Sample records for energy producing processes

  1. Thermochemical water decomposition. [hydrogen separation for energy applications

    NASA Technical Reports Server (NTRS)

    Funk, J. E.

    1977-01-01

    At present, nearly all of the hydrogen consumed in the world is produced by reacting hydrocarbons with water. As the supply of hydrocarbons diminishes, the problem of producing hydrogen from water alone will become increasingly important. Furthermore, producing hydrogen from water is a means of energy conversion by which thermal energy from a primary source, such as solar or nuclear fusion of fission, can be changed into an easily transportable and ecologically acceptable fuel. The attraction of thermochemical processes is that they offer the potential for converting thermal energy to hydrogen more efficiently than by water electrolysis. A thermochemical hydrogen-production process is one which requires only water as material input and mainly thermal energy, or heat, as an energy input. Attention is given to a definition of process thermal efficiency, the thermodynamics of the overall process, the single-stage process, the two-stage process, multistage processes, the work of separation and a process evaluation.

  2. Energy Production and Transmutation of Nuclear Waste by Accelerator Driven Systems

    NASA Astrophysics Data System (ADS)

    Zhivkov, P. K.

    2018-05-01

    There is a significant amount of highly radiotoxic long-life nuclear waste (NW) produced by NPP (Nuclear Power Plants). Transmutation is a process which transforms NW into less radiotoxic nuclides with a shorter period of half-life by spallation neutrons or radiative capture of neutrons produced by ADS (Accelerator Driven System). In the processes of transmutation new radioactive nuclides are produced. ADS is big energy consumer equipment. It is a method for production of a high-flux and high-energy neutron field. All these processes occur in ADS simultaneously. ADS is able to transmute actinides and produce energy simultaneously. The article considers the energy production problems in ADS. Several ideas are developed regarding the solution of the global energy supply.

  3. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain

    An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.

  4. Optical processing for semiconductor device fabrication

    NASA Technical Reports Server (NTRS)

    Sopori, Bhushan L.

    1994-01-01

    A new technique for semiconductor device processing is described that uses optical energy to produce local heating/melting in the vicinity of a preselected interface of the device. This process, called optical processing, invokes assistance of photons to enhance interface reactions such as diffusion and melting, as compared to the use of thermal heating alone. Optical processing is performed in a 'cold wall' furnace, and requires considerably lower energies than furnace or rapid thermal annealing. This technique can produce some device structures with unique properties that cannot be produced by conventional thermal processing. Some applications of optical processing involving semiconductor-metal interfaces are described.

  5. Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the Shell in situ conversion process.

    PubMed

    Brandt, Adam R

    2008-10-01

    Oil shale is a sedimentary rock that contains kerogen, a fossil organic material. Kerogen can be heated to produce oil and gas (retorted). This has traditionally been a CO2-intensive process. In this paper, the Shell in situ conversion process (ICP), which is a novel method of retorting oil shale in place, is analyzed. The ICP utilizes electricity to heat the underground shale over a period of 2 years. Hydrocarbons are produced using conventional oil production techniques, leaving shale oil coke within the formation. The energy inputs and outputs from the ICP, as applied to oil shales of the Green River formation, are modeled. Using these energy inputs, the greenhouse gas (GHG) emissions from the ICP are calculated and are compared to emissions from conventional petroleum. Energy outputs (as refined liquid fuel) are 1.2-1.6 times greater than the total primary energy inputs to the process. In the absence of capturing CO2 generated from electricity produced to fuel the process, well-to-pump GHG emissions are in the range of 30.6-37.1 grams of carbon equivalent per megajoule of liquid fuel produced. These full-fuel-cycle emissions are 21%-47% larger than those from conventionally produced petroleum-based fuels.

  6. Tower Power: Producing Fuels from Solar Energy

    ERIC Educational Resources Information Center

    Antal, M. J., Jr.

    1976-01-01

    This article examines the use of power tower technologies for the production of synthetic fuels. This process overcomes the limitations of other processes by using a solar furnace to drive endothermic fuel producing reactions and the resulting fuels serve as a medium for storing solar energy. (BT)

  7. Developing a Decision Support Tool for Waste to Energy Calculations Using Energy Return on Investment

    DTIC Science & Technology

    2016-12-01

    Incinerator with Cogeneration. Source: Taylor (2016). 2. Anaerobic Digestion Anaerobic digestion uses a fermentation process to produce methane from...ANAEROBIC DIGESTION Anaerobic digestion uses a fermentation process to produce methane from organic waste inputs, resulting in a biogas that is then

  8. 10 CFR 452.5 - Bidding procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF ENERGY ENERGY CONSERVATION PRODUCTION INCENTIVES FOR CELLULOSIC BIOFUELS § 452.5 Bidding... producer auction process open only to pre-auction eligible cellulosic biofuels producers. The following... cellulosic biofuels producers during the open window established in the solicitation. The open window shall...

  9. 10 CFR 452.5 - Bidding procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF ENERGY ENERGY CONSERVATION PRODUCTION INCENTIVES FOR CELLULOSIC BIOFUELS § 452.5 Bidding... producer auction process open only to pre-auction eligible cellulosic biofuels producers. The following... cellulosic biofuels producers during the open window established in the solicitation. The open window shall...

  10. 10 CFR 452.5 - Bidding procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF ENERGY ENERGY CONSERVATION PRODUCTION INCENTIVES FOR CELLULOSIC BIOFUELS § 452.5 Bidding... producer auction process open only to pre-auction eligible cellulosic biofuels producers. The following... cellulosic biofuels producers during the open window established in the solicitation. The open window shall...

  11. 10 CFR 452.5 - Bidding procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF ENERGY ENERGY CONSERVATION PRODUCTION INCENTIVES FOR CELLULOSIC BIOFUELS § 452.5 Bidding... producer auction process open only to pre-auction eligible cellulosic biofuels producers. The following... cellulosic biofuels producers during the open window established in the solicitation. The open window shall...

  12. Process Intensification for Cellulosic Biorefineries.

    PubMed

    Sadula, Sunitha; Athaley, Abhay; Zheng, Weiqing; Ierapetritou, Marianthi; Saha, Basudeb

    2017-06-22

    Utilization of renewable carbon source, especially non-food biomass is critical to address the climate change and future energy challenge. Current chemical and enzymatic processes for producing cellulosic sugars are multistep, and energy- and water-intensive. Techno-economic analysis (TEA) suggests that upstream lignocellulose processing is a major hurdle to the economic viability of the cellulosic biorefineries. Process intensification, which integrates processes and uses less water and energy, has the potential to overcome the aforementioned challenges. Here, we demonstrate a one-pot depolymerization and saccharification process of woody biomass, energy crops, and agricultural residues to produce soluble sugars with high yields. Lignin is separated as a solid for selective upgrading. Further integration of our upstream process with a reactive extraction step makes energy-efficient separation of sugars in the form of furans. TEA reveals that the process efficiency and integration enable, for the first time, economic production of feed streams that could profoundly improve process economics for downstream cellulosic bioproducts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Desalination using low grade heat sources

    NASA Astrophysics Data System (ADS)

