production information. The performance measure closely monitors energy usage, production quantity, and product mix and determines the production efficiency as a part of an ongoing process that would enable facility managers to keep track of and, in the future, be able to predict when to perform a recommissioning process. The study focuses on the use of the index decomposition methodology and explored several high level (industry, sector, and country levels) energy utilization indexes, namely, Additive Log Mean Divisia, Multiplicative Log Mean Divisia, and Additive Refined Laspeyres. One level of index decomposition is performed. The indexes are decomposed into Intensity and Product mix effects. These indexes are tested on a flow shop brick manufacturing plant model in three different climates in the United States. The indexes obtained are analyzed by fitting an ARIMA model and testing for dependency between the two decomposed indexes. Findings and conclusions. The results concluded that the Additive Refined Laspeyres index decomposition methodology is suitable to use on a flow shop, non air conditioned production environment as an energy performance monitoring indicator. It is likely that this research can be further expanded in to predicting when to perform a recommissioning process.

  16. Energy dissipation and radical scavenging by the plant phenylpropanoid pathway.

    PubMed Central

    Grace, S C; Logan, B A

    2000-01-01

    Environmental stresses such as high light, low temperatures, pathogen infection and nutrient deficiency can lead to increased production of free radicals and other oxidative species in plants. A growing body of evidence suggests that plants respond to these biotic and abiotic stress factors by increasing their capacity to scavenge reactive oxygen species. Efforts to understand this acclimatory process have focused on the components of the 'classical' antioxidant system, i.e. superoxide dismutase, ascorbate peroxidase, catalase, monodehydroascorbate reductase, glutathione reductase and the low molecular weight antioxidants ascorbate and glutathione. However, relatively few studies have explored the role of secondary metabolic pathways in plant response to oxidative stress. A case in point is the phenylpropanoid pathway which is responsible for the synthesis of a diverse array of phenolic metabolites such as flavonoids, tannins, hydroxycinnamate esters and the structural polymer lignin. These compounds are often induced by stress and serve specific roles in plant protection, i.e. pathogen defence, ultraviolet screening, antiherbivory, or structural components of the cell wall. This review will highlight a novel antioxidant function for the taxonomically widespread phenylpropanoid metabolite chlorogenic acid (CGA; 5-O-caffeoylquinic acid) and assess its possible role in abiotic stress tolerance. The relationship between CGA biosynthesis and photosynthetic carbon metabolism will also be discussed. Based on the properties of this model phenolic metabolite, we propose that under stress conditions phenylpropanoid biosynthesis may represent an alternative pathway for photochemical energy dissipation that has the added benefit of enhancing the antioxidant capacity of the cell. PMID:11128003

  17. Mild Fe-deficiency improves biomass production and quality of hydroponic-cultivated spinach plants (Spinacia oleracea L.).

    PubMed

    Jin, Chong-Wei; Liu, Yue; Mao, Qian-Qian; Wang, Qian; Du, Shao-Ting

    2013-06-15

    It is of great practical importance to improve yield and quality of vegetables in soilless cultures. This study investigated the effects of iron-nutrition management on yield and quality of hydroponic-cultivated spinach (Spinacia oleracea L.). The results showed that mild Fe-deficient treatment (1 μM FeEDTA) yielded a greater biomass of edible parts than Fe-omitted treatment (0 μM FeEDTA) or Fe-sufficient treatments (10 and 50 μM FeEDTA). Conversely, mild Fe-deficient treatment had the lowest nitrate concentration in the edible parts out of all the Fe treatments. Interestingly, all the concentrations of soluble sugar, soluble protein and ascorbate in mild Fe-deficient treatments were higher than Fe-sufficient treatments. In addition, both phenolic concentration and DPPH scavenging activity in mild Fe-deficient treatments were comparable with those in Fe-sufficient treatments, but were higher than those in Fe-omitted treatments. Therefore, we concluded that using a mild Fe-deficient nutrition solution to cultivate spinach not only would increase yield, but also would improve quality.

  18. Plant response to lead in the presence or absence EDTA in two sunflower genotypes (cultivated H. annuus cv. 1114 and interspecific line H. annuus × H. argophyllus).

    PubMed

    Doncheva, Snezhana; Moustakas, Michael; Ananieva, Kalina; Chavdarova, Martina; Gesheva, Emiliya; Vassilevska, Rumyana; Mateev, Plamen

    2013-02-01

    The aim of the present work was to study the response of two sunflower genotypes (cultivated sunflower Helianthus annuus cv. 1114 and newly developed genotype H. annuus × Helianthus argophyllus) to Pb medium-term stress and the role of exogenously applied EDTA in alleviating Pb toxicity in hydroponics. Plant growth, morpho-anatomical characteristics of the leaf tissues, electrolyte leakage, total antioxidant activity, free radical scavenging capacity, total flavonoid content, and superoxide dismutase isoenzyme profile were studied by conventional methods. Differential responses of both genotypes to Pb supplied in the nutrient solution were recorded. Pb treatment induced a decrease in the relative growth rate, disturbance of plasma membrane integrity, and changes in the morpho-anatomical characteristics of the leaf tissues and in the antioxidant capacity, which were more pronounced in the cultivated sunflower H. annuus cv. 1114. The new genotype demonstrated higher tolerance to Pb when compared with the cultivar. This was mainly due to increased photosynthetically active area, maintenance of plasma membrane integrity, permanently high total antioxidant activity, and free radical scavenging capacity as well as total flavonoid content. The addition of EDTA into the nutrient solution led to limitation of the negative impact of Pb ions on the above parameters in both genotypes. This could be related to the reduced content of Pb in the roots, stems, and leaves, suggesting that the presence of EDTA limited the uptake of Pb. The comparative analysis of the responses to Pb treatment showed that the deleterious effect of Pb was more pronounced in the cultivated sunflower H. annuus cv. 1114. The new genotype H. annuus × H. argophyllus was more productive and demonstrated higher tolerance to Pb medium-term stress, which could indicate that it may possess certain mechanisms to tolerate high Pb concentrations. This character could be inherited from the wild parent used in the

  19. Two-step cultivation for production of astaxanthin in Chlorella zofingiensis using a patented energy-free rotating floating photobioreactor (RFP).

    PubMed

    Zhang, Zhao; Huang, Jim Junhui; Sun, Dongzhe; Lee, Yuankun; Chen, Feng

    2017-01-01

    In the present study, high light and nitrogen starvation with glucose-fed to the culture was found efficient to induce astaxanthin accumulation in Chlorella zofingiensis. Therefore, a two-step cultivation strategy including high biomass yield fermentation and outdoor induction with an energy-free RFP was conducted. During the fermentation, the highest cell density of 98.4gL(-1) and astaxanthin yield of 73.3mgL(-1) were achieved, which were higher than those so far reported in C. zofingiensis. During the outdoor induction, astaxanthin content was further increased by 1.5-fold leading to the highest astaxanthin productivity of 5.26mgL(-1)day(-1) under an optimal dilution of 5-fold. Our work thus provided an effective two-step cultivation strategy for production of astaxanthin by C. zofingiensis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Use of human wastes oxidized to different degrees in cultivation of higher plants on the soil-like substrate intended for closed ecosystems

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A. A.; Kudenko, Yu. A.; Ushakova, S. A.; Tirranen, L. S.; Gribovskaya, I. A.; Gros, J.-B.; Lasseur, Ch.

    2010-09-01

    To close mass exchange loops in bioregenerative life support systems more efficiently, researchers of the Institute of Biophysics SB RAS (Krasnoyarsk, Russia) have developed a procedure of wet combustion of human wastes and inedible parts of plants using H 2O 2 in alternating electromagnetic field. Human wastes pretreated in this way can be used as nutrient solutions to grow plants in the phototrophic unit of the LSS. The purpose of this study was to explore the possibilities of using human wastes oxidized to different degrees to grow plants cultivated on the soil-like substrate (SLS). The treated human wastes were analyzed to test their sterility. Then we investigated the effects produced by human wastes oxidized to different degrees on growth and development of wheat plants and on the composition of microflora in the SLS. The irrigation solution contained water, substances extracted from the substrate, and certain amounts of the mineralized human wastes. The experiments showed that the human wastes oxidized using reduced amounts of 30% H 2O 2: 1 ml/g of feces and 0.25 ml/ml of urine were still sterile. The experiments with wheat plants grown on the SLS and irrigated by the solution containing treated human wastes in the amount simulating 1/6 of the daily diet of a human showed that the degree of oxidation of human wastes did not significantly affect plant productivity. On the other hand, the composition of the microbiota of irrigation solutions was affected by the oxidation level of the added metabolites. In the solutions supplemented with partially oxidized metabolites yeast-like microscopic fungi were 20 times more abundant than in the solutions containing fully oxidized metabolites. Moreover, in the solutions containing incompletely oxidized human wastes the amounts of phytopathogenic bacteria and denitrifying microorganisms were larger. Thus, insufficiently oxidized sterile human wastes added to the irrigation solutions significantly affect the composition of

  1. Energy conservation study on Agripac Processing Plant, Salem, Oregon

    SciTech Connect

    Not Available

    1985-01-15

    An energy study on electrical energy using systems was performed at Agripac plant No. 1 in Salem, Oregon, in the late summer and fall of 1984. The plant processes mainly green beans, corn and squash. The respective products are inspected, prepared and graded, after which they are either canned or frozen in freeze tunnels or cold storage cells. The canned products are sent through pressure cookers. In the case of green beans and corn, some of the product is frozen in freeze tunnels and dumped into tote bins for the repack operation, while some is packaged in cartons and quick frozen in blast freeze cells. For squash, all the product processed is put into cartons and frozen in the cells. Energy conservation measures were calculated using a simple payback analysis. Conservation measures have been evaluated interactively to avoid overestimating savings, assuming that measures that are cost effective will be implemented as a package. In some cases, mutually exclusive conservation measures have been considered for a single application. These have been presented as an either/or measure. Details of the options are included in the text and the calculation sheets.

  2. Survey of Nitrate Ion Concentrations in Vegetables Cultivated in Plant Factories: Comparison with Open-Culture Vegetables.

    PubMed

    Oka, Yuka; Hirayama, Izumi; Yoshikawa, Mitsuhide; Yokoyama, Tomoko; Iida, Kenji; Iwakoshi, Katsushi; Suzuki, Ayana; Yanagihara, Midori; Segawa, Yukino; Kukimoto, Sonomi; Hamada, Humika; Matsuzawa, Satomi; Tabata, Setsuko; Sasamoto, Takeo

    2017-01-01

    A survey of nitrate-ion concentrations in plant-factory-cultured leafy vegetables was conducted. 344 samples of twenty-one varieties of raw leafy vegetables were examined using HPLC. The nitrate-ion concentrations in plant-factory-cultured leafy vegetables were found to be LOD-6,800 mg/kg. Furthermore, the average concentration values varied among different leafy vegetables. The average values for plant-factory-cultured leafy vegetables were higher than those of open-cultured leafy vegetables reported in previous studies, such as the values listed in the Standard Tables of Food Composition in Japan- 2015 - (Seventh revised edition). For some plant-factory-cultured leafy vegetables, such as salad spinach, the average values were above the maximum permissible levels of nitrate concentration in EC No 1258/2011; however, even when these plant-factory-cultured vegetables were routinely eaten, the intake of nitrate ions in humans did not exceed the ADI.

  3. Cultivation of the culinary-medicinal Lung Oyster mushroom, Pleurotus pulmonarius (Fr.) Quél. (Agaricomycetideae) on grass plants in Taiwan.

    PubMed

    Liang, Zeng-Chin; Wu, Kuan-Jzen; Wang, Jinn-Chyi; Lin, Chorng-Horng; Wu, Chiu-Yeh

    2011-01-01

    Cultivation of the culinary-medicinal Lung Oyster mushroom, Pleurotus pulmonarius, on the stalks of three grass plants, i.e., Panicum repens, Pennisetum purpureum, and Zea mays were investigated. The effects of various combinatorial substrates on mushroom mycelial growth and yield calculated as biological efficiency (BE) were determined. Among 9 experimental substrates, the most suitable substrate for mycelial growth was 45ZMS:45S, followed by 45PRS:45S; their mycelial growth rates were obviously quicker than that of the control substrate. The BEs of all the experimental substrates respectively containing P. repens stalk, P. purpureum stalk and Z. mays stalk were higher than that of the control (39.55%) during the 2.5 months of cultivation period. The best substrate in terms of BE was 60ZMS:30S (58.33%), followed by 45PRS:45S (57.16%), 45ZMS:45S (49.86%), and 30ZMS:60S (47.20%). Based on the BE of the tested substrates, Z mays stalk appeared to be the best alternative material for the production of P. pulmonarius.

  4. Wind Energy Conversion by Plant-Inspired Designs

    PubMed Central

    Mosher, Curtis L.; Henderson, Eric R.

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a “vertical flapping stalk”—the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°–90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced << daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts << daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept. PMID:28085933

  5. Wind Energy Conversion by Plant-Inspired Designs.

    PubMed

    McCloskey, Michael A; Mosher, Curtis L; Henderson, Eric R

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a "vertical flapping stalk"-the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°-90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced < daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts < daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept.

  6. Total energy food plant 21 million gallon ethanol facility

    NASA Astrophysics Data System (ADS)

    1981-10-01

    The Phase I Engineering study includes the following: process description, waste water treatment plant, material summary, energy chart, capital cost estimate, equipment list, personnel requirements, drawings list, specifications list, and project schedule. The economic and financial feasibility of the technical process, and environmental, health, safety, and socio-economic assessments for the project are reported. The costs for extending the following utilities to the property line of the selected site are presented: potable water, sewer system, electricity, roads for truck traffic, and rail service.

  7. Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops.

    PubMed

    Farrar, Kerrie; Bryant, David; Cope-Selby, Naomi

    2014-12-01

    Plant production systems globally must be optimized to produce stable high yields from limited land under changing and variable climates. Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. In contrast to crops that have been bred for food, many bioenergy crops are largely undomesticated, and so there is an opportunity to harness beneficial plant-microbe relationships which may have been inadvertently lost through intensive crop breeding. Plant-microbe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plant-microbe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications. © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Energy Engineering Analysis Program, energy survey of boiler and chiller plants, Yuma Proving Ground, Arizona

    SciTech Connect

    1994-10-01

    This report summarizes all work for the Energy Survey of Boiler and Chiller Plants, Energy Engineering Analysis Program (EEAP) at U.S. Army Yuma Proving Ground, Arizona, authorized under Contract DACA05-92-C-0155 with the U.S. Army Corps of Engineers, Sacramento District, California. The purpose of this study is to develop projects and actions that will reduce facilities energy consumption and operating costs at Yuma Proving Ground. Implementation of these projects will contribute to achieving the goal of the Army Facilities Energy Plan of a reduction in energy consumption per square foot of building floor area of 20 percent by FY2000 from FY1983 baseline levels. The survey and evaluation effort was limited to chillers and direct expansion cooling units in Buildings 451, 506, 2105, 3482, 3490, and 3510 boilers in Building 506.

  9. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : III. Daily courses of net photosynthesis and transpiration at the end of the dry period].

    PubMed

    Schulze, E-D; Lange, O L; Koch, W

    1972-12-01

    The daily course of net photosynthesis and transpiration was measured with temperature and humidity controlled cuvettes at the end of the dry summer season in the Negev Desert. Species studied included: dominant species of the natural vegetation, cultivated plants in the run-off farm Avdat and permanently irrigated plants. An analysis of the influence of single climatic factors on gas exchange was given in part II of this publication. The reactions of the plants to complex changes in all the environmental parameters is the subject of this present study. 1. One-peaked daily courses of net photosynthesis occur in the irrigated species Citrullus colocynthis and Datura metel. After a high rate of net photosynthesis and transpiration before noon CO2 uptake is gradually reduced through stomatal closure even under good soil water conditions. Stomatal closure on C. colocynthis is controlled by the leaf temperatures whereas D. metel closes its stomata due to increasing water stress. 2. Without additional irrigation one-peaked daily courses are only possible with special constitutional adaptations to the extreme climate together with a balanced regulation of water loss. The annual Salsola inermis shows over the whole day no reduction in transpiration. Related to chlorophyll content, CO2 uptake almost attains the rates observed in the irrigated C. colocynthis. It is still unknown what type of water sources are at the disposal of this plant. The perennial chamaephytes Hammada scoparia and Reaumuria negevensis attain a stabilization of net photosynthesis at a lower level through reduction of stomatal water loss and through increased mesophyll resistance to water vapour. This reduces transpiration to a greater degree than CO2 uptake. The stomatal reactions of H. scoparia seem to be mainly controlled by the evaporation conditions in the atmosphere. Related to chlorophyll content in the assimilatory organs, net photosynthesis of both species is higher at noon than in all other

  10. The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment.

    PubMed

    Sýkorová, Zuzana; Ineichen, Kurt; Wiemken, Andres; Redecker, Dirk

    2007-12-01

    The community composition of arbuscular mycorrhizal fungi (AMF) was investigated in roots of four different plant species (Inula salicina, Medicago sativa, Origanum vulgare, and Bromus erectus) sampled in (1) a plant species-rich calcareous grassland, (2) a bait plant bioassay conducted directly in that grassland, and (3) a greenhouse trap experiment using soil and a transplanted whole plant from that grassland as inoculum. Roots were analyzed by AMF-specific nested polymerase chain reaction, restriction fragment length polymorphism screening, and sequence analyses of rDNA small subunit and internal transcribed spacer regions. The AMF sequences were analyzed phylogenetically and used to define monophyletic phylotypes. Overall, 16 phylotypes from several lineages of AMF were detected. The community composition was strongly influenced by the experimental approach, with additional influence of cultivation duration, substrate, and host plant species in some experiments. Some fungal phylotypes, e.g., GLOM-A3 (Glomus mosseae) and several members of Glomus group B, appeared predominantly in the greenhouse experiment or in bait plants. Thus, these phylotypes can be considered r strategists, rapidly colonizing uncolonized ruderal habitats in early successional stages of the fungal community. In the greenhouse experiment, for instance, G. mosseae was abundant after 3 months, but could not be detected anymore after 10 months. In contrast, other phylotypes as GLOM-A17 (G. badium) and GLOM-A16 were detected almost exclusively in roots sampled from plants naturally growing in the grassland or from bait plants exposed in the field, indicating that they preferentially occur in late successional stages of fungal communities and thus represent the K strategy. The only phylotype found with high frequency in all three experimental approaches was GLOM A-1 (G. intraradices), which is known to be a generalist. These results indicate that, in greenhouse trap experiments, it is difficult

  11. Two Mississippi Plants Among Top Performing Energy Star Certified Manufacturers in 29 States Across the country, Energy Star manufacturing plants are leading their industries by saving energy and money, combating climate change

    EPA Pesticide Factsheets

    ATLANTA - The U.S. Environmental Protection Agency (EPA) announced today that 70 manufacturing plants have achieved Energy Star certification for their superior energy performance in 2014. Together, these manufacturing plants saved a record amount o

  12. EPA Announces 70 Top Performing Energy Star Certified Manufacturing Plants in 29 States/ Across the country, Energy Star manufacturing plants are leading their industries by saving energy and money, combating climate change

    EPA Pesticide Factsheets

    WASHINGTON - The U.S. Environmental Protection Agency (EPA) announced today that 70 manufacturing plants have achieved Energy Star certification for their superior energy performance in 2014. Together, these manufacturing plants saved a record amount of en

  13. Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis.

    PubMed

    Ceballos, Isabel; Mosquera, Sandra; Angulo, Mónica; Mira, John J; Argel, Luz Edith; Uribe-Velez, Daniel; Romero-Tabarez, Magally; Orduz-Peralta, Sergio; Villegas, Valeska

    2012-10-01

    Mycosphaerella fijiensis is the etiological agent of Black Sigatoka, a fungal disease that affects production of banana and plantain crops in tropical regions. The sizes of cultivable epiphytic and endophytic bacterial populations, aerobic endospore forming bacteria (AEFB), and antagonist bacteria against M. fijiensis isolated from three Musa spp. cultivars from Urabá (Colombia) were studied, in order to find a suitable screening strategy to isolate antagonistic bacteria. Most of the variability found in the epiphytic and endophytic bacterial community sizes among fruit trees was explained by the cultivar differences. We found population sizes ranging from 1.25 × 10(3) to 9.64 × 10(5) CFU/g of fresh leaf and found that 44 % of total cultivable bacteria belong to the AEFB group. We isolated 648 AEFB from three different cultivars and assessed their antagonistic activity against M. fijiensis using the cell-free supernatant obtained from bacterial liquid cultures in three different in vitro assays. Five percent of those bacteria showed higher percent inhibition than the positive control Bacillus subtilis UA321 has (percent inhibition = 84 ± 5) in the screening phase. Therefore, they were selected as antagonistic bacteria against the pathogen. The strains with the highest percentage of antagonism were found in older leaves for the three cultivars, given support to recommend this group of leaves for future samplings. Some of these isolated bacteria affected the mycelium and ascospores morphology of the fungus. They also presented in vitro characteristics related to a successful colonization of the phylloplane such as indolic compounds, surfactant production, and biofilm formation, which makes them possible, potential candidates as biological control agents.

  14. A desalination plant with solar and wind energy

    NASA Astrophysics Data System (ADS)

    Chen, H.; Ye, Z.; Gao, W.

