Science.gov

Sample records for energy plant cultivation

  1. High-power LEDs for plant cultivation

    NASA Astrophysics Data System (ADS)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  2. Cultivation of Pleurotus ostreatus on weed plants.

    PubMed

    Das, Nirmalendu; Mukherjee, Mina

    2007-10-01

    Oyster mushroom, Pleurotus ostreatus (Jacq.:Fr.) Kumm. ITCC 3308 (collected from Indian Type Culture Collection, IARI, New Delhi, India, 110012) was grown on dry weed plants, Leonotis sp, Sida acuta, Parthenium argentatum, Ageratum conyzoides, Cassia sophera, Tephrosia purpurea and Lantana camara. Leonotis sp. was the best substrate in fruit body production of P. ostreatus when it was mixed with rice straw (1:1, wet wt/wet wt) for mushroom cultivation. The fruiting time for P. ostreatus was also less on Leonotis sp. than on any other weed substrates tested in the present investigation. T. purpurea was the least suited weed for oyster mushroom cultivation. The main problem of oyster mushroom cultivation on weed substrates was found to be low yield in the second flush that could be overcome by blending weed plants with rice straw. The protein contents of the fruit bodies obtained from Cassia sophera, Parthenium argentatum and Leonotis sp. were not only better than rice straw but also from the rice straw supplemented weeds.

  3. Modelling of the Nutrient Medium for Plants Cultivation in Spaceflight

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.

    2016-07-01

    MODELLING OF THE NUTRIENT MEDIUM FOR PLANTS CULTIVATION IN SPACEFLIGHT Nechitajlo G.S.*, Rakhmetova A.A.**, Bogoslovskaja O.A.**, Ol'hovskay I.P.**, Glushchenko N.N.** *Emanuel Institute of Biochemical Physics of Russian Academy of Sciences (IBCP RAS) mail: spacemal@mail.ru **V.L. Talrose Institute for Energy Problems of Chemical Physics of Russian Academy of Science (INEPCP RAS) mail: nnglu@ mail.ru The valuable life and fruitful activity of cosmonauts and researchers in conditions of spaceflights and prolonged work at space stations are only possible with creating life area providing fresh air, natural food, comfortable psychological conditions, etc. The solution of that problem under space conditions seems impossible without use of high nano- and biotechnologies for plants growth. A priority should be given not only to choose species of growth plants in space, but also to improve conditions for their growth which includes optimal nourishing components for plants, preparation of nutrient mediums, illumination and temperature. We are deeply convinced that just manipulations with growing conditions for cultivated plants, but not genes changes, is a guarantee of success in the decision of this problem. For improving the method of plants growing on the artificial nutrient medium with balanced content of components, being necessary for growth and development of plants, we added essential metal elements: Fe, Zn, Cu - in an electroneutral state in the form of nanoparticles instead of sulfates or other easily dissolving salts. Nanoparticulated metals are known to have a number of advantages in comparison with salts: metals in an electroneutral form are characterized with the prolonged and multifunctional action, low toxicity per se and appearing to be much below the toxicity of the same metals in the ionic forms, accumulation as a reserve being used in biotic dozes, active distribution in bodies and organs of plants and stimulation of vital processes. A high reactivity

  4. Enhancement of efficiency in the use of light for cultivation of plants in controlled ecological systems

    NASA Technical Reports Server (NTRS)

    Mashinsky, A. L.; Oreshkin, V. I.; Nechitailo, G. S.

    1994-01-01

    The problems of plant cultivation with the use of artificial lighting are related to energetics and, initially, to the lack of effective sources for photosynthesis, secondly to the necessity to supply a system with a considerable power in the form of light energy and to remove transformed thermal energy, and finally to economic considerations. These problems are solved by three ways: by the choice of effective radiation sources, design approaches, and technological methods of cultivation. Here we shall consider the first two ways.

  5. [Review on application of plant growth retardants in medicinal plants cultivation].

    PubMed

    Zhai, Yu-Yao; Guo, Bao-Lin; Cheng, Ming

    2013-09-01

    Plant growth retardants are widely used in cultivation of medicinal plant, but there is still lack of scientific guidance. In order to guide the use of plant growth retardants in medicinal plant cultivation efficiently and reasonably, this paper reviewed the mechanism, function characteristic, plant and soil residue of plant growth retardants, such as chlorocholine chloride, mepiquat chloride, paclobutrazol, unicnazle and succinic acid, and summarized the application of plant growth retardants in medicinal plants cultivation in recent years, with focus on the effect of growth and yield of the officinal organs and secondary metabolites.

  6. Energy-water nexus for mass cultivation of algae.

    PubMed

    Murphy, Cynthia Folsom; Allen, David T

    2011-07-01

    Microalgae are currently considered a potential feedstock for the production of biofuels. This work addresses the energy needed to manage the water used in the mass cultivation of saline, eukaryotic algae grown in open pond systems. Estimates of both direct and upstream energy requirements for obtaining, containing, and circulating water within algae cultivation systems are developed. Potential productivities are calculated for each of the 48 states within the continental U.S. based on theoretical photosynthetic efficiencies, growing season, and total available land area. Energy output in the form of algal biodiesel and the total energy content of algal biomass are compared to energy inputs required for water management. The analysis indicates that, for current technologies, energy required for water management alone is approximately seven times greater than energy output in the form of biodiesel and more than double that contained within the entire algal biomass. While this analysis addresses only currently identified species grown in an open-pond system, the water management requirements of any algae system will be substantial; therefore, it is critical that an energy assessment of water management requirements be performed for any cultivation technology and algal type in order to fully understand the energy balance of algae-derived biofuels.

  7. Botanical geographical aspects of plants cultivated in Medea's garden of medical plants in Colchis.

    PubMed

    Gagnidze, R; Khelaia, N; Margalitadze, N; Batsatsashvili, K; Churadze, M

    2009-04-01

    The aim of the present work is to make a detailed investigation of the dissemination and dispersion of the plants which were cultivated in Medea's garden of medical plants in Colchis. It was found that the plants in the Medea's garden were highly heterogeneous from the point of plant geography. Plants from humid and arid Mediterranean basin, Near, Minor and East Asia zones were found in Medea's garden. Among the most important were the plants of floristic centers of Mediterranean basin. Study of the botanical geographical aspects of medical plants gave us opportunities to establish optimal time of dissemination of medical plants diasporas in Colchis; this process is associated with climate oscillations of Holocene and intensive migrations of peoples of Mediterranean.

  8. PERSPECTIVE: Cultivating Strategic Foresight for Energy and Environmental Security

    SciTech Connect

    Bray, David A.; Costigan, Sean; Daum, Keith; Lavoix, Helene; Malone, Elizabeth L.; Pallaris, Chris

    2009-10-01

    Disastrous social, economic, and political instability can result from limited energy resources or deteriorating environmental conditions. Historically, understanding and preparing for potential turbulent events posed significant challenges for governments, due in part to complex connections and dependencies associated with multiple, inter-related issues. Moving forward, we propose world governments can better mitigate and even avert energy and environmental disasters by cultivating a shared, diverse community of physical and social scientists, engineers, security analysts, and other professionals from related fields to share concerns, discuss ideas, and coalesce key concepts from the vast amount of data available about energy and environmental issues. Bringing relevant parties from multiple disciplines into a dynamic, diverse, and more transparent forum will produce a greater range of discussion, deliberation, and feasible solutions to help address uncertain, global energy and environmental concerns of both the present-day and our future.

  9. Human energy expenditure in lowland rice cultivation in Malaysia.

    PubMed

    Nawi, N M; Yahya, A; Chen, G; Bockari-Gevao, S M; Maraseni, T N

    2012-01-01

    A study was undertaken to evaluate the human energy consumption of various field operations involved in lowland rice cultivation in Malaysia. Based on recorded average heart rates, fertilizing was found to be the most strenuous operation, with an average heart rate of 138 beats min(-1). There were no significant differences in the average heart rates of the subjects among the individual tasks within the first plowing, second plowing, and harvesting operations, with the average heart rates for these three tasks being 116, 106, and 106 beats min(-1), respectively. The corresponding energy expenditures were 3.90, 3.43, and 3.35 kcal min(-1). Loading the seed into the blower tank and broadcasting the seed were the most critical tasks for the seed broadcasting operation, with average heart rates of 124 and 136 beats min(-1), respectively. The highest energy expenditure of 418.38 kcal ha(-1) was observed for seed broadcasting, and the lowest energy expenditure of 127.96 kcal ha(-1) was for second plowing. The total seasonal human energy expenditure for rice cultivation was estimated to be 5810.71 kcal ha(-1), 55.7% of which was spent on pesticide spraying. Although the sample size in this study was relatively small, the results indicated that human energy expenditure per unit area (kcal ha(-1)) was positively linked to the average heart rate of the subjects and negatively linked to the field capacity. Thus, mechanization of certain tasks could decrease worker physical effort and fatigue and increase production.

  10. UPTAKE AND PHYTOTRANSFORMATION OF ORGANOPHOSPHORUS PESTICIDES BY AXENICALLY CULTIVATED AQUATIC PLANTS

    EPA Science Inventory

    The uptake and phytotransformation of organophosphorus (OP) pesticides (malathion, demeton-S-methyl, and crufomate) was investigated in vitro using the axenically aquatic cultivated plants parrot feather (Myriophyllum aquaticum), duckweed (Spirodela oligorrhiza L.), and elodea (E...

  11. Production of marine plant biomass: Management, cultivation, and genetic modification of macrophytic algae

    NASA Astrophysics Data System (ADS)

    Vandermeer, J. P.

    1982-12-01

    Every second of every day, the Sun's fusion reactions convert thousands of tons of hydrogen into helium with the release of almost unimaginable amounts of energy. Through the photosynthetic activity of plants, both aquatic and terrestrial, a small fraction of this energy is trapped and stored as plant biomass. The oceans cover a greater fraction of the globe than do the land masses, making it appropriate to consider their contribution to the total biomass production, and their potential as a source of raw materials for the extraction of chemicals and fuels. A rather broad synthesis, convering the total seaweed resource and some of the constraints placed on harvesting these plants, attempts to farm the oceans to increase the supply of desirable species, attempts to cultivate seaweeds in enclosures where environmental parameters are controlled, and finally, the limited amount of genetic manipulation that was applied to these plants was presented. Only the larger red and brown seaweeds were considered because they represent the bulk of the biomass.

  12. Optimized production planning model for a multi-plant cultivation system under uncertainty

    NASA Astrophysics Data System (ADS)

    Ke, Shunkui; Guo, Doudou; Niu, Qingliang; Huang, Danfeng

    2015-02-01

    An inexact multi-constraint programming model under uncertainty was developed by incorporating a production plan algorithm into the crop production optimization framework under the multi-plant collaborative cultivation system. In the production plan, orders from the customers are assigned to a suitable plant under the constraints of plant capabilities and uncertainty parameters to maximize profit and achieve customer satisfaction. The developed model and solution method were applied to a case study of a multi-plant collaborative cultivation system to verify its applicability. As determined in the case analysis involving different orders from customers, the period of plant production planning and the interval between orders can significantly affect system benefits. Through the analysis of uncertain parameters, reliable and practical decisions can be generated using the suggested model of a multi-plant collaborative cultivation system.

  13. Root exudates of wetland plants influenced by nutrient status and types of plant cultivation.

    PubMed

    Wu, Fu Yong; Chung, Anna King Chuen; Tam, Nora Fung Yee; Wong, Ming Hung

    2012-07-01

    The present study investigated the amounts of root exudates and composition of organic acids released from two wetland plants (Typha latifolia and Vetiver zizanioides) under two nutrient treatments: low level (0.786 mM N and 0.032 mM P) and high level (7.86 mM N and 0.32 mM P) and two types of plant cultivation: monoculture and co-culture of the two plants. Low nutrient treatment significantly (p < 0.05) increased the root exudates of T. latifolia during the initial growth period (1-21 d) and those of V. zizanioides and the co-culture during the whole growth period. The concentrations of dissolved organic carbon in the root exudates of the co-culture in the low nutrient treatment were 3.23-7.91 times of those in the high nutrient treatment during the medium growth period (7-28 d). The compositions of organic acids varied between the two plant species and between the two nutrient treatments. The pattern of organic acids was also different between the co-culture and the monoculture. Oxalic acid was by far the major organic acid exuded from the two wetland plants. The present study on root exudates suggests that co-culture of wetland plant species would be more useful in the reclamation of waste water than a monoculture system.

  14. [Content and distribution of active components in cultivated and wild Taxus chinensis var. mairei plants].

    PubMed

    Yu, Shao-Shuai; Sun, Qi-Wu; Zhang, Xiao-Ping; Tian, Sheng-Ni; Bo, Pei-Lei

    2012-10-01

    Taxus chinensis var. mairei is an endemic and endangered plant species in China. The resources of T. chinensis var. mairei have been excessively exploited due to its anti-cancer potential, accordingly, the extant T. chinensis var. mairei population is decreasing. In this paper, ultrasonic extraction and HPLC were adopted to determine the contents of active components paclitaxel, 7-xylosyltaxol and cephalomannine in cultivated and wild T. chinensis var. mairei plants, with the content distribution of these components in different parts of the plants having grown for different years and at different slope aspects investigated. There existed obvious differences in the contents of these active components between cultivated and wild T. chinensis var. mairei plants. The paclitaxel content in the wild plants was about 0.78 times more than that in the cultivated plants, whereas the 7-xylosyltaxol and cephalomannine contents were slishtly higher in the cultivated plants. The differences in the three active components contents between different parts and tree canopies of the plants were notable, being higher in barks and upper tree canopies. Four-year old plants had comparatively higher contents of paclitaxel, 7-xylosyltaxol and cephalomannine (0.08, 0.91 and 0.32 mg x g(-1), respectively), and the plants growing at sunny slope had higher contents of the three active components, with significant differences in the paclitaxel and 7-xylosyltaxol contents and unapparent difference in the cephalomannine content of the plants at shady slope. It was suggested that the accumulation of the three active components in T. chinensis var. mairei plants were closely related to the sunshine conditions. To appropriately increase the sunshine during the artificial cultivation of T. chinensis var. mairei would be beneficial to the accumulation of the three active components in T. chinensis var. mairei plants.

  15. Effects of hydraulic retention time on cultivation of indigenous microalgae as a renewable energy source using secondary effluent.

    PubMed

    Takabe, Yugo; Hidaka, Taira; Tsumori, Jun; Minamiyama, Mizuhiko

    2016-05-01

    Secondary effluent from wastewater treatment plants is suitable media for cultivating microalgae as a renewable energy source, and hydraulic retention time (HRT) control in culture is important to conduct well-planned outdoor indigenous microalgae cultivation with secondary effluent. This study revealed cultivation characteristics under various HRT by continuous 6-month experiments. In addition, effects of HRT on cultivation were determined by a mathematical model that described indigenous microalgae growth. Cultivated biomass mainly consisted of Chlorophyceae and its detritus regardless of HRT, and 5.93-14.8g/m(2)/day of biomass yield was obtained. The cultivated biomass had a stable higher heating value of 16kJ/g. Sensitivity analysis of the model suggests that HRT control had great effects on biomass yield, and 2-3days of HRT were recommended to obtain maximum biomass yield under certain weather conditions (temperature: approximately 12-25°C and solar radiation: approximately 8-19MJ/m(2)/day).

  16. [Prospects of the cultivated medical plants in Georgia].

    PubMed

    Nanobashvili, N B; Lobzhanidze, M I

    2009-05-01

    The aim of the research is to give botanic description, to analyze chemical composition and medical properties of plants. The names of plants in Russian are also provided. The main areas of propagation of medicinal plants are identified. The period of collection is recommended. The most important features of raw materials and extracts are represented. The information about the therapeutic effectiveness of drugs is depicted.

  17. Ex situ cultivation affects genetic structure and diversity in arable plants.

    PubMed

    Brütting, C; Hensen, I; Wesche, K

    2013-05-01

    Worldwide, botanical gardens cultivate around 80,000 taxa, corresponding to approximately one-quarter of all vascular plants. Most cultivated taxa are, however, held in a small number of collections, and mostly only in small populations. Lack of genetic exchange and stochastic processes in small populations make them susceptible to detrimental genetic effects, which should be most severe in annual species, as sowing cycles are often short. In order to assess whether ex situ cultivation affects genetic diversity of annuals, five annual arable species with similar breeding systems were assessed with 42 in situ populations being compared to 20 ex situ populations using a random amplified polymorphic DNA (RAPD) analysis approach. Population sizes tended to be lower under ex situ cultivation and levels of genetic diversity also tended to be lower in four of the five species, with differences being significant in only two. Ex situ populations showed incomplete representation of alleles found in the wild. The duration of cultivation did not indicate any effect on genetic diversity. This implies that cultivation strategies resulted in different genetic structures in the garden populations. Although not unequivocally pronounced, differences nonetheless imply that conservation strategies in the involved gardens may need improvement. One option is cold storage of seeds, a practice that is not currently followed in the studied ex situ collections. This may reflect that the respective gardens focus on displaying living plant populations.

  18. Fertilizers and Mixed Crop Cultivation of Chromium Tolerant and Sensitive Plants under Chromium Toxicity

    PubMed Central

    Dheeba, B.; Sampathkumar, P.; Kannan, K.

    2015-01-01

    Zea mays (maize) and Vigna radiata (green gram) are found to be the chromium (Cr) tolerant and sensitive plants, respectively. In the present paper, we investigate the reduction of the toxicity of Cr in the sensitive plants by the mixed crop cultivation in the field using various amendments. Further, the potassium dichromate was used as the source of hexavalent Cr. The results indicated that Cr adversely affects both the growth and yield of plants. The soil properties vary with Cr and different fertilizer amendments and the yield of both plants were affected by Cr. We conclude that metal accumulation of seeds of green gram was higher than corn and the application of single fertilizer either farm yard manure (FYM) or nitrogen, phosphorous, and potassium (NPK) enhances the growth and yield of both the tolerant and sensitive plants in the mixed crop cultivations. PMID:25709647

  19. Training Programmes Can Change Behaviour and Encourage the Cultivation of Over-Harvested Plant Species

    PubMed Central

    Williams, Sophie J.; Jones, Julia P. G.; Clubbe, Colin; Gibbons, James M.

    2012-01-01

    Cultivation of wild-harvested plant species has been proposed as a way of reducing over-exploitation of wild populations but lack of technical knowledge is thought to be a barrier preventing people from cultivating a new species. Training programmes are therefore used to increase technical knowledge to encourage people to adopt cultivation. We assessed the impact of a training programme aiming to encourage cultivation of xaté (Chamaedorea ernesti-augusti), an over-harvested palm from Central America. Five years after the training programme ended, we surveyed untrained and trained individuals focusing on four potential predictors of behaviour: technical knowledge, attitudes (what individuals think about a behaviour), subjective norms (what individuals perceive others to think of a behaviour) and perceived behavioural control (self assessment of whether individuals can enact the behaviour successfully). Whilst accounting for socioeconomic variables, we investigate the influence of training upon these behavioural predictors and examine the factors that determine whether people adopt cultivation of a novel species. Those who had been trained had higher levels of technical knowledge about xaté cultivation and higher belief in their ability to cultivate it while training was not associated with differences in attitudes or subjective norms. Technical knowledge and perceived behavioural control (along with socio-economic variables such as forest ownership and age) were predictors of whether individuals cultivate xaté. We suggest that training programmes can have a long lasting effect on individuals and can change behaviour. However, in many situations other barriers to cultivation, such as access to seeds or appropriate markets, will need to be addressed. PMID:22431993

  20. Microbiota of radish plants, cultivated in closed and open ecological systems

    NASA Astrophysics Data System (ADS)

    Tirranen, L. S.

    It is common knowledge that microorganisms respond to environmental changes faster than other representatives of the living world. The major aim of this work was to examine and analyze the characteristics of the microbiota of radish culture, cultivated in the closed ecological system of human life-support Bios-3 and in an open system in different experiments. Microbial community of near-root, root zone and phyllosphere of radish were studied at the phases of seedlings, root formation, technical ripeness—by washing-off method—like microbiota of the substrate (expanded clay aggregate) and of the seeds of radish culture. Inoculation on appropriate media was made to count total quantity of anaerobic and aerobic bacteria, bacteria of coliform group, spore-forming, Proteus group, fluorescent, phytopathogenic bacteria, growing on Fermi medium, yeasts, microscopic fungi, Actinomyces. It was revealed that formation of the microbiota of radish plants depends on the age, plant cultivation technology and the specific conditions of the closed system. Composition of microbial conveyor-cultivated in phytotrons varied in quality and in quantity with plant growth phases—in the same manner as cultivation of even-aged soil and hydroponics monocultures which was determined by different qualitative and quantitative composition of root emissions in the course of plant vegetation. The higher plant component formed its own microbial complex different from that formed prior to closure. The microbial complex of vegetable polyculture is more diverse and stable than the monoculture of radish. We registered the changes in the species composition and microorganism quantity during plant cultivation in the closed system on a long-used solution. It was demonstrated that during the short-term (7 days) use of the nutrient solution in the experiments without system closing, the species composition of the microbiota of radish plants was more diverse in a multiple-aged vegetable polyculture (61

  1. Comparative study on Allium schoenoprasum cultivated plant and Allium schoenoprasum tissue culture organs antioxidant status.

    PubMed

    Stajner, D; Popović, B M; Calić-Dragosavac, D; Malenčić, D; Zdravković-Korać, S

    2011-11-01

    This study was designed to examine Allium schoenoprasum tissue culture organs antioxidant and scavenging activity and to make a comparison between Allium schoenoprasum cultivated plant and Allium schoenoprasum tissue culture organs antioxidant activity. This study reports the results on the root, stalk and leaf antioxidant enzyme activities (superoxide dismutase, catalase, guaiacol peroxidase and glutathione peroxidase), reduced glutathione quantity, flavonoids and soluble protein contents and quantities of malonyldialdehyde and ·OH radical. In Allium schoenoprasum tissue culture organs the total antioxidant capacity was determined by the FRAP method and scavenger activity by the DPPH method. The present results indicated that the crude extract of Allium schoenoprasum tissue culture exhibited antioxidant and scavenging abilities in all investigated plant parts, especially in the roots. According to our results, the tissue culture plants exhibited the highest activities in the roots in contrast to the cultivated plants where highest activities were observed in the leaves.

  2. Energy from fresh and brackish water aquatic plants

    SciTech Connect

    Benemann, J.R.

    1981-01-01

    Aquatic plants can achieve relatively high biomass productivities when compared to terrestrial plants because they need not be water-stressed and can be optimally supplied with nutrients. Based on literature reports, productivities in southern US regions of about 40 to 60 t/ha-yr (dry weight basis) can be predicted for green algae or marsh plants and about 80 t/ha-yr for water hyacinth. Higher productivities may be possible in exceptionally favorable locations by assuming development of advanced cultivation technologies and genetic selection of improved strains. The lack of established cultivation systems and low-cost harvesting processes imposes great uncertainties on the cost of biomass production by aquatic plants. Three potentially practical aquatic biomass energy systems are chemicals production from microalgae, alcohol production from marsh plants, and methane production from water hyacinths. At present, aquatic plants are not being used commercially as a fuel source any place in the world. Nevertheless, it is clear that aquatic plants have potentially high biomass productivities and, specifically for the case of microalgae, could produce a high-quality, high-value biomass suitable for conversion to fuels and extraction of other products. A list of the relative advantages and disadvantages of aquatic plant energy systems in comparison with the concepts of terrestrial tree or herbaceous plant energy farming is given. Three favorable aspects of aquatic plant biomass systems should be stressed - the relative short-term research and development effort that will be required to determine the practical feasibility of such systems, the continuous production nature of such systems, and the relative independence of aquatic biomass systems from soil characteristics and weather fluctuations. The fast generation times of most aquatic plants allow rapid data acquisition, as compared to even short-rotation trees.

  3. Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor.

    PubMed

    Ozkan, Altan; Kinney, Kerry; Katz, Lynn; Berberoglu, Halil

    2012-06-01

    This paper reports the construction and performance of an algae biofilm photobioreactor that offers a significant reduction of the energy and water requirements of cultivation. The green alga Botryococcus braunii was cultivated as a biofilm. The system achieved a direct biomass harvest concentration of 96.4 kg/m(3) with a total lipid content 26.8% by dry weight and a productivity of 0.71 g/m(2) day, representing a light to biomass energy conversion efficiency of 2.02%. Moreover, it reduced the volume of water required to cultivate a kilogram of algal biomass by 45% and reduced the dewatering energy requirement by 99.7% compared to open ponds. Finally, the net energy ratio of the cultivation was 6.00 including dewatering. The current issues of this novel photobioreactor are also identified to further improve the system productivity and scaleup.

  4. The Performance of a Miniature Plant Cultivation System Designed for Space Flight Application

    NASA Technical Reports Server (NTRS)

    Heyenga, Gerard; Kliss, Mark; Blackford, Cameron

    2005-01-01

    Constraints in both launch opportunities and the availability of in-flight resources for Shuttle and Space Station life science habitat facilities has presented a compelling impetus to improve the operational flexibility, efficiency and miniaturization of many of these systems. Such advances would not only invigorate the level of research being conducted in low Earth orbit but also present the opportunity to expand life science studies to outer space and planetary bodies. Work has been directed towards the development of a miniature plant cultivation module (PCM) capable of supporting the automated and controlled growth and spectral monitoring of small plant species such as Arabidopsis thaliana. This paper will present data on the operational performance and efficiency of the cultivation module, and the extent to which such a system may be used to support plant growth studies in low Earth orbit and beyond.

  5. Cultivable endophytic bacteria from heavy metal(loid)-tolerant plants.

    PubMed

    Román-Ponce, Brenda; Ramos-Garza, Juan; Vásquez-Murrieta, María Soledad; Rivera-Orduña, Flor Nohemí; Chen, Wen Feng; Yan, Jun; Estrada-de Los Santos, Paulina; Wang, En Tao

    2016-12-01

    To evaluate the interactions among endophytes, plants and heavy metal/arsenic contamination, root endophytic bacteria of Prosopis laevigata (Humb and Bonpl. ex Willd) and Sphaeralcea angustifolia grown in a heavy metal(loid)-contaminated zone in San Luis Potosi, Mexico, were isolated and characterized. Greater abundance and species richness were found in Prosopis than in Sphaeralcea and in the nutrient Pb-Zn-rich hill than in the poor nutrient and As-Cu-rich mine tailing. The 25 species identified among the 60 isolates formed three groups in the correspondence analysis, relating to Prosopis/hill (11 species), Prosopis/mine tailing (4 species) and Sphaeralcea/hill (4 species), with six species ungrouped. Most of the isolates showed high or extremely high resistance to arsenic, such as ≥100 mM for As(V) and ≥20 mM for As(III), in mineral medium. These results demonstrated that the abundance and community composition of root endophytic bacteria were strongly affected by the concentration and type of the heavy metals and metalloids (arsenic), as well as the plant species.

  6. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters

    PubMed Central

    Martínez-Rodríguez, Julia del C.; la Mora-Amutio, Marcela De; Plascencia-Correa, Luis A.; Audelo-Regalado, Esmeralda; Guardado, Francisco R.; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J.; Escalante, Adelfo; Beltrán-García, Miguel J.; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. ‘Azul’ is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost. PMID:25763038

  7. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters.

    PubMed

    Martínez-Rodríguez, Julia del C; De la Mora-Amutio, Marcela; Plascencia-Correa, Luis A; Audelo-Regalado, Esmeralda; Guardado, Francisco R; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J; Escalante, Adelfo; Beltrán-García, Miguel J; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.

  8. Naturalization of plant populations: the role of cultivation and population size and density.

    PubMed

    Minton, Mark S; Mack, Richard N

    2010-10-01

    Field experimentation is required to assess the effects of environmental stochasticity on small immigrant plant populations-a widely understood but largely unexplored aspect of predicting any species' likelihood of naturalization and potential invasion. Cultivation can mitigate this stochasticity, although the outcome for a population under cultivation nevertheless varies enormously from extinction to persistence. Using factorial experiments, we investigated the effects of population size, density, and cultivation (irrigation) on the fate of founder populations for four alien species with different life history characteristics (Echinochloa frumentacea, Fagopyrum esculentum, Helianthus annuus, and Trifolium incarnatum) in eastern Washington, USA. The fate of founder populations was highly variable within and among the 3 years of experimentation and illustrates the often precarious environment encountered by plant immigrants. Larger founder populations produced more seeds (P < 0.001); the role of founder population size, however, differed among years. Irrigation resulted in higher percent survival (P < 0.001) and correspondingly larger net reproductive rate (R(0); P < 0.001). But the minimum level of irrigation for establishment, R(0) > 1, differed among years and species. Sowing density did not affect the likelihood of establishment for any species. Our results underscore the importance of environmental stochasticity in determining the fate of founder populations and the potential of cultivation and large population size in countering the long odds against naturalization. Any implementation of often proposed post-immigration field trials to assess the risk of an alien species becoming naturalized, a requisite step toward invasion, will need to assess different sizes of founder populations and the extent and character of cultivation (intentional or unintentional) that the immigrants might receive.

  9. Assessing the regional impacts of increased energy maize cultivation on farmland birds.

    PubMed

    Brandt, Karoline; Glemnitz, Michael

    2014-02-01

    The increasing cultivation of energy crops in Germany substantially affects the habitat function of agricultural landscapes. Precise ex ante evaluations regarding the impacts of this cultivation on farmland bird populations are rare. The objective of this paper was to implement a methodology to assess the regional impacts of increasing energy maize cultivation on the habitat quality of agricultural lands for farmland birds. We selected five farmland bird indicator species with varying habitat demands. Using a crop suitability modelling approach, we analysed the availability of potential habitat areas according to different land use scenarios for a real landscape in Northeast Germany. The model was based on crop architecture, cultivation period, and landscape preconditions. Our results showed that the habitat suitability of different crops varied between bird species, and scenario calculations revealed an increase and a decrease in the size of the potential breeding and feeding habitats, respectively. The effects observed in scenario 1 (increased energy maize by 15%) were not reproduced in all cases in scenario 2 (increased energy maize by 30%). Spatial aggregation of energy maize resulted in a negative effect for some species. Changes in the composition of the farmland bird communities, the negative effects on farmland bird species limited in distribution and spread and the relevance of the type of agricultural land use being replaced by energy crops are also discussed. In conclusion, we suggest a trade-off between biodiversity and energy targets by identifying biodiversity-friendly energy cropping systems.

  10. Increase of a BLSS closure using mineralized human waste in plant cultivation on a neutral substrate

    NASA Astrophysics Data System (ADS)

    Gros, Jean-Bernard; Ushakova, Sofya; Tikhomirov, Alexander A.; Kudenko, Yurii; Lasseur, Christophe; Shikhov, V.; Anischenko, O.

    The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plants cultivation in a Biological Life Support System. The plants which are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitamin variety, were taken as the investigation objects. The plants were grown by hydroponics method on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During the plants growth a definite amount of human mineralized waste was added daily in the nutrient solution. The nutrient solution was not changed during the entire vegetation period. Estimation of the plant needs in macro elements was based on a total biological productivity equal to 0.04 kg.day--1 .m-2 . As the plant requirements in potassium exceeded the potassium content in human waste, water extract of wheat straw containing the required potassium amount was added to the nutrient solution. Knop's solution was used in the control experiments. The experiment and control plants did not show significant differences in their photosynthetic apparatus state and productivity. A small decrease in total productivity of the experimental plants was observed which can result in some reduction of ˆ2 production in a BLSS. Most I probably it is due to the reduced nitrogen use. Therefore in a real BLSS after the mineralization of human feces and urine, it will be efficient to implement a more complete oxidation of nitrogencontaining compounds system, including nitrification. In this case the plants, prospective representatives of the BLSS photosynthesizing unit, could be cultivated on the solutions mainly based on human mineralized waste.

  11. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media.

    PubMed

    Eevers, N; Gielen, M; Sánchez-López, A; Jaspers, S; White, J C; Vangronsveld, J; Weyens, N

    2015-07-01

    Many endophytes have beneficial effects on plants and can be exploited in biotechnological applications. Studies hypothesize that only 0.001-1% of all plant-associated bacteria are cultivable. Moreover, even after successful isolations, many endophytic bacteria often show reduced regrowth capacity. This research aimed to optimize isolation processes and culturing these bacteria afterwards. We compared several minimal and complex media in a screening. Beside the media themselves, two gelling agents and adding plant extract to media were investigated to enhance the number and diversity of endophytes as well as the growth capacity when regrown after isolation. In this work, 869 medium delivered the highest numbers of cultivable bacteria, as well as the highest diversity. When comparing gelling agents, no differences were observed in the numbers of bacteria. Adding plant extract to the media lead to a slight increase in diversity. However, when adding plant extract to improve the regrowth capacity, sharp increases of viable bacteria occurred in both rich and minimal media.

  12. Influence of shifting cultivation practices on soil-plant-beetle interactions.

    PubMed

    Ibrahim, Kalibulla Syed; Momin, Marcy D; Lalrotluanga, R; Rosangliana, David; Ghatak, Souvik; Zothansanga, R; Kumar, Nachimuthu Senthil; Gurusubramanian, Guruswami

    2016-08-01

    . The present study revealed the fact that shifting cultivation practice significantly affects the beetle species in terms of biodiversity pattern as well as evolutionary features. Spatiotemporal assessment of soil-plant-beetle interactions in shifting cultivation system and their influence in land degradation and ecology will be helpful in making biodiversity conservation decisions in the near future.

  13. Increased BLSS closure using mineralized human waste in plant cultivation on a neutral substrate

    NASA Astrophysics Data System (ADS)

    Ushakova, S.; Tikhomirov, A.; Shikhov, V.; Kudenko, Yu.; Anischenko, O.; Gros, J.-B.; Lasseur, Ch.

    2009-10-01

    The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plant cultivation in a biological life support system (BLSS). Plants that are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitaminny variety, were used. The plants were grown hydroponically on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During plant growth, a determined amount of human mineralized waste was added daily to the nutrient solution. The nutrient solution remained unchanged throughout the vegetation period. Estimated plant requirements for macro-elements were based on a total biological productivity of 0.04 kg day -1 m -2. As the plant requirements for potassium exceeded the potassium content of human waste, a water extract of wheat straw containing the required amount of potassium was added to the nutrient solution. The Knop's solution was used in the control experiments. The experimental and control plants showed no significant differences in state or productivity of their photosynthetic apparatus. A small decrease in total productivity of the experimental plants was observed, which might result in some reduction of О 2 production in a BLSS.

  14. Hormone and microorganism treatments in the cultivation of saffron (Crocus sativus L.) plants.

    PubMed

    Aytekin, Alper; Acikgoz, Aynur Ozkul

    2008-05-13

    The difficult cultivation of the saffron plant (Crocus Sativus L.) make the spice of the same name made from its dried stigmas very valuable. It is estimated that some 75,000 blossoms or 225,000 hand-picked stigmas are required to make a single pound of saffron, which explains why it is the world's most expensive spice. The aim of this study was to identify ways of increasing the fertility and production of saffron. For this purpose, the treatment of saffron bulbs with a synthetic growth hormone--a mixture of Polystimulins A6 and K--and two different microorganism based materials--biohumus or vermicompost and Effective Microorganisms (EM)--in four different ways (hormone alone, biohumus alone, EM alone and EM+biohumus) was investigated to determine whether these treatments have any statistically meaningful effects on corms and stigmas. It has been shown that EM + biohumus was the most effective choice for improved saffron cultivation.

  15. Non-cultivated plants present a season-long route of pesticide exposure for honey bees

    PubMed Central

    Long, Elizabeth Y.; Krupke, Christian H.

    2016-01-01

    Recent efforts to evaluate the contribution of neonicotinoid insecticides to worldwide pollinator declines have focused on honey bees and the chronic levels of exposure experienced when foraging on crops grown from neonicotinoid-treated seeds. However, few studies address non-crop plants as a potential route of pollinator exposure to neonicotinoid and other insecticides. Here we show that pollen collected by honey bee foragers in maize- and soybean-dominated landscapes is contaminated throughout the growing season with multiple agricultural pesticides, including the neonicotinoids used as seed treatments. Notably, however, the highest levels of contamination in pollen are pyrethroid insecticides targeting mosquitoes and other nuisance pests. Furthermore, pollen from crop plants represents only a tiny fraction of the total diversity of pollen resources used by honey bees in these landscapes, with the principle sources of pollen originating from non-cultivated plants. These findings provide fundamental information about the foraging habits of honey bees in these landscapes. PMID:27240870

  16. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America.

    PubMed

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2015-01-01

    Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted.

  17. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America

    PubMed Central

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2015-01-01

    Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted. PMID:25717322

  18. Energy biomass characteristics of chosen plants

    NASA Astrophysics Data System (ADS)

    Szyszlak-Bargłowicz, J.; Zając, G.; Piekarski, W.

    2012-04-01

    The chosen energy plants species: willow, mallow and Miscanthus are presented. Result of analysis of combustion heat and heating value of these species biomass indicate on possibility of their utilization as fuel for combustion and energy and heat production.

  19. Green bean biofortification for Si through soilless cultivation: plant response and Si bioaccessibility in pods.

    PubMed

    Montesano, Francesco Fabiano; D'Imperio, Massimiliano; Parente, Angelo; Cardinali, Angela; Renna, Massimiliano; Serio, Francesco

    2016-08-17

    Food plants biofortification for micronutrients is a tool for the nutritional value improvement of food. Soilless cultivation systems, with the optimal control of plant nutrition, represent a potential effective technique to increase the beneficial element content in plant tissues. Silicon (Si), which proper intake is recently recommended for its beneficial effects on bone health, presents good absorption in intestinal tract from green bean, a high-value vegetable crop. In this study we aimed to obtain Si biofortified green bean pods by using a Si-enriched nutrient solution in soilless system conditions, and to assess the influence of boiling and steaming cooking methods on Si content, color parameters and Si bioaccessibility (by using an in vitro digestion process) of pods. The Si concentration of pods was almost tripled as a result of the biofortification process, while the overall crop performance was not negatively influenced. The Si content of biofortified pods was higher than unbiofortified also after cooking, despite the cooking method used. Silicon bioaccessibility in cooked pods was more than tripled as a result of biofortification, while the process did not affect the visual quality of the product. Our results demonstrated that soilless cultivation can be successfully used for green bean Si biofortification.

  20. Green bean biofortification for Si through soilless cultivation: plant response and Si bioaccessibility in pods

    PubMed Central

    Montesano, Francesco Fabiano; D’Imperio, Massimiliano; Parente, Angelo; Cardinali, Angela; Renna, Massimiliano; Serio, Francesco

    2016-01-01

    Food plants biofortification for micronutrients is a tool for the nutritional value improvement of food. Soilless cultivation systems, with the optimal control of plant nutrition, represent a potential effective technique to increase the beneficial element content in plant tissues. Silicon (Si), which proper intake is recently recommended for its beneficial effects on bone health, presents good absorption in intestinal tract from green bean, a high-value vegetable crop. In this study we aimed to obtain Si biofortified green bean pods by using a Si-enriched nutrient solution in soilless system conditions, and to assess the influence of boiling and steaming cooking methods on Si content, color parameters and Si bioaccessibility (by using an in vitro digestion process) of pods. The Si concentration of pods was almost tripled as a result of the biofortification process, while the overall crop performance was not negatively influenced. The Si content of biofortified pods was higher than unbiofortified also after cooking, despite the cooking method used. Silicon bioaccessibility in cooked pods was more than tripled as a result of biofortification, while the process did not affect the visual quality of the product. Our results demonstrated that soilless cultivation can be successfully used for green bean Si biofortification. PMID:27530434

  1. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species.

    PubMed

    Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; North, Gretchen; Visel, Axel; Partida-Martinez, Laila P; Tringe, Susannah G

    2016-01-01

    Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions.

  2. Plant Succession at the Edges of Two Abandoned Cultivated Fields on the Arid Lands Ecology Reserve

    SciTech Connect

    Simmons, Sally A.; Rickard, William H.

    2002-12-01

    How vegetation recovers from disturbances is an important question for land managers. We examined 500 m2 plots to determine the progress made by native herbaceous plant species in colonizing the edges of abandoned cultivated fields at different elevations and microclimates, but with similar soils in a big sagebrush/bluebunch wheatgrass steppe. Alien species, especially cheatgrass and cereal rye, were the major competitors to the natives. The native species with best potential for restoring steppe habitats were sulphur lupine, hawksbeard, bottlebrush squirreltail, needle-and-thread grass, Sandberg's bluegrass, and several lomatiums.

  3. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    PubMed

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  4. Impact of planting date on sunflower beetle (Coleoptera: Chrysomelidae) infestation, damage, and parasitism in cultivated sunflower.

    PubMed

    Charlet, Laurence D; Knodel, Janet J

    2003-06-01

    The sunflower beetle, Zygogramma exclamationis (F.), is the major defoliating pest of sunflower (Helianthus annuus L.). Planting date was evaluated as a potential management tool in a variety of production regions throughout North Dakota from 1997 to 1999, for its impact on sunflower beetle population density of both adults and larvae, defoliation caused by both feeding stages, seed yield, oil content, and larval parasitism in cultivated sunflower. Results from this 3-yr study revealed that sunflower beetle adult and larval populations decreased as planting date was delayed. Delayed planting also reduced defoliation from adult and larval feeding, which is consistent with the lower numbers of the beetles present in the later seeded plots. Even a planting delay of only 1 wk was sufficient to significantly reduce feeding damage to the sunflower plant. Yield reduction caused by leaf destruction of the sunflower beetle adults and larvae was clearly evident in the first year of the study. The other component of sunflower yield, oil content, did not appear to be influenced by beetle feeding. The tachinid parasitoid, Myiopharus macellus (Rheinhard), appeared to be a significant mortality factor of sunflower beetle larvae at most locations regardless of the dates of planting, and was able to attack and parasitize the beetle at various larval densities. The results of this investigation showed the potential of delayed planting date as an effective integrated pest management tactic to reduce sunflower beetle adults, larvae, and their resulting defoliation. In addition, altering planting dates was compatible with biological control of the beetle, because delaying the planting date did not reduce the effectiveness of the parasitic fly, M. macellus, which attacks the sunflower beetle larvae.

  5. High-power light-emitting diode based facility for plant cultivation

    NASA Astrophysics Data System (ADS)

    Tamulaitis, G.; Duchovskis, P.; Bliznikas, Z.; Breive, K.; Ulinskaite, R.; Brazaityte, A.; Novickovas, A.; Zukauskas, A.

    2005-09-01

    Based on perspectives of the development of semiconductor materials systems for high-power light-emitting diodes (LEDs), an illumination facility for greenhouse plant cultivation was designed with the dominating 640 nm photosynthetically active component delivered by AlGaInP LEDs and supplementary components from AlGaN (photothropic action, 455 nm) and AlGaAs (photosynthetic 660 nm and photomorphogenetic 735 nm) LEDs. Photosynthesis intensity, photosynthetic productivity and growth morphology as well as chlorophyll and phytohormone concentrations were investigated in radish and lettuce grown in phytotron chambers under the LED-based illuminators and under high-pressure sodium (HPS) lamps with an equivalent photon flux density. Advantages of the high-power LED-based illuminators over conventional HPS lamps, applicability of AlGaInP LEDs for photosynthesis and control of plant growth by circadian manipulation of a relatively weak far-red component were demonstrated.

  6. Energy performance and greenhouse gas emissions of kelp cultivation for biogas and fertilizer recovery in Sweden.

    PubMed

    Pechsiri, Joseph S; Thomas, Jean-Baptiste E; Risén, Emma; Ribeiro, Mauricio S; Malmström, Maria E; Nylund, Göran M; Jansson, Anette; Welander, Ulrika; Pavia, Henrik; Gröndahl, Fredrik

    2016-12-15

    The cultivation of seaweed as a feedstock for third generation biofuels is gathering interest in Europe, however, many questions remain unanswered in practise, notably regarding scales of operation, energy returns on investment (EROI) and greenhouse gas (GHG) emissions, all of which are crucial to determine commercial viability. This study performed an energy and GHG emissions analysis, using EROI and GHG savings potential respectively, as indicators of commercial viability for two systems: the Swedish Seafarm project's seaweed cultivation (0.5ha), biogas and fertilizer biorefinery, and an estimation of the same system scaled up and adjusted to a cultivation of 10ha. Based on a conservative estimate of biogas yield, neither the 0.5ha case nor the up-scaled 10ha estimates met the (commercial viability) target EROI of 3, nor the European Union Renewable Energy Directive GHG savings target of 60% for biofuels, however the potential for commercial viability was substantially improved by scaling up operations: GHG emissions and energy demand, per unit of biogas, was almost halved by scaling operations up by a factor of twenty, thereby approaching the EROI and GHG savings targets set, under beneficial biogas production conditions. Further analysis identified processes whose optimisations would have a large impact on energy use and emissions (such as anaerobic digestion) as well as others embodying potential for further economies of scale (such as harvesting), both of which would be of interest for future developments of kelp to biogas and fertilizer biorefineries.

  7. Wastewater treatment as an energy production plant

    NASA Astrophysics Data System (ADS)

    Samela, Daniel A.

    The objective of this research was to investigate the potential for net energy production at a Wastewater Treatment Plant (WWTP). Historically, wastewater treatment plants have been designed with the emphasis on process reliability and redundancy; efficient utilization of energy has not received equal consideration. With growing demands for energy and increased budgetary pressures in funding wastewater treatment plant costs, methods of reducing energy consumption and operating costs were explored in a new and novel direction pointed towards energy production rather than energy consumption. To estimate the potential for net energy production, a quantitative analysis was performed using a mathematical model which integrates the various unit operations to evaluate the overall plant energy balance. Secondary treatment performance analysis is included to ensure that the energy evaluation is consistent with plant treatment needs. Secondary treatment performance was conducted for activated sludge, trickling filters and RBCs. The equations for the mathematical model were developed independently for each unit operation by writing mass balance equations around the process units. The process units evaluated included those for preliminary treatment, primary treatment, secondary treatment, disinfection, and sludge treatment. Based on an analysis of both energy reduction and energy recovery methods, it was shown that net energy production at a secondary WWTP is possible utilizing technologies available today. Such technologies include those utilized for plant operations, as well as for energy recovery. The operation of fuel cells using digester gas represents one of the most significant new opportunities for energy recovery at wastewater facilities. The analysis predicts that a trickling filter WWTP utilizing commercial phosphoric acid fuel cells to recover energy from digester gas can provide for facility energy needs and have both electrical and thermal energy available for

  8. Persistence of oxyfluorfen in soil, runoff water, sediment and plants of a sunflower cultivation.

    PubMed

    Mantzos, N; Karakitsou, A; Hela, D; Patakioutas, G; Leneti, E; Konstantinou, I

    2014-02-15

    A field dissipation and transport study of oxyfluorfen in a sunflower cultivation under Mediterranean conditions have been conducted in silty clay plots (cultivated and uncultivated) with two surface slopes (1% and 5%). The soil dissipation and transport of oxyfluorfen in runoff water and sediment, as well as the uptake by sunflower plants, were investigated over a period of 191 days. Among different kinetic models assayed, soil dissipation rate of oxyfluorfen was better described by first-order kinetics. The average half-life was 45 and 45.5 days in cultivated plots with soil slopes 5% and 1% respectively, and 50.9 and 52.9 days in uncultivated plots with soil slopes 5% and 1%. The herbicide was detected below the 10 cm soil layer 45 days after application (DAA). Limited amounts of oxyfluorfen were moved with runoff water and the cumulative losses from tilled and untilled plots with slope 5% were estimated at 0.007% and 0.005% of the initial applied active ingredient, while for the plots with slope of 1%, the respective values were 0.002% and 0.001%. The maximum concentration of oxyfluorfen in sediment ranged from 1.46 μg g(-1) in cultivated plot with soil slope 1% to 2.33 μg g(-1) in uncultivated plot with soil slope 5%. The cumulative losses from tilled and untilled plots with slope 5% were estimated at 0.217% and 0.170% while for the plots with slope of 1%, the respective values were 0.055% and 0.025%. Oxyfluorfen was detected in sunflower plants until the day of harvest; maximum concentrations in stems and leaves (0.042 μg g(-1)) were observed 33 DAA and in roots (0.025 μg g(-1)) 36 DAA. In conclusion, oxyfluorfen hardly moves into silty clay soil and exhibited low run-off potential so it represents a low risk herbicide for the contamination of ground and adjacent water resources.

  9. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems.

    PubMed

    Fagúndez, Jaime; Olea, Pedro P; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  10. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems

    NASA Astrophysics Data System (ADS)

    Fagúndez, Jaime; Olea, Pedro P.; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  11. Untapped Endophytic Colonization and Plant Growth-Promoting Potential of the Genus Novosphingobium to Optimize Rice Cultivation

    PubMed Central

    Rangjaroen, Chakrapong; Sungthong, Rungroch; Rerkasem, Benjavan; Teaumroong, Neung; Noisangiam, Rujirek; Lumyong, Saisamorn

    2017-01-01

    With the aim of searching for potent diazotrophic bacteria that are free of public health concerns and optimize rice cultivation, the endophytic colonization and plant growth-promoting activities of some endophytic diazotrophic bacteria isolated from rice were evaluated. Among these bacteria, the emerging diazotrophic strains of the genus Novosphingobium effectively associated with rice plant interiors and consequently promoted the growth of rice, even with the lack of a nitrogen source. These results suggest that diazotrophic Novosphingobium is an alternative microbial resource for further development as a safe biological enhancer in the optimization of organic rice cultivation. PMID:28228608

  12. Utilization of industrial dairy waste as microalgae cultivation medium : a potential study for sustainable energy resources

    NASA Astrophysics Data System (ADS)

    Nurmayani, S.; Sugiarti, Y.; Putra, R. H.

    2016-04-01

    Microalgae is one of biodiesel resources and call as third generation biofuel. Biodiesel is one alternative energy that being developed. So study about resource of biodiesel need a development, for the example is development the basic material such as microalgae. In this paper we explain the potential use of dairy waste from industry as a cultivation medium of microalgae for biodiesel production. Dairy waste from dairy industry contains 34.98% protein, 4.42% lactose, 9.77% fiber, 11.04% fat, 2.33% calcium, 1.05% phosfor, and 0.4 % magnesium, meaning that the dairy waste from dairy industry has a relatively high nutrient content and complete from a source of carbon, nitrogen and phosphorus as macro nutrients. The method in this paper is literature review to resulting a new conclusion about the potency of waste water from dairy industry as microalgae cultivation medium. Based on the study, the dairy waste from dairy industry has potency to be used as cultivation medium of Botryococcus braunii in the production of biodiesel, replacing the conventional cultivation medium.

  13. Plant Profiles - Industrial Energy Management in Action

    SciTech Connect

    2001-02-01

    This 24-page brochure profiles industrial manufacturing firms who are achieving significant energy savings in their plants. The DOE Office of Industrial Technologies six plant-of-the-year nominees are featured, and an additional 10 projects from other companies are also highlighted. Information on OIT's awards and recognition process, and information on OIT and BestPractices is also included.

  14. Ion exchange substrates for plant cultivation in extraterrestrial stations and space crafts

    NASA Astrophysics Data System (ADS)

    Soldatov, Vladimir

    2012-07-01

    Ion exchange substrates Biona were specially designed at the Belarus Academy of Sciences for plants cultivation in spacecrafts and extraterrestrial stations. The first versions of such substrates have been successfully used in several space experiments and in a long-term experiment in which three soviet test-spacemen spent a full year in hermetic cabin imitating a lunar station cabin (1067-1968). In this experiment the life support system included a section with about one ton of the ion exchange substrate, which was used to grow ten vegetations of different green cultures used in the food of the test persons. Due to failure of a number of Soviet space experiments, decay of the Soviet Union and the following economic crisis the research in this field carried out in Belarus were re-directed to the needs of usual agriculture, such as adaptation of cell cultures, growing seedlings, rootage of cuttings etc. At present ion exchange substrate Biona are produced in limited amounts at the experimental production plant of the Institute of Physical Organic Chemistry and used in a number of agricultural enterprises. New advanced substrates and technologies for their production have been developed during that time. In the presentation scientific principles of preparation and functioning of ion exchange substrates as well as results of their application for cultivation different plants are described. The ion exchange substrate is a mixture of cation and anion exchangers saturated in a certain proportions with all ions of macro and micro elements. These chemically bound ions are not released to water and become available for plants in exchange to their root metabolites. The substrates contain about 5% mass of nutrient elements far exceeding any other nutrient media for plants. They allow generating 3-5 kg of green biomass per kilogram of substrate without adding any fertilizers; they are sterile by the way of production and can be sterilized by usual methods; allow regeneration

  15. The content of macro- and microelements and the phosphatase activity of soils under a varied plant cultivation technology

    NASA Astrophysics Data System (ADS)

    Bartkowiak, A.; Lemanowicz, J.; Kobierski, M.

    2015-12-01

    The paper presents the results of the analyses of selected physicochemical properties and the activity of alkaline and acid phosphatase in the soils which differed in terms of plant cultivation technology. Profile sI represented arable land in the crop rotation with cereals dominating (medium intensive technology), without irrigation, while profile sII—represented arable land with vegetable crops cultivation (intensive technology), intensively fertilized and irrigated. The content of available phosphorus in the two soil profiles investigated ranged from 6.6 to 69.1 mg/kg. The highest contents of phosphorus available to plants were reported in the plough horizon of both soils, while the abundance of potassium and magnesium was highest in the illuvial horizon of both soils. The soil profiles investigated showed a significant variation in terms of the cultivation technologies applied. The contents of plant-available Cu and Zn in soil were low and they resulted in the inhibition of neither alkaline nor acid phosphatase. The intensive vegetable crops cultivation technology decreased the content of organic matter and increased the content of the nutrients in soil. Using the Ward method, it was found that relatively similar physicochemical and chemical properties were reported for the genetic horizons of both soil profiles, especially Ap horizon of the soil representing arable land with intensive cultivation of vegetable crops.

  16. Evaluation of hydrocarbon plants suitable for cultivation in Florida. [Euphorbia tirucalli, E. lathyris, and Asclepias curassavica

    SciTech Connect

    Dehgan, B.; Wang, S.C.

    1983-01-01

    Most of the hydrocarbon plants reported in the literature are not suitable for cultivation under Florida conditions. Preliminary results of field and greenhouse trials have indicated two species; Euphorbia tirucalli, which is suitable only for south Florida and Asclepias curassavica which has shown promise for the entire state. The hydrocarbon content of E. tirucalli increases with age of the plants (8.19-11.90%), whereas, that of A. curassavica is influenced positively by fertilization (3.62%) and negatively by supplemental irrigation (2.75%). A comparison between the results of field trials with A. curassavica in Florida and E. lathyris in California shows similar biomass yields under unirrigated conditions, despite 3.6 to 7.8 times greater nitrogen application for E. lathyris. Because of environmental conditions in Florida, E. lathyris is not capable of good growth. It is suggested that future research on hydrocarbon plants should concentrate on selection of individuals or species with vigorous, upright growth habits, low fertilizer-irrigation requirements and high hydrocarbon contents. 18 references.

  17. The Application of Advanced Cultivation Techniques in the Long Term Maintenance of Space Flight Plant Biological Systems

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.

    2003-01-01

    The development of the International Space Station (ISS) presents extensive opportunities for the implementation of long duration space life sciences studies. Continued attention has been placed in the development of plant growth chamber facilities capable of supporting the cultivation of plants in space flight microgravity conditions. The success of these facilities is largely dependent on their capacity to support the various growth requirements of test plant species. The cultivation requirements for higher plant species are generally complex, requiring specific levels of illumination, temperature, humidity, water, nutrients, and gas composition in order to achieve normal physiological growth and development. The supply of water, nutrients, and oxygen to the plant root system is a factor, which has proven to be particularly challenging in a microgravity space flight environment. The resolution of this issue is particularly important for the more intensive crop cultivation of plants envisaged in Nasa's advanced life support initiative. BioServe Space Technologies is a NASA, Research Partnership Center (RPC) at the University of Colorado, Boulder. BioServe has designed and operated various space flight plant habitat systems, and placed specific emphasis on the development and enhanced performance of subsystem components such as water and nutrient delivery, illumination, gas exchange and atmosphere control, temperature and humidity control. The further development and application of these subsystems to next generation habitats is of significant benefit and contribution towards the development of both the Space Plant biology and the Advanced Life Support Programs. The cooperative agreement between NASA Ames Research center and BioServe was established to support the further implementation of advanced cultivation techniques and protocols to plant habitat systems being coordinated at NASA Ames Research Center. Emphasis was placed on the implementation of passive

  18. UPTAKE AND PHYTOTRANSFORMATION OF O,P'-DDT AND P,P'-DDT BY AXENICALLY CULTIVATED AQUATIC PLANTS

    EPA Science Inventory

    The uptake and phytotransformation of o,p'-DDT and p,p'-DDT were investigated in vitro using three axenically cultivated aquatic plants: parrot feather (Mariophyllum aquaticum), duckweed (Spirodela oligorrhiza), and elodea (Elodea canadensis). The decay profile of DDT from the aq...

  19. Identification of the terebrantian thrips (Insecta, Thysanoptera) associated with cultivated plants in Java, Indonesia

    PubMed Central

    Sartiami, Dewi; Mound, Laurence A.

    2013-01-01

    Abstract An illustrated identification key is provided to 49 species of Thysanoptera, Terebrantia that have been found in association with cultivated plants in Java. This is the first published identification system to this group of insects from Indonesia, and includes 15 species not previously recorded from Indonesia, and a further three species not previously recorded from Java. A table is provided indicating the plants from which thrips were taken. PMID:23794915

  20. Identification of the terebrantian thrips (Insecta, Thysanoptera) associated with cultivated plants in Java, Indonesia.

    PubMed

    Sartiami, Dewi; Mound, Laurence A

    2013-01-01

    An illustrated identification key is provided to 49 species of Thysanoptera, Terebrantia that have been found in association with cultivated plants in Java. This is the first published identification system to this group of insects from Indonesia, and includes 15 species not previously recorded from Indonesia, and a further three species not previously recorded from Java. A table is provided indicating the plants from which thrips were taken.

  1. Comparing anthracene and fluorene degradation in anthracene and fluorene-contaminated soil by single and mixed plant cultivation.

    PubMed

    Somtrakoon, Khanitta; Chouychai, Waraporn; Lee, Hung

    2014-01-01

    The ability of three plant species (sweet corn, cucumber, and winged bean) to remediate soil spiked with 138.9 and 95.9 mg of anthracene and fluorene per kg of dry soil, respectively, by single and double plant co-cultivation was investigated. After 15 and 30 days of transplantation, plant elongation, plant weight, chlorophyll content, and the content of each PAH in soil and plant tissues were determined. Based on PAH removal and plant health, winged bean was the most effective plant for phytoremediation when grown alone; percentage of fluorene and anthracene remaining in the rhizospheric soil after 30 days were 7.8% and 24.2%, respectively. The most effective combination of plants for phytoremediation was corn and winged bean; on day 30, amounts of fluorene and anthracene remaining in the winged bean rhizospheric soil were 3.4% and 14.3%, respectively; amounts of fluorene and anthracene remaining in the sweet corn rhizospheric soil were 4.1% and 8.8%, respectively. Co-cultivation of sweet corn and cucumber could remove fluorene to a higher extent than anthracene from soil within 15 days, but these plants did not survive and died before day 30. The amounts of fluorene remaining in the rhizospheric soil of corn and cucumber were only 14% and 17.3%, respectively, on day 15. No PAHs were detected in plant tissues. This suggests that phytostimulation of microbial degradation in the rhizosphere was most likely the mechanism by which the PAHs were removed from the spiked soil. The results show that co-cultivation of plants has merit in the phytoremediation of PAH-spiked soil.

  2. Feed-Back Moisture Sensor Control for the Delivery of Water to Plants Cultivated in Space

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Prenger, Jessica J.; Rouzan, Donna T.; Spinale, April C.; Murdoch, Trevor; Burtness, Kevin A.