    Gude, Veera Gnaneswar

    A new, low temperature, energy-efficient and sustainable desalination system has been developed in this research. This system operates under near-vacuum conditions created by exploiting natural means of gravity and barometric pressure head. The system can be driven by low grade heat sources such as solar energy or waste heat streams. Both theoretical and experimental studies were conducted under this research to evaluate and demonstrate the feasibility of the proposed process. Theoretical studies included thermodynamic analysis and process modeling to evaluate the performance of the process using the following alternate energy sources for driving the process: solar thermal energy, solar photovoltaic/thermal energy, geothermal energy, and process waste heat emissions. Experimental studies included prototype scale demonstration of the process using grid power as well as solar photovoltaic/thermal sources. Finally, the feasibility of the process in reclaiming potable-quality water from the effluent of the city wastewater treatment plant was studied. The following results have been obtained from theoretical analysis and modeling: (1) The proposed process can produce up to 8 L/d of freshwater for 1 m2 area of solar collector and evaporation chamber respectively with a specific energy requirement of 3122 kJ for 1 kg of freshwater production. (2) Photovoltaic/thermal (PV/T) energy can produce up to 200 L/d of freshwater with a 25 m2 PV/T module which meets the electricity needs of 21 kWh/d of a typical household as well. This configuration requires a specific energy of 3122 kJ for 1 kg of freshwater production. (3) 100 kg/hr of geothermal water at 60°C as heat source can produce up to 60 L/d of freshwater with a specific energy requirement of 3078 kJ for 1 kg of freshwater production. (4) Waste heat released from an air conditioning system rated at 3.25 kW cooling, can produce up to 125 L/d of freshwater. This configuration requires an additional energy of 208 kJ/kg of freshwater along with the waste heat released from the condenser of air-conditioning system. This additional energy requirement is about 60% of the energy required by a multi stage flash distillation process. The experimental studies were conducted in three phases. In the first phase, electric power from grid as energy source was used to demonstrate the feasibility of the proposed process. These tests showed that freshwater production rate of 0.25 kg/hr can be sustained at evaporation temperatures as low as 40°C with specific energy input of 3,370 kJ/kg, at efficiencies ranging from 65 to 70% during the winter. In the second phase, experiments were conducted utilizing direct solar thermal energy and photovoltaic energy as well. Four different combinations of energy sources were studied. The following results were obtained from these experimental studies: (1) Utilizing direct solar energy produced 4.9 L/d of freshwater with an evaporator area of 1 m2 with an average efficiency of 61%. This yield is two times that can be obtained from a flat solar still. The specific energy requirement for this configuration is 4157 kJ for production of 1 kilogram freshwater; (2) Utilizing direct solar energy with aid of a reflector produced 7.5 L/d of freshwater with an average efficiency more than 80%. The specific energy requirement for this configuration is 3118 kJ for production of 1 kilogram freshwater; (3) Utilizing direct solar energy during sunlight hours and photovoltaic energy during non-sunlight hours produced 12 L/d of freshwater with 1 m2 evaporator area and 6 m2 photovoltaic areas respectively. The specific energy requirement for this configuration is 2926 kJ for production of 1 kilogram freshwater. Finally, the feasibility of this process in reclaiming potable-quality water from the effluent of a domestic wastewater treatment plant was studied. The process was able to achieve the following reductions: total dissolved solids from 727 mg/L to 21 mg/L (97%); nitrates from 2.4 mg/L to <0.1 mg/L (> 95%); ammonia from 23.2 mg/L to < 0.5 mg/L (> 97%); and coliform from 77 to <0 mg/L (100%).

  14. Carbon and energy footprint of the hydrate-based biogas upgrading process integrated with CO2 valorization.

    PubMed

    Castellani, Beatrice; Rinaldi, Sara; Bonamente, Emanuele; Nicolini, Andrea; Rossi, Federico; Cotana, Franco

    2018-02-15

    The present paper aims at assessing the carbon and energy footprint of an energy process, in which the energy excess from intermittent renewable sources is used to produce hydrogen which reacts with the CO 2 previously separated from an innovative biogas upgrading process. The process integrates a hydrate-based biogas upgrading section and a CO 2 methanation section, to produce biomethane from the biogas enrichment and synthetic methane from the CO 2 methanation. Clathrate hydrates are crystalline compounds, formed by gas enclathrated in cages of water molecules and are applied to the selective separation of CO 2 from biogas mixtures. Data from the experimental setup were analyzed in order to evaluate the green-house gas emissions (carbon footprint CF) and the primary energy consumption (energy footprint EF) associated to the two sections of the process. The biosynthetic methane production during a single-stage process was 0.962Nm 3 , obtained mixing 0.830Nm 3 of methane-enriched biogas and 0.132Nm 3 of synthetic methane. The final volume composition was: 73.82% CH 4 , 19.47% CO 2 , 0.67% H 2 , 1.98% O 2 , 4.06% N 2 and the energy content was 28.0MJ/Nm 3 . The functional unit is the unitary amount of produced biosynthetic methane in Nm 3 . Carbon and energy footprints are 0.7081kgCO 2eq /Nm 3 and 28.55MJ/Nm 3 , respectively, when the electric energy required by the process is provided by photovoltaic panels. In this scenario, the overall energy efficiency is about 0.82, higher than the worldwide average energy efficiency for fossil methane, which is 0.75. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    DOEpatents

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain H. R.; Jung, Hun Bok; Carroll, Kenneth

    2016-09-20

    An electrophilic acid gas-reactive fracturing and recovery fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. Proppants stabilize openings in fractures and fissures following fracturing.

  16. Processing Maple Syrup with a Vapor Compression Distiller: An Economic Analysis

    Treesearch

    Lawrence D. Garrett

    1977-01-01

    A test of vapor compression distillers for processing maple syrup revealed that: (1) vapor compression equipment tested evaporated 1 pound of water with .047 pounds of steam equivalent (electrical energy); open-pan evaporators of similar capacity required 1.5 pounds of steam equivalent (oil energy) to produce 1 pound of water; (2) vapor compression evaporation produced...

  17. Use of highly alkaline conditions to improve cost-effectiveness of algal biotechnology.

    PubMed

    Canon-Rubio, Karen A; Sharp, Christine E; Bergerson, Joule; Strous, Marc; De la Hoz Siegler, Hector

    2016-02-01

    Phototrophic microorganisms have been proposed as an alternative to capture carbon dioxide (CO2) and to produce biofuels and other valuable products. Low CO2 absorption rates, low volumetric productivities, and inefficient downstream processing, however, currently make algal biotechnology highly energy intensive, expensive, and not economically competitive to produce biofuels. This mini-review summarizes advances made regarding the cultivation of phototrophic microorganisms at highly alkaline conditions, as well as other innovations oriented toward reducing the energy input into the cultivation and processing stages. An evaluation, in terms of energy requirements and energy return on energy invested, is performed for an integrated high-pH, high-alkalinity growth process that uses biofilms. Performance in terms of productivity and expected energy return on energy invested is presented for this process and is compared to previously reported life cycle assessments (LCAs) for systems at near-neutral pH. The cultivation of alkaliphilic phototrophic microorganisms in biofilms is shown to have a significant potential to reduce both energy requirements and capital costs.

  18. Production of Magnesium by Vacuum Aluminothermic Reduction with Magnesium Aluminate Spinel as a By-Product

    NASA Astrophysics Data System (ADS)

    Wang, Yaowu; You, Jing; Peng, Jianping; Di, Yuezhong

    2016-06-01

    The Pidgeon process currently accounts for 85% of the world's magnesium production. Although the Pidgeon process has been greatly improved over the past 10 years, such production still consumes much energy and material and creates much pollution. The present study investigates the process of producing magnesium by employing vacuum aluminothermic reduction and by using magnesite as material and obtaining magnesium aluminate spinel as a by-product. The results show that compared with the Pidgeon process, producing magnesium by vacuum aluminothermic reduction can save materials by as much as 50%, increase productivity up to 100%, and save energy by more than 50%. It can also reduce CO2 emission by up to 60% and realize zero discharge of waste residue. Vacuum aluminothermic reduction is a highly efficient, low-energy-consumption, and environmentally friendly method of producing magnesium.

  19. Recent development of anaerobic digestion processes for energy recovery from wastes.

    PubMed

    Nishio, Naomichi; Nakashimada, Yutaka

    2007-02-01

    Anaerobic digestion leads to the overall gasification of organic wastewaters and wastes, and produces methane and carbon dioxide; this gasification contributes to reducing organic matter and recovering energy from organic carbons. Here, we propose three new processes and demonstrate the effectiveness of each process. By using complete anaerobic organic matter removal process (CARP), in which diluted wastewaters such as sewage and effluent from a methane fermentation digester were treated under anaerobic condition for post-treatment, the chemical oxygen demand (COD) in wastewater was decreased to less than 20 ppm. The dry ammonia-methane two-stage fermentation process (Am-Met process) is useful for the anaerobic treatment of nitrogen-rich wastes such as waste excess sludge, cow feces, chicken feces, and food waste without the dilution of the ammonia produced by water or carbon-rich wastes. The hydrogen-methane two-stage fermentation (Hy-Met process), in which the hydrogen produced in the first stage is used for a fuel cell system to generate electricity and the methane produced in the second stage is used to generate heat energy to heat the two reactors and satisfy heat requirements, is useful for the treatment of sugar-rich wastewaters, bread wastes, and biodiesel wastewaters.