    2013-12-01

    The shortage of freshwater resources has become a worldwide problem. China has a water shortage, although the total amount of water resources is the sixth in the world, the per capita water capacity is the 121th (a quarter of the world's per capita water capacity), and the United Nations considers China one of the poorest 13 countries in the world in terms of water. In order to increase the supply of fresh water, a realistic way is to make full use of China's long and narrow coastline for seawater desalination. This paper discusses a sea water desalination device, the device adopts distillation, uses the greenhouse effect principle and wind power heating principle, and the two-type start is used to solve the problem of vertical axis wind turbine self-starting. Thrust bearings are used to ensure the stability of the device, and to ensure absorbtion of wind energy and solar energy, and to collect evaporation of water to achieve desalination. The device can absorb solar and wind energy instead of input energy, so it can be used in ship, island and many kinds of environment. Due to the comprehensive utilization of wind power and solar power, the efficiency of the device is more than other passive sea water desalting plants, the initial investment and maintenance cost is lower than active sea water desalting plant. The main part of the device cannot only be used in offshore work, but can also be used in deep sea floating work, so the device can utilise deep sea energy. In order to prove the practicability of the device, the author has carried out theory of water production calculations. According to the principle of conservation of energy, the device ais bsorbing solar and wind power, except loose lost part which is used for water temperature rise and phase transition. Assume the inflow water temperature is 20 °C, outflow water temperature is 70 °C, the energy utilization is 60%, we can know that the water production quantity is 8 kg/ m2 per hour. Comparing with the

  15. Early and Middle Holocene evidence for plant use and cultivation in the Middle Cauca River Basin, Cordillera Central (Colombia)

    NASA Astrophysics Data System (ADS)

    Aceituno, Francisco J.; Loaiza, Nicolás

    2014-02-01

    This paper presents the latest results of research done in the Colombian Andean region known as Middle Cauca River Basin, an important location for the study of the origins of plant use and the dispersal of domesticates throughout the Americas due to its geographical position in northwest South America. We discuss human-environment interactions during Pleistocene/Holocene transition to middle Holocene (ca 10,000-4000 BP), specifically human-plant interaction and environmental factors that led to the adoption of horticultural practices. Three lines of evidence are analyzed: archaeological stratigraphy, lithic technology, and microbotanical remains. Our results suggest that early Holocene environmental stability allowed Middle Cauca settlers to use the diverse local resources for several millennia, altering the local vegetation, and leading to the development of horticultural practices that included the use of both local and foreign plants. These results inform the ongoing debate about the antiquity and nature of plant domestication and dispersals in the Americas.

  16. Greenhouse and field cultivations of antigen-expressing potatoes focusing on the variability in plant constituents and antigen expression.

    PubMed

    Mikschofsky, Heike; Heilmann, Elena; Schmidtke, Jörg; Schmidt, Kerstin; Meyer, Udo; Leinweber, Peter; Broer, Inge

    2011-05-01

    The production of plant-derived pharmaceuticals essentially requires stable concentrations of plant constituents, especially recombinant proteins; nonetheless, soil and seasonal variations might drastically interfere with this stability. In addition, variability might depend on the plant organ used for production. Therefore, we investigated the variability in plant constituents and antigen expression in potato plants under greenhouse and field growth conditions and in leaves compared to tubers. Using potatoes expressing VP60, the only structural capsid protein of the rabbit haemorrhagic disease virus (RHDV), CTB, the non-toxic B subunit (CTB) of the cholera toxin (CTA-CTB(5)) and the marker protein NPTII (neomycinphosphotransferase) as a model, we compare greenhouse and field production of potato-derived antigens. The influence of the production organ turned out to be transgene specific. In general, yield, plant quality and transgene expression levels in the field were higher than or similar to those observed in the greenhouse. The variation (CV) of major plant constituents and the amount of transgene-encoded protein was not influenced by the higher variation of soil properties observed in the field. Amazingly, for specific events, the variability in the model protein concentrations was often lower under field than under greenhouse conditions. The changes in gene expression under environmental stress conditions in the field observed in another event do not reduce the positive influence on variability since events like these should excluded from production. Hence, it can be concluded that for specific applications, field production of transgenic plants producing pharmaceuticals is superior to greenhouse production, even concerning the stability of transgene expression over different years. On the basis of our results, we expect equal or even higher expression levels with lower variability of recombinant pharmaceuticals in the field compared to greenhouse production

  17. The cultivation of wild food and medicinal plants for improving community livelihood: The case of the Buhozi site, DR Congo

    PubMed Central

    Karhagomba, Innocent Balagizi; Mirindi T, Adhama; Mushagalusa, Timothée B.; Nabino, Victor B.; Koh, Kwangoh

    2013-01-01

    This study aims to demonstrate the effect of farming technology on introducing medicinal plants (MP) and wild food plants (WFP) into a traditional agricultural system within peri-urban zones. Field investigations and semi-structured focus group interviews conducted in the Buhozi community showed that 27 health and nutrition problems dominated in the community, and could be treated with 86 domestic plant species. The selected domestic MP and WFP species were collected in the broad neighboring areas of the Buhozi site, and introduced to the experimental field of beans and maize crops in Buhozi. Among the 86 plants introduced, 37 species are confirmed as having both medicinal and nutritional properties, 47 species with medicinal, and 2 species with nutritional properties. The field is arranged in a way that living hedges made from Tithonia diversifolia provide bio-fertilizers to the plants growing along the hedges. The harvest of farming crops does not disturb the MP or WFP, and vice-versa. After harvesting the integrated plants, the community could gain about 40 times higher income, than from harvesting farming crops only. This kind of field may be used throughout the year, to provide both natural medicines and foods. It may therefore contribute to increasing small-scale crop producers' livelihood, while promoting biodiversity conservation. This model needs to be deeply documented, for further pharmaceutical and nutritional use. PMID:24353838

  18. [Rapid diagnostics of early phosphorus deficiency in mini-cucumber plants under protected cultivation by near infrared spectroscopy].

    PubMed

    Shi, Ji-yong; Zou, Xiao-bo; Zhao, Jie-wen; Mao, Han-ping; Wang, Kai-liang; Chen, Zheng-wei; Huang, Xiao-wei

    2011-12-01

    The morphological symptom of phosphorus deficiency at early stage is similar to the appearance of leaf aging process in preliminary phase, so that visual diagnostics of phosphorus deficiency in mini-cucumber plants at early stage is practically impossible. Near infrared reflectance spectra contain information about differences in compositions of leaf tissues between phosphorus-deficient plants and healthy plants. In the present paper, near infrared reflectance spectroscopy was used to provide diagnostic information on phosphorus deficiency of mini-cucumber plants grown under non-soil conditions. Near infrared spectra was collected from 90 leaves of mini-cucumber plants. Raw cucumber spectra was preprocessed by SNV and divided into 27 intervals. The top 10 principal components (PCs) were extracted as the input of BP-ANN classifiers by principal component analysis (PCA) while the values of nutrient deficient were used as the output variables of BP-ANN and three layers BP-ANN discrimination model was built. The best experiment results were based on the top 3 principal components of No. 7 interval when the spectra was divided into 27 intervals and identification rates of the ANN model are 100% in both training set and the prediction set. The overall results show that NIR spectroscopy combined with BP-ANN can be efficiently utilized for rapid and early diagnostics of phosphorus deficiency in mini-cucumber plants.

  19. The cultivation of wild food and medicinal plants for improving community livelihood: The case of the Buhozi site, DR Congo.

    PubMed

    Karhagomba, Innocent Balagizi; Mirindi T, Adhama; Mushagalusa, Timothée B; Nabino, Victor B; Koh, Kwangoh; Kim, Hee Seon

    2013-12-01

    This study aims to demonstrate the effect of farming technology on introducing medicinal plants (MP) and wild food plants (WFP) into a traditional agricultural system within peri-urban zones. Field investigations and semi-structured focus group interviews conducted in the Buhozi community showed that 27 health and nutrition problems dominated in the community, and could be treated with 86 domestic plant species. The selected domestic MP and WFP species were collected in the broad neighboring areas of the Buhozi site, and introduced to the experimental field of beans and maize crops in Buhozi. Among the 86 plants introduced, 37 species are confirmed as having both medicinal and nutritional properties, 47 species with medicinal, and 2 species with nutritional properties. The field is arranged in a way that living hedges made from Tithonia diversifolia provide bio-fertilizers to the plants growing along the hedges. The harvest of farming crops does not disturb the MP or WFP, and vice-versa. After harvesting the integrated plants, the community could gain about 40 times higher income, than from harvesting farming crops only. This kind of field may be used throughout the year, to provide both natural medicines and foods. It may therefore contribute to increasing small-scale crop producers' livelihood, while promoting biodiversity conservation. This model needs to be deeply documented, for further pharmaceutical and nutritional use.

  20. Ammonia plant designers talk of big energy savings

    SciTech Connect

    Axelrod, L.C.

    1980-08-27

    The ammonia plant that Pullman Kellogg has designed for Sherritt-Gordon Mines Ltd. in Alberta will require < 27 million Btu/ton of ammonia, and save $8.10/ton in energy costs because of improvements involving increased pressure in the primary reformer; more efficient use of the heat from the secondary reformer; carbon dioxide recovery by Allied Chemical Corp.'s Selexol process; the reduction of power requirements in the synthesis recycle loop; and the use of a horizontal reactor. C. F. Braun and Co. claims that its Purifier process will require < 25 million Btu/ton, due to the use of excess air in the secondary reformer. C-E Lummus offers a 1500 ton/day plant which, incorporating cryogenic recovery of hydrogen from purge gas and operation at a lower steam-to-carbon ratio, would require only 26 million Btu/ton; Haldor Topsoe Inc. offers a design rated at 26.3 million Btu/ton. According to L. C. Axelrod of Pullman Kellogg, ammonia plant construction will shift to gas-rich areas outside the U.S. and Europe. The 3% of the U.S. natural gas used by the fertilizer industry accounts for > 95% of ammonia feedstock.

  1. 75 FR 5314 - Medical Area Total Energy Plant, Inc., New MATEP, Inc.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Medical Area Total Energy Plant, Inc., New MATEP, Inc.; Notice of Filing January 26, 2010. Take notice that on January 15, 2010, Medical Area Total Energy Plant, Inc. and...

  2. Potential energy savings in buildings by an urban tree planting programme in California

    Treesearch

    E.G. McPherson; J.R. Simpson

    2003-01-01

    Tree canopy cover data from aerial photographs and building energy simulations were applied to estimate energy savings from existing trees and new plantings in California. There are approximately 177.3 million energy-conserving trees in California communities and 241.6 million empty planting sites. Existing trees are projected to reduce annual air conditioning energy...

  3. A Plant Bacterial Pathogen Manipulates Its Insect Vector's Energy Metabolism.

    PubMed

    Killiny, Nabil; Hijaz, Faraj; Ebert, Timothy A; Rogers, Michael E

    2017-03-01

    Insect-transmitted plant-pathogenic bacteria may alter their vectors' fitness, survival, behavior, and metabolism. Because these pathogens interact with their vectors on the cellular and organismal levels, potential changes at the biochemical level might occur. "Candidatus Liberibacter asiaticus" (CLas) is transmitted in a persistent, circulative, and propagative manner. The genome of CLas revealed the presence of an ATP translocase that mediates the uptake of ATP and other nucleotides from medium to achieve its biological processes, such as growth and multiplication. Here, we showed that the levels of ATP and many other nucleotides were significantly higher in CLas-infected than healthy psyllids. Gene expression analysis showed upregulation for ATP synthase subunits, while ATPase enzyme activity showed a decrease in ATPase activity. These results indicated that CLas stimulated Diaphorina citri to produce more ATP and many other energetic nucleotides, while it may inhibit their consumption by the insect. As a result of ATP accumulation, the adenylated energy charge (AEC) increased and the AMP/ATP and ADP/ATP ratios decreased in CLas-infected D. citri psyllids. Survival analysis confirmed a shorter life span for CLas-infected D. citri psyllids. In addition, electropenetrography showed a significant reduction in total nonprobing time, salivation time, and time from the last E2 (phloem ingestion) to the end of recording, indicating that CLas-infected psyllids were at a higher hunger level and they tended to forage more often. This increased feeding activity reflects the CLas-induced energetic stress. In conclusion, CLas alters the energy metabolism of its psyllid vector, D. citri, in order to secure its need for energetic nucleotides.IMPORTANCE Insect transmission of plant-pathogenic bacteria involves propagation and circulation of the bacteria within their vectors. The transmission process is complex and requires specific interactions at the molecular and biochemical

  4. A Plant Bacterial Pathogen Manipulates Its Insect Vector's Energy Metabolism

    PubMed Central

    Hijaz, Faraj; Ebert, Timothy A.; Rogers, Michael E.

    2016-01-01

    ABSTRACT Insect-transmitted plant-pathogenic bacteria may alter their vectors' fitness, survival, behavior, and metabolism. Because these pathogens interact with their vectors on the cellular and organismal levels, potential changes at the biochemical level might occur. “Candidatus Liberibacter asiaticus” (CLas) is transmitted in a persistent, circulative, and propagative manner. The genome of CLas revealed the presence of an ATP translocase that mediates the uptake of ATP and other nucleotides from medium to achieve its biological processes, such as growth and multiplication. Here, we showed that the levels of ATP and many other nucleotides were significantly higher in CLas-infected than healthy psyllids. Gene expression analysis showed upregulation for ATP synthase subunits, while ATPase enzyme activity showed a decrease in ATPase activity. These results indicated that CLas stimulated Diaphorina citri to produce more ATP and many other energetic nucleotides, while it may inhibit their consumption by the insect. As a result of ATP accumulation, the adenylated energy charge (AEC) increased and the AMP/ATP and ADP/ATP ratios decreased in CLas-infected D. citri psyllids. Survival analysis confirmed a shorter life span for CLas-infected D. citri psyllids. In addition, electropenetrography showed a significant reduction in total nonprobing time, salivation time, and time from the last E2 (phloem ingestion) to the end of recording, indicating that CLas-infected psyllids were at a higher hunger level and they tended to forage more often. This increased feeding activity reflects the CLas-induced energetic stress. In conclusion, CLas alters the energy metabolism of its psyllid vector, D. citri, in order to secure its need for energetic nucleotides. IMPORTANCE Insect transmission of plant-pathogenic bacteria involves propagation and circulation of the bacteria within their vectors. The transmission process is complex and requires specific interactions at the molecular

  5. Responses of butachlor degradation and microbial properties in a riparian soil to the cultivation of three different plants.

    PubMed

    Yang, Changming; Wang, Mengmeng; Chen, Haiyan; Li, Jianhua

    2011-01-01

    A pot experiment was conducted to investigate the biodegradation dynamics and related microbial ecophysiological responses to butachlor addition in a riparian soil planted with different plants such as Phragmites australis, Zizania aquatica, and Acorus calamus. The results showed that there were significant differences in microbial degradation dynamics of butachlor in the rhizosphere soils among the three riparian plants. A. calamus displays a significantly higher degradation efficiency of butachlor in the rhizosphere soils, as compared with Z. aquatica and P. australis. Half-life time of butachlor degradation in the rhizospheric soils of P. australis, Z. aquatica, and A. calamus were 7.5, 9.8 and 5.4 days, respectively. Residual butachlor concentration in A. calamus rhizosphere soil was 35.2% and 21.7% lower than that in Z. aquatica and P. australis rhizosphere soils, respectively, indicating that A. calamus showed a greater improvement effect on biodegradation of butachlor in rhizosphere soils than the other two riparian plant. In general, microbial biomass and biochemical activities in rhizosphere soils were depressed by butachlor addition, despite the riparian plant types. However, rhizospheric soil microbial ecophysiological responses to butachlor addition significantly (P < 0.05) differed between riparian plant species. Compared to Z. aquatica and P. australis, A. calamus showed significantly larger microbial number, higher enzyme activities and soil respiration rates in the rhizosphere soils. The results indicated that A. calamus have a better alleviative effect on inhibition of microbial growth due to butachlor addition and can be used as a suitable riparian plant for detoxifying and remediating butachlor contamination from agricultural nonpoint pollution.

  6. Appleton Papers Plant-Wide Energy Assessment Saves Energy and Reduces Waste (Paper machine at Appleton's West Carrollton paper mill)

    SciTech Connect

    2002-03-01

    Plant-wide energy survey at the Appleton Papers, Inc. West Carrollton paper mill resulted in 21 recommendations for projects to reduce energy consumption and waste production and improve process efficiency.

  7. Transcriptome analysis highlights changes in the leaves of maize plants cultivated in acidic soil containing toxic levels of Al(3+).

    PubMed

    Mattiello, Lucia; Begcy, Kevin; da Silva, Felipe Rodrigues; Jorge, Renato A; Menossi, Marcelo

    2014-12-01

    Soil acidity limits crop yields worldwide and is a common result of aluminum (Al) phytotoxicity, which is known to inhibit root growth. Here, we compared the transcriptome of leaves from maize seedlings grown under control conditions (soil without free Al) and under acidic soil containing toxic levels of Al. This study reports, for the first time, the complex transcriptional changes that occur in the leaves of maize plants grown in acidic soil with phytotoxic levels of Al. Our data indicate that 668 genes were differentially expressed in the leaves of plants grown in acidic soil, which is significantly greater than that observed in our previous work with roots. Genes encoding TCA cycle enzymes were upregulated, although no specific transporter of organic acids was differentially expressed in leaves. We also provide evidence for positive roles for auxin and brassinosteroids in Al tolerance, whereas gibberellin and jasmonate may have negative roles. Our data indicate that plant responses to acidic soil with high Al content are not restricted to the root; tolerance mechanisms are also displayed in the aerial parts of the plant, thus indicating that the entire plant responds to stress.

  8. An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems.

    PubMed

    Luo, Jie; Qi, Shihua; Gu, X W Sophie; Wang, Jinji; Xie, Xianming

    2016-05-01

    Previous studies have shown that phytoremediation usually requires soil amendments, such as chelates, to mobilize low bioavailability heavy metals for better plant absorption and, consequently, for remediation efficiency. A total dry biomass of 3.39 and 0.0138 kg per plant was produced by a phytoremediator, Eucalyptus globulus, and a nitrogen fixing crop, Cicer arietinum (chickpea), respectively. The accumulation of Pb in E. globulus and chickpea reached 1170.61 and 1.33 mg per plant (700 and 324 mg kg(-1)), respectively, under an ethylene diamine tetraacetic acid (EDTA) treatment, which was a five and sixfold increase over the value in untreated experiments, respectively. EDTA enhanced the phytoremediation efficiency and increased the heavy metal concentration in the soil solution. In pot experiments, approximately 27 % of the initial Pb leached from the spiked soil after EDTA and 25 mm artificial precipitation additions into soil without plants, which was considerably larger than the value under the same conditions without EDTA application (7 %). E. globulus planted in a mixed culture had higher water use efficiency than monocultures of either species in field experiments, and E. globulus intercepted almost all of the artificial precipitation in the pot experiments. This study demonstrates that E. globulus can maximize the potential of EDTA for improving the phytoremediation efficiency and minimizing its negative effects to the environment simultaneously by absorbing the metal-rich leachate, especially in a mixed culture of E. globulus and chickpeas.

  9. Citrus compost and its water extract for cultivation of melon plants in greenhouse nurseries. Evaluation of nutriactive and biocontrol effects.

    PubMed

    Bernal-Vicente, A; Ros, M; Tittarelli, F; Intrigliolo, F; Pascual, J A

    2008-12-01

    Two different types of citrus composts, and their water extracts, were tested with regard to their utilisations as partial substitutes for peat in growing media for melon seedlings in greenhouse nurseries. Both compost showed higher plant growth than peat. Compost composed by citrus waste and green residue (C2) showed greater plant growth than compost obtained from the same organic matrices mentioned above further the addition of sludge obtained from citrus industry (C1). Compost C2 showed a greater auxinic effect than C1 and it was the only one that showed cytokinic effect. Both composts also demonstrated a biocontrol effect against Fusarium oxysporum for melon plants: the effects were also higher in C2 than in C1. Higher number of isolated fungi was active against F. oxysporum in compost C2, than compost C1. No different bacterial biocontrol efficacy was observed between both composts. The water extracts of both composts gave lower plant yields than their solid matrices, their relative effects being similar to those of the solid composts (C2 extract gave higher plant yields than the extract from C1). The biocontrol effects of compost water extracts followed the same trend.

  10. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils

    PubMed Central

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A.; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D.

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  11. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils.

    PubMed

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes.

  12. The use of sewage sludge and horticultural waste to develop artificial soil for plant cultivation in Singapore.

    PubMed

    Stabnikova, O; Goh, W-K; Ding, H-B; Tay, J-H; Wang, J-Y

    2005-06-01

    Greenhouse pot experiments were performed with Ipomoea aquatica (Kang Kong) to evaluate artificial soil produced from poor fertility subsoil, horticultural compost, and sewage sludge. The addition of horticultural compost and sewage sludge to subsoil substantially improved plant growth, improved the physical properties of subsoil and enriched subsoil by essential nutrients for plants. The effect was enhanced when the two ingredients were added to subsoil together. The highest yield of biomass of I. aquatica was observed in artificial soil prepared by mixing subsoil with 4% (wet weight/wet weight) of horticultural compost and 2% (dry weight/wet weight) of sewage sludge. The contents of heavy metals in plants, grown in the artificial soil, were significantly lower than toxic levels. The artificial soil could be recommended for urban landscaping and gardening in Singapore.

  13. Formosa Plastics Corporation: Plant-Wide Assessment of Texas Plant Identifies Opportunities for Improving Process Efficiency and Reducing Energy Costs

    SciTech Connect

    2005-01-01

    At Formosa Plastics Corporation's plant in Point Comfort, Texas, a plant-wide assessment team analyzed process energy requirements, reviewed new technologies for applicability, and found ways to improve the plant's energy efficiency. The assessment team identified the energy requirements of each process and compared actual energy consumption with theoretical process requirements. The team estimated that total annual energy savings would be about 115,000 MBtu for natural gas and nearly 14 million kWh for electricity if the plant makes several improvements, which include upgrading the gas compressor impeller, improving the vent blower system, and recovering steam condensate for reuse. Total annual cost savings could be $1.5 million. The U.S. Department of Energy's Industrial Technologies Program cosponsored this assessment.