    2005-01-01

    The development of a spaceflight-rated Porous Tube Insert Module (PTIM) nutrient delivery tray has facilitated a series of studies evaluating various aspects of water and nutrient delivery to plants as they would be cultivated in space. We report here on our first experiment using the PTIM with a software-driven feedback moisture sensor control strategy for maintaining root zone wetness level set-points. One-day-old wheat seedlings (Tritium aestivum cv Apogee; N=15) were inserted into each of three Substrate Compartments (SCs) pre-packed with 0.25-1 . mm Profile(TradeMark) substrate and maintained at root zone relative water content levels of 70, 80 and 90%. The SCs contained a bottom-situated porous tube around which a capillary mat was wrapped. Three Porous Tubes. were planted using similar protocols (but without the substrate) and also maintained at these three moisture level set-points. Half-strength modified Hoagland's nutrient solution was used to supply water and nutrients. Results on hardware performance, water usage rates and wheat developmental differences between the different experimental treatments are presented.

  3. Natural radioactivity in cultivated land in the vicinity of a phosphate fertilizer plant in Nigeria

    NASA Astrophysics Data System (ADS)

    Okeji, Mark C.; Agwu, Kenneth K.; Idigo, Felicitas U.

    2012-12-01

    Natural radioactivity in soil and vegetable samples in cultivated land in the vicinity of an active phosphate fertilizer plant in Kaduna, Nigeria was carried out to assess the potential radiological impact of the plant on its immediate environment. The activity counting was carried out using sodium iodide gamma spectrometry. The annual committed effective dose for two vegetables in the farmlands due to uranium (238U) and thorium (232Th) was assessed. The mean activity concentration of radionuclides in the soil samples ranges from 20.5±7.3 to 31.6±4.1 Bq kg-1 for 226Ra, 19.6±1.6 to 53.2±3.7 Bq kg-1 for 232Th and 203.9±6.3 to 253.6±9.5 Bq kg-1 for 40K. The annual intake of 238U and 232Th from consumption of okra were 1.9 Bq kg-1 and 5.22 Bq kg-1 and for tomatoes 2.66 Bq kg-1 and 5.1 Bq kg-1 respectively. The committed effective doses from consumption of okra and tomatoes were 0.1 μSv y-1 and 0.12 μSv y-1 respectively.

  4. Photosynthesis and water relations in tomato plants cultivated long-term in media containing (+)-usnic acid.

    PubMed

    Latkowska, E; Lechowski, Z; Bialczyk, J; Pilarski, J

    2006-09-01

    The influence of (+)-usnic acid on rates of gas exchange (photosynthesis, respiration, and transpiration) in long-term cultivation of tomato plants was studied. The effect was dose-dependent. Plants grown in media containing the maximum concentration of (+)-usnic acid (30 muM) had photosynthetic and respiration rates reduced by 41% and 80%, respectively. The effect on photosynthesis rate may be the result of a multidirectional effect at various stages of this process, which at the highest usnic acid concentration underwent reduction: content of chlorophylls by 30%, carotenoids by 35%, and Hill reaction activity by 75%. Usnic acid also raises the susceptibility of chlorophyll to photodegradation. Under some conditions, transpiration was reduced by 2.1-fold in light and 3.7-fold in dark. This result was correlated with (1) an increase in the diffusive resistance of the stomata (3.1-fold in upper and 1.5-fold in lower surface of leaf), (2) a reduction of stomata density (by 60% on upper and 40% on lower surface), and (3) a 12.3-fold decrease in root hydraulic conductance.

  5. Cultivation of mesophilic soil crenarchaeotes in enrichment cultures from plant roots.

    PubMed

    Simon, Holly M; Jahn, Courtney E; Bergerud, Luke T; Sliwinski, Marek K; Weimer, Paul J; Willis, David K; Goodman, Robert M

    2005-08-01

    Because archaea are generally associated with extreme environments, detection of nonthermophilic members belonging to the archaeal division Crenarchaeota over the last decade was unexpected; they are surprisingly ubiquitous and abundant in nonextreme marine and terrestrial habitats. Metabolic characterization of these nonthermophilic crenarchaeotes has been impeded by their intractability toward isolation and growth in culture. From studies employing a combination of cultivation and molecular phylogenetic techniques (PCR-single-strand conformation polymorphism, sequence analysis of 16S rRNA genes, fluorescence in situ hybridization, and real-time PCR), we present evidence here that one of the two dominant phylotypes of Crenarchaeota that colonizes the roots of tomato plants grown in soil from a Wisconsin field is selectively enriched in mixed cultures amended with root extract. Clones recovered from enrichment cultures were found to group phylogenetically with sequences from clade C1b.A1. This work corroborates and extends our recent findings, indicating that the diversity of the crenarchaeal soil assemblage is influenced by the rhizosphere and that mesophilic soil crenarchaeotes are found associated with plant roots, and provides the first evidence for growth of nonthermophilic crenarchaeotes in culture.

  6. Cultivation of Mesophilic Soil Crenarchaeotes in Enrichment Cultures from Plant Roots

    PubMed Central

    Simon, Holly M.; Jahn, Courtney E.; Bergerud, Luke T.; Sliwinski, Marek K.; Weimer, Paul J.; Willis, David K.; Goodman, Robert M.

    2005-01-01

    Because archaea are generally associated with extreme environments, detection of nonthermophilic members belonging to the archaeal division Crenarchaeota over the last decade was unexpected; they are surprisingly ubiquitous and abundant in nonextreme marine and terrestrial habitats. Metabolic characterization of these nonthermophilic crenarchaeotes has been impeded by their intractability toward isolation and growth in culture. From studies employing a combination of cultivation and molecular phylogenetic techniques (PCR-single-strand conformation polymorphism, sequence analysis of 16S rRNA genes, fluorescence in situ hybridization, and real-time PCR), we present evidence here that one of the two dominant phylotypes of Crenarchaeota that colonizes the roots of tomato plants grown in soil from a Wisconsin field is selectively enriched in mixed cultures amended with root extract. Clones recovered from enrichment cultures were found to group phylogenetically with sequences from clade C1b.A1. This work corroborates and extends our recent findings, indicating that the diversity of the crenarchaeal soil assemblage is influenced by the rhizosphere and that mesophilic soil crenarchaeotes are found associated with plant roots, and provides the first evidence for growth of nonthermophilic crenarchaeotes in culture. PMID:16085872

  7. Trophic relations of Opatrumsabulosum (Coleoptera, Tenebrionidae) with leaves of cultivated and uncultivated species of herbaceous plants under laboratory conditions.

    PubMed

    Brygadyrenko, Viktor V; Nazimov, Sergii S

    2015-01-01

    We carried out a quantitative assessment of the consumption of herbaceous plants by Opatrumsabulosum (Linnaeus, 1761) - a highly significant agricultural pest species. We researched the feeding preferences of this pest species with respect to 33 uncultivated and 22 cultivated plant species. This species of darkling beetle feeds on many uncultivated plant species, including those with hairy leaves and bitter milky sap, such as Scabiosaucrainca (5.21 mg/specimen/24 hours), Euphorbiavirgata (3.45), Solanumnigrum (3.32), Centauriascabiosa (2.47), Lamiumalbum (2.41), Aristolochiaclematitis (1.76), Chenopodiumalbum (1.73), Arctiumlappa (1.51), Asperulaodorata (1.20). A high rate of leaf consumption is also characteristic for cultivated species, for example, Perillanankinensis (5.05 mg/specimen/24 hours), Lycopersiconesculentum (3.75), Tropaeolummajus (3.29), Nicotianatabacum (2.66), Rumexacetosa (1.96), Betavulgaris (1.27). Opatrumsabulosum is capable of feeding on plants which are poisonous to cattle. This species of darkling beetle consumes 95.5% of the cultivated and 48.5% of the uncultivated herbaceous plants researched.

  8. Trophic relations of Opatrum sabulosum (Coleoptera, Tenebrionidae) with leaves of cultivated and uncultivated species of herbaceous plants under laboratory conditions

    PubMed Central

    Brygadyrenko, Viktor V.; Nazimov, Sergii S.

    2015-01-01

    Abstract We carried out a quantitative assessment of the consumption of herbaceous plants by Opatrum sabulosum (Linnaeus, 1761) – a highly significant agricultural pest species. We researched the feeding preferences of this pest species with respect to 33 uncultivated and 22 cultivated plant species. This species of darkling beetle feeds on many uncultivated plant species, including those with hairy leaves and bitter milky sap, such as Scabiosa ucrainca (5.21 mg/specimen/24 hours), Euphorbia virgata (3.45), Solanum nigrum (3.32), Centauria scabiosa (2.47), Lamium album (2.41), Aristolochia clematitis (1.76), Chenopodium album (1.73), Arctium lappa (1.51), Asperula odorata (1.20). A high rate of leaf consumption is also characteristic for cultivated species, for example, Perilla nankinensis (5.05 mg/specimen/24 hours), Lycopersicon esculentum (3.75), Tropaeolum majus (3.29), Nicotiana tabacum (2.66), Rumex acetosa (1.96), Beta vulgaris (1.27). Opatrum sabulosum is capable of feeding on plants which are poisonous to cattle. This species of darkling beetle consumes 95.5% of the cultivated and 48.5% of the uncultivated herbaceous plants researched. PMID:25685032

  9. Cultivating Research Skills: An interdisciplinary approach in training and supporting energy research

    NASA Astrophysics Data System (ADS)

    Winkler, H.; Carbajales-Dale, P.; Alschbach, E.

    2013-12-01

    Geoscience and energy research has essentially separate and diverse tracks and traditions, making the education process labor-intensive and burdensome. Using a combined forces approach to training, a multidisciplinary workshop on information and data sources and research skills was developed and offered through several departments at Stanford University. The popular workshops taught required skills to scientists - giving training on new technologies, access to restricted energy-related scientific and government databases, search strategies for data-driven resources, and visualization and geospatial analytics. Feedback and data suggest these workshops were fundamental as they set the foundation for subsequent learning opportunities for students and faculty. This session looks at the integration of the information workshops within multiple energy and geoscience programs and the importance of formally cultivating research and information skills.

  10. Tip Saves Energy, Money for Pennsylvania Plant

    EPA Pesticide Factsheets

    A wastewater treatment plant in Berks County, Pennsylvania is saving nearly $45,000 a year and reducing hundreds of metric tons of greenhouse gases since employing an energy conservation tip offered by the Water Protection Division in EPA’s R3 and PADEP.

  11. Air Storage System Energy Transfer (ASSET) plants

    NASA Astrophysics Data System (ADS)

    Stys, Z. S.

    1983-09-01

    The design features and performance capabilities of Air Storage System Energy Transfer (ASSET) plants for transferring off-peak utility electricity to on-peak hours are described. The plant operations involve compressing ambient air with an axial flow compressor and depositing it in an underground reservoir at 70 bar pressure. Released during a peaking cycle, the pressure is reduced to 43 bar, the air is heated to 550 C, passed through an expander after a turbine, and passed through a low pressure combustion chamber to be heated to 850 C. A West German plant built in 1978 to supply over 300 MW continuous power for up to two hours is detailed, noting its availability factor of nearly 98 percent and power delivery cost of $230/kW installed. A plant being constructed in Illinois will use limestone caverns as the air storage tank.

  12. The investigation of the possibility for using some wild and cultivated plants as hyperaccumulators of heavy metals from contaminated soil.

    PubMed

    Maric, Miroslava; Antonijevic, Milan; Alagic, Sladjana

    2013-02-01

    The copper production in Bor (East Serbia) during the last 100 years presents an important source of the pollution of environment. Dust, waste waters, tailing, and air pollutants influence the quality of soil, water, and air. Over 2,000 ha of fertile soil have been damaged by the flotation tailing from Bor's facilities. The goal of the present work has been to determine the content of Pb, Cu, and Fe in wild plants (17 species) naturally growing in the damaged soil and in fodder crops (nine species) planted at the same place. The content of Pb, Cu, and Fe has been analyzed in damaged soil as well. This study has also searched for native (wild) and cultivated plants which are able to grow in contaminated soil in the area of the intense industrial activity of copper production in Bor, which means that they can accumulate and tolerate heavy metals in their above-ground tissues. It has been found out that the content of all metals in contaminated soil decreases considerably at the end of the experiment. As it has been expected, all plant species could accumulate investigated metals. All tested plants, both wild-growing and cultivated plants, seem to be quite healthy on the substrate which contained extremely high concentrations of copper.

  13. Can the cultivation of microalgae meet U.S. energy demands?

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2011-08-01

    As biofuels such as ethanol and esters become increasingly attractive alternatives to nonrenewable resources such as oil and coal, scientists have become interested in determining the feasibility of biofuels to help meet U.S. energy demands in light of governmental efforts to develop cleaner-burning, renewable fuels. Of particular interest are microalgae—single-celled, photosynthetic organisms—which have been shown to have high biomass yields per acre cultivated. But does the United States have the resources to cultivate microalgae as a viable alternative to fossil fuel consumption? To answer this question, Wigmosta et al. sought to quantify how much water and land would be needed for commercial-scale algal biofuel production, based on where production could feasibly occur. They find that with current technology, the United States has the potential to produce 220 billion liters per year of microalgal oil, equivalent to about 48% of current domestic imports. However, they caution that meeting this potential would require that roughly 5.5% of land in the continental United States and 3 times the amount of water currently used for irrigation be devoted to algal production, though optimizing the locations of microalgae production to maximize efficiency of water usage could significantly reduce water demands. These optimal locations include areas around the Great Lakes, the Gulf Coast, and the southeastern seaboard; these coastal locations would allow a 75% reduction in freshwater use and a 67% reduction in land use to cultivate biofuel resources. Moreover, biofuel production through these optimized locations could substitute for up to 17% of oil currently imported for transportation, indicating that with proper planning, U.S. goals for renewable fuels could be met. (Water Resources Research, doi:10.1029/2010WR009966, 2011)

  14. PFRU, a single dominant locus regulates the balance between sexual and asexual plant reproduction in cultivated strawberry.

    PubMed

    Gaston, Amèlia; Perrotte, Justine; Lerceteau-Köhler, Estelle; Rousseau-Gueutin, Mathieu; Petit, Aurélie; Hernould, Michel; Rothan, Christophe; Denoyes, Béatrice

    2013-04-01

    Strawberry (Fragaria sp.) stands as an interesting model for studying flowering behaviour and its relationship with asexual plant reproduction in polycarpic perennial plants. Strawberry produces both inflorescences and stolons (also called runners), which are lateral stems growing at the soil surface and producing new clone plants. In this study, the flowering and runnering behaviour of two cultivated octoploid strawberry (Fragaria × ananassa Duch., 2n = 8× = 56) genotypes, a seasonal flowering genotype CF1116 and a perpetual flowering genotype Capitola, were studied along the growing season. The genetic bases of the perpetual flowering and runnering traits were investigated further using a pseudo full-sibling F1 population issued from a cross between these two genotypes. The results showed that a single major quantitative trait locus (QTL) named FaPFRU controlled both traits in the cultivated octoploid strawberry. This locus was not orthologous to the loci affecting perpetual flowering (SFL) and runnering (R) in Fragaria vesca, therefore suggesting different genetic control of perpetual flowering and runnering in the diploid and octoploid Fragaria spp. Furthermore, the FaPFRU QTL displayed opposite effects on flowering (positive effect) and on runnering (negative effect), indicating that both traits share common physiological control. These results suggest that this locus plays a major role in strawberry plant fitness by controlling the balance between sexual and asexual plant reproduction.

  15. [Dynamic variance of intracellular metabolic energies under rhythmical control for dissolved oxygen in PHB mixed cultivation].

    PubMed

    Qian, Z W; Tohyama, M; Hua, Q; Shimizu, K

    2001-07-01

    The mixed cultivation using cheaper carbon source-wasted food material contained glucose and lactate at the same time was conducted in 5L fermentor, within which glucose was converted to lactate by L. delbrueckii in anaerobic condition and the lactate was converted to PHB by R. eutropha in aerobic condition. Considering dissolved oxygen concentration may affect the level of intracellular ATP and NADPH of the metabolic pathways for R. eutropha in lactate under autotrophy or heterotrophy, rhythmical oscillated control for DO based on chaos control method was consequently presented. This method was employed to satisfy two strains for opposite oxygen preferences, moreover, excite the intracellular metabolic energy simultaneously. The values examined through spectrophotofluorimetry represented that both ATP and NADPH exhibited fluctuations in accordance with the DO rhythm. By means of this control design, the concentration of PHB can be doubled than the usual under stable DO control.

  16. Cultivation and energy efficient harvesting of microalgae using thermoreversible sol-gel transition

    PubMed Central

    Estime, Bendy; Ren, Dacheng; Sureshkumar, Radhakrishna

    2017-01-01

    Microalgae represent a promising source of renewable biomass for the production of biofuels and valuable chemicals. However, energy efficient cultivation and harvesting technologies are necessary to improve economic viability. A Tris-Acetate-Phosphate-Pluronic (TAPP) medium that undergoes a thermoreversible sol-gel transition is developed to efficiently culture and harvest microalgae without affecting the productivity as compared to that in traditional culture in a well-mixed suspension. After seeding microalgae in the TAPP medium in a solution phase at 15 °C, the temperature is increased by 7 °C to induce gelation. Within the gel, microalgae are observed to grow in large clusters rather than as isolated cells. The settling velocity of the microalgal clusters is approximately ten times larger than that of individual cells cultured in typical solution media. Such clusters are easily harvested gravimetrically by decreasing the temperature to bring the medium to a solution phase. PMID:28102313

  17. Cultivation and energy efficient harvesting of microalgae using thermoreversible sol-gel transition

    NASA Astrophysics Data System (ADS)

    Estime, Bendy; Ren, Dacheng; Sureshkumar, Radhakrishna

    2017-01-01

    Microalgae represent a promising source of renewable biomass for the production of biofuels and valuable chemicals. However, energy efficient cultivation and harvesting technologies are necessary to improve economic viability. A Tris-Acetate-Phosphate-Pluronic (TAPP) medium that undergoes a thermoreversible sol-gel transition is developed to efficiently culture and harvest microalgae without affecting the productivity as compared to that in traditional culture in a well-mixed suspension. After seeding microalgae in the TAPP medium in a solution phase at 15 °C, the temperature is increased by 7 °C to induce gelation. Within the gel, microalgae are observed to grow in large clusters rather than as isolated cells. The settling velocity of the microalgal clusters is approximately ten times larger than that of individual cells cultured in typical solution media. Such clusters are easily harvested gravimetrically by decreasing the temperature to bring the medium to a solution phase.

  18. Limited genetic exchanges between populations of an insect pest living on uncultivated and related cultivated host plants

    PubMed Central

    Vialatte, Aude; Dedryver, Charles-Antoine; Simon, Jean-Christophe; Galman, Marina; Plantegenest, Manuel

    2005-01-01

    Habitats in agroecosystems are ephemeral, and are characterized by frequent disturbances forcing pest species to successively colonize various hosts belonging either to the cultivated or to the uncultivated part of the agricultural landscape. The role of wild habitats as reservoirs or refuges for the aphid Sitobion avenae that colonize cultivated fields was assessed by investigating the genetic structure of populations collected on both cereal crops (wheat, barley and oat) and uncultivated hosts (Yorkshire fog, cocksfoot, bulbous oatgrass and tall oatgrass) in western France. Classical genetic analyses and Bayesian clustering algorithms indicate that genetic differentiation is high between populations collected on uncultivated hosts and on crops, revealing a relatively limited gene flow between the uncultivated margins and the cultivated part of the agroecosystem. A closer genetic relatedness was observed between populations living on plants belonging to the same tribe (Triticeae, Poeae and Aveneae tribes) where aphid genotypes appeared not to be specialized on a single host, but rather using a group of related plant species. Causes of this ecological differentiation and its implications for integrated pest management of S. avenae as cereals pest are discussed. PMID:16024367

  19. Limited genetic exchanges between populations of an insect pest living on uncultivated and related cultivated host plants.

    PubMed

    Vialatte, Aude; Dedryver, Charles-Antoine; Simon, Jean-Christophe; Galman, Marina; Plantegenest, Manuel

    2005-05-22

    Habitats in agroecosystems are ephemeral, and are characterized by frequent disturbances forcing pest species to successively colonize various hosts belonging either to the cultivated or to the uncultivated part of the agricultural landscape. The role of wild habitats as reservoirs or refuges for the aphid Sitobion avenae that colonize cultivated fields was assessed by investigating the genetic structure of populations collected on both cereal crops (wheat, barley and oat) and uncultivated hosts (Yorkshire fog, cocksfoot, bulbous oatgrass and tall oatgrass) in western France. Classical genetic analyses and Bayesian clustering algorithms indicate that genetic differentiation is high between populations collected on uncultivated hosts and on crops, revealing a relatively limited gene flow between the uncultivated margins and the cultivated part of the agroecosystem. A closer genetic relatedness was observed between populations living on plants belonging to the same tribe (Triticeae, Poeae and Aveneae tribes) where aphid genotypes appeared not to be specialized on a single host, but rather using a group of related plant species. Causes of this ecological differentiation and its implications for integrated pest management of S. avenae as cereals pest are discussed.

  20. EPA Announces 2015 Energy Star Certified Manufacturing Plants

    EPA Pesticide Factsheets

    WASHINGTON -- The U.S. Environmental Protection Agency (EPA) announced today that 70 manufacturing plants have achieved Energy Star certification for their superior energy performance in 2015. Together, these manufacturing plants saved a significant

  1. [Detection of agent "zhuanggenling" and investigation of utilization of plant growth retardants in traditional Chinese medicine cultivation].

    PubMed

    Zhai, Yu-yao; Guo, Bao-lin; Huang, Wen-hua

    2015-02-01

    Plant growth retardant as one of plant growth regulator can inhibit the cell division, elongation and growth rate in shoot apical meristem (SAM), which can be reversed by gibberellin regulate the product of photosynthesis transfer to the root and rhizome part. As commonly used plant growth retardant, paclobutrazol, uniconazole, chlorocholine chloride, mepiquat chloride, choline chloride and daminozide are used to promote the growth of root and rhizome, call as "zhuanggenling", "pengdasu", "pengdaji" etc. Single or recombination of plant growth regulator is registered as pesticide, and called as pesticide "zhuanggenling" in this paper. Growth regulator which registered as a foliar fertilizer or fertilization was called agricultural fertilizer "zhuanggenling" in this paper. The author investigate the usage of "zhuanggenling" in the root and rhizome of medicinal plants cultivation from 2012 to 2014 in Sichuan province, Huangyuan town, Mianyang (Ophiopogonis Radix); Pengzhou Aoping town (Chuanxiong Rhizoma); Pengshan Xiejia town (Alismatis Rhizoma); Jiangyou Taiping town and Zhangming town (Aconiti Lateralis Radix Praeparata); Yunnan Wenshan (Notoginseng Radix et Rhizoma); Henan province, Wuzhidafeng Town (Rehmanniae Radix, Achyranthis Bidentatae Radix, Dioscoreae Rhizoma); Gansu Min county (Codonopsis Radix, Angelicae Sinensis Radix); Gansu Li county (Rhei Radix et Rhizoma). The result showed that "zhuanggenling" were applied in the most medicinal plant cultivation except Rhei Radix et Rhizoma. It has been applied widespreadly in Ophiopogonis Radix, Alismatis Rhizoma, Achyranthis Bidentatae Radix, Codonopsis Radix; Rehmanniae Radix, commonly in Angelicae Sinensis Radix application, and occasionally in Chuanxiong Rhizoma, Aconiti Lateralis Radix Praeparata, Notoginseng Radix et Rhizoma and Dioscoreae Rhizoma. In 53 collected sample from plantation areas, fifteen (28%) were pesticide "zhuanggenling", thirty-eight (72%) were pesticide "zhuanggenling". UPLC analysis

  2. Dynamics and Reversibility of the DNA Methylation Landscape of Grapevine Plants (Vitis vinifera) Stressed by In Vitro Cultivation and Thermotherapy.

    PubMed

    Baránek, Miroslav; Čechová, Jana; Raddová, Jana; Holleinová, Věra; Ondrušíková, Eva; Pidra, Miroslav

    2015-01-01

    There is relatively little information concerning long-term alterations in DNA methylation following exposure of plants to environmental stress. As little is known about the ratio of non-heritable changes in DNA methylation and mitotically-inherited methylation changes, dynamics and reversibility of the DNA methylation states were investigated in grapevine plants (Vitis vinifera) stressed by in vitro cultivation. It was observed that significant part of induced epigenetic changes could be repeatedly established by exposure to particular planting and stress conditions. However, once stress conditions were discontinued, many methylation changes gradually reverted and plants returned to epigenetic states similar to those of maternal plants. In fact, in the period of one to three years after in vitro cultivation it was difficult to distinguish the epigenetic states of somaclones and maternal plants. Forty percent of the observed epigenetic changes disappeared within a year subsequent to termination of stress conditions ending and these probably reflect changes caused by transient and reversible stress-responsive acclimation mechanisms. However, sixty percent of DNA methylation diversity remained after 1 year and probably represents mitotically-inherited epimutations. Sequencing of regions remaining variable between maternal and regenerant plants revealed that 29.3% of sequences corresponded to non-coding regions of grapevine genome. Eight sequences (19.5%) corresponded to previously identified genes and the remaining ones (51.2%) were annotated as "hypothetical proteins" based on their similarity to genes described in other species, including genes likely to undergo methylation changes following exposure to stress (V. vinifera gypsy-type retrotransposon Gret1, auxin-responsive transcription factor 6-like, SAM-dependent carboxyl methyltransferase).

  3. Dynamics and Reversibility of the DNA Methylation Landscape of Grapevine Plants (Vitis vinifera) Stressed by In Vitro Cultivation and Thermotherapy

    PubMed Central

    Baránek, Miroslav; Čechová, Jana; Raddová, Jana; Holleinová, Věra; Ondrušíková, Eva

    2015-01-01

    There is relatively little information concerning long-term alterations in DNA methylation following exposure of plants to environmental stress. As little is known about the ratio of non-heritable changes in DNA methylation and mitotically-inherited methylation changes, dynamics and reversibility of the DNA methylation states were investigated in grapevine plants (Vitis vinifera) stressed by in vitro cultivation. It was observed that significant part of induced epigenetic changes could be repeatedly established by exposure to particular planting and stress conditions. However, once stress conditions were discontinued, many methylation changes gradually reverted and plants returned to epigenetic states similar to those of maternal plants. In fact, in the period of one to three years after in vitro cultivation it was difficult to distinguish the epigenetic states of somaclones and maternal plants. Forty percent of the observed epigenetic changes disappeared within a year subsequent to termination of stress conditions ending and these probably reflect changes caused by transient and reversible stress-responsive acclimation mechanisms. However, sixty percent of DNA methylation diversity remained after 1 year and probably represents mitotically-inherited epimutations. Sequencing of regions remaining variable between maternal and regenerant plants revealed that 29.3% of sequences corresponded to non-coding regions of grapevine genome. Eight sequences (19.5%) corresponded to previously identified genes and the remaining ones (51.2%) were annotated as “hypothetical proteins” based on their similarity to genes described in other species, including genes likely to undergo methylation changes following exposure to stress (V. vinifera gypsy-type retrotransposon Gret1, auxin-responsive transcription factor 6-like, SAM-dependent carboxyl methyltransferase). PMID:25973746

  4. [Changes of plant community biomass and soil nutrients during the vegetation succession on abandoned cultivated land in desert steppe region].

    PubMed

    An, Hui; Yang, Xin-Guo; Liu, Bing-Ru; Li, Xue-Bin; He, Xiu-Zhen; Song, Nai-Ping

    2011-12-01

    By the method of substituting temporal serial with spatial serial, and taking five abandoned cultivated lands with different ages (1, 4, 9, 12, and 20 years) in desert steppe region as test objects, this paper studied the change characteristics of plant community biomass and soil nutrients during vegetation succession. With the increasing abandoned years, the plant community aboveground biomass on the abandoned lands increased after an initial decrease, whereas the total nitrogen, total phosphorus, organic carbon contents, and carbon density in 0-60 cm soil layer increased first, decreased then, and increased again, with the maximum values of soil total nitrogen and phosphorus contents appeared on the abandoned lands with the ages 4 and 20 years. During vegetation succession, the effects of soil total nitrogen and organic carbon on plant community biomass were greater than those of soil total phosphorus and soil bulk density.

  5. Utility scale baseload wind energy plants

    SciTech Connect

    Cavallo, A.J.

    1997-09-01

    Wind generated electricity can be transformed from an intermittent to a baseload power supply cost-effectively by taking advantage of the fundamental properties of wind and by the efficient utilization of compressed air energy storage (CAES) systems. A utility scale wind-CAES-transmission system can have a 95% capacity factor at a cost of delivered electricity that is about 15% greater than a conventional wind energy system with a 34% capacity factor. This approach has several compelling advantages. It is based on existing technology and makes best use of costly transmission lines. It produces electricity that is the technical equivalent of that from fossil fuel or nuclear power stations. It minimizes greenhouse gas and other fossil fuel pollution, and is an industrial scale system. And in many cases, the increased value of the plant output will more than compensate for the added cost of the storage system.

  6. Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions

    PubMed Central

    Singh, Devesh; Buhmann, Anne K.; Flowers, Tim J.; Seal, Charlotte E.; Papenbrock, Jutta

    2014-01-01

    Rising sea levels and salinization of groundwater due to global climate change result in fast-dwindling sources of freshwater. Therefore, it is important to find alternatives to grow food crops and vegetables. Halophytes are naturally evolved salt-tolerant plants that are adapted to grow in environments that inhibit the growth of most glycophytic crop plants substantially. Members of the Salicornioideae are promising candidates for saline agriculture due to their high tolerance to salinity. Our aim was to develop genetically characterized lines of Salicornia and Sarcocornia for further breeding and to determine optimal cultivation conditions. To obtain a large and diverse genetic pool, seeds were collected from different countries and ecological conditions. The external transcribed spacer (ETS) sequence of 62 Salicornia and Sarcocornia accessions was analysed: ETS sequence data showed a clear distinction between the two genera and between different Salicornia taxa. However, in some cases the ETS was not sufficiently variable to resolve morphologically distinct species. For the determination of optimal cultivation conditions, experiments on germination, seedling establishment and growth to a harvestable size were performed using different accessions of Salicornia spp. Experiments revealed that the percentage germination was greatest at lower salinities and with temperatures of 20/10 °C (day/night). Salicornia spp. produced more harvestable biomass in hydroponic culture than in sand culture, but the nutrient concentration requires optimization as hydroponically grown plants showed symptoms of stress. Salicornia ramosissima produced more harvestable biomass than Salicornia dolichostachya in artificial sea water containing 257 mM NaCl. Based on preliminary tests on ease of cultivation, gain in biomass, morphology and taste, S. dolichostachya was investigated in more detail, and the optimal salinity for seedling establishment was found to be 100 mM. Harvesting of S

  7. Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions.

    PubMed

    Singh, Devesh; Buhmann, Anne K; Flowers, Tim J; Seal, Charlotte E; Papenbrock, Jutta

    2014-11-10

    Rising sea levels and salinization of groundwater due to global climate change result in fast-dwindling sources of freshwater. Therefore, it is important to find alternatives to grow food crops and vegetables. Halophytes are naturally evolved salt-tolerant plants that are adapted to grow in environments that inhibit the growth of most glycophytic crop plants substantially. Members of the Salicornioideae are promising candidates for saline agriculture due to their high tolerance to salinity. Our aim was to develop genetically characterized lines of Salicornia and Sarcocornia for further breeding and to determine optimal cultivation conditions. To obtain a large and diverse genetic pool, seeds were collected from different countries and ecological conditions. The external transcribed spacer (ETS) sequence of 62 Salicornia and Sarcocornia accessions was analysed: ETS sequence data showed a clear distinction between the two genera and between different Salicornia taxa. However, in some cases the ETS was not sufficiently variable to resolve morphologically distinct species. For the determination of optimal cultivation conditions, experiments on germination, seedling establishment and growth to a harvestable size were performed using different accessions of Salicornia spp. Experiments revealed that the percentage germination was greatest at lower salinities and with temperatures of 20/10 °C (day/night). Salicornia spp. produced more harvestable biomass in hydroponic culture than in sand culture, but the nutrient concentration requires optimization as hydroponically grown plants showed symptoms of stress. Salicornia ramosissima produced more harvestable biomass than Salicornia dolichostachya in artificial sea water containing 257 mM NaCl. Based on preliminary tests on ease of cultivation, gain in biomass, morphology and taste, S. dolichostachya was investigated in more detail, and the optimal salinity for seedling establishment was found to be 100 mM. Harvesting of S

  8. Goji Berry: Quality Assessment and Crop Adaptation of Plants Cultivated in Tuscany (Italy) by Combination of Carotenoid and DNA Analyses.

    PubMed

    Capecchi, Giada; Goti, Emanuele; Nicolai, Elena; Bergonzi, Maria Camilla; Monnanni, Roberto; Bilia, Anna Rita

    2015-06-01

    In this study HPLC analysis for the evaluation of carotenoids and DNA barcoding are reported for three different samples of Lycium cultivated in Tuscany (Italy). These two analytical methods can represent integrative methods for quality control of goji, giving also crucial information on the plant adaptation to different environments. Hence, carotenoids represent the quality markers proposed by the monograph of the European Pharmacopoeia, while DNA barcoding can differentiate between species and populations and is useful for the detection of the homogeneity of the samples.

  9. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary goal of this research was to investigate the prokaryotic and fungal communities associated with the bulk soil, the rhizosphere, the phyllosphere, and the root and leaf endospheres, for three Agave species: the cultivated Agave tequilana and the native species, A. salmiana and A. deserti ...

  10. Cultivation of vancomycin-resistant enterococci and methicillin-resistant staphylococci from input and output samples of German biogas plants.

    PubMed

    Glaeser, Stefanie P; Sowinsky, Olivia; Brunner, Jana S; Dott, Wolfgang; Kämpfer, Peter

    2016-03-01

    Vancomycin-resistant enterococci (VRE) and methicillin-resistant staphylococci (MRS) were detected in two mesophilic German biogas plants (BGPs) using selective pre-enrichment methods combined with cultivation on CHROMagar media and antibiotic resistance gene screening. Genetic fingerprinting and 16S rRNA gene sequencing showed the presence of enterococci isolated by the VRE selective cultivation (67 isolates) in input and output samples of BGPs. In contrast, MRS (44 isolates) were detected in input, but in none of the output samples. Enterococcus isolates showed highest 16S rRNA gene sequence similarity (>99.8%) to E. lemanii, E. casseliflavus/E. gallinarium or E. devriesei/E. pseudoavium/E. viikkiensis and carried vanA, vanB and/or vanC1 genes. Enterococcus faecium and E. faecalis VRE were not detected, but isolates closely related to those species (>99.9% 16S rRNA gene sequence similarity) were detected by the MRS selective cultivation methods. Staphylococcus isolates shared highest 16S rRNA gene sequence similarity (>99.9%) with S. haemolyticus, S. lentus and S. sciuri and carried mecA genes. Methicillin-resistant S. aureus (MRSA) were not detected. In summary, manure from livestock husbandry contained both, VRE and MRS. VRE were also detected in output samples, indicating that enterococci with vancomycin resistance genes could be release into the environment by the application of BGP output material as biofertilizers.

  11. [Feasibility of the use of degraded inedible biomass of plants as a nutrient liquid for hydroponic cultivation].

    PubMed

    Guo, S S; Ai, W D; Hou, W H; Shi, W W

    2001-10-01

    Objective. To demonstrate that the recycled liquid, which originated from lettuce inedible biomass degraded by fixed microorganism (correction of microorgannism) and enzyme, can be used as a nutrient solution for lettuce hydroponic cultivation. Method. After biologically degrading the weighted, oven-dried and milled leaves and roots of lettuce in a biological reactor under aerobic condition, the original effluent and its supplemented effluent were used as nutrients for lettuce hydroponic cultivation. Result. The average dried weight (ADW) of lettuce from the original effluent group was approximately half of that from the control group, and the ADW from supplemented effluent group was about equal to that from the control group; some qualities of the lettuce such as a relatively lower content of NO3- from both the original effluent group and the supplemented effluent one improved, and some of those such as a relatively higher content of NO2- dropped. Conclusion. The biologically-degraded effluent was able to be used as nutrient solution for lettuce hydroponic cultivation, although the effects of the inorganic ion-supplemented effluent were much better; the plants of lettuce from the biologically-degraded effluent were safely edible.

  12. Virtual Simulation of Vision 21 Energy Plants

    SciTech Connect

    Syamlal, Madhava; Felix, Paul E.; Osawe, Maxwell O.; Fiveland, Woodrow A.; Sloan, David G.; Zitney, Stephen E.; Joop, Frank; Cleetus, Joseph; Lapshin, Igor B.

    2001-11-06

    The Vision 21 Energy plants will be designed by combining several individual power, chemical, and fuel-conversion technologies. These independently developed technologies or technology modules can be interchanged and combined to form the complete Vision 21 plant that achieves the needed level of efficiency and environmental performance at affordable costs. The knowledge about each technology module must be captured in computer models so that the models can be linked together to simulate the entire Vision 21 power plant in a Virtual Simulation environment. Eventually the Virtual Simulation will find application in conceptual design, final design, plant operation and control, and operator training. In this project we take the first step towards developing such a Vision 21 Simulator. There are two main knowledge domains of a plant--the process domain (what is in the pipes), and the physical domain (the pipes and equipment that make up the plant). Over the past few decades, commercial software tools have been developed for each of these functions. However, there are three main problems that inhibit the design and operation of power plants: (1) Many of these tools, largely developed for chemicals and refining, have not been widely adopted in the power industry. (2) Tools are not integrated across functions. For example, the knowledge represented by computational fluid dynamics (CFD) models of equipment is not used in process-level simulations. (3) No tool exists for readily integrating the design and behavioral knowledge about components. These problems must be overcome to develop the Vision 21 Simulator. In this project our major objective is to achieve a seamless integration of equipment-level and process-level models and apply the integrated software to power plant simulations. Specifically we are developing user-friendly tools for linking process models (Aspen Plus) with detailed equipment models (FLUENT CFD and other proprietary models). Such integration will

  13. Towards energy positive wastewater treatment plants.

    PubMed

    Gikas, Petros

    2016-06-14

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m(3), (or 0.087 kWh/m(3), if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  14. District Energy Corporation SW 40th Street Thermal Energy Plant

    SciTech Connect

    Davlin, Thomas

    2014-06-06

    The overall deliverable from the project is the design, construction and commissioning of a detention facility heating and cooling system that minimizes ownership costs and maximizes efficiency (and therefore minimizes environmental impact). The primary deliverables were the proof of concept for the application of geothermal systems for an institutional facility and the ongoing, quarterly system operating data downloads to the Department of Energy . The primary advantage of geothermal based heat pump systems is the higher efficiency of the system compared to a conventional chiller, boiler, cooling tower based system. The higher efficiency results in a smaller environmental foot print and lower energy costs for the detention facility owner, Lancaster County. The higher efficiency for building cooling is primarily due to a more constant compressor condensing temperature with the geothermal well field acting as a thermal “sink” (in place of the conventional system’s cooling tower). In the heating mode, Ground Couple Heat Pump (GCHP) systems benefits from the advantage of a heat pump Coefficient of Performance (COP) of approximately 3.6, significantly better than a conventional gas boiler. The geothermal well field acting as a thermal “source” allows the heat pumps to operate efficiently in the heating mode regardless of ambient temperatures. The well field is partially located in a wetland with a high water table so, over time, the project will be able to identify the thermal loading characteristics of a well field located in a high water table location. The project demonstrated how a large geothermal well field can be installed in a wetland area in an economical and environmentally sound manner. Finally, the SW 40th Street Thermal Energy Plant project demonstrates the benefits of providing domestic hot water energy, as well as space heating, to help balance well filed thermal loading in a cooling dominated application. During the period of August 2012 thru

  15. Time since introduction, seed mass, and genome size predict successful invaders among the cultivated vascular plants of Hawaii.

    PubMed

    Schmidt, John Paul; Drake, John M

    2011-03-02

    Extensive economic and environmental damage has been caused by invasive exotic plant species in many ecosystems worldwide. Many comparative studies have therefore attempted to predict, from biological traits, which species among the pool of naturalized non-natives become invasive. However, few studies have investigated which species establish and/or become pests from the larger pool of introduced species and controlled for time since introduction. Here we present results from a study aimed at quantifying predicting three classes of invasive species cultivated in Hawaii. Of 7,866 ornamental species cultivated in Hawaii between 1840 and 1999, 420 (5.3%) species naturalized, 141 (1.8%) have been classified as weeds, and 39 (0.5%) were listed by the state of Hawaii as noxious. Of the 815 species introduced >80 years ago, 253 (31%) have naturalized, 90 (11%) are classed as weeds, and 22 (3%) as noxious by the state of Hawaii. Using boosted regression trees we classified each group with nearly 90% accuracy, despite incompleteness of data and the low proportion of naturalized or pest species. Key biological predictors were seed mass and highest chromosome number standardized by genus which, when data on residence time was removed, were able to predict all three groups with 76-82% accuracy. We conclude that, when focused on a single region, screening for potential weeds or noxious plants based on a small set of biological traits can be achieved with sufficient accuracy for policy and management purposes.

  16. Uncovering the cultivable microbial diversity of costa rican beetles and its ability to break down plant cell wall components.

    PubMed

    Vargas-Asensio, Gabriel; Pinto-Tomas, Adrian; Rivera, Beatriz; Hernandez, Myriam; Hernandez, Carlos; Soto-Montero, Silvia; Murillo, Catalina; Sherman, David H; Tamayo-Castillo, Giselle

    2014-01-01

    Coleopterans are the most diverse insect order described to date. These organisms have acquired an array of survival mechanisms through their evolution, including highly efficient digestive systems. Therefore, the coleopteran intestinal microbiota constitutes an important source of novel plant cell wall-degrading enzymes with potential biotechnological applications. We isolated and described the cultivable fungi, actinomycetes and aerobic eubacteria associated with the gut of larvae and adults from six different beetle families colonizing decomposing logs in protected Costa Rican ecosystems. We obtained 611 isolates and performed phylogenetic analyses using the ITS region (fungi) and 16S rDNA (bacteria). The majority of fungal isolates belonged to the order Hypocreales (26% of 169 total), while the majority of actinomycetes belonged to the genus Streptomyces (86% of 241 total). Finally, we isolated 201 bacteria spanning 19 different families belonging into four phyla: Firmicutes, α, β and γ-proteobacteria. Subsequently, we focused on microbes isolated from Passalid beetles to test their ability to degrade plant cell wall polymers. Highest scores in these assays were achieved by a fungal isolate (Anthostomella sp.), two Streptomyces and one Bacillus bacterial isolates. Our study demonstrates that Costa Rican beetles harbor several types of cultivable microbes, some of which may be involved in symbiotic relationships that enable the insect to digest complex polymers such as lignocellulose.

  17. Time since Introduction, Seed Mass, and Genome Size Predict Successful Invaders among the Cultivated Vascular Plants of Hawaii

    PubMed Central

    Schmidt, John Paul; Drake, John M.

    2011-01-01

    Extensive economic and environmental damage has been caused by invasive exotic plant species in many ecosystems worldwide. Many comparative studies have therefore attempted to predict, from biological traits, which species among the pool of naturalized non-natives become invasive. However, few studies have investigated which species establish and/or become pests from the larger pool of introduced species and controlled for time since introduction. Here we present results from a study aimed at quantifying predicting three classes of invasive species cultivated in Hawaii. Of 7,866 ornamental species cultivated in Hawaii between 1840 and 1999, 420 (5.3%) species naturalized, 141 (1.8%) have been classified as weeds, and 39 (0.5%) were listed by the state of Hawaii as noxious. Of the 815 species introduced >80 years ago, 253 (31%) have naturalized, 90 (11%) are classed as weeds, and 22 (3%) as noxious by the state of Hawaii. Using boosted regression trees we classified each group with nearly 90% accuracy, despite incompleteness of data and the low proportion of naturalized or pest species. Key biological predictors were seed mass and highest chromosome number standardized by genus which, when data on residence time was removed, were able to predict all three groups with 76–82% accuracy. We conclude that, when focused on a single region, screening for potential weeds or noxious plants based on a small set of biological traits can be achieved with sufficient accuracy for policy and management purposes. PMID:21407804

  18. Uncovering the Cultivable Microbial Diversity of Costa Rican Beetles and Its Ability to Break Down Plant Cell Wall Components

    PubMed Central

    Vargas-Asensio, Gabriel; Pinto-Tomas, Adrian; Rivera, Beatriz; Hernandez, Myriam; Hernandez, Carlos; Soto-Montero, Silvia; Murillo, Catalina; Sherman, David H.; Tamayo-Castillo, Giselle

    2014-01-01

    Coleopterans are the most diverse insect order described to date. These organisms have acquired an array of survival mechanisms through their evolution, including highly efficient digestive systems. Therefore, the coleopteran intestinal microbiota constitutes an important source of novel plant cell wall-degrading enzymes with potential biotechnological applications. We isolated and described the cultivable fungi, actinomycetes and aerobic eubacteria associated with the gut of larvae and adults from six different beetle families colonizing decomposing logs in protected Costa Rican ecosystems. We obtained 611 isolates and performed phylogenetic analyses using the ITS region (fungi) and 16S rDNA (bacteria). The majority of fungal isolates belonged to the order Hypocreales (26% of 169 total), while the majority of actinomycetes belonged to the genus Streptomyces (86% of 241 total). Finally, we isolated 201 bacteria spanning 19 different families belonging into four phyla: Firmicutes, α, β and γ-proteobacteria. Subsequently, we focused on microbes isolated from Passalid beetles to test their ability to degrade plant cell wall polymers. Highest scores in these assays were achieved by a fungal isolate (Anthostomella sp.), two Streptomyces and one Bacillus bacterial isolates. Our study demonstrates that Costa Rican beetles harbor several types of cultivable microbes, some of which may be involved in symbiotic relationships that enable the insect to digest complex polymers such as lignocellulose. PMID:25411842

  19. Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station.

    PubMed

    Kittang, A-I; Iversen, T-H; Fossum, K R; Mazars, C; Carnero-Diaz, E; Boucheron-Dubuisson, E; Le Disquet, I; Legué, V; Herranz, R; Pereda-Loth, V; Medina, F J

    2014-05-01

    Space experiments provide a unique opportunity to advance our knowledge of how plants respond to the space environment, and specifically to the absence of gravity. The European Modular Cultivation System (EMCS) has been designed as a dedicated facility to improve and standardise plant growth in the International Space Station (ISS). The EMCS is equipped with two centrifuges to perform experiments in microgravity and with variable gravity levels up to 2.0 g. Seven experiments have been performed since the EMCS was operational on the ISS. The objectives of these experiments aimed to elucidate phototropic responses (experiments TROPI-1 and -2), root gravitropic sensing (GRAVI-1), circumnutation (MULTIGEN-1), cell wall dynamics and gravity resistance (Cell wall/Resist wall), proteomic identification of signalling players (GENARA-A) and mechanism of InsP3 signalling (Plant signalling). The role of light in cell proliferation and plant development in the absence of gravity is being analysed in an on-going experiment (Seedling growth). Based on the lessons learned from the acquired experience, three preselected ISS experiments have been merged and implemented as a single project (Plant development) to study early phases of seedling development. A Topical Team initiated by European Space Agency (ESA), involving experienced scientists on Arabidopsis space research experiments, aims at establishing a coordinated, long-term scientific strategy to understand the role of gravity in Arabidopsis growth and development using already existing or planned new hardware.

  20. Energy conservation in small meat, poultry and dairy processing plants

    SciTech Connect

    Hausen, C.L.; Fields, E.L.; Huff, R.C.

    1983-06-01

    Energy audits were performed in twenty-three small (generally under 50 employees) meat, poultry and dairy processing plants. Energy conservation opportunities with the greatest potential for net gain in a plant are listed and discussed. Relationships between product throughput and energy consumption are reported.

  1. Changes in operational procedures to improve spaceflight experiments in plant biology in the European Modular Cultivation System

    NASA Astrophysics Data System (ADS)

    Kiss, John Z.; Aanes, Gjert; Schiefloe, Mona; Coelho, Liz H. F.; Millar, Katherine D. L.; Edelmann, Richard E.

    2014-03-01

    The microgravity environment aboard orbiting spacecraft has provided a unique laboratory to explore topics in basic plant biology as well as applied research on the use of plants in bioregenerative life support systems. Our group has utilized the European Modular Cultivation System (EMCS) aboard the International Space Station (ISS) to study plant growth, development, tropisms, and gene expression in a series of spaceflight experiments. The most current project performed on the ISS was termed Seedling Growth-1 (SG-1) which builds on the previous TROPI (for tropisms) experiments performed in 2006 and 2010. Major technical and operational changes in SG-1 (launched in March 2013) compared to the TROPI experiments include: (1) improvements in lighting conditions within the EMCS to optimize the environment for phototropism studies, (2) the use of infrared illumination to provide high-quality images of the seedlings, (3) modifications in procedures used in flight to improve the focus and overall quality of the images, and (4) changes in the atmospheric conditions in the EMCS incubator. In SG-1, a novel red-light-based phototropism in roots and hypocotyls of seedlings that was noted in TROPI was confirmed and now can be more precisely characterized based on the improvements in procedures. The lessons learned from sequential experiments in the TROPI hardware provide insights to other researchers developing space experiments in plant biology.

  2. Photosynthetic activity and growth analysis of the plant {Costus spicatus} cultivated under different light conditions

    NASA Astrophysics Data System (ADS)

    Campos, V. M.; Pasin, L. A. A. P.; Barja, P. R.

    2008-01-01

    The aim of the present work was to evaluate the effect of different radiance levels (25%, 50% and 100% of full sunlight) in growth (height, leaf area, number of leaves) and photosynthetic activity of the plant Costus spicatus, popularly known in Brazil as Caninha do Brejo. Photoacoustic (PA) measurements were performed in order to evaluate comparatively the photosynthetic activity rate of plants submitted to different light intensity regimes. The results obtained show that plants maintained under low light intensity levels (25% of sunlight) presented higher height, leaf area and number of leaves, while plants grown under full sunlight presented higher radicular length. PA measurements indicated higher photosynthetic rate for plants grown under 50% of full sunlight, but plants developed under 25% of full sunlight (75% shading) presented the fastest response to light incidence (photosynthetic induction).

  3. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    SciTech Connect

    Worrell, Ernst; Angelini, Tana; Masanet, Eric

    2010-07-27

    In the United States, industry spends over $100 billion annually to power its manufacturing plants. Companies also spend on maintenance, capital outlay, and energy services. Improving energy efficiency is vital to reduce these costs and increase earnings. Many cost-effective opportunities to reduce energy consumption are available, and this Energy Guide discusses energy-efficiency practices and energy-efficient technologies that can be applied over a broad spectrum of companies. Strategies in the guide address hot water and steam, compressed air, pumps, motors, fans, lighting, refrigeration, and heating, ventilation, and air conditioning. This guide includes descriptions of expected energy and cost savings, based on real-world applications, typical payback periods, and references to more detailed information. The information in this Energy Guide is intended to help energy and plant managers achieve cost-effective energy reductions while maintaining product quality. Further research on the economics of all measures--as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  4. Salicylic acid elicitation during cultivation of the peppermint plant improves anti-diabetic effects of its infusions.

    PubMed

    Figueroa-Pérez, Marely G; Gallegos-Corona, Marco A; Ramos-Gomez, Minerva; Reynoso-Camacho, Rosalía

    2015-06-01

    Peppermint (Mentha piperita) infusions represent an important source of bioactive compounds with health benefits, which can be enhanced by applying salicylic acid (SA) during plant cultivation. The aim of this study was to evaluate the effect of SA (0, 0.5 and 2 mM) during peppermint cultivation on the chemical profile of saponins and alkaloids, as well as the anti-diabetic properties of the resulting infusions. The results showed that a 2 mM SA treatment significantly improved the chemical profiles of the infusions. Furthermore, the administration of 2 mM SA-treated peppermint infusions for 4 weeks to a high-fat diet/streptozotocin-induced diabetic rats decreased serum glucose levels (up to 25%) and increased serum insulin levels (up to 75%) as compared with the diabetic control. This can be related to the observed protection on pancreatic β-cells. Furthermore, 0.5 and 2 mM SA-treated peppermint infusions decreased LDL (24 and 47%, respectively) and increased HDL levels (18 and 37%, respectively). In addition, all groups treated with peppermint infusions had lower serum and liver triglyceride contents, where 2 mM SA peppermint infusion showed the highest effect (44% and 56%, respectively). This is probably caused by its higher capacity to inhibit pancreatic lipase activity and lipid absorption. Moreover, SA-treated peppermint infusions improved the steatosis score in diabetic rat liver and decreased serum transaminase levels, probably as a result of the increase in steroidal saponins and alkaloids, such as trigonellin. Therefore, the application of 2 mM SA during cultivation of peppermint could be used to improve the anti-diabetic properties of peppermint infusions.

  5. Mineral content of culinary and medicinal plants cultivated by Hmong refugees living in Sacramento, California.

    PubMed

    Corlett, Jan L; Clegg, Michael S; Keen, Carl L; Grivetti, Louis E

    2002-03-01

    Since the end of the American-Vietnamese War in 1975, more than 1.5 million refugees from Southeast Asia have resettled in the United States. Included among these displaced persons were the Hmong from Laos, a subsistence-based, shifting-cultivation, agricultural society. Hmong who resettled in urban areas have viewed vacant lots adjacent to urban dwellings as potential garden sites for production of familiar herbs and vegetables. In the present study exotic culinary and medicinal herbs grown by Hmong refugees in Sacramento, California were identified and analyzed for mineral composition. The herbs grown in these urban gardens were significant ingredients of Hmong recipes, and herb leaves, or infusions of steamed herb leaves were widely consumed as a component of pregnancy and post-partum diets. Six common species, Acorus gramineus, aff. Angelica, Dendranthema indicum, Eupatorium lindleyana, Sedum aff. sarmentosum, and Sedum aff. spectabile, were used in combination to season chicken. Polygonum odoratum, also widely cultivated, was used to season fish. Exotic culinary-medicinal species with highest mineral profiles included: Basella alba (Ca, Mg, Mn, Zn); Houttuynia cordata (Fe, Mg, Mn); Justica gendarussa (Ca, Mg, Zn); and Polygonum odoratum (Ca, Mg, Mn). While vacant lots sometimes are heavy metal contamination sites, we found no detectable levels of arsenic, cadmium, chromium, or lead in the samples analyzed.

  6. Non-allergenic native and cultivated plants in Oklahoma: landscaping without hay fever.

    PubMed

    Levetin, E; Buck, P

    1984-03-01

    Many common landscaping plants produce allergenic pollen. Hay fever patients can reduce their exposure to aeroallergens by selecting non-allergenic species for yards, lawns and streets. The plants listed here are non-allergenic (hypo-allergenic) and possess characteristics desired for landscaping. Categories described include trees, shrubs, vines, perennial herbs and grasses.

  7. Traditional agroecosystems as conservatories and incubators of cultivated plant varietal diversity: the case of fig (Ficus carica L.) in Morocco

    PubMed Central

    2010-01-01

    Background Traditional agroecosystems are known to host both large crop species diversity and high within crop genetic diversity. In a context of global change, this diversity may be needed to feed the world. Are these agroecosystems museums (i.e. large core collections) or cradles of diversity? We investigated this question for a clonally propagated plant, fig (Ficus carica), within its native range, in Morocco, but as far away as possible from supposed centers of domestication. Results Fig varieties were locally numerous. They were found to be mainly highly local and corresponded to clones propagated vegetatively. Nevertheless these clones were often sufficiently old to have accumulated somatic mutations for selected traits (fig skin color) and at neutral loci (microsatellite markers). Further the pattern of spatial genetic structure was similar to the pattern expected in natural population for a mutation/drift/migration model at equilibrium, with homogeneous levels of local genetic diversity throughout Moroccan traditional agroecosystems. Conclusions We conclude that traditional agroecosystems constitue active incubators of varietal diversity even for clonally propagated crop species, and even when varieties correspond to clones that are often old. As only female fig is cultivated, wild fig and cultivated fig probably constitute a single evolutionary unit within these traditional agroecosystems. Core collections, however useful, are museums and hence cannot serve the same functions as traditional agroecosystems. PMID:20167055

  8. Wind Plant Preconstruction Energy Estimates. Current Practice and Opportunities

    SciTech Connect

    Clifton, Andrew; Smith, Aaron; Fields, Michael

    2016-04-19

    Understanding the amount of energy that will be harvested by a wind power plant each year and the variability of that energy is essential to assessing and potentially improving the financial viability of that power plant. The preconstruction energy estimate process predicts the amount of energy--with uncertainty estimates--that a wind power plant will deliver to the point of revenue. This report describes the preconstruction energy estimate process from a technical perspective and seeks to provide insight into the financial implications associated with each step.

  9. Seed-borne viral dsRNA elements in three cultivated Raphanus and Brassica plants suggest three cryptoviruses.

    PubMed

    Li, Liqiang; Liu, Jianning; Zhang, Qiong; Fu, Runying; Zhu, Xiwu; Li, Chao; Chen, Jishuang

    2016-04-01

    Since the 1970s, several dsRNA viruses, including Radish yellow edge virus, Raphanus sativus virus 1, Raphanus sativus virus 2, and Raphanus sativus virus 3, have been identified and reported as infecting radish. In the present study, in conjunction with a survey of seed-borne viruses in cultivated Brassica and Raphanus using the dsRNA diagnostic method, we discovered 3 novel cryptoviruses that infect Brassica and Raphanus: Raphanus sativus partitivirus 1, which infects radish (Raphanus sativus); Sinapis alba cryptic virus 1, which infects Sinapis alba; and Brassica rapa cryptic virus 1 (BrCV1), which infects Brassica rapa. The genomic organization of these cryptoviruses was analyzed and characterized. BrCV1 might represent the first plant partitivirus found in Gammapartitivirus. Additionally, the evolutionary relationships among all of the partitiviruses reported in Raphanus and Brassica were analyzed.

  10. Application of PIXE analysis to investigation of plants cultivated with contaminated soil of Fukushima

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Terakawa, A.; Matsuyama, S.; Ishizaki, A.; Arai, H.; Osada, N.; Sugai, H.; Takahashi, H.; Sera, K.; Sasaki, H.; Sasaki, K.; Sawamura, T.

    2014-08-01

    We present a method to research low radioactive cesium contaminated plants by the use of PIXE analysis. Highly contaminated regions still remain in the Fukushima prefecture. We collected wild plants growing in this area, that is, Butterbur, Welsh onion, Alpine leek and White clover and measured their specific activities of 137Cs and 40K. We also measured 137Cs and 40K specific activities of soil under these plants. Soil-to-plant transfer factors of 137Cs were ∼0.02 for 4 wild plants and those of 40K were ∼0.5 except for White clover. Using PIXE analysis, we measured the concentration of mineral elements in these plants. Among mineral elements, we noted the concentrations of additional alkali metal elements such as Na, K and Rb. The experimental results showed that the concentration of Rb was proportional to the specific activities of 137Cs except for Welsh onion and other elements had no strong correlation with 137Cs. These results indicate that there may be correlations between the adsorption of Cs and Rb.

  11. Solar Power Plants: Dark Horse in the Energy Stable

    ERIC Educational Resources Information Center

    Caputo, Richard S.

    1977-01-01

    Twelfth in a series of reports on solar energy, this article provides information relating to the following questions: (1) economic cost of solar-thermal-electric central power plants; (2) cost comparison with nuclear or coal plants; (3) locations of this energy source; and (4) its use and social costs. (CS)

  12. [Study on the nitrogen and phosphorus uptake ability of four plants cultivated on floating-bed].