  20. Fossil energy consumption and greenhouse gas emissions, including soil carbon effects, of producing agriculture and forestry feedstocks

    Treesearch

    Christina E. Canter; Zhangcai Qin; Hao Cai; Jennifer B. Dunn; Michael Wang; D. Andrew Scott

    2017-01-01

    The GHG emissions and fossil energy consumption associated with producing potential biomass sup­ply in the select BT16 scenarios include emissions and energy consumption from biomass production, harvest/collection, transport, and pre-processing activities to the reactor throat. Emissions associated with energy, fertilizers, and...

  1. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes.

    PubMed

    Zhou, Yan; Schideman, Lance; Zheng, Mingxia; Martin-Ryals, Ana; Li, Peng; Tommaso, Giovana; Zhang, Yuanhui

    2015-01-01

    Hydrothermal liquefaction (HTL) is a promising process for converting wet biomass and organic wastes into bio-crude oil. It also produces an aqueous product referred to as post-hydrothermal liquefaction wastewater (PHWW) containing up to 40% of the original feedstock carbon, which reduces the overall energy efficiency of the HTL process. This study investigated the feasibility of using anaerobic digestion (AD) to treat PHWW, with the aid of activated carbon. Results showed that successful AD occurred at relatively low concentrations of PHWW (≤ 6.7%), producing a biogas yield of 0.5 ml/mg CODremoved, and ∼53% energy recovery efficiency. Higher concentrations of PHWW (≥13.3%) had an inhibitory effect on the AD process, as indicated by delayed, slower, or no biogas production. Activated carbon was shown to effectively mitigate this inhibitory effect by enhancing biogas production and allowing digestion to proceed at higher PHWW concentrations (up to 33.3%), likely due to sequestering toxic organic compounds. The addition of activated carbon also increased the net energy recovery efficiency of AD with a relatively high concentration of PHWW (33.3%), taking into account the energy for producing activated carbon. These results suggest that AD is a feasible approach to treat PHWW, and to improve the energy efficiency of the HTL processes.

  2. Stand-alone and biorefinery pathways to produce hydrogen through gasification and dark fermentation using Pinus Patula.

    PubMed

    García, Carlos A; Betancourt, Ramiro; Cardona, Carlos A

    2017-12-01

    New efforts in the search of alternative clean and renewable energy to replace the current energy precursors have been assessed in order to reduce emissions to the environment. Lignocellulosic Biomass (LB) can be used to produce bioenergy due to its high energy potential and availability. Different ways are proposed for the transformation of these residues into high added-value products. Thermochemical and biochemical technologies are the most interest concepts focusing on the use of biomass as source for energy production at positive net balances. This study presents the techno-economic, energy and environmental assessment of five scenarios for the hydrogen production through gasification and dark fermentation based on the biorefinery and stand-alone concepts. The results demonstrated that the production of hydrogen based on the concept of a biorefinery can improve the profitability, energy efficiency and reduce the emissions of the processes compared to that based on the stand-alone way. The selection of ethanol and electricity as valuable co-products of the biorefinery in the hydrogen production process confirmed that the process scale and products diversity makes possible a flexible and suitable process to produce hydrogen and other energy carriers from Pinus Patula. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. 78 FR 23550 - Department of Energy's (DOE) Participation in Development of the International Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ...: Notice. SUMMARY: The DOE participates in the code development process of the International Code Council... notice outlines the process by which DOE produces code change proposals, and participates in the ICC code development process. FOR FURTHER INFORMATION CONTACT: Jeremiah Williams, U.S. Department of Energy, Office of...

  4. Thermionic Properties of Carbon Based Nanomaterials Produced by Microhollow Cathode PECVD

    NASA Technical Reports Server (NTRS)

    Haase, John R.; Wolinksy, Jason J.; Bailey, Paul S.; George, Jeffrey A.; Go, David B.

    2015-01-01

    Thermionic emission is the process in which materials at sufficiently high temperature spontaneously emit electrons. This process occurs when electrons in a material gain sufficient thermal energy from heating to overcome the material's potential barrier, referred to as the work function. For most bulk materials very high temperatures (greater than 1500 K) are needed to produce appreciable emission. Carbon-based nanomaterials have shown significant promise as emission materials because of their low work functions, nanoscale geometry, and negative electron affinity. One method of producing these materials is through the process known as microhollow cathode PECVD. In a microhollow cathode plasma, high energy electrons oscillate at very high energies through the Pendel effect. These high energy electrons create numerous radical species and the technique has been shown to be an effective method of growing carbon based nanomaterials. In this work, we explore the thermionic emission properties of carbon based nanomaterials produced by microhollow cathode PECVD under a variety of synthesis conditions. Initial studies demonstrate measureable current at low temperatures (approximately 800 K) and work functions (approximately 3.3 eV) for these materials.

  5. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  6. Energy-producing electro-flocculation for harvest of Dunaliella salina.

    PubMed

    Liu, Qing; Zhang, Meng; Lv, Tao; Chen, Hongjun; Chika, Anthony Okonkwo; Xiang, Changli; Guo, Minxue; Wu, Minghui; Li, Jianjun; Jia, Lishan

    2017-10-01

    In this study, an efficient electro-flocculation process for Dunaliella salina with energy production by aluminum-air battery has been successfully applied. The formed aluminum hydroxide hydrates during discharging of battery were positively charged, which have a great potential for microalgae flocculation. The precipitation of aluminum hydroxide hydrates by algae also could improve the performance of aluminum-air battery. The harvesting efficiency could reach 97% in 20mins with energy production of 0.11kWh/kg. This discharging electro-flocculation (DEF) technology provides a new energy producing process to effectively harvest microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Production of a raw material for energy production in agriculture

    NASA Astrophysics Data System (ADS)

    Hellstroem, G.

    1980-04-01

    The total amount of energy in products produced by Swedish agriculture was estimated to 80 TWH: 30 TWh for cereals, 15 TWh for grass and leguminosae, and 35 TWh for straw and other agricultural wastes. Of this production a large part will be used as food even in the future. New plants that would produce more energy than the ones traditionally grown in Sweden are discussed. Also other types of energy from agriculture are discussed such as methane from manure, methanol from gasification processes, and ethanol from fermentative processes. Costs were estimated from different alternatives.

  8. Producing Hydrogen With Sunlight

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1987-01-01

    Costs high but reduced by further research. Producing hydrogen fuel on large scale from water by solar energy practical if plant costs reduced, according to study. Sunlight attractive energy source because it is free and because photon energy converts directly to chemical energy when it breaks water molecules into diatomic hydrogen and oxygen. Conversion process low in efficiency and photochemical reactor must be spread over large area, requiring large investment in plant. Economic analysis pertains to generic photochemical processes. Does not delve into details of photochemical reactor design because detailed reactor designs do not exist at this early stage of development.

  9. Chapter 05: energy metabolism in fasting, fed, exercise and re-feeding states

    USDA-ARS?s Scientific Manuscript database

    Energy is expended by the body to maintain electrochemical gradients, transport molecules, support biosynthetic processes, produce the mechanical work required for respiration and blood circulation, and generate muscle contraction. Most of these biological processes cannot directly harness energy fr...

  10. Produced Water Treatment Using the Switchable Polarity Solvent Forward Osmosis (SPS FO) Desalination Process: Preliminary Engineering Design Basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel; Adhikari, Birendra; Orme, Christopher

    Switchable Polarity Solvent Forward Osmosis (SPS FO) is a semi-permeable membrane-based water treatment technology. INL is currently advancing SPS FO technology such that a prototype unit can be designed and demonstrated for the purification of produced water from oil and gas production operations. The SPS FO prototype unit will used the thermal energy in the produced water as a source of process heat, thereby reducing the external process energy demands. Treatment of the produced water stream will reduce the volume of saline wastewater requiring disposal via injection, an activity that is correlated with undesirable seismic events, as well as generatemore » a purified product water stream with potential beneficial uses. This paper summarizes experimental data that has been collected in support of the SPS FO scale-up effort, and describes how this data will be used in the sizing of SPS FO process equipment. An estimate of produced water treatment costs using the SPS FO process is also provided.« less

  11. Alternative Fuels Data Center: Ethanol Fuel Basics

    Science.gov Websites

    ethanol. Ethanol Energy Balance In the United States, 95% of ethanol is produced from the starch in corn demonstrates a positive energy balance, meaning that the process of producing ethanol fuel does not require energy balance of ethanol because the feedstocks are either waste, co-products of another industry (wood

  12. Physical Properties of Nyamplung Oil (Calophyllum inophyllum L) for Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Dewang, Syamsir; Suriani; Hadriani, Siti; Bannu; Abdullah, B.