  14. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  15. Alcoa: Plant-Wide Energy Assessment Finds Potential Savings at Aluminum Extrusion Facility

    SciTech Connect

    2003-09-01

    Alcoa completed an energy assessment of its Engineered Products aluminum extrusion facility in Plant City, Florida, in 2001. The company identified energy conservation opportunities throughout the plant and prepared a report as an example for performing energy assessments at similar Alcoa facilities. If implemented, the cost of energy for the plant would be reduced by more than $800,000 per year by conserving 3 million kWh of electricity and 150,000 MMBtu of natural gas.

  16. Impacts of pine species, stump removal, cultivation, and fertilization on soil properties half a century after planting

    Treesearch

    John R. Butnor; Kurt H. Johnsen; Felipe G Sanchez; C. Dana Nelson

    2012-01-01

    To better understand the long-term effects of species selection and forest management practices on soil quality and soil C retention, we analyzed soil samples from an experimental planting of loblolly (Pinus taeda L.), longleaf ((Pinus palustris Mill.), and slash ((Pinus elliottii Engelm.) pines under...

  17. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems.

    PubMed

    Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M

    2017-01-01

    cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems.

  18. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems

    PubMed Central

    Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; de Visser, Pieter H. B.; Marcelis, Leo F. M.

    2017-01-01

    cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems. PMID:28443129

  19. Quantitative expression analysis of TaSOS1 and TaSOS4 genes in cultivated and wild wheat plants under salt stress.

    PubMed

    Ramezani, Amin; Niazi, Ali; Abolimoghadam, Ali Asghar; Zamani Babgohari, Mahboobeh; Deihimi, Tahereh; Ebrahimi, Mahmod; Akhtardanesh, Hosein; Ebrahimie, Esmail

    2013-02-01

    Salt stress is a mixture of ionic, osmotic, and oxidative stresses. The expression of TaSOS1 (a transmembrane Na(+)/H(+) antiporter) and TaSOS4 [a cytoplasmic pyridoxal (PL) kinase] genes were measured in four different salinity levels and different time courses of salinity exposure using qRT-PCR technique. Mahuti (salt tolerant) and Alamut (salt sensitive) cultivars were used as cultivated wheat, and T. boeticum and Aegilops crassa as wild wheat plants. Salt-induced expression of TaSOS1 in these wild wheat plants indicates the presence of active TaSOS1 gene on the genomes A and D. The TaSOS1 and TaSOS4 transcript levels were found to be downregulated after salt treatment in all cultivars except in A. crassa, which was in contrast with its expression pattern in roots that was being upregulated from a very low-basal expression, after salt treatments. Duncan's Multiple Range Test showed a significant difference between expression in the 200-mM NaCl concentration with the 50 and 100 mM for the TaSOS1 gene, and no significant difference for TaSOS4. Lack of significant correlation between the TaSOS1 and TaSOS4 gene expressions confirms the theory that PLP has no significant effect on the expression of the TaSOS1 gene in wheat leaves.

  20. Influence of drainage and nutrient-solution nitrogen and potassium concentrations on the agronomic behavior of bell-pepper plants cultivated in a substrate.

    PubMed

    Wamser, Anderson Fernando; Cecilio Filho, Arthur Bernardes; Nowaki, Rodrigo Hiyoshi Dalmazzo; Mendoza-Cortez, Juan Waldir; Urrestarazu, Miguel

    2017-01-01

    The interactive effects of N (6, 9, 12 and 15 mmol L-1) and K (3, 5, 7, and 9 mmol L-1) concentrations in nutrient solutions were evaluated on bell pepper grown in a coconut-coir substrate and fertilized without drainage. An additional treatment with drainage was evaluated using N and K concentrations of 12 and 7 mmol L-1, respectively. The hybrid Eppo cultivar of yellow bell pepper was cultivated for 252 days beginning 9 November 2012. Electrical conductivity (EC), the N and K concentrations in the substrate solution, marketable fruit yield, total dry weight and macronutrient concentrations in shoots were periodically evaluated. Fruit production was lower in the system without drainage, regardless of the N and K concentrations, compared to the recommended 10-20% drainage of the volume of nutrient solution applied. Higher K concentrations in the nutrient solution did not affect plant production in the system without drainage for the substrate with an initial K concentration of 331.3 mg L-1. Fruit yield was higher without drainage at a nutrient-solution N concentration of 10.7 mmol L-1. The upper EC limit of the substrate solution in the system without drainage was exceeded 181 days after planting. Either lower nutrient concentrations in the nutrient solution or a drainage system could thus control the EC in the substrate solution.

  1. CONSOL Energy invests in West Virginia CTL plant

    SciTech Connect

    2008-10-15

    Working with Synthesis Energy Systems (SES), America's leading bituminous coal producer assists with the engineering design package for a coal gasification and liquefaction plant to be located near Benwood in West Virginia. Coal will be converted to syngas using SES's proprietary U-GAS technology. The syngas is expected to be used to produce about 720,000 metric tons per year of methanol. The U-GAS technology is licensed from the Gas Technology Institute (GTI). The article explains how the GTI gasification process works. It is based on a surge-stage fluidised bed for production of low-to-medium calorific value synthesis gas from a variety of feedstocks, including coal. 2 figs.

  2. Free radical scavengers from Cymbopogon citratus (DC.) stapf plants cultivated in bioreactors by the temporary immersion (TIS) principle.

    PubMed

    Tapia, Alejandro; Cheel, José; Theoduloz, Cristina; Rodríguez, Jaime; Schmeda-Hirschmann, Guillermo; Gerth, Andre; Wilken, Dirk; Jordan, Miguel; Jiménez-González, Elio; Gomez-Kosky, Rafael; Mendoza, Elisa Quiala

    2007-01-01

    The biomass production of Cymbopogon citratus shoots cultivated in bioreactors according to the temporary immersion (TIS) principle was assessed under different growth conditions. The effect of gassing with CO2-enriched air, reduced immersion frequency, vessel size and culture time on total phenolic and flavonoid content and free radical scavenging effect of the methanolic extracts was measured. From the TIS-culture of C. citratus, seven compounds were isolated and identified as caffeic acid (1), chlorogenic acid (2), neochlorogenic acid (3), p-hydroxybenzoic acid (4), p-hydroxybenzoic acid 3-O-beta-D-glucoside (5), glutamic acid (6) and luteolin 6-C-fucopyranoside (7). The occurrence of compounds 1-7 and their variability in C. citratus grown under different TIS conditions was determined by HPLC. The free radical scavenging effect of the methanolic extract and compounds was measured by the discoloration of the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). The main metabolites in 6- and 8-week-old cultures, both in 5 and 10 1 vessels, were chlorogenic acid (2) (100-113 mg%) and neochlorogenic acid (3) (80-119 mg%), while in the cultures with CO2-enriched air and reduced immersion frequency the main compound detected in the extracts was glutamic acid (6) (400 and 670 mg% for the green and white biomass and 619 and 630 mg% for the green and white biomass, respectively). The most active compounds, as free radical scavengers, in the DPPH discoloration assay were caffeic acid (1), chlorogenic acid (2), neochlorogenic acid (3) and the flavonoid luteolin 6-C-fucopyranoside (7).

  3. Akzo Nobel Morris Plant Implements a Site-Wide Energy Efficiency Plan

    SciTech Connect

    2003-01-01

    Akzo Nobel's Surface Chemistry plant in Morris, Illinois, implemented an energy efficiency plan, which included a plant-wide energy efficiency assessment. The assessment revealed opportunities to save an estimated $1.2 million per year in operating and energy costs, reduce environmental impacts, and improve production capacity.

  4. Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes.

    PubMed

    Banik, Avishek; Mukhopadhaya, Subhra Kanti; Dangar, Tushar Kanti

    2016-03-01

    The diversity of endophytic and epiphytic diazotrophs in different parts of rice plants has specificity to the niche (i.e. leaf, stem and root) of different genotypes and nutrient availability of the organ. Inoculation of the indigenous, polyvalent diazotrophs can facilitate and sustain production of non-leguminous crops like rice. Therefore, N2-fixing plant growth promoting bacteria (PGPB) were isolated from different parts of three Indian cultivated [Oryza sativa L. var. Sabita (semi deep/deep water)/Swarna (rain fed shallow lowland)/Swarna-Sub1(submergence tolerant)] and a wild (O. eichingeri) rice genotypes which respond differentially to nitrogenous fertilizers. Thirty-five isolates from four rice genotypes were categorized based on acetylene reduction assay on nitrogenase activity, biochemical tests, BIOLOG and 16S rRNA gene sequencing. The bacteria produced 9.36-155.83 nmole C2H4 mg(-1) dry bacteria h(-1) and among them nitrogenase activity of 11 potent isolates was complemented by nifH-sequence analysis. Phylogenetic analysis based on 16S rDNA sequencing divided them into five groups (shared 95-100 % sequence homology with type strains) belonging to five classes-alpha (Ancylobacter, Azorhizobium, Azospirillum, Rhizobium, Bradyrhizobium, Sinorhizobium, Novosphingobium, spp.), beta (Burkholderia sp.), gamma (Acinetobacter, Aeromonas, Azotobacter, Enterobacter, Klebsiella, Pantoea, Pseudomonas, Stenotrophomonas spp.) Proteobacteria, Bacilli (Bacillus, Paenibacillus spp.) and Actinobacteria (Microbacterium sp.). Besides, all bacterial strains possessed the intrinsic PGP traits of like indole (0.44-7.4 µg ml(-1)), ammonia (0.18-6 mmol ml(-1)), nitrite (0.01-3.4 mol ml(-1)), and siderophore (from 0.16-0.57 μmol ml(-1)) production. Inoculation of rice (cv. Swarna) seedlings with selected isolates had a positive impact on plant growth parameters like shoot and root elongation which was correlated with in vitro PGP attributes. The results indicated that the

  5. Fluorescence enhancement of single-phase red-blue emitting Ba3MgSi2O8:Eu2+,Mn2+ phosphors via Dy3+ addition for plant cultivation

    NASA Astrophysics Data System (ADS)

    Liu, Ling-Yun; Wang, Da-Jian; Mao, Zhi-Yong; Liu, Yan-Hua; Li, Xue-Zheng; Lu, Qi-Fei

    2009-01-01

    Fluorescence enhancement of red and blue concurrently emitting Ba3MgSi2O8:Eu2+,Mn2+ phosphors for plant cultivation has been investigated by Dy3+ addition. The Ba3MgSi2O8:Eu2+,Mn2+,Dy3+(BMS-EMD) phosphors have two-color emissions at the wavelength peak values of 437 nm and 620 nm at the excitation of 350 nm. The two emission bands are coincident with the absorption spectrum for photosynthesis of plants. An obvious enhancement effect has been observed upon addition of Dy3+ with amount of 0.03 mol%, in which the intensities of both blue and red bands reach a maximum. The origin of red and blue emission bands is analysed. The photochromic parameters of the samples at the nearly UV excitation are tested. This fluoresence enhancement is of great significance for special solid state lighting equipment used in plant cultivation.

  6. Metabolic profiling of turmeric (Curcuma longa L.) plants derived from in vitro micropropagation and conventional greenhouse cultivation.

    PubMed

    Ma, Xiaoqiang; Gang, David R

    2006-12-13

    Turmeric (Curcuma longa) was considered only a culinary spice in many parts of the world until the notable anti-inflammation curcuminoids were discovered from this herb. Because it is a sterile triploid and is propagated vegetatively by rhizome division, turmeric is susceptible to pathogens that accumulate and are transmitted from generation to generation, and amplification of particularly useful stocks is a slow process. An in vitro propagation method has been developed to alleviate these problems. Metabolic profiling, using GC-MS and LC-ESI-MS, was used to determine if chemical differences existed between greenhouse-grown and in vitro micropropagation derived plants. The major chemical constituent curcuminoids, a group of diarylheptanoid compounds, as well as major mono- and sesquiterpenoids were identified and quantified. Principal component analysis and hierarchical cluster analysis revealed chemical differences between lines (T3C turmeric vs Hawaiian red turmeric) and tissues (rhizome, root, leaf, and shoot). However, this analysis indicated that no significant differences existed between growth treatments (conventional greenhouse-grown vs in vitro propagation derived plants).

  7. Human urine and wood ash as plant nutrients for red beet (Beta vulgaris) cultivation: impacts on yield quality.

    PubMed

    Pradhan, Surendra K; Holopainen, Jarmo K; Weisell, Janne; Heinonen-Tanski, Helvi

    2010-02-10

    The objective of this study was to evaluate the effect of human urine and wood ash fertilization on the yield and quality of red beet by measuring the microbial, nutrient, and antioxidant (betanin) content of the roots. Red beets were fertilized with 133 kg of N/ha as mineral fertilizer, urine and ash, and only urine with no fertilizer as a control. The mineral-fertilized plants and urine- and ash-fertilized plants also received 89 kg of P/ha. Urine and ash and only urine fertilizer produced 1720 and 656 kg/ha more root biomass, respectively, versus what was obtained from the mineral fertilizer. Few fecal coliforms and coliphage were detected in mineral-fertilized and urine- and ash-fertilized red beet roots. The protein and betanin contents in red beet roots were similar in all treatments. In conclusion, this study revealed that urine with or without ash can increase the yield of red beet and furthermore the microbial quality and chemical quality were similar to the situation in mineral-fertilized products.

  8. Bioconcentration factor estimates of polycyclic aromatic hydrocarbons in grains of corn plants cultivated in soils treated with sewage sludge.

    PubMed

    Paraíba, Lourival Costa; Queiroz, Sônia Cláudia Nascimento; Maia, Aline de Holanda Nunes; Ferracini, Vera Lúcia

    2010-07-15

    This study presents a model to simulate the organic substance concentrations in corn grains assuming that the substances in soil solution are absorbed via the transpiration stream by plants growing in soils fertilized with sewage sludge (SS). The model was applied and validated using soil and corn grain samples from a long-term field experiment with six successive yearly applications of SS to the soil. The following polycyclic aromatic hydrocarbons (PAHs) were simulated and evaluated in soil and grain samples: acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benz(a)pyrene, benz(b)fluoranthene, benz(g,h,i)perylene, benz(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-c,d)pyrene, naphthalene, phenanthrene and pyrene. The PAH bioconcentration factors (BCF) in corn grains ranged from 1.57 to 10.97 L kg(-1). Polycyclic aromatic hydrocarbons with low soil distribution coefficients and high values of transpiration stream concentration factors (TSCF) are more likely to be absorbed by corn plants and accumulated in grains. It was possible to estimate and observe that highly lipophilic PAH molecules (heavy PAHs) show lower accumulative potential in corn grains than the less lipophilic ones (light PAHs). Sewage sludges containing significant concentrations of light PAHs with two, three or four benzene rings should be avoided as fertilizers in alimentary field crops.

  9. Preliminary energy balance and economics of a farm-scale ethanol plant

    SciTech Connect

    Jantzen, D.; McKinnon, T.

    1980-05-01

    The energy balance and economics of grain to ethanol plants are matters of current national interest, as we strive to deal with our liquid fuel supply problems. This report prepared at the request of the Department of Energy, examines the energy balance and economic questions for a particular farm-scale plant in Campo, Colo. It shows that such plants may have a place in our national liquid fuel supply system.

  10. EPA Announces 2015 ENERGY STAR Certified Manufacturing Plants, Ardagh Group plant in Sapulpa, OK, among those recognized

    EPA Pesticide Factsheets

    DALLAS - (Feb. 24, 2016) The U.S. Environmental Protection Agency (EPA) announced today that the Ardagh Group container glass facility in Sapulpa, OK, is among the 70 manufacturing plants across the nation that achieved ENERGY STAR certification for

  11. Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant

    SciTech Connect

    Not Available

    2006-02-01

    This DOE Industrial Technologies Program spotlight describes how Rohm and Haas's Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

  12. Development of a performance-based industrial energy efficiency indicator for cement manufacturing plants.

    SciTech Connect

    Boyd, G.; Decision and Information Sciences

    2006-07-21

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing the plant performance with that of similar plants in the same industry. Manufacturing plants can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the cement manufacturing industry to provide a plant-level indicator of energy efficiency for assembly plants that produce a variety of products, including Portland cement and other specialty cement products, in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for cement manufacturing plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  13. Logistic analysis of algae cultivation.

    PubMed

    Slegers, P M; Leduc, S; Wijffels, R H; van Straten, G; van Boxtel, A J B

    2015-03-01

    Energy requirements for resource transport of algae cultivation are unknown. This work describes the quantitative analysis of energy requirements for water and CO2 transport. Algae cultivation models were combined with the quantitative logistic decision model 'BeWhere' for the regions Benelux (Northwest Europe), southern France and Sahara. For photobioreactors, the energy consumed for transport of water and CO2 turns out to be a small percentage of the energy contained in the algae biomass (0.1-3.6%). For raceway ponds the share for transport is higher (0.7-38.5%). The energy consumption for transport is the lowest in the Benelux due to good availability of both water and CO2. Analysing transport logistics is still important, despite the low energy consumption for transport. The results demonstrate that resource requirements, resource distribution and availability and transport networks have a profound effect on the location choices for algae cultivation.

  14. A general model for techno-economic analysis of CSP plants with thermochemical energy storage systems

    NASA Astrophysics Data System (ADS)

    Peng, Xinyue; Maravelias, Christos T.; Root, Thatcher W.

    2017-06-01

    Thermochemical energy storage (TCES), with high energy density and wide operating temperature range, presents a potential solution for CSP plant energy storage. We develop a general optimization based process model for CSP plants employing a wide range of TCES systems which allows us to assess the plant economic feasibility and energy efficiency. The proposed model is applied to a 100 MW CSP plant employing ammonia or methane TCES systems. The methane TCES system with underground gas storage appears to be the most promising option, achieving a 14% LCOE reduction over the current two-tank molten-salt CSP plants. For general TCES systems, gas storage is identified as the main cost driver, while the main energy driver is the compressor electricity consumption. The impacts of separation and different reaction parameters are also analyzed. This study demonstrates that the realization of TCES systems for CSP plants is contingent upon low storage cost and a reversible reaction with proper reaction properties.

  15. Exposure to omethoate during stapling of ornamental plants in intensive cultivation tunnels: influence of environmental conditions on absorption of the pesticide.

    PubMed

    Aprea, C; Centi, L; Santini, S; Lunghini, L; Banchi, B; Sciarra, G

    2005-11-01

    This report describes a study of exposure to omethoate during manual operations with ornamental plants in two intensive cultivation tunnels (tunnel 8 and tunnel 5). Airborne concentrations of omethoate were in the range 1.48-5.36 nmol/m(3). Total skin contamination in the range 329.94-12,934.46 nmol/day averaged 98.1 +/- 1.1% and 99.3 +/- 0.6% of the total potential dose in tunnel 8 and tunnel 5, respectively. Estimated absorbed doses during work in tunnel 5 were much higher than the acceptable daily intake of omethoate, which is 1.41 nmol/kg b.w. This finding shows that organization of the work or the protective clothing worn in tunnel 5 did not protect the workers from exposure. Urinary excretion of alkylphosphates was significantly higher than in the general population, increasing with exposure and usually showing a peak in the urine sample collected after the work shift. Urinary alkylphosphates showed a good correlation with estimated potential doses during work in tunnel 8 and are confirmed as sensitive biological indicators of exposure to phosphoric esters. The linear regression analysis between the urinary excretion of alkylphosphate, expressed as total nmol excreted in 24 h, and total cutaneous dose allows for estimating that the fraction of omethoate absorbed through the skin during work in tunnel 8 is about 16.5%.

  16. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    Sizing procedures are presented for latent heat thermal energy storage systems that can be used for electric utility off-peak energy storage, solar power plants and other preliminary design applications.

  17. Indigenous bacteria with antagonistic and plant-growth-promoting activities improve slow-filtration efficiency in soilless cultivation.

    PubMed

    Déniel, F; Rey, P; Chérif, M; Guillou, A; Tirilly, Y

    2004-07-01

    In tomato soilless culture, slow filtration allows one to control the development of diseases caused by pathogenic microorganisms. During the disinfecting process, microbial elimination is ensured by mechanical and biological factors. In this study, system efficacy was enhanced further to a biological activation of filter by inoculating the pozzolana grains contained in the filtering unit with 5 selected bacteria. Three strains identified as Pseudomonas putida and 2 as Bacillus cereus came from a filter whose high efficiency to eliminate pathogens has been proven over years. These 5 bacteria displayed either a plant growth promoting activity (P. putida strains) or antagonistic properties (B. cereus strains). Over the first months following their introduction in the filter, the bacterial colonisation of pozzolana grains was particularly high as compared to the one observed in the control filter. Conversely to Bacillus spp. populations, Pseudomonas spp. ones remained abundant throughout the whole cultural season. The biological activation of filter unit very significantly enhanced fungal elimination with respect to the one displayed by the control filter. Indeed, the 6-month period needed by the control filter to reach its best efficacy against Fusarium oxysporum was shortened for the bacteria-amended filter; in addition, a high efficacy filtration was got as soon as the first month. Fast colonization of pozzolana grains by selected bacteria and their subsequent interaction with F. oxysporum are likely responsible for filter efficiency. Our results suggest that Pseudomonas spp. act by competition for nutrients, and Bacillus spp. by antibiosis and (or) direct parasitism. Elimination of other fungal pathogens, i.e., Pythium spp., seems to differ from that of Fusarium since both filters demonstrated a high efficacy at the experiment start. Pythium spp. elimination appears to mainly rely on physical factors. It is worth noting that a certain percentage of the 5 pozzolana

  18. Ovipositional response of threeHeliothis species (Lepidoptera: Noctuidae) to allelochemicals from cultivated and wild host plants.