    PubMed

    Wu, Jian-Qiang; Wang, Min; Wu, Jian; Jiang, Yue; Sun, Cong-Jun; Cao, Yong

    2011-04-01

    Plant floating-bed tested engineering was constructed for eutrophication control in Dian-shan Lake, the characteristics and nutrient uptake abilities of Canna indica, Iris pseudacorus, Thalia dealbata and Lythrum salicaria were compared. It shows that using upper and lower nylon nets to fix the plants on the floating-bed is beneficial for them to grow and reproduce rapidly. Survival rates of Canna indica, lris pseudacorus, Thalia dealbata and Lythrum salicaria are 83.33%, 83.33%, 76.67% and 53.33% respectively. Ramets of Canna indica and Thalia dealbata are 64 and 78 respectively in November, and the biomass (fresh weight) of these two plants are 32.0 and 38.6 kg per individual plant. Nitrogen (N) and phosphorus (P) content in stems/leaves of Canna indica and Thalia dealbata are greater than those in roots. The ratio between stems/leaves and roots of N, P content in Canna indica are 1.40 and 1.21 respectively, while 1.59 and 1.08 in Thalia dealbata. The difference of cumulative N, P content in plants is mostly on account of different plant biomass. N uptake ability of Thalia dealbata is the highest, which is 457.11 g per square; Canna indica has the highest P uptake ability, which is 41.29 g per square. N, P uptake ability of stems/leaves in Canna indica are 2.17 and 1.86 times higher than that of roots, while 1.73 and 1.17 times higher respectively in Thalia dealbata. Thus, Canna indica and Thalia dealbata are recommended as the floating-bed plants to control the eutrophication in Dian-shan Lake.

  13. Ecological specialization of the aphid Aphis gossypii Glover on cultivated host plants.

    PubMed

    Carletto, J; Lombaert, E; Chavigny, P; Brévault, T; Lapchin, L; Vanlerberghe-Masutti, F

    2009-05-01

    Many plant-feeding insect species considered to be polyphagous are in fact composed of genetically differentiated sympatric populations that use different hosts and between which gene flow still exists. We studied the population genetic structure of the cotton-melon aphid Aphis gossypii that is considered as one of the most polyphagous aphid species. We used eight microsatellites to analyse the genetic diversity of numerous samples of A. gossypii collected over several years at a large geographical scale on annual crops from different plant families. The number of multilocus genotypes detected was extremely low and the genotypes were found to be associated with host plants. Five host races were unambiguously identified (Cucurbitaceae, cotton, eggplant, potato and chili- or sweet pepper). These host races were dominated by asexual clones. Plant transfer experiments using several specialized clones further confirmed the existence of host-associated trade-offs. Finally, both genetic and experimental data suggested that plants of the genus Hibiscus may be used as refuge for the specialized clones. Resource abundance is discussed as a key factor involved in the process of ecological specialization in A. gossypii.

  14. Impact of planting dates on a seed maggot, Neotephritis finalis (Diptera: Tephritidae), and sunflower bud moth (Lepidoptera: Tortricidae) damage in cultivated sunflower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neotephritis finalis (Loew) (Diptera: Tephritidae), and sunflower bud moth, Suleima helianthana (Riley) (Lepidoptera: Tortricidae) are major head-infesting insect pests of cultivated sunflower (Helianthus annuus L.). Planting date was evaluated as a cultural pest management strategy for control of N...

  15. Effect of Medicinal Plants Cultivation on the Physicochemical Properties of Leached Chernozem

    NASA Astrophysics Data System (ADS)

    Svistova, I. D.; Stekol'nikov, K. E.; Paramonov, A. Yu.; Kuvshinova, N. M.

    2016-02-01

    For the first time, a nonspecific neutralizing effect of rhizodeposits of medicinal plants has been found in a leached chernozem. The neutralization of actual, exchangeable, and total acidity of the soil takes place against the background of a decrease in the activity of calcium ions in the soil solution. It can be supposed that this effect is due to the release of secondary metabolites of phenol nature in the rhizodeposits. These substances can change the anionic composition of the soil adsorption complex. Plant species with the maximum effect on the composition of the soil adsorption complex have been identified.

  16. Harvesting the biosynthetic machineries that cultivate a variety of indispensable plant natural products

    PubMed Central

    Vickery, Christopher R; La Clair, James J; Burkart, Michael D; Noel, Joseph P

    2016-01-01

    Plants are a sustainable resource for valuable natural chemicals best illustrated by large-scale farming centered on specific products. Here, we review recent discoveries of plant metabolic pathways producing natural products with unconventional biomolecular structures. Prenylation of polyketides by aromatic prenyltransferases (aPTases) ties together two of the major groups of plant specialized chemicals, terpenoids and polyketides, providing a core modification leading to new bioactivities and downstream metabolic processing. Moreover, PTases that biosynthesize Z-terpenoid precursors for small molecules such as lycosantalene have recently been found in the tomato family. Gaps in our understanding of how economically important compounds such as cannabinoids are produced are being identified using next-generation ‘omics’ to rapidly advance biochemical breakthroughs at an unprecedented rate. For instance, olivetolic acid cyclase, a polyketide synthase (PKS) co-factor from Cannabis sativa, directs the proper cyclization of a polyketide intermediate. Elucidations of spatial and temporal arrangements of biosynthetic enzymes into metabolons, such as those used to control the efficient production of natural polymers such as rubber and defensive small molecules such as linamarin and lotaustralin, provide blueprints for engineering streamlined production of plant products. PMID:26851514

  17. Exploring Plants, Insects, and Animals: Opportunities for Cultivating Empathy in Children

    ERIC Educational Resources Information Center

    Belz, Paul

    2012-01-01

    Imagine what a child can learn by slithering across the ground like a worm or snail! Children learn many things from their connections with beautiful living things such as flowers and rabbits. Many adults are surprised when young scientists identify with "yucky" animals and plants. A child who connects with creatures ranging from the cuddly to the…

  18. D-Root: a system for cultivating plants with the roots in darkness or under different light conditions.

    PubMed

    Silva-Navas, Javier; Moreno-Risueno, Miguel A; Manzano, Concepción; Pallero-Baena, Mercedes; Navarro-Neila, Sara; Téllez-Robledo, Bárbara; Garcia-Mina, Jose M; Baigorri, Roberto; Gallego, Francisco Javier; del Pozo, Juan C

    2015-10-01

    In nature roots grow in the dark and away from light (negative phototropism). However, most current research in root biology has been carried out with the root system grown in the presence of light. Here, we have engineered a device, called Dark-Root (D-Root), to grow plants in vitro with the aerial part exposed to the normal light/dark photoperiod while the roots are in the dark or exposed to specific wavelengths or light intensities. D-Root provides an efficient system for cultivating a large number of seedlings and easily characterizing root architecture in the dark. At the morphological level, root illumination shortens root length and promotes early emergence of lateral roots, therefore inducing expansion of the root system. Surprisingly, root illumination also affects shoot development, including flowering time. Our analyses also show that root illumination alters the proper response to hormones or abiotic stress (e.g. salt or osmotic stress) and nutrient starvation, enhancing inhibition of root growth. In conclusion, D-Root provides a growing system closer to the natural one for assaying Arabidopsis plants, and therefore its use will contribute to a better understanding of the mechanisms involved in root development, hormonal signaling and stress responses.

  19. Steviol glycosides targeted analysis in leaves of Stevia rebaudiana (Bertoni) from plants cultivated under chilling stress conditions.

    PubMed

    Soufi, Sihem; D'Urso, Gilda; Pizza, Cosimo; Rezgui, Salah; Bettaieb, Taoufik; Montoro, Paola

    2016-01-01

    Stevia rebaudiana is an important agricultural crop for the production of a high-potency natural sweetener, sensitive to low temperature during the developmental stage. Stimulation of chilling stress with a pre-treatment with endogenous signalling components and in particular with salicylic acid (SA), hydrogen peroxide (H2O2), 6-benzylaminopurine (BAP) and calcium chloride (CaCl2) could induce tolerance to chilling and could constitute a suitable way to maintain quality and quantity of steviol glycosides under controlled artificial environment. In the present work the effects of different putative signalling molecules on the morpho-physiological parameters were evaluated, and a specific method for the quali-quantitative analysis of steviol glycosides in S. rebaudiana plants cultivated under controlled conditions was developed, by using LC-ESI-FT (Orbitrap) MS, LC-ESI-QqQ-MS/MS and multivariate data analysis. This approach underlined that the pre-treatment has influence on the production of secondary metabolites. In particular Stevia plants characterised by higher contents of rebaudioside A and stevioside, were identified.

  20. Selected phenolic compounds in cultivated plants: ecologic functions, health implications, and modulation by pesticides.

    PubMed Central

    Daniel, O; Meier, M S; Schlatter, J; Frischknecht, P

    1999-01-01

    Phenolic compounds are widely distributed in the plant kingdom. Plant tissues may contain up to several grams per kilogram. External stimuli such as microbial infections, ultraviolet radiation, and chemical stressors induce their synthesis. The phenolic compounds resveratrol, flavonoids, and furanocoumarins have many ecologic functions and affect human health. Ecologic functions include defense against microbial pathogens and herbivorous animals. Phenolic compounds may have both beneficial and toxic effects on human health. Effects on low-density lipoproteins and aggregation of platelets are beneficial because they reduce the risk of coronary heart disease. Mutagenic, cancerogenic, and phototoxic effects are risk factors of human health. The synthesis of phenolic compounds in plants can be modulated by the application of herbicides and, to a lesser extent, insecticides and fungicides. The effects on ecosystem functioning and human health are complex and cannot be predicted with great certainty. The consequences of the combined natural and pesticide-induced modulating effects for ecologic functions and human health should be further evaluated. PMID:10229712

  1. Genetic diversity of cultivable plant growth-promoting rhizobacteria in Korea.

    PubMed

    Kim, Won-Il; Cho, Won Kyong; Kim, Su-Nam; Chu, Hyosub; Ryu, Kyoung-Yul; Yun, Jong-Chul; Park, Chang-Seuk

    2011-08-01

    To elucidate the biodiversity of plant growth-promoting rhizobacteria (PGPR) in Korea, 7,638 bacteria isolated from the rhizosphere of plant species growing in many different regions were screened. A large number of PGPR were identified by testing the ability of each isolate to promote the growth of cucumber seedlings. After redundant rhizobacteria were removed via amplified rDNA restriction analysis, 90 strains were finally selected as PGPR. On the basis of 16S ribosomal RNA sequences, 68 Gram-positive (76%) and 22 Gram-negative (24%) isolates were assigned to 21 genera and 47 species. Of these genera, Bacillus (32 species) made up the largest complement, followed by Paenibacillus (19) and Pseudomonas (11). Phylogenetic analysis showed that most of the Grampositive PGPR fell into two categories: low- and high- G+C (Actinobacteria) strains. The Gram-negative PGPR were distributed in three categories: alpha-proteobacteria, beta- proteobacteria, and gamma-proteobacteria. To our knowledge, this is the largest screening study designed to isolate diverse PGPR. The enlarged understanding of PGPR genetic diversity provided herein will expand the knowledge base regarding beneficial plant-microbe interactions. The outcome of this research may have a practical effect on crop production methodologies.

  2. ENERGY PRODUCTION AND POLLUTION PREVENTION AT SEWAGE TREATMENT PLANTS USING FUEL CELL POWER PLANTS

    EPA Science Inventory

    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  3. Influence of plant roots on electrical resistivity measurements of cultivated soil columns

    NASA Astrophysics Data System (ADS)

    Maloteau, Sophie; Blanchy, Guillaume; Javaux, Mathieu; Garré, Sarah

    2016-04-01

    Electrical resistivity methods have been widely used for the last 40 years in many fields: groundwater investigation, soil and water pollution, engineering application for subsurface surveys, etc. Many factors can influence the electrical resistivity of a media, and thus influence the ERT measurements. Among those factors, it is known that plant roots affect bulk electrical resistivity. However, this impact is not yet well understood. The goals of this experiment are to quantify the effect of plant roots on electrical resistivity of the soil subsurface and to map a plant roots system in space and time with ERT technique in a soil column. For this research, it is assumed that roots system affect the electrical properties of the rhizosphere. Indeed the root activity (by transporting ions, releasing exudates, changing the soil structure,…) will modify the rhizosphere electrical conductivity (Lobet G. et al, 2013). This experiment is included in a bigger research project about the influence of roots system on geophysics measurements. Measurements are made on cylinders of 45 cm high and a diameter of 20 cm, filled with saturated loam on which seeds of Brachypodium distachyon (L.) Beauv. are sowed. Columns are equipped with electrodes, TDR probes and temperature sensors. Experiments are conducted at Gembloux Agro-Bio Tech, in a growing chamber with controlled conditions: temperature of the air is fixed to 20° C, photoperiod is equal to 14 hours, photosynthetically active radiation is equal to 200 μmol m-2s-1, and air relative humidity is fixed to 80 %. Columns are fully saturated the first day of the measurements duration then no more irrigation is done till the end of the experiment. The poster will report the first results analysis of the electrical resistivity distribution in the soil columns through space and time. These results will be discussed according to the plant development and other controlled factors. Water content of the soil will also be detailed

  4. Energy Conservation Study on Darigold Fluid Milk Plant, Issaquah, Washington.

    SciTech Connect

    Seton, Johnson & Odell, Inc.

    1985-01-15

    This report presents the findings of an energy study done at Darigold dairy products plant in Issaquah, Washington. The study includes all electrical energy using systems at the plant, but does not address specific modifications to process equipment or the gas boilers. The Issaquah Darigold plant receives milk and cream, which are stored in large, insulated silos. These raw products are then processed into butter, cottage cheese, buttermilk, yogurt, sour cream, and powdered milk. This plant produces the majority of the butter used in the state of Washington. The Issaquah plant purchases electricity from Puget Sound Power and Light Company. The plant is on Schedule 31, primary metering. The plant provides transformers to step down the voltage to 480, 240, and 120 volts as needed. Based on utility bills for the period from July 1983 through July 1984, the Issaquah Darigold plant consumed 7,134,300 kWh at a total cost of $218,703.78 and 1,600,633 therms at a total cost of $889,687.48. Energy use for this period is shown in Figures 1.1 to 1.5. Demand charges account for approximately 23% of the total electrical bill for this period, while reactive charges account for less than 0.5%. The electrical usage for the plant was divided into process energy uses, as summarized in Figure 1.2. This breakdown is based on a 311-day processing schedule, with Sunday clean-up and holidays composing the 54 days of downtime.

  5. Building a field- and model-based climatology of local water and energy cycles in the cultivated Sahel - annual budgets and seasonality

    NASA Astrophysics Data System (ADS)

    Velluet, C.; Demarty, J.; Cappelaere, B.; Braud, I.; Issoufou, H. B.-A.; Boulain, N.; Ramier, D.; Mainassara, I.; Charvet, G.; Boucher, M.; Chazarin, J.-P.; Oï, M.; Yahou, H.; Maidaji, B.; Arpin-Pont, F.; Benarrosh, N.; Mahamane, A.; Nazoumou, Y.; Favreau, G.; Seghieri, J.

    2014-05-01

    In the African Sahel, energy and water cycling at the land surface is pivotal for regional climate, water resources and land productivity, yet it is still extremely poorly documented. As a step towards a comprehensive climatological description of surface fluxes in this area, this study provides estimates of average annual budgets and seasonal cycles for two main land use types of the cultivated Sahelian belt, rainfed millet crop and fallow bush. These estimates build on the combination of a 7 year field dataset from two typical plots in southwestern Niger with detailed physically-based soil-plant-atmosphere modelling, yielding a continuous, comprehensive set of water and energy flux and storage variables over the 7 year period. In this study case in particular, blending field data with mechanistic modelling is considered as making best use of available data and knowledge for such purpose. It extends observations by reconstructing missing data and extrapolating to unobserved variables or periods. Furthermore, model constraining with observations compromises between extraction of observational information content and integration of process understanding, hence accounting for data imprecision and departure from physical laws. Climatological averages of all water and energy variables, with associated sampling uncertainty, are derived at annual to subseasonal scales from the 7 year series produced. Similarities and differences in the two ecosystems behaviors are highlighted. Mean annual evapotranspiration is found to represent ~82-85% of rainfall for both systems, but with different soil evaporation/plant transpiration partitioning and different seasonal distribution. The remainder consists entirely of runoff for the fallow, whereas drainage and runoff stand in a 40-60% proportion for the millet field. These results should provide a robust reference for the surface energy- and water-related studies needed in this region. The model developed in this context has the

  6. Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Radziah, Othman; Shamshuddin, Jusop; Razi, Ismail Mohd

    2015-02-20

    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase.

  7. Energy prices and substitution in United States manufacturing plants

    NASA Astrophysics Data System (ADS)

    Grim, Cheryl

    Persistent regional disparities in electricity prices, growth in wholesale power markets, and recent deregulation attempts have intensified interest in the performance of the U.S. electric power industry, while skyrocketing fuel prices have brought renewed interest in the effect of changes in prices of all energy types on the U.S. economy. This dissertation examines energy prices and substitution between energy types in U.S. manufacturing. I use a newly constructed database that includes information on purchased electricity and electricity expenditures for more than 48,000 plants per year and additional data on the utilities that supply electricity to study the distribution of electricity prices paid by U.S. manufacturing plants from 1963 to 2000. I find a large compression in the dispersion of electricity prices from 1963 to 1978 due primarily to a decrease in quantity discounts for large electricity purchasers. I also find that spatial dispersion in retail electricity prices among states, counties and utility service territories is large, rises over time for smaller purchasers, and does not diminish as wholesale power markets expand in the 1990s. In addition, I examine energy type consumption patterns, prices, and substitution in U.S. manufacturing plants. I develop a plant-level dataset for 1998 with data on consumption and expenditures on energy and non-energy production inputs, output, and other plant characteristics. I find energy type consumption patterns vary widely across manufacturing plants. Further, I find a large amount of dispersion across plants in the prices paid for electricity, oil, natural gas, and coal. These high levels of dispersion are accounted for by the plant's location, industry, and purchase quantity. Finally, I present estimates of own- and cross-price elasticities of demand for both the energy and non-energy production inputs.

  8. Energy conservation study on Simplot potato processing plant, Heyburn, Idaho

    SciTech Connect

    Not Available

    1985-03-01

    This report presents the findings of an energy study done at the Simplot potato processing plant in Heyburn, Idaho. The study includes all electrical energy using systems at the plant but does not address specific modifications to process equipment. The plant receives raw potatoes and produces a mixture of pre-fried and frozen potato products including french fries and pre-formed patties, a dehydrated frozen product, starch, and processes and ships raw potatoes. The plant also contains a box line that makes cardboard cartons for all Simplot plants. The plant contains all necessary equipment and processes to produce a finished product and has long-term cold storage. 13 figs., 16 tabs.

  9. [Research on output and quality of Panax notoginseng and annual change characteristics of N, P and K nutrients of planting soil under stereo-cultivation].

    PubMed

    Huang, Chun-mei; Cui, Xiu-ming; Lan, Lei; Chen, Wei-dong; Wang, Cheng-xiao; Yang, Xiao-yan; Lu, Da-hui; Yang, Ye

    2015-08-01

    The output and agronomic characters of 3-year-old Panax notoginseng cultured under stereo structure (upper, middle and down layers) were investigated, and the annual change of N, P and K of its planting soil were also studied. Results showed that, compared with field cultured Panax notoginseng, growth vigour and output of stereo-cultivation were significantly lower. But the total production of the 3 layers was 1.6 times of field. The growth vigor and production of P. notoginseng was in the order of upper layer > middle layer > down layer. The content of ginsenoside in rhizome, root tuber and hair root of P. notoginseng was in the order of upper layer > field > middle layer > down layer. Organic matter content and pH of stereo-cultivation soil decreased with the prolonging of planting time, which with the same trend of yield. Organic matter content of stereo-cultivation soil was significantly higher than field, but the pH was significantly lower. Contents of total and available N, P and K in stereo-cultivation soil and field decreased with the prolonging of planting time. The content of N and P were in the order of upper layer > middle layer > yield > down layer, the content of K was in the order of upper layer > middle layer > down layer > yield. Compared with field, the proportion of N and P in the organ of underground (rhizome, root tuber and hair root) of upper layer were increased, while decreased in middle and down layers. Proportion of K in underground decreased significantly of the 3 layers. In conclusion, the agronomic characters and production of stereo-cultivation were significantly lower than that of yield. But the total production of the 3 layers were significantly higher than field of unit area. And the aim of improving land utilization efficiency was achieved. Nutritions in the soil of stereo-cultivation were enough to support the development of P. notoginseng, which was not the cause of weak growth and low production. The absorbing ability of P

  10. GSTF1 Gene Expression Analysis in Cultivated Wheat Plants under Salinity and ABA Treatments

    PubMed Central

    Niazi, Ali; Ramezani, Amin; Dinari, Ali

    2014-01-01

    Most plants encounter stress such as drought and salinity that adversely affect growth, development and crop productivity. The expression of the gene glutathione-s-transferases (GST) extends throughout various protective mechanisms in plants and allows them to adapt to unfavorable environmental conditions. GSTF1 (the first phi GSTFs class) gene expression patterns in the wheat cultivars Mahuti and Alamut were studied under salt and ABA treatments using a qRT-PCR technique. Results showed that gene expression patterns were significantly different in these two cultivars. Data showed that in Mahuti, there was an increase of transcript accumulation under salt and ABA treatments at 3h, 10h and 72h respectively. In Alamut, however, the pattern of transcript accumulation was different; the maximum was at 3h. In contrast, there were no significant differences observed between the cultivars for GSTF1 gene expression profiles at three levels of NaCl concentration (50, 100, and 200 mM) or in ABA (Abscisic Acid) treatment. It is likely that difference of gene expression patterns between the cultivars (Mahuti as a salt tolerant cultivar and Alamut as a salt sensitive cultivar) is due to distinct signaling pathways which activate GSTF1 expression. Lack of a significant difference between the GSTF1 gene expression profile under salt and ABA treatments suggests that the GSTF1 gene is not induced by stress stimuli. Of course it is possible that other levels of NaCl and ABA treatments cause a change in the GSTF1 gene. PMID:27843973

  11. Bioluminescence for determining energy state of plants

    NASA Technical Reports Server (NTRS)

    Ching, T. M.

    1975-01-01

    Bioluminescence produced by the luciferin-luciferase system is a very sensitive assay for ATP content in extracts of plant materials. The ATP test for seed and pollen viability and vigor is presented, along with prediction of high growth potential and productivity in new crosses and selections of breeding materials. ATP as an indicator for environmental quality, stresses, and metabolic regulation is also considered.

  12. Are Wave and Tidal Energy Plants New Green Technologies?

    PubMed

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  13. Energy conversion/power plant cost-cutting

    SciTech Connect

    Nichols, K.

    1996-12-31

    This presentation by Kenneth Nichols, Barber-Nichols, Inc., is about cost-cutting in the energy conversion phase and power plant phase of geothermal energy production. Mr. Nichols discusses several ways in which improvements could be made, including: use of more efficient compressors and other equipment as they become available, anticipating reservoir resource decline and planning for it, running smaller binary systems independent of human operators, and designing plants so that they are relatively maintenance-free.

  14. The Cultivated Classroom.

    ERIC Educational Resources Information Center

    Schilder, Rosalind

    1983-01-01

    Teachers who follow this monthly schedule for starting and cultivating plants in their classrooms can look forward to blooms and greenery throughout the year. Advice on choosing plants, making cuttings, forcing bulbs, rooting sweet potatoes and pineapples, and holding a Mother's Day plant sale is included. (PP)

  15. Development of a mathematical model for growth and oxygen transfer in in vitro plant hairy root cultivations.

    PubMed

    Palavalli, Rajashekar Reddy; Srivastava, Smita; Srivastava, Ashok Kumar

    2012-07-01

    Genetically transformed, "Hairy roots" once developed can serve as a stable parent culture for in vitro production of plant secondary metabolites. However, the major bottleneck in the commercial exploitation of hairy roots remains its successful scale-up due to oxygen transfer limitation in three-dimensionally growing hairy root mass. Mass transfer resistances near the gas-liquid and liquid-solid boundary layer affect the oxygen delivery to the growing hairy roots. In addition, the diffusional mass transfer limitation due to increasing size of the root ball (matrix) with growth also plays a limiting role in the oxygen transfer rate. In the present study, a mathematical model is developed which describes the oxygen transfer kinetics in the growing Azadirachta indica hairy root matrix as a case study for offline simulation of process control strategies ensuring non-limiting concentrations of oxygen in the medium throughout the hairy root cultivation period. The unstructured model simulates the effect of oxygen transfer limitation in terms of efficiency factor (η) on specific growth rate (μ) of the hairy root biomass. The model is able to predict effectively the onset of oxygen transfer limitation in the inner core of the growing hairy root matrix such that the bulk oxygen concentration can be increased so as to prevent the subsequent inhibition in growth of the hairy root biomass due to oxygen transfer (diffusional) limitation.

  16. Microbial Community Dynamics and Response to Plant Growth-Promoting Microorganisms in the Rhizosphere of Four Common Food Crops Cultivated in Hydroponics.

    PubMed

    Sheridan, C; Depuydt, P; De Ro, M; Petit, C; Van Gysegem, E; Delaere, P; Dixon, M; Stasiak, M; Aciksöz, S B; Frossard, E; Paradiso, R; De Pascale, S; Ventorino, V; De Meyer, T; Sas, B; Geelen, D

    2017-02-01

    Plant growth promoting microorganisms (PGPMs) of the plant root zone microbiome have received limited attention in hydroponic cultivation systems. In the framework of a project aimed at the development of a biological life support system for manned missions in space, we investigated the effects of PGPMs on four common food crops (durum and bread wheat, potato and soybean) cultivated in recirculating hydroponic systems for a whole life cycle. Each crop was inoculated with a commercial PGPM mixture and the composition of the microbial communities associated with their root rhizosphere, rhizoplane/endosphere and with the recirculating nutrient solution was characterised through 16S- and ITS-targeted Illumina MiSeq sequencing. PGPM addition was shown to induce changes in the composition of these communities, though these changes varied both between crops and over time. Microbial communities of PGPM-treated plants were shown to be more stable over time. Though additional development is required, this study highlights the potential benefits that PGPMs may confer to plants grown in hydroponic systems, particularly when cultivated in extreme environments such as space.

  17. High efficiency waste to energy facility -- Pilot plant design

    SciTech Connect

    Orita, Norihiko; Kawahara, Yuuzou; Takahashi, Kazuyoshi; Yamauchi, Toru; Hosoda, Takuo

    1998-07-01

    Waste To Energy facilities are commonly acceptable to the environment and give benefits in two main areas: one is a hygienic waste disposal and another is waste heat energy recovery to save fossil fuel consumption. Recovered energy is used for electricity supply, and it is required to increase the efficiency of refuse to electric energy conversion, and to spread the plant construction throughout the country of Japan, by the government. The national project started in 1992, and pilot plant design details were established in 1995. The objective of the project is to get 30% of energy conversion efficiency through the measure by raising the steam temperature and pressure to 500 C and 9.8 MPa respectively. The pilot plant is operating under the design conditions, which verify the success of applied technologies. This paper describes key technologies which were used to design the refuse burning boiler, which generates the highest steam temperature and pressure steam.

  18. Spatial-temporal variation of marginal land suitable for energy plants from 1990 to 2010 in China

    PubMed Central

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Zhuang, Dafang; Huang, Yaohuan

    2014-01-01

    Energy plants are the main source of bioenergy which will play an increasingly important role in future energy supplies. With limited cultivated land resources in China, the development of energy plants may primarily rely on the marginal land. In this study, based on the land use data from 1990 to 2010(every 5 years is a period) and other auxiliary data, the distribution of marginal land suitable for energy plants was determined using multi-factors integrated assessment method. The variation of land use type and spatial distribution of marginal land suitable for energy plants of different decades were analyzed. The results indicate that the total amount of marginal land suitable for energy plants decreased from 136.501 million ha to 114.225 million ha from 1990 to 2010. The reduced land use types are primarily shrub land, sparse forest land, moderate dense grassland and sparse grassland, and large variation areas are located in Guangxi, Tibet, Heilongjiang, Xinjiang and Inner Mongolia. The results of this study will provide more effective data reference and decision making support for the long-term planning of bioenergy resources. PMID:25056520

  19. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant.

    PubMed

    Wang, Liang; Min, Min; Li, Yecong; Chen, Paul; Chen, Yifeng; Liu, Yuhuan; Wang, Yingkuan; Ruan, Roger

    2010-10-01

    The objective of this study was to evaluate the growth of green algae Chlorella sp. on wastewaters sampled from four different points of the treatment process flow of a local municipal wastewater treatment plant (MWTP) and how well the algal growth removed nitrogen, phosphorus, chemical oxygen demand (COD), and metal ions from the wastewaters. The four wastewaters were wastewater before primary settling (#1 wastewater), wastewater after primary settling (#2 wastewater), wastewater after activated sludge tank (#3 wastewater), and centrate (#4 wastewater), which is the wastewater generated in sludge centrifuge. The average specific growth rates in the exponential period were 0.412, 0.429, 0.343, and 0.948 day(-1) for wastewaters #1, #2, #3, and #4, respectively. The removal rates of NH4-N were 82.4%, 74.7%, and 78.3% for wastewaters #1, #2, and #4, respectively. For #3 wastewater, 62.5% of NO3-N, the major inorganic nitrogen form, was removed with 6.3-fold of NO2-N generated. From wastewaters #1, #2, and #4, 83.2%, 90.6%, and 85.6% phosphorus and 50.9%, 56.5%, and 83.0% COD were removed, respectively. Only 4.7% was removed in #3 wastewater and the COD in #3 wastewater increased slightly after algal growth, probably due to the excretion of small photosynthetic organic molecules by algae. Metal ions, especially Al, Ca, Fe, Mg, and Mn in centrate, were found to be removed very efficiently. The results of this study suggest that growing algae in nutrient-rich centrate offers a new option of applying algal process in MWTP to manage the nutrient load for the aeration tank to which the centrate is returned, serving the dual roles of nutrient reduction and valuable biofuel feedstock production.

  20. Sustained NIK-mediated antiviral signalling confers broad-spectrum tolerance to begomoviruses in cultivated plants

    PubMed Central

    Condori-Apfata, Jorge A.; Coco, Daniela; Deguchi, Michihito; Loriato, Virgílio A.P.; Pereira, Welison A.; Alfenas-Zerbini, Poliane; Zerbini, Francisco M.; Inoue-Nagata, Alice K.; Santos, Anesia A.; Chory, Joanne; Silva, Fabyano F.; Fontes, Elizabeth P.B.

    2016-01-01

    Begomovirus-associated epidemics currently threaten tomato production worldwide due to the emergence of highly pathogenic virus species and the proliferation of a whitefly B biotype vector that is adapted to tomato. To generate an efficient defence against begomovirus, we modulated the activity of the immune defence receptor nuclear shuttle protein (NSP)-interacting kinase (NIK) in tomato plants; NIK is a virulence target of the begomovirus NSP during infection. Mutation of T474 within the kinase activation loop promoted the constitutive activation of NIK-mediated defences, resulting in the down-regulation of translation-related genes and the suppression of global translation. Consistent with these findings, transgenic lines harbouring an activating mutation (T474D) were tolerant to the tomato-infecting begomoviruses ToYSV and ToSRV. This phenotype was associated with reduced loading of coat protein viral mRNA in actively translating polysomes, lower infection efficiency and reduced accumulation of viral DNA in systemic leaves. Our results also add some relevant insights into the mechanism underlying the NIK-mediated defence. We observed that the mock-inoculated T474D-overexpressing lines showed a constitutively infected wild-type transcriptome, indicating that the activation of the NIK-mediated signalling pathway triggers a typical response to begomovirus infection. In addition, the gain-of-function mutant T474D could sustain an activated NIK-mediated antiviral response in the absence of the virus, further confirming that phosphorylation of Thr-474 is the crucial event that leads to the activation of the kinase. PMID:25688422

  1. Identifying Energy Savings in Water and Wastewater Plants - West Virginia

    SciTech Connect

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  2. Identifying Energy Savings in Water and Wastewater Plants - Illinois

    SciTech Connect

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  3. Identifying Energy Savings in Water and Wastewater Plants - Iowa

    SciTech Connect

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  4. Identifying Energy Savings in Water and Wastewater Plants - Indiana

    SciTech Connect

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  5. Identifying Energy Savings in Water and Wastewater Plants - Wisconsin

    SciTech Connect

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  6. [Historical research of cinchona cultivation in Japan (Part 2). Useful tropical plants introduced from Java and India in the early Meiji era].

    PubMed

    Nagumo, Seiji; Sasaki, Yohei; Takido, Michio

    2010-01-01

    In the early Meiji era, Takeaki Enomoto made a proposal to the government that cinchona and coffee seedlings be introduced to Japan. In response, the Meiji government dispatched Masatsugu Takeda of the Ministry of Internal Affairs to Java and India from March to August 1878 for the purpose of investigating useful plants of tropical origin and introducing them to Japan. This paper clarifies the route to those destinations and the plants obtained locally. Using the seeds obtained from India during his travels, the cultivation of cinchona was attempted in 1882 for the first time in Japan. In Ogasawara, coffee cultivation was conducted, again for the first time in Japan, using coffee seeds brought back from Java. The cultivation of coffee was successful and served as the foundation of the Ogasawara coffee that exists to this day. Takeda also introduced a number of books and materials related to useful tropical plants available as a result of his travels, which contributed to the promotion of new industries and businesses in the Meiji era.

  7. Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances.

    PubMed

    Menger-Krug, Eve; Niederste-Hollenberg, Jutta; Hillenbrand, Thomas; Hiessl, Harald

    2012-11-06

    Integrating microalgae systems (MAS) at municipal wastewater treatment plants (WWTPs) to produce of bioenergy offers many potential synergies. Improved energy balances provide a strong incentive for WWTPs to integrate MAS, but it is crucial that WWTPs maintain their barrier function to protect water resources. We perform a prospective analysis of energy and emission balances of a WWTP with integrated MAS, based on a substance flow analysis of the elements carbon (C), nitrogen (N), and phosphorus (P). These elements are the main ingredients of wastewater, and the key nutrients for algae growth. We propose a process design which relies solely on resources from wastewater with no external input of water, fertilizer or CO(2). The whole process chain, from cultivation to production of bioelectricity, takes place at the WWTP. Our results show that MAS can considerably improve energy balances of WWTPs without any external resource input. With optimistic assumptions, they can turn WWTPs into net energy producers. While intensive C recycling in MAS considerably improves the energy balance, we show that it also impacts on effluent quality. We discuss the importance of nonharvested biomass for effluent quality and highlight harvesting efficiency as key factor for energy and emission balances of MAS at WWTP.

  8. EPA Announces 2015 ENERGY STAR Certified Manufacturing Plants, Marathon plant in Garyville, La, among those recognized

    EPA Pesticide Factsheets

    DALLAS - (Feb. 24, 2016) The U.S. Environmental Protection Agency (EPA) announced today that the Marathon Louisiana Refining Division in Garyville, La., is among the 70 manufacturing plants across the nation that achieved ENERGY STAR certification f

  9. Analysis of life cycle assessment of food/energy/waste systems and development and analysis of microalgae cultivation/wastewater treatment inclusive system

    NASA Astrophysics Data System (ADS)

    Armstrong, Kristina Ochsner

    Across the world, crises in food, energy, land and water resources, as well as waste and greenhouse gas accumulation are inspiring research into the interactions among these environmental pressures. In the food/energy/waste problem set, most of the research is focused on describing the antagonistic relationships between food, energy and waste; these relationships are often analyzed with life cycle assessment (LCA). These analyses often include reporting of metrics of environmental performance with few functional units, often focusing on energy use, productivity and environmental impact while neglecting water use, food nutrition and safety. Additionally, they are often attributional studies with small scope which report location-specific parameters only. This thesis puts forth a series of recommendations to amend the current practice of LCA to combat these limitations and then utilizes these suggestions to analyze a synergistic food/waste/energy system. As an example analysis, this thesis describes the effect of combining wastewater treatment and microalgae cultivation on the productivity and scalability of the synergistic system. To ameliorate the high nutrient and water demands of microalgae cultivation, many studies suggest that microalgae be cultivated in wastewater so as to achieve large scale and low environmental costs. While cultivation studies have found this to be true, none explore the viability of the substitution in terms of productivity and scale-up. The results of this study suggest that while the integrated system may be suitable for low-intensity microalgae cultivation, for freshwater microalgae species or wastewater treatment it is not suitable for high intensity salt water microalgae cultivation. This study shows that the integration could result in reduced lipid content, high wastewater requirements, no greenhouse gas emissions benefit and only a small energy benefit.

  10. Phytotoxicity evaluation of five pharmaceutical pollutants detected in surface water on germination and growth of cultivated and spontaneous plants.

    PubMed

    D'Abrosca, Brigida; Fiorentino, Antonio; Izzo, Angelina; Cefarelli, Giuseppe; Pascarella, Maria Teresa; Uzzo, Piera; Monaco, Pietro

    2008-02-15

    The phytotoxicity of 5 pharmaceuticals detected in Italian rivers, atorvastatin (7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-propan-2-yl-pyrrol-1-yl]-3,5-dihydroxy-heptanoic acid), gemfibrozil (5-(2,5-dimethylphenoxy)-2,2-dimethyl-pentanoic acid), tamoxifene (2-[4-(1,2-diphenylbut-1-enyl)phenoxy]-N,N-dimethyl-ethanamine), ethinyl estradiol (17-ethynyl-13-methyl-7,8,9,11, 12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3,17-diol) and sildenafil (methyl-9-propyl-2,4,7,8-tetrazabicyclo[4.3.0] nona-3,8,10-trien-5-one), has been assessed in a laboratory model. The treatment system consists of three main successive sections. The first one includes the phytotoxic evaluation of the single compounds on crops, Lactuca sativa (lettuce), Dacus carota subsp. sativa (carrot), and Lycopersicon esculentum (tomato), until the 10(-9) M, concentration lower then the environmental amounts. The second section includes the phytotoxicity assessment of all the selected chemicals on wild species, Avena fatua (wild oats), Amaranthus retroflexus (redroot pigweed), Lolium perenne (perennial ryegrass), Taraxacum officinale (common dandelion), and Chenopodium album (lambsquarter), at the same concentration as previously used. The third section of the procedure includes the evaluation of the effects of the five pharmaceuticals, at 1 microM and 1 nM environmental concentrations, on the metabolism of L. sativa. The variation of the composition of the photosynthetic pigments, sugars, lipids, phenols, fatty acids and flavonoids in lettuce seedlings exposed to the pollutants in respect to the blank was evaluated. The results of the phytotoxicity assays showed the possibility of a notable impact on the different vegetal communities and evidenced different sensitivity among cultivated and wild species, probably due to the different plant physiology.

  11. Propagation and Introduction of Arnica montana L. into Cultivation: A Step to Reduce the Pressure on Endangered and High-Valued Medicinal Plant Species

    PubMed Central

    2013-01-01

    Arnica montana (L.) is an endangered and endemic medicinal plant species in Europe. The pressure on natural sources of this plant is alleviated by a suitable use of arnica resources in the European region and introduction into cultivation. The objective of this study was to describe the impact of different ways of plant propagation and introduction on the growth and reproduction mode of this species. During the six consecutive years of the field experiment, the vegetative and reproductive traits were monitored, and survival time was assessed. The particular ways of arnica plant propagation and introduction determined all the intrinsic species traits and plant survival. The values of the characteristics studied indicated good acclimatization of the arnica ecotype to the climatic conditions of eastern Poland. Practical implications from the data presented here include the possibility of using the presented modes of arnica propagation and introduction in the short- and long-term perspective of arnica cultivation, which can give a possibility of better adjustment of raw material production. PMID:24282381

  12. Propagation and introduction of Arnica montana L. into cultivation: a step to reduce the pressure on endangered and high-valued medicinal plant species.

    PubMed

    Sugier, Danuta; Sugier, Piotr; Gawlik-Dziki, Urszula

    2013-01-01

    Arnica montana (L.) is an endangered and endemic medicinal plant species in Europe. The pressure on natural sources of this plant is alleviated by a suitable use of arnica resources in the European region and introduction into cultivation. The objective of this study was to describe the impact of different ways of plant propagation and introduction on the growth and reproduction mode of this species. During the six consecutive years of the field experiment, the vegetative and reproductive traits were monitored, and survival time was assessed. The particular ways of arnica plant propagation and introduction determined all the intrinsic species traits and plant survival. The values of the characteristics studied indicated good acclimatization of the arnica ecotype to the climatic conditions of eastern Poland. Practical implications from the data presented here include the possibility of using the presented modes of arnica propagation and introduction in the short- and long-term perspective of arnica cultivation, which can give a possibility of better adjustment of raw material production.

  13. Wind Plant Cost of Energy: Past and Future (Presentation)

    SciTech Connect

    Hand, M.

    2013-03-01

    This presentation examines trends in wind plant cost of energy over the last several decades and discusses methods and examples of projections for future cost trends. First, the presentation explores cost trends for wind energy from the 1980s, where there had been an overall downward trend in wind plant energy costs. Underlying factors that influenced these trends, including turbine technology innovation for lower wind speed sites, are explored. Next, the presentation looks at projections for the future development of wind energy costs and discusses a variety of methods for establishing these projections including the use of learning curves, qualitative assessment using expert elicitation, and engineering-based analysis. A comparison of the methods is provided to explore their relative merits. Finally, a brief introduction is provided for the U.S. Department of Energy program-wide shift towards an integrative use of qualitative and quantitative methods for assessing the potential impacts of wind plant technology innovations on reducing the wind plant cost of energy.

  14. Genetic relationships among wild and cultivated accessions of curry leaf plant (Murraya koenigii (L.) Spreng.), as revealed by DNA fingerprinting methods.

    PubMed

    Verma, Sushma; Rana, T S

    2013-02-01

    Murraya koenigii (L.) Spreng. (Rutaceae), is an aromatic plant and much valued for its flavor, nutritive and medicinal properties. In this study, three DNA fingerprinting methods viz., random amplification of polymorphic DNA (RAPD), directed amplification of minisatellite DNA (DAMD), and inter-simple sequence repeat (ISSR), were used to unravel the genetic variability and relationships across 92 wild and cultivated M. koenigii accessions. A total of 310, 102, and 184, DNA fragments were amplified using 20 RAPD, 5 DAMD, and 13 ISSR primers, revealing 95.80, 96.07, and 96.73% polymorphism, respectively, across all accessions. The average polymorphic information content value obtained with RAPD, DAMD, and ISSR markers was 0.244, 0.250, and 0.281, respectively. The UPGMA tree, based on Jaccard's similarity coefficient generated from the cumulative (RAPD, DAMD, and ISSR) band data showed two distinct clusters, clearly separating wild and cultivated accessions in the dendrogram. Percentage polymorphism, gene diversity (H), and Shannon information index (I) estimates were higher in cultivated accessions compared to wild accessions. The overall high level of polymorphism and varied range of genetic distances revealed a wide genetic base in M. koenigii accessions. The study suggests that RAPD, DAMD, and ISSR markers are highly useful to unravel the genetic variability in wild and cultivated accessions of M. koenigii.

  15. Impact of planting dates on a seed maggot, Neotephritis finalis (Diptera: Tephritidae), and sunflower bud moth (Lepidoptera: Tortricidae) damage in cultivated sunflower.

    PubMed

    Knodel, Janet J; Ganehiarachchi, G A S M; Beauzay, Patrick B; Chirumamilla, Anitha; Charlet, Laurence D

    2011-08-01

    Neotephritisfinalis (Loew) (Diptera: Tephritidae), and sunflower bud moth, Suleima helianthana (Riley) (Lepidoptera: Tortricidae) are major head-infesting insect pests of cultivated sunflower (Helianthus annuus L.). Planting date was evaluated as a cultural pest management strategy for control of N. finalis and S. helianthana in several production regions of North Dakota during 2009 and 2010. Results of the nine site-year study revealed that late planting date (early to mid-June) reduced damage ratings and percentage of damaged heads for N. finalis compared with early planting dates (mid- to late May). Visual observations of adult N. finalis found that the majority of flies were found in the early planted sunflower (78.2%) compared with the late planted sunflower (21.8%). Late planting date also reduced the percentage of S. helianthana damaged heads compared with early planting dates. Yield losses were reduced with late planting date when populations of N. finalis and S. helianthana were high enough to cause damage. Results of this study showed that delayed planting is an effective integrated pest management strategy that can reduce head damage caused by N. finalis and S. helianthana and mitigate yield losses.

  16. Drying of medicinal plants with solar energy utilization

    SciTech Connect

    Wisniewski, G.

    1997-10-01

    In the paper, a potential of solar energy for drying of medicinal plants in Polish conditions is estimated and development of solar drying technologies is presented. The results of economic assessment of flat-plate solar collectors applied for drying of medicinal plants on a farm are promising. In some specific conditions, e.g. drying of wild grown medicinal plants in remote areas, even application of photovoltaic modules for driving of a fan of a solar dryer is a profitable option and enables easy control of the drying air temperature.

  17. A preliminary review of energy savings from EADC plant audits

    SciTech Connect

    Wilfert, G.L.; Kinzey, B.R.; Kaae, P.S.

    1993-03-01

    This paper reviews the long-term energy savings attributed to industrial plant energy audits conducted under the US Department of Energy`s (DOE`s) Energy Analysis and Diagnostic Center (EADC) Program. By the end of FY91, this program is expected to have performed over 3600 plant energy audits since it began in late 1976. During FY91, 500 of the 3600 are expected to be completed. Currently, 18 universities participate in the program. DOE`s expansion plan, as specified in the National Energy Strategy, calls for adding three universities to the program during FY92. This review, requested by the OIT as part of their program planning effort, is preliminary and limited in scope. The primary purpose of this paper is to independently assess the accuracy of past energy savings reporting, specifically: whether a 2-year assessment horizon for identifying implemented ECOs captures all the ECOs implemented under the program whether the number of implemented ECOs and thus, the energy savings associated with program audits, significantly decrease in years 3 through 7 after the audit.

  18. Energy audit in small wastewater treatment plants: methodology, energy consumption indicators, and lessons learned.

    PubMed

    Foladori, P; Vaccari, M; Vitali, F

    2015-01-01

    Energy audits in wastewater treatment plants (WWTPs) reveal large differences in the energy consumption in the various stages, depending also on the indicators used in the audits. This work is aimed at formulating a suitable methodology to perform audits in WWTPs and identifying the most suitable key energy consumption indicators for comparison among different plants and benchmarking. Hydraulic-based stages, stages based on chemical oxygen demand, sludge-based stages and building stages were distinguished in WWTPs and analysed with different energy indicators. Detailed energy audits were carried out on five small WWTPs treating less than 10,000 population equivalent and using continuous data for 2 years. The plants have in common a low designed capacity utilization (52% on average) and equipment oversizing which leads to waste of energy in the absence of controls and inverters (a common situation in small plants). The study confirms that there are several opportunities for reducing energy consumption in small WWTPs: in addition to the pumping of influent wastewater and aeration, small plants demonstrate low energy efficiency in recirculation of settled sludge and in aerobic stabilization. Denitrification above 75% is ensured through intermittent aeration and without recirculation of mixed liquor. Automation in place of manual controls is mandatory in illumination and electrical heating.

  19. Mass cultivation of microalgae on animal wastewater: a sequential two-stage cultivation process for energy crop and omega-3-rich animal feed production.

    PubMed

    Zhou, Wenguang; Hu, Bing; Li, Yecong; Min, Min; Mohr, Michael; Du, Zhenyi; Chen, Paul; Ruan, Roger

    2012-09-01

    In this study, 97 microalgal strains purchased from algae bank and 50 microalgal strains isolated from local waters in Minnesota were screened for their adaptability growing on a 20-fold diluted digested swine manure wastewater (DSMW). A pool of candidate strains well adapted to the DSMW was established through a high-throughput screening process. Two top-performing facultative heterotrophic strains with high growth rate (0.536 day(-1) for UMN 271 and 0.433 day(-1) for UMN 231) and one strain with high omega-3 unsaturated fatty acid (EPA, 3.75 % of total fatty acids for UMN 231) were selected. Subsequently, a sequential two-stage mixo-photoautotrophic culture strategy was developed for biofuel and animal feed production as well as simultaneous swine wastewater treatment using above two strains. The maximal biomass concentration and lipid content at the first and second stages reached 2.03 g/L and 23.0 %, and 0.83 g/L and 19.0 % for UMN 271 and UMN 231, respectively. The maximal nutrient removals for total phosphorus and ammonia after second-stage cultivation were 100 and 89.46 %, respectively. The experiments showed that this sequential two-stage cultivation process has great potential for economically viable and environmentally friendly production of both renewable biofuel and high-value animal feed and at the same time for animal wastewater treatment.

  20. Genetic Diversity and Demographic History of Wild and Cultivated/Naturalised Plant Populations: Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae)

    PubMed Central

    Rešetnik, Ivana; Baričevič, Dea; Batîr Rusu, Diana; Carović-Stanko, Klaudija; Chatzopoulou, Paschalina; Dajić-Stevanović, Zora; Gonceariuc, Maria; Grdiša, Martina; Greguraš, Danijela; Ibraliu, Alban; Jug-Dujaković, Marija; Krasniqi, Elez; Liber, Zlatko; Murtić, Senad; Pećanac, Dragana; Radosavljević, Ivan; Stefkov, Gjoshe; Stešević, Danijela; Šoštarić, Ivan; Šatović, Zlatko

    2016-01-01

    Dalmatian sage (Salvia officinalis L., Lamiaceae) is a well-known aromatic and medicinal Mediterranean plant that is native in coastal regions of the western Balkan and southern Apennine Peninsulas and is commonly cultivated worldwide. It is widely used in the food, pharmaceutical and cosmetic industries. Knowledge of its genetic diversity and spatiotemporal patterns is important for plant breeding programmes and conservation. We used eight microsatellite markers to investigate evolutionary history of indigenous populations as well as genetic diversity and structure within and among indigenous and cultivated/naturalised populations distributed across the Balkan Peninsula. The results showed a clear separation between the indigenous and cultivated/naturalised groups, with the cultivated material originating from one restricted geographical area. Most of the genetic diversity in both groups was attributable to differences among individuals within populations, although spatial genetic analysis of indigenous populations indicated the existence of isolation by distance. Geographical structuring of indigenous populations was found using clustering analysis, with three sub-clusters of indigenous populations. The highest level of gene diversity and the greatest number of private alleles were found in the central part of the eastern Adriatic coast, while decreases in gene diversity and number of private alleles were evident towards the northwestern Adriatic coast and southern and eastern regions of the Balkan Peninsula. The results of Ecological Niche Modelling during Last Glacial Maximum and Approximate Bayesian Computation suggested two plausible evolutionary trajectories: 1) the species survived in the glacial refugium in southern Adriatic coastal region with subsequent colonization events towards northern, eastern and southern Balkan Peninsula; 2) species survived in several refugia exhibiting concurrent divergence into three genetic groups. The insight into genetic

  1. Genetic Diversity and Demographic History of Wild and Cultivated/Naturalised Plant Populations: Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae).

    PubMed

    Rešetnik, Ivana; Baričevič, Dea; Batîr Rusu, Diana; Carović-Stanko, Klaudija; Chatzopoulou, Paschalina; Dajić-Stevanović, Zora; Gonceariuc, Maria; Grdiša, Martina; Greguraš, Danijela; Ibraliu, Alban; Jug-Dujaković, Marija; Krasniqi, Elez; Liber, Zlatko; Murtić, Senad; Pećanac, Dragana; Radosavljević, Ivan; Stefkov, Gjoshe; Stešević, Danijela; Šoštarić, Ivan; Šatović, Zlatko

    2016-01-01

    Dalmatian sage (Salvia officinalis L., Lamiaceae) is a well-known aromatic and medicinal Mediterranean plant that is native in coastal regions of the western Balkan and southern Apennine Peninsulas and is commonly cultivated worldwide. It is widely used in the food, pharmaceutical and cosmetic industries. Knowledge of its genetic diversity and spatiotemporal patterns is important for plant breeding programmes and conservation. We used eight microsatellite markers to investigate evolutionary history of indigenous populations as well as genetic diversity and structure within and among indigenous and cultivated/naturalised populations distributed across the Balkan Peninsula. The results showed a clear separation between the indigenous and cultivated/naturalised groups, with the cultivated material originating from one restricted geographical area. Most of the genetic diversity in both groups was attributable to differences among individuals within populations, although spatial genetic analysis of indigenous populations indicated the existence of isolation by distance. Geographical structuring of indigenous populations was found using clustering analysis, with three sub-clusters of indigenous populations. The highest level of gene diversity and the greatest number of private alleles were found in the central part of the eastern Adriatic coast, while decreases in gene diversity and number of private alleles were evident towards the northwestern Adriatic coast and southern and eastern regions of the Balkan Peninsula. The results of Ecological Niche Modelling during Last Glacial Maximum and Approximate Bayesian Computation suggested two plausible evolutionary trajectories: 1) the species survived in the glacial refugium in southern Adriatic coastal region with subsequent colonization events towards northern, eastern and southern Balkan Peninsula; 2) species survived in several refugia exhibiting concurrent divergence into three genetic groups. The insight into genetic

  2. A preliminary review of energy savings from EADC plant audits

    SciTech Connect

    Wilfert, G.L.; Kinzey, B.R.; Kaae, P.S.

    1993-01-01

    This paper reviews the long-term energy savings attributed to industrial plant energy audits conducted under the US Department of Energy's (DOE's) Energy Analysis and Diagnostic Center (EADC) Program. By the end of FY91, this program is expected to have performed over 3600 plant energy audits since it began in late 1976. During FY91, 500 of the 3600 are expected to be completed. Currently, 18 universities participate in the program. DOE's expansion plan, as specified in the National Energy Strategy, calls for adding three universities to the program during FY92. This review, requested by the OIT as part of their program planning effort, is preliminary and limited in scope. The primary purpose of this paper is to independently assess the accuracy of past energy savings reporting, specifically: whether a 2-year assessment horizon for identifying implemented ECOs captures all the ECOs implemented under the program whether the number of implemented ECOs and thus, the energy savings associated with program audits, significantly decrease in years 3 through 7 after the audit.

  3. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.

    PubMed

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-02-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications.

  4. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves

    PubMed Central

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-01-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications. PMID:24151938

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  6. Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity.

    PubMed

    De Block, Marc; Van Lijsebettens, Mieke

    2011-06-01

    The importance of energy metabolism in plant performance and plant productivity is conceptually well recognized. In the eighties, several independent studies in Lolium perenne (ryegrass), Zea mays (maize), and Festuca arundinacea (tall fescue) correlated low respiration rates with high yields. Similar reports in the nineties largely confirmed this correlation in Solanum lycopersicum (tomato) and Cucumis sativus (cucumber). However, selection for reduced respiration does not always result in high-yielding cultivars. Indeed, the ratio between energy content and respiration, defined here as energy efficiency, rather than respiration on its own, has a major impact on the yield potential of a crop. Besides energy efficiency, energy homeostasis, representing the balance between energy production and consumption in a changing environment, also contributes to an enhanced plant performance and this happens mainly through an increased stress tolerance. Although a few single gene approaches look promising, probably whole interacting networks have to be modulated, as is done by classical breeding, to improve the energy status of plants. Recent developments show that both energy efficiency and energy homeostasis have an epigenetic component that can be directed and stabilized by artificial selection (i.e. selective breeding). This novel approach offers new opportunities to improve yield potential and stress tolerance in a wide variety of crops.

  7. Educators benefit from energy information centers at nuclear plant sites

    SciTech Connect

    Krcma-Olson, L.

    1994-12-31

    While issues like dry storage, low-level waste storage, radiation, and license extension are projects with a technical perspective that need to be planned and executed at nuclear power plants, more difficult is the political perspective-gaining public acceptance to allow these projects to proceed. And public perception is predicated on the way plant neighbors and community members understand, accept, and trust the plants. Community educators are a key audience. Annually, U.S. information centers host about one million visitors; roughly half of them are school children who will soon join the ranks of voters, taxpayers, utility customers, and employees. Programs for educators and their classes vary from tours of centers that include computer games and video programs on energy-related topics to audio-visual presentations by center personnel. Some facilities have environmental activities such as hatcheries or nature trails, while others offer plant tours to specific age groups.

  8. The Utilization of a Space Flight Plant Growth Chamber in the Cultivation of Salad Crop Species: A Prelude to a Salad Machine

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.; Hoehn, A.; Stodieck, L. S.; Kliss, M.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The application of bioregenerative life support systems provides an attractive approach to minimize resupply requirement and ultimate self-sufficiency on long duration manned missions in space. The on-board cultivation of salad-type vegetables for crew consumption has been proposed as a first step approach towards reducing a total reliance on the resupply of food. The recent advances in the development of space flight plant growth facilities such as the Plant Generic Bioprocessing Apparatus (PGBA) have established a firm technical basis upon which the implementation of a 'salad machine' concept may be achieved. A presentation on ground based studies will be made evaluating (a) the operational performance of the PGBA facility in a crop production mode and (b) the qualitative and quantitative value of salad plant material produced within the chamber.

  9. Accumulation and Translocation of Essential and Nonessential Elements by Tomato Plants (Solanum lycopersicum) Cultivated in Open-Air Plots under Organic or Conventional Farming Techniques.

    PubMed

    Liñero, Olaia; Cidad, Maite; Carrero, Jose Antonio; Nguyen, Christophe; de Diego, Alberto

    2015-11-04

    A 5-month experiment was performed to study the accumulation of several inorganic elements in tomato plants cultivated using organic or synthetic fertilizer. Plants were harvested in triplicate at six sampling dates during their life cycle. Statistical and chemometric analysis of data indicated the sequestration of toxic elements and of Na, Zn, Fe, and Co in roots, while the rest of the elements, including Cd, were mainly translocated to aboveground organs. A general decreasing trend in element concentrations with time was observed for most of them. A negative correlation between some element concentrations and ripening stage of fruits was identified. Conventionally grown plants seemed to accumulate more Cd and Tl in their tissues, while organic ones were richer in some nutrients. However, there was no clear effect of the fertilizer used (organic vs synthetic) on the elemental composition of fruits.

  10. DOE`s nuclear energy plant optimization program

    SciTech Connect

    Harrison, D.; Savage, C.D.; Singh, B.P.

    1999-09-01

    In December 1997, the United States agreed to the Kyoto Protocol on Climate Change that outlines specific greenhouse gas emissions reduction requirements. A key element of this protocol is binding emissions targets and timetables. The Protocol calls for the United States to reach emissions targets 7% below 1990 emissions levels over the 5-yr period from 2008 to 2012. A key element to achieving this goal will be the continued safe and economic operation of the Nation`s 104 nuclear power plants. These plants provide >20% of the Nation`s electricity, and nearly one-half of the 50 states receive >25% of their electricity from nuclear power. DOE`s current Strategic Plan specifies that the United States maintain its nuclear energy option and improve the efficiency of existing plants as part of its energy portfolio, in the interest of national security. As a result, DOE proposed two new nuclear energy R and D programs for fiscal year (FY) 1999: the Nuclear Energy Research Initiative (NERI), a peer-reviewed, competitively selected R and D program in advanced concepts, and the Nuclear Energy Plant Optimization Program (NEPO). NERI was authorized and received initial funding of $19 million for its first year. NEPO was not funded in 1999 but has been reintroduced in the FY 2000 budget request. NEPO will be a jointly funded R and D program with industry through the Electric Power Research Institute (EPRI) and will address those issues that could hinder continued safe operation of the Nation`s operating nuclear power plants. The FY 2000 funding request to Congress for NEPO is $5 million.