    2017-05-01

    Worldwide energy crisis due to the too high of energy consumption causes the people trying to find alternative energy to support energy requirements. The use of energy from environmentally friendly plant-based materials into an effort to assist communities in sufficient of national energy needs. Some processing of Nyamplung (Calophyllum inophyllum L) oil production is drying and pressing to produce crude oil. Degumming process is then performed to remove the sap contained in the oil. The next process is to remove free fatty acids (FFA) below 2% that can cause corrosion on the machine when in use. The results performed of the density properties quality to produce oil that appropriate with the international standards by time variation of catalyst. The result was obtained the density value of 0.92108 gr/cm3 at the time of 3 hours by trans-esterification process, and the best yield value was measured at 98.2% in 2 hours stirring of transesterification.

  13. Whole tree transportation system for timber processing depots

    Treesearch

    John Lancaster; Tom Gallagher; Tim  McDonald; Dana Mitchell

    2016-01-01

    The growing demand for alternative energy has led those who are interested in producing sustainable energy from renewable timber to devise new concepts to satisfy those demands. The concept of timber processing depots, where whole stem trees will be delivered for future processing into wood products and high quality energy fuel, has led to the re-evaluation of our...

  14. Whole tree transportation system for timber processing depots

    Treesearch

    John Lancaster; Tom Gallagher; Tim McDonald; Dana Mitchell

    2017-01-01

    The growing demand for alternative energy has led those interested in producing sustainable energy from renewable biomass such as timber to devise new concepts to satisfy those demands. The concept of timber processing depots, where whole stem trees will be delivered for future processing into wood products and high quality energy fuel, has led to the reevaluation of...

  15. GREET Pretreatment Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adom, Felix K.; Dunn, Jennifer B.; Han, Jeongwoo

    2014-09-01

    A wide range of biofuels and biochemicals can be produced from cellulosic biomass via different pretreatment technologies that yield sugars. Process simulations of dilute acid and ammonia fiber expansion pretreatment processes and subsequent hydrolysis were developed in Aspen Plus for four lignocellulosic feedstocks (corn stover, miscanthus, switchgrass, and poplar). This processing yields sugars that can be subsequently converted to biofuels or biochemical. Material and energy consumption data from Aspen Plus were then compiled in a new Greenhouses Gases, Regulated Emissions, and Energy Use in Transportation (GREET TM) pretreatment module. The module estimates the cradle-to-gate fossil energy consumption (FEC) and greenhousemore » gas (GHG) emissions associated with producing fermentable sugars. This report documents the data and methodology used to develop this module and the cradle-to-gate FEC and GHG emissions that result from producing fermentable sugars.« less

  16. Solar thermochemical processing system and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wegeng, Robert S.; Humble, Paul H.; Krishnan, Shankar

    A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.

  17. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-08-01

    This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non-combustibles (such as stone/rock and glass particles), was found in the reject material stream. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Method of producing superplastic alloys and superplastic alloys produced by the method

    NASA Technical Reports Server (NTRS)

    Troeger, Lillianne P. (Inventor); Starke, Jr., Edgar A. (Inventor); Crooks, Roy (Inventor)

    2002-01-01

    A method for producing new superplastic alloys by inducing in an alloy the formation of precipitates having a sufficient size and homogeneous distribution that a sufficiently refined grain structure to produce superplasticity is obtained after subsequent PSN processing. An age-hardenable alloy having at least one dispersoid phase is selected for processing. The alloy is solution heat-treated and cooled to form a supersaturated solid solution. The alloy is plastically deformed sufficiently to form a high-energy defect structure useful for the subsequent heterogeneous nucleation of precipitates. The alloy is then aged, preferably by a multi-stage low and high temperature process, and precipitates are formed at the defect sites. The alloy then is subjected to a PSN process comprising plastically deforming the alloy to provide sufficient strain energy in the alloy to ensure recrystallization, and statically recrystallizing the alloy. A grain structure exhibiting new, fine, equiaxed and uniform grains is produced in the alloy. An exemplary 6xxx alloy of the type capable of being produced by the present invention, and which is useful for aerospace, automotive and other applications, is disclosed and claimed. The process is also suitable for processing any age-hardenable aluminum or other alloy.

  19. Solar energy in food processing-a critical appraisal.

    PubMed

    Eswara, Amruta R; Ramakrishnarao, M

    2013-04-01

    Increasing population and high cost of fuels have created opportunities for using alternate energies for post-harvest processing of foods. Solar food processing is an emerging technology that provides good quality foods at low or no additional fuel costs. A number of solar dryers, collectors and concentrators are currently being used for various steps in food processing and value addition. Society for Energy, Environment and Development (SEED) developed Solar Cabinet Dryer with forced circulation which has been used for dehydration and development of value added products from locally grown fruits, vegetables, leafy greens and forest produce. Drying under simulated shade conditions using UV-reducing Blue filter helps retain nutrients better. Its simple design and ease of handling makes SEED Solar Dryer an ideal choice for application of food processing in rural settings, closer to where the harvest is produced, eliminating the need for expensive transportation or storage of fresh produce. It also creates employment opportunities among the rural population, especially women. Other gadgets based on solar collectors and concentrators currently being used at various steps of food processing are reviewed.

  20. Biological Solar Energy Conversion and U.S. Energy Policy

    ERIC Educational Resources Information Center

    Pimentel, David; And Others

    1978-01-01

    Surveys energy consumption in the United States and explores the possibility of increasing the amount of energy obtained from biomass conversion (biologically produced energy). Economic and environmental concerns of biomass conversion processes are discussed. (CP)

  1. Reference-material system for estimating health and environmental risks of selected material cycles and energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, M.A.; Moskowitz, P.D.

    1981-07-01

    Sample analyses and detailed documentation are presented for a Reference Material System (RMS) to estimate health and environmental risks of different material cycles and energy systems. Data inputs described include: end-use material demands, efficiency coefficients, environmental emission coefficients, fuel demand coefficients, labor productivity estimates, and occupational health and safety coefficients. Application of this model permits analysts to estimate fuel use (e.g., Btu), occupational risk (e.g., fatalities), and environmental emissions (e.g., sulfur oxide) for specific material trajectories or complete energy systems. Model uncertainty is quantitatively defined by presenting a range of estimates for each data input. Systematic uncertainty not quantified relatesmore » to the boundaries chosen for analysis and reference system specification. Although the RMS can be used to analyze material system impacts for many different energy technologies, it was specifically used to examine the health and environmental risks of producing the following four types of photovoltaic devices: silicon n/p single-crystal cells produced by a Czochralski process; silicon metal/insulator/semiconductor (MIS) cells produced by a ribbon-growing process; cadmium sulfide/copper sulfide backwall cells produced by a spray deposition process; and gallium arsenide cells with 500X concentrator produced by a modified Czochralski process. Emission coefficients for particulates, sulfur dioxide and nitrogen dioxide; solid waste; total suspended solids in water; and, where applicable, air and solid waste residuals for arsenic, cadmium, gallium, and silicon are examined and presented. Where data are available the coefficients for particulates, sulfur oxides, and nitrogen oxides include both process and on-site fuel-burning emissions.« less

  2. Ultra high temperature gasification of municipal wastewater primary biosolids in a rotary kiln reactor for the production of synthesis gas.