    PubMed

    Mitchell, E R; Tingle, P C; Heath, R R

    1990-06-01

    The role of plant allelochemicals on the oviposition behavior ofHeliothis virescens (F.),H. subflexa (Guenee), andH. zea (Boddie) was investigated in the laboratory using a "choice" bioassay system. Fresh young leaves of tobacco,Desmodium tortuosum (Swartz) de Candolle, groundcherry (Physalis angulata L.), and cotton (Gossypium hirsutum L.) squares (flower buds) were washed in methylene chloride or methanol, concentrated to 1 g equivalent of washed material, and applied to a cloth oviposition substrate. Each of the extracts-including groundcherry, a nonhost-stimulated oviposition byH. virescens. H. subflexa were stimulated to oviposit by groundcherry extract, its normal host, and extract from cotton squares, a nonhost. None of the extracts stimulated oviposition byH. zea, although all except groundcherry were from reported hosts. The sensitivity of the bioassay was confirmed by givingH. virescens andH. subflexa an opportunity to choose between extracts that showed stimulant qualities when tested independently versus only solvent-treated controls. In these tests, tobacco showed the highest level of stimulant activity forH. virescens; groundcherry exhibited the highest level of stimulation forH. subflexa.

  19. Major Energy Plants and Their Potential for Bioenergy Development in China

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Hou, Shenglin; Su, Man; Yang, Mingfeng; Shen, Shihua; Jiang, Gaoming; Qi, Dongmei; Chen, Shuangyan; Liu, Gongshe

    2010-10-01

    China is rich in energy plant resources. In this article, 64 plant species are identified as potential energy plants in China. The energy plant species include 38 oilseed crops, 5 starch-producing crops, 3 sugar-producing crops and 18 species for lignocellulosic biomass. The species were evaluated on the basis of their production capacity and their resistance to salt, drought, and/or low temperature stress. Ten plant species have high production and/or stress resistance and can be potentially developed as the candidate energy plants. Of these, four species could be the primary energy plants in China: Barbados nut ( Jatropha curcas L.), Jerusalem artichoke ( Helianthus tuberosus L.), sweet sorghum ( Sorghum bicolor L.) and Chinese silvergrass ( Miscanthus sinensis Anderss.). We discuss the use of biotechnological techniques such as genome sequencing, molecular markers, and genetic transformation to improve energy plants. These techniques are being used to develop new cultivars and to analyze and manipulate genetic variation to improve attributes of energy plants in China.

  20. Major energy plants and their potential for bioenergy development in China.

    PubMed

    Li, Xiaofeng; Hou, Shenglin; Su, Man; Yang, Mingfeng; Shen, Shihua; Jiang, Gaoming; Qi, Dongmei; Chen, Shuangyan; Liu, Gongshe

    2010-10-01

    China is rich in energy plant resources. In this article, 64 plant species are identified as potential energy plants in China. The energy plant species include 38 oilseed crops, 5 starch-producing crops, 3 sugar-producing crops and 18 species for lignocellulosic biomass. The species were evaluated on the basis of their production capacity and their resistance to salt, drought, and/or low temperature stress. Ten plant species have high production and/or stress resistance and can be potentially developed as the candidate energy plants. Of these, four species could be the primary energy plants in China: Barbados nut (Jatropha curcas L.), Jerusalem artichoke (Helianthus tuberosus L.), sweet sorghum (Sorghum bicolor L.) and Chinese silvergrass (Miscanthus sinensis Anderss.). We discuss the use of biotechnological techniques such as genome sequencing, molecular markers, and genetic transformation to improve energy plants. These techniques are being used to develop new cultivars and to analyze and manipulate genetic variation to improve attributes of energy plants in China.

  1. 75 FR 14638 - FirstEnergy Nuclear Operating Company; Perry Nuclear Power Plant; Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ...). There will be no change to radioactive effluents that effect radiation exposures to plant workers and... would not significantly affect plant safety and would not have a significant adverse effect on the... COMMISSION FirstEnergy Nuclear Operating Company; Perry Nuclear Power Plant; Environmental Assessment and...

  2. Effect of Radiation on Seed Germinating Ability Ofwild-Growing and Cultivated Plants, Sources of Bioactive Substances

    NASA Astrophysics Data System (ADS)

    Shabanov, Aleksandr; Tirranen, Lyalya; Zykova, Irina; Bondarenko, Gennadiy

    2016-07-01

    In the above-ground parts of common chickweed (Stellaria media) the content of vitamin C was experimentally quantified, which (in terms of dry matter) was 81.55 mg/100 g; 133 mg/100 g and 161.76 mg/100 g depending on the growing site. 52 components were detected in the essential oil of the above-ground parts of common chickweed (Stellaria media). Chamazulene, neophytodien and phytol are the major components of whole oil. A wide range of elements was identified in the plants and seeds of common chickweed (Stellaria media), and in the seeds of carrots, parsley and lettuce. It was established that UV irradiation (lamp with a wavelength of 254 nm and 283 nm) of chickweed seeds (Stellaria media) for 15 sec. and 100 sec. in a microbiological box on a table at a distance from the object didn't affect their germinating ability. The germinating ability of the experimental seeds was identical to the control (no irradiation) seeds. With the help of an X-ray fluorescence spectrometer Renger 2 (Germany) at a voltage of 1.6 kV during 15 sec. the effect of "soft" radiation on the seed germinating ability of chickweed, carrot, parsley and lettuce seeds was studied.Under the effect of "soft" radiation during 15 sec. all the experimental chickweed seeds sprouted, like in the control. The germinating ability of the exposed lettuce seeds was 100% after one day, while only 45% of the exposed parsley seeds grew after 21 days. The exposed carrot seeds (70%) grew after 18 days. The effect of "hard" radiation on the germinating ability of common chickweed seeds was investigated using an X-ray fluorescence spectrometer S4 Pioneer (Germany) at a voltage of 60 kV for 15 sec and 100 sec. Under the effect of "hard" radiation and during 15 seconds of exposure, where the distance (L) from the focus of the X-ray tube to the seeds of chickweed was 20 mm, the germinating ability of the experimental chickweed seeds was 30 %. At a voltage of 60 kV and 100-second exposure the germinating ability of the

  3. Economics of internal and external energy storage in solar power plant operation

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1977-01-01

    A simple approach is formulated to investigate the effect of energy storage on the bus-bar electrical energy cost of solar thermal power plants. Economic analysis based on this approach does not require detailed definition of a specific storage system. A wide spectrum of storage system candidates ranging from hot water to superconducting magnets can be studied based on total investment and a rough knowledge of energy in and out efficiencies. Preliminary analysis indicates that internal energy storage (thermal) schemes offer better opportunities for energy cost reduction than external energy storage (nonthermal) schemes for solar applications. Based on data and assumptions used in JPL evaluation studies, differential energy costs due to storage are presented for a 100 MWe solar power plant by varying the energy capacity. The simple approach presented in this paper provides useful insight regarding the operation of energy storage in solar power plant applications, while also indicating a range of design parameters where storage can be cost effective.

  4. Economics of internal and external energy storage in solar power plant operation

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1977-01-01

    A simple approach is formulated to investigate the effect of energy storage on the bus-bar electrical energy cost of solar thermal power plants. Economic analysis based on this approach does not require detailed definition of a specific storage system. A wide spectrum of storage system candidates ranging from hot water to superconducting magnets can be studied based on total investment and a rough knowledge of energy in and out efficiencies. Preliminary analysis indicates that internal energy storage (thermal) schemes offer better opportunities for energy cost reduction than external energy storage (nonthermal) schemes for solar applications. Based on data and assumptions used in JPL evaluation studies, differential energy costs due to storage are presented for a 100 MWe solar power plant by varying the energy capacity. The simple approach presented in this paper provides useful insight regarding the operation of energy storage in solar power plant applications, while also indicating a range of design parameters where storage can be cost effective.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  6. Development and Use of the Coal-Fired Central Energy Plant Operations Expert System (CEPES)

    DTIC Science & Technology

    1993-08-01

    development of the Coal-Fired Central Energy Plant Operations Expert System (CEPES), which analyzes and recommends solutions to coal-fired boiler operational...problems. This phase included selection of the hardware and software platforms, and development and coding of the expert system . Later phases will...expand and beta test the present system, and develop a comprehensive technology transfer plan. Central heating plants, Artificial intelligence, Coal-fired energy plant operations expert system (CEPES).

  7. YLIFE-2 inertial fusion energy power plant design

    NASA Astrophysics Data System (ADS)

    Moir, R. W.

    1992-03-01

    The HYLIFE-2 inertial fusion power plant design study uses a liquid fall, in the form of jets, to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. HYLIFE-1 used liquid lithium. HYLIFE-2 avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li2BeF4) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-1. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. In addition, although not adequately considered for HYLIFE-1, there is liquid splash that must be forcibly cleared because gravity is too slow, at higher repetition rates than 1 Hz. Splash removal is accomplished in the central region by oscillating jet flows. The cost of electricity is estimated to be 0.09 $/kWh in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost, that is, a zero cost driver would give a calculated cost of electricity of 0.045 $/kWh.

  8. Accelerating progress toward operational excellence of fossil energy plants with CO2 capture

    SciTech Connect

    Zitney, S.; Liese, E.; Mahapatra, P.; Turton, R. Bhattacharyya, D.

    2012-01-01

    To address challenges in attaining operational excellence for clean energy plants, the National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training And Research (AVESTARTM). The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This paper will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of an integrated gasification combined cycle power plant (IGCC) with carbon dioxide capture.

  9. Capturing Solar Energy in the Classroom with Plants.

    ERIC Educational Resources Information Center

    Schmiess, Elmer

    1977-01-01

    This newsletter is published eight times during the academic year for teachers in an open educational setting. This issue is concerned with the plant and its environment. Activities explore different types of soils and their implications for indoor gardening, plant propagation techniques, and preparation of potting soils. Each activity provides an…

  10. Capturing Solar Energy in the Classroom with Plants.

    ERIC Educational Resources Information Center

    Schmiess, Elmer

    1977-01-01

    This newsletter is published eight times during the academic year for teachers in an open educational setting. This issue is concerned with the plant and its environment. Activities explore different types of soils and their implications for indoor gardening, plant propagation techniques, and preparation of potting soils. Each activity provides an…

  11. SK30 total energy plant rated at 73% efficiency

    SciTech Connect

    de Biasi, V.

    1980-07-01

    The City of Hague in Holland is building a combined cycle plant. The plant will be powered by two Rolls-Royce SK30 gas turbine generators site rated at 25,000 kW each, two unfired Stork waste heat recovery boilers, and a Delaval Stork steam turbine rated at 26,000 kW. On its own, without district heating, the combined cycle plant is rated for 77,000 kW output at around 44% efficiency. Heat output of the combined cycle plant is used to provide thermal power for district heating. In the maximum output mode, there is some drop in electric power output (around 70,000 kW) but this is accompanied by 60,000 kW thermal power output for a net plant efficiency of close to 74% overall. (MCW)

  12. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants.

    PubMed

    De Greef, J; Villani, K; Goethals, J; Van Belle, H; Van Caneghem, J; Vandecasteele, C

    2013-11-01

    Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation - before and after optimisation - as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry: An ENERGY STAR® Guide for Plant and Energy Managers

    SciTech Connect

    Masanet, Eric; Therkelsen, Peter; Worrell, Ernst

    2012-12-28

    The U.S. baking industry—defined in this Energy Guide as facilities engaged in the manufacture of commercial bakery products such as breads, rolls, frozen cakes, pies, pastries, and cookies and crackers—consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in food processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. A summary of basic, proven measures for improving plant-level water efficiency is also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. baking industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  14. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  15. Efficient CO2 Fixation Pathways: Energy Plant: High Efficiency Photosynthetic Organisms

    SciTech Connect

    2012-01-01

    PETRO Project: UCLA is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLA’s designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.

  16. Using of liquid chromatography coupled with diode array detector for determination of naphthoquinones in plants and for investigation of influence of pH of cultivation medium on content of plumbagin in Dionaea muscipula.

    PubMed

    Babula, Petr; Mikelova, Radka; Adam, Vojtech; Kizek, Rene; Havel, Ladislav; Sladky, Zdenek

    2006-09-14

    The interest of many investigators in naphthoquinones is due to their broad-range of biological actions from phytotoxic to fungicidal. The main aim of this work was to investigate the influence of different pH values of cultivation medium on naphthoquinone content in Dionaea muscipula. For this purpose, we optimized the simultaneous analysis of the most commonly occurring naphthoquinones (1,4-naphthoquinone, lawsone, juglone and plumbagin) by high performance liquid chromatography coupled with diode array detector (HPLC-DAD). The most suitable chromatographic conditions were as follows: mobile phase: 0.1 mol l-1 acetic acid:methanol in ratio of 33:67 (%, v/v), flow rate: 0.75 ml min-1 and temperature: 42 degrees C. Moreover, we looked for the most suitable technique for preparation of plant samples (D. muscipula, Juglans regia, Paulownia tomentosa, Impatience glandulifera, Impatience parviflora, Drosera rotundifolia, Drosera spathulata and Drosera capensis) due to their consequent analysis by HPLC-DAD. It clearly follows from the results obtained that sonication were the most suitable technique for preparation of J. regia plants. We also checked the recoveries of the determined naphthoquinones, which were from 96 to 104%. Finally, we investigated the changes in content of plumbagin in D. muscipula plants according to different pH of cultivation medium. The content increased with increasing pH up to 5 and, then, changed gradually. The lower content of plumbagin at lower pH values was of interest to us. Therefore, we determined the content of this naphthoquinone in the cultivation medium, what has not been studied before. We discovered that the lower tissue content of plumbagin was due to secretion of this naphthoquinone into the cultivation medium.

  17. Variation in the number of capitate glandular trichomes in wild and cultivated sunflower germplasm and potential for use in host plant resistance

    USDA-ARS?s Scientific Manuscript database

    Capitate glandular trichomes of wild sunflower (Helianthus spp.) are considered an effective defense against the sunflower moth, Homoeosoma electellum (Hulst), but cultivated sunflowers are reportedly deficient in glandular trichomes. To investigate whether glandular trichomes have a role in protect...

  18. Optimization of the genomic DNA extraction method of silverleaf nightshade/ (Solanum elaeagnifolium /Cav.), an invasive plant in the cultivated areas within the Mediterranean region

    USDA-ARS?s Scientific Manuscript database

    The geographical origin of an invasive in the cultivated area within the Mediterranean region, silverleaf nightshade, Solanum elaeagnifolium Cav, (Solanaceae) should be identified through the analysis of genetic similarities between native and introduced populations using microsatellite markers. Bef...

  19. Cultivate the Love of Reading.

    ERIC Educational Resources Information Center

    Andrews-Beck, Carolyn

    1997-01-01

    Suggests that the school year is like a growing season, but with planting in the fall and harvest in the spring. Discusses ways teachers can "prepare the soil" for cultivating students' love of reading. Presents a baker's dozen ideas to build the desire to read. (RS)

  20. Integrating cultivation history into EBIPM

    USDA-ARS?s Scientific Manuscript database

    Ecologically based invasive plant management (EBIPM) is a systematic thinking and planning process to assist with applying the appropriate combination of tools and strategies to addrress the underlying cause of invasion rather than simply controlling invasive annual grass abundance. Cultivation his...

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  2. Water and energy balances in the soil-plant atmosphere continuum

    USDA-ARS?s Scientific Manuscript database

    Energy fluxes at soil-atmosphere and plant-atmosphere interfaces can be summed to zero because the surfaces have no capacity for energy storage. The resulting energy balance equations may be written in terms of physical descriptions of these fluxes; and have been the basis for problem casting and so...

  3. Assessment of arid lands plants as future energy crops for the electric utility industry

    SciTech Connect

    Foster, K.E.; Brooks, W.H.

    1981-12-01

    This technical report has been prepared to assess and estimate the prospects of utilizing selected native arid lands plant species (terpene- and nonterpene-containing species) as future renewable energy resources, especially by US electric utilities, and to familiarize nonspecialists with some major problems that must be resolved before these energy sources can become dependable supplies. The assessment includes descriptions of the processing and production technologies associated with the various plant species as well as recommendations for research procedures and development programs specific to arid lands. Suggestions about the agronomic and economic parameters of growing these plants as energy-source crops are also included.

  4. Alcoa: Plant-Wide Energy Assessment Finds Potential Savings at Aluminum Extrusion Facility. Industrial Technologies Program, Aluminum BestPractices Plant-Wide Assessment Case Study.

    SciTech Connect

    Not Available

    2003-09-01

    Alcoa completed an energy assessment of its Engineered Products aluminum extrusion facility in Plant City, Florida, in 2001. The company identified energy conservation opportunities throughout the plant and prepared a report as an example for performing energy assessments at similar Alcoa facilities. If implemented, the cost of energy for the plant would be reduced by more than$800,000 per year by conserving 3 million kWh of electricity and 150,000 MMBtu of natural gas.

  5. Overview of United States Department of Energy activities to support life extension of nuclear power plants

    SciTech Connect

    Harrison, D.L.; Rosinski, S.T.

    1993-11-01

    Today, 109 nuclear power plants provide over 20 percent of the electrical energy generated in the US The operating license of the first of these plants will expire in the year 2000; one-third of the operating licenses will expire by 2010 and the remaining plant licenses are scheduled to expire by 2033. The National Energy Strategy assumes that 70 percent of these plants will continue to operate beyond their current license expiration to assist in ensuring an adequate, diverse, and environmentally acceptable energy supply for economic growth. In order to preserve this energy resource in the US three major tasks must be successfully completed: establishment of regulations, technical standards, and procedures for the preparation and review of a license renewal application; development, verification, and validation of technical criteria and bases for monitoring, refurbishing, and/or replacing plant equipment; and demonstration of the regulatory process. Since 1985, the US Department of Energy (DOE) has been working with the nuclear industry and the US Nuclear Regulatory Commission (NRC) to establish and demonstrate the option to extend the life of nuclear power plants through the renewal of operating licenses. This paper focuses primarily on DOE`s Plant Lifetime Improvement (PLIM) Program efforts to develop the technical criteria and bases for effective aging management and lifetime improvement for continued operation of nuclear power plants. This paper describes current projects to resolve generic technical issues in the principal areas of reactor pressure vessel (RPV) integrity, fatigue, and environmental qualification (EQ).

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  7. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    SciTech Connect

    Meier, W R; Abbott, R; Beach, R; Blink, J; Caird, J; Erlandson, A; Farmer, J; Halsey, W; Ladran, T; Latkowski, J; MacIntyre, A; Miles, R; Storm, E

    2008-10-02

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R&D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost.

  8. Energy conservation study on Lamb-Weston potato processing plant, Hermiston, Oregon

    SciTech Connect

    Not Available

    1985-03-21

    This report presents the findings of an energy study done at the Lamb-Weston potato processing plant in Hermiston, Oregon. The study includes all electrical energy using systems at the plant but does not address specifc modificiations to process equipment. The Hermiston plant receives raw potatoes and produces a mixture of pre-fried and frozen potato products, including french fries, breakfast products, and a dinner product. The plant contains all necessary equipment and processes to produce a finished product but does not have on-site, long-term cold storage. The Hermiston plant purchases electricity from the Umatilla Rural Electrical Association (REA) on two main services: a 12.7 KV, three phase service for the electric boiler, and a three phase, 480 volt service that provides electricity for all other functions in the main plant (the wheelturning load).

  9. Improving biomass resource recycling capacity of Rubrivivax gelatinosus cultivated in wastewater through regulating the generation and use of energy.

    PubMed

    Wu, Pan; Wang, Yan-ling; Zhang, Guang-ming; Liu, Xian-shu; Du, Cong; Tong, Qing-yue; Li, Ning

    2014-01-01

    This paper investigated Mg2+ enhancement of biomass production through regulating the generation and use of energy in Rubrivivax gelatinosus wastewater treatment. Results showed that proper Mg2+ dosage range was 1.5-15 mg/L. With optimal Mg2+ dosage (10 mg/L), biomass production (5010 mg/L) was improved by 60%. Both protein and chemical oxygen demand (COD) removals reached above 90%. Biomass yield improved by 38%. Hydraulic retention time was shortened by 25%. Mechanism analysis indicated that as activator, Mg2+ promoted specifically isocitrate dehydrogenase (IDH) and Ca2+ / Mg2+ -ATPase activities in energy metabolism, and then improved the generation of adenosine triphosphate (ATP) and the use of ATP. This enhanced the secretion and activity of protease, protein and COD removals, and then led to more biomass production. With 10 mg/L Mg2+, IDH and Ca2+ / Mg2+ -ATPase activities, ATP production, protease activity were improved by 43.8%, 40.6%, 39.4% and 46.5%, respectively.

  10. Energy Surveys of Army Central Heating and Power Plants, Energy Engineering Analysis Program (EEAP), Fort Richardson. Volume 1 - Executive Summary.

    DTIC Science & Technology

    1986-04-01

    plants and processes. It also has a narrative discussion and evaluation of the ECOs studied at each power plant with a summary of the economics and...Documentation, contains the funding request documentation forms for the energy conservation opportunities ( ECOs ) that qualified, and other ECOs that were...reference material and other data supporting the report and documentation. Depending on the project cost and economics, for each viable ECO , documentation

  11. Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant

    SciTech Connect

    2006-02-01

    This DOE Industrial Technologies Program spotlight describes how Rohm and Haas’s Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

  12. Coupling Ocean Thermal Energy Conversion technology (OTEC) with nuclear power plants

    SciTech Connect

    Goldstein, M.K.; Rezachek, D.; Chen, C.S.