  11. The energy trilogy: An integrated sustainability model to bridge wastewater treatment plant energy and emissions gaps

    NASA Astrophysics Data System (ADS)

    Al-Talibi, A. Adhim

    An estimated 4% of national energy consumption is used for drinking water and wastewater services. Despite the awareness and optimization initiatives for energy conservation, energy consumption is on the rise owing to population and urbanization expansion and to commercial and industrial business advancement. The principal concern is since energy consumption grows, the higher will be the energy production demand, leading to an increase in CO2 footprints and the contribution to global warming potential. This research is in the area of energy-water nexus, focusing on wastewater treatment plant (WWTP) energy trilogy -- the group of three related entities, which includes processes: (1) consuming energy, (2) producing energy, and (3) the resulting -- CO2 equivalents. Detailed and measurable energy information is not readily obtained for wastewater facilities, specifically during facility preliminary design phases. These limitations call for data-intensive research approach on GHG emissions quantification, plant efficiencies and source reduction techniques. To achieve these goals, this research introduced a model integrating all plant processes and their pertinent energy sources. In a comprehensive and "Energy Source-to-Effluent Discharge" pattern, this model is capable of bridging the gaps of WWTP energy, facilitating plant designers' decision-making for meeting energy assessment, sustainability and the environmental regulatory compliance. Protocols for estimating common emissions sources are available such as for fuels, whereas, site-specific emissions for other sources have to be developed and are captured in this research. The dissertation objectives were met through an extensive study of the relevant literature, models and tools, originating comprehensive lists of processes and energy sources for WWTPs, locating estimation formulas for each source, identifying site specific emissions factors, and linking the sources in a mathematical model for site specific CO2 e

  12. Plant-Wide Energy Efficiency Assessment at the Arizona Portland Cement Plant in Rillito, Arizona

    SciTech Connect

    Stephen J. Coppinger, P.E.; Bruce Colburn, Ph.D., P.E., CEM

    2007-05-17

    A Department of Energy Plant-wide Assessment was undertaken by Arizona Portland Cement (APC) beginning in May 2005. The assessment was performed at APC’s cement production facility in Rillito, Arizona. The assessment included a compressed air evaluation along with a detailed process audit of plant operations and equipment. The purpose of this Energy Survey was to identify a series of energy cost savings opportunities at the Plant, and provide preliminary cost and savings estimates for the work. The assessment was successful in identifying projects that could provide annual savings of over $2.7 million at an estimated capital cost of $4.3 million. If implemented, these projects could amount to a savings of over 4.9 million kWh/yr and 384,420 MMBtu/year.

  13. Accumulation of germanium and rare earth elements in functional groups of selected energy crops cultivated on two different soils

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balázs

    2016-04-01

    A field experiment was conducted to investigate the uptake of Ge and selected REEs in functional groups of selected crop species. Five species belonging to the functional group of grasses (Hordeum vulgare, Zea mays, Avena sativa, Panicum miliaceum and Phalaris arundinacea) and four species from the group of herbs (Lupinus albus, Lupinus angustifolius, Fagopyrum esculentum and Brassica napus) were cultivated in parallel on two soils with slightly alkaline (soil A: pH = 7.8) and slightly acidic (soil B: pH = 6.8) conditions. After harvest, concentrations of Ge, La, Nd, Gd, Er, P, Fe, Mn and Si in shoot tissues were determined with ICP-MS. Concentrations of Ge were significantly higher in grasses than in herbs. Conversely, concentrations of La and Nd were significantly higher in herbs, than in grasses. Highest concentrations were measured in Brassica napus (REEs) and Zea mays (Ge). Concentrations of Ge significantly correlated with that of Si in the shoots showing low concentrations in herbs and high concentrations in grasses, indicating a common mechanism during the uptake in grasses. Concentrations of REEs correlated significantly with that of Fe, indicating increasing concentrations of REEs with increasing concentrations of Fe. Cultivation of species on the slightly acidic soil significantly increased the uptake Ge in Lupinus albus and Phalaris arundinacea and the uptake of La and Nd in all species except of Phalaris arundinacea. This study demonstrated that commonly used field crops could be regarded as suitable candidates for a phytomining of Ge and REEs, since these species develop high yields of shoots, high concentrations of elements and are widely used in agricultural practice. Under soil conditions where bioavailability of Ge and REEs is expected to be low (soil A) accumulation can be estimated at 1.8 g/ha Ge in Z. mays and 3.7 g/ha REEs (1.5 g/ha La, 1.4 g/ha Nd, 0.6 g/ha Gd, 0.3 g/ha Er), respectively, in B. napus, assuming a constant high efficiency of

  14. Greenhouse gas emissions and plant characteristics from soil cultivated with sunflower (Helianthus annuus L.) and amended with organic or inorganic fertilizers.

    PubMed

    López-Valdez, F; Fernández-Luqueño, F; Luna-Suárez, S; Dendooven, L

    2011-12-15

    Agricultural application of wastewater sludge has become the most widespread method of disposal, but the environmental effects on soil, air, and crops must be considered. The effect of wastewater sludge or urea on sunflower's (Helianthus annuus L.) growth and yield, the soil properties, and the resulting CO(2) and N(2)O emissions are still unknown. The objectives of this study were to investigate: i) the effect on soil properties of organic or inorganic fertilizer added to agricultural soil cultivated with sunflower, ii) how urea or wastewater sludge increases CO(2) and N(2)O emissions from agricultural soil over short time periods, and iii) the effect on plant characteristics and yield of urea or wastewater sludge added to agricultural soil cultivated with sunflower. The sunflower was fertilized with wastewater sludge or urea or grown in unamended soil under greenhouse conditions while plant and soil characteristics, yield, and greenhouse gas emissions were monitored. Sludge and urea modified some soil characteristics at the onset of the experiment and during the first two months but not thereafter. Some plant characteristics were improved by sludge. Urea and sludge treatments increased the yield at similar rates, while sludge-amended soil significantly increased N(2)O emissions but not CO(2) emissions compared to the other amended or unamended soils. This implies that wastewater sludge increased the biomass and/or the yield; however, from a holistic point of view, using wastewater sludge as fertilizer should be viewed with concern.

  15. Two parametric cell cycle analyses of plant cell suspension cultures with fragile, isolated nuclei to investigate heterogeneity in growth of batch cultivations.

    PubMed

    Haas, Christiane; Hegner, Richard; Helbig, Karsten; Bartels, Kristin; Bley, Thomas; Weber, Jost

    2016-06-01

    Plant cell suspensions are frequently considered to be heterogeneous with respect to growth in terms of progression of the cells through the cell cycle and biomass accumulation. Thus, segregated data of fractions in different cycle phases during cultivation is needed to develop robust production processes. Bromodeoxyuridine (BrdU) incorporation and BrdU-antibodies or 5-ethynyl-2'-deoxyuridine (EdU) click-it chemistry are frequently used to acquire such information. However, their use requires centrifugation steps that cannot be readily applied to sensitive cells, particularly if nuclei have to be extracted from the protective cellular milieu and envelopes for DNA analysis. Therefore, we have established a BrdU-Hoechst stain quenching protocol for analyzing nuclei directly isolated from delicate plant cell suspension cultures. After adding BrdU to test Harpagophytum procumbens cell suspension cultures the cell cycle distribution could be adequately resolved using its incorporation for the following 72 h (after which BrdU slowed biomass accumulation). Despite this limitation, the protocol allows resolution of the cell cycle distribution of cultures that cannot be analyzed using commonly applied methods due to the cells' fragility. The presented protocol enabled analysis of cycling heterogeneities in H. procumbens batch cultivations, and thus should facilitate process control of secondary metabolite production from fragile plant in vitro cultures. Biotechnol. Bioeng. 2016;113: 1244-1250. © 2015 Wiley Periodicals, Inc.

  16. Safe use of metal-contaminated agricultural land by cultivation of energy maize (Zea mays).

    PubMed

    Van Slycken, S; Witters, N; Meers, E; Peene, A; Michels, E; Adriaensen, K; Ruttens, A; Vangronsveld, J; Du Laing, G; Wierinck, I; Van Dael, M; Van Passel, S; Tack, F M G

    2013-07-01

    Production of food crops on trace element-contaminated agricultural lands in the Campine region (Belgium) can be problematic as legal threshold values for safe use of these crops can be exceeded. Conventional sanitation of vast areas is too expensive and alternatives need to be investigated. Zea mays on a trace element-contaminated soil in the region showed an average yield of 53 ± 10 Mg fresh or 20 ± 3 Mg dry biomass ha(-1). Whole plant Cd concentrations complied with legal threshold values for animal feed. Moreover, threshold values for use in anaerobic digestion were met. Biogas production potential did not differ between maize grown on contaminated and non-contaminated soils. Results suggested favorable perspectives for farmers to generate non-food crops profitably, although effective soil cleaning would be very slow. This demonstrates that a valuable and sustainable alternative use can be generated for moderately contaminated soils on which conventional agriculture is impaired.

  17. SOME ASPECTS OF THE NATURAL CONTROL OF PLANT PARASITIC NEMATODES IN SOIL UNDER BROAD BEAN VICIA FABA L. CULTIVATED IN CROP ROTATION AND LONG-TERM MONOCULTURE.

    PubMed

    Skwiercz, A T; Damszel, M; Stefanovska, T; Rychcik, B

    2015-01-01

    Observations on population density of plant parasitic nematodes occurring in rhizosphere of broad bean cultivated in the crop rotation and long-term monoculture were performed during 2013-2014. 13 species were observed: Trichodorus primitivus, T. viruliferus, Paratrichodorus pachydermus, Criconema annuliferum, Paratylenchus projectus, Bitylenchus dubius, Merlinius brevidens, Pratylenchus fallax, P. flakkensis, P. neglectus, Heterodera triffolii, H. goettingiana, and Ditylenchus dipsaci. In monoculture plots 70-80% of eggs inside Heterodera cysts were colonized by pathogenic fungi (v.s. 50-62% of cysts from crop rotation). 12-18% of specimens of Pratylenchus species were colonized by the nematode-pathogenic bacteria: Bacillus penetrans.

  18. Modeling effects of inter-annual variability in meteorological and land use conditions on coupled water and energy cycling in the cultivated African Sahel

    NASA Astrophysics Data System (ADS)

    Velluet, C.; Demarty, J.; Cappelaere, B.; Braud, I.; Boulain, N.; Favreau, G.; Charvet, G.; Ramier, D.; Issoufou, H.; Boucher, M.; Mainassara, I.; Chazarin, J.; Oï, M.; Yahou, H.; Benarrosh, N.; Ibrahim, M.

    2012-12-01

    In the dry tropics in general and in the African Sahel in particular, hydro-ecosystems are very sensitive to climate variability and land management. In the Niamey region of South-West Niger, a severe multi-decadal drought together with large-scale vegetation clearing coincided with an unexpected increase in surface and ground water resources. Such an apparent paradoxical situation illustrates the complex way in which climate and land cover interactions control the Sahelian water cycle dynamics. This stresses the importance of understanding and reliably modeling water/energy transfers in the local soil-plant-atmosphere system, under contrasted meteorological and surface conditions. This study investigates the effects of the inter-annual variability of meteorological and land use conditions on the coupled water and energy cycles in the cultivated Sahel over a 5-year period. This is based on a comprehensive multi-year field dataset acquired for a millet crop field and a fallow savannah, the two main land cover types of South-West Niger (Wankama catchment in the mesoscale AMMA-CATCH Niger observatory, part of the French-initiated RBV network). It includes atmospheric forcing, seasonal course of vegetation phenology, soil properties and model validation variables (net radiation, turbulent fluxes, soil heat/water profiles), for the two fields. The study area is typical of Central Sahel conditions, with 400-600 mm annual rainfall concentrated in the 4-5 month wet season. Soils are mainly sandy and prone to surface crusting, leading to a strong vertical contrast in hydrodynamic properties. The SiSPAT process-based model used solves the 1D mass and heat transfer system of equations in the soil, including vapor phase and coupled with a two-component (bare soil and vegetation) water and energy budget at the surface-atmosphere interface. The study explores whether such a model can be accurately calibrated and validated for the two sites using realistic-parameter values. The

  19. Thermal energy storage units for solar electric power plants

    NASA Astrophysics Data System (ADS)

    Gudkov, V. I.; Chakalev, K. N.

    Several types of heat storage units for solar power plants with thermodynamic cycles of energy conversion are examined, including specific-heat units (particularly water-vapor devices), thermochemical units, and phase-change units. The dependence of specific capital costs for heat storage units upon time of operation is discussed, and particular consideration is give to types of connections of specific-heat units into the thermal circuit of a power plant, and to a phase-change unit that uses a heat pipe for internal heat transport.

  20. Some alternate methods of energy recovery from reverse osmosis plants

    SciTech Connect

    Guy, D.B.; Singh, R.

    1982-07-01

    Only random information is available on the subject of energy recovery from reverse osmosis plants. This study includes an attempt to collect this information and bring it up to date. The equipment discussed includes classic turbines, reversed pump turbines, integrated hydroturbines and work exchangers, including integrated pump and power recovery units. A short description of each type of equipment is given, followed by advantages and disadvantages, including their state of development. Plants that are or will be using them are enumerated, as are some development possibilities.

  1. Conveyor Cultivation of the Halophytic Plant Salicornia europaea for the Recycling of NaCl from Human Liquid Waste in a Biological Life Support System.

    NASA Astrophysics Data System (ADS)

    Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    One problem in designing bioregenerative life support systems (BLSS) is developing technolo-gies to include human liquid and solid waste in intrasystem recycling. A specific task is recycling of NaCl excreted in urine by humans. We showed recently that this could be achieved through inclusion of the salt accumulating halophyte Salicornia europaea in the autotrophic compart-ment of the BLSS (Balnokin et al., ASR, 2010, in press). A model of NaCl circulation in BLSS with inclusion of S. europaea was based on the NaCl turnover in the human -urine -nutrient solution -S. europaea -human cycle. Mineralized urine was used as a basis for preparation of a nutrient solution for the halophyte cultivation. The shoots of the halophyte cultivated in the mineralized urine and containing NaCl could to be used by the BLSS inhabitants in their diets. In this report we describe cultivation of S. europaea which allows turnover of NaCl and produces daily shoot biomass containing Na+ and Cl- in quantities approximately equal to those excreted in daily human urine. The plants were grown in water culture in a climatic chamber under controlled conditions. A solution simulating mineralized urine (SSMU) was used as a basis for preparation of a nutri-ent solution for S. europaea cultivation. For continuous biomass production, seedlings of S. europaea, germinated preliminary in moist sand, were being transferred to the nutrient solu-tion at regular intervals (every two days). Duration of the conveyor operation was 112 days. During the first 56 days, the seedlings were being planted in SSMU diluted by a factor of 1.5 (2/3 SSMU). The same solution was introduced into the growth vessels as volumes of growth medium decreased due to plant transpiration. Starting from the 56th day as conveyor operation was initiated, the plants were being harvested every two days; the solutions from the discharged vessels were mixed with the fresh SSMU and the mixture was introduced into all other growth vessels of

  2. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  3. A Pilot Plant: The Fastest Path to Commercial Fusion Energy

    SciTech Connect

    Robert J. Goldston

    2010-03-03

    Considerable effort has been dedicated to determining the possible properties of a magneticconfinement fusion power plant, particularly in the U.S.1, Europe2 and Japan3. There has also been some effort to detail the development path to fusion energy, particularly in the U.S.4 Only limited attention has been given, in Japan5 and in China6, to the options for a specific device to form the bridge from the International Thermonuclear Experimental Reactor, ITER, to commercial fusion energy. Nor has much attention been paid, since 2003, to the synergies between magnetic and inertial fusion energy development. Here we consider, at a very high level, the possibility of a Qeng ≥ 1 Pilot Plant, with linear dimensions ~ 2/3 the linear dimensions of a commercial fusion power plant, as the needed bridge. As we examine the R&D needs for such a system we find significant synergies between the needs for the development of magnetic and inertial fusion energy.

  4. Mono- and dichromatic LED illumination leads to enhanced growth and energy conversion for high-efficiency cultivation of microalgae for application in space.

    PubMed

    Wagner, Ines; Steinweg, Christian; Posten, Clemens

    2016-08-01

    Illumination with red and blue photons is known to be efficient for cultivation of higher plants. For microalgae cultivation, illumination with specific wavelengths rather than full spectrum illumination can be an alternative where there is a lack of knowledge about achievable biomass yields. This study deals with the usage of color LED illumination to cultivate microalgae integrated into closed life support systems for outer space. The goal is to quantify biomass yields using color illumination (red, blue, green and mixtures) compared to white light. Chlamydomonas reinhardtii was cultivated in plate reactors with color compared to white illumination regarding PCE, specific pigment concentration and cell size. Highest PCE values were achieved under low PFDs with a red/blue illumination (680 nm/447 nm) at a 90 to 10% molar ratio. At higher PFDs saturation effects can be observed resulting from light absorption characteristics and the linear part of PI curve. Cell size and aggregation are also influenced by the applied light color. Red/blue color illumination is a promising option applicable for microalgae-based modules of life support systems under low to saturating light intensities and double-sided illumination. Results of higher PCE with addition of blue photons to red light indicate an influence of sensory pigments.

  5. A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology.

    PubMed

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-09-01

    The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software. Two case studies have been evaluated to assess the model's performance: (1) modelling the energy demand of two urban wastewater treatment plants based on conventional activated sludge and submerged anaerobic membrane bioreactor (AnMBR) technologies in steady-state conditions and (2) modelling the dynamics of reactor temperature and heat requirements in an AnMBR plant in unsteady-state conditions. The results indicate that the proposed model can be used to assess the energy performance of different wastewater treatment processes and would thus be useful, for example, WWTP design or upgrading or the development of new control strategies for energy savings.

  6. Neutron dose and energy spectra measurements at Savannah River Plant

    SciTech Connect

    Brackenbush, L.W.; Soldat, K.L.; Haggard, D.L.; Faust, L.G.; Tomeraasen, P.L.

    1987-08-01

    Because some workers have a high potential for significant neutron exposure, the Savannah River Plant (SRP) contracted with Pacific Northwest Laboratory (PNL) to verify the accuracy of neutron dosimetry at the plant. Energy spectrum and neutron dose measurements were made at the SRP calibrations laboratory and at several other locations. The energy spectra measurements were made using multisphere or Bonner sphere spectrometers,/sup 3/He spectrometers, and NE-213 liquid scintillator spectrometers. Neutron dose equivalent determinations were made using these instruments and others specifically designed to determine dose equivalent, such as the tissue equivalent proportional counter (TEPC). Survey instruments, such as the Eberline PNR-4, and the thermoluminescent dosimeter (TLD)-albedo and track etch dosimeters (TEDs) were also used. The TEPC, subjectively judged to provide the most accurate estimation of true dose equivalent, was used as the reference for comparison with other devices. 29 refs., 43 figs., 13 tabs.

  7. Energy efficiency in municipal wastewater treatment plants: Technology assessment

    SciTech Connect

    1995-11-01

    The New York State Energy Research and Development Authority (NYSERDA) estimates that municipal wastewater treatment plants (WWTPs) in New York State consume about 1.5 billion kWh of electricity each year for sewage treatment and sludge management based on the predominant types of treatment plants, the results of an energy use survey, and recent trends in the amounts of electricity WWTPs use nationwide. Electric utilities in New York State have encouraged demand-side management (DSM) to help control or lower energy costs and make energy available for new customers without constructing additional facilities. This report describes DSM opportunities for WWTPs in New York State; discusses the costs and benefits of several DSM measures; projects energy impact statewide of the DSM technologies; identifies the barrier to implementing DSM at WWTPs; and outlines one possible incentive that could stimulate widespread adoption of DSM by WWTP operators. The DSM technologies discussed are outfall hydropower, on-site generation, aeration efficiency, time-of-day electricity pricing, and storing wastewater.

  8. Improving the Energy Efficiency of Pumped-Storage Power Plants

    SciTech Connect

    Artyukh, S. F.; Galat, V. V.; Kuz’min, V. V.; Chervonenko, I. I.; Shakaryan, Yu. G.; Sokur, P. V.

    2015-01-15

    Possible ways to improve the energy efficiency of hydroelectric generating sets of pumped-storage power plants (PSPPs) are studied. The Kiev PSPP is used as an example to show how its generating sets can be upgraded. It is concluded based on studies conducted that synchronous motor-generators should be replaced with asynchronized motor-generators. The feasibility of changing over the turbine to variable-speed operation is shown.

  9. Use resources of human exometabolites of different oxidation levels for higher plants cultivation on the soil-like substrate as applied to closed ecosystems

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Alexander A.; Kudenko, Yurii; Ushakova, Sofya; Tirranen, Lyalya; Gribovskaya, Illiada; Gros, Jean-Bernard; Lasseur, Christophe

    The technology of ‘wet incineration' of human exometabolites and inedible plants biomass by means of H2 O2 in alternating electromagnetic field to increase a closure of mass exchange processes in bioregenerative life support systems (BLSS) was developed at the Institute of Biophysics of the Siberian Branch of Russian Academy of Sciences (Krasnoyarsk, Russia). Human exometabolites mineralized can be used in a nutrient solution for plants cultivation in the BLSS phototrophic link. The objective of the given work appears to be the study of use resources of human exometabolites of different oxidation levels processed by the abovementioned method for higher plants cultivation on the soil-like substrate (SLS). The mineralized human wastes were tested for the purpose of their sterility. Then the effect of human exometabolites of different oxidation levels both on wheat productivity and on the SLS microflora composition was examined. The SLS extract with a definite amount of human mineralized wastes was used as an irrigation solution. The conducted experiments demonstrated that the H2 O2 decreasing to 1 ml on 1 g of feces and to 0.25 ml on 1 ml of urine had not affected the sterility of mineralized human wastes. Wheat cultivation on the SLS with the addition in an irrigation solution of mineralized human wastes in the amount simulating 1/6 of a daily human diet showed the absence of basic dependence of plants productivity on oxidation level of human exometabolites. Yet the analysis of the microflora composition of the irrigation solutions demonstrated its dependence on the oxidation level of the exometabolites introduced. The amount of yeast-like fungi increased in 20 times in the solutions containing less oxidized exometabolites in comparison with the variant in which the human wastes were subjected to a full-scale oxidation. Besides, the solutions with less oxidized exometabolites displayed a bigger content of plant pathogenic bacteria and denitrifies. Consequently the

  10. Nevada Renewable Energy Training Project: Geothermal Power Plant Operators

    SciTech Connect

    Jim, Nichols

    2014-04-29

    The purpose of this project was to develop and institute a training program for certified geothermal power plant operators (GPO). An advisory board consisting of subject matter experts from the geothermal energy industry and academia identified the critical skill sets required for this profession. A 34-credit Certificate of Achievement (COA), Geothermal Power Plant Operator, was developed using eight existing courses and developing five new courses. Approval from the Nevada System of Higher Education Board of Regents was obtained. A 2,400 sq. ft. geothermal/fluid mechanics laboratory and a 3,000 sq. ft. outdoor demonstration laboratory were constructed for hands-on training. Students also participated in field trips to geothermal power plants in the region. The majority of students were able to complete the program in 2-3 semesters, depending on their level of math proficiency. Additionally the COA allowed students to continue to an Associate of Applied Science (AAS), Energy Technologies with an emphasis in Geothermal Energy (26 additional credits), if they desired. The COA and AAS are stackable degrees, which provide students with an ongoing career pathway. Articulation agreements with other NSHE institutions provide students with additional opportunities to pursue a Bachelor of Applied Science in Management or Instrumentation. Job placement for COA graduates has been excellent.

  11. Waterborne noise due to ocean thermal energy conversion plants

    SciTech Connect

    Janota, C.P.; Thompson, D.E.

    1983-07-01

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the seawater pumps is expected to dominate in the frequency range 10 Hz to 1 kHz. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  12. Dry matter and energy partitioning in plants under climatic stress

    SciTech Connect

    Bolhar-Nordenkampf, H.R.; Postl, W.F.; Meister, M.H.; Ledl, D.; Nemeth, K.; Ludlow, M.M.

    1996-12-31

    During ontogenesis plants distribute assimilates quite differently among their organs depending on the environmental conditions. In case of high sink capacity energetically cheap storing compounds such as carbohydrates and/or organic acids are formed, whereas during periods with low demand proteins and lipids may be accumulated. Besides ontogenesis, drought and increased CO{sub 2} are able to modify sink capacity and by this transients in the partitioning pattern of carbon are induced. Plants, well adapted to several dry seasons during the year are able to allocate carbon predominantly to below ground organs. During this period many leaves become senescent. In any case stems and remaining green leaves will loose dry matter and energy. With 80% of plants under investigation CO{sub 2} enrichment was shown to induce an enforced allocation of carbon to below ground organs. Roots and Rhizomes, beets and tubers act as a sink for the additionally fixed carbon. It was demonstrated that sink capacity is controlling photosynthetic activity. With respect to agricultural production, to ecosystems and to single plants, climatic change will modify productivity and plants distribution pattern as a consequence of quite different metabolic changes. These responses are depending on the effect of natural and anthropogenic stress factors on the use of enhanced CO{sub 2} and on the allocation of additionally formed assimilates.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  14. Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops.

    PubMed

    Farrar, Kerrie; Bryant, David; Cope-Selby, Naomi

    2014-12-01

    Plant production systems globally must be optimized to produce stable high yields from limited land under changing and variable climates. Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. In contrast to crops that have been bred for food, many bioenergy crops are largely undomesticated, and so there is an opportunity to harness beneficial plant-microbe relationships which may have been inadvertently lost through intensive crop breeding. Plant-microbe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plant-microbe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications.

  15. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  16. Energy dissipation and radical scavenging by the plant phenylpropanoid pathway.

    PubMed Central

    Grace, S C; Logan, B A

    2000-01-01

    Environmental stresses such as high light, low temperatures, pathogen infection and nutrient deficiency can lead to increased production of free radicals and other oxidative species in plants. A growing body of evidence suggests that plants respond to these biotic and abiotic stress factors by increasing their capacity to scavenge reactive oxygen species. Efforts to understand this acclimatory process have focused on the components of the 'classical' antioxidant system, i.e. superoxide dismutase, ascorbate peroxidase, catalase, monodehydroascorbate reductase, glutathione reductase and the low molecular weight antioxidants ascorbate and glutathione. However, relatively few studies have explored the role of secondary metabolic pathways in plant response to oxidative stress. A case in point is the phenylpropanoid pathway which is responsible for the synthesis of a diverse array of phenolic metabolites such as flavonoids, tannins, hydroxycinnamate esters and the structural polymer lignin. These compounds are often induced by stress and serve specific roles in plant protection, i.e. pathogen defence, ultraviolet screening, antiherbivory, or structural components of the cell wall. This review will highlight a novel antioxidant function for the taxonomically widespread phenylpropanoid metabolite chlorogenic acid (CGA; 5-O-caffeoylquinic acid) and assess its possible role in abiotic stress tolerance. The relationship between CGA biosynthesis and photosynthetic carbon metabolism will also be discussed. Based on the properties of this model phenolic metabolite, we propose that under stress conditions phenylpropanoid biosynthesis may represent an alternative pathway for photochemical energy dissipation that has the added benefit of enhancing the antioxidant capacity of the cell. PMID:11128003

  17. Diffusion and accumulation in cultivated vegetable plants of di-(2-ethylhexyl) phthalate (DEHP) from a plastic production factory.

    PubMed

    Du, Q Z; Wang, J W; Fu, X W; Xia, H L

    2010-08-01

    Di-(2-ethylhexyl) phthalate (DEHP) concentrations in the atmosphere and in four vegetable crops including Brassica chinensis L. (bok choy), Brassica campestris L. (field mustard), Vigna unguiculata Walp. (cowpea), and Solanum melongena L. (eggplant) cultivated on land surrounding a plastic production factory were determined. The air DEHP concentrations (means) at the sites 0.2, 0.4, 0.8, and 1.6 km away from the plastic production building were about 9.4-12.8, 5.8-9.6, 1.6-5.0, and 0.04-0.27 microg m(-3) dry weight (DW), respectively. Wind direction is a key factor influencing the measurable DEHP concentration of the air, which was highest in the downwind direction and lowest in the upwind direction, and thus the vegetables accumulated the highest DEHP contents in the downwind direction and the lowest quantities in the upwind direction. The highest DEHP accumulations content of bok choy, field mustard, eggplant, and cowpea were 52.0 +/- 3.1, 43.1 +/- 2.2, 36.2 +/- 2.8, and 19.4 +/- 0.47 mg kg(-1) DW, respectively. Safety estimation on the basis of the daily intake limit referenced by the US Environmental Protection Agency (USEPA) led to the conclusion that eating vegetables cultivated 0.2 km away from the plastic production building is not a food safety problem under normal conditions. A strong positive linear correlation between atmospheric DEHP concentration and DEHP content of the vegetable crops was found. The limits for air DEHP concentration for safe vegetable cultivation are 24.0, 34.8, 40.8, and 82.8 microg m(-3) for bok choy, field mustard, cowpea, and eggplant, respectively, by calculating from the equation of linear regression between air DEHP concentration and vegetable DEHP content.

  18. Detection of Legionella by cultivation and quantitative real-time polymerase chain reaction in biological waste water treatment plants in Norway.

    PubMed

    Lund, Vidar; Fonahn, Wenche; Pettersen, Jens Erik; Caugant, Dominique A; Ask, Eirik; Nysaeter, Ase

    2014-09-01

    Cases of Legionnaires' disease associated with biological treatment plants (BTPs) have been reported in six countries between 1997 and 2010. However, knowledge about the occurrence of Legionella in BTPs is scarce. Hence, we undertook a qualitative and quantitative screening for Legionella in BTPs treating waste water from municipalities and industries in Norway, to assess the transmission potential of Legionella from these installations. Thirty-three plants from different industries were sampled four times within 1 year. By cultivation, 21 (16%) of 130 analyses were positive for Legionella species and 12 (9%) of 130 analyses were positive for Legionella pneumophila. By quantitative real-time polymerase chain reaction (PCR), 433 (99%) of 437 analyses were positive for Legionella species and 218 (46%) of 470 analyses were positive for L. pneumophila. This survey indicates that PCR could be the preferable method for detection of Legionella in samples from BTPs. Sequence types of L. pneumophila associated with outbreaks in Norway were not identified from the BTPs. We showed that a waste water treatment plant with an aeration basin can produce high concentrations of Legionella. Therefore, these plants should be considered as a possible source of community-acquired Legionella infections.

  19. Energy conservation study on Agripac Processing Plant, Salem, Oregon

    SciTech Connect

    Not Available

    1985-01-15

    An energy study on electrical energy using systems was performed at Agripac plant No. 1 in Salem, Oregon, in the late summer and fall of 1984. The plant processes mainly green beans, corn and squash. The respective products are inspected, prepared and graded, after which they are either canned or frozen in freeze tunnels or cold storage cells. The canned products are sent through pressure cookers. In the case of green beans and corn, some of the product is frozen in freeze tunnels and dumped into tote bins for the repack operation, while some is packaged in cartons and quick frozen in blast freeze cells. For squash, all the product processed is put into cartons and frozen in the cells. Energy conservation measures were calculated using a simple payback analysis. Conservation measures have been evaluated interactively to avoid overestimating savings, assuming that measures that are cost effective will be implemented as a package. In some cases, mutually exclusive conservation measures have been considered for a single application. These have been presented as an either/or measure. Details of the options are included in the text and the calculation sheets.

  20. Plant response to lead in the presence or absence EDTA in two sunflower genotypes (cultivated H. annuus cv. 1114 and interspecific line H. annuus × H. argophyllus).

    PubMed

    Doncheva, Snezhana; Moustakas, Michael; Ananieva, Kalina; Chavdarova, Martina; Gesheva, Emiliya; Vassilevska, Rumyana; Mateev, Plamen

    2013-02-01

    The aim of the present work was to study the response of two sunflower genotypes (cultivated sunflower Helianthus annuus cv. 1114 and newly developed genotype H. annuus × Helianthus argophyllus) to Pb medium-term stress and the role of exogenously applied EDTA in alleviating Pb toxicity in hydroponics. Plant growth, morpho-anatomical characteristics of the leaf tissues, electrolyte leakage, total antioxidant activity, free radical scavenging capacity, total flavonoid content, and superoxide dismutase isoenzyme profile were studied by conventional methods. Differential responses of both genotypes to Pb supplied in the nutrient solution were recorded. Pb treatment induced a decrease in the relative growth rate, disturbance of plasma membrane integrity, and changes in the morpho-anatomical characteristics of the leaf tissues and in the antioxidant capacity, which were more pronounced in the cultivated sunflower H. annuus cv. 1114. The new genotype demonstrated higher tolerance to Pb when compared with the cultivar. This was mainly due to increased photosynthetically active area, maintenance of plasma membrane integrity, permanently high total antioxidant activity, and free radical scavenging capacity as well as total flavonoid content. The addition of EDTA into the nutrient solution led to limitation of the negative impact of Pb ions on the above parameters in both genotypes. This could be related to the reduced content of Pb in the roots, stems, and leaves, suggesting that the presence of EDTA limited the uptake of Pb. The comparative analysis of the responses to Pb treatment showed that the deleterious effect of Pb was more pronounced in the cultivated sunflower H. annuus cv. 1114. The new genotype H. annuus × H. argophyllus was more productive and demonstrated higher tolerance to Pb medium-term stress, which could indicate that it may possess certain mechanisms to tolerate high Pb concentrations. This character could be inherited from the wild parent used in the

  1. Mild Fe-deficiency improves biomass production and quality of hydroponic-cultivated spinach plants (Spinacia oleracea L.).

    PubMed

    Jin, Chong-Wei; Liu, Yue; Mao, Qian-Qian; Wang, Qian; Du, Shao-Ting

    2013-06-15

    It is of great practical importance to improve yield and quality of vegetables in soilless cultures. This study investigated the effects of iron-nutrition management on yield and quality of hydroponic-cultivated spinach (Spinacia oleracea L.). The results showed that mild Fe-deficient treatment (1 μM FeEDTA) yielded a greater biomass of edible parts than Fe-omitted treatment (0 μM FeEDTA) or Fe-sufficient treatments (10 and 50 μM FeEDTA). Conversely, mild Fe-deficient treatment had the lowest nitrate concentration in the edible parts out of all the Fe treatments. Interestingly, all the concentrations of soluble sugar, soluble protein and ascorbate in mild Fe-deficient treatments were higher than Fe-sufficient treatments. In addition, both phenolic concentration and DPPH scavenging activity in mild Fe-deficient treatments were comparable with those in Fe-sufficient treatments, but were higher than those in Fe-omitted treatments. Therefore, we concluded that using a mild Fe-deficient nutrition solution to cultivate spinach not only would increase yield, but also would improve quality.

  2. Wind Energy Conversion by Plant-Inspired Designs.

    PubMed

    McCloskey, Michael A; Mosher, Curtis L; Henderson, Eric R

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a "vertical flapping stalk"-the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°-90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced < daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts < daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept.

  3. Wind Energy Conversion by Plant-Inspired Designs

    PubMed Central

    Mosher, Curtis L.; Henderson, Eric R.

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a “vertical flapping stalk”—the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°–90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced << daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts << daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept. PMID:28085933

  4. Use of human wastes oxidized to different degrees in cultivation of higher plants on the soil-like substrate intended for closed ecosystems

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A. A.; Kudenko, Yu. A.; Ushakova, S. A.; Tirranen, L. S.; Gribovskaya, I. A.; Gros, J.-B.; Lasseur, Ch.

    2010-09-01

    To close mass exchange loops in bioregenerative life support systems more efficiently, researchers of the Institute of Biophysics SB RAS (Krasnoyarsk, Russia) have developed a procedure of wet combustion of human wastes and inedible parts of plants using H 2O 2 in alternating electromagnetic field. Human wastes pretreated in this way can be used as nutrient solutions to grow plants in the phototrophic unit of the LSS. The purpose of this study was to explore the possibilities of using human wastes oxidized to different degrees to grow plants cultivated on the soil-like substrate (SLS). The treated human wastes were analyzed to test their sterility. Then we investigated the effects produced by human wastes oxidized to different degrees on growth and development of wheat plants and on the composition of microflora in the SLS. The irrigation solution contained water, substances extracted from the substrate, and certain amounts of the mineralized human wastes. The experiments showed that the human wastes oxidized using reduced amounts of 30% H 2O 2: 1 ml/g of feces and 0.25 ml/ml of urine were still sterile. The experiments with wheat plants grown on the SLS and irrigated by the solution containing treated human wastes in the amount simulating 1/6 of the daily diet of a human showed that the degree of oxidation of human wastes did not significantly affect plant productivity. On the other hand, the composition of the microbiota of irrigation solutions was affected by the oxidation level of the added metabolites. In the solutions supplemented with partially oxidized metabolites yeast-like microscopic fungi were 20 times more abundant than in the solutions containing fully oxidized metabolites. Moreover, in the solutions containing incompletely oxidized human wastes the amounts of phytopathogenic bacteria and denitrifying microorganisms were larger. Thus, insufficiently oxidized sterile human wastes added to the irrigation solutions significantly affect the composition of

  5. Total energy food plant 21 million gallon ethanol facility

    NASA Astrophysics Data System (ADS)

    1981-10-01

    The Phase I Engineering study includes the following: process description, waste water treatment plant, material summary, energy chart, capital cost estimate, equipment list, personnel requirements, drawings list, specifications list, and project schedule. The economic and financial feasibility of the technical process, and environmental, health, safety, and socio-economic assessments for the project are reported. The costs for extending the following utilities to the property line of the selected site are presented: potable water, sewer system, electricity, roads for truck traffic, and rail service.

  6. Survey of Nitrate Ion Concentrations in Vegetables Cultivated in Plant Factories: Comparison with Open-Culture Vegetables.

    PubMed

    Oka, Yuka; Hirayama, Izumi; Yoshikawa, Mitsuhide; Yokoyama, Tomoko; Iida, Kenji; Iwakoshi, Katsushi; Suzuki, Ayana; Yanagihara, Midori; Segawa, Yukino; Kukimoto, Sonomi; Hamada, Humika; Matsuzawa, Satomi; Tabata, Setsuko; Sasamoto, Takeo

    2017-01-01

    A survey of nitrate-ion concentrations in plant-factory-cultured leafy vegetables was conducted. 344 samples of twenty-one varieties of raw leafy vegetables were examined using HPLC. The nitrate-ion concentrations in plant-factory-cultured leafy vegetables were found to be LOD-6,800 mg/kg. Furthermore, the average concentration values varied among different leafy vegetables. The average values for plant-factory-cultured leafy vegetables were higher than those of open-cultured leafy vegetables reported in previous studies, such as the values listed in the Standard Tables of Food Composition in Japan- 2015 - (Seventh revised edition). For some plant-factory-cultured leafy vegetables, such as salad spinach, the average values were above the maximum permissible levels of nitrate concentration in EC No 1258/2011; however, even when these plant-factory-cultured vegetables were routinely eaten, the intake of nitrate ions in humans did not exceed the ADI.

  7. Cultivation of the culinary-medicinal Lung Oyster mushroom, Pleurotus pulmonarius (Fr.) Quél. (Agaricomycetideae) on grass plants in Taiwan.

    PubMed

    Liang, Zeng-Chin; Wu, Kuan-Jzen; Wang, Jinn-Chyi; Lin, Chorng-Horng; Wu, Chiu-Yeh

    2011-01-01

    Cultivation of the culinary-medicinal Lung Oyster mushroom, Pleurotus pulmonarius, on the stalks of three grass plants, i.e., Panicum repens, Pennisetum purpureum, and Zea mays were investigated. The effects of various combinatorial substrates on mushroom mycelial growth and yield calculated as biological efficiency (BE) were determined. Among 9 experimental substrates, the most suitable substrate for mycelial growth was 45ZMS:45S, followed by 45PRS:45S; their mycelial growth rates were obviously quicker than that of the control substrate. The BEs of all the experimental substrates respectively containing P. repens stalk, P. purpureum stalk and Z. mays stalk were higher than that of the control (39.55%) during the 2.5 months of cultivation period. The best substrate in terms of BE was 60ZMS:30S (58.33%), followed by 45PRS:45S (57.16%), 45ZMS:45S (49.86%), and 30ZMS:60S (47.20%). Based on the BE of the tested substrates, Z mays stalk appeared to be the best alternative material for the production of P. pulmonarius.

  8. Genetic Structure of Rhizobium etli biovar phaseoli Associated with Wild and Cultivated Bean Plants (Phaseolus vulgaris and Phaseolus coccineus) in Morelos, Mexico

    PubMed Central

    Souza, Valeria; Eguiarte, Luis; Avila, German; Cappello, Renato; Gallardo, Claudia; Montoya, Javier; Piñero, Daniel

    1994-01-01

    The genetic structure of Rhizobium etli biovar phaseoli was determined for five populations in three different locations in the state of Morelos, Mexico, by using starch gel electrophoresis for five to nine polymorphic loci. Two populations were sampled during two different years from nodules of cultivated and wild common bean plants (Phaseolus vulgaris). The three other populations were associated with wild runner beans (P. coccineus) and sampled during 1988. The Rhizobium populations differ genetically both among sites and among populations within the same site in different years, as shown by differences in allelic frequencies, genetic differentiation analysis, and differences in electrotypes. The total genetic diversity for the five populations during 1988 was H = 0.487; there were also high levels of genetic variation within each population. We found the highest linkage disequilibrium in a global analysis for all the populations. At a local scale, we also found significant linkage disequilibrium in two populations, although the distribution of the D′ suggest some recombination at a local scale. The other three rhizobium populations exhibit low linkage disequilibrium. A cluster analysis (UPGMA) of pairwise genetic distances showed that bacteria isolated from most wild Phaseolus spp. are grouped by population, whereas those obtained from cultivated P. vulgaris are very heterogeneous. The analysis of the genetic structure of Rhizobium strains may allow the identification of strains that are naturally well adapted to a wide range of different environments, which may be useful for agricultural purposes or as a starting point for developing improved Rhizobium strains. PMID:16349234

  9. Two-step cultivation for production of astaxanthin in Chlorella zofingiensis using a patented energy-free rotating floating photobioreactor (RFP).

    PubMed

    Zhang, Zhao; Huang, Jim Junhui; Sun, Dongzhe; Lee, Yuankun; Chen, Feng

    2017-01-01

    In the present study, high light and nitrogen starvation with glucose-fed to the culture was found efficient to induce astaxanthin accumulation in Chlorella zofingiensis. Therefore, a two-step cultivation strategy including high biomass yield fermentation and outdoor induction with an energy-free RFP was conducted. During the fermentation, the highest cell density of 98.4gL(-1) and astaxanthin yield of 73.3mgL(-1) were achieved, which were higher than those so far reported in C. zofingiensis. During the outdoor induction, astaxanthin content was further increased by 1.5-fold leading to the highest astaxanthin productivity of 5.26mgL(-1)day(-1) under an optimal dilution of 5-fold. Our work thus provided an effective two-step cultivation strategy for production of astaxanthin by C. zofingiensis.

  10. Two Mississippi Plants Among Top Performing Energy Star Certified Manufacturers in 29 States Across the country, Energy Star manufacturing plants are leading their industries by saving energy and money, combating climate change

    EPA Pesticide Factsheets

    ATLANTA - The U.S. Environmental Protection Agency (EPA) announced today that 70 manufacturing plants have achieved Energy Star certification for their superior energy performance in 2014. Together, these manufacturing plants saved a record amount o

  11. EPA Announces 70 Top Performing Energy Star Certified Manufacturing Plants in 29 States/ Across the country, Energy Star manufacturing plants are leading their industries by saving energy and money, combating climate change

    EPA Pesticide Factsheets

    WASHINGTON - The U.S. Environmental Protection Agency (EPA) announced today that 70 manufacturing plants have achieved Energy Star certification for their superior energy performance in 2014. Together, these manufacturing plants saved a record amount of en

  12. A desalination plant with solar and wind energy

    NASA Astrophysics Data System (ADS)

    Chen, H.; Ye, Z.; Gao, W.

    2013-12-01

    The shortage of freshwater resources has become a worldwide problem. China has a water shortage, although the total amount of water resources is the sixth in the world, the per capita water capacity is the 121th (a quarter of the world's per capita water capacity), and the United Nations considers China one of the poorest 13 countries in the world in terms of water. In order to increase the supply of fresh water, a realistic way is to make full use of China's long and narrow coastline for seawater desalination. This paper discusses a sea water desalination device, the device adopts distillation, uses the greenhouse effect principle and wind power heating principle, and the two-type start is used to solve the problem of vertical axis wind turbine self-starting. Thrust bearings are used to ensure the stability of the device, and to ensure absorbtion of wind energy and solar energy, and to collect evaporation of water to achieve desalination. The device can absorb solar and wind energy instead of input energy, so it can be used in ship, island and many kinds of environment. Due to the comprehensive utilization of wind power and solar power, the efficiency of the device is more than other passive sea water desalting plants, the initial investment and maintenance cost is lower than active sea water desalting plant. The main part of the device cannot only be used in offshore work, but can also be used in deep sea floating work, so the device can utilise deep sea energy. In order to prove the practicability of the device, the author has carried out theory of water production calculations. According to the principle of conservation of energy, the device ais bsorbing solar and wind power, except loose lost part which is used for water temperature rise and phase transition. Assume the inflow water temperature is 20 °C, outflow water temperature is 70 °C, the energy utilization is 60%, we can know that the water production quantity is 8 kg/ m2 per hour. Comparing with the

  13. Ammonia plant designers talk of big energy savings

    SciTech Connect

    Axelrod, L.C.

    1980-08-27

    The ammonia plant that Pullman Kellogg has designed for Sherritt-Gordon Mines Ltd. in Alberta will require < 27 million Btu/ton of ammonia, and save $8.10/ton in energy costs because of improvements involving increased pressure in the primary reformer; more efficient use of the heat from the secondary reformer; carbon dioxide recovery by Allied Chemical Corp.'s Selexol process; the reduction of power requirements in the synthesis recycle loop; and the use of a horizontal reactor. C. F. Braun and Co. claims that its Purifier process will require < 25 million Btu/ton, due to the use of excess air in the secondary reformer. C-E Lummus offers a 1500 ton/day plant which, incorporating cryogenic recovery of hydrogen from purge gas and operation at a lower steam-to-carbon ratio, would require only 26 million Btu/ton; Haldor Topsoe Inc. offers a design rated at 26.3 million Btu/ton. According to L. C. Axelrod of Pullman Kellogg, ammonia plant construction will shift to gas-rich areas outside the U.S. and Europe. The 3% of the U.S. natural gas used by the fertilizer industry accounts for > 95% of ammonia feedstock.

  14. A Plant Bacterial Pathogen Manipulates Its Insect Vector's Energy Metabolism.

    PubMed

    Killiny, Nabil; Hijaz, Faraj; Ebert, Timothy A; Rogers, Michael E

    2017-03-01

    Insect-transmitted plant-pathogenic bacteria may alter their vectors' fitness, survival, behavior, and metabolism. Because these pathogens interact with their vectors on the cellular and organismal levels, potential changes at the biochemical level might occur. "Candidatus Liberibacter asiaticus" (CLas) is transmitted in a persistent, circulative, and propagative manner. The genome of CLas revealed the presence of an ATP translocase that mediates the uptake of ATP and other nucleotides from medium to achieve its biological processes, such as growth and multiplication. Here, we showed that the levels of ATP and many other nucleotides were significantly higher in CLas-infected than healthy psyllids. Gene expression analysis showed upregulation for ATP synthase subunits, while ATPase enzyme activity showed a decrease in ATPase activity. These results indicated that CLas stimulated Diaphorina citri to produce more ATP and many other energetic nucleotides, while it may inhibit their consumption by the insect. As a result of ATP accumulation, the adenylated energy charge (AEC) increased and the AMP/ATP and ADP/ATP ratios decreased in CLas-infected D. citri psyllids. Survival analysis confirmed a shorter life span for CLas-infected D. citri psyllids. In addition, electropenetrography showed a significant reduction in total nonprobing time, salivation time, and time from the last E2 (phloem ingestion) to the end of recording, indicating that CLas-infected psyllids were at a higher hunger level and they tended to forage more often. This increased feeding activity reflects the CLas-induced energetic stress. In conclusion, CLas alters the energy metabolism of its psyllid vector, D. citri, in order to secure its need for energetic nucleotides.IMPORTANCE Insect transmission of plant-pathogenic bacteria involves propagation and circulation of the bacteria within their vectors. The transmission process is complex and requires specific interactions at the molecular and biochemical

  15. Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis.

    PubMed

    Ceballos, Isabel; Mosquera, Sandra; Angulo, Mónica; Mira, John J; Argel, Luz Edith; Uribe-Velez, Daniel; Romero-Tabarez, Magally; Orduz-Peralta, Sergio; Villegas, Valeska

    2012-10-01

    Mycosphaerella fijiensis is the etiological agent of Black Sigatoka, a fungal disease that affects production of banana and plantain crops in tropical regions. The sizes of cultivable epiphytic and endophytic bacterial populations, aerobic endospore forming bacteria (AEFB), and antagonist bacteria against M. fijiensis isolated from three Musa spp. cultivars from Urabá (Colombia) were studied, in order to find a suitable screening strategy to isolate antagonistic bacteria. Most of the variability found in the epiphytic and endophytic bacterial community sizes among fruit trees was explained by the cultivar differences. We found population sizes ranging from 1.25 × 10(3) to 9.64 × 10(5) CFU/g of fresh leaf and found that 44 % of total cultivable bacteria belong to the AEFB group. We isolated 648 AEFB from three different cultivars and assessed their antagonistic activity against M. fijiensis using the cell-free supernatant obtained from bacterial liquid cultures in three different in vitro assays. Five percent of those bacteria showed higher percent inhibition than the positive control Bacillus subtilis UA321 has (percent inhibition = 84 ± 5) in the screening phase. Therefore, they were selected as antagonistic bacteria against the pathogen. The strains with the highest percentage of antagonism were found in older leaves for the three cultivars, given support to recommend this group of leaves for future samplings. Some of these isolated bacteria affected the mycelium and ascospores morphology of the fungus. They also presented in vitro characteristics related to a successful colonization of the phylloplane such as indolic compounds, surfactant production, and biofilm formation, which makes them possible, potential candidates as biological control agents.

  16. 75 FR 5314 - Medical Area Total Energy Plant, Inc., New MATEP, Inc.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Medical Area Total Energy Plant, Inc., New MATEP, Inc.; Notice of Filing January 26, 2010. Take notice that on January 15, 2010, Medical Area Total Energy Plant, Inc. and...

  17. Early and Middle Holocene evidence for plant use and cultivation in the Middle Cauca River Basin, Cordillera Central (Colombia)

    NASA Astrophysics Data System (ADS)

    Aceituno, Francisco J.; Loaiza, Nicolás

    2014-02-01

    This paper presents the latest results of research done in the Colombian Andean region known as Middle Cauca River Basin, an important location for the study of the origins of plant use and the dispersal of domesticates throughout the Americas due to its geographical position in northwest South America. We discuss human-environment interactions during Pleistocene/Holocene transition to middle Holocene (ca 10,000-4000 BP), specifically human-plant interaction and environmental factors that led to the adoption of horticultural practices. Three lines of evidence are analyzed: archaeological stratigraphy, lithic technology, and microbotanical remains. Our results suggest that early Holocene environmental stability allowed Middle Cauca settlers to use the diverse local resources for several millennia, altering the local vegetation, and leading to the development of horticultural practices that included the use of both local and foreign plants. These results inform the ongoing debate about the antiquity and nature of plant domestication and dispersals in the Americas.

  18. Greenhouse and field cultivations of antigen-expressing potatoes focusing on the variability in plant constituents and antigen expression.

    PubMed

    Mikschofsky, Heike; Heilmann, Elena; Schmidtke, Jörg; Schmidt, Kerstin; Meyer, Udo; Leinweber, Peter; Broer, Inge

    2011-05-01

    The production of plant-derived pharmaceuticals essentially requires stable concentrations of plant constituents, especially recombinant proteins; nonetheless, soil and seasonal variations might drastically interfere with this stability. In addition, variability might depend on the plant organ used for production. Therefore, we investigated the variability in plant constituents and antigen expression in potato plants under greenhouse and field growth conditions and in leaves compared to tubers. Using potatoes expressing VP60, the only structural capsid protein of the rabbit haemorrhagic disease virus (RHDV), CTB, the non-toxic B subunit (CTB) of the cholera toxin (CTA-CTB(5)) and the marker protein NPTII (neomycinphosphotransferase) as a model, we compare greenhouse and field production of potato-derived antigens. The influence of the production organ turned out to be transgene specific. In general, yield, plant quality and transgene expression levels in the field were higher than or similar to those observed in the greenhouse. The variation (CV) of major plant constituents and the amount of transgene-encoded protein was not influenced by the higher variation of soil properties observed in the field. Amazingly, for specific events, the variability in the model protein concentrations was often lower under field than under greenhouse conditions. The changes in gene expression under environmental stress conditions in the field observed in another event do not reduce the positive influence on variability since events like these should excluded from production. Hence, it can be concluded that for specific applications, field production of transgenic plants producing pharmaceuticals is superior to greenhouse production, even concerning the stability of transgene expression over different years. On the basis of our results, we expect equal or even higher expression levels with lower variability of recombinant pharmaceuticals in the field compared to greenhouse production

  19. The cultivation of wild food and medicinal plants for improving community livelihood: The case of the Buhozi site, DR Congo

    PubMed Central

    Karhagomba, Innocent Balagizi; Mirindi T, Adhama; Mushagalusa, Timothée B.; Nabino, Victor B.; Koh, Kwangoh

    2013-01-01

    This study aims to demonstrate the effect of farming technology on introducing medicinal plants (MP) and wild food plants (WFP) into a traditional agricultural system within peri-urban zones. Field investigations and semi-structured focus group interviews conducted in the Buhozi community showed that 27 health and nutrition problems dominated in the community, and could be treated with 86 domestic plant species. The selected domestic MP and WFP species were collected in the broad neighboring areas of the Buhozi site, and introduced to the experimental field of beans and maize crops in Buhozi. Among the 86 plants introduced, 37 species are confirmed as having both medicinal and nutritional properties, 47 species with medicinal, and 2 species with nutritional properties. The field is arranged in a way that living hedges made from Tithonia diversifolia provide bio-fertilizers to the plants growing along the hedges. The harvest of farming crops does not disturb the MP or WFP, and vice-versa. After harvesting the integrated plants, the community could gain about 40 times higher income, than from harvesting farming crops only. This kind of field may be used throughout the year, to provide both natural medicines and foods. It may therefore contribute to increasing small-scale crop producers' livelihood, while promoting biodiversity conservation. This model needs to be deeply documented, for further pharmaceutical and nutritional use. PMID:24353838

  20. [Rapid diagnostics of early phosphorus deficiency in mini-cucumber plants under protected cultivation by near infrared spectroscopy].

    PubMed

    Shi, Ji-yong; Zou, Xiao-bo; Zhao, Jie-wen; Mao, Han-ping; Wang, Kai-liang; Chen, Zheng-wei; Huang, Xiao-wei

    2011-12-01

    The morphological symptom of phosphorus deficiency at early stage is similar to the appearance of leaf aging process in preliminary phase, so that visual diagnostics of phosphorus deficiency in mini-cucumber plants at early stage is practically impossible. Near infrared reflectance spectra contain information about differences in compositions of leaf tissues between phosphorus-deficient plants and healthy plants. In the present paper, near infrared reflectance spectroscopy was used to provide diagnostic information on phosphorus deficiency of mini-cucumber plants grown under non-soil conditions. Near infrared spectra was collected from 90 leaves of mini-cucumber plants. Raw cucumber spectra was preprocessed by SNV and divided into 27 intervals. The top 10 principal components (PCs) were extracted as the input of BP-ANN classifiers by principal component analysis (PCA) while the values of nutrient deficient were used as the output variables of BP-ANN and three layers BP-ANN discrimination model was built. The best experiment results were based on the top 3 principal components of No. 7 interval when the spectra was divided into 27 intervals and identification rates of the ANN model are 100% in both training set and the prediction set. The overall results show that NIR spectroscopy combined with BP-ANN can be efficiently utilized for rapid and early diagnostics of phosphorus deficiency in mini-cucumber plants.

  1. Appleton Papers Plant-Wide Energy Assessment Saves Energy and Reduces Waste (Paper machine at Appleton's West Carrollton paper mill)

    SciTech Connect

    2002-03-01

    Plant-wide energy survey at the Appleton Papers, Inc. West Carrollton paper mill resulted in 21 recommendations for projects to reduce energy consumption and waste production and improve process efficiency.

  2. Responses of butachlor degradation and microbial properties in a riparian soil to the cultivation of three different plants.

    PubMed

    Yang, Changming; Wang, Mengmeng; Chen, Haiyan; Li, Jianhua

    2011-01-01

    A pot experiment was conducted to investigate the biodegradation dynamics and related microbial ecophysiological responses to butachlor addition in a riparian soil planted with different plants such as Phragmites australis, Zizania aquatica, and Acorus calamus. The results showed that there were significant differences in microbial degradation dynamics of butachlor in the rhizosphere soils among the three riparian plants. A. calamus displays a significantly higher degradation efficiency of butachlor in the rhizosphere soils, as compared with Z. aquatica and P. australis. Half-life time of butachlor degradation in the rhizospheric soils of P. australis, Z. aquatica, and A. calamus were 7.5, 9.8 and 5.4 days, respectively. Residual butachlor concentration in A. calamus rhizosphere soil was 35.2% and 21.7% lower than that in Z. aquatica and P. australis rhizosphere soils, respectively, indicating that A. calamus showed a greater improvement effect on biodegradation of butachlor in rhizosphere soils than the other two riparian plant. In general, microbial biomass and biochemical activities in rhizosphere soils were depressed by butachlor addition, despite the riparian plant types. However, rhizospheric soil microbial ecophysiological responses to butachlor addition significantly (P < 0.05) differed between riparian plant species. Compared to Z. aquatica and P. australis, A. calamus showed significantly larger microbial number, higher enzyme activities and soil respiration rates in the rhizosphere soils. The results indicated that A. calamus have a better alleviative effect on inhibition of microbial growth due to butachlor addition and can be used as a suitable riparian plant for detoxifying and remediating butachlor contamination from agricultural nonpoint pollution.

  3. Formosa Plastics Corporation: Plant-Wide Assessment of Texas Plant Identifies Opportunities for Improving Process Efficiency and Reducing Energy Costs

    SciTech Connect

    2005-01-01

    At Formosa Plastics Corporation's plant in Point Comfort, Texas, a plant-wide assessment team analyzed process energy requirements, reviewed new technologies for applicability, and found ways to improve the plant's energy efficiency. The assessment team identified the energy requirements of each process and compared actual energy consumption with theoretical process requirements. The team estimated that total annual energy savings would be about 115,000 MBtu for natural gas and nearly 14 million kWh for electricity if the plant makes several improvements, which include upgrading the gas compressor impeller, improving the vent blower system, and recovering steam condensate for reuse. Total annual cost savings could be $1.5 million. The U.S. Department of Energy's Industrial Technologies Program cosponsored this assessment.

  4. Transcriptome analysis highlights changes in the leaves of maize plants cultivated in acidic soil containing toxic levels of Al(3+).

    PubMed

    Mattiello, Lucia; Begcy, Kevin; da Silva, Felipe Rodrigues; Jorge, Renato A; Menossi, Marcelo

    2014-12-01

    Soil acidity limits crop yields worldwide and is a common result of aluminum (Al) phytotoxicity, which is known to inhibit root growth. Here, we compared the transcriptome of leaves from maize seedlings grown under control conditions (soil without free Al) and under acidic soil containing toxic levels of Al. This study reports, for the first time, the complex transcriptional changes that occur in the leaves of maize plants grown in acidic soil with phytotoxic levels of Al. Our data indicate that 668 genes were differentially expressed in the leaves of plants grown in acidic soil, which is significantly greater than that observed in our previous work with roots. Genes encoding TCA cycle enzymes were upregulated, although no specific transporter of organic acids was differentially expressed in leaves. We also provide evidence for positive roles for auxin and brassinosteroids in Al tolerance, whereas gibberellin and jasmonate may have negative roles. Our data indicate that plant responses to acidic soil with high Al content are not restricted to the root; tolerance mechanisms are also displayed in the aerial parts of the plant, thus indicating that the entire plant responds to stress.

  5. Citrus compost and its water extract for cultivation of melon plants in greenhouse nurseries. Evaluation of nutriactive and biocontrol effects.