    PubMed

    Gikas, Petros

    2017-12-01

    Primary Fine-Sieved Solids (PFSS) are produced from wastewater by the use of micro-sieves, in place of primary clarification. Biosolids is considered as a nuisance product, however, it contains significant amounts of energy, which can be utilized by biological (anaerobic digestion) or thermal (combustion or gasification) processes. In the present study, an semi-industrial scale UHT rotary kiln gasifier, operating with electric energy, was employed for the gasification of PFSS (at 17% moisture content), collected from a municipal wastewater treatment plant. Two gasification temperatures (950 and 1050 °C) had been tested, with minimal differences, with respect to syngas yield. The system appears to reach steady state after about 30-40 min from start up. The composition of the syngas at near steady state was measured approximately as 62.4% H 2 , 30.0% CO, 2.4% CH 4 and 3.4% CO 2 , plus 1.8% unidentified gases. The potential for electric energy production from the syngas produced is theoretically greater than the electric energy required for gasification. Theoretically, approximately 3.8 MJ/kg PFSS of net electric energy may be produced. However, based on the measured electric energy consumption, and assuming that all the syngas produced is used for electric energy production, addition of excess electric energy (about 0.43 MJ/kg PFSS) is required to break even. The latter is probably due to heat losses to the environment, during the heating process. With the improvement of energy efficiency, the process can be self sustained, form the energy point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Solar Energy Systems for Lunar Oxygen Generation

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  4. Fuel cells for hospitals

    NASA Astrophysics Data System (ADS)

    Damberger, Thomas A.

    Traditionally, electrical and thermal energy is produced in a conventional combustion process. Coal, fuel oil, and natural gas are common fuels used for electrical generation, while nuclear, hydroelectric, and solar are non-combustion processes. All fossil fuels release their stored energy and air pollution simultaneously when burned in a contemporary combustion process. To reduce or eliminate air pollution, the combustion process must be shifted in some way to another type of process. Extracting pollution-free energy from fossil fuels can be accomplished through the electrochemical reaction of a fuel cell. A non-combustion process is a foundation from which pollution-free energy emerges, fulfilling our incessant need for energy without environmental compromise.

  5. Smelting Magnesium Metal using a Microwave Pidgeon Method

    PubMed Central

    Wada, Yuji; Fujii, Satoshi; Suzuki, Eiichi; Maitani, Masato M.; Tsubaki, Shuntaro; Chonan, Satoshi; Fukui, Miho; Inazu, Naomi

    2017-01-01

    Magnesium (Mg) is a lightweight metal with applications in transportation and sustainable battery technologies, but its current production through ore reduction using the conventional Pidgeon process emits large amounts of CO2 and particulate matter (PM2.5). In this work, a novel Pidgeon process driven by microwaves has been developed to produce Mg metal with less energy consumption and no direct CO2 emission. An antenna structure consisting of dolomite as the Mg source and a ferrosilicon antenna as the reducing material was used to confine microwave energy emitted from a magnetron installed in a microwave oven to produce a practical amount of pure Mg metal. This microwave Pidgeon process with an antenna configuration made it possible to produce Mg with an energy consumption of 58.6 GJ/t, corresponding to a 68.6% reduction when compared to the conventional method. PMID:28401910

  6. Process Design and Techno-economic Analysis for Materials to Treat Produced Waters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heimer, Brandon Walter; Paap, Scott M; Sasan, Koroush

    Significant quantities of water are produced during enhanced oil recovery making these “produced water” streams attractive candidates for treatment and reuse. However, high concentrations of dissolved silica raise the propensity for fouling. In this paper, we report the design and economic analysis for a new ion exchange process using calcined hydrotalcite (HTC) to remove silica from water. This process improves upon known technologies by minimizing sludge product, reducing process fouling, and lowering energy use. Process modeling outputs included raw material requirements, energy use, and the minimum water treatment price (MWTP). Monte Carlo simulations quantified the impact of uncertainty and variabilitymore » in process inputs on MWTP. These analyses showed that cost can be significantly reduced if the HTC materials are optimized. Specifically, R&D improving HTC reusability, silica binding capacity, and raw material price can reduce MWTP by 40%, 13%, and 20%, respectively. Optimizing geographic deployment further improves cost competitiveness.« less

  7. Assessment of hydrothermal carbonization and coupling washing with torrefaction of bamboo sawdust for biofuels production.

    PubMed

    Zhang, Shuping; Su, Yinhai; Xu, Dan; Zhu, Shuguang; Zhang, Houlei; Liu, Xinzhi

    2018-06-01

    Two kinds of biofuels were produced and compared from hydrothermal carbonization (HTC) and coupling washing with torrefaction (CWT) processes of bamboo sawdust in this study. The mass and energy yields, mass energy density, fuel properties, structural characterizations, combustion behavior and ash behavior during combustion process were investigated. Significant increases in the carbon contents resulted in the improvement of mass energy density and fuel properties of biofuels obtained. Both HTC and CWT improved the safety of the biofuels during the process of handling, storing and transportation. The ash-related issues of the biofuels were significantly mitigated and combustion behavior was remarkably improved after HTC and CWT processes of bamboo sawdust. In general, both HTC and CWT processes are suitable to produce biofuels with high fuel quality from bamboo sawdust. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. FIRST ORDER KINETIC GAS GENERATION MODEL PARAMETERS FOR WET LANDFILLS

    EPA Science Inventory

    Landfill gas is produced as a result of a sequence of physical, chemical, and biological processes occurring within an anaerobic landfill. Landfill operators, energy recovery project owners, regulators, and energy users need to be able to project the volume of gas produced and re...

  9. Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries

    DOE PAGES

    Ahmed, Shabbir; Nelson, Paul A.; Gallagher, Kevin G.; ...

    2017-01-05

    The price of the cathode active materials in lithium ion batteries is a key cost driver and thus significantly impacts consumer adoption of devices that utilize large energy storage contents (e.g. electric vehicles). A process model has been developed and used to study the production process of a common lithium-ion cathode material, lithiated nickel manganese cobalt oxide, using the co-precipitation method. The process was simulated for a plant producing 6500 kg day –1. The results indicate that the process will consume approximately 4 kWh kg NMC –1 of energy, 15 L kg NMC –1 of process water, and cost $23more » to produce a kg of Li-NMC333. The calculations were extended to compare the production cost using two co-precipitation reactions (with Na 2CO 3 and NaOH), and similar cathode active materials such as lithium manganese oxide and lithium nickel cobalt aluminum oxide. Finally, a combination of cost saving opportunities show the possibility to reduce the cost of the cathode material by 19%.« less

  10. Energy Conversion Loop: A Testbed for Nuclear Hybrid Energy Systems Use in Biomass Pyrolysis

    NASA Astrophysics Data System (ADS)

    Verner, Kelley M.

    Nuclear hybrid energy systems are a possible solution for contemporary energy challenges. Nuclear energy produces electricity without greenhouse gas emissions. However, nuclear power production is not as flexible as electrical grids demand and renewables create highly variable electricity. Nuclear hybrid energy systems are able to address both of these problems. Wasted heat can be used in processes such as desalination, hydrogen production, or biofuel production. This research explores the possible uses of nuclear process heat in bio-oil production via biomass pyrolysis. The energy conversion loop is a testbed designed and built to mimic the heat from a nuclear reactor. Small scale biomass pyrolysis experiments were performed and compared to results from the energy conversion loop tests to determine future pyrolysis experimentation with the energy conversion loop. Further improvements must be made to the energy conversion loop before more complex experiments may be performed. The current conditions produced by the energy conversion loop are not conducive for current biomass pyrolysis experimentation.tion.

  11. Artificial muscles on heat

    NASA Astrophysics Data System (ADS)

    McKay, Thomas G.; Shin, Dong Ki; Percy, Steven; Knight, Chris; McGarry, Scott; Anderson, Iain A.

    2014-03-01

    Many devices and processes produce low grade waste heat. Some of these include combustion engines, electrical circuits, biological processes and industrial processes. To harvest this heat energy thermoelectric devices, using the Seebeck effect, are commonly used. However, these devices have limitations in efficiency, and usable voltage. This paper investigates the viability of a Stirling engine coupled to an artificial muscle energy harvester to efficiently convert heat energy into electrical energy. The results present the testing of the prototype generator which produced 200 μW when operating at 75°C. Pathways for improved performance are discussed which include optimising the electronic control of the artificial muscle, adjusting the mechanical properties of the artificial muscle to work optimally with the remainder of the system, good sealing, and tuning the resonance of the displacer to minimise the power required to drive it.