    1981-01-01

    The prospects of utilizing an OTEC Related Bottoming Cycle to recover waste heat generated by a large nuclear (or fossil) power plant are examined. With such improvements, OTEC can become a major energy contributor. 12 refs.

  13. EPA Announces 2015 ENERGY STAR Certified Manufacturing Plants, Two San Antonio facilities among those recognized

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) announced today that two facilities in San Antonio-Toyota Motor Manufacturing Texas and Buzzi Unicem cement-are among the 70 manufacturing plants across the nation that achieved ENERGY STAR certification.

  14. Upgrade of Compressed Air Control System Reduces Energy Costs at Michelin Tire Plant

    SciTech Connect

    2002-01-01

    This case study highlights the upgraded compressed air system at a Michelin tire manufacturing plant in Spartanburg, South Carolina. The controls upgrade project enabled multiple compressor operation without blow-off, and significantly reduced energy costs.

  15. Synthetic Minor NSR Permit: Catamount Energy Partners - Ignacio Gas Treating Plant

    EPA Pesticide Factsheets

    Response to public comments on the proposed permit, the final synthetic minor NSR permit and the administrative permit record for the Catamount Energy Partners, Ignacio Gas Treating Plant, located on the Southern Ute Indian Reservation in Colorado.

  16. EPA Recognizes Nissan and Toyota Manufacturing Plants in Mississippi for Achieving 2015 Energy Star Certification

    EPA Pesticide Factsheets

    ATLANTA - Today, the U.S. Environmental Protection Agency (EPA) announced Nissan NA in Canton and Toyota Motor Manufacturing Mississippi in Blue Springs, both in Mississippi, are among 70 manufacturing plants nationally that have achieved Energy Sta

  17. Barley (Hordeum vulgare) in the Okhotsk culture (5th-10th century AD) of northern Japan and the role of cultivated plants in hunter-gatherer economies.

    PubMed

    Leipe, Christian; Sergusheva, Elena A; Müller, Stefanie; Spengler, Robert N; Goslar, Tomasz; Kato, Hirofumi; Wagner, Mayke; Weber, Andrzej W; Tarasov, Pavel E

    2017-01-01

    This paper discusses archaeobotanical remains of naked barley recovered from the Okhotsk cultural layers of the Hamanaka 2 archaeological site on Rebun Island, northern Japan. Calibrated ages (68% confidence interval) of the directly dated barley remains suggest that the crop was used at the site ca. 440-890 cal yr AD. Together with the finds from the Oumu site (north-eastern Hokkaido Island), the recovered seed assemblage marks the oldest well-documented evidence for the use of barley in the Hokkaido Region. The archaeobotanical data together with the results of a detailed pollen analysis of contemporaneous sediment layers from the bottom of nearby Lake Kushu point to low-level food production, including cultivation of barley and possible management of wild plants that complemented a wide range of foods derived from hunting, fishing, and gathering. This qualifies the people of the Okhotsk culture as one element of the long-term and spatially broader Holocene hunter-gatherer cultural complex (including also Jomon, Epi-Jomon, Satsumon, and Ainu cultures) of the Japanese archipelago, which may be placed somewhere between the traditionally accepted boundaries between foraging and agriculture. To our knowledge, the archaeobotanical assemblages from the Hokkaido Okhotsk culture sites highlight the north-eastern limit of prehistoric barley dispersal. Seed morphological characteristics identify two different barley phenotypes in the Hokkaido Region. One compact type (naked barley) associated with the Okhotsk culture and a less compact type (hulled barley) associated with Early-Middle Satsumon culture sites. This supports earlier suggestions that the "Satsumon type" barley was likely propagated by the expansion of the Yayoi culture via south-western Japan, while the "Okhotsk type" spread from the continental Russian Far East region, across the Sea of Japan. After the two phenotypes were independently introduced to Hokkaido, the boundary between both barley domains possibly

  18. Barley (Hordeum vulgare) in the Okhotsk culture (5th–10th century AD) of northern Japan and the role of cultivated plants in hunter–gatherer economies

    PubMed Central

    Sergusheva, Elena A.; Müller, Stefanie; Spengler, Robert N.; Goslar, Tomasz; Kato, Hirofumi; Wagner, Mayke; Weber, Andrzej W.; Tarasov, Pavel E.

    2017-01-01

    This paper discusses archaeobotanical remains of naked barley recovered from the Okhotsk cultural layers of the Hamanaka 2 archaeological site on Rebun Island, northern Japan. Calibrated ages (68% confidence interval) of the directly dated barley remains suggest that the crop was used at the site ca. 440–890 cal yr AD. Together with the finds from the Oumu site (north-eastern Hokkaido Island), the recovered seed assemblage marks the oldest well-documented evidence for the use of barley in the Hokkaido Region. The archaeobotanical data together with the results of a detailed pollen analysis of contemporaneous sediment layers from the bottom of nearby Lake Kushu point to low-level food production, including cultivation of barley and possible management of wild plants that complemented a wide range of foods derived from hunting, fishing, and gathering. This qualifies the people of the Okhotsk culture as one element of the long-term and spatially broader Holocene hunter–gatherer cultural complex (including also Jomon, Epi-Jomon, Satsumon, and Ainu cultures) of the Japanese archipelago, which may be placed somewhere between the traditionally accepted boundaries between foraging and agriculture. To our knowledge, the archaeobotanical assemblages from the Hokkaido Okhotsk culture sites highlight the north-eastern limit of prehistoric barley dispersal. Seed morphological characteristics identify two different barley phenotypes in the Hokkaido Region. One compact type (naked barley) associated with the Okhotsk culture and a less compact type (hulled barley) associated with Early–Middle Satsumon culture sites. This supports earlier suggestions that the “Satsumon type” barley was likely propagated by the expansion of the Yayoi culture via south-western Japan, while the “Okhotsk type” spread from the continental Russian Far East region, across the Sea of Japan. After the two phenotypes were independently introduced to Hokkaido, the boundary between both barley

  19. Seaweed cultivation: Traditional way and its reformation

    NASA Astrophysics Data System (ADS)

    Fei, Xiu-Geng; Bao, Ying; Lu, Shan

    1999-09-01

    Seaweed cultivation or phycoculture has been developed rather fast in recent years. The total production of cultivated seaweed at present is about 6250×103 tons fresh weight. The total cultivation area is estimated as 200×103 hectare. The annual total value of cultivated seaweeds has been estimated to be more than 3 billion US dollars. Phycoculture provides many job opportunities for the coastal region people, has the potential to improve marine environments and thus even induce global change. All traditional cultivation methods and techniques are based on or start from the individual plant or the cultivated seaweed population. Modern biological science and biotechnology achievements have benefited agriculture a lot, but traditional seaweed cultivation has not changed much since its founding. This is because seaweed cultivation has been quite conservative for quite a long period and has accumulated many problems requiring solution. Four main problems might be the most universal ones holding back further development of the industry. New ways of seaweed cultivation must be developed, new techniques must be perfected, and new problems solved. This paper mainly discusses the main problems of traditional seaweed cultivation at present and its possible further development and reformation in the future.

  20. Energy from plants and microorganisms: progress in plant-microbial fuel cells.

    PubMed

    Deng, Huan; Chen, Zheng; Zhao, Feng

    2012-06-01

    Plant-microbial fuel cells (PMFCs) are newly emerging devices, in which electricity can be generated by microorganisms that use root exudates as fuel. This review presents the development of PMFCs, with a summary of their power generation, configurations, plant types, anode and cathode materials, biofilm communities, potential applications, and future directions.

  1. Paramount Petroleum: Plant-Wide Energy-Efficiency Assessment Identifies Three Projects

    SciTech Connect

    2003-07-01

    The Paramount Petroleum plant-wide energy assessment identified a cost-effective electrical power and heat energy production facility and systems that could benefit from either fuel-burn adjustments or a new drive/control system. This could lead to independence from a local electric utility with much improved reliability, estimated annual energy savings of 1,200,000 kWh of electricity, and estimated annual savings of $4.1 million for energy reduction and other improvements.

  2. Excitation energy transfer in vitro between phycobiliproteins and thylakoid photosystem II of higher plants

    NASA Astrophysics Data System (ADS)

    Wu, Xiaonan; Tseng, C. K.

    1992-12-01

    The excitation energy transfer from phycobiliproteins to thylakoid PSII of higher plants was investigated. When incubated with spinach thylakoids, phycobiliproteins isolated from red and blue-green algae transferred light energy absorbed to spinach PSII. The efficiency of energy transfer was dependent on the kind of phycobiliproteins used. If spinach thylakoids were replaced by the thylakoids of Brassica chinensis, R-phycoerythin or C-phycocyanin did not transfer their excitation energy to PSII of Brassica chinensis unless allophycocyanin was present.

  3. Microgrids, virtual power plants and our distributed energy future

    SciTech Connect

    Asmus, Peter

    2010-12-15

    Opportunities for VPPs and microgrids will only increase dramatically with time, as the traditional system of building larger and larger centralized and polluting power plants by utilities charging a regulated rate of return fades. The key questions are: how soon will these new business models thrive - and who will be in the driver's seat? (author)

  4. Hydrocarbons and energy from plants: Final report, 1984-1987

    SciTech Connect

    Calvin, M.; Otvos, J.; Taylor, S.E.; Nemethy, E.K.; Skrukrud, C.L.; Hawkins, D.R.; Lago, R.

    1988-08-01

    Plant hydrocarbon (isoprenoid) production was investigated as an alternative source to fossil fuels. Because of their high triterpenoid (hydrocarbon) content of 4--8%, Euphorbia lathyris plants were used as a model system for this study. The structure of the E. lathyris triterpenoids was determined, and triterpenoid biosynthesis studied to better understand the metabolic regulation of isoprenoid production. Triterpenoid biosynthesis occurs in two distinct tissue types in E. lathyris plants: in the latex of the laticifer cells; and in the mesophyll cells of the leaf and stem. The latex has been fractionated by centrifugation, and it has been determined that the later steps of isoprenoid biosynthesis, the conversion of mevalonic acid to the triterpenes, are compartmentized within a vacuole. Also identified was the conversion of hydroxymethyl glutaryl-CoA to mevalonic acid, catalyzed by the enzyme Hydroxymethyl glutaryl-CoA Reductase, as a key rate limiting step in isoprenoid biosynthesis. At least two isozymes of this enzyme, one in the latex and another in the leaf plastids, have been identified. Environmental stress has been applied to plants to study changes in carbon allocation. Salinity stress caused a large decrease in growth, smaller decreases in photosynthesis, resulting in a larger allocation of carbon to both hydrocarbon and sugar production. An increase in Hydroxymethyl glutaryl-CoA Reductase activity was also observed when isoprenoid production increased. Other species where also screened for the production of hydrogen rich products such as isoprenoids and glycerides, and their hydrocarbon composition was determined.

  5. The Advanced BWR Nuclear Plant: Safe, economic nuclear energy

    SciTech Connect

    Redding, J.R.

    1994-12-31

    The safety and economics of Advanced BWR Nuclear Power Plants are outlined. The topics discussed include: ABWR Programs: status in US and Japan; ABWR competitiveness: safety and economics; SBWR status; combining ABWR and SBWR: the passive ABWR; and Korean/GE partnership.

  6. Direct effects of energy-related air pollutants on plant sexual reproduction

    SciTech Connect

    Ragsdale, H.L.; Murdy, W.H.

    1987-12-08

    Our completed research program concentrated on the direct in vivo effects of energy-related air pollutants on plant sexual reproduction. Direct air pollution effects on plant sexual reproduction have been studied for SO{sub 2} and NO{sub 2}, two of the three major air pollutants.

  7. Initial dynamic simulation of an HTGR sensible energy transport and storage plant

    SciTech Connect

    Ball, S.J.; Clapp, N.E. Jr.

    1982-06-01

    Dynamic models were developed for a General Atomic Company reference design of a high-temperature gas-cooled reactor sensible energy transport and storage (SETS) plant. The resulting computer code uses the IBM simulation language CSMP. The purpose of the program was to investigate the basic dynamic response behavior and controllability. The plant was found to have excellent inherent stability and control features.

  8. Ford Cleveland: Inside-out Analysis Identifies Energy Cost Savings Opportunities at Metal Casting Plant

    SciTech Connect

    2003-09-01

    The Ford Cleveland Casting Plant used results from its plant-wide energy efficiency assessment to identify 16 energy- and cost-saving projects. These projects addressed combustion, compressed air, water, steam, motor drive, and lighting systems. When implemented, the projects should save a total of $3.28 million per year. In addition, two long-term projects were identified that together would represent another $9.5 million in cost savings.

  9. DOE PLANT-WIDE ENERGY ASSESSMENT RESULTS RELATED TO THE U. S. AUTOMOTIVE INDUSTRY

    SciTech Connect

    Kelly Kissock, Arvind Thekdi, Len Bishop

    2006-01-05

    Forty-nine plant-wide energy efficiency assessments have been undertaken under sponsorship of the U.S. Department of Industrial Technologies Program. Plant-wide assessments are comprehensive, systematic investigations of plant energy efficiency, including plant utility systems and process operations. Assessments in industrial facilities have highlighted opportunities for implementing best practices in industrial energy management, including the adoption of new, energy-efficient technologies and process and equipment improvements. Total annual savings opportunities of $201 million have been identified from the 40 completed assessments. Many of the participating industrial plants have implemented efficiency-improvement projects and already have realized total cost savings of more than $81 million annually. This paper provides an overview of the assessment efforts undertaken and presents a summary of the major energy and cost savings identified to date. The paper also discusses specific results from assessments conducted at four plants in the automotive manufacturing operations and supporting industries. These particular assessments were conducted at facilities that produce engine castings, plastic films used for glass laminates, forged components, and at a body spray painting plant.

  10. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants

    SciTech Connect

    De Greef, J.; Villani, K.; Goethals, J.; Van Belle, H.; Van Caneghem, J.; Vandecasteele, C.

    2013-11-15

    Highlights: • WtE plants are to be optimized beyond current acceptance levels. • Emission and consumption data before and after 5 technical improvements are discussed. • Plant performance can be increased without introduction of new techniques or re-design. • Diagnostic skills and a thorough understanding of processes and operation are essential. - Abstract: Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation – before and after optimisation – as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential.

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    SciTech Connect

    Brush, Adrian; Masanet, Eric; Worrell, Ernst

    2011-10-01

    The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  12. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress

    PubMed Central

    Pu, Xiaojun; Lv, Xin; Tan, Tinghong; Fu, Faqiong; Qin, Gongwei; Lin, Honghui

    2015-01-01

    Background Plants are sessile organisms that have the ability to integrate external cues into metabolic and developmental signals. The cues initiate specific signal cascades that can enhance the tolerance of plants to stress, and these mechanisms are crucial to the survival and fitness of plants. The adaption of plants to stresses is a complex process that involves decoding stress inputs as energy-deficiency signals. The process functions through vast metabolic and/or transcriptional reprogramming to re-establish the cellular energy balance. Members of the mitochondrial energy dissipation pathway (MEDP), alternative oxidases (AOXs) and uncoupling proteins (UCPs), act as energy mediators and might play crucial roles in the adaption of plants to stresses. However, their roles in plant growth and development have been relatively less explored. Scope This review summarizes current knowledge about the role of members of the MEDP in plant development as well as recent advances in identifying molecular components that regulate the expression of AOXs and UCPs. Highlighted in particular is a comparative analysis of the expression, regulation and stress responses between AOXs and UCPs when plants are exposed to stresses, and a possible signal cross-talk that orchestrates the MEDP, reactive oxygen species (ROS), calcium signalling and hormone signalling. Conclusions The MEDP might act as a cellular energy/metabolic mediator that integrates ROS signalling, energy signalling and hormone signalling with plant development and stress accumulation. However, the regulation of MEDP members is complex and occurs at transcriptional, translational, post-translational and metabolic levels. How this regulation is linked to actual fluxes through the AOX/UCP in vivo remains elusive. PMID:25987710

  13. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress.

    PubMed

    Pu, Xiaojun; Lv, Xin; Tan, Tinghong; Fu, Faqiong; Qin, Gongwei; Lin, Honghui

    2015-09-01

    Plants are sessile organisms that have the ability to integrate external cues into metabolic and developmental signals. The cues initiate specific signal cascades that can enhance the tolerance of plants to stress, and these mechanisms are crucial to the survival and fitness of plants. The adaption of plants to stresses is a complex process that involves decoding stress inputs as energy-deficiency signals. The process functions through vast metabolic and/or transcriptional reprogramming to re-establish the cellular energy balance. Members of the mitochondrial energy dissipation pathway (MEDP), alternative oxidases (AOXs) and uncoupling proteins (UCPs), act as energy mediators and might play crucial roles in the adaption of plants to stresses. However, their roles in plant growth and development have been relatively less explored. This review summarizes current knowledge about the role of members of the MEDP in plant development as well as recent advances in identifying molecular components that regulate the expression of AOXs and UCPs. Highlighted in particular is a comparative analysis of the expression, regulation and stress responses between AOXs and UCPs when plants are exposed to stresses, and a possible signal cross-talk that orchestrates the MEDP, reactive oxygen species (ROS), calcium signalling and hormone signalling. The MEDP might act as a cellular energy/metabolic mediator that integrates ROS signalling, energy signalling and hormone signalling with plant development and stress accumulation. However, the regulation of MEDP members is complex and occurs at transcriptional, translational, post-translational and metabolic levels. How this regulation is linked to actual fluxes through the AOX/UCP in vivo remains elusive. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Energy, environmental and operation aspects of a SRF-fired fluidized bed waste-to-energy plant.

    PubMed

    De Gisi, Sabino; Chiarelli, Agnese; Tagliente, Luca; Notarnicola, Michele

    2017-05-05

    A methodology based on the ISO 14031:2013 guideline has been developed and applied to a full-scale fluidized bed waste to energy plant (WtE) burning solid recovered fuel (SRF). With reference to 3years of operation, the data on energy and environmental performance, on raw materials consumptions such as sand and diesel fuel, accidental reasons of plant shutdown, have been acquired and analyzed. The obtained results have allowed to quantify the energy and environmental performance of the WtE plant under investigation by varying the amount and mixings of the inlet waste, available in form of thickened and fluff (similar to coriander) SRF. In terms of the energy performance, the fluidized bed technology applied to the SRF was able to guarantee an adequate production of electricity (satisfying the market demands), showing a relative flexibility with respect to the inlet waste. In terms of net energy production efficiency, the plant showed values in the range of 13.8-14.9% in line with similar installations. In terms of the environmental performance, the adoption of a cleaning system based on SNCR (Selective Non Catalitic Reduction)+semi-dry scrubbing+Fabric filter generated emissions usually well below the limits set by the EU Directive 2000/76/EC as well as the Italian Law 46/2014 (more restrictive) with reference to all the key parameters. In terms of the plant shutdown, the majority of problems focused on the combustion chamber and boiler due to the erosion of the refractory material of the furnace as well as to the breaking of the superheaters of the boiler. In contrast, the mechanical and electrical causes, along with those related to the control and instrumentation system, were of secondary importance. The sand bed de-fluidization was also among the leading causes of a frequent plant shutdown. In particular, results showed how although the SRF presents standard characteristics, the use of different mixtures may affect the number of plant shutdowns. The full

  15. Energy efficiency in Spanish wastewater treatment plants: a non-radial DEA approach.

    PubMed

    Hernández-Sancho, F; Molinos-Senante, M; Sala-Garrido, R

    2011-06-15

    Wastewater treatment plants (WWTPs) are energy-intensive facilities. Thus, reducing their carbon footprint is particularly important, both economically and environmentally. Knowing the real operating energy efficiency of WWTPs is the starting point for any energy-saving initiative. In this article, we applied a non-radial Data Envelopment Analysis (DEA) methodology to calculate energy efficiency indices for sampling of WWTPs located in Spain. In a second stage analysis, we examined the operating variables contributing to differences in energy efficiency among plants. It is verified that energy efficiencies of the analyzed WWTPs were quite low, with only 10% of them being efficient. We found that plant size, quantity of organic matter removed, and type of bioreactor aeration were significant variables in explaining energy efficiency differences. In contrast, age of the plant was not a determining factor in energy consumption. Lastly, we quantified the potential savings, both in economic terms and in terms of CO(2) emissions, that could be expected from an improvement in energy efficiency of WWTPs.

  16. Central Plant Optimization for Waste Energy Reduction (CPOWER)

    DTIC Science & Technology

    2016-12-01

    commands at the plant. Since there is a long start up and shutdown period (the boiler should be well warmed before turning on the gas, to avoid...is a long start up and shutdown period (the boiler should be well warmed before turning on the gas, to avoid thermal stress problems), the local...CPOWER operator manual (see Appendices E and F). Since there is a long start up and shutdown period (the boiler should be well warmed before turning on

  17. Energy demand for elimination of organic micropollutants in municipal wastewater treatment plants.

    PubMed

    Mousel, Danièle; Palmowski, Laurence; Pinnekamp, Johannes

    2017-01-01

    Organic micropollutants (OMP), e.g. pharmaceuticals and household/industrial chemicals, are not fully eliminated in state-of-the-art municipal wastewater treatment plants and can potentially harm the aquatic environment. Therefore, several pilot and large-scale investigations on the elimination of organic micropollutants have taken place in recent years. Based on the present findings, the most efficient treatment steps to eliminate organic micropollutants have proven to be ozonation, adsorption on powdered activated carbon (PAC), or filtration through granular activated carbon (GAC). Yet a further treatment step implies an increase in energy demand of the wastewater treatment plant, which has to be considered along with OMP elimination. To this aim, data on energy demand of ten large-scale municipal wastewater treatment plants (WWTP) with processes for OMP elimination was collected and analyzed. Moreover, calculations on energy demand beyond the WWTP for production and transport of ancillary materials were performed to assess the cumulative energy demand of the processes. An assessment of the greenhouse gas emissions of the processes was achieved, which shall facilitate future life cycle analyses. The results show that energy demand of ozonation at the wastewater treatment plant is dependent upon the ozone dosage and is significantly higher than energy demand of PAC addition or GAC filtration (2 to 4 times higher without consideration of delivery heads). Despite uncertainties regarding the energy demand for production of activated carbon, it could be shown that the cumulative energy demand of adsorption steps is significantly higher than the energy demand at the WWTP. Using reactivated GAC can lead to energy and greenhouse gas emissions savings compared to using fresh GAC/PAC. Moreover, energy demand is always plant-specific and depends on different factors (delivery heads, existing filtration or post-treatment etc.). Since processes for elimination of organic

  18. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    SciTech Connect

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  19. Annual Energy Production (AEP) optimization for tidal power plants based on Evolutionary Algorithms - Swansea Bay Tidal Power Plant AEP optimization

    NASA Astrophysics Data System (ADS)

    Kontoleontos, E.; Weissenberger, S.