    PubMed

    Bernal-Vicente, A; Ros, M; Tittarelli, F; Intrigliolo, F; Pascual, J A

    2008-12-01

    Two different types of citrus composts, and their water extracts, were tested with regard to their utilisations as partial substitutes for peat in growing media for melon seedlings in greenhouse nurseries. Both compost showed higher plant growth than peat. Compost composed by citrus waste and green residue (C2) showed greater plant growth than compost obtained from the same organic matrices mentioned above further the addition of sludge obtained from citrus industry (C1). Compost C2 showed a greater auxinic effect than C1 and it was the only one that showed cytokinic effect. Both composts also demonstrated a biocontrol effect against Fusarium oxysporum for melon plants: the effects were also higher in C2 than in C1. Higher number of isolated fungi was active against F. oxysporum in compost C2, than compost C1. No different bacterial biocontrol efficacy was observed between both composts. The water extracts of both composts gave lower plant yields than their solid matrices, their relative effects being similar to those of the solid composts (C2 extract gave higher plant yields than the extract from C1). The biocontrol effects of compost water extracts followed the same trend.

  6. An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems.

    PubMed

    Luo, Jie; Qi, Shihua; Gu, X W Sophie; Wang, Jinji; Xie, Xianming

    2016-05-01

    Previous studies have shown that phytoremediation usually requires soil amendments, such as chelates, to mobilize low bioavailability heavy metals for better plant absorption and, consequently, for remediation efficiency. A total dry biomass of 3.39 and 0.0138 kg per plant was produced by a phytoremediator, Eucalyptus globulus, and a nitrogen fixing crop, Cicer arietinum (chickpea), respectively. The accumulation of Pb in E. globulus and chickpea reached 1170.61 and 1.33 mg per plant (700 and 324 mg kg(-1)), respectively, under an ethylene diamine tetraacetic acid (EDTA) treatment, which was a five and sixfold increase over the value in untreated experiments, respectively. EDTA enhanced the phytoremediation efficiency and increased the heavy metal concentration in the soil solution. In pot experiments, approximately 27 % of the initial Pb leached from the spiked soil after EDTA and 25 mm artificial precipitation additions into soil without plants, which was considerably larger than the value under the same conditions without EDTA application (7 %). E. globulus planted in a mixed culture had higher water use efficiency than monocultures of either species in field experiments, and E. globulus intercepted almost all of the artificial precipitation in the pot experiments. This study demonstrates that E. globulus can maximize the potential of EDTA for improving the phytoremediation efficiency and minimizing its negative effects to the environment simultaneously by absorbing the metal-rich leachate, especially in a mixed culture of E. globulus and chickpeas.

  7. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils

    PubMed Central

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A.; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D.

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  8. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  9. 75 FR 14638 - FirstEnergy Nuclear Operating Company; Perry Nuclear Power Plant; Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... COMMISSION FirstEnergy Nuclear Operating Company; Perry Nuclear Power Plant; Environmental Assessment and...Energy Nuclear Operating Company (FENOC, the licensee), for operation of the Perry Nuclear Power Plant... Manager, Plant Licensing Branch III-2, Division of Operating Reactor Licensing, Office of Nuclear...

  10. Tribotechnical and Energy Assessment of Parts of Working Members of Cultivating Machines After Carburizing and Laser Hardening

    NASA Astrophysics Data System (ADS)

    Pyndak, V. I.; Novikov, A. E.

    2016-07-01

    Results of experimental studies of low-carbon steel 20 and high-carbon steels of types 70 and 65G after carburizing, heat treatment and laser hardening are presented. The variation of the microhardness of the surface layers of the steels and of their wear resistance due to different variants of hardening is determined. Optimum modes of treatment aimed at raising the strength and wear resistance are suggested for the steels used for working members of cultivating machines.

  11. CONSOL Energy invests in West Virginia CTL plant

    SciTech Connect

    2008-10-15

    Working with Synthesis Energy Systems (SES), America's leading bituminous coal producer assists with the engineering design package for a coal gasification and liquefaction plant to be located near Benwood in West Virginia. Coal will be converted to syngas using SES's proprietary U-GAS technology. The syngas is expected to be used to produce about 720,000 metric tons per year of methanol. The U-GAS technology is licensed from the Gas Technology Institute (GTI). The article explains how the GTI gasification process works. It is based on a surge-stage fluidised bed for production of low-to-medium calorific value synthesis gas from a variety of feedstocks, including coal. 2 figs.

  12. Quantitative expression analysis of TaSOS1 and TaSOS4 genes in cultivated and wild wheat plants under salt stress.

    PubMed

    Ramezani, Amin; Niazi, Ali; Abolimoghadam, Ali Asghar; Zamani Babgohari, Mahboobeh; Deihimi, Tahereh; Ebrahimi, Mahmod; Akhtardanesh, Hosein; Ebrahimie, Esmail

    2013-02-01

    Salt stress is a mixture of ionic, osmotic, and oxidative stresses. The expression of TaSOS1 (a transmembrane Na(+)/H(+) antiporter) and TaSOS4 [a cytoplasmic pyridoxal (PL) kinase] genes were measured in four different salinity levels and different time courses of salinity exposure using qRT-PCR technique. Mahuti (salt tolerant) and Alamut (salt sensitive) cultivars were used as cultivated wheat, and T. boeticum and Aegilops crassa as wild wheat plants. Salt-induced expression of TaSOS1 in these wild wheat plants indicates the presence of active TaSOS1 gene on the genomes A and D. The TaSOS1 and TaSOS4 transcript levels were found to be downregulated after salt treatment in all cultivars except in A. crassa, which was in contrast with its expression pattern in roots that was being upregulated from a very low-basal expression, after salt treatments. Duncan's Multiple Range Test showed a significant difference between expression in the 200-mM NaCl concentration with the 50 and 100 mM for the TaSOS1 gene, and no significant difference for TaSOS4. Lack of significant correlation between the TaSOS1 and TaSOS4 gene expressions confirms the theory that PLP has no significant effect on the expression of the TaSOS1 gene in wheat leaves.

  13. Modernization of Controls Improves Productivity and Reduces Energy Costs at a Large Steel Plant (Weirton Steel Plant)

    SciTech Connect

    2000-04-01

    In 1996 and 1997, Weirton Steel upgraded the utilities control systems at its main steel manufacturing plant in Weirton, WV. In response to increasing energy costs and the need to remain competitive in the steel industry, Weirton Steel commissioned a comprehensive energy management study of the facility, which provided the basis for an energy management control strategy.

  14. Free radical scavengers from Cymbopogon citratus (DC.) stapf plants cultivated in bioreactors by the temporary immersion (TIS) principle.

    PubMed

    Tapia, Alejandro; Cheel, José; Theoduloz, Cristina; Rodríguez, Jaime; Schmeda-Hirschmann, Guillermo; Gerth, Andre; Wilken, Dirk; Jordan, Miguel; Jiménez-González, Elio; Gomez-Kosky, Rafael; Mendoza, Elisa Quiala

    2007-01-01

    The biomass production of Cymbopogon citratus shoots cultivated in bioreactors according to the temporary immersion (TIS) principle was assessed under different growth conditions. The effect of gassing with CO2-enriched air, reduced immersion frequency, vessel size and culture time on total phenolic and flavonoid content and free radical scavenging effect of the methanolic extracts was measured. From the TIS-culture of C. citratus, seven compounds were isolated and identified as caffeic acid (1), chlorogenic acid (2), neochlorogenic acid (3), p-hydroxybenzoic acid (4), p-hydroxybenzoic acid 3-O-beta-D-glucoside (5), glutamic acid (6) and luteolin 6-C-fucopyranoside (7). The occurrence of compounds 1-7 and their variability in C. citratus grown under different TIS conditions was determined by HPLC. The free radical scavenging effect of the methanolic extract and compounds was measured by the discoloration of the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). The main metabolites in 6- and 8-week-old cultures, both in 5 and 10 1 vessels, were chlorogenic acid (2) (100-113 mg%) and neochlorogenic acid (3) (80-119 mg%), while in the cultures with CO2-enriched air and reduced immersion frequency the main compound detected in the extracts was glutamic acid (6) (400 and 670 mg% for the green and white biomass and 619 and 630 mg% for the green and white biomass, respectively). The most active compounds, as free radical scavengers, in the DPPH discoloration assay were caffeic acid (1), chlorogenic acid (2), neochlorogenic acid (3) and the flavonoid luteolin 6-C-fucopyranoside (7).

  15. Akzo Nobel Morris Plant Implements a Site-Wide Energy Efficiency Plan

    SciTech Connect

    2003-01-01

    Akzo Nobel's Surface Chemistry plant in Morris, Illinois, implemented an energy efficiency plan, which included a plant-wide energy efficiency assessment. The assessment revealed opportunities to save an estimated $1.2 million per year in operating and energy costs, reduce environmental impacts, and improve production capacity.

  16. Fluorescence enhancement of single-phase red-blue emitting Ba3MgSi2O8:Eu2+,Mn2+ phosphors via Dy3+ addition for plant cultivation

    NASA Astrophysics Data System (ADS)

    Liu, Ling-Yun; Wang, Da-Jian; Mao, Zhi-Yong; Liu, Yan-Hua; Li, Xue-Zheng; Lu, Qi-Fei

    2009-01-01

    Fluorescence enhancement of red and blue concurrently emitting Ba3MgSi2O8:Eu2+,Mn2+ phosphors for plant cultivation has been investigated by Dy3+ addition. The Ba3MgSi2O8:Eu2+,Mn2+,Dy3+(BMS-EMD) phosphors have two-color emissions at the wavelength peak values of 437 nm and 620 nm at the excitation of 350 nm. The two emission bands are coincident with the absorption spectrum for photosynthesis of plants. An obvious enhancement effect has been observed upon addition of Dy3+ with amount of 0.03 mol%, in which the intensities of both blue and red bands reach a maximum. The origin of red and blue emission bands is analysed. The photochromic parameters of the samples at the nearly UV excitation are tested. This fluoresence enhancement is of great significance for special solid state lighting equipment used in plant cultivation.

  17. EPA Announces 2015 ENERGY STAR Certified Manufacturing Plants, Ardagh Group plant in Sapulpa, OK, among those recognized

    EPA Pesticide Factsheets

    DALLAS - (Feb. 24, 2016) The U.S. Environmental Protection Agency (EPA) announced today that the Ardagh Group container glass facility in Sapulpa, OK, is among the 70 manufacturing plants across the nation that achieved ENERGY STAR certification for

  18. Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant

    SciTech Connect

    Not Available

    2006-02-01

    This DOE Industrial Technologies Program spotlight describes how Rohm and Haas's Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

  19. Metabolic profiling of turmeric (Curcuma longa L.) plants derived from in vitro micropropagation and conventional greenhouse cultivation.

    PubMed

    Ma, Xiaoqiang; Gang, David R

    2006-12-13

    Turmeric (Curcuma longa) was considered only a culinary spice in many parts of the world until the notable anti-inflammation curcuminoids were discovered from this herb. Because it is a sterile triploid and is propagated vegetatively by rhizome division, turmeric is susceptible to pathogens that accumulate and are transmitted from generation to generation, and amplification of particularly useful stocks is a slow process. An in vitro propagation method has been developed to alleviate these problems. Metabolic profiling, using GC-MS and LC-ESI-MS, was used to determine if chemical differences existed between greenhouse-grown and in vitro micropropagation derived plants. The major chemical constituent curcuminoids, a group of diarylheptanoid compounds, as well as major mono- and sesquiterpenoids were identified and quantified. Principal component analysis and hierarchical cluster analysis revealed chemical differences between lines (T3C turmeric vs Hawaiian red turmeric) and tissues (rhizome, root, leaf, and shoot). However, this analysis indicated that no significant differences existed between growth treatments (conventional greenhouse-grown vs in vitro propagation derived plants).

  20. Human urine and wood ash as plant nutrients for red beet (Beta vulgaris) cultivation: impacts on yield quality.

    PubMed

    Pradhan, Surendra K; Holopainen, Jarmo K; Weisell, Janne; Heinonen-Tanski, Helvi

    2010-02-10

    The objective of this study was to evaluate the effect of human urine and wood ash fertilization on the yield and quality of red beet by measuring the microbial, nutrient, and antioxidant (betanin) content of the roots. Red beets were fertilized with 133 kg of N/ha as mineral fertilizer, urine and ash, and only urine with no fertilizer as a control. The mineral-fertilized plants and urine- and ash-fertilized plants also received 89 kg of P/ha. Urine and ash and only urine fertilizer produced 1720 and 656 kg/ha more root biomass, respectively, versus what was obtained from the mineral fertilizer. Few fecal coliforms and coliphage were detected in mineral-fertilized and urine- and ash-fertilized red beet roots. The protein and betanin contents in red beet roots were similar in all treatments. In conclusion, this study revealed that urine with or without ash can increase the yield of red beet and furthermore the microbial quality and chemical quality were similar to the situation in mineral-fertilized products.

  1. Bioconcentration factor estimates of polycyclic aromatic hydrocarbons in grains of corn plants cultivated in soils treated with sewage sludge.

    PubMed

    Paraíba, Lourival Costa; Queiroz, Sônia Cláudia Nascimento; Maia, Aline de Holanda Nunes; Ferracini, Vera Lúcia

    2010-07-15

    This study presents a model to simulate the organic substance concentrations in corn grains assuming that the substances in soil solution are absorbed via the transpiration stream by plants growing in soils fertilized with sewage sludge (SS). The model was applied and validated using soil and corn grain samples from a long-term field experiment with six successive yearly applications of SS to the soil. The following polycyclic aromatic hydrocarbons (PAHs) were simulated and evaluated in soil and grain samples: acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benz(a)pyrene, benz(b)fluoranthene, benz(g,h,i)perylene, benz(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-c,d)pyrene, naphthalene, phenanthrene and pyrene. The PAH bioconcentration factors (BCF) in corn grains ranged from 1.57 to 10.97 L kg(-1). Polycyclic aromatic hydrocarbons with low soil distribution coefficients and high values of transpiration stream concentration factors (TSCF) are more likely to be absorbed by corn plants and accumulated in grains. It was possible to estimate and observe that highly lipophilic PAH molecules (heavy PAHs) show lower accumulative potential in corn grains than the less lipophilic ones (light PAHs). Sewage sludges containing significant concentrations of light PAHs with two, three or four benzene rings should be avoided as fertilizers in alimentary field crops.

  2. Development of a performance-based industrial energy efficiency indicator for cement manufacturing plants.

    SciTech Connect

    Boyd, G.; Decision and Information Sciences

    2006-07-21

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing the plant performance with that of similar plants in the same industry. Manufacturing plants can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the cement manufacturing industry to provide a plant-level indicator of energy efficiency for assembly plants that produce a variety of products, including Portland cement and other specialty cement products, in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for cement manufacturing plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  3. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    Sizing procedures are presented for latent heat thermal energy storage systems that can be used for electric utility off-peak energy storage, solar power plants and other preliminary design applications.

  4. Exposure to omethoate during stapling of ornamental plants in intensive cultivation tunnels: influence of environmental conditions on absorption of the pesticide.

    PubMed

    Aprea, C; Centi, L; Santini, S; Lunghini, L; Banchi, B; Sciarra, G

    2005-11-01

    This report describes a study of exposure to omethoate during manual operations with ornamental plants in two intensive cultivation tunnels (tunnel 8 and tunnel 5). Airborne concentrations of omethoate were in the range 1.48-5.36 nmol/m(3). Total skin contamination in the range 329.94-12,934.46 nmol/day averaged 98.1 +/- 1.1% and 99.3 +/- 0.6% of the total potential dose in tunnel 8 and tunnel 5, respectively. Estimated absorbed doses during work in tunnel 5 were much higher than the acceptable daily intake of omethoate, which is 1.41 nmol/kg b.w. This finding shows that organization of the work or the protective clothing worn in tunnel 5 did not protect the workers from exposure. Urinary excretion of alkylphosphates was significantly higher than in the general population, increasing with exposure and usually showing a peak in the urine sample collected after the work shift. Urinary alkylphosphates showed a good correlation with estimated potential doses during work in tunnel 8 and are confirmed as sensitive biological indicators of exposure to phosphoric esters. The linear regression analysis between the urinary excretion of alkylphosphate, expressed as total nmol excreted in 24 h, and total cutaneous dose allows for estimating that the fraction of omethoate absorbed through the skin during work in tunnel 8 is about 16.5%.

  5. Indigenous bacteria with antagonistic and plant-growth-promoting activities improve slow-filtration efficiency in soilless cultivation.

    PubMed

    Déniel, F; Rey, P; Chérif, M; Guillou, A; Tirilly, Y

    2004-07-01

    In tomato soilless culture, slow filtration allows one to control the development of diseases caused by pathogenic microorganisms. During the disinfecting process, microbial elimination is ensured by mechanical and biological factors. In this study, system efficacy was enhanced further to a biological activation of filter by inoculating the pozzolana grains contained in the filtering unit with 5 selected bacteria. Three strains identified as Pseudomonas putida and 2 as Bacillus cereus came from a filter whose high efficiency to eliminate pathogens has been proven over years. These 5 bacteria displayed either a plant growth promoting activity (P. putida strains) or antagonistic properties (B. cereus strains). Over the first months following their introduction in the filter, the bacterial colonisation of pozzolana grains was particularly high as compared to the one observed in the control filter. Conversely to Bacillus spp. populations, Pseudomonas spp. ones remained abundant throughout the whole cultural season. The biological activation of filter unit very significantly enhanced fungal elimination with respect to the one displayed by the control filter. Indeed, the 6-month period needed by the control filter to reach its best efficacy against Fusarium oxysporum was shortened for the bacteria-amended filter; in addition, a high efficacy filtration was got as soon as the first month. Fast colonization of pozzolana grains by selected bacteria and their subsequent interaction with F. oxysporum are likely responsible for filter efficiency. Our results suggest that Pseudomonas spp. act by competition for nutrients, and Bacillus spp. by antibiosis and (or) direct parasitism. Elimination of other fungal pathogens, i.e., Pythium spp., seems to differ from that of Fusarium since both filters demonstrated a high efficacy at the experiment start. Pythium spp. elimination appears to mainly rely on physical factors. It is worth noting that a certain percentage of the 5 pozzolana

  6. Ovipositional response of threeHeliothis species (Lepidoptera: Noctuidae) to allelochemicals from cultivated and wild host plants.

    PubMed

    Mitchell, E R; Tingle, P C; Heath, R R

    1990-06-01

    The role of plant allelochemicals on the oviposition behavior ofHeliothis virescens (F.),H. subflexa (Guenee), andH. zea (Boddie) was investigated in the laboratory using a "choice" bioassay system. Fresh young leaves of tobacco,Desmodium tortuosum (Swartz) de Candolle, groundcherry (Physalis angulata L.), and cotton (Gossypium hirsutum L.) squares (flower buds) were washed in methylene chloride or methanol, concentrated to 1 g equivalent of washed material, and applied to a cloth oviposition substrate. Each of the extracts-including groundcherry, a nonhost-stimulated oviposition byH. virescens. H. subflexa were stimulated to oviposit by groundcherry extract, its normal host, and extract from cotton squares, a nonhost. None of the extracts stimulated oviposition byH. zea, although all except groundcherry were from reported hosts. The sensitivity of the bioassay was confirmed by givingH. virescens andH. subflexa an opportunity to choose between extracts that showed stimulant qualities when tested independently versus only solvent-treated controls. In these tests, tobacco showed the highest level of stimulant activity forH. virescens; groundcherry exhibited the highest level of stimulation forH. subflexa.

  7. Logistic analysis of algae cultivation.

    PubMed

    Slegers, P M; Leduc, S; Wijffels, R H; van Straten, G; van Boxtel, A J B

    2015-03-01

    Energy requirements for resource transport of algae cultivation are unknown. This work describes the quantitative analysis of energy requirements for water and CO2 transport. Algae cultivation models were combined with the quantitative logistic decision model 'BeWhere' for the regions Benelux (Northwest Europe), southern France and Sahara. For photobioreactors, the energy consumed for transport of water and CO2 turns out to be a small percentage of the energy contained in the algae biomass (0.1-3.6%). For raceway ponds the share for transport is higher (0.7-38.5%). The energy consumption for transport is the lowest in the Benelux due to good availability of both water and CO2. Analysing transport logistics is still important, despite the low energy consumption for transport. The results demonstrate that resource requirements, resource distribution and availability and transport networks have a profound effect on the location choices for algae cultivation.

  8. Major Energy Plants and Their Potential for Bioenergy Development in China

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Hou, Shenglin; Su, Man; Yang, Mingfeng; Shen, Shihua; Jiang, Gaoming; Qi, Dongmei; Chen, Shuangyan; Liu, Gongshe

    2010-10-01

    China is rich in energy plant resources. In this article, 64 plant species are identified as potential energy plants in China. The energy plant species include 38 oilseed crops, 5 starch-producing crops, 3 sugar-producing crops and 18 species for lignocellulosic biomass. The species were evaluated on the basis of their production capacity and their resistance to salt, drought, and/or low temperature stress. Ten plant species have high production and/or stress resistance and can be potentially developed as the candidate energy plants. Of these, four species could be the primary energy plants in China: Barbados nut ( Jatropha curcas L.), Jerusalem artichoke ( Helianthus tuberosus L.), sweet sorghum ( Sorghum bicolor L.) and Chinese silvergrass ( Miscanthus sinensis Anderss.). We discuss the use of biotechnological techniques such as genome sequencing, molecular markers, and genetic transformation to improve energy plants. These techniques are being used to develop new cultivars and to analyze and manipulate genetic variation to improve attributes of energy plants in China.

  9. Major energy plants and their potential for bioenergy development in China.

    PubMed

    Li, Xiaofeng; Hou, Shenglin; Su, Man; Yang, Mingfeng; Shen, Shihua; Jiang, Gaoming; Qi, Dongmei; Chen, Shuangyan; Liu, Gongshe

    2010-10-01

    China is rich in energy plant resources. In this article, 64 plant species are identified as potential energy plants in China. The energy plant species include 38 oilseed crops, 5 starch-producing crops, 3 sugar-producing crops and 18 species for lignocellulosic biomass. The species were evaluated on the basis of their production capacity and their resistance to salt, drought, and/or low temperature stress. Ten plant species have high production and/or stress resistance and can be potentially developed as the candidate energy plants. Of these, four species could be the primary energy plants in China: Barbados nut (Jatropha curcas L.), Jerusalem artichoke (Helianthus tuberosus L.), sweet sorghum (Sorghum bicolor L.) and Chinese silvergrass (Miscanthus sinensis Anderss.). We discuss the use of biotechnological techniques such as genome sequencing, molecular markers, and genetic transformation to improve energy plants. These techniques are being used to develop new cultivars and to analyze and manipulate genetic variation to improve attributes of energy plants in China.

  10. Economics of internal and external energy storage in solar power plant operation

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1977-01-01

    A simple approach is formulated to investigate the effect of energy storage on the bus-bar electrical energy cost of solar thermal power plants. Economic analysis based on this approach does not require detailed definition of a specific storage system. A wide spectrum of storage system candidates ranging from hot water to superconducting magnets can be studied based on total investment and a rough knowledge of energy in and out efficiencies. Preliminary analysis indicates that internal energy storage (thermal) schemes offer better opportunities for energy cost reduction than external energy storage (nonthermal) schemes for solar applications. Based on data and assumptions used in JPL evaluation studies, differential energy costs due to storage are presented for a 100 MWe solar power plant by varying the energy capacity. The simple approach presented in this paper provides useful insight regarding the operation of energy storage in solar power plant applications, while also indicating a range of design parameters where storage can be cost effective.

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  12. Effect of Radiation on Seed Germinating Ability Ofwild-Growing and Cultivated Plants, Sources of Bioactive Substances

    NASA Astrophysics Data System (ADS)

    Shabanov, Aleksandr; Tirranen, Lyalya; Zykova, Irina; Bondarenko, Gennadiy

    2016-07-01

    In the above-ground parts of common chickweed (Stellaria media) the content of vitamin C was experimentally quantified, which (in terms of dry matter) was 81.55 mg/100 g; 133 mg/100 g and 161.76 mg/100 g depending on the growing site. 52 components were detected in the essential oil of the above-ground parts of common chickweed (Stellaria media). Chamazulene, neophytodien and phytol are the major components of whole oil. A wide range of elements was identified in the plants and seeds of common chickweed (Stellaria media), and in the seeds of carrots, parsley and lettuce. It was established that UV irradiation (lamp with a wavelength of 254 nm and 283 nm) of chickweed seeds (Stellaria media) for 15 sec. and 100 sec. in a microbiological box on a table at a distance from the object didn't affect their germinating ability. The germinating ability of the experimental seeds was identical to the control (no irradiation) seeds. With the help of an X-ray fluorescence spectrometer Renger 2 (Germany) at a voltage of 1.6 kV during 15 sec. the effect of "soft" radiation on the seed germinating ability of chickweed, carrot, parsley and lettuce seeds was studied.Under the effect of "soft" radiation during 15 sec. all the experimental chickweed seeds sprouted, like in the control. The germinating ability of the exposed lettuce seeds was 100% after one day, while only 45% of the exposed parsley seeds grew after 21 days. The exposed carrot seeds (70%) grew after 18 days. The effect of "hard" radiation on the germinating ability of common chickweed seeds was investigated using an X-ray fluorescence spectrometer S4 Pioneer (Germany) at a voltage of 60 kV for 15 sec and 100 sec. Under the effect of "hard" radiation and during 15 seconds of exposure, where the distance (L) from the focus of the X-ray tube to the seeds of chickweed was 20 mm, the germinating ability of the experimental chickweed seeds was 30 %. At a voltage of 60 kV and 100-second exposure the germinating ability of the

  13. Energy Resiliency for Marine Corps Logistics Base Production Plant Barstow

    DTIC Science & Technology

    2014-12-01

    Secm-ity, Modem Portfolio Theoty, Solar, Photovoltaic, Wind, Biomass , Waste-to- energy , PAGES Energy Planning, Energy Sn·ategy, Value ofElecn-ical...security. Figure 3. SCE SAIDI and SIAIF data 2008 – 2014 E. ENERGY SOURCES 1. Biomass , Landfill Gas, and Biogas Biomass and Biogas... Biomass energy basics. Retrieved December 7, 2014, from http://www.nrel.gov/learning/re_biomass.html National Research Energy Laboratory. (2014

  14. YLIFE-2 inertial fusion energy power plant design

    NASA Astrophysics Data System (ADS)

    Moir, R. W.

    1992-03-01

    The HYLIFE-2 inertial fusion power plant design study uses a liquid fall, in the form of jets, to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. HYLIFE-1 used liquid lithium. HYLIFE-2 avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li2BeF4) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-1. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. In addition, although not adequately considered for HYLIFE-1, there is liquid splash that must be forcibly cleared because gravity is too slow, at higher repetition rates than 1 Hz. Splash removal is accomplished in the central region by oscillating jet flows. The cost of electricity is estimated to be 0.09 $/kWh in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost, that is, a zero cost driver would give a calculated cost of electricity of 0.045 $/kWh.

  15. Capturing Solar Energy in the Classroom with Plants.

    ERIC Educational Resources Information Center

    Schmiess, Elmer

    1977-01-01

    This newsletter is published eight times during the academic year for teachers in an open educational setting. This issue is concerned with the plant and its environment. Activities explore different types of soils and their implications for indoor gardening, plant propagation techniques, and preparation of potting soils. Each activity provides an…

  16. SK30 total energy plant rated at 73% efficiency

    SciTech Connect

    de Biasi, V.

    1980-07-01

    The City of Hague in Holland is building a combined cycle plant. The plant will be powered by two Rolls-Royce SK30 gas turbine generators site rated at 25,000 kW each, two unfired Stork waste heat recovery boilers, and a Delaval Stork steam turbine rated at 26,000 kW. On its own, without district heating, the combined cycle plant is rated for 77,000 kW output at around 44% efficiency. Heat output of the combined cycle plant is used to provide thermal power for district heating. In the maximum output mode, there is some drop in electric power output (around 70,000 kW) but this is accompanied by 60,000 kW thermal power output for a net plant efficiency of close to 74% overall. (MCW)

  17. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants.

    PubMed

    De Greef, J; Villani, K; Goethals, J; Van Belle, H; Van Caneghem, J; Vandecasteele, C

    2013-11-01

    Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation - before and after optimisation - as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential.

  18. Efficient CO2 Fixation Pathways: Energy Plant: High Efficiency Photosynthetic Organisms

    SciTech Connect

    2012-01-01

    PETRO Project: UCLA is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLA’s designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry: An ENERGY STAR® Guide for Plant and Energy Managers

    SciTech Connect

    Masanet, Eric; Therkelsen, Peter; Worrell, Ernst

    2012-12-28

    The U.S. baking industry—defined in this Energy Guide as facilities engaged in the manufacture of commercial bakery products such as breads, rolls, frozen cakes, pies, pastries, and cookies and crackers—consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in food processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. A summary of basic, proven measures for improving plant-level water efficiency is also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. baking industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  20. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  1. Using of liquid chromatography coupled with diode array detector for determination of naphthoquinones in plants and for investigation of influence of pH of cultivation medium on content of plumbagin in Dionaea muscipula.

    PubMed

    Babula, Petr; Mikelova, Radka; Adam, Vojtech; Kizek, Rene; Havel, Ladislav; Sladky, Zdenek

    2006-09-14

    The interest of many investigators in naphthoquinones is due to their broad-range of biological actions from phytotoxic to fungicidal. The main aim of this work was to investigate the influence of different pH values of cultivation medium on naphthoquinone content in Dionaea muscipula. For this purpose, we optimized the simultaneous analysis of the most commonly occurring naphthoquinones (1,4-naphthoquinone, lawsone, juglone and plumbagin) by high performance liquid chromatography coupled with diode array detector (HPLC-DAD). The most suitable chromatographic conditions were as follows: mobile phase: 0.1 mol l-1 acetic acid:methanol in ratio of 33:67 (%, v/v), flow rate: 0.75 ml min-1 and temperature: 42 degrees C. Moreover, we looked for the most suitable technique for preparation of plant samples (D. muscipula, Juglans regia, Paulownia tomentosa, Impatience glandulifera, Impatience parviflora, Drosera rotundifolia, Drosera spathulata and Drosera capensis) due to their consequent analysis by HPLC-DAD. It clearly follows from the results obtained that sonication were the most suitable technique for preparation of J. regia plants. We also checked the recoveries of the determined naphthoquinones, which were from 96 to 104%. Finally, we investigated the changes in content of plumbagin in D. muscipula plants according to different pH of cultivation medium. The content increased with increasing pH up to 5 and, then, changed gradually. The lower content of plumbagin at lower pH values was of interest to us. Therefore, we determined the content of this naphthoquinone in the cultivation medium, what has not been studied before. We discovered that the lower tissue content of plumbagin was due to secretion of this naphthoquinone into the cultivation medium.

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  3. Variation in the number of capitate glandular trichomes in wild and cultivated sunflower germplasm and potential for use in host plant resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capitate glandular trichomes of wild sunflower (Helianthus spp.) are considered an effective defense against the sunflower moth, Homoeosoma electellum (Hulst), but cultivated sunflowers are reportedly deficient in glandular trichomes. To investigate whether glandular trichomes have a role in protect...

  4. Optimization of the genomic DNA extraction method of silverleaf nightshade/ (Solanum elaeagnifolium /Cav.), an invasive plant in the cultivated areas within the Mediterranean region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The geographical origin of an invasive in the cultivated area within the Mediterranean region, silverleaf nightshade, Solanum elaeagnifolium Cav, (Solanaceae) should be identified through the analysis of genetic similarities between native and introduced populations using microsatellite markers. Bef...

  5. Water and energy balances in the soil-plant atmosphere continuum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy fluxes at soil-atmosphere and plant-atmosphere interfaces can be summed to zero because the surfaces have no capacity for energy storage. The resulting energy balance equations may be written in terms of physical descriptions of these fluxes; and have been the basis for problem casting and so...

  6. Assessment of arid lands plants as future energy crops for the electric utility industry

    SciTech Connect

    Foster, K.E.; Brooks, W.H.

    1981-12-01

    This technical report has been prepared to assess and estimate the prospects of utilizing selected native arid lands plant species (terpene- and nonterpene-containing species) as future renewable energy resources, especially by US electric utilities, and to familiarize nonspecialists with some major problems that must be resolved before these energy sources can become dependable supplies. The assessment includes descriptions of the processing and production technologies associated with the various plant species as well as recommendations for research procedures and development programs specific to arid lands. Suggestions about the agronomic and economic parameters of growing these plants as energy-source crops are also included.

  7. Integrating cultivation history into EBIPM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecologically based invasive plant management (EBIPM) is a systematic thinking and planning process to assist with applying the appropriate combination of tools and strategies to addrress the underlying cause of invasion rather than simply controlling invasive annual grass abundance. Cultivation his...

  8. Cultivate the Love of Reading.

    ERIC Educational Resources Information Center

    Andrews-Beck, Carolyn

    1997-01-01

    Suggests that the school year is like a growing season, but with planting in the fall and harvest in the spring. Discusses ways teachers can "prepare the soil" for cultivating students' love of reading. Presents a baker's dozen ideas to build the desire to read. (RS)

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  10. Energy conservation study on Lamb-Weston potato processing plant, Hermiston, Oregon

    SciTech Connect

    Not Available

    1985-03-21

    This report presents the findings of an energy study done at the Lamb-Weston potato processing plant in Hermiston, Oregon. The study includes all electrical energy using systems at the plant but does not address specifc modificiations to process equipment. The Hermiston plant receives raw potatoes and produces a mixture of pre-fried and frozen potato products, including french fries, breakfast products, and a dinner product. The plant contains all necessary equipment and processes to produce a finished product but does not have on-site, long-term cold storage. The Hermiston plant purchases electricity from the Umatilla Rural Electrical Association (REA) on two main services: a 12.7 KV, three phase service for the electric boiler, and a three phase, 480 volt service that provides electricity for all other functions in the main plant (the wheelturning load).

  11. Energy from plants and microorganisms: progress in plant-microbial fuel cells.

    PubMed

    Deng, Huan; Chen, Zheng; Zhao, Feng

    2012-06-01

    Plant-microbial fuel cells (PMFCs) are newly emerging devices, in which electricity can be generated by microorganisms that use root exudates as fuel. This review presents the development of PMFCs, with a summary of their power generation, configurations, plant types, anode and cathode materials, biofilm communities, potential applications, and future directions.

  12. EPA Announces 2015 ENERGY STAR Certified Manufacturing Plants, Two San Antonio facilities among those recognized

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) announced today that two facilities in San Antonio-Toyota Motor Manufacturing Texas and Buzzi Unicem cement-are among the 70 manufacturing plants across the nation that achieved ENERGY STAR certification.

  13. Coupling Ocean Thermal Energy Conversion technology (OTEC) with nuclear power plants

    SciTech Connect

    Goldstein, M.K.; Rezachek, D.; Chen, C.S.

    1981-01-01

    The prospects of utilizing an OTEC Related Bottoming Cycle to recover waste heat generated by a large nuclear (or fossil) power plant are examined. With such improvements, OTEC can become a major energy contributor. 12 refs.

  14. Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant

    SciTech Connect

    2006-02-01

    This DOE Industrial Technologies Program spotlight describes how Rohm and Haas’s Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

  15. EPA Recognizes Nissan and Toyota Manufacturing Plants in Mississippi for Achieving 2015 Energy Star Certification

    EPA Pesticide Factsheets

    ATLANTA - Today, the U.S. Environmental Protection Agency (EPA) announced Nissan NA in Canton and Toyota Motor Manufacturing Mississippi in Blue Springs, both in Mississippi, are among 70 manufacturing plants nationally that have achieved Energy Sta

  16. Microgrids, virtual power plants and our distributed energy future

    SciTech Connect

    Asmus, Peter

    2010-12-15

    Opportunities for VPPs and microgrids will only increase dramatically with time, as the traditional system of building larger and larger centralized and polluting power plants by utilities charging a regulated rate of return fades. The key questions are: how soon will these new business models thrive - and who will be in the driver's seat? (author)

  17. Hydrocarbons and energy from plants: Final report, 1984-1987

    SciTech Connect

    Calvin, M.; Otvos, J.; Taylor, S.E.; Nemethy, E.K.; Skrukrud, C.L.; Hawkins, D.R.; Lago, R.

    1988-08-01

    Plant hydrocarbon (isoprenoid) production was investigated as an alternative source to fossil fuels. Because of their high triterpenoid (hydrocarbon) content of 4--8%, Euphorbia lathyris plants were used as a model system for this study. The structure of the E. lathyris triterpenoids was determined, and triterpenoid biosynthesis studied to better understand the metabolic regulation of isoprenoid production. Triterpenoid biosynthesis occurs in two distinct tissue types in E. lathyris plants: in the latex of the laticifer cells; and in the mesophyll cells of the leaf and stem. The latex has been fractionated by centrifugation, and it has been determined that the later steps of isoprenoid biosynthesis, the conversion of mevalonic acid to the triterpenes, are compartmentized within a vacuole. Also identified was the conversion of hydroxymethyl glutaryl-CoA to mevalonic acid, catalyzed by the enzyme Hydroxymethyl glutaryl-CoA Reductase, as a key rate limiting step in isoprenoid biosynthesis. At least two isozymes of this enzyme, one in the latex and another in the leaf plastids, have been identified. Environmental stress has been applied to plants to study changes in carbon allocation. Salinity stress caused a large decrease in growth, smaller decreases in photosynthesis, resulting in a larger allocation of carbon to both hydrocarbon and sugar production. An increase in Hydroxymethyl glutaryl-CoA Reductase activity was also observed when isoprenoid production increased. Other species where also screened for the production of hydrogen rich products such as isoprenoids and glycerides, and their hydrocarbon composition was determined.

  18. The Advanced BWR Nuclear Plant: Safe, economic nuclear energy

    SciTech Connect

    Redding, J.R.

    1994-12-31

    The safety and economics of Advanced BWR Nuclear Power Plants are outlined. The topics discussed include: ABWR Programs: status in US and Japan; ABWR competitiveness: safety and economics; SBWR status; combining ABWR and SBWR: the passive ABWR; and Korean/GE partnership.

  19. Initial dynamic simulation of an HTGR sensible energy transport and storage plant

    SciTech Connect

    Ball, S.J.; Clapp, N.E. Jr.

    1982-06-01

    Dynamic models were developed for a General Atomic Company reference design of a high-temperature gas-cooled reactor sensible energy transport and storage (SETS) plant. The resulting computer code uses the IBM simulation language CSMP. The purpose of the program was to investigate the basic dynamic response behavior and controllability. The plant was found to have excellent inherent stability and control features.

  20. Direct effects of energy-related air pollutants on plant sexual reproduction

    SciTech Connect

    Ragsdale, H.L.; Murdy, W.H.

    1987-12-08

    Our completed research program concentrated on the direct in vivo effects of energy-related air pollutants on plant sexual reproduction. Direct air pollution effects on plant sexual reproduction have been studied for SO{sub 2} and NO{sub 2}, two of the three major air pollutants.

  1. Excitation energy transfer in vitro between phycobiliproteins and thylakoid photosystem II of higher plants

    NASA Astrophysics Data System (ADS)

    Wu, Xiaonan; Tseng, C. K.

    1992-12-01

    The excitation energy transfer from phycobiliproteins to thylakoid PSII of higher plants was investigated. When incubated with spinach thylakoids, phycobiliproteins isolated from red and blue-green algae transferred light energy absorbed to spinach PSII. The efficiency of energy transfer was dependent on the kind of phycobiliproteins used. If spinach thylakoids were replaced by the thylakoids of Brassica chinensis, R-phycoerythin or C-phycocyanin did not transfer their excitation energy to PSII of Brassica chinensis unless allophycocyanin was present.

  2. Paramount Petroleum: Plant-Wide Energy-Efficiency Assessment Identifies Three Projects

    SciTech Connect

    2003-07-01

    The Paramount Petroleum plant-wide energy assessment identified a cost-effective electrical power and heat energy production facility and systems that could benefit from either fuel-burn adjustments or a new drive/control system. This could lead to independence from a local electric utility with much improved reliability, estimated annual energy savings of 1,200,000 kWh of electricity, and estimated annual savings of $4.1 million for energy reduction and other improvements.

  3. DOE PLANT-WIDE ENERGY ASSESSMENT RESULTS RELATED TO THE U. S. AUTOMOTIVE INDUSTRY

    SciTech Connect

    Kelly Kissock, Arvind Thekdi, Len Bishop

    2006-01-05

    Forty-nine plant-wide energy efficiency assessments have been undertaken under sponsorship of the U.S. Department of Industrial Technologies Program. Plant-wide assessments are comprehensive, systematic investigations of plant energy efficiency, including plant utility systems and process operations. Assessments in industrial facilities have highlighted opportunities for implementing best practices in industrial energy management, including the adoption of new, energy-efficient technologies and process and equipment improvements. Total annual savings opportunities of $201 million have been identified from the 40 completed assessments. Many of the participating industrial plants have implemented efficiency-improvement projects and already have realized total cost savings of more than $81 million annually. This paper provides an overview of the assessment efforts undertaken and presents a summary of the major energy and cost savings identified to date. The paper also discusses specific results from assessments conducted at four plants in the automotive manufacturing operations and supporting industries. These particular assessments were conducted at facilities that produce engine castings, plastic films used for glass laminates, forged components, and at a body spray painting plant.

  4. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants

    SciTech Connect

    De Greef, J.; Villani, K.; Goethals, J.; Van Belle, H.; Van Caneghem, J.; Vandecasteele, C.

    2013-11-15

    Highlights: • WtE plants are to be optimized beyond current acceptance levels. • Emission and consumption data before and after 5 technical improvements are discussed. • Plant performance can be increased without introduction of new techniques or re-design. • Diagnostic skills and a thorough understanding of processes and operation are essential. - Abstract: Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation – before and after optimisation – as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential.

  5. Barley (Hordeum vulgare) in the Okhotsk culture (5th–10th century AD) of northern Japan and the role of cultivated plants in hunter–gatherer economies

    PubMed Central

    Sergusheva, Elena A.; Müller, Stefanie; Spengler, Robert N.; Goslar, Tomasz; Kato, Hirofumi; Wagner, Mayke; Weber, Andrzej W.; Tarasov, Pavel E.

    2017-01-01

    This paper discusses archaeobotanical remains of naked barley recovered from the Okhotsk cultural layers of the Hamanaka 2 archaeological site on Rebun Island, northern Japan. Calibrated ages (68% confidence interval) of the directly dated barley remains suggest that the crop was used at the site ca. 440–890 cal yr AD. Together with the finds from the Oumu site (north-eastern Hokkaido Island), the recovered seed assemblage marks the oldest well-documented evidence for the use of barley in the Hokkaido Region. The archaeobotanical data together with the results of a detailed pollen analysis of contemporaneous sediment layers from the bottom of nearby Lake Kushu point to low-level food production, including cultivation of barley and possible management of wild plants that complemented a wide range of foods derived from hunting, fishing, and gathering. This qualifies the people of the Okhotsk culture as one element of the long-term and spatially broader Holocene hunter–gatherer cultural complex (including also Jomon, Epi-Jomon, Satsumon, and Ainu cultures) of the Japanese archipelago, which may be placed somewhere between the traditionally accepted boundaries between foraging and agriculture. To our knowledge, the archaeobotanical assemblages from the Hokkaido Okhotsk culture sites highlight the north-eastern limit of prehistoric barley dispersal. Seed morphological characteristics identify two different barley phenotypes in the Hokkaido Region. One compact type (naked barley) associated with the Okhotsk culture and a less compact type (hulled barley) associated with Early–Middle Satsumon culture sites. This supports earlier suggestions that the “Satsumon type” barley was likely propagated by the expansion of the Yayoi culture via south-western Japan, while the “Okhotsk type” spread from the continental Russian Far East region, across the Sea of Japan. After the two phenotypes were independently introduced to Hokkaido, the boundary between both barley

  6. Barley (Hordeum vulgare) in the Okhotsk culture (5th-10th century AD) of northern Japan and the role of cultivated plants in hunter-gatherer economies.

    PubMed

    Leipe, Christian; Sergusheva, Elena A; Müller, Stefanie; Spengler, Robert N; Goslar, Tomasz; Kato, Hirofumi; Wagner, Mayke; Weber, Andrzej W; Tarasov, Pavel E

    2017-01-01

    This paper discusses archaeobotanical remains of naked barley recovered from the Okhotsk cultural layers of the Hamanaka 2 archaeological site on Rebun Island, northern Japan. Calibrated ages (68% confidence interval) of the directly dated barley remains suggest that the crop was used at the site ca. 440-890 cal yr AD. Together with the finds from the Oumu site (north-eastern Hokkaido Island), the recovered seed assemblage marks the oldest well-documented evidence for the use of barley in the Hokkaido Region. The archaeobotanical data together with the results of a detailed pollen analysis of contemporaneous sediment layers from the bottom of nearby Lake Kushu point to low-level food production, including cultivation of barley and possible management of wild plants that complemented a wide range of foods derived from hunting, fishing, and gathering. This qualifies the people of the Okhotsk culture as one element of the long-term and spatially broader Holocene hunter-gatherer cultural complex (including also Jomon, Epi-Jomon, Satsumon, and Ainu cultures) of the Japanese archipelago, which may be placed somewhere between the traditionally accepted boundaries between foraging and agriculture. To our knowledge, the archaeobotanical assemblages from the Hokkaido Okhotsk culture sites highlight the north-eastern limit of prehistoric barley dispersal. Seed morphological characteristics identify two different barley phenotypes in the Hokkaido Region. One compact type (naked barley) associated with the Okhotsk culture and a less compact type (hulled barley) associated with Early-Middle Satsumon culture sites. This supports earlier suggestions that the "Satsumon type" barley was likely propagated by the expansion of the Yayoi culture via south-western Japan, while the "Okhotsk type" spread from the continental Russian Far East region, across the Sea of Japan. After the two phenotypes were independently introduced to Hokkaido, the boundary between both barley domains possibly

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    SciTech Connect

    Brush, Adrian; Masanet, Eric; Worrell, Ernst

    2011-10-01

    The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  8. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress

    PubMed Central

    Pu, Xiaojun; Lv, Xin; Tan, Tinghong; Fu, Faqiong; Qin, Gongwei; Lin, Honghui

    2015-01-01

    Background Plants are sessile organisms that have the ability to integrate external cues into metabolic and developmental signals. The cues initiate specific signal cascades that can enhance the tolerance of plants to stress, and these mechanisms are crucial to the survival and fitness of plants. The adaption of plants to stresses is a complex process that involves decoding stress inputs as energy-deficiency signals. The process functions through vast metabolic and/or transcriptional reprogramming to re-establish the cellular energy balance. Members of the mitochondrial energy dissipation pathway (MEDP), alternative oxidases (AOXs) and uncoupling proteins (UCPs), act as energy mediators and might play crucial roles in the adaption of plants to stresses. However, their roles in plant growth and development have been relatively less explored. Scope This review summarizes current knowledge about the role of members of the MEDP in plant development as well as recent advances in identifying molecular components that regulate the expression of AOXs and UCPs. Highlighted in particular is a comparative analysis of the expression, regulation and stress responses between AOXs and UCPs when plants are exposed to stresses, and a possible signal cross-talk that orchestrates the MEDP, reactive oxygen species (ROS), calcium signalling and hormone signalling. Conclusions The MEDP might act as a cellular energy/metabolic mediator that integrates ROS signalling, energy signalling and hormone signalling with plant development and stress accumulation. However, the regulation of MEDP members is complex and occurs at transcriptional, translational, post-translational and metabolic levels. How this regulation is linked to actual fluxes through the AOX/UCP in vivo remains elusive. PMID:25987710

  9. Improving biomass resource recycling capacity of Rubrivivax gelatinosus cultivated in wastewater through regulating the generation and use of energy.

    PubMed

    Wu, Pan; Wang, Yan-ling; Zhang, Guang-ming; Liu, Xian-shu; Du, Cong; Tong, Qing-yue; Li, Ning

    2014-01-01

    This paper investigated Mg2+ enhancement of biomass production through regulating the generation and use of energy in Rubrivivax gelatinosus wastewater treatment. Results showed that proper Mg2+ dosage range was 1.5-15 mg/L. With optimal Mg2+ dosage (10 mg/L), biomass production (5010 mg/L) was improved by 60%. Both protein and chemical oxygen demand (COD) removals reached above 90%. Biomass yield improved by 38%. Hydraulic retention time was shortened by 25%. Mechanism analysis indicated that as activator, Mg2+ promoted specifically isocitrate dehydrogenase (IDH) and Ca2+ / Mg2+ -ATPase activities in energy metabolism, and then improved the generation of adenosine triphosphate (ATP) and the use of ATP. This enhanced the secretion and activity of protease, protein and COD removals, and then led to more biomass production. With 10 mg/L Mg2+, IDH and Ca2+ / Mg2+ -ATPase activities, ATP production, protease activity were improved by 43.8%, 40.6%, 39.4% and 46.5%, respectively.

  10. Annual Energy Production (AEP) optimization for tidal power plants based on Evolutionary Algorithms - Swansea Bay Tidal Power Plant AEP optimization

    NASA Astrophysics Data System (ADS)

    Kontoleontos, E.; Weissenberger, S.

    2016-11-01

    In order to be able to predict the maximum Annual Energy Production (AEP) for tidal power plants, an advanced AEP optimization procedure is required for solving the optimization problem which consists of a high number of design variables and constraints. This efficient AEP optimization procedure requires an advanced optimization tool (EASY software) and an AEP calculation tool that can simulate all different operating modes of the units (bidirectional turbine, pump and sluicing mode). The EASY optimization software is a metamodel-assisted Evolutionary Algorithm (MAEA) that can be used in both single- and multi-objective optimization problems. The AEP calculation tool, developed by ANDRITZ HYDRO, in combination with EASY is used to maximize the tidal annual energy produced by optimizing the plant operation throughout the year. For the Swansea Bay Tidal Power Plant project, the AEP optimization along with the hydraulic design optimization and the model testing was used to evaluate all different hydraulic and operating concepts and define the optimal concept that led to a significant increase of the AEP value. This new concept of a triple regulated “bi-directional bulb pump turbine” for Swansea Bay Tidal Power Plant (16 units, nominal power above 320 MW) along with its AEP optimization scheme will be presented in detail in the paper. Furthermore, the use of an online AEP optimization during operation of the power plant, that will provide the optimal operating points to the control system, will be also presented.

  11. Energy efficiency in Spanish wastewater treatment plants: a non-radial DEA approach.

    PubMed

    Hernández-Sancho, F; Molinos-Senante, M; Sala-Garrido, R

    2011-06-15

    Wastewater treatment plants (WWTPs) are energy-intensive facilities. Thus, reducing their carbon footprint is particularly important, both economically and environmentally. Knowing the real operating energy efficiency of WWTPs is the starting point for any energy-saving initiative. In this article, we applied a non-radial Data Envelopment Analysis (DEA) methodology to calculate energy efficiency indices for sampling of WWTPs located in Spain. In a second stage analysis, we examined the operating variables contributing to differences in energy efficiency among plants. It is verified that energy efficiencies of the analyzed WWTPs were quite low, with only 10% of them being efficient. We found that plant size, quantity of organic matter removed, and type of bioreactor aeration were significant variables in explaining energy efficiency differences. In contrast, age of the plant was not a determining factor in energy consumption. Lastly, we quantified the potential savings, both in economic terms and in terms of CO(2) emissions, that could be expected from an improvement in energy efficiency of WWTPs.

  12. Seaweed cultivation: Traditional way and its reformation

    NASA Astrophysics Data System (ADS)

    Fei, Xiu-Geng; Bao, Ying; Lu, Shan

    1999-09-01

    Seaweed cultivation or phycoculture has been developed rather fast in recent years. The total production of cultivated seaweed at present is about 6250×103 tons fresh weight. The total cultivation area is estimated as 200×103 hectare. The annual total value of cultivated seaweeds has been estimated to be more than 3 billion US dollars. Phycoculture provides many job opportunities for the coastal region people, has the potential to improve marine environments and thus even induce global change. All traditional cultivation methods and techniques are based on or start from the individual plant or the cultivated seaweed population. Modern biological science and biotechnology achievements have benefited agriculture a lot, but traditional seaweed cultivation has not changed much since its founding. This is because seaweed cultivation has been quite conservative for quite a long period and has accumulated many problems requiring solution. Four main problems might be the most universal ones holding back further development of the industry. New ways of seaweed cultivation must be developed, new techniques must be perfected, and new problems solved. This paper mainly discusses the main problems of traditional seaweed cultivation at present and its possible further development and reformation in the future.

  13. Energy demand for elimination of organic micropollutants in municipal wastewater treatment plants.

    PubMed

    Mousel, Danièle; Palmowski, Laurence; Pinnekamp, Johannes

    2017-01-01

    Organic micropollutants (OMP), e.g. pharmaceuticals and household/industrial chemicals, are not fully eliminated in state-of-the-art municipal wastewater treatment plants and can potentially harm the aquatic environment. Therefore, several pilot and large-scale investigations on the elimination of organic micropollutants have taken place in recent years. Based on the present findings, the most efficient treatment steps to eliminate organic micropollutants have proven to be ozonation, adsorption on powdered activated carbon (PAC), or filtration through granular activated carbon (GAC). Yet a further treatment step implies an increase in energy demand of the wastewater treatment plant, which has to be considered along with OMP elimination. To this aim, data on energy demand of ten large-scale municipal wastewater treatment plants (WWTP) with processes for OMP elimination was collected and analyzed. Moreover, calculations on energy demand beyond the WWTP for production and transport of ancillary materials were performed to assess the cumulative energy demand of the processes. An assessment of the greenhouse gas emissions of the processes was achieved, which shall facilitate future life cycle analyses. The results show that energy demand of ozonation at the wastewater treatment plant is dependent upon the ozone dosage and is significantly higher than energy demand of PAC addition or GAC filtration (2 to 4 times higher without consideration of delivery heads). Despite uncertainties regarding the energy demand for production of activated carbon, it could be shown that the cumulative energy demand of adsorption steps is significantly higher than the energy demand at the WWTP. Using reactivated GAC can lead to energy and greenhouse gas emissions savings compared to using fresh GAC/PAC. Moreover, energy demand is always plant-specific and depends on different factors (delivery heads, existing filtration or post-treatment etc.). Since processes for elimination of organic

  14. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    SciTech Connect

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  15. Preliminary energy balance and economic of a farm-scale ethanol plant

    SciTech Connect

    Jantzen, D.; McKinnon, T.

    1980-05-01

    A small-scale ethanol plant was designed, built, tested, and modified over the past 18 months. The plant currently operating is the second design. A third, and probably final, design will be installed and operating within a few months. The current plant produces approximately 30 gal/hr of 190-proof alcohol on a continuous basis. The new plant will produce 50 gal/hr of 200-proof alcohol. A key feature is the relatively low process heat requirement, which is achieved by extensive use of waste-heat recovery heat exchangers. This is manifested in the low temperatures of the process output streams. Acting on the request of the Office of Alcohol Fuels, US Department of Energy, and at the invitation of the owners, representatives from the Solar Energy Research Institute evaluated the energy balance on the plant. The objective was to help clear up the controversy surrounding the net energy benefit of ethanol production. Although the study was site-specific to the plant and limited in scope, it is indicative of the potential performance of grain-to-ethanol plants in general.

  16. Endangered and threatened plant species on the Department of Energy Oak Ridge Reservation: an update

    SciTech Connect

    Parr, P.D.

    1984-10-01

    Plant species considered endangered or threatened on the Department of Energy-Oak Ridge Reservation (DOE-ORR) were identified through a review of pertinent literature and evaluation of herbarium voucher specimens. Thirteen plant species are on the official Tennessee list of endangered and threatened plants. Three of those species have been proposed for inclusion on the Federal list as rare in Tennessee. These rare plants will be given careful consideration in land-use planning. Protection of endangered and threatened species in their native habitat is considered the best method of ensuring their survival. In addition to habitat preservation, natural history studies of the rare species is important in determ

  17. Department of Energy interest and involvement in nuclear plant license renewal activities

    SciTech Connect

    Bustard, L.D. ); Harrison, D.L. . Office of LWR Safety and Technology)

    1991-01-01

    Recognizing the importance of nuclear license renewal to the nation's energy strategy, the Department of Energy (DOE) initiated a plant lifetime improvement program during 1985 to determine the feasibility of the license renewal option for US nuclear plants. Initial activities of the DOE program focused on determining whether there were technical and economic obstacles that might preclude or limit the successful implementation of the license renewal option. To make this determination, DOE cosponsored with the Electric Power Research Institute (EPRI) pilot-plant efforts by Virginia Electric Power and Northern States Power. Both pilot-plant efforts concluded that life extension is technically and economically feasible. In parallel with the pilot-plant activities, DOE performed national economic studies that demonstrated the economic desirability of life extension. Having demonstrated the feasibility of life extension, DOE, in conjunction with EPRI, selected two lead plants to demonstrate the license renewal process. These lead plants are Yankee Atomic's Yankee Rowe facility and Northern States Power's Monticello facility. DOE also initiated activities to develop the technical and regulatory bases to support the license renewal process in the United States. DOE has recently identified nuclear plant license renewal to be an important element of its National Energy Strategy. This paper summarizes the significant results, conclusions, and ongoing activities of the DOE effort. 18 refs.

  18. Model of yield response of corn to plant population and absorption of solar energy.

    PubMed

    Overman, Allen R; Scholtz, Richard V

    2011-01-31

    Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha(-1) and g plant(-1)) on plant population (plants m(-2)). Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L.) grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Y(m) (Mg ha(-1)) for maximum yield at high plant population and c (m(2) plant(-1)) for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, x(c) = 1/c (plants m(-2)). The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of x(c) were very similar for the three field studies with the same crop species.

  19. An aerial survey of radioactivity associated with Atomic Energy plants

    SciTech Connect

    Davis, F.J.; Harlan, W.E.; Humphrey, P.A.; Kane, R.L.; Reinhardt, P.W.

    1992-09-02

    The project covered was an endeavor to (1) compare a group of laboratory instruments as airborne detectors of radioactivity and (2) simultaneously obtain data relative to the diffusion rate of radioactive contamination emitted into the atmosphere from off-gas stacks of production runs. Research was conducted in the Oak Ridge, Tennessee and Hanford, Washington areas. Detection was accomplished at a maximum distance of seventeen miles from the plant. Very little information of a conclusive nature was gained concerning the diffusion. Further research with the nuclear instruments, using a stronger source, is recommended. To obtain conclusive information concerning the meteorological aspects of the project, a larger observational program will be needed.

  20. Energy Conservation Study on Simplot Potato Processing Plant Heyburn, Idaho, Appendices.

    SciTech Connect

    Seton, Johnson & Odell, Inc.

    1985-03-01

    This group of appendices, B--G, of the ''Simplot Potato Processing Plant Energy Conservation Study'', covers processing equipment, refrigeration equipment, water systems, air conditioning systems and lighting systems. Data on these systems related to cost and energy consumption are given. (JF)

  1. 75 FR 16524 - FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... COMMISSION FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption 1.0 Background FirstEnergy Nuclear Operating Company (FENOC, the licensee) is the holder of Facility Operating License No... compliance date (Reference: June 4, 2009, letter from R. W. Borchardt, NRC, to M. S. Fertel, Nuclear...

  2. Steam System Efficiency Optimized After J.R. Simplot Fertilizer Plant Receives Energy Assessment

    SciTech Connect

    Not Available

    2008-07-01

    This case study describes how the J.R. Simplot company's Don Plant in Pocatello, Idaho, achieved annual savings of $335,000 and 75,000 MMBtu, with a simple payback of 6.5 months, after receiving a DOE Save Energy Now energy assessment.

  3. On the enhancement of the efficiency of the energy complexes of crude hydrocarbon processing plants

    NASA Astrophysics Data System (ADS)

    Dolotovskij, I. V.; Larin, E. A.; Dolotovskaja, N. V.

    2015-07-01

    A method for circuit-parametric analysis of the efficiency of the heat-and-power system of the energy complexes at gas and natural-gas condensate processing plants is proposed. An energy complex of an alternative structure with an independent source of thermal and electric energy integrated into the production line has been developed. The energy carriers are produced accompanied by recovery of the secondary energy resources, waste, and effluents. Using the developed information-analytical software, multicriterion assessment of the efficiency of the alternative energy complexes and its systems based on independent energy sources of the combined-cycle cogeneration plant type has been performed for the gas processing plant in Astrakhan and the most effective equipment composition variant has been determined. The effect of the basic technical and economic factors on the economic efficiency has been established. The investments in construction of the power- and water-supply system within the plant's energy complex pay off in 8-9 years.