  12. Utilisation of energy from digester gas and sludge incineration at Hamburg's Köhlbrandhöft WWTP.

    PubMed

    Thierbach, R D; Hanssen, H

    2002-01-01

    At Hamburg's Köhlbrandhöft WWTP the demand for external energy supply is minimised by state of the art sludge treatment. The sludge is subjected to thickening, anaerobic digestion, dewatering, drying and incineration. The digester gas is used in a combined gas and steam turbine process. The sludge incineration also produces steam, which is also used in the steam turbine that follows the gas turbine. The turbines produce electricity, partially expanded steam is used for the sludge drying process. Heat from the condensation of vapours from sludge drying is used to heat the anaerobic digesters. The overall process requires no external heat or fuel and produces 60% of the WWTP's electricity demand.

  13. Method and apparatus for adapting steady flow with cyclic thermodynamics

    DOEpatents

    Swift, Gregory W.; Reid, Robert S.; Ward, William C.

    2000-01-01

    Energy transfer apparatus has a resonator for supporting standing acoustic waves at a selected frequency with a steady flow process fluid thermodynamic medium and a solid medium having heat capacity. The fluid medium and the solid medium are disposed within the resonator for thermal contact therebetween and for relative motion therebetween. The relative motion is produced by a first means for producing a steady velocity component and second means for producing an oscillating velocity component at the selected frequency and concomitant wavelength of the standing acoustic wave. The oscillating velocity and associated oscillating pressure component provide energy transfer between the steady flow process fluid and the solid medium as the steady flow process fluid moves through the resonator.

  14. A hurricane modification process, applying a new technology tested for warm cloud seeding to produce artificial rains

    NASA Astrophysics Data System (ADS)

    Imai, T.; Martin, I.; Iha, K.

    A Hurricane Modification Process with application of a new clean technology attested for seeding warm clouds with collector pure water droplets of controlled size to produce artificial rains in warm clouds is proposed to modify the hurricanes in order to avoid their formation or to modify the trajectory or to weaken hurricanes in action The Process is based on the time-dependent effects of cloud droplets microphysical processes for the formation and growth of the natural water droplets inside the clouds releasing large volumes of Aeolian energy to form the strong rotative upside air movements A new Paradigm proposed explain the strong and rotative winds created with the water droplets formation and grow process releasing the rotative Aeolian Energy in Tornados and Hurricanes This theory receive the Gold Medal Award of the Water Science in the 7th International Water Symposium 2005 in France Artificial seeding in the Process studies condensing a specified percentage of the water vapor to liquid water droplets where we observe the release of larges intensity of the Aeolian energy creates the hurricanes producing appreciable perturbations With they rotating strong wind created by the water droplets releasing Aeolian energy The Amplitudes of these winds are comparable to natural disasters Once this natural thermal process is completely understood artificial process to modify the hurricanes become scientifically possible to avoid them to happen or to deviate their trajectory or to weaken the already formed hurricanes In this work

  15. A Theoretical Approach to the Calculation of Annealed Impurity Profiles of Ion Implanted Boron into Silicon.

    DTIC Science & Technology

    1977-06-01

    determined experimentally) and the distribution of energy deposited into nuclear processes by the boron ions. Damage is a product of this energy distri...energy deposited into nuclear processes, k is a constant adjusted to produce the total number of vacancies calculated in Fig. 11, and Tda m in the...profile computed from the energy depos- ited into nuclear processes = time constant for the release of vacancies fr( ,-, vacancy 1.- t ers C (liilibriul

  16. Energy comparison between solar thermal power plant and photovoltaic power plant

    NASA Astrophysics Data System (ADS)

    Novosel, Urška; Avsec, Jurij

    2017-07-01

    The combined use of renewable energy and alternative energy systems and better efficiency of energy devices is a promising approach to reduce effects due to global warming in the world. On the basis of first and second law of thermodynamics we could optimize the processes in the energy sector. The presented paper shows the comparison between solar thermal power plant and photovoltaic power plant in terms of energy, exergy and life cycle analysis. Solar thermal power plant produces electricity with basic Rankine cycle, using solar tower and solar mirrors to produce high fluid temperature. Heat from the solar system is transferred by using a heat exchanger to Rankine cycle. Both power plants produce hydrogen via electrolysis. The paper shows the global efficiency of the system, regarding production of the energy system.

  17. A new mechanism for relativistic particle acceleration via wave-particle interaction

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Markidis, Stefano; Marocchino, Alberto

    2006-10-01

    Often in laboratory, space and astrophysical plasma, high energy populations are observed. Two puzzling factors still defy our understanding. First, such populations of high energy particles produce power law distributions that are not only ubiquitous but also persistent in time. Such persistence is in direct contradiction to the H theorem that states the ineluctable transition of physical systems towards thermodynamic equilibrium, and ergo Maxwellian distributions. Second, such high energy populations are efficiently produced, much more efficiently than processes that we know can produce. A classic example of such a situation is cosmic rays where power alws extend up to tremendolus energy ranges. In the present work, we identify a new mechanism for particle acceleration via wave-particle interaction. The mechanism is peculiar to special relativity and has no classical equivalent. That explains why it is not observed in most simulation studies of plasma processes, based on classical physics. The mechanism is likely to be active in systems undergoing streaming instabilities and in particular shocked systems. The new mechanism can produce energy increases vastly superior to previously known mechanisms (such as Fermi acceleration) and can hold the promise of explaining at least some of the observed power laws.

  18. The Biochemistry of the Muscle Contraction Process: An Undergraduate Laboratory Experiment Using Viscosity to Follow the Progress of a Reaction.

    ERIC Educational Resources Information Center

    Belliveau, James F.; And Others

    1981-01-01

    Describes an undergraduate laboratory experiment using viscosity to follow the progress of the contractile process in muscles. This simple, short experiment illustrates the action of ATP as the source of energy in the contractile process and the catalytic effect of calcium ions as a control in the energy producing process. (CS)

  19. Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution

    USDA-ARS?s Scientific Manuscript database

    Efficient utilization of food waste for fuel and chemical production can positively influence both the energy and environmental sustainability. In these studies we investigated use of food waste to produce butanol by Clostridium beijerinckii P260. In control fermentation, 40.5 g/L of glucose (initia...

  20. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorensek, M.; Summers, W.; Boltrunis, C.

    2009-05-12

    This report documents a detailed study to determine the expected efficiency and product costs for producing hydrogen via water-splitting using energy from an advanced nuclear reactor. It was determined that the overall efficiency from nuclear heat to hydrogen is high, and the cost of hydrogen is competitive under a high energy cost scenario. It would require over 40% more nuclear energy to generate an equivalent amount of hydrogen using conventional water-cooled nuclear reactors combined with water electrolysis compared to the proposed plant design described herein. There is a great deal of interest worldwide in reducing dependence on fossil fuels, whilemore » also minimizing the impact of the energy sector on global climate change. One potential opportunity to contribute to this effort is to replace the use of fossil fuels for hydrogen production by the use of water-splitting powered by nuclear energy. Hydrogen production is required for fertilizer (e.g. ammonia) production, oil refining, synfuels production, and other important industrial applications. It is typically produced by reacting natural gas, naphtha or coal with steam, which consumes significant amounts of energy and produces carbon dioxide as a byproduct. In the future, hydrogen could also be used as a transportation fuel, replacing petroleum. New processes are being developed that would permit hydrogen to be produced from water using only heat or a combination of heat and electricity produced by advanced, high temperature nuclear reactors. The U.S. Department of Energy (DOE) is developing these processes under a program known as the Nuclear Hydrogen Initiative (NHI). The Republic of South Africa (RSA) also is interested in developing advanced high temperature nuclear reactors and related chemical processes that could produce hydrogen fuel via water-splitting. This report focuses on the analysis of a nuclear hydrogen production system that combines the Pebble Bed Modular Reactor (PBMR), under development by PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.« less

  1. Energy Return on Investment (EROI) for Forty Global Oilfields Using a Detailed Engineering-Based Model of Oil Production.