    2016-11-01

    In order to be able to predict the maximum Annual Energy Production (AEP) for tidal power plants, an advanced AEP optimization procedure is required for solving the optimization problem which consists of a high number of design variables and constraints. This efficient AEP optimization procedure requires an advanced optimization tool (EASY software) and an AEP calculation tool that can simulate all different operating modes of the units (bidirectional turbine, pump and sluicing mode). The EASY optimization software is a metamodel-assisted Evolutionary Algorithm (MAEA) that can be used in both single- and multi-objective optimization problems. The AEP calculation tool, developed by ANDRITZ HYDRO, in combination with EASY is used to maximize the tidal annual energy produced by optimizing the plant operation throughout the year. For the Swansea Bay Tidal Power Plant project, the AEP optimization along with the hydraulic design optimization and the model testing was used to evaluate all different hydraulic and operating concepts and define the optimal concept that led to a significant increase of the AEP value. This new concept of a triple regulated “bi-directional bulb pump turbine” for Swansea Bay Tidal Power Plant (16 units, nominal power above 320 MW) along with its AEP optimization scheme will be presented in detail in the paper. Furthermore, the use of an online AEP optimization during operation of the power plant, that will provide the optimal operating points to the control system, will be also presented.

  20. Cost analysis of power plant cooling using aquifer thermal energy storage

    SciTech Connect

    Zimmerman, P.W.; Drost, M.K.

    1989-05-01

    Most utilities in the US experience their peak demand for electric power during periods with high ambient temperature. Unfortunately, the performance of many power plants decreases with high ambient temperature. The use of aquifer thermal energy storage (ATES) for seasonal storage of chill can be an alternative method for heat rejection. Cold water produced during the previous winter is stored in the aquifer and can be used to provide augmented cooling during peak demand periods increasing the output of many Rankine cycle power plants. This report documents an investigation of the technical and economic feasibility of using aquifer thermal energy storage for peak cooling of power plants. 9 refs., 15 figs., 5 tabs.

  1. Development of a CSP plant energy yield calculation tool applying predictive models to analyze plant performance sensitivities

    NASA Astrophysics Data System (ADS)

    Haack, Lukas; Peniche, Ricardo; Sommer, Lutz; Kather, Alfons

    2017-06-01

    At early project stages, the main CSP plant design parameters such as turbine capacity, solar field size, and thermal storage capacity are varied during the techno-economic optimization to determine most suitable plant configurations. In general, a typical meteorological year with at least hourly time resolution is used to analyze each plant configuration. Different software tools are available to simulate the annual energy yield. Software tools offering a thermodynamic modeling approach of the power block and the CSP thermal cycle, such as EBSILONProfessional®, allow a flexible definition of plant topologies. In EBSILON, the thermodynamic equilibrium for each time step is calculated iteratively (quasi steady state), which requires approximately 45 minutes to process one year with hourly time resolution. For better presentation of gradients, 10 min time resolution is recommended, which increases processing time by a factor of 5. Therefore, analyzing a large number of plant sensitivities, as required during the techno-economic optimization procedure, the detailed thermodynamic simulation approach becomes impracticable. Suntrace has developed an in-house CSP-Simulation tool (CSPsim), based on EBSILON and applying predictive models, to approximate the CSP plant performance for central receiver and parabolic trough technology. CSPsim significantly increases the speed of energy yield calculations by factor ≥ 35 and has automated the simulation run of all predefined design configurations in sequential order during the optimization procedure. To develop the predictive models, multiple linear regression techniques and Design of Experiment methods are applied. The annual energy yield and derived LCOE calculated by the predictive model deviates less than ±1.5 % from the thermodynamic simulation in EBSILON and effectively identifies the optimal range of main design parameters for further, more specific analysis.

  2. Preliminary energy balance and economic of a farm-scale ethanol plant

    SciTech Connect

    Jantzen, D.; McKinnon, T.

    1980-05-01

    A small-scale ethanol plant was designed, built, tested, and modified over the past 18 months. The plant currently operating is the second design. A third, and probably final, design will be installed and operating within a few months. The current plant produces approximately 30 gal/hr of 190-proof alcohol on a continuous basis. The new plant will produce 50 gal/hr of 200-proof alcohol. A key feature is the relatively low process heat requirement, which is achieved by extensive use of waste-heat recovery heat exchangers. This is manifested in the low temperatures of the process output streams. Acting on the request of the Office of Alcohol Fuels, US Department of Energy, and at the invitation of the owners, representatives from the Solar Energy Research Institute evaluated the energy balance on the plant. The objective was to help clear up the controversy surrounding the net energy benefit of ethanol production. Although the study was site-specific to the plant and limited in scope, it is indicative of the potential performance of grain-to-ethanol plants in general.

  3. Endangered and threatened plant species on the Department of Energy Oak Ridge Reservation: an update

    SciTech Connect

    Parr, P.D.

    1984-10-01

    Plant species considered endangered or threatened on the Department of Energy-Oak Ridge Reservation (DOE-ORR) were identified through a review of pertinent literature and evaluation of herbarium voucher specimens. Thirteen plant species are on the official Tennessee list of endangered and threatened plants. Three of those species have been proposed for inclusion on the Federal list as rare in Tennessee. These rare plants will be given careful consideration in land-use planning. Protection of endangered and threatened species in their native habitat is considered the best method of ensuring their survival. In addition to habitat preservation, natural history studies of the rare species is important in determ

  4. Site-adapted cultivation of bioenergy crops - a strategy towards a greener and innovative feedstock production

    NASA Astrophysics Data System (ADS)

    Ruf, Thorsten; Emmerling, Christoph

    2017-04-01

    Cultivation of bioenergy crops is of increasing interest to produce valuable feedstocks e.g. for anaerobic digestion. In the past decade, the focus was primarily set to cultivation of the most economic viable crop, namely maize. In Germany for example, the cultivation area of maize was expanded from approx. 200,000 ha in 2006 to 800,000 ha in 2015. However, this process initiated a scientific and public discussion about the sustainability of intense maize cultivation. Concerns addressed in this context are depletion of soil organic matter, soil erosion and compaction as well as losses of (agro-)biodiversity. However, from a soil science perspective, several problems arise from not site-adapted cultivation of maize. In contrast, the cultivation of perennial bioenergy crops may provide a valuable opportunity to preserve or even enhance soil fertility and agrobiodiversity without limiting economic efficiency. Several perennial energy crops, with various requirements regarding stand conditions, allow a beneficial selection of the most suitable species for a respective location. The study aimed to provide a first step towards a more strategic planning of bioenergy crop cultivation with respect to spatial arrangement, distribution and connectivity of sites on a regional scale. The identification of pedological site characteristics is a crucial step in this process. With the study presented, we tried to derive site information that allow for an assessment of the suitability for specific energy crops. Our idea is to design a multifunctional landscape with a coexistence of sites with reduced management for soil protection and highly productive site. By a site adapted cultivation of perennial energy plants in sensitive areas, a complex, heterogeneous landscape could be reached.

  5. Department of Energy interest and involvement in nuclear plant license renewal activities

    SciTech Connect

    Bustard, L.D. ); Harrison, D.L. . Office of LWR Safety and Technology)

    1991-01-01

    Recognizing the importance of nuclear license renewal to the nation's energy strategy, the Department of Energy (DOE) initiated a plant lifetime improvement program during 1985 to determine the feasibility of the license renewal option for US nuclear plants. Initial activities of the DOE program focused on determining whether there were technical and economic obstacles that might preclude or limit the successful implementation of the license renewal option. To make this determination, DOE cosponsored with the Electric Power Research Institute (EPRI) pilot-plant efforts by Virginia Electric Power and Northern States Power. Both pilot-plant efforts concluded that life extension is technically and economically feasible. In parallel with the pilot-plant activities, DOE performed national economic studies that demonstrated the economic desirability of life extension. Having demonstrated the feasibility of life extension, DOE, in conjunction with EPRI, selected two lead plants to demonstrate the license renewal process. These lead plants are Yankee Atomic's Yankee Rowe facility and Northern States Power's Monticello facility. DOE also initiated activities to develop the technical and regulatory bases to support the license renewal process in the United States. DOE has recently identified nuclear plant license renewal to be an important element of its National Energy Strategy. This paper summarizes the significant results, conclusions, and ongoing activities of the DOE effort. 18 refs.

  6. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    SciTech Connect

    Wang, Dexin

    2016-12-31

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advanced version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.

  7. Staff management of security personnel at Martin Marietta Energy Systems, Inc. , Portsmouth Gaseous Diffusion Plant

    SciTech Connect

    Not Available

    1991-09-25

    The Portsmouth Gaseous Diffusion Plant Security and Police Operations Department is responsible for protecting the US Department of Energy interests at the Portsmouth Plant from theft, sabotage, and other hostile acts that may adversely affect national security, the public health and safety, or property at the Department of Energy facility. This audit's purpose was to evaluate Martin Marietta Energy Systems, Inc.'s staff management at the Portsmouth Plant Security Department. The Portsmouth Plant Security Department could reduce operating cost up to an estimated $4.4 million over 5 years by: (1) Eliminating up to 14 unnecessary staff positions, and (2) reducing the length of relief breaks. These economies could be realized through implementing written operating procedures and negotiating removal of certain labor union restrictions. 2 tabs.

  8. 75 FR 16524 - FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... COMMISSION FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption 1.0 Background FirstEnergy Nuclear Operating Company (FENOC, the licensee) is the holder of Facility Operating License No... compliance date (Reference: June 4, 2009, letter from R. W. Borchardt, NRC, to M. S. Fertel, Nuclear...

  9. On the enhancement of the efficiency of the energy complexes of crude hydrocarbon processing plants

    NASA Astrophysics Data System (ADS)

    Dolotovskij, I. V.; Larin, E. A.; Dolotovskaja, N. V.

    2015-07-01

    A method for circuit-parametric analysis of the efficiency of the heat-and-power system of the energy complexes at gas and natural-gas condensate processing plants is proposed. An energy complex of an alternative structure with an independent source of thermal and electric energy integrated into the production line has been developed. The energy carriers are produced accompanied by recovery of the secondary energy resources, waste, and effluents. Using the developed information-analytical software, multicriterion assessment of the efficiency of the alternative energy complexes and its systems based on independent energy sources of the combined-cycle cogeneration plant type has been performed for the gas processing plant in Astrakhan and the most effective equipment composition variant has been determined. The effect of the basic technical and economic factors on the economic efficiency has been established. The investments in construction of the power- and water-supply system within the plant's energy complex pay off in 8-9 years.

  10. Energy Conservation Study on Simplot Potato Processing Plant Heyburn, Idaho, Appendices.

    SciTech Connect

    Seton, Johnson & Odell, Inc.

    1985-03-01

    This group of appendices, B--G, of the ''Simplot Potato Processing Plant Energy Conservation Study'', covers processing equipment, refrigeration equipment, water systems, air conditioning systems and lighting systems. Data on these systems related to cost and energy consumption are given. (JF)

  11. Steam System Efficiency Optimized After J.R. Simplot Fertilizer Plant Receives Energy Assessment

    SciTech Connect

    Not Available

    2008-07-01

    This case study describes how the J.R. Simplot company's Don Plant in Pocatello, Idaho, achieved annual savings of $335,000 and 75,000 MMBtu, with a simple payback of 6.5 months, after receiving a DOE Save Energy Now energy assessment.

  12. Model of yield response of corn to plant population and absorption of solar energy.

    PubMed

    Overman, Allen R; Scholtz, Richard V

    2011-01-31

    Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha(-1) and g plant(-1)) on plant population (plants m(-2)). Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L.) grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Y(m) (Mg ha(-1)) for maximum yield at high plant population and c (m(2) plant(-1)) for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, x(c) = 1/c (plants m(-2)). The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of x(c) were very similar for the three field studies with the same crop species.

  13. An aerial survey of radioactivity associated with Atomic Energy plants

    SciTech Connect

    Davis, F.J.; Harlan, W.E.; Humphrey, P.A.; Kane, R.L.; Reinhardt, P.W.

    1992-09-02

    The project covered was an endeavor to (1) compare a group of laboratory instruments as airborne detectors of radioactivity and (2) simultaneously obtain data relative to the diffusion rate of radioactive contamination emitted into the atmosphere from off-gas stacks of production runs. Research was conducted in the Oak Ridge, Tennessee and Hanford, Washington areas. Detection was accomplished at a maximum distance of seventeen miles from the plant. Very little information of a conclusive nature was gained concerning the diffusion. Further research with the nuclear instruments, using a stronger source, is recommended. To obtain conclusive information concerning the meteorological aspects of the project, a larger observational program will be needed.

  14. Archimede solar energy molten salt parabolic trough demo plant: Improvements and second year of operation

    NASA Astrophysics Data System (ADS)

    Maccari, Augusto; Donnola, Sandro; Matino, Francesca; Tamano, Shiro

    2016-05-01

    Since July 2013, the first stand-alone Molten Salt Parabolic Trough (MSPT) demo plant, which was built in collaboration with Archimede Solar Energy and Chiyoda Corporation, is in operation, located adjacent to the Archimede Solar Energy (ASE) manufacturing plant in Massa Martana (Italy). During the two year's operating time frame, the management of the demo plant has shown that MSPT technology is a suitable and reliable option. Several O&M procedures and tests have been performed, as Heat Loss and Minimum Flow Test, with remarkable results confirming that this technology is ready to be extended to standard size CSP plant, if the plant design takes into account molten salt peculiarities. Additionally, the plant has been equipped on fall 2014 with a Steam Generator system by Chiyoda Corporation, in order to test even this important MSPT plant subsystem and to extend the solar field active time, overcoming the previous lack of an adequate thermal load. Here, a description of the plant improvements and the overall plant operation figures will be presented.

  15. Augusta Newsprint: Paper Mill Pursues Five Projects Following Plant-Wide Energy Efficiency Assessment

    SciTech Connect

    Not Available

    2003-07-01

    Augusta Newsprint undertook a plant-wide energy efficiency assessment of its Augusta, Georgia, plant in 2001. The assessment helped the company decide to implement five energy efficiency projects. Four of the five projects will save the company 11,000 MWh of electrical energy (about$369,000) each year. The remaining project will produce more than$300,000 annually, from sale of the byproduct turpentine. The largest annual savings,$881,000, will come from eliminating Kraft pulp by using better process control. All of the projects could be applied to other paper mills and most of the projects could be applied in other industries.

  16. Kellogg Company in Cary, N.C., Among Top Performing Energy Star Certified Manufacturers in 29 States Across the country, Energy Star manufacturing plants are leading their industries by saving energy and money, combating climate change

    EPA Pesticide Factsheets

    ATLANTA - The U.S. Environmental Protection Agency (EPA) announced today that 70 manufacturing plants have achieved Energy Star certification for their superior energy performance in 2014. Together, these manufacturing plants saved a record amount o

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  18. Coil protection for a utility scale superconducting magnetic energy storage plant

    SciTech Connect

    Loyd, R.J.; Schoenung, S.M.; Hassenzahl, W.V.; Rogers, J.D.; Purcell, J.R.

    1986-01-01

    Superconducting Magnetic Energy Storage (SMES) is proposed for electric utility load leveling. Attractive costs, high diurnal energy efficiency (greater than or equal to 92%), and rapid response are advantages relative to other energy storage technologies. Recent industry-led efforts have produced a conceptual design for a 5000 MWh/1000 MW energy storage plant which is technically feasible at commercially attractive estimated costs. The SMES plant design includes a protection system which prevents damage to the magnetic coil if events require a rapid discharge of stored energy. This paper describes the design and operation of the coil protection system, which is primarily passive and uses the thermal capacity of the coil itself to absorb the stored electromagnetic energy.

  19. Potential environmental consequences of ocean thermal energy conversion (OTEC) plants. A workshop

    SciTech Connect

    Walsh, J.J.

    1981-05-01

    The concept of generating electrical power from the temperature difference between surface and deep ocean waters was advanced over a century ago. A pilot plant was constructed in the Caribbean during the 1920's but commercialization did not follow. The US Department of Energy (DOE) earlier planned to construct a single operational 10MWe Ocean Thermal Energy Conversion (OTEC) plant by 1986. However, Public Law P.L.-96-310, the Ocean Thermal Energy Conversion Research, Development and Demonstration Act, and P.L.-96-320, the Ocean Thermal Energy Conversion Act of 1980, now call for acceleration of the development of OTEC plants, with capacities of 100 MWe in 1986, 500 MWe in 1989, and 10,000 MWe by 1999 and provide for licensing and permitting and loan guarantees after the technology has been demonstrated.

  20. Functional genomics of bio-energy plants and related patent activities.

    PubMed

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2013-04-01

    With dwindling fossil oil resources and increased economic growth of many developing countries due to globalization, energy driven from an alternative source such as bio-energy in a sustainable fashion is the need of the hour. However, production of energy from biological source is relatively expensive due to low starch and sugar contents of bioenergy plants leading to lower oil yield and reduced quality along with lower conversion efficiency of feedstock. In this context genetic improvement of bio-energy plants offers a viable solution. In this manuscript, we reviewed the current status of functional genomics studies and related patent activities in bio-energy plants. Currently, genomes of considerable bio-energy plants have been sequenced or are in progress and also large amount of expression sequence tags (EST) or cDNA sequences are available from them. These studies provide fundamental data for more reliable genome annotation and as a result, several genomes have been annotated in a genome-wide level. In addition to this effort, various mutagenesis tools have also been employed to develop mutant populations for characterization of genes that are involved in bioenergy quantitative traits. With the progress made on functional genomics of important bio-energy plants, more patents were filed with a significant number of them focusing on genes and DNA sequences which may involve in improvement of bio-energy traits including higher yield and quality of starch, sugar and oil. We also believe that these studies will lead to the generation of genetically altered plants with improved tolerance to various abiotic and biotic stresses.

  1. Modeling of optical radiation energy distribution in plant tissue

    NASA Astrophysics Data System (ADS)

    Zakharov, V. P.; Bratchenko, I. A.; Sindyaeva, A. R.; Timchenko, E. V.

    2009-12-01

    A three-dimensional mathematical model of interactions of optical radiation with plant tissue taking into account its structural inhomogeneity, spectral properties, and the effects of fluorescence is constructed. The developed model is implemented using the statistical Monte Carlo method for the Henyey-Greenstein phase function. The dependence of differential backscattering and fluorescence coefficients on the concentration of photosynthetic pigments (chlorophylls) is numerically studied. It is demonstrated that numerical characteristics agree with results of physical experiment. The approximate solution based on the expansion of the diffusion and fluorescence radiation fluxes into a series in terms of a small parameter is found. This expansion makes it possible to calculate the field of backscattered radiation with satisfactory accuracy and to qualitatively correctly describe the experimentally observed dependences of the fluorescence coefficient in the region of high chlorophyll concentration.

  2. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.

    SciTech Connect

    Wang, M.; Wu, M.; Huo, H.; Energy Systems

    2007-04-01

    Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

  3. Cultivation of alfalfa (medicago sativa L).

    PubMed

    Rashmi, R; Sarkar, M; Vikramaditya

    1997-10-01

    Madicago sativa Linn, commonly known as 'Alfalfa', is a tonic plant rich in proteins, minerals, enzymes and vitamins, Bulk quantity of the whole plant is required in the pharmaceutical industries especially in homoecopathic pharmacies, Hence, there is a great need to cultivate this plant for sustained supply of the drug. Use of good and adequate phosphatecontaining farm yard manure, timely irrigation and appropriate spacing between plants results in good yield.

  4. Molecular genetic analysis of virus isolates from wild and cultivated plants demonstrates that East Africa is a hotspot for the evolution and diversification of sweet potato feathery mottle virus.

    PubMed

    Tugume, Arthur K; Cuéllar, Wilmer J; Mukasa, Settumba B; Valkonen, Jari P T

    2010-08-01

    Sweet potato feathery mottle virus (SPFMV, genus Potyvirus) is globally the most common pathogen of cultivated sweet potatoes (Ipomoea batatas; Convolvulaceae). Although more than 150 SPFMV isolates have been sequence-characterized from cultivated sweet potatos across the world, little is known about SPFMV isolates from wild hosts and the evolutionary forces shaping SPFMV population structures. In this study, 46 SPFMV isolates from 14 wild species of genera Ipomoea, Hewittia and Lepistemon (barcoded for the matK gene in this study) and 13 isolates from cultivated sweet potatoes were partially sequenced. Wild plants were infected with the EA, C or O strain, or co-infected with the EA and C strains of SPFMV. In East Africa, SPFMV populations in wild species and sweet potato were genetically undifferentiated, suggesting inter-host transmission of SPFMV. Globally, spatial diversification of the 178 isolates analysed was observed, strain EA being largely geographically restricted to East Africa. Recombination was frequently detected in the 6K2-VPg-NIaPro region of the EA strain, demonstrating a recombination 'hotspot'. Recombination between strains EA and C was rare, despite their frequent co-infections in wild plants, suggesting purifying selection against strain EA/C recombinants. Positive selection was predicted on 17 amino acids distributed over the entire coat protein in the globally distributed strain C, as compared to only four amino acids in the coat protein N-terminus of the EA strain. This selection implies a more recent introduction of the C strain and a higher adaptation of the EA strain to the local ecosystem. Thus, East Africa appears as a hotspot for evolution and diversification of SPFMV.