  4. Archimede solar energy molten salt parabolic trough demo plant: Improvements and second year of operation

    NASA Astrophysics Data System (ADS)

    Maccari, Augusto; Donnola, Sandro; Matino, Francesca; Tamano, Shiro

    2016-05-01

    Since July 2013, the first stand-alone Molten Salt Parabolic Trough (MSPT) demo plant, which was built in collaboration with Archimede Solar Energy and Chiyoda Corporation, is in operation, located adjacent to the Archimede Solar Energy (ASE) manufacturing plant in Massa Martana (Italy). During the two year's operating time frame, the management of the demo plant has shown that MSPT technology is a suitable and reliable option. Several O&M procedures and tests have been performed, as Heat Loss and Minimum Flow Test, with remarkable results confirming that this technology is ready to be extended to standard size CSP plant, if the plant design takes into account molten salt peculiarities. Additionally, the plant has been equipped on fall 2014 with a Steam Generator system by Chiyoda Corporation, in order to test even this important MSPT plant subsystem and to extend the solar field active time, overcoming the previous lack of an adequate thermal load. Here, a description of the plant improvements and the overall plant operation figures will be presented.

  5. Potential environmental consequences of ocean thermal energy conversion (OTEC) plants. A workshop

    SciTech Connect

    Walsh, J.J.

    1981-05-01

    The concept of generating electrical power from the temperature difference between surface and deep ocean waters was advanced over a century ago. A pilot plant was constructed in the Caribbean during the 1920's but commercialization did not follow. The US Department of Energy (DOE) earlier planned to construct a single operational 10MWe Ocean Thermal Energy Conversion (OTEC) plant by 1986. However, Public Law P.L.-96-310, the Ocean Thermal Energy Conversion Research, Development and Demonstration Act, and P.L.-96-320, the Ocean Thermal Energy Conversion Act of 1980, now call for acceleration of the development of OTEC plants, with capacities of 100 MWe in 1986, 500 MWe in 1989, and 10,000 MWe by 1999 and provide for licensing and permitting and loan guarantees after the technology has been demonstrated.

  6. Kellogg Company in Cary, N.C., Among Top Performing Energy Star Certified Manufacturers in 29 States Across the country, Energy Star manufacturing plants are leading their industries by saving energy and money, combating climate change

    EPA Pesticide Factsheets

    ATLANTA - The U.S. Environmental Protection Agency (EPA) announced today that 70 manufacturing plants have achieved Energy Star certification for their superior energy performance in 2014. Together, these manufacturing plants saved a record amount o

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  8. Functional genomics of bio-energy plants and related patent activities.

    PubMed

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2013-04-01

    With dwindling fossil oil resources and increased economic growth of many developing countries due to globalization, energy driven from an alternative source such as bio-energy in a sustainable fashion is the need of the hour. However, production of energy from biological source is relatively expensive due to low starch and sugar contents of bioenergy plants leading to lower oil yield and reduced quality along with lower conversion efficiency of feedstock. In this context genetic improvement of bio-energy plants offers a viable solution. In this manuscript, we reviewed the current status of functional genomics studies and related patent activities in bio-energy plants. Currently, genomes of considerable bio-energy plants have been sequenced or are in progress and also large amount of expression sequence tags (EST) or cDNA sequences are available from them. These studies provide fundamental data for more reliable genome annotation and as a result, several genomes have been annotated in a genome-wide level. In addition to this effort, various mutagenesis tools have also been employed to develop mutant populations for characterization of genes that are involved in bioenergy quantitative traits. With the progress made on functional genomics of important bio-energy plants, more patents were filed with a significant number of them focusing on genes and DNA sequences which may involve in improvement of bio-energy traits including higher yield and quality of starch, sugar and oil. We also believe that these studies will lead to the generation of genetically altered plants with improved tolerance to various abiotic and biotic stresses.

  9. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.

    SciTech Connect

    Wang, M.; Wu, M.; Huo, H.; Energy Systems

    2007-04-01

    Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

  10. Energy considerations for a SSF-based softwood ethanol plant.

    PubMed

    Wingren, Anders; Galbe, Mats; Zacchi, Guido

    2008-05-01

    Ethanol can be produced from softwood by steam pretreatment followed by simultaneous saccharification and fermentation (SSF). However, the final ethanol concentration in the SSF step is usually rather low (around 4 wt%) and as a result the energy demand in the downstream processing will be high. In an effort to reduce the energy consumption various alternatives for the downstream processing part of the process were evaluated from a technical-economic standpoint. With experimental data as a basis, the whole process was modelled using the commercial flowsheeting program Aspen Plus. The results were used in the subsequent economic evaluation, which was performed using Icarus process evaluator. A base case configuration, consisting of three thermally coupled distillation columns and multiple-effect evaporation was established. For a feed containing 3.5% ethanol (w/w) to the distillation step, the overall process demand for steam was estimated to be 19.0 MJ/L ethanol and the ethanol production cost 4.14 SEK/L (0.591 USD/L). Different alternatives were considered, such as integration of a stripper with the evaporation step, increasing the number of evaporation effects and the application of mechanical vapour recompression to the evaporation step. Replacement of evaporation with anaerobic digestion was also considered. Among these alternatives, evaporation using mechanical vapour recompression and the anaerobic digester alternative both resulted in significantly lower energy demand than the base case, 10.2 and 9.8 MJ/L, respectively, and productions costs of 3.82 (0.546 USD/L) and 3.84 SEK/L (0.549 USD/L).

  11. [Energy production of plants in grass, Dicranopteris dichotoma and Rhodomyrtus tomentosa communities in Hong Kong].

    PubMed

    Guan, D

    2001-06-01

    With harvest method and caloric value analysis, this paper studied the caloric values, standing energy, net fixed energy and net standing energy increment of three plant communities i.e., grass, Dicranopteris dichotoma and Rhodomyrtus tomentosa, in Hong Kong. The results showed that the caloric value was higher in D. dichotoma community and lower in grass community. The standing energy of plants in grass, D. dichotoma and R. tomentosa community was 18,638, 38,436 and 65,632 kJ.m-2; net fixed energy was 13,286, 20,354 and 18,784 kJ.m-2.yr-1; and net standing energy increment was 3437, 9626 and 6695 kJ.m-2.yr-1, respectively. Compared with southern subtropical evergreen broad-leaved forest, the standing energy, net fixed energy and net standing energy increment were lower in grass, D. dichotoma and R. tomentosa communities, which resulted from deforestation and other human disturbance. This indicated that vegetation conversion due to human disturbance would reduce the utilization coefficient of solar energy. Net fixed energy was also found to be reduced significantly with increasing intensity of human disturbance.

  12. Development of energy plants and their potential to withstand various extreme environments.

    PubMed

    Saibi, Walid; Brini, Faiçal; Hanin, Moez; Masmoudi, Khaled

    2013-04-01

    Biomass utilization is increasingly considered as a practical way for sustainable energy supply and long-term environment care around the world. In concerns with food security, starch or sugar-based bioethanol and edible-oilderived biodiesel are severely restricted for large scale production. Alternatively, conversion of lignocellulosic residues from food crops could be considered, but due to its recalcitrance, the current biomass process is unacceptably expensive. In this context, genetic breeding of energy crops appears as a promising solution. To fulfil the global world need as both food and biofuel sources, energy crops are expected to be produced with higher yields and especially in marginal lands. This review focus on recent progress and patents dealing with energy plants and the challenges associated with bioenergy development. We also discuss the potential use of molecular approaches including genome sequencing, molecular markers, and genetic transformation for improving specific traits or generating new cultivars of energy plants.

  13. Molecular genetic analysis of virus isolates from wild and cultivated plants demonstrates that East Africa is a hotspot for the evolution and diversification of sweet potato feathery mottle virus.

    PubMed

    Tugume, Arthur K; Cuéllar, Wilmer J; Mukasa, Settumba B; Valkonen, Jari P T

    2010-08-01

    Sweet potato feathery mottle virus (SPFMV, genus Potyvirus) is globally the most common pathogen of cultivated sweet potatoes (Ipomoea batatas; Convolvulaceae). Although more than 150 SPFMV isolates have been sequence-characterized from cultivated sweet potatos across the world, little is known about SPFMV isolates from wild hosts and the evolutionary forces shaping SPFMV population structures. In this study, 46 SPFMV isolates from 14 wild species of genera Ipomoea, Hewittia and Lepistemon (barcoded for the matK gene in this study) and 13 isolates from cultivated sweet potatoes were partially sequenced. Wild plants were infected with the EA, C or O strain, or co-infected with the EA and C strains of SPFMV. In East Africa, SPFMV populations in wild species and sweet potato were genetically undifferentiated, suggesting inter-host transmission of SPFMV. Globally, spatial diversification of the 178 isolates analysed was observed, strain EA being largely geographically restricted to East Africa. Recombination was frequently detected in the 6K2-VPg-NIaPro region of the EA strain, demonstrating a recombination 'hotspot'. Recombination between strains EA and C was rare, despite their frequent co-infections in wild plants, suggesting purifying selection against strain EA/C recombinants. Positive selection was predicted on 17 amino acids distributed over the entire coat protein in the globally distributed strain C, as compared to only four amino acids in the coat protein N-terminus of the EA strain. This selection implies a more recent introduction of the C strain and a higher adaptation of the EA strain to the local ecosystem. Thus, East Africa appears as a hotspot for evolution and diversification of SPFMV.

  14. Combining Wind and Wave Energy in Offshore Power Plants to Reduce Variability in Electrical Generation

    NASA Astrophysics Data System (ADS)

    Stoutenburg, E.

    2008-12-01

    While wave energy is primarily a wind driven phenomenon, at a particular location and time the energy levels in the wind and waves may be different. The correlation between wind and wave energy is sufficiently weak that combining the two energy sources in a collocated offshore power plant reduces the variability in electrical generation. A preliminary examination of offshore locations along the west coast of the U.S. using buoy data shows two advantages of combining the two energy sources: 1) the number of hours of no power generation in a given year is significantly decreased, which reduces the intermittency of the power plant; 2) a decrease in the variability of the generation curve, which reduces the drops and surges of voltage at the grid interconnection point. The power generation curves for the hypothetical combined wind and wave offshore power plants use atmospheric conditions, wind speed, and wave statistics collected by NOAA buoys, and a common commercial offshore wind turbine model paired with a wave energy convertor in early commercial development in a reasonable array configuration. The hypothetical offshore power plants are located in areas with both a quality wind and wave resource near existing or feasible transmission corridors. Multiple locations along the west coast of the U.S. are used to demonstrate this reduction in power variability and intermittency.

  15. Potential assessment of establishing a renewable energy plant in a rural agricultural area.

    PubMed

    Su, Ming-Chien; Kao, Nien-Hsin; Huang, Wen-Jar

    2012-06-01

    An evaluation of the green energy potential generated from biogas and solar power, using agricultural manure waste and a photovoltaic (PV) system, was conducted in a large geographical area of a rural county with low population density and low pollution. The studied area, Shoufeng Township in Hualien County, is located in eastern Taiwan, where a large amount of manure waste is generated from pig farms that are scattered throughout the county. The objective of the study is to assess the possibility of establishing an integrated manure waste treatment plant by using the generated biogas incorporated with the PV system to produce renewable energy and then feed it back to the incorporated farms. A filed investigation, geographic information system (GIS) application, empirical equations development, and RETScreen modeling were conducted in the study. The results indicate that Shoufeng Township has the highest priority in setting up an integrated treatment and renewable energy plant by using GIS mapping within a 10-km radius of the transportation range. Two scenarios were plotted in assessing the renewable energy plant and the estimated electricity generation, plus the greenhouse gas (GHG) reduction was evaluated. Under the current governmental green energy scheme and from a long-term perspective, the assessment shows great potential in establishing the plant, especially in reducing environmental pollution problems, waste treatment, and developing suitable renewable energy.

  16. Comparison between cultivated and total bacterial communities associated with Cucurbita pepo using cultivation-dependent techniques and 454 pyrosequencing.

    PubMed

    Eevers, N; Beckers, B; Op de Beeck, M; White, J C; Vangronsveld, J; Weyens, N

    2016-02-01

    Endophytic bacteria often have beneficial effects on their host plants that can be exploited for bioremediation applications but, according to the literature, only 0.001-1% of all endophytic microbes should be cultivable. This study compared the cultivated endophytic communities of the roots and shoots of Cucurbita pepo with the total endophytic communities as determined by cultivation-dependent techniques and 454 pyrosequencing. The ten most abundant taxa of the total communities aligned well with the cultivated taxa; however, the abundance of these taxa in the two communities differed greatly. Enterobacter showed very low presence in the total communities, whereas they were dominantly present in the cultivated communities. Although Rhizobium dominated in total root and shoot communities, it was poorly cultivable and even then only in growth media containing plant extract. Since endophytes likely contribute to plant-growth promotion, cultivated bacterial strains were tested for their plant-growth promoting capabilities, and the results were correlated with their abundance in the total community. Bacillus and Pseudomonas showed promising results when considering cultivability, abundance in the total community and plant-growth promoting capability. This study demonstrated that, although a limited number of bacterial genera were cultivable, current cultivation-dependent techniques may be sufficient for further isolation and inoculation experiments that aim to improve phytoremediation efficiency.

  17. Energy optimization in chiller plants: A novel formulation and solution using a hybrid optimization technique

    NASA Astrophysics Data System (ADS)

    Aravelli, Aparna; Rao, Singiresu S.

    2013-10-01

    The central chilled water plant is one of the major power-consuming units of a building. Even small reductions in power consumption could achieve significant energy conservation. Hence, optimization of a chiller plant is necessary for energy savings without compromising the comfort level of the end user. The present work deals with identifying the system parameters and developing a novel formulation for a chiller plant and its optimization using a hybrid optimization technique. The optimization model formulation is based on finding an optimal mix of equipment and operating parameters in the chiller plant for minimum electrical power consumption. It takes into account the performance characteristics of the chillers, cooling towers and pumps, and optimizes the energy consumed based on the required loads and the ambient atmospheric conditions. Sequential quadratic programming combined with the modified branch and bound method was used to develop the hybrid optimization algorithm. A case study is presented for a typical chiller plant. The results indicate that the present optimization method could be a potential method of making energy savings.

  18. Thermodynamic analysis of osmotic energy recovery at a reverse osmosis desalination plant.

    PubMed

    Feinberg, Benjamin J; Ramon, Guy Z; Hoek, Eric M V

    2013-03-19

    Recent years have seen a substantial reduction of the specific energy consumption (SEC) in seawater reverse osmosis (RO) desalination due to improvements made in hydraulic energy recovery (HER) as well as RO membranes and related process technologies. Theoretically, significant potential for further reduction in energy consumption may lie in harvesting the high chemical potential contained in RO concentrate using salinity gradient power technologies. Herein, "osmotic energy recovery" (OER) is evaluated in a seawater RO plant that includes state-of-the-art RO membranes, plant designs, operating conditions, and HER technology. Here we assume the use of treated wastewater effluent as the OER dilute feed, which may not be available in suitable quality or quantity to allow operation of the coupled process. A two-stage OER configuration could reduce the SEC of seawater RO plants to well below the theoretical minimum work of separation for state-of-the-art RO-HER configurations with a breakeven OER CAPEX equivalent to 42% of typical RO-HER plant cost suggesting significant cost savings may also be realized. At present, there is no commercially viable OER technology; hence, the feasibility of using OER at seawater RO plants remains speculative, however attractive.

  19. Assessment of energy potential from wetland plants along the minor channel network on an agricultural floodplain.

    PubMed

    Pappalardo, Salvatore Eugenio; Prosdocimi, Massimo; Tarolli, Paolo; Borin, Maurizio

    2015-02-01

    Renewable energy sources such as biomasses can play a pivotal role to ensure security of energy supply and reduce greenhouse gases through the substitution of fossil fuels. At present, bioenergy is mainly derived from cultivated crops that mirror the environmental impacts from the intensification of agricultural systems for food production. Instead, biomass from perennial herbaceous species growing in wetland ecosystems and marginal lands has recently aroused interest as bioenergy for electricity and heat, methane and 2nd-generation bioethanol. The aim of this paper is to assess, at local scale, the energy potential of wetland vegetation growing along the minor hydrographic network of a reclamation area in Northeast Italy, by performing energy scenarios for combustion, methane and 2nd-generation ethanol. The research is based on a cross-methodology that combines survey analyses in the field with a GIS-based approach: the former consists of direct measurements and biomass sampling, the latter of spatial analyses and scaling up simulations at the minor channel network level. Results highlight that biomass from riparian zones could represent a significant source of bioenergy for combustion transformation, turning the disposal problem to cut and store in situ wetland vegetation into an opportunity to produce sustainable renewable energy at local scale.

  20. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.

    PubMed

    McGinn, Patrick J; Dickinson, Kathryn E; Bhatti, Shabana; Frigon, Jean-Claude; Guiot, Serge R; O'Leary, Stephen J B

    2011-09-01

    There is currently a renewed interest in developing microalgae as a source of renewable energy and fuel. Microalgae hold great potential as a source of biomass for the production of energy and fungible liquid transportation fuels. However, the technologies required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products are underdeveloped. Microalgae offer several advantages over traditional 'first-generation' biofuels crops like corn: these include superior biomass productivity, the ability to grow on poor-quality land unsuitable for agriculture, and the potential for sustainable growth by extracting macro- and micronutrients from wastewater and industrial flue-stack emissions. Integrating microalgal cultivation with municipal wastewater treatment and industrial CO(2) emissions from coal-fired power plants is a potential strategy to produce large quantities of biomass, and represents an opportunity to develop, test, and optimize the necessary technologies to make microalgal biofuels more cost-effective and efficient. However, many constraints on the eventual deployment of this technology must be taken into consideration and mitigating strategies developed before large scale microalgal cultivation can become a reality. As a strategy for CO(2) biomitigation from industrial point source emitters, microalgal cultivation can be limited by the availability of land, light, and other nutrients like N and P. Effective removal of N and P from municipal wastewater is limited by the processing capacity of available microalgal cultivation systems. Strategies to mitigate against the constraints are discussed.

  1. Energy and greenhouse gas balances for a solid waste incineration plant: a case study.

    PubMed

    Brinck, Kim; Poulsen, Tjalfe G; Skov, Henrik

    2011-10-01

    Energy and greenhouse gas balances for a waste incineration plant (Reno-Nord I/S, Aalborg, Denmark) as a function of time over a 45-year period beginning 1960 are presented. The quantity of energy recovered from the waste increased over time due to increasing waste production, increasing lower heating value of the waste and implementation of improved energy recovery technology at the incineration plant. Greenhouse gas (GHG) balances indicated progressively increasing GHG savings during the time period investigated as a result of the increasing energy production. The GHG balances show that the Reno-Nord incineration plant has changed from a net annual GHG emission of 30 kg CO(2)-eq person(-1) year(-1) to a net annual GHG saving of 770 kg CO(2)-eq person(-1) year(-1) which is equivalent to approximately 8% of the annual emission of GHG from an average Danish person (including emissions from industry and transport). The CO(2) emissions associated with combustion of the fossil carbon contained in the waste accounted for about two-thirds of the GHG turnover when no energy recovery is applied but its contribution reduces to between 10 and 15% when energy recovery is implemented. The reason being that energy recovery is associated with a large CO(2) saving (negative emission).

  2. Plant Wide Assessment of Energy Usage Utilizing SitEModelling as a Tool for Optimizing Energy Consumption

    SciTech Connect

    Ralf Janowsky, Ph.D.; Tracey Mole, Ph.D.

    2007-12-31

    The Evonik Degussa Corporation is the global market leader in the specialty chemicals industry. Innovative products and system solutions make an indispensable contribution to our customers' success. We refer to this as "creating essentials". In fiscal 2004, Degussa's 45,000 employees worldwide generated sales of 11.2 billion euros and operating profits (EBIT) of 965 million euros. Evonik Degussa Corporation has performed a plant wide energy usage assessment at the Mapleton, Illinois facility, which consumed 1,182,330 MMBTU in 2003. The purpose of this study was to identify opportunities for improvement regarding the plant’s utility requirements specific to their operation. The production is based mainly on natural gas usage for steam, process heating and hydrogen production. The current high price for natural gas in the US is not very competitive compared to other countries. Therefore, all efforts must be taken to minimize the utility consumption in order to maximize market position and minimize fixed cost increases due to the rising costs of energy. The main objective of this plant wide assessment was to use a methodology called Site Energy Modelling (SitE Modelling) to identify areas of potential improvement for energy savings, either in implementing a single process change or in changing the way different processes interact with each other. The overall goal was to achieve energy savings of more than 10% compared to the 2003 energy figures of the Mapleton site. The final savings breakdown is provided below: - 4.1% savings for steam generation and delivery These savings were accomplished through better control schemes, more constant and optimized loading of the boilers and increased boiler efficiency through an advanced control schemes. - 1.6% savings for plant chemical processing These saving were accomplished through optimized processing heating efficiency and batch recipes, as well as an optimized production schedule to help equalize the boiler load (e

  3. Mass and energy balances of sludge processing in reference and upgraded wastewater treatment plants.

    PubMed

    Mininni, G; Laera, G; Bertanza, G; Canato, M; Sbrilli, A

    2015-05-01

    This paper describes the preliminary assessment of a platform of innovative upgrading solutions aimed at improving sludge management and resource recovery in wastewater treatment plants. The effectiveness of the upgrading solutions and the impacts of their integration in model reference plants have been evaluated by means of mass and energy balances on the whole treatment plant. Attention has been also paid to the fate of nitrogen and phosphorus in sludge processing and to their recycle back to the water line. Most of the upgrading options resulted in reduced production of dewatered sludge, which decreased from 45 to 56 g SS/(PE × day) in reference plants to 14-49 g SS/(PE × day) in the upgraded ones, with reduction up to 79% when wet oxidation was applied to the whole sludge production. The innovative upgrades generally entail an increased demand of electric energy from the grid, but energy recovery from biogas allowed to minimize the net energy consumption below 10 kWh/(PE × year) in the two most efficient solutions. In all other cases the net energy consumption was in the range of -11% and +28% of the reference scenarios.

  4. Z-inertial fusion energy: power plant final report FY 2006.

    SciTech Connect

    Anderson, Mark; Kulcinski, Gerald; Zhao, Haihua; Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne; McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth; Smith, James Dean; Ying, Alice; Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A.; Bonazza, Riccardo; Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse; Peterson, Per F.; Marriott, Ed; Oakley, Jason

    2006-10-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

  5. Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure

    PubMed Central

    Fernández, Victoria; Khayet, Mohamed

    2015-01-01

    Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study. PMID:26217362

  6. Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure.

    PubMed

    Fernández, Victoria; Khayet, Mohamed

    2015-01-01

    Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study.

  7. Austin Energy: Pumping System Improvement Project Saves Energy and Improves Performance at a Power Plant

    SciTech Connect

    2010-06-25

    This two-page performance spotlight describes how, in 2004, Austin Energy (the electric utility for the city of Austin, Texas) began saving about $1.2 million in energy and maintenance costs annually as a direct result of a pumping system efficiency proj

  8. Austin Energy: Pumping System Improvement Project Saves Energy and Improves Performance at a Power Plant

    SciTech Connect

    2010-06-25

    This two-page performance spotlight describes how, in 2004, Austin Energy (the electric utility for the city of Austin, Texas) began saving about $1.2 million in energy and maintenance costs annually as a direct result of a pumping system efficiency project.

  9. Energy conservation study on Smith Frozen Foods processing plant, Weston, Oregon

    SciTech Connect

    Not Available

    1985-01-02

    A comprehensive energy study was performed at Smith Frozen Foods in Weston, Oregon, in the fall of 1984. The plant processes corn, peas, lima beans and carrots. The products are inspected, prepared and graded before being sent through freeze tunnels. The frozen products are dumped into tote bins which are transported into cold storage warehouses. Energy conservation measures were calculated using a modified return on investment analysis called a return on capital (ROC) analysis and current rate schedules.

  10. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  11. 3M: Hutchinson Plant Focuses on Heat Recovery and Cogeneration during Plan-Wide Energy-Efficiency Assessment

    SciTech Connect

    2003-06-01

    3M performed a plant-wide energy efficiency assessment at its Hutchinson, Minnesota, plant to identify energy- and cost-saving opportunities. Assessment staff developed four separate implementation packages that represented various combinations of energy-efficiency projects involving chiller consolidation, air compressor cooling improvements, a steam turbine used for cogeneration, and a heat recovery boiler for two of the plant's thermal oxidizers. Staff estimated that the plant could save 6 million kWh/yr in electricity and more than 200,000 MMBtu/yr in natural gas and fuel oil, and avoid energy costs of more than $1 million during the first year.

  12. Potential and limitations of Burgundy truffle cultivation.

    PubMed

    Stobbe, Ulrich; Egli, Simon; Tegel, Willy; Peter, Martina; Sproll, Ludger; Büntgen, Ulf

    2013-06-01

    Burgundy truffles (Tuber aestivum syn. Tuber uncinatum) are the highly prized fruit bodies of subterranean fungi always occurring in ectomycorrhizal symbiosis with host plants. Successful cultivation can be achieved through artificial mycorrhization and outplanting of mostly oaks and hazel on suitable terrain. Here, we review ecological requirements, the influence of environmental factors, and the importance of molecular techniques for a successful cultivation of T. aestivum across Europe. The historical background and current knowledge of T. aestivum cultivation are discussed in light of its socioeconomic relevance.

  13. Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets.

    PubMed

    Cordain, L; Miller, J B; Eaton, S B; Mann, N; Holt, S H; Speth, J D

    2000-03-01

    Both anthropologists and nutritionists have long recognized that the diets of modern-day hunter-gatherers may represent a reference standard for modern human nutrition and a model for defense against certain diseases of affluence. Because the hunter-gatherer way of life is now probably extinct in its purely un-Westernized form, nutritionists and anthropologists must rely on indirect procedures to reconstruct the traditional diet of preagricultural humans. In this analysis, we incorporate the most recent ethnographic compilation of plant-to-animal economic subsistence patterns of hunter-gatherers to estimate likely dietary macronutrient intakes (% of energy) for environmentally diverse hunter-gatherer populations. Furthermore, we show how differences in the percentage of body fat in prey animals would alter protein intakes in hunter-gatherers and how a maximal protein ceiling influences the selection of other macronutrients. Our analysis showed that whenever and wherever it was ecologically possible, hunter-gatherers consumed high amounts (45-65% of energy) of animal food. Most (73%) of the worldwide hunter-gatherer societies derived >50% (> or =56-65% of energy) of their subsistence from animal foods, whereas only 14% of these societies derived >50% (> or =56-65% of energy) of their subsistence from gathered plant foods. This high reliance on animal-based foods coupled with the relatively low carbohydrate content of wild plant foods produces universally characteristic macronutrient consumption ratios in which protein is elevated (19-35% of energy) at the expense of carbohydrates (22-40% of energy).

  14. Agent-Based Modleing of Power Plants Placement to Evaluate the Clean Energy Standard Goal

    SciTech Connect

    Omitaomu, Olufemi A

    2014-01-01

    There is a political push for utilities to supply a specified share of their electricity sales from clean energy resources under the clean energy standard (CES). The goal is to achieve 80% clean energy by 2035. However, there are uncertainties about the ability of the utility industry to ramp up quickly even with the incentives that will be provided. Water availability from the streams is one of the major factors. The contiguous United States is divided into eighteen water regions, and multiple states share water from a single water region. Consequently, water usage decisions made in one state (located upstream of a water region that crosses multiple states) will greatly impact what is available downstream in another state. In this paper, an agent-based modeling approach is proposed to evaluate the clean energy standard goal for water-dependent energy resources. Specifically, using a water region rather than a state boundary as a bounding envelope for the modeling and starting at the headwaters, virtual power plants are placed based on the conditions that there is: (i) suitable land to site a particular power plant, (ii) enough water that meet regulatory guidelines within 20 miles of the suitable land, and (iii) a 20-mile buffer zone from an existing or a virtual power plant. The results obtained are discussed in the context of the proposed clean energy standard goal for states that overlap with one water region.

  15. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions.

    PubMed

    Markou, Giorgos; Nerantzis, Elias

    2013-12-01

    Microalgal biomass as feedstock for biofuel production is an attracting alternative to terrestrial plant utilization for biofuels production. However, today the microalgal cultivation systems for energy production purposes seem not yet to be economically feasible. Microalgae, though cultivated under stress conditions, such as nutrient starvation, high salinity, high temperature etc. accumulate considerable amounts (up to 60-65% of dry weight) of lipids or carbohydrates along with several secondary metabolites. Especially some of the latter are valuable compounds with an enormous range of industrial applications. The simultaneous production of lipids or carbohydrates for biofuel production and of secondary metabolites in a biorefinery concept might allow the microalgal production to be economically feasible. This paper aims to provide a review on the available literature about the cultivation of microalgae for the accumulation of high-value compounds along with lipids or carbohydrates focusing on stress cultivation conditions.

  16. Preliminary identification and coat protein gene phylogenetic relationships of begomoviruses associated with native flora and cultivated plants from the Yucatan Peninsula of Mexico.

    PubMed

    Hernández-Zepeda, Cecilia; Idris, Ali M; Carnevali, Germán; Brown, Judith K; Moreno-Valenzuela, Oscar A

    2007-12-01

    A number of native and cultivated eudicots in the Yucatan Peninsula of Mexico (YPM) exhibit symptoms associated with virus infection. Symptomatic leaves were collected and assessed for begomoviral detection using polymerase chain reaction (PCR), and universal primers that amplify a fragment of the coat protein gene (core Cp). Begomovirus were detected in nine native and seven cultivated species, representing seven eudicot families. DNA extracts from the 16 hosts were used for PCR amplification and sequencing of a fragment containing the coat protein (Cp) gene. The complete Cp sequence was used to establish provisional species identification. Results indicated that 13 distinct begomovirus species were represented. Among these, five potentially new begomovirus species were identified, for which we propose the names Anoda golden mosaic virus (AnGMV), Boerhavia yellow spot virus (BoYSV), Papaya golden mosaic virus (PaGMV), Desmodium leaf distortion virus (DeLDV), and Hibiscus variegation virus (HiVV). Five previously described begomoviral species were provisionally identified for the first time in the YPM; these include Euphorbia mosaic virus (EuMV), Melon chlorotic leaf curl virus (MCLCuV), Okra yellow mosaic Mexico virus (OkYMMV), Sida golden mosaic virus (SiGMV), and Tobacco apical stunt virus (TbASV). Additionally, viruses previously reported from this region, Bean golden yellow mosaic virus (BGYMV), Pepper golden mosaic virus (PepGMV), and Tomato mottle virus (ToMoV) were provisionally identified in cultivated hosts. Phylogenetic analysis provisionally placed all isolates from the YPM in a Western Hemisphere begomovirus clade.

  17. 76 FR 78702 - Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant, Units 1 and 2) Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR...

  18. Duke Energy Corp. to Reduce Emissions from Power Plants in North Carolina, Fund Environmental Projects

    EPA Pesticide Factsheets

    WASHINGTON -- The U.S. Environmental Protection Agency (EPA) and the U.S. Department of Justice (DOJ) today announced a settlement with Duke Energy Corporation (Duke) to resolve Clean Air Act violations at five coal-fired power plants across North C

  19. Reactive Nitrogen Species in Mitochondria and Their Implications in Plant Energy Status and Hypoxic Stress Tolerance

    PubMed Central

    Gupta, Kapuganti Jagadis; Igamberdiev, Abir U.

    2016-01-01

    Hypoxic and anoxic conditions result in the energy crisis that leads to cell damage. Since mitochondria are the primary organelles for energy production, the support of these organelles in a functional state is an important task during oxygen deprivation. Plant mitochondria adapted the strategy to survive under hypoxia by keeping electron transport operative even without oxygen via the use of nitrite as a terminal electrons acceptor. The process of nitrite reduction to nitric oxide (NO) in the mitochondrial electron transport chain recycles NADH and leads to a limited rate of ATP production. The produced ATP alongside with the ATP generated by fermentation supports the processes of transcription and translation required for hypoxic survival and recovery of plants. Non-symbiotic hemoglobins (called phytoglobins in plants) scavenge NO and thus contribute to regeneration of NAD+ and nitrate required for the operation of anaerobic energy metabolism. This overall operation represents an important strategy of biochemical adaptation that results in the improvement of energy status and thereby in protection of plants in the conditions of hypoxic stress. PMID:27047533

  20. EPA Announces 2015 ENERGY STAR Certified Manufacturing Plants, West Texas facility among those recognized

    EPA Pesticide Factsheets

    DALLAS - (Feb. 24, 2016) The U.S. Environmental Protection Agency (EPA) announced today that Buzzi Unicem cement facility in Maryneal, TX, about 60 miles west of Abilene, is among the 70 manufacturing plants across the nation that achieved ENERGY ST

  1. Relationship Between Liquor Yield, Plant Capacity Increases, and Energy Savings in Alumina Refining

    NASA Astrophysics Data System (ADS)

    Ter Weer, Peter-Hans

    2014-09-01

    The mechanisms of alumina trihydrate precipitation and controlling parameters, and the methods and technologies affecting liquor yield/productivity in alumina refining, have been described in several publications [e.g., Refs. Alamdari et al. ( Light Metals 1998, pp. 133-137, 1998), Moretto and Power ( Proc. 1990 Alumina Quality Workshop, Perth, Australia, pp. 154-165, 1990)]. However, the relationship between increasing liquor yield, on the one hand, and plant production capacity increases and related energy savings, on the other, has been under-emphasized. This article addresses this issue and provides estimates of plant production capacity increases and steam and power energy savings as a function of precipitation yield increases resulting from the implementation of plant adaptations. Conclusions are that increasing precipitation yield in an alumina refinery results overall in a significant improvement of project economics and interestingly improves a refinery's direct and indirect environmental performance, thus, addressing two of the three "pillars" of sustainable development (economic, environmental, and social).

  2. Environmental effects of planting energy crops at larger scales on agricultural lands

    SciTech Connect

    Tolbert, V.R.; Downing, M.

    1995-09-01

    Increasing from research-scale to larger-scale plantings of herbaceous and short rotation woody crops on agricultural land in the United States has raised questions about the positive and negative environmental effects of farmland conversion. Research currently underway at experimental plot scales enables us examine runoff quality and quantity, erosion, and changes in soil characteristics associated with these energy crops compared to conventional row crops. A study of the fate of chemicals applied to the different crop types will enhance our knowledge of uptake, release, and off-site movement of nutrients and pesticides. Ongoing biodiversity studies in the North Central US allow us to compare differences in scale of plantings on bird and small mammal populations and habitat use. Plantings of 50--100 or more contiguous acres are needed to allow both researchers and producers to determine the benefits of including temporal energy crop rotations in the landscape. Results from these larger-scale plantings will help identify (1) the monitoring requirements needed to determine environmental effects of larger-scale plantings, (2) the best methods to determine the environmental effects of rotation length and the best crop management strategies for full-scale production. Because of the variations in soils, temperature, rainfall and other climatic conditions, as well as differences in the types of energy crops most suited for different regions, monitoring of large-scale plantings in these different regions of the US will be required to predict the environmental effects of regional agricultural land-use shifts for full-scale plantings.

  3. Selection of energy source and evolutionary stable strategies for power plants under financial intervention of government

    NASA Astrophysics Data System (ADS)

    Hafezalkotob, Ashkan; Mahmoudi, Reza

    2017-03-01

    Currently, many socially responsible governments adopt economic incentives and deterrents to manage environmental impacts of electricity suppliers. Considering the Stackelberg leadership of the government, the government's role in the competition of power plants in an electricity market is investigated. A one-population evolutionary game model of power plants is developed to study how their production strategy depends on tariffs levied by the government. We establish that a unique evolutionary stable strategy (ESS) for the population exists. Numerical examples demonstrate that revenue maximization and environment protection policies of the government significantly affect the production ESS of competitive power plants. The results reveal that the government can introduce a green energy source as an ESS of the competitive power plants by imposing appropriate tariffs.

  4. Photosynthesis in desiccation tolerant plants: energy metabolism and antioxidative stress defense.

    PubMed

    Dinakar, Challabathula; Djilianov, Dimitar; Bartels, Dorothea

    2012-01-01

    Resurrection plants are regarded as excellent models to study the mechanisms associated with desiccation tolerance. During the past years tremendous progress has been made in understanding the phenomenon of desiccation tolerance in resurrection plants, but many questions are open concerning the mechanisms enabling these plants to survive desiccation. The photosynthetic apparatus is very sensitive to reactive oxygen species mediated injury during desiccation and must be maintained or quickly repaired upon rehydration. The photosynthetic apparatus is a primary source of generating reactive oxygen species. The unique ability of plants to withstand the oxidative stress imposed by reactive oxygen species during desiccation depends on the production of antioxidants. The present review considers the overall strategies and the mechanisms involved in the desiccation tolerance in the first part and will focus on the effects on photosynthesis, energy metabolism and antioxidative stress defenses in the second part.

  5. Energy performance indicators of wastewater treatment: a field study with 17 Portuguese plants.

    PubMed

    Silva, Catarina; Rosa, Maria João

    2015-01-01

    The energy costs usually represent the second largest part of the running costs of a wastewater treatment plant (WWTP). It is therefore crucial to increase the energy efficiency of these infrastructures and to implement energy management systems, where quantitative performance metrics, such as performance indicators (PIs), play a key role. This paper presents energy PIs which cover the unit energy consumption, production, net use from external sources and costs, and the results used to validate them and derive their reference values. The results of a field study with 17 Portuguese WWTPs (5-year period) were consistent with the results obtained through an international literature survey on the two key parcels of the energy balance--consumption and production. The unit energy consumption showed an overall inverse relation with the volume treated, and the reference values reflect this relation for trickling filters and for activated sludge systems (conventional, with coagulation/filtration (C/F) and with nitrification and C/F). The reference values of electrical energy production were derived from the methane generation potential (converted to electrical energy) and literature data, whereas those of energy net use were obtained by the difference between the energy consumption and production.

  6. Sewage sludge drying process integration with a waste-to-energy power plant.

    PubMed

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration.

  7. Compressed air energy storage system reservoir size for a wind energy baseload power plant

    SciTech Connect

    Cavallo, A.J.

    1996-12-31

    Wind generated electricity can be transformed from an intermittent to a baseload resource using an oversized wind farm in conjunction with a compressed air energy storage (CAES) system. The size of the storage reservoir for the CAES system (solution mined salt cavern or porous media) as a function of the wind speed autocorrelation time (C) has been examined using a Monte Carlo simulation for a wind class 4 (wind power density 450 W m{sup -2} at 50 m hub height) wind regime with a Weibull k factor of 2.5. For values of C typically found for winds over the US Great Plains, the storage reservoir must have a 60 to 80 hour capacity. Since underground reservoirs account for only a small fraction of total system cost, this larger storage reservoir has a negligible effect on the cost of energy from the wind energy baseload system. 7 refs., 2 figs., 1 tab.

  8. Modeling energy production of solar thermal systems and wind turbines for installation at corn ethanol plants

    NASA Astrophysics Data System (ADS)

    Ehrke, Elizabeth

    Nearly every aspect of human existence relies on energy in some way. Most of this energy is currently derived from fossil fuel resources. Increasing energy demands coupled with environmental and national security concerns have facilitated the move towards renewable energy sources. Biofuels like corn ethanol are one of the ways the U.S. has significantly reduced petroleum consumption. However, the large energy requirement of corn ethanol limits the net benefit of the fuel. Using renewable energy sources to produce ethanol can greatly improve its economic and environmental benefits. The main purpose of this study was to model the useful energy received from a solar thermal array and a wind turbine at various locations to determine the feasibility of applying these technologies at ethanol plants around the country. The model calculates thermal energy received from a solar collector array and electricity generated by a wind turbine utilizing various input data to characterize the equipment. Project cost and energy rate inputs are used to evaluate the profitability of the solar array or wind turbine. The current state of the wind and solar markets were examined to give an accurate representation of the economics of each industry. Eighteen ethanol plant locations were evaluated for the viability of a solar thermal array and/or wind turbine. All ethanol plant locations have long payback periods for solar thermal arrays, but high natural gas prices significantly reduce this timeframe. Government incentives will be necessary for the economic feasibility of solar thermal arrays. Wind turbines can be very profitable for ethanol plants in the Midwest due to large wind resources. The profitability of wind power is sensitive to regional energy prices. However, government incentives for wind power do not significantly change the economic feasibility of a wind turbine. This model can be used by current or future ethanol facilities to investigate or begin the planning process for a

  9. Antenna entropy in plant photosystems does not reduce the free energy for primary charge separation.

    PubMed

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-12-01

    We have investigated the concept of the so-called "antenna entropy" of higher plant photosystems. Several interesting points emerge: 1. In the case of a photosystemwhich harbours an excited state, the “antenna entropy” is equivalent to the configurational (mixing) entropy of a thermodynamic canonical ensemble. The energy associated with this parameter has been calculated for a hypothetical isoenergetic photosystem, photosystem I and photosystem II, and comes out in the range of 3.5 - 8% of the photon energy considering 680 nm. 2. The “antenna entropy” seems to be a rather unique thermodynamic phenomenon, in as much as it does not modify the free energy available for primary photochemistry, as has been previously suggested. 3. It is underlined that this configurational (mixing) entropy, unlike heat dispersal in a thermal system, does not involve energy dilution. This points out an important difference between thermal and electronic energy dispersal.

  10. Improving Compressed Air Energy Efficiency in Automotive Plants - Practical Examples and Implementation

    SciTech Connect

    Alkadi, Nasr E; Kissock, Professor Kelly

    2011-01-01

    The automotive industry is the largest industry in the United States in terms of the dollar value of production [1]. U.S. automakers face tremendous pressure from foreign competitors, which have an increasing manufacturing presence in this country. The Big Three North American Original Equipment Manufacturers (OEMs) General Motors, Ford, and Chrysler are reacting to declining sales figures and economic strain by working more efficiently and seeking out opportunities to reduce production costs without negatively affecting the production volume or the quality of the product. Successful, cost-effective investment and implementation of the energy efficiency technologies and practices meet the challenge of maintaining the output of high quality product with reduced production costs. Automotive stamping and assembly plants are typically large users of compressed air with annual compressed air utility bills in the range of $2M per year per plant. This paper focuses on practical methods that the authors have researched, analyzed and implemented to improve compressed air system efficiency in automobile manufacturing facilities. It describes typical compressed air systems in automotive stamping and assembly plants, and compares these systems to best practices. The paper then presents a series of examples, organized using the method of inside-out approach, which strategically identifies the energy savings in the compressed air system by first minimizing end-use demand, then minimizing distribution losses, and finally making improvements to primary energy conversion equipment, the air compressor plant.

  11. Process-based modeling of coupled energy and water cycle under dry tropical conditions: an experiment at local scale in the cultivated Sahel (South-West Niger)

    NASA Astrophysics Data System (ADS)

    Velluet, C.; Demarty, J.; Cappelaere, B.; Braud, I.; Boulain, N.; Charvet, G.; Chazarin, J.-P.; Mainassara, I.; Boucher, M.; Issoufou, H. B.-A.; Ibrahim, M.; Oi, M.; Ramier, D.; Benarrosh, N.; Yahou, H.

    2012-04-01

    In the dry tropics in general and, particularly in the African Sahel, agro-ecosystems and hydrosystems are very sensitive to climate variability and land management. In turn, it has been shown that soil moisture, vegetation and surface fluxes produce substantial feedback effects on rainfall-producing atmospheric convection. Therefore, it is of prime importance to understand and to model the dynamics of the soil-plant-atmosphere continuum in response to contrasted meteorological and terrestrial conditions for this area. The objective of this study is to produce a process-based model of water and energy transfers in the soil and land-atmosphere interface over an entire 5-year period, at local scale, for the two main land cover types of South-West Niger: millet-crop and fallow savannah. A comprehensive dataset is available over that whole period in two such fields of the Wankama catchment, making it a rather unique asset for West Africa. This area is typical of the central Sahel conditions, with ~400-600 mm annual rainfall concentrated in the 4-5 months wet season, followed by the 7-8 months dry season. Soils are essentially sandy and prone to surface crusting, which induces a strong vertical contrast in hydrodynamic properties. The dataset used here includes 5 years of atmospheric forcing (rainfall, wind speed, sun and atmosphere radiation, air temperature and moisture) and validation variables (net radiation, turbulent fluxes and soil temperature and moisture profiles), recorded every 30 min. The seasonal course of vegetation phenology (LAI, height, biomass) and soil characteristics (particle size and density profiles) are also available. The SiSPAT (Simple Soil-Plant-Atmosphere Transfer, Braud et al., 1995) physically-based model is used for this study. It solves the mass and heat transfer system of equations in the soil, with vapour phase, coupled with a two-component (bare soil and one vegetation layer) water and energy budget at the surface-atmosphere interface

  12. 75 FR 16201 - FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... COMMISSION FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Exemption 1.0 Background FPL Energy Point Beach, LLC (FPLE, the licensee) is the holder of Renewed Facility Operating License Nos. DPR-24 and DPR-27, which authorize operation of the Point Beach Nuclear Plant, Units 1 and...

  13. Efficacy of random primer-pair arrays in plant genome analysis: a case study of Cucumis (Cucurbitaceae) for identification of wild and cultivated species.

    PubMed

    Gatphoh, E M; Sharma, S K; Rajkumari, K; Rama Rao, S

    2011-01-01

    The efficacy of random primer-pair arrays compared to conventional RAPD method with a single decamer primer was evaluated using DNA from two species of Cucumis. The banding patterns of amplicons revealed enhanced utility of primer-pair arrays over conventional RAPDs, producing more bands and a higher degree of polymorphism, both at intra- and inter-specific levels. Amplification produced by both methods clearly distinguished a wild from a cultivated species of the genus Cucumis. The main advantage of the primer-pair RAPD over single-primer-based RAPD is the increase in the number of reactions and amplification products in the form of novel/unique bands with a limited number of primers. It also enables the generation of reliable amplicons with a large number of polymorphic bands, which can be linked to gene-governing traits, allowing sequence-characterized partial genome analysis.

  14. Plant polyphenols alter a pathway of energy metabolism by inhibiting fecal Bacteroidetes and Firmicutes in vitro.

    PubMed

    Xue, Bin; Xie, Jinli; Huang, Jiachen; Chen, Long; Gao, Lijuan; Ou, Shiyi; Wang, Yong; Peng, Xichun

    2016-03-01

    The function of plant polyphenols in controlling body weight has been in focus for a long time. The aim of this study was to investigate the effect of plant polyphenols on fecal microbiota utilizing oligosaccharides. Three plant polyphenols, quercetin, catechin and puerarin, were added into liquid media for fermenting for 24 h. The pH values, OD600 of the cultures and the content of carbohydrates at 0, 6, 10, 14, 18 and 24 h were determined. The abundance of Bacteroidetes and Firmicutes in each culture was quantified with qPCR after 10 h of fermentation, and the bacterial composition was analyzed using the software Quantitative Insights Into Microbial Ecology. The results revealed that all three plant polyphenols could significantly inhibit the growth of Bacteroidetes (P < 0.01) and Firmicutes (P < 0.01) while at the same time down-regulate the ratio of Bacteroidetes to Firmicutes (P < 0.01). But the fecal bacteria could maintain the ability to hydrolyze fructo-oligosaccharide (FOS) in vitro. Among the tested polyphenols, catechin presented the most intense inhibitory activity towards the growth of Bacteroidetes and Firmicutes, and quercetin was the second. Only the samples with catechin had a significantly lower energy metabolism (P < 0.05). In conclusion, plant polyphenols can change the pathway of degrading FOS or even energy metabolism in vivo by altering gut microbiota composition. It may be one of the mechanisms in which plant polyphenols can lead to body weight loss. It's the first report to study in vitro gastrointestinal microbiota fermenting dietary fibers under the intervention of plant polyphenols.

  15. Macroscopic mass and energy balance of a pilot plant anaerobic bioreactor operated under thermophilic conditions.

    PubMed

    Espinosa-Solares, Teodoro; Bombardiere, John; Chatfield, Mark; Domaschko, Max; Easter, Michael; Stafford, David A; Castillo-Angeles, Saul; Castellanos-Hernandez, Nehemias

    2006-01-01

    Intensive poultry production generates over 100,000 t of litter annually in West Virginia and 9 x 10(6) t nationwide. Current available technological alternatives based on thermophilic anaerobic digestion for residuals treatment are diverse. A modification of the typical continuous stirred tank reactor is a promising process being relatively stable and owing to its capability to manage considerable amounts of residuals at low operational cost. A 40-m3 pilot plant digester was used for performance evaluation considering energy input and methane production. Results suggest some changes to the pilot plant configuration are necessary to reduce power consumption although maximizing biodigester performance.

  16. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  17. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant.

    PubMed

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł

    2017-02-01

    The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm(-3) with the average value at 1.17 kWhm(-3). The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs.

  18. Phylogenic diversity and tissue specificity of fungal endophytes associated with the pharmaceutical plant, Stellera chamaejasme L. revealed by a cultivation-independent approach.

    PubMed

    Jin, Hui; Yang, Xiaoyan; Lu, Dengxue; Li, Chunjie; Yan, Zhiqiang; Li, Xiuzhuang; Zeng, Liming; Qin, Bo

    2015-10-01

    The fungal endophytes associated with medicinal plants have been demonstrated as a reservoir with novel natural products useful in medicine and agriculture. It is desirable to explore the species composition, diversity and tissue specificity of endophytic fungi that inhabit in different tissues of medicinal plants. In this study, a culture-independent survey of fungal diversity in the rhizosphere, leaves, stems and roots of a toxic medicinal plant, Stellera chamaejasme L., was conducted by sequence analysis of clone libraries of the partial internal transcribed spacer region. Altogether, 145 fungal OTUs (operational taxonomic units), represented by 464 sequences, were found in four samples, of these 109 OTUs (75.2 %) belonging to Ascomycota, 20 (13.8 %) to Basidiomycota, 14 (9.7 %) to Zygomycota, 1 (0.7 %) to Chytridiomycota, and 1 (0.7 %) to Glomeromycota. The richness and diversity of fungal communities were strongly influenced by plant tissue environments, and the roots are associated with a surprisingly rich endophyte community. The endophyte assemblages associated with S. chamaejasme were strongly shaped by plant tissue environments, and exhibited a certain degree of tissue specificity. Our results suggested that a wide variety of fungal assemblages inhabit in S. chamaejasme, and plant tissue environments conspicuously influence endophyte community structure.

  19. Reductions in greenhouse gas (GHG) generation and energy consumption in wastewater treatment plants.

    PubMed

    Yerushalmi, L; Ashrafi, O; Haghighat, F

    2013-01-01

    Greenhouse gas (GHG) emission and energy consumption by on-site and off-site sources were estimated in two different wastewater treatment plants that used physical-chemical or biological processes for the removal of contaminants, and an anaerobic digester for sludge treatment. Physical-chemical treatment processes were used in the treatment plant of a locomotive repair factory that processed wastewater at 842 kg chemical oxygen demand per day. Approximately 80% of the total GHG emission was related to fossil fuel consumption for energy production. The emission of GHG was reduced by 14.5% with the recovery of biogas that was generated in the anaerobic digester and its further use as an energy source, replacing fossil fuels. The examined biological treatment system used three alternative process designs for the treatment of effluents from pulp and paper mills that processed wastewater at 2,000 kg biochemical oxygen demand per day. The three designs used aerobic, anaerobic, or hybrid aerobic/anaerobic biological processes for the removal of carbonaceous contaminants, and nitrification/denitrification processes for nitrogen removal. Without the recovery and use of biogas, the aerobic, anaerobic, and hybrid treatment systems generated 3,346, 6,554 and 7,056 kg CO(2)-equivalent/day, respectively, while the generated GHG was reduced to 3,152, 6,051, and 6,541 kg CO(2)-equivalent/day with biogas recovery. The recovery and use of biogas was shown to satisfy and exceed the energy needs of the three examined treatment plants. The reduction of operating temperature of the anaerobic digester and anaerobic reactor by 10°C reduced energy demands of the treatment plants by 35.1, 70.6 and 62.9% in the three examined treatment systems, respectively.

  20. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity; DOE Software Adopted as Standard for Analyzing Plant Process Heating Systems Company-Wide

    SciTech Connect

    Not Available

    2008-07-01

    This case study describes how the Kaiser Aluminum plant in Sherman, Texas, achieved annual savings of $360,000 and 45,000 MMBtu, and improved furnace energy intensity by 11.1% after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its process heating system.

  1. Quantitative Trait Locus Analysis of Late Leaf Spot Resistance and Plant-Type-Related Traits in Cultivated Peanut (Arachis hypogaea L.) under Multi-Environments

    PubMed Central

    Zhou, Xiaojing; Xia, Youlin; Liao, Junhua; Liu, Kede; Li, Qiang; Dong, Yang; Ren, Xiaoping; Chen, Yuning; Huang, Li; Liao, Boshou; Lei, Yong; Yan, Liying; Jiang, Huifang

    2016-01-01

    Late leaf spot (LLS) is one of the most serious foliar diseases affecting peanut worldwide leading to huge yield loss. To understand the genetic basis of LLS and assist breeding in the future, we conducted quantitative trait locus (QTL) analysis for LLS and three plant-type-related traits including height of main stem (HMS), length of the longest branch (LLB) and total number of branches (TNB). Significant negative correlations were observed between LLS and the plant-type-related traits in multi-environments of a RIL population from the cross Zhonghua 5 and ICGV 86699. A total of 20 QTLs were identified for LLS, of which two QTLs were identified in multi-environments and six QTLs with phenotypic variation explained (PVE) more than 10%. Ten, seven, fifteen QTLs were identified for HMS, LLB and TNB, respectively. Of these, one, one, two consensus QTLs and three, two, three major QTLs were detected for HMS, LLB and TNB, respectively. Of all 52 unconditional QTLs for LLS and plant-type-related traits, 10 QTLs were clustered in five genetic regions, of which three clusters including five robust major QTLs overlapped between LLS and one of the plant-type-related traits, providing evidence that the correlation could be genetically constrained. On the other hand, conditional mapping revealed different numbers and different extent of additive effects of QTLs for LLS conditioned on three plant-type-related traits (HMS, LLB and TNB), which improved our understanding of interrelationship between LLS and plant-type-related traits at the QTL level. Furthermore, two QTLs, qLLSB6-7 and qLLSB1 for LLS resistance, were identified residing in two clusters of NB-LRR—encoding genes. This study not only provided new favorable QTLs for fine-mapping, but also suggested that the relationship between LLS and plant-type-related traits of HMS, LLB and TNB should be considered while breeding for improved LLS resistance in peanut. PMID:27870916

  2. Extraterrestrial fiberglass production using solar energy. [lunar plants or space manufacturing facilities

    NASA Technical Reports Server (NTRS)

    Ho, D.; Sobon, L. E.

    1979-01-01

    A conceptual design is presented for fiberglass production systems in both lunar and space environments. The raw material, of lunar origin, will be plagioclase concentrate, high silica content slag, and calcium oxide. Glass will be melted by solar energy. The multifurnace in the lunar plant and the spinning cylinder in the space plant are unique design features. Furnace design appears to be the most critical element in optimizing system performance. A conservative estimate of the total power generated by solar concentrators is 1880 kW; the mass of both plants is 120 tons. The systems will reproduce about 90 times their total mass in fiberglass in 1 year. A new design concept would be necessary if glass rods were produced in space.

  3. Multi-unit Inertial Fusion Energy (IFE) plants producing hydrogen fuel

    NASA Astrophysics Data System (ADS)

    Logan, B. G.

    1993-12-01

    A quantitative energy pathway comparison is made between a modern oil refinery and genetic fusion hydrogen plant supporting hybrid-electric cars powered by gasoline and hydrogen-optimized internal combustion engines, respectively, both meeting President Clinton's goal for advanced car goal of 80 mpg gasoline equivalent. The comparison shows that a fusion electric plant producing hydrogen by water electrolysis at 80% efficiency must have an electric capacity of 10 GWe to support as many hydrogen-powered hybrid cars as one modern 200,000 bbl/day-capacity oil refinery could support in gasoline-powered hybrid cars. A 10 GWe fusion electric plant capital cost is limited to $12.5 billion to produce electricity at 2.3 cents/kWehr, and hydrogen production by electrolysis at $8/GJ, for equal consumer fuel cost per passenger mile as in the oil-gasoline-hybrid pathway.

  4. Integration of ocean thermal energy conversion power plants with existing power systems

    SciTech Connect

    Arunasalam, N.

    1986-01-01

    The problem of integrating an Ocean Thermal Energy Conversion (OTEC) power plant with existing power systems is studied. A nonlinear model of an OTEC power system is developed. The dynamics of the large local induction motor load, and the coaxial cable connection to the mainland are included in the model. The effect of the motor load and the coaxial cable on the steady-state stability of the OTEC power plant is investigated using linearized analysis. The transient stability of the OTEC system is investigated through simulation. The contribution made by the motor load and the coaxial cable to the transient stability is studied. The occurrence of self excitation phenomena is analyzed using linear methods and simulation. The effects of wave and vessel motion on the electrical power output of the OTEC plant is investigated.

  5. Assessment of geothermal energy as a power source for US aluminum reduction plants

    SciTech Connect

    Enderlin, W.I.; Blahnik, D.E.; Davis, A.E.; Jacobson, J.J.; Schilling, A.H.; Weakley, S.A.

    1980-02-01

    The technical and economic feasibility of using hydrothermal resources as a primary power source for both existing and future aluminum reduction plants in the United States is explored. Applicable hydrothermal resources that should be considered by the aluminum industry for this purpose were identified and evaluated. This work also identified the major institutional parameters to be considered in developing geothermal energy resources for aluminum industry use. Based on the findings of this study, it appears technically and economically feasible to power existing aluminum reduction plants in the Pacific Northwest using electricity generated at Roosevelt Hot Springs, Utah. It may also be feasible to power existing plants located on the Gulf Coast from Roosevelt Hot Springs, depending on the cost of transmitting the power.

  6. Smart LED lighting for major reductions in power and energy use for plant lighting in space

    NASA Astrophysics Data System (ADS)

    Poulet, Lucie

    Launching or resupplying food, oxygen, and water into space for long-duration, crewed missions to distant destinations, such as Mars, is currently impossible. Bioregenerative life-support systems under development worldwide involving photoautotrophic organisms offer a solution to the food dilemma. However, using traditional Earth-based lighting methods, growth of food crops consumes copious energy, and since sunlight will not always be available at different space destinations, efficient electric lighting solutions are badly needed to reduce the Equivalent System Mass (ESM) of life-support infrastructure to be launched and transported to future space destinations with sustainable human habitats. The scope of the present study was to demonstrate that using LEDs coupled to plant detection, and optimizing spectral and irradiance parameters of LED light, the model crop lettuce (Lactuca sativa L. cv. Waldmann's Green) can be grown with significantly lower electrical energy for plant lighting than using traditional lighting sources. Initial experiments aimed at adapting and troubleshooting a first-generation "smart" plant-detection system coupled to LED arrays resulted in optimizing the detection process for plant position and size to the limits of its current design. Lettuce crops were grown hydroponically in a growth chamber, where temperature, relative humidity, and CO2 level are controlled. Optimal irradiance and red/blue ratio of LED lighting were determined for plant growth during both lag and exponential phases of crop growth. Under optimizing conditions, the efficiency of the automatic detection system was integrated with LED switching and compared to a system in which all LEDs were energized throughout a crop-production cycle. At the end of each cropping cycle, plant fresh and dry weights and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed. Preliminary results indicated that lettuce plants grown under

  7. Diversity of Cultivated Fungi Associated with Conventional and Transgenic Sugarcane and the Interaction between Endophytic Trichoderma virens and the Host Plant

    PubMed Central

    Romão-Dumaresq, Aline Silva; Dourado, Manuella Nóbrega; Fávaro, Léia Cecilia de Lima; Mendes, Rodrigo; Ferreira, Anderson; Araújo, Welington Luiz

    2016-01-01

    Plant-associated fungi are considered a vast source for biotechnological processes whose potential has been poorly explored. The interactions and diversity of sugarcane, one of the most important crops in Brazil, have been rarely studied, mainly concerning fungal communities and their interactions with transgenic plants. Taking this into consideration, the purpose of this study was, based on culture dependent strategy, to determine the structure and diversity of the fungal community (root endophytes and rhizosphere) associated with two varieties of sugarcane, a non-genetically modified (SP80-1842) variety and its genetically modified counterpart (IMI-1, expressing imazapyr herbicide resistance). For this, the sugarcane varieties were evaluated in three sampling times (3, 10 and 17 months after planting) under two crop management (weeding and herbicide treatments). In addition, a strain of Trichoderma virens, an endophyte isolated from sugarcane with great potential as a biological control, growth promotion and enzyme production agent, was selected for the fungal-plant interaction assays. The results of the isolation, characterization and evaluation of fungal community changes showed that the sugarcane fungal community is composed of at least 35 different genera, mostly in the phylum Ascomycota. Many genera are observed at very low frequencies among a few most abundant genera, some of which were isolated from specific plant sites (e.g., the roots or the rhizosphere). An assessment of the possible effects upon the fungal community showed that the plant growth stage was the only factor that significantly affected the community’s structure. Moreover, if transgenic effects are present, they may be minor compared to other natural sources of variation. The results of interaction studies using the Green fluorescent protein (GFP)-expressing T. virens strain T.v.223 revealed that this fungus did not promote any phenotypic changes in the host plant and was found mostly in

  8. The "bringing into cultivation" phase of the plant domestication process and its contributions to in situ conservation of genetic resources in Benin.