    PubMed

    Brandt, Adam R; Sun, Yuchi; Bharadwaj, Sharad; Livingston, David; Tan, Eugene; Gordon, Deborah

    2015-01-01

    Studies of the energy return on investment (EROI) for oil production generally rely on aggregated statistics for large regions or countries. In order to better understand the drivers of the energy productivity of oil production, we use a novel approach that applies a detailed field-level engineering model of oil and gas production to estimate energy requirements of drilling, producing, processing, and transporting crude oil. We examine 40 global oilfields, utilizing detailed data for each field from hundreds of technical and scientific data sources. Resulting net energy return (NER) ratios for studied oil fields range from ≈2 to ≈100 MJ crude oil produced per MJ of total fuels consumed. External energy return (EER) ratios, which compare energy produced to energy consumed from external sources, exceed 1000:1 for fields that are largely self-sufficient. The lowest energy returns are found to come from thermally-enhanced oil recovery technologies. Results are generally insensitive to reasonable ranges of assumptions explored in sensitivity analysis. Fields with very large associated gas production are sensitive to assumptions about surface fluids processing due to the shifts in energy consumed under different gas treatment configurations. This model does not currently include energy invested in building oilfield capital equipment (e.g., drilling rigs), nor does it include other indirect energy uses such as labor or services.

  2. Energy Return on Investment (EROI) for Forty Global Oilfields Using a Detailed Engineering-Based Model of Oil Production

    PubMed Central

    Brandt, Adam R.; Sun, Yuchi; Bharadwaj, Sharad; Livingston, David; Tan, Eugene; Gordon, Deborah

    2015-01-01

    Studies of the energy return on investment (EROI) for oil production generally rely on aggregated statistics for large regions or countries. In order to better understand the drivers of the energy productivity of oil production, we use a novel approach that applies a detailed field-level engineering model of oil and gas production to estimate energy requirements of drilling, producing, processing, and transporting crude oil. We examine 40 global oilfields, utilizing detailed data for each field from hundreds of technical and scientific data sources. Resulting net energy return (NER) ratios for studied oil fields range from ≈2 to ≈100 MJ crude oil produced per MJ of total fuels consumed. External energy return (EER) ratios, which compare energy produced to energy consumed from external sources, exceed 1000:1 for fields that are largely self-sufficient. The lowest energy returns are found to come from thermally-enhanced oil recovery technologies. Results are generally insensitive to reasonable ranges of assumptions explored in sensitivity analysis. Fields with very large associated gas production are sensitive to assumptions about surface fluids processing due to the shifts in energy consumed under different gas treatment configurations. This model does not currently include energy invested in building oilfield capital equipment (e.g., drilling rigs), nor does it include other indirect energy uses such as labor or services. PMID:26695068

  3. An energy-saving glutathione production method from low-temperature cooked rice using amylase-expressing Saccharomyces cerevisiae.

    PubMed

    Hara, Kiyotaka Y; Kim, Songhee; Kiriyama, Kentaro; Yoshida, Hideyo; Arai, Shogo; Ishii, Jun; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2012-05-01

    Glutathione is a valuable tripeptide that is widely used in the pharmaceutical, food, and cosmetic industries. Glutathione is industrially produced by fermentation using Saccharomyces cerevisiae. Before the glutathione fermentation process with S. cerevisiae, a glucose extraction process from starchy materials is required. This glucose extraction is usually carried out by converting starchy materials to starch using high-temperature cooking and subsequent hydrolysis by amylases to convert starch to glucose. In this study, to develop an energy-saving glutathione production process by reducing energy consumption during the cooking step, we efficiently produced glutathione from low-temperature cooked rice using amylase-expressing S. cerevisiae. The combination of the amylase-expressing yeast with low-temperature cooking is potentially applicable to a variety of energy-saving bio-production methods of chemicals from starchy bio-resources. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Determination of the energy potential of gases produced in the pyrolysis processes of the vegetal carbon manufacture industry.

    PubMed

    Gañan, J; González, J F; González-García, C M; Cuerda-Correa, E M; Macías-García, A

    2006-03-01

    In this work, a pyrolysis plant located in Valverde de Leganes, Badajoz (SW Spain) was studied. At present, only the solid phase obtained by pyrolysis finds an application as domestic fuel. In order to analyze the feasibility of a further energetic exploitation of the plant under study, the gases flowing through the chimneys were collected at different times throughout the pyrolysis process. Next, they were characterized and quantified by gas chromatography, the energy potential of each of the gases being determined. According to the results obtained in this study, a total energy potential of 5.6 x 10(7) MJ (i.e., 1.78 MW(t)) might be generated yearly. Hence, considering an overall process yield equal to 20%, up to 358 KW(e) would be produced. This power would supply enough electric energy to the industry, the remaining being added to the common electric network.

  5. Design and simulation of maximum power point tracking (MPPT) system on solar module system using constant voltage (CV) method

    NASA Astrophysics Data System (ADS)

    Bhatara, Sevty Satria; Iskandar, Reza Fauzi; Kirom, M. Ramdlan

    2016-02-01

    Solar energy is one of renewable energy resource where needs a photovoltaic module to convert it into electrical energy. One of the problems on solar energy conversion is the process of battery charging. To improve efficiency of energy conversion, PV system needs another control method on battery charging called maximum power point tracking (MPPT). This paper report the study on charging optimation using constant voltage (CV) method. This method has a function of determining output voltage of the PV system on maximal condition, so PV system will always produce a maximal energy. A model represented a PV system with and without MPPT was developed using Simulink. PV system simulation showed a different outcome energy when different solar radiation and numbers of solar module were applied in the model. On the simulation of solar radiation 1000 W/m2, PV system with MPPT produces 252.66 Watt energy and PV system without MPPT produces 252.66 Watt energy. The larger the solar radiation, the greater the energy of PV modules was produced.

  6. Producing methane, methanol and electricity from organic waste of fermentation reaction using novel microbes.

    PubMed

    Dhiman, Saurabh Sudha; Shrestha, Namita; David, Aditi; Basotra, Neha; Johnson, Glenn R; Chadha, Bhupinder S; Gadhamshetty, Venkataramana; Sani, Rajesh K

    2018-06-01

    Residual solid and liquid streams from the one-pot CRUDE (Conversion of Raw and Untreated Disposal into Ethanol) process were treated with two separate biochemical routes for renewable energy transformation. The solid residual stream was subjected to thermophilic anaerobic digestion (TAD), which produced 95 ± 7 L methane kg -1 volatile solid with an overall energy efficiency of 12.9 ± 1.7%. A methanotroph, Methyloferula sp., was deployed for oxidation of mixed TAD biogas into methanol. The residual liquid stream from CRUDE process was used in a Microbial Fuel Cell (MFC) to produce electricity. Material balance calculations confirmed the integration of biochemical routes (i.e. CRUDE, TAD, and MFC) for developing a sustainable approach of energy regeneration. The current work demonstrates the utilization of different residual streams originated after food waste processing to release minimal organic load to the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Process Demonstration For Lunar In Situ Resource Utilization-Molten Oxide Electrolysis (MSFC Independent Research and Development Project No. 5-81)

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Ethridge, E. C.; Hudson, S. B.; Miller, T. Y.; Grugel, R. N.; Sen, S.; Sadoway, D. R.

    2006-01-01

    The purpose of this Focus Area Independent Research and Development project was to conduct, at Marshall Space Flight Center, an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis process to produce oxygen and metal. In essence, the vision was to develop two key technologies, the first to produce materials (oxygen, metals, and silicon) from lunar resources and the second to produce energy by photocell production on the Moon using these materials. Together, these two technologies have the potential to greatly reduce the costs and risks of NASA s human exploration program. Further, it is believed that these technologies are the key first step toward harvesting abundant materials and energy independent of Earth s resources.

  8. Domestic wastewater treatment as a net energy producer--can this be achieved?

    PubMed

    McCarty, Perry L; Bae, Jaeho; Kim, Jeonghwan

    2011-09-01

    In seeking greater sustainability in water resources management, wastewater is now being considered more as a resource than as a waste-a resource for water, for plant nutrients, and for energy. Energy, the primary focus of this article, can be obtained from wastewater's organic as well as from its thermal content. Also, using wastewater's nitrogen and P nutrients for plant fertilization, rather than wasting them, helps offset the high energy cost of producing synthetic fertilizers. Microbial fuel cells offer potential for direct biological conversion of wastewater's organic materials into electricity, although significant improvements are needed for this process to be competitive with anaerobic biological conversion of wastewater organics into biogas, a renewable fuel used in electricity generation. Newer membrane processes coupled with complete anaerobic treatment of wastewater offer the potential for wastewater treatment to become a net generator of energy, rather than the large energy consumer that it is today.