  5. Modelling of a magma energy geothermal power plant

    SciTech Connect

    Boehm, R.F.; Berg, D.L.; Jr.; Ortega, A.

    1987-01-01

    We are currently investigating the engineering feasibility of drilling into an active magma body at a depth of roughly 5 km from the earth's surface, establishing a downhole heat exchange region, and extracting thermal energy from the magma body by circulating fluid through this heat exchange region. In the present paper, we evaluate the overall thermodynamic performance of various conceptual magma energy systems in which energy is added as heat to the fluid within the magma region and is converted to useful work in a power conversion cycle at the surface. Unusually high return temperatures and pressures may be available at the wellhead of such a circulating well. Cycles investigated here are an open Rankine power system in which steam from the magma well is circulated directly through a power conversion cycle and a closed Rankine cycle where the heated fluid from downhole is circulated through an aboveground heat exchanger to heat the cycle fluid. The downhole heat exchange region is established during the drilling process. As drilling proceeds into the magma, a solidified layer forms about the drilling tube due to heat exchange to the fluid. This solidified layer thermally fractures because of large temperature gradients between the cooled inner region and the heated outer region, thereby opening secondary flow paths. Two models of the downhole behavior have been used. In the simplest approach, denoted as the ''infinite area model,'' the water entering the pipe to return to the surface is assumed to be always at the temperature of the magma, independent of mass flow rate and other parameters. The other model is more detatiled and the fractured heat exchange region is modelled as a cylindrical porous layer through which fluid flows vertically. The net power and the performance aspects for the systems are investigated in terms of various parameters, including the characteristics of the downhole heat transfer.

  6. Energy considerations for a SSF-based softwood ethanol plant.

    PubMed

    Wingren, Anders; Galbe, Mats; Zacchi, Guido

    2008-05-01

    Ethanol can be produced from softwood by steam pretreatment followed by simultaneous saccharification and fermentation (SSF). However, the final ethanol concentration in the SSF step is usually rather low (around 4 wt%) and as a result the energy demand in the downstream processing will be high. In an effort to reduce the energy consumption various alternatives for the downstream processing part of the process were evaluated from a technical-economic standpoint. With experimental data as a basis, the whole process was modelled using the commercial flowsheeting program Aspen Plus. The results were used in the subsequent economic evaluation, which was performed using Icarus process evaluator. A base case configuration, consisting of three thermally coupled distillation columns and multiple-effect evaporation was established. For a feed containing 3.5% ethanol (w/w) to the distillation step, the overall process demand for steam was estimated to be 19.0 MJ/L ethanol and the ethanol production cost 4.14 SEK/L (0.591 USD/L). Different alternatives were considered, such as integration of a stripper with the evaporation step, increasing the number of evaporation effects and the application of mechanical vapour recompression to the evaporation step. Replacement of evaporation with anaerobic digestion was also considered. Among these alternatives, evaporation using mechanical vapour recompression and the anaerobic digester alternative both resulted in significantly lower energy demand than the base case, 10.2 and 9.8 MJ/L, respectively, and productions costs of 3.82 (0.546 USD/L) and 3.84 SEK/L (0.549 USD/L).

  7. [Energy production of plants in grass, Dicranopteris dichotoma and Rhodomyrtus tomentosa communities in Hong Kong].

    PubMed

    Guan, D

    2001-06-01

    With harvest method and caloric value analysis, this paper studied the caloric values, standing energy, net fixed energy and net standing energy increment of three plant communities i.e., grass, Dicranopteris dichotoma and Rhodomyrtus tomentosa, in Hong Kong. The results showed that the caloric value was higher in D. dichotoma community and lower in grass community. The standing energy of plants in grass, D. dichotoma and R. tomentosa community was 18,638, 38,436 and 65,632 kJ.m-2; net fixed energy was 13,286, 20,354 and 18,784 kJ.m-2.yr-1; and net standing energy increment was 3437, 9626 and 6695 kJ.m-2.yr-1, respectively. Compared with southern subtropical evergreen broad-leaved forest, the standing energy, net fixed energy and net standing energy increment were lower in grass, D. dichotoma and R. tomentosa communities, which resulted from deforestation and other human disturbance. This indicated that vegetation conversion due to human disturbance would reduce the utilization coefficient of solar energy. Net fixed energy was also found to be reduced significantly with increasing intensity of human disturbance.

  8. Evaluation of the environmental sustainability of different waste-to-energy plant configurations.

    PubMed

    Lombardi, Lidia; Carnevale, Ennio A

    2017-07-17

    Residual municipal solid waste (MSW) has an average lower heating value higher than 10GJ/Mg in the EU, and can be recovered in modern Waste-to-Energy (WtE) plants, producing combined heat and power (CHP) and reaching high levels of energy recovery. CHP is pinpointed as the best technique for energy recovery from waste. However, in some cases, heat recovery is not technically feasible - due to the absence of a thermal user (industrial plant or district heating) in the vicinity of the WtE plant - and power production remains the sole possibility. In these cases, there are some challenges involved in increasing the energy performance as much as possible. High energy recovery efficiency values are very important for the environmental sustainability of WtE plants. The more electricity and heat is produced, the better the saving of natural resources that can be achieved. Within this frame, the aim of this work is to carry out an environmental assessment, through Life Cycle Assessment, of an MSW WtE plant, considering different sizes and operated in different ways, from power production only to full cogeneration. The main assumption is that the electric conversion efficiency increases as the plant size increases, introducing technical improvements thanks to the economies of scale. Impact assessment results were calculated using ReCiPe 2008 methods. The climate change indicator is positive when the WtE plant is operated in power production only mode, with values decreasing for the increasing size. Values for the climate change are negative when cogeneration is applied, requiring increasing cogeneration ratios for decreasing size. Similarly, the fossil fuel depletion indicator benefits from increase of both the plant size and the cogeneration rate, but it is always negative, meaning that the residual MSW burning with energy recovery always provides a saving of fossil primary energy. Other indicator values are in general negative and are also beneficially affected by

  9. Comparison between cultivated and total bacterial communities associated with Cucurbita pepo using cultivation-dependent techniques and 454 pyrosequencing.

    PubMed

    Eevers, N; Beckers, B; Op de Beeck, M; White, J C; Vangronsveld, J; Weyens, N

    2016-02-01

    Endophytic bacteria often have beneficial effects on their host plants that can be exploited for bioremediation applications but, according to the literature, only 0.001-1% of all endophytic microbes should be cultivable. This study compared the cultivated endophytic communities of the roots and shoots of Cucurbita pepo with the total endophytic communities as determined by cultivation-dependent techniques and 454 pyrosequencing. The ten most abundant taxa of the total communities aligned well with the cultivated taxa; however, the abundance of these taxa in the two communities differed greatly. Enterobacter showed very low presence in the total communities, whereas they were dominantly present in the cultivated communities. Although Rhizobium dominated in total root and shoot communities, it was poorly cultivable and even then only in growth media containing plant extract. Since endophytes likely contribute to plant-growth promotion, cultivated bacterial strains were tested for their plant-growth promoting capabilities, and the results were correlated with their abundance in the total community. Bacillus and Pseudomonas showed promising results when considering cultivability, abundance in the total community and plant-growth promoting capability. This study demonstrated that, although a limited number of bacterial genera were cultivable, current cultivation-dependent techniques may be sufficient for further isolation and inoculation experiments that aim to improve phytoremediation efficiency.

  10. Development of energy plants and their potential to withstand various extreme environments.

    PubMed

    Saibi, Walid; Brini, Faiçal; Hanin, Moez; Masmoudi, Khaled

    2013-04-01

    Biomass utilization is increasingly considered as a practical way for sustainable energy supply and long-term environment care around the world. In concerns with food security, starch or sugar-based bioethanol and edible-oilderived biodiesel are severely restricted for large scale production. Alternatively, conversion of lignocellulosic residues from food crops could be considered, but due to its recalcitrance, the current biomass process is unacceptably expensive. In this context, genetic breeding of energy crops appears as a promising solution. To fulfil the global world need as both food and biofuel sources, energy crops are expected to be produced with higher yields and especially in marginal lands. This review focus on recent progress and patents dealing with energy plants and the challenges associated with bioenergy development. We also discuss the potential use of molecular approaches including genome sequencing, molecular markers, and genetic transformation for improving specific traits or generating new cultivars of energy plants.

  11. Response of Newly Established Slash Pine to Cultivation and Fertilization

    Treesearch

    A.E. Tiarks; J.D. Haywood

    1981-01-01

    Response of newly established slash pine to fertilization is increased if herbaceous plants are controlled. To find the amount of cultivation required in Louisiana, fertilized and unfertilized rows of planted pines were hand-hoed in a wedge-shaped pattern. By using this technique, the amount of cultivation was varied from none to complete. Slash pine growth was...

  12. Potential assessment of establishing a renewable energy plant in a rural agricultural area.

    PubMed

    Su, Ming-Chien; Kao, Nien-Hsin; Huang, Wen-Jar

    2012-06-01

    An evaluation of the green energy potential generated from biogas and solar power, using agricultural manure waste and a photovoltaic (PV) system, was conducted in a large geographical area of a rural county with low population density and low pollution. The studied area, Shoufeng Township in Hualien County, is located in eastern Taiwan, where a large amount of manure waste is generated from pig farms that are scattered throughout the county. The objective of the study is to assess the possibility of establishing an integrated manure waste treatment plant by using the generated biogas incorporated with the PV system to produce renewable energy and then feed it back to the incorporated farms. A filed investigation, geographic information system (GIS) application, empirical equations development, and RETScreen modeling were conducted in the study. The results indicate that Shoufeng Township has the highest priority in setting up an integrated treatment and renewable energy plant by using GIS mapping within a 10-km radius of the transportation range. Two scenarios were plotted in assessing the renewable energy plant and the estimated electricity generation, plus the greenhouse gas (GHG) reduction was evaluated. Under the current governmental green energy scheme and from a long-term perspective, the assessment shows great potential in establishing the plant, especially in reducing environmental pollution problems, waste treatment, and developing suitable renewable energy.

  13. Combining Wind and Wave Energy in Offshore Power Plants to Reduce Variability in Electrical Generation

    NASA Astrophysics Data System (ADS)

    Stoutenburg, E.

    2008-12-01

    While wave energy is primarily a wind driven phenomenon, at a particular location and time the energy levels in the wind and waves may be different. The correlation between wind and wave energy is sufficiently weak that combining the two energy sources in a collocated offshore power plant reduces the variability in electrical generation. A preliminary examination of offshore locations along the west coast of the U.S. using buoy data shows two advantages of combining the two energy sources: 1) the number of hours of no power generation in a given year is significantly decreased, which reduces the intermittency of the power plant; 2) a decrease in the variability of the generation curve, which reduces the drops and surges of voltage at the grid interconnection point. The power generation curves for the hypothetical combined wind and wave offshore power plants use atmospheric conditions, wind speed, and wave statistics collected by NOAA buoys, and a common commercial offshore wind turbine model paired with a wave energy convertor in early commercial development in a reasonable array configuration. The hypothetical offshore power plants are located in areas with both a quality wind and wave resource near existing or feasible transmission corridors. Multiple locations along the west coast of the U.S. are used to demonstrate this reduction in power variability and intermittency.

  14. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.

    PubMed

    McGinn, Patrick J; Dickinson, Kathryn E; Bhatti, Shabana; Frigon, Jean-Claude; Guiot, Serge R; O'Leary, Stephen J B

    2011-09-01

    There is currently a renewed interest in developing microalgae as a source of renewable energy and fuel. Microalgae hold great potential as a source of biomass for the production of energy and fungible liquid transportation fuels. However, the technologies required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products are underdeveloped. Microalgae offer several advantages over traditional 'first-generation' biofuels crops like corn: these include superior biomass productivity, the ability to grow on poor-quality land unsuitable for agriculture, and the potential for sustainable growth by extracting macro- and micronutrients from wastewater and industrial flue-stack emissions. Integrating microalgal cultivation with municipal wastewater treatment and industrial CO(2) emissions from coal-fired power plants is a potential strategy to produce large quantities of biomass, and represents an opportunity to develop, test, and optimize the necessary technologies to make microalgal biofuels more cost-effective and efficient. However, many constraints on the eventual deployment of this technology must be taken into consideration and mitigating strategies developed before large scale microalgal cultivation can become a reality. As a strategy for CO(2) biomitigation from industrial point source emitters, microalgal cultivation can be limited by the availability of land, light, and other nutrients like N and P. Effective removal of N and P from municipal wastewater is limited by the processing capacity of available microalgal cultivation systems. Strategies to mitigate against the constraints are discussed.

  15. [Energy Consumption Comparison and Energy Saving Approaches for Different Wastewater Treatment Processes in a Large-scale Reclaimed Water Plant].

    PubMed

    Yang, Min; Li, Ya-ming; Wei, Yuan-song; Lü, Jian; Yu, Da-wei; Liu, Ji-bao; Fan, Yao-bo

    2015-06-01

    Energy consumption is the main performance indicator of reclaimed water plant (RWP) operation. Methods of specific energy consumption analysis, unit energy consumption analysis and redundancy analysis were applied to investigate the composition and spatio-temporal distribution of energy consumption in Qinghe RWP with inverted A2/O, A2/O and A2/O-MBR processes. And the A2/ O-MBR process was mainly analyzed to identify the main nodes and causes for high energy consumption, approaches for energy saving were explored, and the energy consumption before and after upgrading for energy saving was compared. The results showed that aeration was the key factor affecting energy consumption in both conventional and A2/O-MBR processes, accounting for 42.97% and 50.65% of total energy consumption, respectively. A pulsating aeration allowed an increasing membrane flux and remarkably reduced the energy consumption of the A2/O-MBR process while still meeting the effluent standard, e.g., the membrane flux was increased by 20%, and the energy consumptions per kiloton wastewater and kilogram COD(removed) were decreased by 42.39% to 0.53 kW-h-kg-3 and by 54.74% to 1.29 kW x h x kg(-1), respectively. The decrease of backflow ratio in the A2/O-MBR process within a certain range would not deteriorate the effluent quality due to its insignificant correlation with the effluent quality, and therefore may be considered as one of the ways for further energy saving.

  16. Limited energy studies, Holston Army Ammunition Plant, Kingport, Tennessee. Final report

    SciTech Connect

    1992-08-01

    This study was conducted and this report prepared under Contract No. DACA 01-91-D-0032, Delivery Orders 2 and 3, issued by the U.S. Army Engineer District, Mobile on 9 September 1991. The purpose of this study was to determine the economic feasibility of the following specific energy conservation opportunities (ECOs) associated with the central heating plants at the Holston Army Ammunition Plant (HAAP).

  17. Energy-efficient air pollution controls for fossil-fueled plants: Technology assessment

    SciTech Connect

    Sayer, J.H.

    1995-06-01

    The 1990 Clean Air Act Amendments require most fossil-fuel fired power plants to reduce sulfur dioxide, nitrogen oxides, and particulate emissions. While emission-control equipment is available to help most of New York State`s 91 utility units in 31 power plants comply with the new regulations, technologies currently available consume energy, increase carbon dioxide emissions, reduce operating efficiency, and may produce large amounts of solid and/or semisolid byproducts that use additional energy for processing and disposal. This report discribes several pollution-control technologies that are more energy efficient compared to traditional technologies for controlling sulfur dioxide, nitrogen oxide, and particulates, that may have application in New York State. These technologies are either in commercial use, under development, or in the demonstration phase; This report also presents operating characteristics for these technologies and discusses solutions to dispose of pollution-control system byproducts. Estimated energy consumption for emission-control systems relative to a plant`s gross generating capacity is 3 to 5 for reducing up to 90% sulfur dioxide emissions from coal-fired plants. 0.5 to 2.5% for reducing nitrogen oxide emissions by up to 80% from all fossil-fuel fired plants; and 0.5 to 1.5 % for controlling particulate emissions from oil- and coal-fired plants. While fuel switching and/or cofiring with natural gas are options to reduce emissions, these techniques are not considered in this report; the discussion is limited to fossil-fueled steam-generating plants.

  18. Ab Initio Site Occupancy and Far-Red Emission of Mn(4+) in Cubic-Phase La(MgTi)1/2O3 for Plant Cultivation.

    PubMed

    Zhou, Ziwei; Zheng, Jiming; Shi, Rui; Zhang, Niumiao; Chen, Jiayu; Zhang, Ruoyu; Suo, Hao; Goldys, Ewa M; Guo, Chongfeng

    2017-02-22

    Mn(4+)-activated oxide phosphors La(MgTi)1/2O3 (LMT) with far-red emitting were prepared via a sol-gel route. The structures of samples were determined by X-ray diffraction (XRD) and Reitveld refinement. The occupied sites of Mn(4+) (d(3) electronic configuration) in host La(MgTi)1/2O3 were confirmed by ab initio calculations in which the system has the lower formation energy, stable lattice structure, and strong bonding state as Mn(4+) enters into Ti site. The luminescent properties of Mn(4+)-doped samples were investigated; the samples emit far-red light centered at 708 nm with ultraviolet light (345 nm) or blue light (487 nm) excitation. According to the photoluminescence (PL) and excitation (PLE) spectra, the crystal field strength of the Mn(4+)-occupied environment was estimated. The thermal stability of phosphor was also evaluated through temperature-dependent PL intensity in a heating and cooling cycle process. The emission band is well-matched with the absorption band of phytochrome PFR under the excitation of light in near-ultraviolet to blue, which suggests that the LMT: Mn(4+) phosphor has great potential applications in light-emitting diodes (LEDs) for modulating plant growth.

  19. Model of Yield Response of Corn to Plant Population and Absorption of Solar Energy

    PubMed Central

    Overman, Allen R.; Scholtz, Richard V.

    2011-01-01

    Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha−1 and g plant−1) on plant population (plants m−2). Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L.) grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Ym (Mg ha−1) for maximum yield at high plant population and c (m2 plant−1) for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, xc = 1/c (plants m−2). The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of xc were very similar for the three field studies with the same crop species. PMID:21297960

  20. Compressed Air System Optimization Project Saves Energy and Improves Production at a Citation Forging Plant

    SciTech Connect

    2003-05-01

    In the 1990s, a subsidiary of the Citation Corporation, Interstate Forging, implemented a compressed air system improvement project at its Milwaukee, Wisconsin, forging plant. This improvement enabled the plant to maintain an adequate and stable pressure level using fewer compressors, which led to improved product quality and lower production downtime. The project also yielded annual energy savings of 820,000 kWh and $45,000. With a total project cost of $67,000, the plant achieved a simple payback of just 1.5 years.

  1. Energy optimization in chiller plants: A novel formulation and solution using a hybrid optimization technique

    NASA Astrophysics Data System (ADS)

    Aravelli, Aparna; Rao, Singiresu S.

    2013-10-01

    The central chilled water plant is one of the major power-consuming units of a building. Even small reductions in power consumption could achieve significant energy conservation. Hence, optimization of a chiller plant is necessary for energy savings without compromising the comfort level of the end user. The present work deals with identifying the system parameters and developing a novel formulation for a chiller plant and its optimization using a hybrid optimization technique. The optimization model formulation is based on finding an optimal mix of equipment and operating parameters in the chiller plant for minimum electrical power consumption. It takes into account the performance characteristics of the chillers, cooling towers and pumps, and optimizes the energy consumed based on the required loads and the ambient atmospheric conditions. Sequential quadratic programming combined with the modified branch and bound method was used to develop the hybrid optimization algorithm. A case study is presented for a typical chiller plant. The results indicate that the present optimization method could be a potential method of making energy savings.

  2. Thermodynamic analysis of osmotic energy recovery at a reverse osmosis desalination plant.

    PubMed

    Feinberg, Benjamin J; Ramon, Guy Z; Hoek, Eric M V

    2013-03-19

    Recent years have seen a substantial reduction of the specific energy consumption (SEC) in seawater reverse osmosis (RO) desalination due to improvements made in hydraulic energy recovery (HER) as well as RO membranes and related process technologies. Theoretically, significant potential for further reduction in energy consumption may lie in harvesting the high chemical potential contained in RO concentrate using salinity gradient power technologies. Herein, "osmotic energy recovery" (OER) is evaluated in a seawater RO plant that includes state-of-the-art RO membranes, plant designs, operating conditions, and HER technology. Here we assume the use of treated wastewater effluent as the OER dilute feed, which may not be available in suitable quality or quantity to allow operation of the coupled process. A two-stage OER configuration could reduce the SEC of seawater RO plants to well below the theoretical minimum work of separation for state-of-the-art RO-HER configurations with a breakeven OER CAPEX equivalent to 42% of typical RO-HER plant cost suggesting significant cost savings may also be realized. At present, there is no commercially viable OER technology; hence, the feasibility of using OER at seawater RO plants remains speculative, however attractive.