    PubMed

    Vodouhè, R; Dansi, A

    2012-01-01

    All over the world, plant domestication is continually being carried out by local communities to support their needs for food, fibre, medicine, building materials, etc. Using participatory rapid appraisal approach, 150 households were surveyed in 5 villages selected in five ethnic groups of Benin, to investigate the local communities' motivations for plant domestication and the contributions of this process to in situ conservation of genetic resources. The results indicated differences in plant domestication between agroecological zones and among ethnic groups. People in the humid zones give priority to herbs mainly for their leaves while those in dry area prefer trees mostly for their fruits. Local communities were motivated to undertake plant domestication for foods (80% of respondents), medicinal use (40% of respondents), income generation (20% of respondents) and cultural reasons (5% of respondents). 45% of the species recorded are still at early stage in domestication and only 2% are fully domesticated. Eleven factors related to the households surveyed and to the head of the household interviewed affect farmers' decision making in domesticating plant species. There is gender influence on the domestication: Women are keen in domesticating herbs while men give priority to trees.

  9. NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS

    SciTech Connect

    Michael Schwartz

    2004-12-01

    This report describes the work performed, accomplishments and conclusion obtained from the project entitled ''Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants'' under the United States Department of Energy Contract DE-FC26-01NT40973. ITN Energy Systems was the prime contractor. Team members included: the Idaho National Engineering and Environmental Laboratory; Nexant Consulting; Argonne National Laboratory and Praxair. The objective of the program was to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The separation technology module is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner. The program developed and evaluated composite membranes and catalysts for hydrogen separation. Components of the monolithic modules were fabricated by plasma spray processing. The engineering and economic characteristics of the proposed Ion Conducting Ceramic Membrane (ICCM) approach, including system integration issues, were also assessed. This resulted in a comprehensive evaluation of the technical and economic feasibility of integration schemes of ICCM hydrogen separation technology within Vision 21 fossil fuel plants. Several results and conclusion were obtained during this program. In the area of materials synthesis, novel

  10. Role of primary sedimentation on plant-wide energy recovery and carbon footprint.

    PubMed

    Gori, Riccardo; Giaccherini, Francesca; Jiang, Lu-Man; Sobhani, Reza; Rosso, Diego

    2013-01-01

    The goal of this paper is to show the effect of primary sedimentation on the chemical oxygen demand (COD) and solids fractionation and consequently on the carbonaceous and energy footprints of wastewater treatment processes. Using a simple rational procedure for COD and solids fraction quantification, we quantify the effects of varying fractions on CO2 and CO2-equivalent mass flows, process energy demand and energy recovery. Then we analysed two treatment plants with similar biological nutrient removal processes in two different climatic regions and quantified the net benefit of gravity separation before biological treatment. In the cases analysed, primary settling increases the solid fraction of COD that is processed in anaerobic digestion, with an associated increase in biogas production and energy recovery, and a reduction in overall emissions of CO2 and CO2-equivalent from power importation.

  11. High temperature thermal energy storage, including a discussion of TES integrated into power plants

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1978-01-01

    Storage temperatures of 260 C and above are considered. Basic considerations concerning energy thermal storage are discussed, taking into account general aspects of thermal energy storage, thermal energy storage integrated into power plants, thermal storage techniques and technical considerations, and economic considerations. A description of system concepts is provided, giving attention to a survey of proposed concepts, storage in unpressurized fluids, water storage in pressurized containers, the use of an underground lined cavern for water storage, a submerged thin insulated steel shell under the ocean containing pressurized water, gas passage through solid blocks, a rock bed with liquid heat transport fluid, hollow steel ingots, heat storage in concrete or sand, sand in a fluidized bed, sand poured over pipes, a thermal energy storage heat exchanger, pipes or spheres filled with phase change materials (PCM), macroencapsulated PCM with heat pipe concept for transport fluid, solid PCM removed from heat transfer pipes by moving scrapers, and the direct contact between PCM and transport fluid.

  12. The transformation of wind energy by a high altitude power plant /HAPP/

    NASA Astrophysics Data System (ADS)

    Riegler, G.; Riedler, W.; Horvath, E.

    1981-12-01

    Design considerations for a high altitude power plant (HAPP) are discussed. A HAPP has a generator platform supported by a balloon, a tethering and conduction cable, and a ground station for control and energy distribution. Each streamlined balloon would carry six symmetrically arranged wind turbines and could be raised or lowered by a ground winch in response to 4 hr meteorological forecasts. A double bladed, variable pitch, horizontal axis rotor was chosen for HAPP application in the jet stream at 8,000-10,000 m height. Humidity and icing are calculated to be within tolerable limits; higher winter and lower summer heights are indicated. Optimization studies for 2, 5, and 7 MW turbines are presented, and rotor diameters are found to be limited to 40 m for weight considerations. Pilot plant, production, and operating costs are estimated to result in a cost of energy of

  13. Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1983-01-01

    An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as liquid pumping and internal compression. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.

  14. Power plants of modular construction with quasi-paraboloidal concentrators of solar energy

    NASA Astrophysics Data System (ADS)

    Baranov, V. K.

    1984-02-01

    Solar electric power plants with parabolocylindrical concentrators are not as efficient as those of the tower type and, therefore, another modular construction is considered. The idea is to concentrate solar energy on a small spot and to locate the power plant, which consists of a heat collector and a Stirling, Brayton, or Rankine engine with an electric generator, near that spot. The solar energy concentrator is designed and built to perform like a paraboloidal mirror. The first 13 concepts are based on using plane, spherical, or double curvature facets made of silicate glass with silver backing or polymer film with aluminum coating. The next 4 concepts are based on using aluminized polymer film and forming it by means of air inflation. The last 5 concepts are based on using plane or cylindrical Fresnel mirrors, or a Fresnel lens. These concepts are in various stages of develoment and production.

  15. Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1983-01-01

    An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as 'liquid pumping and internal compression'. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.

  16. A new class of plants for a biofuel feedstock energy crop.

    PubMed

    Kamm, James

    2004-01-01

    Directly burnable biomass to be used primarily in steam boilers for power production has been researched and demonstrated in a variety of projects in the United states. The biomass typically comes from wood wastes, such as tree trimmings or the byproducts of lumber production, or from a cash crop, grown by farmers. Of this latter group, the main emphasis has been utilizing corn stover, or a prairie grass called switchgrass, or using tree seedlings such as willow. In this article, I propose an alternative to these energy crops that consists of several different herbaceous plants with the one consistent property that they annually generate an appreciable bulk of dried-down burnable mass. The fact that they are a set of plants (nine are offered as candidates) gives this energy crop a great deal of flexibility as far as growing conditions and annual harvest time line. Their predicted yield is impressive and leads to speculation that they can be economically feasible.

  17. Continuous thermal hydrolysis and energy integration in sludge anaerobic digestion plants.

    PubMed

    Fdz-Polanco, F; Velazquez, R; Perez-Elvira, S I; Casas, C; del Barrio, D; Cantero, F J; Fdz-Polanco, M; Rodriguez, P; Panizo, L; Serrat, J; Rouge, P

    2008-01-01

    A thermal hydrolysis pilot plant with direct steam injection heating was designed and constructed. In a first period the equipment was operated in batch to verify the effect of sludge type, pressure and temperature, residence time and solids concentration. Optimal operation conditions were reached for secondary sludge at 170 degrees C, 7 bar and 30 minutes residence time, obtaining a disintegration factor higher than 10, methane production increase by 50% and easy centrifugation In a second period the pilot plant was operated working with continuous feed, testing the efficiency by using two continuous anaerobic digester operating in the mesophilic and thermophilic range. Working at 12 days residence time, biogas production increases by 40-50%. Integrating the energy transfer it is possible to design a self-sufficient system that takes advantage of this methane increase to produce 40% more electric energy.

  18. Parabolic trough collector power plant performance simulation for an interactive solar energy Atlas of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Ibarra, Mercedes; Frasquet, Miguel; Al Rished, Abdulaziz; Tuomiranta, Arttu; Gasim, Sami; Ghedira, Hosni

    2016-05-01

    The collaboration between the Research Center for Renewable Energy Mapping and Assessment (ReCREMA) at Masdar Institute of Science and Technology and the King Abdullah City for Atomic & Renewable Energy (KACARE) aims to create an interactive web tool integrated in the Renewable Resource Atlas where different solar thermal electricity (STE) utility-scale technologies will be simulated. In this paper, a methodology is presented for sizing and performance simulation of the solar field of parabolic trough collector (PTC) plants. The model is used for a case study analysis of the potential of STE in three sites located in the central, western, and eastern parts of Saudi Arabia. The plant located in the north (Tayma) has the lowest number of collectors with the best production along the year.

  19. PCS Nitrogen: Combustion Fan System Optimization Improves Performance and Saves Energy at a Chemical Plant

    SciTech Connect

    2005-01-01

    This U.S. Department of Energy Industrial Technologies Program case study describes how, in 2003, PCS Nitrogen, Inc., improved the efficiency of the combustion fan on a boiler at the company's chemical fertilizer plant in Augusta, Georgia. The project saved $420,000 and 76,400 million British thermal units (MBtu) per year. In addition, maintenance needs declined, because there is now less stress on the fan motor and bearings and less boiler feed water usage. This project was so successful that the company has implemented more efficiency improvements that should result in energy cost savings of nearly $1 million per year.

  20. Comparative investigation of the performances of 10 kW power type wind energy plants

    NASA Astrophysics Data System (ADS)

    Fries, S.; Bruegmann, J.; Petersen, G.; Mengelkamp, H. T.

    A test field for wind energy converters, its technical equipment, and nine different wind energy converters are described. Operating experience and results of the first 2 years of operation of the Aeroman and the Windmatic plants are summarized. Performances vary between 0.42 kW and 23.01 kW (Windmatic) and 1.59 kW to 11.07kW (Man) for average wind velocities 5.5 m/sec to 15.5 m/sec.

  1. Phytotechnological purification of water and bio energy utilization of plant biomass

    NASA Astrophysics Data System (ADS)

    Stom, D. I.; Gruznych, O. V.; Zhdanova, G. O.; Timofeeva, S. S.; Kashevsky, A. V.; Saksonov, M. N.; Balayan, A. E.

    2017-01-01

    The aim of the study was to explore the possibility of using the phytomass of aquatic plants as the substrate in the microbial fuel cells and selection of microorganisms suitable for the generation of electricity on this substrate. The conversion of chemical energy of phytomass of aquatic plants to the electrical energy was carried out in a microbial fuel cells by biochemical transformation. As biological agents in the generation of electricity in the microbial fuel cells was used commercial microbial drugs “Doctor Robic 109K” and “Vostok-EM-1”. The results of evaluation of the characteristics of electrogenic (amperage, voltage) and the dynamics of the growth of microorganisms in the microbial fuel cells presents in the experimental part. As a source of electrogenic microorganisms is possible to use drugs “Dr. Robic 109K” and “Vostok-EM-1” was established. The possibility of utilization of excess phytomass of aquatic plants, formed during the implementation of phytotechnological purification of water, in microbial fuel cells, was demonstrated. The principal possibility of creating hybrid phytotechnology (plant-microbe cells), allowing to obtain electricity as a product, which can be used to ensure the operation of the pump equipment and the creation of a full cycle of resource-saving technologies for water treatment, was reviewed.

  2. Ammonia thermochemical energy transport in a distributed collector solar thermal power plant

    NASA Astrophysics Data System (ADS)

    Williams, O. M.

    1981-01-01

    A thermochemical energy transport system based on ammonia dissociation/synthesis is shown to have potential for reliable cost-effective operation in a distributed collector solar thermal power plant. Liquid ammonia returned to the central plant from a shaded absorber remains inherently separated from the synthesis gas mixture returned from an exposed absorber, enabling the maintenance of a centralized fluid control. Temporal characteristics of the ammonia-based solar thermochemical absorbers are developed by numerical analysis. Sources of energy loss are examined, and it is shown that flow rates to individual absorbers may cover a 12% range of variation without degradation to the overall energy transport efficiency. Operation of the absorber array is examined under conditions of extreme insolation variation due to a scattered cloud cover. The importance of minimizing the absorber thermal capacity is discussed in relation to the available energy required to restore operation after each cloud period. It is shown that the system is relatively immune to large energy losses in this area, compared to the alternative system where both the pipelines and absorbers must be reheated.

  3. Thermal energy storage for integrated gasification combined-cycle power plants

    SciTech Connect

    Drost, M.K.; Antoniak, Z.I.; Brown, D.R.; Somasundaram, S.

    1990-07-01

    There are increasingly strong indications that the United States will face widespread electrical power generating capacity constraints in the 1990s; most regions of the country could experience capacity shortages by the year 2000. The demand for new generating capacity occurs at a time when there is increasing emphasis on environmental concerns. The integrated gasification combined-cycle (IGCC) power plant is an example of an advanced coal-fired technology that will soon be commercially available. The IGCC concept has proved to be efficient and cost-effective while meeting all current environmental regulations on emissions; however, the operating characteristics of the IGCC system have limited it to base load applications. The integration of thermal energy storage (TES) into an IGCC plant would allow it to meet cyclic loads while avoiding undesirable operating characteristics such as poor turn-down capability, impaired part-load performance, and long startup times. In an IGCC plant with TES, a continuously operated gasifier supplies medium-Btu fuel gas to a continuously operated gas turbine. The thermal energy from the fuel gas coolers and the gas turbine exhaust is stored as sensible heat in molten nitrate salt; heat is extracted during peak demand periods to produce electric power in a Rankine steam power cycle. The study documented in this report was conducted by Pacific Northwest Laboratory (PNL) and consists of a review of the technical and economic feasibility of using TES in an IGCC power plant to produce intermediate and peak load power. The study was done for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. 11 refs., 5 figs., 18 tabs.

  4. Ecological relationships between non-cultivated plants and insect predators in agroecosystems: the case of Dittrichia viscosa (Asteraceae) and Macrolophus melanotoma (Hemiptera: Miridae)

    NASA Astrophysics Data System (ADS)

    Perdikis, Dionyssios; Favas, Charalampos; Lykouressis, Dionyssios; Fantinou, Argyro

    2007-05-01

    Species of the genus Macrolophus (Hemiptera: Miridae) are thought to be effective predators in reducing the numbers of several pests in vegetable crops. These predators are omnivorous as in addition to prey they also utilize plant sap for growth and development. Populations of these predators build in non-crop host plants and provide inoculum that augments natural control of insect pests in adjacent crops. However, to enhance their effectiveness in crops requires knowledge of their trophic relationships with host plants. In this study, the ecological relationships between the predator Macrolophus melanotoma (Costa) ( = M. caliginosus Wagner) and its most important natural host plant Dittrichia viscosa L. (W. Greuter) (Asteraceae) were investigated in the laboratory and in field studies. A 2-year field study of M. melanotoma populations on D. viscosa was made using the percentage of plants infested by C. inulae as a measure of aphid prey abundance. The field studies revealed that M. melanotoma populations were present throughout the year on D. viscosa reaching highest numbers in June and July despite very low levels of aphid infested plants. Laboratory life table studies were used to compare the survival and reproduction of the predator on D. viscosa leaves alone and leaves plus aphid prey ( Capitophorus inulae (Passerini)). Predators reared on D. viscosa leaves plus aphid prey had an average developmental time of 16.73 days, fecundity was 69.55 eggs/female and the intrinsic rate of population increase was 0.0614/day. When fed only leaves, the developmental time was 21.13 days, fecundity was 10.80 eggs/female and the intrinsic rate of population increase was 0.0229/day. The results of the two studies suggest an important role for D. viscosa in conserving and augmenting M. melanotoma in agro ecosystems, and in the development of natural control augmentation strategies in vegetable crops.

  5. Role of curli and plant cultivation conditions on Escherichia coli O157:H7 internalization into spinach grown on hydroponics and in soil.

    PubMed

    Macarisin, Dumitru; Patel, Jitendra; Sharma, Vijay K

    2014-03-03

    Contamination of fresh produce could represent a public health concern because no terminal kill step is applied during harvest or at the processing facility to kill pathogens. In addition, once contaminated, pathogens may internalize into produce and be protected from disinfectants during the postharvest processing step. The objective of the current study was to determine the potential internalization of Escherichia coli O157:H7 into spinach roots and subsequent transfer to the edible parts. Because curli are involved in biofilm formation, we investigated whether their presence influence the internalization of E. coli O157:H7 into spinach. Further, the effect of the spinach cultivar on E. coli O157:H7 internalization was evaluated. Spinach plants were grown in contaminated soil as well as hydroponically to prevent mechanical wounding of the roots and inadvertent transfer of pathogens from the contamination source to the non-exposed plant surfaces. Results showed that E. coli O157:H7 could internalize into hydroponically grown intact spinach plants through the root system and move to the stem and leaf level. The incidence of internalization was significantly higher in hydroponically grown plants when roots were exposed to 7 log CFU/mL compared to those exposed to 5 log CFU/mL. The effect of cultivar on E. coli O157:H7 internalization was not significant (P>0.05) for the analyzed spinach varieties, internalization incidences showing almost equal distribution between Space and Waitiki, 49.06% and 50.94% respectively. Wounding of the root system in hydroponically grown spinach increased the incidence of E. coli O157:H7 internalization and translocation to the edible portions of the plant. Experimental contamination of the plants grown in soil resulted in a greater number of internalization events then in those grown hydroponically, suggesting that E. coli O157:H7 internalization is dependent on root damage, which is more likely to occur when plants are grown in soil

  6. A low cost concept for data acquisition systems applied to decentralized renewable energy plants.

    PubMed

    Jucá, Sandro C S; Carvalho, Paulo C M; Brito, Fábio T

    2011-01-01

    The present paper describes experiences of the use of monitoring and data acquisition systems (DAS) and proposes a new concept of a low cost DAS applied to decentralized renewable energy (RE) plants with an USB interface. The use of such systems contributes to disseminate these plants, recognizing in real time local energy resources, monitoring energy conversion efficiency and sending information concerning failures. These aspects are important, mainly for developing countries, where decentralized power plants based on renewable sources are in some cases the best option for supplying electricity to rural areas. Nevertheless, the cost of commercial DAS is still a barrier for a greater dissemination of such systems in developing countries. The proposed USB based DAS presents a new dual clock operation philosophy, in which the acquisition system contains two clock sources for parallel information processing from different communication protocols. To ensure the low cost of the DAS and to promote the dissemination of this technology in developing countries, the proposed data acquisition firmware and the software for USB microcontrollers programming is a free and open source software, executable in the Linux and Windows® operating systems.

  7. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    The use of thermal energy storage (TES) in the latent heat of molten salts as a means of conserving fossil fuels and lowering the cost of electric power was evaluated. Public utility systems provided electric power on demand. This demand is generally maximum during late weekday afternoons, with considerably lower overnight and weekend loads. Typically, the average demand is only 60% to 80% of peak load. As peak load increases, the present practice is to purchase power from other grid facilities or to bring older less efficient fossil-fuel plants on line which increase the cost of electric power. The widespread use of oil-fired boilers, gas turbine and diesel equipment to meet peaking loads depletes our oil-based energy resources. Heat exchangers utilizing molten salts can be used to level the energy consumption curve. The study begins with a demand analysis and the consideration of several existing modern fossil-fuel and nuclear power plants for use as models. Salts are evaluated for thermodynamic, economic, corrosive, and safety characteristics. Heat exchanger concepts are explored and heat exchanger designs are conceived. Finally, the economics of TES conversions in existing plants and new construction is analyzed. The study concluded that TES is feasible in electric power generation. Substantial data are presented for TES design, and reference material for further investigation of techniques is included.

  8. A Low Cost Concept for Data Acquisition Systems Applied to Decentralized Renewable Energy Plants

    PubMed Central

    Jucá, Sandro C. S.; Carvalho, Paulo C. M.; Brito, Fábio T.

    2011-01-01

    The present paper describes experiences of the use of monitoring and data acquisition systems (DAS) and proposes a new concept of a low cost DAS applied to decentralized renewable energy (RE) plants with an USB interface. The use of such systems contributes to disseminate these plants, recognizing in real time local energy resources, monitoring energy conversion efficiency and sending information concerning failures. These aspects are important, mainly for developing countries, where decentralized power plants based on renewable sources are in some cases the best option for supplying electricity to rural areas. Nevertheless, the cost of commercial DAS is still a barrier for a greater dissemination of such systems in developing countries. The proposed USB based DAS presents a new dual clock operation philosophy, in which the acquisition system contains two clock sources for parallel information processing from different communication protocols. To ensure the low cost of the DAS and to promote the dissemination of this technology in developing countries, the proposed data acquisition firmware and the software for USB microcontrollers programming is a free and open source software, executable in the Linux and Windows® operating systems. PMID:22346600

  9. Waterborne noise due to ocean thermal energy conversion plants. Technical memo

    SciTech Connect

    Janota, C.P.; Thompson, D.E.

    1982-06-17

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the sea-water pumps is expected to dominate in the frequency range 10 Hz to 1 kHZ. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  10. [Theory and practice of bionic cultivation of traditional Chinese medicine].

    PubMed

    Liu, Dahui; Huang, Luqi; Guo, Lanping; Shao, Aijuan; Chen, Meilan

    2009-03-01

    The bionic cultivation of medicinal plant is an ecological cultivation pattern, which is adopting ecological engineering and modern agricultural techniques to simulate the natural ecosystem of wild medicinal plant community, and has been given greater attention on the agriculture of traditional Chinese medicine (TCM). It is also the cross subject that combines Chinese traditional medicine, agronomy, horticulture, ecology, agricultural engineering and management. Moreover, it has significant technology advantages of promoting the sustainable utilization of medicinal plant resources, improving the ecological environment and harmonizing man and nature. So it's important to develop the bionic cultivation of TCM.

  11. Impact of Different Time Series Streamflow Data on Energy Generation of a Run-of-River Hydropower Plant

    NASA Astrophysics Data System (ADS)

    Kentel, E.; Cetinkaya, M. A.

    2013-12-01

    Global issues such as population increase, power supply crises, oil prices, social and environmental concerns have been forcing countries to search for alternative energy sources such as renewable energy to satisfy the sustainable development goals. Hydropower is the most common form of renewable energy in the world. Hydropower does not require any fuel, produces relatively less pollution and waste and it is a reliable energy source with relatively low operating cost. In order to estimate the average annual energy production of a hydropower plant, sufficient and dependable streamflow data is required. The goal of this study is to investigate impact of streamflow data on annual energy generation of Balkusan HEPP which is a small run-of-river hydropower plant at Karaman, Turkey. Two different stream gaging stations are located in the vicinity of Balkusan HEPP and these two stations have different observation periods: one from 1986 to 2004 and the other from 2000 to 2009. These two observation periods show different climatic characteristics. Thus, annual energy estimations based on data from these two different stations differ considerably. Additionally, neither of these stations is located at the power plant axis, thus streamflow observations from these two stream gaging stations need to be transferred to the plant axis. This requirement introduces further errors into energy estimations. Impact of different streamflow data and transfer of streamflow observations to plant axis on annual energy generation of a small hydropower plant is investigated in this study.

  12. Repetitive DNA and Plant Domestication: Variation in Copy Number and Proximity to Genes of LTR-Retrotransposons among Wild and Cultivated Sunflower (Helianthus annuus) Genotypes.

    PubMed

    Mascagni, Flavia; Barghini, Elena; Giordani, Tommaso; Rieseberg, Loren H; Cavallini, Andrea; Natali, Lucia

    2015-11-24

    The sunflower (Helianthus annuus) genome contains a very large proportion of transposable elements, especially long terminal repeat retrotransposons. However, knowledge on the retrotransposon-related variability within this species is still limited. We used next-generation sequencing (NGS) technologies to perform a quantitative and qualitative survey of intraspecific variation of the retrotransposon fraction of the genome across 15 genotypes--7 wild accessions and 8 cultivars--of H. annuus. By mapping the Illumina reads of the 15 genotypes onto a library of sunflower long terminal repeat retrotransposons, we observed considerable variability in redundancy among genotypes, at both superfamily and family levels. In another analysis, we mapped Illumina paired reads to two sets of sequences, that is, long terminal repeat retrotransposons and protein-encoding sequences, and evaluated the extent of retrotransposon proximity to genes in the sunflower genome by counting the number of paired reads in which one read mapped to a retrotransposon and the other to a gene. Large variability among genotypes was also ascertained for retrotransposon proximity to genes. Both long terminal repeat retrotransposon redundancy and proximity to genes varied among retrotransposon families and also between cultivated and wild genotypes. Such differences are discussed in relation to the possible role of long terminal repeat retrotransposons in the domestication of sunflower.

  13. Repetitive DNA and Plant Domestication: Variation in Copy Number and Proximity to Genes of LTR-Retrotransposons among Wild and Cultivated Sunflower (Helianthus annuus) Genotypes

    PubMed Central

    Mascagni, Flavia; Barghini, Elena; Giordani, Tommaso; Rieseberg, Loren H.; Cavallini, Andrea; Natali, Lucia

    2015-01-01

    The sunflower (Helianthus annuus) genome contains a very large proportion of transposable elements, especially long terminal repeat retrotransposons. However, knowledge on the retrotransposon-related variability within this species is still limited. We used next-generation sequencing (NGS) technologies to perform a quantitative and qualitative survey of intraspecific variation of the retrotransposon fraction of the genome across 15 genotypes—7 wild accessions and 8 cultivars—of H. annuus. By mapping the Illumina reads of the 15 genotypes onto a library of sunflower long terminal repeat retrotransposons, we observed considerable variability in redundancy among genotypes, at both superfamily and family levels. In another analysis, we mapped Illumina paired reads to two sets of sequences, that is, long terminal repeat retrotransposons and protein-encoding sequences, and evaluated the extent of retrotransposon proximity to genes in the sunflower genome by counting the number of paired reads in which one read mapped to a retrotransposon and the other to a gene. Large variability among genotypes was also ascertained for retrotransposon proximity to genes. Both long terminal repeat retrotransposon redundancy and proximity to genes varied among retrotransposon families and also between cultivated and wild genotypes. Such differences are discussed in relation to the possible role of long terminal repeat retrotransposons in the domestication of sunflower. PMID:26608057

  14. Modelling the energy future of Switzerland after the phase out of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Diaz, Paula; Van Vliet, Oscar

    2015-04-01

    HES [Pfenninger, 2015]. It has been specifically design to represent high shares of renewable energy, allowing for the estimation of the Swiss energy transition with high level of detail. Calliope includes topology characteristics of the electricity system, and variability of radiation and wind, which enables the analysis of intermittency in renewable electricity sources, in order to fulfil the electricity demand at all hours. Three energy scenarios are modelled; first, the higher energy production of renewables in Switzerland and the import of natural gas to supply the demand; second, imports of wind power from North Sea with high level of intermittency; and third, imports of solar power from North Africa, with less intermittency but with higher risk of internal turmoil. To summarise, we analyse in detail the energy scenarios of Switzerland when the nuclear power plants will be ceased. A gap currently present in academia, such as the future energy security in Switzerland, is covered by our Calliope modelling. References: Abt, M.; E. Bernhard, A. Kolliker, T. Roth, M. Spicher, L. Stieger, Volkswirtschaftliche Massnahmenanalyse zur Energiestrategie 2050: Tiel I: Gesamtergebnisse und Empfehlungen, Staatssekretariat fur Wirtschaft SECO, Bern, CH, 2012. Busser, M; T. Kaiser, E. Wassermann, K. Ammon, S. Reichen, A. Gunzinger, et al., Energiestrategie 2050 aus Sicht des Energie Trialogs, Energie Trialog Schweiz, 2013. Mathiesen, B. V. and Lund, H. Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources. IET Renew. Power Gen. 3, 190-204 (2009). Mathys, N. 2012. Modelling contributions to the Swiss energy and environmental challenge. Special issue on energy modelling_introductory article.Swiss journal of economics and statistics. Pfenninger, Stefan. 2015. Calliope: a multi-scale energy systems (MUSES) modeling framework. Available at: http://www.callio.pe/ Piot, M. Energiestrategie 2050 der Schweiz, in: 13. Symp

  15. Genetic differentiation among Maruca vitrata F. (Lepidoptera: Crambidae) populations on cultivated cowpea and wild host plants: implications for insect resistance management and biological control strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maruca vitrata is a polyphagous insect pest on a wide variety of leguminous plants in the tropics and subtropics. The contribution of host-associated genetic variation on population structure was investigated using analysis mitochondrial cox1 sequence and microsatellite marker data from M. vitrata c...

  16. Ethanol used as an environmentally sustainable energy resource for thermal power plants

    NASA Astrophysics Data System (ADS)

    Markov, V. A.; Biryukov, V. V.; Kas'kov, S. I.

    2016-09-01

    Justification of using renewable energy sources and a brief analysis of their application prospects is given. The most common renewable energy sources for mobile thermal power plants are presented. The possibilities and ways of using ethanol as an energy source for such plants with diesel engines are analyzed. It is shown that it is feasible to add small amounts of ethanol to oil diesel fuel (DF) for obtaining an environmentally sustainable energy source for diesel engines. Therewith, a stable mixture of components can be obtained by adding anhydrous (absolute) ethanol to the oil fuel. The authors studied a mixture containing 4% (by volume) of absolute ethanol and 96% of oil DF. The physicochemical properties of the mixture and each of its components are presented. Diesel engine of the type D-245.12S has been experimentally studied using the mixture of DF and ethanol. The possibility of reducing the toxicity level of the exhaust emissions when using this mixture as an energy source for diesel engines of mobile power plants is shown. Transition of the studied diesel engine from oil DF to its mixture with ethanol made it possible to reduce the smoke capacity of the exhaust gases by 15-25% and to decrease the specific mass emissions of nitrogen oxides by 17.4%. In this case, we observed a slight increase in the exhaust gas emissions of carbon monoxide and light unburned hydrocarbons, which, however, can easily be eliminated by providing the exhaust system of a diesel engine with a catalytic converter. It is noted that the studied mixture composition should be optimized. The conclusion is made that absolute ethanol is a promising ecofriendly additive to oil diesel fuel and should be used in domestic diesel engines.

  17. Energy benchmarking in wastewater treatment plants: the importance of site operation and layout.

    PubMed

    Belloir, C; Stanford, C; Soares, A

    2015-01-01

    Energy benchmarking is a powerful tool in the optimization of wastewater treatment plants (WWTPs) in helping to reduce costs and greenhouse gas emissions. Traditionally, energy benchmarking methods focused solely on reporting electricity consumption, however, recent developments in this area have led to the inclusion of other types of energy, including electrical, manual, chemical and mechanical consumptions that can be expressed in kWh/m3. In this study, two full-scale WWTPs were benchmarked, both incorporated preliminary, secondary (oxidation ditch) and tertiary treatment processes, Site 1 also had an additional primary treatment step. The results indicated that Site 1 required 2.32 kWh/m3 against 0.98 kWh/m3 for Site 2. Aeration presented the highest energy consumption for both sites with 2.08 kWh/m3 required for Site 1 and 0.91 kWh/m3 in Site 2. The mechanical energy represented the second biggest consumption for Site 1 (9%, 0.212 kWh/m3) and chemical input was significant in Site 2 (4.1%, 0.026 kWh/m3). The analysis of the results indicated that Site 2 could be optimized by constructing a primary settling tank that would reduce the biochemical oxygen demand, total suspended solids and NH4 loads to the oxidation ditch by 55%, 75% and 12%, respectively, and at the same time reduce the aeration requirements by 49%. This study demonstrated that the effectiveness of the energy benchmarking exercise in identifying the highest energy-consuming assets, nevertheless it points out the need to develop a holistic overview of the WWTP and the need to include parameters such as effluent quality, site operation and plant layout to allow adequate benchmarking.

  18. Seaweed cultivation for renewable resources

    SciTech Connect

    Bird, K.T.; Benson, P.H.

    1987-01-01

    In the 1970's and 80's, major research and development programs were launched to explore the possibility of using marine biomass as a source of energy. This volume, not only reviews the accomplishments of the aforementioned programs, but also describes how this research relates to seaweed cultivation for other products, such as food, feed, and high value chemicals. Topics covered include the features of marine biomass production, biotechnological manipulations of marine algae, and marine biomass conversion to energy, as well as economics. The chapters synthesize a large number of technical reports, journal articles, symposia and conference proceedings and technology transfer meetings.

  19. The R* rule and energy flux in a plant-nutrient ecosystem.

    PubMed

    Ju, Shu; DeAngelis, Donald L

    2009-02-07

    The R* rule predicts that the species that can survive in steady state at the lowest level of limiting resource, R*, excludes all other species. Simple models indicate that this concept is not necessarily consistent with Lotka's conjecture that an ecological system should evolve towards a state of maximum power, Max(G), where G is the power, or rate of biomass production of the system. To explore the relationship in detail, we used a published model of a plant-nutrient system in which a plant can use various strategies, S, of allocation of energy between foliage, roots, and wood. We found that the allocation strategy, S(MinR*), that leads to Min(N(pore*), where N(pore*) is a limiting nutrient in soil pore water in our model (and equivalent to R* in Tilman's notation), is the same as the strategy, S(MaxG_root), for which energy flux to roots is maximized. However, that allocation strategy is different from the strategy, S(MaxG), that produces maximum power, or maximum photosynthetic rate, for the plant system, Max(G). Hence, we conclude that Min(N(pore*) and Max(G) should not necessarily co-occur in an ecological system. We also examined which strategy, S(fit), was fittest; that is, eliminated any other strategies, when allowed to compete. The strategy S(fit) differed from S(MinR*, S(MaxG), and S(MaxG_root), which we demonstrated mathematically. We also considered the feasible situation in which a plant is able to positively influence external nutrient input to the system. Under such conditions, the strategy, S(MaxG_root), that maximizes energy flux to roots was the same as the strategy, S(MaxR*, that leads to maximum concentration of available nutrient in soil pore water, Max(N pore*), and not same as S(MinR*, for Min(N pore*).

  20. Spirulina cultivation in China

    NASA Astrophysics Data System (ADS)

    Bo-Tang, Wu; Wen-Zhou, Xiang; Cheng-Kui, Zeng

    1998-03-01

    This paper reviews and discusses the development and many problems of Spirulina cultivation in China, points out the advantages and disadvantages of open photobioreactor system, and predicts that seawater Spirulina cultivation will be a new trend to be strengthened and emphasized due to its special physiological characteristics, easier management, lower fertilizer cost, and higher resistance to contaminants and rare pollution of chemicals.

  1. Genetic diversity and mating type distribution of Tuber melanosporum and their significance to truffle cultivation in artificially planted truffieres in Australia.

    PubMed

    Linde, C C; Selmes, H

    2012-09-01

    Tuber melanosporum is a truffle native to Europe and is cultivated in countries such as Australia for the gastronomic market, where production yields are often lower than expected. We assessed the genetic diversity of T. melanosporum with six microsatellite loci to assess the effect of genetic drift on truffle yield in Australia. Genetic diversity as assessed on 210 ascocarps revealed a higher allelic diversity compared to previous studies from Europe, suggesting a possible genetic expansion and/or multiple and diverse source populations for inoculum. The results also suggest that the single sequence repeat diversity of locus ME2 is adaptive and that, for example, the probability of replication errors is increased for this locus. Loss of genetic diversity in Australian populations is therefore not a likely factor in limiting ascocarp production. A survey of nursery seedlings and trees inoculated with T. melanosporum revealed that <70% of seedlings and host trees were colonized with T. melanosporum and that some trees had been contaminated by Tuber brumale, presumably during the inoculation process. Mating type (MAT1-1-1 and MAT1-2-1) analyses on seedling and four- to ten-year-old host trees found that 100% of seedlings but only approximately half of host trees had both mating types present. Furthermore, MAT1-1-1 was detected significantly more commonly than MAT1-2-1 in established trees, suggesting a competitive advantage for MAT1-1-1 strains. This study clearly shows that there are more factors involved in ascocarp production than just the presence of both mating types on host trees.

  2. Application of Nuclear Energy for Seawater Desalination: Design Concepts of Nuclear Desalination Plants

    SciTech Connect

    Faibish, R.S.; Konishi, T.; Gasparini, M.

    2002-07-01

    Nuclear energy is playing an important role in electricity generation, producing 16% of the world's electricity. However, most of the world's energy consumption is in the form of heat, in which case nuclear energy could also play an important role. In particular, process heat for seawater desalination using nuclear energy has been of growing interest to some Member States of the International Atomic Energy Agency over the past two decades. This growing interest stems from increasingly acute freshwater shortages in many arid and semi-arid zones around the world. Indeed, several national and international nuclear desalination demonstration programs are already under way or being planned. Of particular interest are projects for seawater nuclear desalination plants in coastal regions, where saline feed water can serve the dual purpose of cooling water for the nuclear reactor and as feed water for the desalination plant. In principle any nuclear reactor can provide energy (low-grade heat and/or electricity), as required by desalination processes. However, there are some additional requirements to be met under specific conditions in order to introduce nuclear desalination. Technical issues include meeting more stringent safety requirements (nuclear reactors themselves and nuclear-desalination integrated complexes in particular), and performance improvement of the integrated systems. Economic competitiveness is another important factor to be considered for a broader deployment of nuclear desalination. For technical robustness and economic competitiveness a number of design variants of coupling configurations of nuclear desalination integrated plant concepts are being evaluated. This paper identifies and discusses various factors, which support the attractiveness of nuclear desalination. It further summarizes some of the key approaches recommended for nuclear desalination complex design and gives an overview of various design concepts of nuclear desalination plants, which

  3. Coalmines as Underground Pumped Storage Power Plants (UPP) - A Contribution to a Sustainable Energy Supply?

    NASA Astrophysics Data System (ADS)

    Luick, H.; Niemann, A.; Perau, E.; Schreiber, U.

    2012-04-01

    In Europe, electrical power generation from renewable energy sources rose by about 50% in the last 20 years. In Germany, renewable electricity is mainly provided by wind power and photovoltaic. Energy output depends on weather conditions like wind speed or solar radiation and may therefore vary considerably. Rapid fluctuations in power generation already require regulation of conventional power plants by the distribution network operators to stabilize and ensure grid frequency and overall system stability. In order to avoid future blackouts caused by intermittent energy sources, it is necessary to increase the storage capacity for electric power. Theoretically, there are many technologies for storing energy, like accumulators, hydrogen storage systems, biomethane facilities (hydrocarbon synthesis) or compressed air storage. Only a few technologies combine sufficient capacity, fast response, high efficiency, low storage loss and long-term application experience. A pumped storage power plant (PSPP) is a state of the art technology which combines all of these aspects. Energy is stored in form of potential energy by pumping water to an upper reservoir in times of energy surplus or low energy costs. In times of insufficient power supply or high energy costs, the water is released through turbines to produce electric energy. The efficiency of state-of-the-art systems is about 70-80%. The total head (geodetic height between upper and lower reservoirs) and the storage capacity of the reservoirs as given in a mountainous terrain, determine the energy storage capacity of a PSPP. An alternative is the use of man-made geodetic height differences as given in ore, coal or open cast lignite mines. In these cases, the lower reservoir of the plant is located in the drifts or at the bottom of the mine. Energieforschungszentrum Niedersachsen (EFZN) has already explored the installation of a PSPP in abandoned ore mines in the Harz-region/Germany (Beck 2011). In 2011/2012 a basic

  4. Census of cultivable bacterial community in common effluent treatment plant (CETP) of tannery discharge and computational scrutiny on their leading residents

    PubMed Central

    Suganya, Thangaiyan; Pandiarajan, Jeyaraj; Arunprasanna, Vimalanathan; Shanmugam, Ponnusamy; Krishnan, Muthukalingan

    2013-01-01

    Common effluent treatment plant (CETP) for tannery effluent, is the combination of physical, chemical and biological treatment to facilitate the degradation of industrial waste water. Obviously, the biomass which survives in this extreme environment may have the ability to utilize the effluent as the sole carbon source for its survival. The ultimate aim of the present investigation is to expose the microbial diversity in each stage of the CETP through the culture dependent way. Bacterial diversity in the effluent were analysed through 16S rRNA gene. The community study revealed the dominance of firmicutes and the dominant genus was Bacillus sp, with variable species diversity. Notably, Putative Bacillus sp, B. firmus and B. licheniformis were observed in all stages of treatment. The dominant residents were analysed by BProm and TF site scan to prove their uniqueness. This species richness indicates the capability of liveliness in treatment plant and whose can be exploited for treating the effluent by using modern molecular approach. Abbreviations CETP - Common Effluent Treatment Plant, PTIET - Pallavaram Tanners Industrial Effluent Treatment Company Ltd. PMID:23390354

  5. Shade trees reduce building energy use and CO2 emissions from power plants.

    PubMed

    Akbari, H

    2002-01-01

    Urban shade trees offer significant benefits in reducing building air-conditioning demand and improving urban air quality by reducing smog. The savings associated with these benefits vary by climate region and can be up to $200 per tree. The cost of planting trees and maintaining them can vary from $10 to $500 per tree. Tree-planting programs can be designed to have lower costs so that they offer potential savings to communities that plant trees. Our calculations suggest that urban trees play a major role in sequestering CO2 and thereby delay global warming. We estimate that a tree planted in Los Angeles avoids the combustion of 18 kg of carbon annually, even though it sequesters only 4.5-11 kg (as it would if growing in a forest). In this sense, one shade tree in Los Angeles is equivalent to three to five forest trees. In a recent analysis for Baton Rouge, Sacramento, and Salt Lake City, we estimated that planting an average of four shade trees per house (each with a top view cross section of 50 m2) would lead to an annual reduction in carbon emissions from power plants of 16,000, 41,000, and 9000 t, respectively (the per-tree reduction in carbon emissions is about 10-11 kg per year). These reductions only account for the direct reduction in the net cooling- and heating-energy use of buildings. Once the impact of the community cooling is included, these savings are increased by at least 25%.

  6. Shade trees reduce building energy use and CO2 emissions from power plants

    SciTech Connect

    Akbari, H.

    2001-11-01

    Urban shade trees offer significant benefits in reducing building air-conditioning demand and improving urban air quality by reducing smog. The savings associated with these benefits vary by climate region and can be up to $200 per tree. The cost of planting trees and maintaining them can vary from $10 to $500 per tree. Tree-planting programs can be designed to have lower costs so that they offer potential savings to communities that plant trees. Our calculations suggest that urban trees play a major role in sequestering C02 and thereby delay global warming. We estimate that a tree planted in Los Angeles avoids the combustion of 18 kg of carbon annually, even though it sequesters only 4.5-11 kg (as it would if growing in a forest). In this sense, one shade tree in Los Angeles is equivalent to three to five forest trees. In a recent analysis for Baton Rouge, Sacramento, and Salt Lake City, we estimated that planting an average of four shade trees per house (each with a top view cross section of 50 m2) would lead to an annual reduction in carbon emissions from power plants of 16,000, 41,000, and 9000 t, respectively (the per-tree reduction in carbon emissions is about 10-11 kg per year). These reductions only account for the direct reduction in the net cooling- and heating-energy use of buildings. Once the impact of the community cooling is included, these savings are increased by at least 25 percent.

  7. Reuse of process water in a waste-to-energy plant: An Italian case of study.

    PubMed

    Gardoni, Davide; Catenacci, Arianna; Antonelli, Manuela

    2015-09-01

    The minimisation of water consumption in waste-to-energy (WtE) plants is an outstanding issue, especially in those regions where water supply is critical and withdrawals come from municipal waterworks. Among the various possible solutions, the most general, simple and effective one is the reuse of process water. This paper discusses the effectiveness of two different reuse options in an Italian WtE plant, starting from the analytical characterisation and the flow-rate measurement of fresh water and process water flows derived from each utility internal to the WtE plant (e.g. cooling, bottom ash quenching, flue gas wet scrubbing). This census allowed identifying the possible direct connections that optimise the reuse scheme, avoiding additional water treatments. The effluent of the physical-chemical wastewater treatment plant (WWTP), located in the WtE plant, was considered not adequate to be directly reused because of the possible deposition of mineral salts and clogging potential associated to residual suspended solids. Nevertheless, to obtain high reduction in water consumption, reverse osmosis should be installed to remove non-metallic ions (Cl(-), SO4(2-)) and residual organic and inorganic pollutants. Two efficient solutions were identified. The first, a simple reuse scheme based on a cascade configuration, allowed 45% reduction in water consumption (from 1.81 to 0.99m(3)tMSW(-1), MSW: Municipal Solid Waste) without specific water treatments. The second solution, a cascade configuration with a recycle based on a reverse osmosis process, allowed 74% reduction in water consumption (from 1.81 to 0.46m(3)tMSW(-1)). The results of the present work show that it is possible to reduce the water consumption, and in turn the wastewater production, reducing at the same time the operating cost of the WtE plant.

  8. Aggregate stability in soils cultivated with eucalyptus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eucalyptus cultivation has increased in many Brazilian regions. In order to recommend good management practices, it is necessary to understand changes in soil properties where eucalyptus is planted. Aggregate stability analyses have proved to be a useful tool to measure soil effects caused by change...

  9. Solar hybrid power plants: Solar energy contribution in reaching full dispatchability and firmness

    NASA Astrophysics Data System (ADS)

    Servert, Jorge F.; López, Diego; Cerrajero, Eduardo; Rocha, Alberto R.; Pereira, Daniel; Gonzalez, Lucía

    2016-05-01

    Renewable energies for electricity generation have always been considered as a risk for the electricity system due to its lack of dispatchability and firmness. Renewable energies penetration is constrained to strong grids or else its production must be limited to ensure grid stability, which is kept by the usage of hydropower energy or fossil-fueled power plants. CSP technology has an opportunity to arise not only as a dispatchable and firm technology, but also as an alternative that improves grid stability. To achieve that objective, solar hybrid configurations are being developed, being the most representative three different solutions: SAPG, ISCC and HYSOL. A reference scenario in Kingdom of Saudi Arabia (KSA) has been defined to compare these solutions, which have been modelled, simulated and evaluated in terms of dispatchability and firmness using ratios defined by the authors. The results show that: a) SAPG obtains the highest firmness KPI values, but no operation constraints have been considered for the coal boiler and the solar energy contribution is limited to 1.7%, b) ISCC provides dispatchable and firm electricity production but its solar energy contribution is limited to a 6.4%, and c) HYSOL presents the higher solar energy contribution of all the technologies considered: 66.0% while providing dispatchable and firm generation in similar conditions as SAPG and ISCC.

  10. Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues

    PubMed Central

    Gajdanowicz, Pawel; Michard, Erwan; Sandmann, Michael; Rocha, Marcio; Corrêa, Luiz Gustavo Guedes; Ramírez-Aguilar, Santiago J.; Gomez-Porras, Judith L.; González, Wendy; Thibaud, Jean-Baptiste; van Dongen, Joost T.; Dreyer, Ingo

    2011-01-01

    The essential mineral nutrient potassium (K+) is the most important inorganic cation for plants and is recognized as a limiting factor for crop yield and quality. Nonetheless, it is only partially understood how K+ contributes to plant productivity. K+ is used as a major active solute to maintain turgor and to drive irreversible and reversible changes in cell volume. K+ also plays an important role in numerous metabolic processes, for example, by serving as an essential cofactor of enzymes. Here, we provide evidence for an additional, previously unrecognized role of K+ in plant growth. By combining diverse experimental approaches with computational cell simulation, we show that K+ circulating in the phloem serves as a decentralized energy storage that can be used to overcome local energy limitations. Posttranslational modification of the phloem-expressed Arabidopsis K+ channel AKT2 taps this “potassium battery,” which then efficiently assists the plasma membrane H+-ATPase in energizing the transmembrane phloem (re)loading processes. PMID:21187374

  11. Evaluation of micropurging versus traditional groundwater sampling at the Department of Energy`s Kansas City Plant

    SciTech Connect

    Stites, M.E.; Baker, J.L.; Kearl, P.M.

    1995-08-01

    A field trial comparing the micropurge and the traditional purge and sample method of groundwater sampling was conducted at the U.S. Department of Energy (DOE), Kansas City Plant (KCP) in 1993 and 1994. Duplicate groundwater samples were collected using traditional and micropurge methods, analyzed for selected organic and inorganic constituents, and the results compared statistically. Evaluation of the data using the Wilcoxon Sign Rank test indicates that within a 95% confidence interval, there was no significant difference between the two methods for the site contaminants and the majority of naturally occurring analytes. These analytical results were supported by visual observations with the colloidal borescope, which demonstrated impacts on the flow system in the well when using traditional sampling methods. Under selected circumstances, the results suggest replacing traditional sampling with micropurging based on reliability, cost, and waste minimization.

  12. Vascular plants for water pollution control and renewable sources of energy

    SciTech Connect

    Wolverton, B.C.; McDonald, R.C.

    1980-01-01

    Vascular aquatic plants have demonstrated their ability to remove pollutants from domestic and chemical wastewaters. Plants such as the water hyacinth (Eichhornia crassipes), duckweed (Lemna sp., Spirodela sp., and Wolffia sp.), and cattail (Typha sp.) thrive in nutrient-rich waters and produce tremendous quantities of biomass under favorable climatic conditions. This method of wastewater treatment is currently being used exclusively at NASA's National Space Technology Laboratories (NSTL) with water hyacinths and duckweed to treat daily over 759 m/sup 3/ of domestic wastewater and 114 m/sup 3/ of chemical wastewater in four separate systems. The harvested plants from these systems have been used in various biomass utilization projects over the past five years. In laboratory batch studies of digesting vascular plants with anaerobic filters, NASA has found that 140 to 280 liters methane per kg dry weight can be obtained in an average of 23 days. Current NASA projects at NSTL seek to expand the technology required to design energy systems which produce methane through bioconversion with anaerobic filters and use the mineral residue as a nutrient source for producing new biomass.

  13. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 11: Advanced steam systems. [energy conversion efficiency for electric power plants using steam

    NASA Technical Reports Server (NTRS)

    Wolfe, R. W.

    1976-01-01

    A parametric analysis was made of three types of advanced steam power plants that use coal in order to have a comparison of the cost of electricity produced by them a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric study and to ascertain problem areas which will require development effort. Also considered are pollution control measures such as scrubbers and separates for particulate emissions from stack gases.

  14. Energy Optimization Modeling of Geothermal Power Plant (Case Study: Darajat Geothermal Field Unit III)

    NASA Astrophysics Data System (ADS)

    Sinaga, R. H. M.; Darmanto, P. S.

    2016-09-01

    Darajat unit III geothermal power plant is developed by PT. Chevron Geothermal Indonesia (CGI). The plant capacity is 121 MW and load 110%. The greatest utilization power is consumed by Hot Well Pump (HWP) and Cooling Tower Fan (CTF). Reducing the utility power can be attempted by utilizing the wet bulb temperature fluctuation. In this study, a modelling process is developed by using Engineering Equation Solver (EES) software version 9.430.The possibility of energy saving is indicated by Specific Steam Consumption (SSC) net in relation to wet bulb temperature fluctuation from 9°C up to 20.5°C. Result shows that the existing daily operation reaches its optimum condition. The installation of Variable Frequency Drive (VFD) could be applied to optimize both utility power of HWP and CTF. The highest gain is obtained by VFD HWP installation as much as 0.80% when wet bulb temperature 18.5 °C.

  15. Solar microclimatology. [tables (data) on insolation for application to solar energy conversion by electric power plants

    NASA Technical Reports Server (NTRS)

    Mckenney, D. B.; Beauchamp, W. T.

    1975-01-01

    It has become apparent in recent years that solar energy can be used for electric power production by several methods. Because of the diffuse nature of the solar insolation, the area involved in any central power plant design can encompass several square miles. A detailed design of these large area collection systems will require precise knowledge of the local solar insolation. Detailed information will also be needed concerning the temporal nature of the insolation and the local spatial distribution. Therefore, insolation data was collected and analyzed for a network of sensors distributed over an area of several square kilometers in Arizona. The analyses of this data yielded probability distributions of cloud size, velocity, and direction of motion which were compared with data obtained from the National Weather Service. Microclimatological analyses were also performed for suitable modeling parameters pertinent to large scale electric power plant design. Instrumentation used to collect the data is described.

  16. In vitro RNA editing in plant mitochondria does not require added energy.

    PubMed

    Takenaka, Mizuki; Verbitskiy, Daniil; van der Merwe, Johannes A; Zehrmann, Anja; Plessmann, Uwe; Urlaub, Henning; Brennicke, Axel

    2007-06-12

    RNA editing in flowering plant mitochondria is investigated by in vitro assays. These cauliflower mitochondrial lysates require added NTP or dNTP. We have now resolved the reason for this requirement to be the inhibition of the RNA binding activity of the glutamate dehydrogenases (GDH). Both GDH1 and GDH2 were identified in RNA-protein cross-links. The inhibition of in vitro RNA editing by GDH is confirmed by the ability of the GDH-specific herbicide phosphinothricin to substitute for NTP. NADH and NADPH, but not NAD or NADP, can also replace NTP, suggesting that the NAD(P)H-binding-pocket configuration of the GDH contacts the RNA. RNA editing in plant mitochondria is thus intrinsically independent of added energy in the form of NTP.

  17. A multispectral scanner survey of the United States Department of Energy's Paducah Gaseous Diffusion Plant

    SciTech Connect

    Not Available

    1991-06-01

    Airborne multispectral scanner data of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area were acquired during late spring 1990. This survey was conducted by the Remote Sensing Laboratory (RSL) which is operated by EG G Energy Measurements (EG G/EM) for the US Department of Energy (DOE) Nevada Operations Office. It was requested by the US Department of Energy (DOE) Environmental Audit Team which was reviewing environmental conditions at the facility. The objectives of this survey were to: (1) Acquire 12-channel, multispectral scanner data of the PGDP from an altitude of 3000 feet above ground level (AGL); (2) Acquire predawn, digital thermal infrared (TIR) data of the site from the same altitude; (3) Collect color and color-infrared (CIR) aerial photographs over the facilities; and (4) Illustrate how the analyses of these data could benefit environmental monitoring at the PGDP. This report summarizes the two multispectral scanner and aerial photographic missions at the Paducah Gaseous Diffusion Plant. Selected examples of the multispectral data are presented to illustrate its potential for aiding environmental management at the site. 4 refs., 1 fig., 2 tabs.

  18. In vitro reconstitution of the activated zeaxanthin state associated with energy dissipation in plants.

    PubMed

    Aspinall-O'Dea, Mark; Wentworth, Mark; Pascal, Andy; Robert, Bruno; Ruban, Alexander; Horton, Peter

    2002-12-10

    Dissipation of excess light energy in plant photosynthetic membranes plays an important role in the response of plants to the environment, providing short-term balancing between the intensity of sunlight and photosynthetic capacity. The carotenoid zeaxanthin and the photosystem II subunit PsbS play vital roles in this process, but the mechanism of their action is largely unexplained. Here we report that the isolated photosystem II subunit PsbS was able to bind exogenous zeaxanthin, the binding resulting in a strong red shift in the absorption spectrum, and the appearance of characteristic features in the resonance Raman spectrum and a distinct circular dichroism spectrum, indicating pigment-protein, as well as specific pigment-pigment, interaction. A strong shift in the absorption spectrum of PsbS phenylalanine residues after zeaxanthin binding was observed. It is concluded that zeaxanthin binding to PsbS is the origin of the well known energy dissipation-related 535-nm absorption change that we showed in vivo to arise from activation of 1-2 molecules of this pigment. The altered properties of zeaxanthin and PsbS that result from this interaction provide the first direct indication about how they regulate energy dissipation.

  19. J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant (Steam)

    SciTech Connect

    2005-09-01

    This DOE Industrial Program case study describes how the J.R. Simplot Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho.

  20. J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant

    SciTech Connect

    Not Available

    2005-09-01

    This DOE Industrial Program case study describes how the J.R. Simplot Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho.

  1. EPA Announces 2015 ENERGY STAR Certified Manufacturing Plants, Allergan Pharmaceuticals facility in Waco, TX, among those recognized

    EPA Pesticide Factsheets

    DALLAS - (Feb. 24, 2016) The U.S. Environmental Protection Agency (EPA) announced today that the Allergan Pharmaceuticals facility in Waco, TX, is among the 70 manufacturing plants across the nation that achieved ENERGY STAR certification for their

  2. Ford Van Dyke: Compressed Air Management Program Leads to Improvements that Reduce Energy Consumption at an Automotive Transmission Plant

    SciTech Connect

    2010-06-25

    Staff at the Ford Van Dyke Transmission Plant in Sterling Heights, Michigan, have increased the efficiency of the plant’s compressed air system to enhance its performance while saving energy and improving production.

  3. PMI: Plant-Microbe Interfaces (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Schadt, Christopher

    2013-03-01

    Christopher Schadt of Oak Ridge National Laboratory on "Plant-Microbe Interactions" in the context of poplar trees at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 held in Walnut Creek, Calif.

  4. Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant

    SciTech Connect

    Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

    2011-01-01

    In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the AVESTAR Center is poised to develop a

  5. The energy cane alternative

    SciTech Connect

    Alexander, A.G.

    1985-01-01

    This book reviews the conceptual and theoretical background of Saccharum botany, which underlies the growing of cane as a total growth commodity. Management details are provided for energy cane planting, cultivation, harvest, and postharvest operations. Chapters on energy cane utilization stress new developments in lignocellulose conversion plus alternative options for fermentable solids usage. Chapters are also included for the management of alternative grasses to supplement energy cane, and the breeding of new hybrid canes with high biomass attributes at the intergeneric and interspecific levels.

  6. Waste-to-energy plant for paper industry sludges disposal: technical-economic study.

    PubMed

    Caputo, A C; Pelagagge, P M

    2001-02-16

    In this work, a detailed technical-economic analysis of a fluidized bed based waste-to-energy system for disposal of paper manufacturing sludges has been carried out. Specific reference is made to a case study represented by the largest plant in Italy producing recycled paper, with a daily sludge output of about 52t. The adopted plant has been sized for a nominal capacity of 140t per day also allowing the progressive elimination of sludges accumulated in a previously utilized landfill, giving a nominal electrical power output of 3.5MW. The main plant sections have been described and the adopted technical solutions have been outlined. A detailed process and equipment characterization has been carried out leading to a thorough evaluation of capital investment, operating costs and revenues. A differential analysis has been performed with respect to the alternative solution represented by the disposal of untreated sludges in an external landfill in order to highlight the savings obtainable. The economic profitability of the investment has been evaluated regarding several performance indices. The economic evaluation has been completed by a sensitivity and risk analysis in order to assess the effects of uncertainties in the economically significant parameters. Adopting most probable values, the savings obtained with the considered waste-to-energy system are evaluated in the 15--20 million Euro range during the estimated plant life of 15 years with a foreseen pay back time of 4 years. Moreover, many environmental benefits result such as the remediation of existing landfill, the avoidance of new landfills opening and very low air pollutants emissions.