  3. Assessment of energy potential from wetland plants along the minor channel network on an agricultural floodplain.

    PubMed

    Pappalardo, Salvatore Eugenio; Prosdocimi, Massimo; Tarolli, Paolo; Borin, Maurizio

    2015-02-01

    Renewable energy sources such as biomasses can play a pivotal role to ensure security of energy supply and reduce greenhouse gases through the substitution of fossil fuels. At present, bioenergy is mainly derived from cultivated crops that mirror the environmental impacts from the intensification of agricultural systems for food production. Instead, biomass from perennial herbaceous species growing in wetland ecosystems and marginal lands has recently aroused interest as bioenergy for electricity and heat, methane and 2nd-generation bioethanol. The aim of this paper is to assess, at local scale, the energy potential of wetland vegetation growing along the minor hydrographic network of a reclamation area in Northeast Italy, by performing energy scenarios for combustion, methane and 2nd-generation ethanol. The research is based on a cross-methodology that combines survey analyses in the field with a GIS-based approach: the former consists of direct measurements and biomass sampling, the latter of spatial analyses and scaling up simulations at the minor channel network level. Results highlight that biomass from riparian zones could represent a significant source of bioenergy for combustion transformation, turning the disposal problem to cut and store in situ wetland vegetation into an opportunity to produce sustainable renewable energy at local scale.

  4. Plant Wide Assessment of Energy Usage Utilizing SitEModelling as a Tool for Optimizing Energy Consumption

    SciTech Connect

    Ralf Janowsky, Ph.D.; Tracey Mole, Ph.D.

    2007-12-31

    The Evonik Degussa Corporation is the global market leader in the specialty chemicals industry. Innovative products and system solutions make an indispensable contribution to our customers' success. We refer to this as "creating essentials". In fiscal 2004, Degussa's 45,000 employees worldwide generated sales of 11.2 billion euros and operating profits (EBIT) of 965 million euros. Evonik Degussa Corporation has performed a plant wide energy usage assessment at the Mapleton, Illinois facility, which consumed 1,182,330 MMBTU in 2003. The purpose of this study was to identify opportunities for improvement regarding the plant’s utility requirements specific to their operation. The production is based mainly on natural gas usage for steam, process heating and hydrogen production. The current high price for natural gas in the US is not very competitive compared to other countries. Therefore, all efforts must be taken to minimize the utility consumption in order to maximize market position and minimize fixed cost increases due to the rising costs of energy. The main objective of this plant wide assessment was to use a methodology called Site Energy Modelling (SitE Modelling) to identify areas of potential improvement for energy savings, either in implementing a single process change or in changing the way different processes interact with each other. The overall goal was to achieve energy savings of more than 10% compared to the 2003 energy figures of the Mapleton site. The final savings breakdown is provided below: - 4.1% savings for steam generation and delivery These savings were accomplished through better control schemes, more constant and optimized loading of the boilers and increased boiler efficiency through an advanced control schemes. - 1.6% savings for plant chemical processing These saving were accomplished through optimized processing heating efficiency and batch recipes, as well as an optimized production schedule to help equalize the boiler load (e

  5. Energy and greenhouse gas balances for a solid waste incineration plant: a case study.

    PubMed

    Brinck, Kim; Poulsen, Tjalfe G; Skov, Henrik

    2011-10-01

    Energy and greenhouse gas balances for a waste incineration plant (Reno-Nord I/S, Aalborg, Denmark) as a function of time over a 45-year period beginning 1960 are presented. The quantity of energy recovered from the waste increased over time due to increasing waste production, increasing lower heating value of the waste and implementation of improved energy recovery technology at the incineration plant. Greenhouse gas (GHG) balances indicated progressively increasing GHG savings during the time period investigated as a result of the increasing energy production. The GHG balances show that the Reno-Nord incineration plant has changed from a net annual GHG emission of 30 kg CO(2)-eq person(-1) year(-1) to a net annual GHG saving of 770 kg CO(2)-eq person(-1) year(-1) which is equivalent to approximately 8% of the annual emission of GHG from an average Danish person (including emissions from industry and transport). The CO(2) emissions associated with combustion of the fossil carbon contained in the waste accounted for about two-thirds of the GHG turnover when no energy recovery is applied but its contribution reduces to between 10 and 15% when energy recovery is implemented. The reason being that energy recovery is associated with a large CO(2) saving (negative emission).

  6. Potential and limitations of Burgundy truffle cultivation.

    PubMed

    Stobbe, Ulrich; Egli, Simon; Tegel, Willy; Peter, Martina; Sproll, Ludger; Büntgen, Ulf

    2013-06-01

    Burgundy truffles (Tuber aestivum syn. Tuber uncinatum) are the highly prized fruit bodies of subterranean fungi always occurring in ectomycorrhizal symbiosis with host plants. Successful cultivation can be achieved through artificial mycorrhization and outplanting of mostly oaks and hazel on suitable terrain. Here, we review ecological requirements, the influence of environmental factors, and the importance of molecular techniques for a successful cultivation of T. aestivum across Europe. The historical background and current knowledge of T. aestivum cultivation are discussed in light of its socioeconomic relevance.

  7. Mass and energy balances of sludge processing in reference and upgraded wastewater treatment plants.

    PubMed

    Mininni, G; Laera, G; Bertanza, G; Canato, M; Sbrilli, A

    2015-05-01

    This paper describes the preliminary assessment of a platform of innovative upgrading solutions aimed at improving sludge management and resource recovery in wastewater treatment plants. The effectiveness of the upgrading solutions and the impacts of their integration in model reference plants have been evaluated by means of mass and energy balances on the whole treatment plant. Attention has been also paid to the fate of nitrogen and phosphorus in sludge processing and to their recycle back to the water line. Most of the upgrading options resulted in reduced production of dewatered sludge, which decreased from 45 to 56 g SS/(PE × day) in reference plants to 14-49 g SS/(PE × day) in the upgraded ones, with reduction up to 79% when wet oxidation was applied to the whole sludge production. The innovative upgrades generally entail an increased demand of electric energy from the grid, but energy recovery from biogas allowed to minimize the net energy consumption below 10 kWh/(PE × year) in the two most efficient solutions. In all other cases the net energy consumption was in the range of -11% and +28% of the reference scenarios.

  8. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions.

    PubMed

    Markou, Giorgos; Nerantzis, Elias

    2013-12-01

    Microalgal biomass as feedstock for biofuel production is an attracting alternative to terrestrial plant utilization for biofuels production. However, today the microalgal cultivation systems for energy production purposes seem not yet to be economically feasible. Microalgae, though cultivated under stress conditions, such as nutrient starvation, high salinity, high temperature etc. accumulate considerable amounts (up to 60-65% of dry weight) of lipids or carbohydrates along with several secondary metabolites. Especially some of the latter are valuable compounds with an enormous range of industrial applications. The simultaneous production of lipids or carbohydrates for biofuel production and of secondary metabolites in a biorefinery concept might allow the microalgal production to be economically feasible. This paper aims to provide a review on the available literature about the cultivation of microalgae for the accumulation of high-value compounds along with lipids or carbohydrates focusing on stress cultivation conditions.

  9. Z-inertial fusion energy: power plant final report FY 2006.

    SciTech Connect

    Anderson, Mark; Kulcinski, Gerald; Zhao, Haihua; Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne; McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth; Smith, James Dean; Ying, Alice; Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A.; Bonazza, Riccardo; Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse; Peterson, Per F.; Marriott, Ed; Oakley, Jason

    2006-10-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

  10. Chemical Safety Management Program for Lockheed Martin Energy Systems operations at the Y-12 Plant

    SciTech Connect

    C.W. McMahon

    2000-03-24

    Operated by Lockheed Martin Energy Systems (Energy Systems), the Department of Energy (DOE) Oak Ridge Y-12 Plant is a manufacturing facility that plays an integral role in the DOE nuclear weapons complex. Fulfilling the national security mission at the Y-12 Plant, continuing to be the cornerstone of uranium and lithium technologies for DOE, and providing customers with solutions for challenging manufacturing needs requires usage of a variety of chemicals and chemical processes. Performing this work safely while protecting workers, the public, and the environment is their commitment. The purpose of this document is to provide a description of the essential components of chemical safety, the integration of these components into the Y-12 Integrated Safety Management System (ISMS), and the functional integration of chemical safety issues across Y-12 organizations and programs managed by Energy Systems.

  11. Energy Conservation Investment Program (ECIP), FY93 Limited Energy Study, Milan Army Ammunition Plant, Milan, Tennessee.

    DTIC Science & Technology

    1994-11-11

    alternative Energy Conservation Opportunities (ECO’s). To develop the field data into various alternative ECO concepts or models, we utilized an ’Excel...ECO’s were then analyzed for suitability for the Energy Conservation lnvestment Program (ECIP) using the govemmenrs software package called Life Cycle Cost in Design (LCCID).

  12. Austin Energy: Pumping System Improvement Project Saves Energy and Improves Performance at a Power Plant

    SciTech Connect

    2010-06-25

    This two-page performance spotlight describes how, in 2004, Austin Energy (the electric utility for the city of Austin, Texas) began saving about $1.2 million in energy and maintenance costs annually as a direct result of a pumping system efficiency proj

  13. Austin Energy: Pumping System Improvement Project Saves Energy and Improves Performance at a Power Plant

    SciTech Connect

    2010-06-25

    This two-page performance spotlight describes how, in 2004, Austin Energy (the electric utility for the city of Austin, Texas) began saving about $1.2 million in energy and maintenance costs annually as a direct result of a pumping system efficiency project.

  14. Preliminary identification and coat protein gene phylogenetic relationships of begomoviruses associated with native flora and cultivated plants from the Yucatan Peninsula of Mexico.

    PubMed

    Hernández-Zepeda, Cecilia; Idris, Ali M; Carnevali, Germán; Brown, Judith K; Moreno-Valenzuela, Oscar A

    2007-12-01

    A number of native and cultivated eudicots in the Yucatan Peninsula of Mexico (YPM) exhibit symptoms associated with virus infection. Symptomatic leaves were collected and assessed for begomoviral detection using polymerase chain reaction (PCR), and universal primers that amplify a fragment of the coat protein gene (core Cp). Begomovirus were detected in nine native and seven cultivated species, representing seven eudicot families. DNA extracts from the 16 hosts were used for PCR amplification and sequencing of a fragment containing the coat protein (Cp) gene. The complete Cp sequence was used to establish provisional species identification. Results indicated that 13 distinct begomovirus species were represented. Among these, five potentially new begomovirus species were identified, for which we propose the names Anoda golden mosaic virus (AnGMV), Boerhavia yellow spot virus (BoYSV), Papaya golden mosaic virus (PaGMV), Desmodium leaf distortion virus (DeLDV), and Hibiscus variegation virus (HiVV). Five previously described begomoviral species were provisionally identified for the first time in the YPM; these include Euphorbia mosaic virus (EuMV), Melon chlorotic leaf curl virus (MCLCuV), Okra yellow mosaic Mexico virus (OkYMMV), Sida golden mosaic virus (SiGMV), and Tobacco apical stunt virus (TbASV). Additionally, viruses previously reported from this region, Bean golden yellow mosaic virus (BGYMV), Pepper golden mosaic virus (PepGMV), and Tomato mottle virus (ToMoV) were provisionally identified in cultivated hosts. Phylogenetic analysis provisionally placed all isolates from the YPM in a Western Hemisphere begomovirus clade.

  15. Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure

    PubMed Central

    Fernández, Victoria; Khayet, Mohamed

    2015-01-01

    Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study. PMID:26217362

  16. Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure.

    PubMed

    Fernández, Victoria; Khayet, Mohamed

    2015-01-01

    Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study.

  17. Energy conservation study on Smith Frozen Foods processing plant, Weston, Oregon

    SciTech Connect

    Not Available

    1985-01-02

    A comprehensive energy study was performed at Smith Frozen Foods in Weston, Oregon, in the fall of 1984. The plant processes corn, peas, lima beans and carrots. The products are inspected, prepared and graded before being sent through freeze tunnels. The frozen products are dumped into tote bins which are transported into cold storage warehouses. Energy conservation measures were calculated using a modified return on investment analysis called a return on capital (ROC) analysis and current rate schedules.

  18. [Pharmacognostical studies on imported and cultivated Citrullus colocynthis].

    PubMed

    Man'erhaba, Hairula; He, Jiang; Yang, Wei-Jun; Dilinu'er; Chen, Yan

    2011-03-01

    In order to use Citrullus colocynthis safety and correctly,The pharmacognosy of imported and cultivated Citrullus colocynthis was systematically studied. The morphological characters, microscopical identification, and thin layer Chromatograpy (TLC) were studied. The characters of import and cultivated Citrullus colocynthis were approximately identical, but there were still some differences between them, such as: the fruit size of cultivated Citrullus colocynthis was largish, granulose were more, trachea were thicker, collenchyma were longer, the colour of spots in TCL were more clear. There were seldon difference between import and cultivated Citrullus colocynthis, and cultivated Citrullus colocynthis could take the place of import's if planted on a large scale.

  19. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  20. 3M: Hutchinson Plant Focuses on Heat Recovery and Cogeneration during Plan-Wide Energy-Efficiency Assessment

    SciTech Connect

    2003-06-01

    3M performed a plant-wide energy efficiency assessment at its Hutchinson, Minnesota, plant to identify energy- and cost-saving opportunities. Assessment staff developed four separate implementation packages that represented various combinations of energy-efficiency projects involving chiller consolidation, air compressor cooling improvements, a steam turbine used for cogeneration, and a heat recovery boiler for two of the plant's thermal oxidizers. Staff estimated that the plant could save 6 million kWh/yr in electricity and more than 200,000 MMBtu/yr in natural gas and fuel oil, and avoid energy costs of more than $1 million during the first year.

  1. Agent-Based Modleing of Power Plants Placement to Evaluate the Clean Energy Standard Goal

    SciTech Connect

    Omitaomu, Olufemi A

    2014-01-01

    There is a political push for utilities to supply a specified share of their electricity sales from clean energy resources under the clean energy standard (CES). The goal is to achieve 80% clean energy by 2035. However, there are uncertainties about the ability of the utility industry to ramp up quickly even with the incentives that will be provided. Water availability from the streams is one of the major factors. The contiguous United States is divided into eighteen water regions, and multiple states share water from a single water region. Consequently, water usage decisions made in one state (located upstream of a water region that crosses multiple states) will greatly impact what is available downstream in another state. In this paper, an agent-based modeling approach is proposed to evaluate the clean energy standard goal for water-dependent energy resources. Specifically, using a water region rather than a state boundary as a bounding envelope for the modeling and starting at the headwaters, virtual power plants are placed based on the conditions that there is: (i) suitable land to site a particular power plant, (ii) enough water that meet regulatory guidelines within 20 miles of the suitable land, and (iii) a 20-mile buffer zone from an existing or a virtual power plant. The results obtained are discussed in the context of the proposed clean energy standard goal for states that overlap with one water region.

  2. A Review on the Development of Gravitational Water Vortex Power Plant as Alternative Renewable Energy Resources

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Tan, J. H.; Fadzlita, M. T.; Khairul Muzammil, A. R. Wan

    2017-07-01

    Gravitational water vortex power plant is a green technology that generates electricity from alternative or renewable energy source. In the vortex power plant, water is introduced into a circular basin tangentially that creates a free vortex and energy is extracted from the free vortex by using a turbine. The main advantages of this type of power plant is the generation of electricity from ultra-low hydraulic pressure and it is also environmental friendly. Since the hydraulic head requirement is as low as 1m, this type of power plant can be installed at a river or a stream to generate electricity for few houses. It is a new and not well-developed technology to harvest electricity from low pressure water energy sources. There are limited literatures available on the design, fabrication and physical geometry of the vortex turbine and generator. Past researches focus on the optimization of turbine design, inlets, outlets and basin geometry. However, there are still insufficient literatures available for the technology to proceed beyond prototyping stage. The maximum efficiency obtained by the researchers are approximately 30% while the commercial companies claimed about 50% of efficiency with 500W to 20kW of power generated. Hence, the aim of this paper is to determine the gap in the vortex power plant technology development through past works and a set of research recommendations will be developed as efforts to accelerate the development of GWVPP.

  3. Duke Energy Corp. to Reduce Emissions from Power Plants in North Carolina, Fund Environmental Projects

    EPA Pesticide Factsheets

    WASHINGTON -- The U.S. Environmental Protection Agency (EPA) and the U.S. Department of Justice (DOJ) today announced a settlement with Duke Energy Corporation (Duke) to resolve Clean Air Act violations at five coal-fired power plants across North C

  4. EPA Announces 2015 ENERGY STAR Certified Manufacturing Plants, West Texas facility among those recognized

    EPA Pesticide Factsheets

    DALLAS - (Feb. 24, 2016) The U.S. Environmental Protection Agency (EPA) announced today that Buzzi Unicem cement facility in Maryneal, TX, about 60 miles west of Abilene, is among the 70 manufacturing plants across the nation that achieved ENERGY ST

  5. 76 FR 78702 - Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant, Units 1 and 2) Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR...

  6. Evaluation of Chiller Plant Energy Conservation Opportunities at Fort Hood, Texas.

    DTIC Science & Technology

    1997-06-01

    performance of major plants and associated distribution systems, and to identify relevant energy conservation opportunities ( ECOs ). Significant effort...vendors and manufacturers, and reviews of previous studies. Performance was documented with field measurements. Subsequent analyses of ECOs were...performed with simplified bin methods consistent with first-order conclusions and recommendations required from this work. Results for all ECOs were heavily

  7. Reactive Nitrogen Species in Mitochondria and Their Implications in Plant Energy Status and Hypoxic Stress Tolerance

    PubMed Central

    Gupta, Kapuganti Jagadis; Igamberdiev, Abir U.

    2016-01-01

    Hypoxic and anoxic conditions result in the energy crisis that leads to cell damage. Since mitochondria are the primary organelles for energy production, the support of these organelles in a functional state is an important task during oxygen deprivation. Plant mitochondria adapted the strategy to survive under hypoxia by keeping electron transport operative even without oxygen via the use of nitrite as a terminal electrons acceptor. The process of nitrite reduction to nitric oxide (NO) in the mitochondrial electron transport chain recycles NADH and leads to a limited rate of ATP production. The produced ATP alongside with the ATP generated by fermentation supports the processes of transcription and translation required for hypoxic survival and recovery of plants. Non-symbiotic hemoglobins (called phytoglobins in plants) scavenge NO and thus contribute to regeneration of NAD+ and nitrate required for the operation of anaerobic energy metabolism. This overall operation represents an important strategy of biochemical adaptation that results in the improvement of energy status and thereby in protection of plants in the conditions of hypoxic stress. PMID:27047533

  8. Relationship Between Liquor Yield, Plant Capacity Increases, and Energy Savings in Alumina Refining

    NASA Astrophysics Data System (ADS)

    Ter Weer, Peter-Hans

    2014-09-01

    The mechanisms of alumina trihydrate precipitation and controlling parameters, and the methods and technologies affecting liquor yield/productivity in alumina refining, have been described in several publications [e.g., Refs. Alamdari et al. ( Light Metals 1998, pp. 133-137, 1998), Moretto and Power ( Proc. 1990 Alumina Quality Workshop, Perth, Australia, pp. 154-165, 1990)]. However, the relationship between increasing liquor yield, on the one hand, and plant production capacity increases and related energy savings, on the other, has been under-emphasized. This article addresses this issue and provides estimates of plant production capacity increases and steam and power energy savings as a function of precipitation yield increases resulting from the implementation of plant adaptations. Conclusions are that increasing precipitation yield in an alumina refinery results overall in a significant improvement of project economics and interestingly improves a refinery's direct and indirect environmental performance, thus, addressing two of the three "pillars" of sustainable development (economic, environmental, and social).

  9. An irradiation density dependent energy relaxation in plant photosystem II antenna assembly.

    PubMed

    Tian, Wenming; Chen, Jun; Deng, Liezheng; Yao, Mingdong; Yang, Heping; Zheng, Yang; Cui, Rongrong; Sha, Guohe

    2015-02-01

    Plant photosystem II (PSII) is a multicomponent pigment-protein complex that harvests sunlight via pigments photoexcitation, and converts light energy into chemical energy. Against high light induced photodamage, excess light absorption of antenna pigments triggers the operation of photoprotection mechanism in plant PSII. Non-photochemical energy relaxation as a major photoprotection way is essentially correlated to the excess light absorption. Here we investigate the energy relaxation of plant PSII complexes with varying incident light density, by performing steady-state and transient chlorophyll fluorescence measurements of the grana membranes (called as BBY), functional moiety PSII reaction center and isolated light-harvesting complex LHCII under excess light irradiation. Based on the chlorophyll fluorescence decays of these samples, it is found that an irradiation density dependent energy relaxation occurs in the LHCII assemblies, especially in the antenna assembly of PSII supercomplexes in grana membrane, when irradiation increases to somewhat higher density levels. Correspondingly, the average chlorophyll fluorescence lifetime of the highly isolated BBY fragments gradually decreases from ~1680 to ~1360 ps with increasing the irradiation density from 6.1×10(9) to 5.5×10(10) photon cm(-2) pulse(-1). Analysis of the relation of fluorescence decay change to the aggregation extent of LHCIIs suggests that a dense arrangement of trimeric LHCIIs is likely the structural base for the occurrence of this irradiation density dependent energy relaxation. Once altering the irradiation density, this energy relaxation is quickly reversible, implying that it may play an important role in photoprotection of plant PSII. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Environmental effects of planting energy crops at larger scales on agricultural lands

    SciTech Connect

    Tolbert, V.R.; Downing, M.

    1995-09-01

    Increasing from research-scale to larger-scale plantings of herbaceous and short rotation woody crops on agricultural land in the United States has raised questions about the positive and negative environmental effects of farmland conversion. Research currently underway at experimental plot scales enables us examine runoff quality and quantity, erosion, and changes in soil characteristics associated with these energy crops compared to conventional row crops. A study of the fate of chemicals applied to the different crop types will enhance our knowledge of uptake, release, and off-site movement of nutrients and pesti