  7. Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development.

    PubMed

    Pfeiffer, Stefan; Mitter, Birgit; Oswald, Andreas; Schloter-Hai, Brigitte; Schloter, Michael; Declerck, Stéphane; Sessitsch, Angela

    2017-02-01

    The rhizosphere hosts a rich microflora supporting plant nutrition and health. We examined bacterial rhizosphere microbiota of Solanum tuberosum grown in its center of origin, the Central Andean Highlands, at different vegetation stages and sites at altitudes ranging from 3245 to 4070 m.a.s.l., differing in soil characteristics, climate and the agricultural practices by 454 sequence analysis of 16S rRNA genes. We observed that the taxonomic composition of bacteria repeatedly occurring at particular stages of plant development was almost unaffected by highly diverse environmental conditions. A detailed statistical analysis on the operational taxonomic unit (OTU) level, representing bacterial species, revealed a complex community structure of the rhizosphere. We identified an opportunistic microbiome which comprises OTUs that occur randomly or under specific environmental conditions. In contrast, core microbiome members were found at all sites. The 'stable' component of the core microbiome consisted of few ubiquitous OTUs that were continuously abundant in all samples and vegetation stages, whereas the 'dynamic' component comprised OTUs that were enriched at specific vegetation stages.

  8. Isolation and characterisation of 11 polymorphic microsatellite markers in Papaver rhoeas L. (Corn Poppy), a major annual plant species from cultivated areas.

    PubMed

    Kati, Vaya; Corre, Valérie Le; Michel, Séverine; Jaffrelo, Lydia; Poncet, Charles; Délye, Christophe

    2012-12-24

    Papaver rhoeas, an annual plant species in the Papaveraceae family, is part of the biodiversity of agricultural ecosystems and also a noxious agronomic weed. We developed microsatellite markers to study the genetic diversity of P. rhoeas, using an enriched microsatellite library coupled with 454 next-generation sequencing. A total of 13,825 sequences were obtained that yielded 1795 microsatellite loci. After discarding loci with less than six repeats of the microsatellite motif, automated primer design was successful for 598 loci. We tested 74 of these loci for amplification with a total of 97 primer pairs. Thirty loci passed our tests and were subsequently tested for polymorphism using 384 P. rhoeas plants originating from 12 populations from France. Of the 30 loci, 11 showed reliable polymorphism not affected by the presence of null alleles. The number of alleles and the expected heterozygosity ranged from 3 to 7.4 and from 0.27 to 0.73, respectively. A low but significant genetic differentiation among populations was observed (F(ST) = 0.04; p < 0.001). The 11 validated polymorphic microsatellite markers developed in this work will be useful in studies of genetic diversity and population structure of P. rhoeas, assisting in designing management strategies for the control or the conservation of this species.

  9. Direct effects of energy-related air pollutants on plant sexual reproduction. Final report, February 1, 1979--January 31, 1982

    SciTech Connect

    Ragsdale, H.L.; Murdy, W.H.

    1987-12-08

    Our completed research program concentrated on the direct in vivo effects of energy-related air pollutants on plant sexual reproduction. Direct air pollution effects on plant sexual reproduction have been studied for SO{sub 2} and NO{sub 2}, two of the three major air pollutants.

  10. Evaluation, Analysis, and Documentation Support for the 10kW Signature Suppressed Lightweight Electric Energy Plant (SLEEP)

    DTIC Science & Technology

    1988-03-14

    Energy Plant,ý ~{ ~ LF &E Mobile Electric Power,’ Engine Generators,’ Free PPiston Stirling Engine," Kinematic Stirling Engine;(Continued) k19. ABTAT...Kinematic Stirling technologies are projected to be excellent candidates for development. Stirling is a mid-term technologyI that is projected to meet all...for the Signature Suppressed, Lightweight Electric Energy Plant (SLEEP). The SLEEP requirement identifies a family of lightweight, compact, mobile

  11. NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS

    SciTech Connect

    Michael Schwartz

    2003-07-01

    ITN Energy Systems, along with its team members, the Idaho National Engineering and Environmental Laboratory, Nexant Consulting, Argonne National Laboratory and Praxair, propose to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is taking a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into fabrication designs; combining functionally graded materials, monolithic module concept and plasma spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing with low costs. This program will develop and evaluate composite membranes and catalysts for hydrogen separation. Components of the monolithic modules will be fabricated by plasma spray processing. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, will also be assessed. This will result in a complete evaluation of the technical and economic feasibility of ICCM hydrogen separation for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of

  12. NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS

    SciTech Connect

    Michael Schwartz

    2003-10-01

    ITN Energy Systems, along with its team members, the Idaho National Engineering and Environmental Laboratory, Nexant Consulting, Argonne National Laboratory and Praxair, propose to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is taking a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into fabrication designs; combining functionally graded materials, monolithic module concept and plasma spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing with low costs. This program will develop and evaluate composite membranes and catalysts for hydrogen separation. Components of the monolithic modules will be fabricated by plasma spray processing. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, will also be assessed. This will result in a complete evaluation of the technical and economic feasibility of ICCM hydrogen separation for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of

  13. Efficient use of energy in anoxia-tolerant plants with focus on germinating rice seedlings.

    PubMed

    Atwell, Brian J; Greenway, Hank; Colmer, Timothy D

    2015-04-01

    Anoxia tolerance in plants is distinguished by direction of the sparse supply of energy to processes crucial to cell maintenance and sometimes to growth, as in rice seedlings. In anoxic rice coleoptiles energy is used to synthesise proteins, take up K(+) , synthesise cell walls and lipids, and in cell maintenance. Maintenance of electrochemical H(+) gradients across the tonoplast and plasma membrane is crucial for solute compartmentation and thus survival. These gradients sustain some H(+) -solute cotransport and regulate cytoplasmic pH. Pyrophosphate (PPi ), the alternative energy donor to ATP, allows direction of energy to the vacuolar H(+) -PPi ase, sustaining H(+) gradients across the tonoplast. When energy production is critically low, operation of a biochemical pHstat allows H(+) -solute cotransport across plasma membranes to continue for at least for 18 h. In active (e.g. growing) cells, PPi produced during substantial polymer synthesis allows conversion of PPi to ATP by PPi -phosphofructokinase (PFK). In quiescent cells with little polymer synthesis and associated PPi formation, the PPi required by the vacuolar H(+) -PPi ase and UDPG pyrophosphorylase involved in sucrose mobilisation via sucrose synthase might be produced by conversion of ATP to PPi through reversible glycolytic enzymes, presumably pyruvate orthophosphate dikinase. These hypotheses need testing with species characterised by contrasting anoxia tolerance.

  14. Hydrogen from renewable energy: A pilot plant for thermal production and mobility

    NASA Astrophysics Data System (ADS)

    Degiorgis, L.; Santarelli, M.; Calì, M.

    In the mainframe of a research contract, a feasibility pre-design study of a hydrogen-fuelled Laboratory-Village has been carried out: the goals are the design and the simulation of a demonstration plant based on hydrogen as primary fuel. The hydrogen is produced by electrolysis, from electric power produced by a mix of hydroelectric and solar photovoltaic plants. The plant will be located in a small remote village in Valle d'Aosta (Italy). This country has large water availability from glaciers and mountains, so electricity production from fluent water hydroelectric plants is abundant and cheap. Therefore, the production of hydrogen during the night (instead of selling the electricity to the grid at very low prices) could become a good economic choice, and hydrogen could be a competitive local fuel in term of costs, if compared to oil or gas. The H 2 will be produced and stored, and used to feed a hydrogen vehicle and for thermal purposes (heating requirement of three buildings), allowing a real field test (Village-Laboratory). Due to the high level of pressure requested for H 2 storage on-board in the vehicle, the choice has been the experimental test of a prototype laboratory-scale high-pressure PEM electrolyzer: a test laboratory has been designed, to investigate the energy savings related to this technology. In the paper, the description of the dynamic simulation of the plant (developed with TRNSYS) together with a detailed design and an economic analysis (proving the technical and economical feasibility of the installation) has been carried out. Moreover, the design of the high-pressure PEM electrolyzer is described.

  15. Comparison of two total energy systems for a diesel power generation plant. [deep space network

    NASA Technical Reports Server (NTRS)

    Chai, V. W.

    1979-01-01

    The capabilities and limitations, as well as the associated costs for two total energy systems for a diesel power generation plant are compared. Both systems utilize waste heat from engine cooling water and waste heat from exhaust gases. Pressurized water heat recovery system is simple in nature and requires no engine modifications, but operates at lower temperature ranges. On the other hand, a two-phase ebullient system operates the engine at constant temperature, provides higher temperature water or steam to the load, but is more expensive.

  16. Energy and Technolgy Assessment of Zinc and Magnesium Casting Plants, Technical Report Close-out, August 25,2006

    SciTech Connect

    Twin City Die Castings Company; Tom Heider; North American Die Castings Association

    2006-08-25

    Twin City Die Castings Company of Minneapolis, Minnesota, Twin City Die Castings Company was awarded project No. DE-FG36-05GO15097 to perform plant wide assessments of ten (10) die casting facilities that produce zinc and magnesium alloy castings in order to determine improvements and potential cost savings in energy use. Mr. Heider filled the role of team leader for the project and utilized the North American Die Casting Association (NADCA) to conduct audits at team participant plants so as to hold findings specific to each plant proprietary. The intended benefits of the project were to improve energy use through higher operational and process efficiency for the plants assessed. An improvement in energy efficiency of 5 – 15% was targeted. The primary objectives of the project was to: 1) Expand an energy and technology tool developed by the NADCA under a previous DOE project titled, “Energy and Technology Assessment for Die Casting Plants” for assessing aluminum die casting plants to be more specifically applicable to zinc and magnesium die casting facilities. 2) Conduct ten (10) assessments of zinc and magnesium die casting plants, within eight (8) companies, utilizing the assessment tool to identify, evaluate and recommend opportunities to enhance energy efficiency, minimize waste, and improve productivity. 3) Transfer the assessment tool to the die casting industry at large.

  17. Demonstration of the potential for energy conservation in two Midwestern pork processing plants. Final report, December 15, 1977-December 31, 1980

    SciTech Connect

    Wilson, P.; Okos, M.

    1981-01-19

    Two Midwestern pork processing plants were studied to quantify present energy consumption and to determine potential energy savings with modification of existing processing equipment or adoption of alternative equipment. Process energy consumption was measured in each plant at each processing step or at each unit operation and pertinent costs obtained. Energy utilized was categorized by type such as gas, electricity, steam, etc. Process conditions such as temperature, pressure, flow rates, etc., were also measured so that they could be related to energy consumption. Through measurement of operating parameters and the calculation of material and energy balances, patterns of energy loss in the major unit operations were determined. The total yearly steam and gas energy consumed by the processes studied in Plant A amounted to 133.6 billion Btu's and 207.8 billion Btu's in Plant B. Of that total, Plant A uses approximately 15.5% and Plant B uses 7.5% for sanitation and cleaning. The remaining energy is used to operate the various unit operations. The energy used in the major unit operations can be broken down into lost energy and recoverable energy. Lost energy is that energy that will not effect production if eliminated. For the processes studied in Plant A, non-productive energy amounts to 48% of the energy supplied. The nonproductive energy in Plant B amounted to 60.6% of the total process energy. On the other hand, recoverable energy is that energy that was used for some productive purpose but still has value upon completion of the process. For the processes studied in Plant A, a recoverable energy amounts to 40% of the energy supplied. The potentially recoverable energy for Plant B is 35.8% of the process energy supplied.

  18. Carbon dioxide and oxygen budgets of a plant cultural system in a CELSS - A case of cultivation of lettuce and turnips

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Kiyota, M.; Aiga, I.; Yabuki, K.; Nitta, K.; Ikeda, A.; Nakayama, S.

    In order to collect basic data about CO2 and O2 budgets of a plant cultural system in a CELSS, the variation of the CO2 absorption rates of lettuce and turnips were observed during the growing period, under different conditions. The O2 release rates were deduced from the CO2 absorption rates multiplied by 32/44. As a result, when the light intensity, the photoperiod and the atmospheric CO2 concentration increased, the rates also increased. The effects on the turnips were more significant than those on the lettuce. Turnips at 310 μmol/m2/s of PPFD, 24 hours of photoperiod and 1100 ppm of CO2 concentration grew most actively in the present experimental conditions. One turnip absorbed 32.3 g CO2 and released 23.5 g O2 for 6 days between 24 days and 30 days after sowing.

  19. Yield of illicit indoor cannabis cultivation in the Netherlands.

    PubMed

    Toonen, Marcel; Ribot, Simon; Thissen, Jac

    2006-09-01

    To obtain a reliable estimation on the yield of illicit indoor cannabis cultivation in The Netherlands, cannabis plants confiscated by the police were used to determine the yield of dried female flower buds. The developmental stage of flower buds of the seized plants was described on a scale from 1 to 10 where the value of 10 indicates a fully developed flower bud ready for harvesting. Using eight additional characteristics describing the grow room and cultivation parameters, regression analysis with subset selection was carried out to develop two models for the yield of indoor cannabis cultivation. The median Dutch illicit grow room consists of 259 cannabis plants, has a plant density of 15 plants/m(2), and 510 W of growth lamps per m(2). For the median Dutch grow room, the predicted yield of female flower buds at the harvestable developmental stage (stage 10) was 33.7 g/plant or 505 g/m(2).

  20. Participation of the Nuclear Power Plants in the New Brazilian Electric Energy Market

    SciTech Connect

    Mathias, S.G.

    2004-10-06

    A new regulation framework has been established for the Brazilian electric energy market by a law put into effect on March 15,2004. The main overall goals of this new regulation are: to allow the lowest possible tariffs for end users, while providing the necessary economic incentives for the operation of present installations (generating plants, transmission lines, distribution networks) and the expansion of the system; long-term planning of the extension of the installations required to meet the demand growth; separation of the generation, transmission and distribution activities by allocating them into different companies; new contracts between generating and distribution companies must result from bidding processes based on lowest-tariff criteria; and energy from new generating units required to meet the demand growth must be contracted by all distributing companies integrated to the National Interconnected Grid, in individual amounts proportional to their respective markets.

  1. Micro-scale energy valorization of grape marcs in winery production plants.

    PubMed

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia

    2015-02-01

    The Biochemical Methane Potential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year(-1) electrical and 8900 kW h year(-1) thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective.

  2. American Water Heater Company: Compressed Air System Optimization Project Saves Energy and Improves Production at Water Heater Plant

    SciTech Connect

    2003-11-01

    In 2001, American Water Heater Company implemented a system-level improvement project on the compressed air system that serves its manufacturing plant in Johnson City, Tennessee. The plant now operates with less compressor capacity, which has reduced its energy consumption and maintenance needs. The project's total cost was $228,000. The annual compressed air energy savings (2,345,000 kWh) and maintenance savings total $160,000, yielding a simple payback of 17 months. Furthermore, the system now supports the plant's production processes more effectively, which has improved product quality and increased production.

  3. Enabling a flexible exchange of energy of a photovoltaic plant with the grid by means of a controlled storage system

    NASA Astrophysics Data System (ADS)

    Lazzari, R.; Parma, C.; De Marco, A.; Bittanti, S.

    2015-07-01

    In this paper, we describe a control strategy for a photovoltaic (PV) power plant equipped with an energy storage system (ESS), based on lithium-ion battery. The plant consists of the following units: the PV generator, the energy storage system, the DC-bus and the inverter. The control, organised in a hierarchical manner, maximises the self-consumption of the local load unit. In particular, the ESS action performs power balance in case of low solar radiation or surplus of PV generation, thus managing the power exchange variability at the plant with the grid. The implemented control strategy is under testing in RSE pilot test facility in Milan, Italy.

  4. Cultivation of parasites

    PubMed Central

    Ahmed, Nishat Hussain

    2014-01-01

    Parasite cultivation techniques constitute a substantial segment of present-day study of parasites, especially of protozoa. Success in establishing in vitro and in vivo culture of parasites not only allows their physiology, behavior and metabolism to be studied dynamically, but also allows the nature of the antigenic molecules in the excretory and secretory products to be vigorously pursued and analyzed. The complex life-cycles of various parasites having different stages and host species requirements, particularly in the case of parasitic helminths, often make parasite cultivation an uphill assignment. Culturing of parasites depends on the combined expertise of all types of microbiological cultures. Different parasites require different cultivation conditions such as nutrients, temperature and even incubation conditions. Cultivation is an important method for diagnosis of many clinically important parasites, for example, Entamoeba histolytica, Trichomonas vaginalis, Leishmania spp., Strongyloides stercoralis and free-living amoebae. Many commercial systems like InPouch TV for T. vaginalis, microaerophilous stationary phase culture for Babesia bovis and Harada-Mori culture technique for larval-stage nematodes have been developed for the rapid diagnosis of the parasitic infections. Cultivation also has immense utility in the production of vaccines, testing vaccine efficacy, and antigen - production for obtaining serological reagents, detection of drug-resistance, screening of potential therapeutic agents and conducting epidemiological studies. Though in vitro cultivation techniques are used more often compared with in vivo techniques, the in vivo techniques are sometimes used for diagnosing some parasitic infections such as trypanosomiasis and toxoplasmosis. Parasite cultivation continues to be a challenging diagnostic option. This review provides an overview of intricacies of parasitic culture and update on popular methods used for cultivating parasites. PMID

  5. Three stage cultivation process of facultative strain of Chlorella sorokiniana for treating dairy farm effluent and lipid enhancement.

    PubMed

    Hena, S; Fatihah, N; Tabassum, S; Ismail, N

    2015-09-01

    Reserve lipids of microalgae are promising for biodiesel production. However, economically feasible and sustainable energy production from microalgae requires optimization of cultivation conditions for both biomass yield and lipid production of microalgae. Biomass yield and lipid production in microalgae are a contradictory problem because required conditions for both targets are different. Simultaneously, the mass cultivation of microalgae for biofuel production also depends extremely on the performance of the microalgae strains used. In this study a green unicellular microalgae Chlorella sorokiniana (DS6) isolated from the holding tanks of farm wastewater treatment plant using multi-step screening and acclimation procedures was found high-lipid producing facultative heterotrophic microalgae strain capable of growing on dairy farm effluent (DFE) for biodiesel feedstock and wastewater treatment. Morphological features and the phylogenetic analysis for the 18S rRNA identified the isolated strains. A novel three stage cultivation process of facultative strain of C. sorokiniana was examined for lipid production.

  6. Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops

    PubMed Central

    Farrar, Kerrie; Bryant, David; Cope-Selby, Naomi

    2014-01-01

    Plant production systems globally must be optimized to produce stable high yields from limited land under changing and variable climates. Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. In contrast to crops that have been bred for food, many bioenergy crops are largely undomesticated, and so there is an opportunity to harness beneficial plant–microbe relationships which may have been inadvertently lost through intensive crop breeding. Plant–microbe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plant–microbe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications. PMID:25431199

  7. Conversion of solar energy into electricity by using duckweed in Direct Photosynthetic Plant Fuel Cell.

    PubMed

    Hubenova, Yolina; Mitov, Mario

    2012-10-01

    In the present study we demonstrate for the first time the possibility for conversion of solar energy into electricity on the principles of Direct Photosynthetic Plant Fuel Cell (DPPFC) technology by using aquatic higher plants. Lemna minuta duckweed was grown autotrophically in specially constructed fuel cells under sunlight irradiation and laboratory lighting. Current and power density up to 1.62±0.10 A.m(-2) and 380±19 mW.m(-2), respectively, were achieved under sunlight conditions. The influence of the temperature, light intensity and day/night sequencing on the current generation was investigated. The importance of the light intensity was demonstrated by the higher values of generated current (at permanently connected resistance) during daytime than those through the nights, indicating the participation of light-dependent photosynthetic processes. The obtained DPPFC outputs in the night show the contribution of light-independent reactions (respiration). The electron transfer in the examined DPPFCs is associated with a production of endogenous mediator, secreted by the duckweed. The plants' adaptive response to the applied polarization is also connected with an enhanced metabolism resulting in an increase of the protein and carbohydrate intracellular content. Further investigations aiming at improvement of the DPPFC outputs and elucidation of the electron transfer mechanism are required for practical application.

  8. Scenarios for multi-unit inertial fusion energy plants producing hydrogen fuel

    SciTech Connect

    Logan, B.G.

    1993-12-01

    This work describes: (a) the motivation for considering fusion in general, and Inertial Fusion Energy (IFE) in particular, to produce hydrogen fuel powering low-emission vehicles; (b) the general requirements for any fusion electric plant to produce hydrogen by water electrolysis at costs competitive with present consumer gasoline fuel costs per passenger mile, for advanced car architectures meeting President Clinton`s 80 mpg advanced car goal, and (c) a comparative economic analysis for the potential cost of electricity (CoE) and corresponding cost of hydrogen (CoH) from a variety of multi-unit IFE plants with one to eight target chambers sharing a common driver and target fab facility. Cases with either heavy-ion or diode-pumped, solid-state laser drivers are considered, with ``conventional`` indirect drive target gains versus ``advanced, e.g. Fast Ignitor`` direct drive gain assumptions, and with conventional steam balance-of-plant (BoP) versus advanced MHD plus steam combined cycle BoP, to contrast the potential economics under ``conventional`` and ``advanced`` IFE assumptions, respectively.

  9. Zero Energy Communities with Central Solar Plants using Liquid Desiccants and Local Storage: Preprint

    SciTech Connect

    Burch, J.; Woods, J.; Kozubal, E.; Boranian, A.

    2012-08-01

    The zero energy community considered here consists of tens to tens-of-thousands of residences coupled to a central solar plant that produces all the community's electrical and thermal needs. A distribution network carries fluids to meet the heating and cooling loads. Large central solar systems can significantly reduce cost of energy vs. single family systems, and they enable economical seasonal heat storage. However, the thermal distribution system is costly. Conventional district heating/cooling systems use a water/glycol solution to deliver sensible energy. Piping is sized to meet the peak instantaneous load. A new district system introduced here differs in two key ways: (i) it continuously distributes a hot liquid desiccant (LD) solution to LD-based heating and cooling equipment in each home; and (ii) it uses central and local storage of both LD and heat to reduce flow rates to meet average loads. Results for piping sizes in conventional and LD thermal communities show that the LD zero energy community reduces distribution piping diameters meeting heating loads by {approx}5X and meeting cooling loads by {approx}8X for cooling, depending on climate.

  10. Economic optimization of the energy transport component of a large distributed solar power plant

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1976-01-01

    A solar thermal power plant with a field of collectors, each locally heating some transport fluid, requires a pipe network system for eventual delivery of energy power generation equipment. For a given collector distribution and pipe network geometry, a technique is herein developed which manipulates basic cost information and physical data in order to design an energy transport system consistent with minimized cost constrained by a calculated technical performance. For a given transport fluid and collector conditions, the method determines the network pipe diameter and pipe thickness distribution and also insulation thickness distribution associated with minimum system cost; these relative distributions are unique. Transport losses, including pump work and heat leak, are calculated operating expenses and impact the total system cost. The minimum cost system is readily selected. The technique is demonstrated on six candidate transport fluids to emphasize which parameters dominate the system cost and to provide basic decision data. Three different power plant output sizes are evaluated in each case to determine severity of diseconomy of scale.

  11. Energy recovery from thermal treatment of dewatered sludge in wastewater treatment plants.

    PubMed

    Yang, Qingfeng; Dussan, Karla; Monaghan, Rory F D; Zhan, Xinmin

    Sewage sludge is a by-product generated from municipal wastewater treatment (WWT) processes. This study examines the conversion of sludge via energy recovery from gasification/combustion for thermal treatment of dewatered sludge. The present analysis is based on a chemical equilibrium model of thermal conversion of previously dewatered sludge with moisture content of 60-80%. Prior to combustion/gasification, sludge is dried to a moisture content of 25-55% by two processes: (1) heat recovered from syngas/flue gas cooling and (2) heat recovered from syngas combustion. The electricity recovered from the combined heat and power process can be reused in syngas cleaning and in the WWT plant. Gas temperature, total heat and electricity recoverable are evaluated using the model. Results show that generation of electricity from dewatered sludge with low moisture content (≤ 70%) is feasible within a self-sufficient sludge treatment process. Optimal conditions for gasification correspond to an equivalence ratio of 2.3 and dried sludge moisture content of 25%. Net electricity generated from syngas combustion can account for 0.071 kWh/m(3) of wastewater treated, which is up to 25.4-28.4% of the WWT plant's total energy consumption.

  12. Energy-nutrients-water nexus: integrated resource recovery in municipal wastewater treatment plants.

    PubMed

    Mo, Weiwei; Zhang, Qiong

    2013-09-30

    Wastewater treatment consumes large amounts of energy and materials to comply with discharge standards. At the same time, wastewater contains resources, which can be recovered for secondary uses if treated properly. Hence, the goal of this paper is to review the available resource recovery methods onsite or offsite of municipal wastewater treatment plants. These methods are categorized into three major resource recovery approaches: onsite energy generation, nutrient recycling and water reuse. Under each approach, the review provides the advantages and disadvantages, recovery potentials and current application status of each method, as well as the synthesized results of the life cycle studies for each approach. From a comprehensive literature review, it was found that, in addition to technology improvements, there is also a need to evaluate the applications of the resource recovery methods in wastewater treatment plants from a life cycle perspective. Future research should investigate the integration of the resource recovery methods to explore the combined benefits and potential tradeoffs of these methods under different scales.

  13. Georgia-Pacific Palatka Plant Uses Thermal Pinch Analysis and Evaluates Water Reduction in Plant-Wide Energy Assessment

    SciTech Connect

    2002-12-01

    This OIT BestPractices Case Study describes the methods and results used in a plant-wide assessment at a Georgia-Pacific paper mill in Palatka, FL. Assessment personnel recommended several projects, which, if implemented, have the potential to save the plant more than 729,000 MMBtu per year and $2.9 million per year. In addition, the plant could reduce water use by 2,100 gallons per minute.

  14. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    SciTech Connect

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27

    dissolved solids. Makeup water is withdrawn, usually from surface water bodies, to replace the lost water. The volume of makeup water is many times smaller than the volume needed to operate a once-through system. Although neither the final new facility rule nor the proposed existing facility rule require dry cooling towers as the national best technology available, the environmental community and several States have supported the use of dry-cooling technology as the appropriate technology for addressing adverse environmental impacts. It is possible that the requirements included in the new facility rule and the ongoing push for dry cooling systems by some stakeholders may have a role in shaping the rule for existing facilities. The temperature of the cooling water entering the condenser affects the performance of the turbine--the cooler the temperature, the better the performance. This is because the cooling water temperature affects the level of vacuum at the discharge of the steam turbine. As cooling water temperatures decrease, a higher vacuum can be produced and additional energy can be extracted. On an annual average, once-through cooling water has a lower temperature than recirculated water from a cooling tower. By switching a once-through cooling system to a cooling tower, less energy can be generated by the power plant from the same amount of fuel. This reduction in energy output is known as the energy penalty. If a switch away from once-through cooling is broadly implemented through a final 316(b) rule or other regulatory initiatives, the energy penalty could result in adverse effects on energy supplies. Therefore, in accordance with the recommendations of the Report of the National Energy Policy Development Group (better known as the May 2001 National Energy Policy), the U.S. Department of Energy (DOE), through its Office of Fossil Energy, National Energy Technology Laboratory (NETL), and Argonne National Laboratory (ANL), has studied the energy penalty resulting

  15. 75 FR 14206 - FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... COMMISSION [Docket Nos. 50-266 And 50-301; NRC-2010-0123 FPL Energy Point Beach, LLC; Point Beach Nuclear... Facility Operating License Nos. DPR-24 and DPR-27, issued to FPL Energy Point Beach, LLC (FPLE, the licensee), for operation of the Point Beach Nuclear Plant, Units 1 and 2 (PBNP), located in...

  16. Largest Producer of Steel Products in the United States Achieves Significant Energy Savings at its Minntac Plant

    SciTech Connect

    Not Available

    2008-09-01

    This case study describes how the U. S. Steel Minntac plant in Mt. Iron, Minnesota, achieved annual savings of $760,000 and 95,000 MMBtu after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its process heating system.

  17. Largest Producer of Steel Products in the United States Achieves Significant Energy Savings at its Minntac Plant

    SciTech Connect

    2008-09-01

    The U. S. Steel Minntac plant in Mt. Iron, MN, achieved annual savings of $760,000 and 95,000 MMBtu after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its process heating system.

  18. 78 FR 4467 - UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... COMMISSION UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3, Exemption 1.0 Background UniStar Nuclear Energy (UNE), on behalf of Calvert Cliffs Nuclear Project, LLC and UniStar Nuclear Operating Services, LLC, submitted to the U.S. Nuclear Regulatory Commission (NRC)...

  19. 76 FR 81994 - UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit 3; Exemption 1.0 Background: UniStar Nuclear Energy (UNE) submitted to the U.S. Nuclear...

  20. Foraging decisions of bison for rapid energy gains can explain the relative risk to neighboring plants in complex swards.

    PubMed

    Courant, Sabrina; Fortin, Daniel

    2010-06-01

    Herbivores commonly base their foraging decisions not only on the intrinsic characteristics of plants, but also on the attributes of neighboring species. Although herbivores commonly orient their food choices toward the maximization of energy intake, the impact of such choices on neighboring plants remains largely unexplored. We evaluated whether foraging decisions by herbivores aiming at a rapid intake of digestible energy could explain multiple neighboring effects in complex swards. Specifically, we assessed how spatial patterns of occurrence of Carex atherodes, a highly profitable sedge species, could control the risk of bison (Bison bison) herbivory for seven other plant species. The foraging behavior of 70 free-ranging bison was evaluated in their natural environment during summer, and then related to plant characteristics. We used this information to estimate the instantaneous intake rate of digestible energy at individual feeding stations. We found that neighbor contrast defense and associational susceptibility can both be explained by simple foraging rules of energy maximization. Energy gains were higher when C. atherodes was consumed while avoiding the species for which we detected neighbor contrast defense. The lower intake rate associated with their consumption was due to an increase in handling time caused by their small size relative to C. atherodes. Bison also had higher energy gains by consuming instead of avoiding the plant species that experienced associational susceptibility. Because most of these plants were at least as tall as C. atherodes, their presence increased the heterogeneity of the grazed stratum. Avoiding their consumption increased handling time thereby reducing the instantaneous rate of energy intake. Overall, we found that bison adjust their fine-scale foraging decisions to vertical and horizontal sward structures in a way that maximizes their energy intake rate. Energy maximization principles thus provide a valuable framework to

  1. Quantification and identification of particle-associated bacteria in unchlorinated drinking water from three treatment plants by cultivation-independent methods.

    PubMed

    Liu, G; Ling, F Q; Magic-Knezev, A; Liu, W T; Verberk, J Q J C; Van Dijk, J C

    2013-06-15

    Water quality regulations commonly place quantitative limits on the number of organisms (e.g., heterotrophic plate count and coliforms) without considering the presence of multiple cells per particle, which is only counted as one regardless how many cells attached. Therefore, it is important to quantify particle-associated bacteria (PAB), especially cells per particle. In addition, PAB may house (opportunistic) pathogens and have higher resistance to disinfection than planktonic bacteria. It is essential to know bacterial distribution on particles. However, limited information is available on quantification and identification of PAB in drinking water. In the present study, PAB were sampled from the unchlorinated drinking water at three treatment plants in the Netherlands, each with different particle compositions. Adenosine triphosphate (ATP) and total cell counts (TCC) with flow cytometry were used to quantify the PAB, and high-throughput pyrosequencing was used to identify them. The number and activity of PAB ranged from 1.0 to 3.5 × 10(3) cells ml(-1) and 0.04-0.154 ng l(-1) ATP. There were between 25 and 50 cells found to be attached on a single particle. ATP per cell in PAB was higher than in planktonic bacteria. Among the identified sequences, Proteobacteria were found to be the most dominant phylum at all locations, followed by OP3 candidate division and Nitrospirae. Sequences related to anoxic bacteria from the OP3 candidate division and other anaerobic bacteria were detected. Genera of bacteria were found appear to be consistent with the major element composition of the associated particles. The presence of multiple cells per particle challenges the use of quantitative methods such as HPC and Coliforms that are used in the current drinking water quality regulations. The detection of anoxic and anaerobic bacteria suggests the ecological importance of PAB in drinking water distribution systems.

  2. Environmental impact analysis of chemicals and energy consumption in wastewater treatment plants: case study of Oslo, Norway.

    PubMed

    Venkatesh, G; Brattebø, Helge

    2011-01-01

    Wastewater treatment plants, while performing the important function of treating wastewater to meet the prescribed discharge standards, consume energy and a variety of chemicals. This paper analyses the consumption of energy and chemicals by wastewater treatment plants in Oslo over eight years, and their potential environmental impacts. Global warming and acidification were the dominant impacts for chemicals and energy, respectively. Avoided impacts due to usable by-products - sludge, ammonium nitrate and biogas - play a key role in shrinking the environmental footprint of the wastewater plants. The scope for decreasing this footprint by streamlining energy and chemicals consumption is limited, however, considering that over 70% of the impact is accounted for by the eutrophication potential (thanks to the nitrogen and phosphorus which is discharged to the sink) of the treated effluent wastewater.

  3. Energy audit of Army Industrial Facility (EEAP), Detroit Arsenal Tank Plant, Building 4, Warren, Michigan; executive summary. Final report

    SciTech Connect

    1985-09-27

    The Detroit Arsenal Tank Plant is located in Warren, Michigan, a suburb of Detroit. The Detroit Arsenal, of which the tank plant is a part, is the headquarters for U.S. Army Tank Automotive Command (TACOM). The total facility has 105 buildings. The tank plant, Building 4, is the largest at 1,114,000 square feet. Since energy costs have risen dramatically from 1973 and future projections indicate that these costs will continue to rise, energy conservation measures need to be implemented to hold down the operating costs of the facility. Building 4 at the Detroit Arsenal has many varied environmental and process systems that offer the possibility of energy conservation opportunities to be identified, quantified and offered for consideration for implementation through an energy conservation analysis.

  4. Production efficiencies of U.S. electric generation plants: Effects of data aggregation and greenhouse gas and renewable energy policy

    NASA Astrophysics Data System (ADS)

    Lynes, Melissa Kate

    Over the last few decades there has been a shift in electricity production in the U.S. Renewable energy sources are becoming more widely used. In addition, electric generation plants that use coal inputs are more heavily regulated than a couple decades ago. This shift in electricity production was brought on by changes in federal policy -- a desire for electricity produced in the U.S. which led to policies being adopted that encourage the use of renewable energy. The change in production practices due to policies may have led to changes in the productivity of electric generation plants. Multiple studies have examined the most efficient electric generation plants using the data envelopment analysis (DEA) approach. This study builds on past research to answer three questions: 1) Does the level of aggregation of fuel input variables affect the plant efficiency scores and how does the efficiency of renewable energy input compare to nonrenewable energy inputs; 2) Are policies geared toward directly or indirectly reducing greenhouse gas emissions affecting the production efficiencies of greenhouse gas emitting electric generation plants; and 3) Do renewable energy policies and the use of intermittent energy sources (i.e. wind and solar) affect the productivity growth of electric generation plants. All three analysis, presented in three essays, use U.S. plant level data obtained from the Energy Information Administration to answer these questions. The first two essays use DEA to determine the pure technical, overall technical, and scale efficiencies of electric generation plants. The third essay uses DEA within the Malmquist index to assess the change in productivity over time. Results indicate that the level of aggregation does matter particularly for scale efficiency. This implies that valuable information is likely lost when fuel inputs are aggregated together. Policies directly focused on reducing greenhouse gas emissions may improve the production efficiencies of

  5. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    SciTech Connect

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  6. Identification of a mechanism of photoprotective energy dissipation in higher plants.

    PubMed

    Ruban, Alexander V; Berera, Rudi; Ilioaia, Cristian; van Stokkum, Ivo H M; Kennis, John T M; Pascal, Andrew A; van Amerongen, Herbert; Robert, Bruno; Horton, Peter; van Grondelle, Rienk

    2007-11-22

    Under conditions of excess sunlight the efficient light-harvesting antenna found in the chloroplast membranes of plants is rapidly and reversibly switched into a photoprotected quenched state in which potentially harmful absorbed energy is dissipated as heat, a process measured as the non-photochemical quenching of chlorophyll fluorescence or qE. Although the biological significance of qE is established, the molecular mechanisms involved are not. LHCII, the main light-harvesting complex, has an inbuilt capability to undergo transformation into a dissipative state by conformational change and it was suggested that this provides a molecular basis for qE, but it is not known if such events occur in vivo or how energy is dissipated in this state. The transition into the dissipative state is associated with a twist in the configuration of the LHCII-bound carotenoid neoxanthin, identified using resonance Raman spectroscopy. Applying this technique to study isolated chloroplasts and whole leaves, we show here that the same change in neoxanthin configuration occurs in vivo, to an extent consistent with the magnitude of energy dissipation. Femtosecond transient absorption spectroscopy, performed on purified LHCII in the dissipative state, shows that energy is transferred from chlorophyll a to a low-lying carotenoid excited state, identified as one of the two luteins (lutein 1) in LHCII. Hence, it is experimentally demonstrated that a change in conformation of LHCII occurs in vivo, which opens a channel for energy dissipation by transfer to a bound carotenoid. We suggest that this is the principal mechanism of photoprotection.

  7. Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories

    PubMed Central

    Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2016-01-01

    Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems. PMID:27200016

  8. Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories.

    PubMed

    Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2016-01-01

    Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.

  9. Plants can be a direct fuel source

    SciTech Connect

    Calvin, M.; Nemethy, E.K.; Redenbaugh, K.; Otvos, J.W.

    1982-06-01

    Euphorbia lathyrus is a biennial shrub that grows wild in semi-arid regions of California and produces a hydrocarbon-containing latex. The current stage of research to assess its potential as an ''energy farm'' species is reported here. Information is required in four basic areas: (1) crop yield and cultivation conditions; (2) optimum methods of extracting the useful components and chemical characterization of the plant extracts; (3) suitable methods for modification of the plant extracts to liquid fuel form; and (4) various methods of increasing the 'hydrocarbon' content via plant selection, hormone treatment, or by tissue culture techniques. (Refs. 9).

  10. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    NASA Astrophysics Data System (ADS)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  11. Micro-scale energy valorization of grape marcs in winery production plants

    SciTech Connect

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia

    2015-02-15

    Highlights: • BioMethane Potential of grape marcs was investigated. • Grape marcs were characterized to realize a micro-scale energy recovery. • Comparative BMP batch-tests utilizing lab-scale reactors were performed. • Biogas valorization by grape marcs anaerobic digestion at small scale is evaluated. - Abstract: The BiochemicalMethanePotential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year{sup −1} electrical and 8900 kW h year{sup −1} thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective.

  12. Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea

    PubMed Central

    Miller, Allison; Schaal, Barbara

    2005-01-01

    Contemporary patterns of genetic variation in crops reflect historical processes associated with domestication, such as the geographic origin(s) of cultivated populations. Although significant progress has been made in identifying several global centers of domestication, few studies have addressed the issue of multiple origins of cultivated plant populations from different geographic regions within a domestication center. This study investigates the domestication history of jocote (Spondias purpurea), a Mesoamerican cultivated fruit tree. Sequences of the chloroplast spacer trnG–trnS were obtained for cultivated and wild S. purpurea trees, two sympatric taxa (Spondias mombin var. mombin and Spondias radlkoferi), and two outgroups (S. mombin var. globosa and Spondias testudinus). A phylogeographic approach was used and statistically significant associations of clades and geographical location were tested with a nested clade analysis. The sequences confirm that wild populations of S. purpurea are the likely progenitors of cultivated jocote trees. This study provides phylogeographic evidence of multiple domestications of this Mesoamerican cultivated fruit tree. Haplotypes detected in S. purpurea trees form two clusters, each of which includes alleles recovered in both cultivated and wild populations from distinct geographic regions. Cultivated S. purpurea populations have fewer unique trnG–trnS alleles than wild populations; however, five haplotypes were absent in the wild. The presence of unique alleles in cultivation may reflect contemporary extinction of the tropical dry forests of Mesoamerica. These data indicate that some agricultural habitats may be functioning as reservoirs of genetic variation in S. purpurea. PMID:16126899

  13. Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea.

    PubMed

    Miller, Allison; Schaal, Barbara

    2005-09-06

    Contemporary patterns of genetic variation in crops reflect historical processes associated with domestication, such as the geographic origin(s) of cultivated populations. Although significant progress has been made in identifying several global centers of domestication, few studies have addressed the issue of multiple origins of cultivated plant populations from different geographic regions within a domestication center. This study investigates the domestication history of jocote (Spondias purpurea), a Mesoamerican cultivated fruit tree. Sequences of the chloroplast spacer trnG-trnS were obtained for cultivated and wild S. purpurea trees, two sympatric taxa (Spondias mombin var. mombin and Spondias radlkoferi), and two outgroups (S. mombin var. globosa and Spondias testudinus). A phylogeographic approach was used and statistically significant associations of clades and geographical location were tested with a nested clade analysis. The sequences confirm that wild populations of S. purpurea are the likely progenitors of cultivated jocote trees. This study provides phylogeographic evidence of multiple domestications of this Mesoamerican cultivated fruit tree. Haplotypes detected in S. purpurea trees form two clusters, each of which includes alleles recovered in both cultivated and wild populations from distinct geographic regions. Cultivated S. purpurea populations have fewer unique trnG-trnS alleles than wild populations; however, five haplotypes were absent in the wild. The presence of unique alleles in cultivation may reflect contemporary extinction of the tropical dry forests of Mesoamerica. These data indicate that some agricultural habitats may be functioning as reservoirs of genetic variation in S. purpurea.

  14. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  15. Progress in accident analysis of the HYLIFE-II inertial fusion energy power plant design

    SciTech Connect

    Reyes, S; Latkowski, J F; Gomez del Rio, J; Sanz, J

    2000-10-11

    The present work continues our effort to perform an integrated safety analysis for the HYLIFE-II inertial fusion energy (IFE) power plant design. Recently we developed a base case for a severe accident scenario in order to calculate accident doses for HYLIFE-II. It consisted of a total loss of coolant accident (LOCA) in which all the liquid flibe (Li{sub 2}BeF{sub 4}) was lost at the beginning of the accident. Results showed that the off-site dose was below the limit given by the DOE Fusion Safety Standards for public protection in case of accident, and that his dose was dominated by the tritium released during the accident.

  16. Stepwise drying of medicinal plants as alternative to reduce time and energy processing

    NASA Astrophysics Data System (ADS)

    Cuervo-Andrade, S. P.; Hensel, O.

    2016-07-01

    The objective of drying medicinal plants is to extend the shelf life and conserving the fresh characteristics. This is achieved by reducing the water activity (aw) of the product to a value which will inhibit the growth and development of pathogenic and spoilage microorganisms, significantly reducing enzyme activity and the rate at which undesirable chemical reactions occur. The technical drying process requires an enormous amount of thermal and electrical energy. An improvement in the quality of the product to be dried and at the same time a decrease in the drying cost and time are achieved through the utilization of a controlled conventional drying method, which is based on a good utilization of the renewable energy or looking for other alternatives which achieve lower processing times without sacrificing the final product quality. In this work the method of stepwise drying of medicinal plants is presented as an alternative to the conventional drying that uses a constant temperature during the whole process. The objective of stepwise drying is the decrease of drying time and reduction in energy consumption. In this process, apart from observing the effects on decreases the effective drying process time and energy, the influence of the different combinations of drying phases on several characteristics of the product are considered. The tests were carried out with Melissa officinalis L. variety citronella, sowed in greenhouse. For the stepwise drying process different combinations of initial and final temperature, 40/50°C, are evaluated, with different transition points associated to different moisture contents (20, 30, 40% and 50%) of the product during the process. Final quality of dried foods is another important issue in food drying. Drying process has effect in quality attributes drying products. This study was determining the color changes and essential oil loses by reference the measurement of the color and essential oil content of the fresh product was

  17. Anaerobic digestion of thin stillage for energy recovery and water reuse in corn-ethanol plants.

    PubMed

    Alkan-Ozkaynak, A; Karthikeyan, K G

    2011-11-01

    Recycling of anaerobically-digested thin stillage within a corn-ethanol plant may result in the accumulation of nutrients of environmental concern in animal feed coproducts and inhibitory organic materials in the fermentation tank. Our focus is on anaerobic digestion of treated (centrifugation and lime addition) thin stillage. Suitability of digestate from anaerobic treatment for reuse as process water was also investigated. Experiments conducted at various inoculum-to-substrate ratios (ISRs) revealed that alkalinity is a critical parameter limiting digestibility of thin stillage. An ISR level of 2 appeared optimal based on high biogas production level (763 mL biogas/g volatile solids added) and organic matter removal (80.6% COD removal). The digester supernatant at this ISR level was found to contain both organic and inorganic constituents at levels that would cause no inhibition to ethanol fermentation. Anaerobic digestion of treated-thin stillage can be expected to improve the water and energy efficiencies of dry grind corn-ethanol plants.

  18. Net positive energy wastewater treatment plant via thermal pre-treatment of sludge: A theoretical case study.

    PubMed

    Farno, Ehsan; Baudez, Jean Christophe; Parthasarathy, Rajarathinam; Eshtiaghi, Nicky

    2017-01-13

    In a wastewater treatment process, energy is mainly used in sludge handling and heating, while energy is recovered by biogas production in anaerobic digestion process. Thermal pre-treatment of sludge can change the energy balance in a wastewater treatment process since it reduces the viscosity and yield stress of sludge and increases the biogas production. In this study, a calculation based on a hypothetical wastewater treatment plant is provided to show the possibility of creating a net positive energy wastewater treatment plant as a result of implementing thermal pre-treatment process before the anaerobic digester. The calculations showed a great energy saving in pumping and mixing of the sludge by thermal pre-treatment of sludge before anaerobic digestion process.

  19. Contents, accumulation and release of energy in green, dead and decomposing plant materials in an upland grassland near Kamenicky, Czechoslovakia.

    PubMed

    Ulehlová, B

    1980-01-01

    The energy content was studied in above-ground live plant material and in litter in a natural grassland ecosystem with dominant Nardus stricta L., defined phytosociologically as Polygalo-Nardetum strictae. PREISING 1950 corr. OBERDORFER 1957, and in two of its fertilized variants in the course of 1975 to 1977. Based on the determined production characteristics and data on decomposition processes, the amounts of energy accumulated by the green parts of the stands and the amount of energy released during decomposition from the litter were calculated. Changes in the energy content of litter in different stages of decomposition were determined. With progressing decomposition the energy content per gram ash-free decomposing plant litter increases.

  20. Photoprotection of green plants: a mechanism of ultra-fast thermal energy dissipation in desiccated lichens.

    PubMed

    Heber, Ulrich

    2008-09-01

    In order to survive sunlight in the absence of water, desiccation-tolerant green plants need to be protected against photooxidation. During drying of the chlorolichen Cladonia rangiformis and the cyanolichen Peltigera neckeri, chlorophyll fluorescence decreased and stable light-dependent charge separation in reaction centers of the photosynthetic apparatus was lost. The presence of light during desiccation increased loss of fluorescence in the chlorolichen more than that in the cyanolichen. Heating of desiccated Cladonia thalli, but not of Peltigera thalli, increased fluorescence emission more after the lichen had been dried in the light than after drying in darkness. Activation of zeaxanthin-dependent energy dissipation by protonation of the PsbS protein of thylakoid membranes was not responsible for the increased loss of chlorophyll fluorescence by the chlorolichen during drying in the light. Glutaraldehyde inhibited loss of chlorophyll fluorescence during drying. Desiccation-induced loss of chlorophyll fluorescence and of light-dependent charge separation are interpreted to indicate activation of a highly effective mechanism of photoprotection in the lichens. Activation is based on desiccation-induced conformational changes of a pigment-protein complex. Absorbed light energy is converted into heat within a picosecond or femtosecond time domain. When present during desiccation, light interacts with the structural changes of the protein providing increased photoprotection. Energy dissipation is inactivated and structural changes are reversed when water becomes available again. Reversibility of ultra-fast thermal dissipation of light energy avoids photo-damage in the absence of water and facilitates the use of light for photosynthesis almost as soon as water becomes available.

  1. Metabolic Profiles Reveal Changes in Wild and Cultivated Soybean Seedling Leaves under Salt Stress

    PubMed Central

    Zhang, Jing; Yang, Dongshuang; Li, Mingxia; Shi, Lianxuan

    2016-01-01

    Clarification of the metabolic mechanisms underlying salt stress responses in plants will allow further optimization of crop breeding and cultivation to obtain high yields in saline-alkali land. Here, we characterized 68 differential metabolites of cultivated soybean (Glycine max) and wild soybean (Glycine soja) under neutral-salt and alkali-salt stresses using gas chromatography-mass spectrometry (GC-MS)-based metabolomics, to reveal the physiological and molecular differences in salt tolerance. According to comparisons of growth parameters under the two kinds of salt stresses, the level of inhibition in wild soybean was lower than in cultivated soybean, especially under alkali-salt stress. Moreover, wild soybean contained significantly higher amounts of phenylalanine, asparagine, citraconic acid, citramalic acid, citric acid and α-ketoglutaric acid under neutral-salt stress, and higher amounts of palmitic acid, lignoceric acid, glucose, citric acid and α-ketoglutaric acid under alkali-salt stress, than cultivated soybean. Further investigations demonstrated that the ability of wild soybean to salt tolerance was mainly based on the synthesis of organic and amino acids, and the more active tricarboxylic acid cycle under neutral-salt stress. In addition, the metabolite profiling analysis suggested that the energy generation from β-oxidation, glycolysis and the citric acid cycle plays important roles under alkali-salt stress. Our results extend the understanding of mechanisms involved in wild soybean salt tolerance and provide an important reference for increasing yields and developing salt-tolerant soybean cultivars. PMID:27442489

  2. Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells

    PubMed Central

    Müller, Sara M.; Galliardt, Helena; Schneider, Jessica; Barisas, B. George; Seidel, Thorsten

    2013-01-01

    Förster resonance energy transfer (FRET) describes excitation energy exchange between two adjacent molecules typically in distances ranging from 2 to 10 nm. The process depends on dipole-dipole coupling of the molecules and its probability of occurrence cannot be proven directly. Mostly, fluorescence is employed for quantification as it represents a concurring process of relaxation of the excited singlet state S1 so that the probability of fluorescence decreases as the probability of FRET increases. This reflects closer proximity of the molecules or an orientation of donor and acceptor transition dipoles that facilitates FRET. Monitoring sensitized emission by 3-Filter-FRET allows for fast image acquisition and is suitable for quantifying FRET in dynamic systems such as living cells. In recent years, several calibration protocols were established to overcome to previous difficulties in measuring FRET-efficiencies. Thus, we can now obtain by 3-filter FRET FRET-efficiencies that are comparable to results from sophisticated fluorescence lifetime measurements. With the discovery of fluorescent proteins and their improvement toward spectral variants and usability in plant cells, the tool box for in vivo FRET-analyses in plant cells was provided and FRET became applicable for the in vivo detection of protein-protein interactions and for monitoring conformational dynamics. The latter opened the door toward a multitude of FRET-sensors such as the widely applied Ca2+-sensor Cameleon. Recently, FRET-couples of two fluorescent proteins were supplemented by additional fluorescent proteins toward FRET-cascades in order to monitor more complex arrangements. Novel FRET-couples involving switchable fluorescent proteins promise to increase the utility of FRET through combination with photoactivation-based super-resolution microscopy. PMID:24194740

  3. The impact of advanced wastewater treatment technologies and wastewater strength on the energy consumption of large wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Newell, Timothy

    Wastewater treatment is an energy intensive process often requiring the use of advanced treatment technologies. Stricter effluent standards have resulted in an increase in the number of wastewater treatment plants (WWTPs) with advanced treatment over time. Accordingly, associated energy consumption has also increased. Concerns about lowering operating costs for WWTPs and reducing associated greenhouse gas generation present an incentive to investigate energy use in WWTPs. This research investigated the impact of wastewater strength and the introduction of advanced treatment technologies, to replace traditional technologies on energy use to treat wastewater in WWTPs. Major unit processes were designed for a 100 MGD plant and variables controlling energy were identified and used to compute energy consumption. Except for primary clarification and plate and frame press dewatering, energy consumption computed using fundamental equations are within values in the literature. Results show that energy consumption for dissolved air flotation thickeners, centrifuges, gravity thickeners, and aeration basins are heavily influence by wastewater strength. Secondary treatment and tertiary treatment require a significant amount of energy. Secondary treatment requires 104 times the energy of preliminary treatment, 17 times the energy of solids processing, and 2.5 times the energy of tertiary treatment. Secondary treatment requires 41 times the energy of preliminary treatment, and 7 times the energy of solids processing. The results of this research provide a means of estimating energy consumption in the design and operation phase of a WWTP. By using the fundamental equations and methodology presented, alternative technologies can be compared or targeted for future energy savings implementation. Limitations of the methodology include design assumptions having to be made carefully, as well as assumptions of motor and equipment efficiencies.

  4. Microalgae cultivation in sugarcane vinasse: Selection, growth and biochemical characterization.

    PubMed

    Santana, Hugo; Cereijo, Carolina R; Teles, Valérya C; Nascimento, Rodrigo C; Fernandes, Maiara S; Brunale, Patrícia; Campanha, Raquel C; Soares, Itânia P; Silva, Flávia C P; Sabaini, Priscila S; Siqueira, Félix G; Brasil, Bruno S A F

    2017-03-01

    Sugarcane ethanol is produced at large scale generating wastes that could be used for microalgae biomass production in a biorefinery strategy. In this study, forty microalgae strains were screened for growth in sugarcane vinasse at different concentrations. Two microalgae strains, Micractinium sp. Embrapa|LBA32 and C. biconvexa Embrapa|LBA40, presented vigorous growth in a light-dependent manner even in undiluted vinasse under non-axenic conditions. Microalgae strains presented higher biomass productivity in vinasse-based media compared to standard Bold's Basal Medium in cultures performed using 15L airlift flat plate photobioreactors. Chemical composition analyses showed that proteins and carbohydrates comprise the major fractions of algal biomass. Glucose was the main monosaccharide detected, ranging from 46% to 76% of the total carbohydrates content according to the strain and culture media used. This research highlights the potential of using residues derived from ethanol plants to cultivate microalgae for the production of energy and bioproducts.

  5. Computation of full energy peak efficiency for nuclear power plant radioactive plume using remote scintillation gamma-ray spectrometry.

    PubMed

    Grozdov, D S; Kolotov, V P; Lavrukhin, Yu E

    2016-04-01

    A method of full energy peak efficiency estimation in the space around scintillation detector, including the presence of a collimator, has been developed. It is based on a mathematical convolution of the experimental results with the following data extrapolation. The efficiency data showed the average uncertainty less than 10%. Software to calculate integral efficiency for nuclear power plant plume was elaborated. The paper also provides results of nuclear power plant plume height estimation by analysis of the spectral data.

  6. Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants.

    PubMed

    De Vrieze, Jo; Smet, Davey; Klok, Jacob; Colsen, Joop; Angenent, Largus T; Vlaeminck, Siegfried E

    2016-10-01

    The conventional treatment of municipal wastewater by means of activated sludge is typically energy demanding. Here, the potential benefits of: (1) the optimization of mesophilic digestion; and (2) transitioning to thermophilic sludge digestion in three wastewater treatment plants (Tilburg-Noord, Land van Cuijk and Bath) in the Netherlands is evaluated, including a full-scale trial validation in Bath. In Tilburg-Noord, thermophilic sludge digestion covered the energy requirements of the plant (102%), whereas 111% of sludge operational treatment costs could be covered in Bath. Thermophilic sludge digestion also resulted in a strong increase in nutrient release. The potential for nutrient recovery was evaluated via: (1) stripping/absorption of ammonium; (2) autotrophic removal of ammonium via partial nitritation/anammox; and (3) struvite precipitation. This research shows that optimization of sludge digestion may lead to a strong increase in energy recovery, sludge treatment costs reduction, and the potential for advanced nutrient management in full-scale sewage treatment plants.

  7. Polyhouse cultivation of invitro raised elite Stevia rebaudiana Bertoni: An assessment of biochemical and photosynthetic characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyhouse cultivated Stevia rebaudiana Bertoni plants, initially raised from synthetic seeds, were assessed for biochemical and photosynthetic characteristics and compared with their mother plant. Synthetic seeds were produced using nodal segments containing single axillary buds excised from in vitr...

  8. Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system.

    PubMed

    Adesanya, Victoria O; Cadena, Erasmo; Scott, Stuart A; Smith, Alison G

    2014-07-01

    A life cycle assessment (LCA) was performed on a putative biodiesel production plant in which the freshwater alga Chlorella vulgaris, was grown using an existing system similar to a published commercial-scale hybrid cultivation. The hybrid system couples airlift tubular photobioreactors with raceway ponds in a two-stage process for high biomass growth and lipid accumulation. The results show that microalgal biodiesel production would have a significantly lower environmental impact than fossil-derived diesel. Based on the functional unit of 1 ton of biodiesel produced, the hybrid cultivation system and hypothetical downstream process (base case) would have 42% and 38% savings in global warming potential (GWP) and fossil-energy requirements (FER) when compared to fossil-derived diesel, respectively. Sensitivity analysis was performed to identify the most influential process parameters on the LCA results. The maximum reduction in GWP and FER was observed under mixotrophic growth conditions with savings of 76% and 75% when compared to conventional diesel, respectively.

  9. A clustering approach for the analysis of solar energy yields: A case study for concentrating solar thermal power plants

    NASA Astrophysics Data System (ADS)

    Peruchena, Carlos M. Fernández; García-Barberena, Javier; Guisado, María Vicenta; Gastón, Martín

    2016-05-01

    The design of Concentrating Solar Thermal Power (CSTP) systems requires a detailed knowledge of the dynamic behavior of the meteorology at the site of interest. Meteorological series are often condensed into one representative year with the aim of data volume reduction and speeding-up of energy system simulations, defined as Typical Meteorological Year (TMY). This approach seems to be appropriate for rather detailed simulations of a specific plant; however, in previous stages of the design of a power plant, especially during the optimization of the large number of plant parameters before a final design is reached, a huge number of simulations are needed. Even with today's technology, the computational effort to simulate solar energy system performance with one year of data at high frequency (as 1-min) may become colossal if a multivariable optimization has to be performed. This work presents a simple and efficient methodology for selecting number of individual days able to represent the electrical production of the plant throughout the complete year. To achieve this objective, a new procedure for determining a reduced set of typical weather data in order to evaluate the long-term performance of a solar energy system is proposed. The proposed methodology is based on cluster analysis and permits to drastically reduce computational effort related to the calculation of a CSTP plant energy yield by simulating a reduced number of days from a high frequency TMY.

  10. Energy efficiency procedures for agricultural machinery used in onion cultivation (Allium fistulosum) as an alternative to reduce carbon emissions under the clean development mechanism at Aquitania (Colombia)

    NASA Astrophysics Data System (ADS)

    Ochoa, K.; Carrillo, S.; Gutierrez, L.

    2014-06-01

    Climate change has both causes and consequences over agriculture. This paper focuses on the first element and presents scenarios for ASOLAGO -an onion cropper's association in Colombia with 250 members- to reduce their carbon footprint. It evaluates a case study at "La Primavera" farm using a methodology approved by the United Nations Framework Convention on Climate Change. Land preparation and crop irrigation were analyzed as stages in order to propose energy efficiency alternatives for both the farm and the association. They include field efficiency, fuel economy and energy efficiency from biofuels for the first stage as well as solar and wind energy supply for the second. A cost-benefit analysis to generate additional income selling additional power produced by the system to the National Grid was done.

  11. Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    SciTech Connect

    Gawlik, Keith

    2013-06-25

    Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

  12. Photoprotection and triplet energy transfer in higher plants: the role of ele