  9. Microbial fuel cell treatment of fuel process wastewater

    DOEpatents

    Borole, Abhijeet P; Tsouris, Constantino

    2013-12-03

    The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.

  10. Energy-conscious production of titania and titanium powders from slag

    NASA Astrophysics Data System (ADS)

    Middlemas, Scott C.

    Titanium dioxide (TiO2) is used as a whitening agent in numerous domestic and technological applications and is mainly produced by the high temperature chloride process. A new hydrometallurgical process for making commercially pure TiO2 pigment is described with the goal of reducing the necessary energy consumption and CO2 emissions. The process includes alkaline roasting of titania slag with subsequent washing, HCl leaching, solvent extraction, hydrolysis, and calcination stages. The thermodynamics of the roasting reaction were analyzed, and the experimental parameters for each step in the new process were optimized with respect to TiO 2 recovery, final product purity, and total energy requirements. Contacting the leach solution with a tertiary amine extractant resulted in complete Fe extraction in a single stage and proved effective in reducing the concentration of discoloring impurities in the final pigment to commercially acceptable levels. Additionally, a new method of producing Ti powders from titania slag is proposed as a potentially more energy efficient and lower cost alternative to the traditional Kroll process. Thermodynamic analysis and initial experimental results validate the concept of reducing titanium slag with a metal hydride to produce titanium hydride (TiH2) powders, which are subsequently purified by leaching and dehydrided to form Ti powders. The effects of reducing agent type, heating time and temperature, ball milling, powder compaction, and eutectic chloride salts on the conversion of slag to TiH2 powders were determined. The purification of reduced powders through NH4Cl, NaOH, and HCl leaching stages was investigated, and reagent concentration, leaching temperature, and time were varied in order to determine the best conditions for maximum impurity removal and recovery of TiH2. A model plant producing 100,000 tons TiO2 per year was designed that would employ the new method of pigment manufacture. A comparison of the new process and the chloride process indicated a 25% decrease in energy consumption and CO2 emissions. For the Ti powder making process, a 10,000 tons per year model plant employing the metal hydride reduction was designed and a comparison with the Kroll process indicated potential for over 60% less energy consumption and 50% less CO2 emission.

  11. Building Green: The Adoption Process of LEED- and Energy Star-Rated Office Buildings

    ERIC Educational Resources Information Center

    Malkani, Arvin P.

    2012-01-01

    There are opportunities for green building technology in office buildings to produce energy savings and cost efficiencies that can produce a positive economic and environmental impact. In order for these opportunities to be realized, however, decision makers must appreciate the value of green building technology. The objective of this research is…

  12. 10 CFR 32.22 - Self-luminous products containing tritium, krypton-85 or promethium-147: Requirements for license...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... promethium-147: Requirements for license to manufacture, process, produce, or initially transfer. 32.22 Section 32.22 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER... containing tritium, krypton-85 or promethium-147: Requirements for license to manufacture, process, produce...

  13. Post-processing, energy production use of sugarcane bagasse ash

    USDA-ARS?s Scientific Manuscript database

    Sugarcane bagasse ash (SBA) is a multi-process by-product produced from the milling of sugarcane. Bagasse is the fibrous material remaining after removing the sugar, water, and other impurities from the sugarcane delivered to the mill. Louisiana produces an estimated 2.7 mt of bagasse each year. In ...

  14. Post-processing, energy production use of sugarcane bagasse ash

    USDA-ARS?s Scientific Manuscript database

    Sugarcane bagasse ash (SBA) is a multi-processed by-product produced from the milling of sugarcane. Bagasse is the fibrous material remaining after removing the sugar, water, and other impurities from the sugarcane delivered to the mill. Louisiana produces an estimated 3 million tons of bagasse each...

  15. Energy-saving management modelling and optimization for lead-acid battery formation process

    NASA Astrophysics Data System (ADS)

    Wang, T.; Chen, Z.; Xu, J. Y.; Wang, F. Y.; Liu, H. M.

    2017-11-01

    In this context, a typical lead-acid battery producing process is introduced. Based on the formation process, an efficiency management method is proposed. An optimization model with the objective to minimize the formation electricity cost in a single period is established. This optimization model considers several related constraints, together with two influencing factors including the transformation efficiency of IGBT charge-and-discharge machine and the time-of-use price. An example simulation is shown using PSO algorithm to solve this mathematic model, and the proposed optimization strategy is proved to be effective and learnable for energy-saving and efficiency optimization in battery producing industries.

  16. Butanol biorefineries: simultaneous product removal & process integration for conversion of biomass & food waste to biofuel

    USDA-ARS?s Scientific Manuscript database

    Butanol, a superior biofuel, packs 30% more energy than ethanol on a per gallon basis. It can be produced from various carbohydrates and lignocellulosic (biomass) feedstocks. For cost effective production of this renewable and high energy biofuel, inexpensive feedstocks and economical process techno...

  17. 10 CFR 1707.205 - Processing demands or requests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Processing demands or requests. 1707.205 Section 1707.205 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL... and/or produce official records and information. (b) The Defense Nuclear Facilities Safety Board will...

  18. 10 CFR 1707.205 - Processing demands or requests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Processing demands or requests. 1707.205 Section 1707.205 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL... and/or produce official records and information. (b) The Defense Nuclear Facilities Safety Board will...

  19. 10 CFR 1707.205 - Processing demands or requests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Processing demands or requests. 1707.205 Section 1707.205 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL... and/or produce official records and information. (b) The Defense Nuclear Facilities Safety Board will...

  20. 10 CFR 1707.205 - Processing demands or requests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Processing demands or requests. 1707.205 Section 1707.205 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL... and/or produce official records and information. (b) The Defense Nuclear Facilities Safety Board will...

  1. 10 CFR 1707.205 - Processing demands or requests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Processing demands or requests. 1707.205 Section 1707.205 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL... and/or produce official records and information. (b) The Defense Nuclear Facilities Safety Board will...

  2. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The chemical engineering analysis of the preliminary process design of a process for producing solar cell grade silicon from dichlorosilane is presented. A plant to produce 1,000 MT/yr of silicon is analyzed. Progress and status for the plant design are reported for the primary activities of base case conditions (60 percent), reaction chemistry (50 percent), process flow diagram (35 percent), energy balance (10 percent), property data (10 percent) and equipment design (5 percent).

  3. Alfalfa -- a sustainable crop for biomass energy production

    USDA-ARS?s Scientific Manuscript database

    Alfalfa (Medicago sativa) has the potential to be a significant contributor to America's renewable energy future. In an alfalfa biomass energy production system, alfalfa forage would be separated into stem and leave fractions. The stems would be processed to produce energy, and the leaves would be s...

  4. Desalting and Nuclear Energy

    ERIC Educational Resources Information Center

    Burwell, Calvin C.

    1971-01-01

    Future use of nuclear energy to produce electricity and desalted water is outlined. Possible desalting processes are analyzed to show economic feasibility and the place in planning in world's economic growth. (DS)

  5. Algal Energy Conversion and Capture

    NASA Astrophysics Data System (ADS)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  6. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    Analyses of slicing processes and junction formation processes are presented. A simple method for evaluation of the relative economic merits of competing process options with respect to the cost of energy produced by the system is described. An energy consumption analysis was developed and applied to determine the energy consumption in the solar module fabrication process sequence, from the mining of the SiO2 to shipping. The analysis shows that, in current technology practice, inordinate energy use in the purification step, and large wastage of the invested energy through losses, particularly poor conversion in slicing, as well as inadequate yields throughout. The cell process energy expenditures already show a downward trend based on increased throughput rates. The large improvement, however, depends on the introduction of a more efficient purification process and of acceptable ribbon growing techniques.

  7. A REVISED SOLAR TRANSFORMITY FOR TIDAL ENERGY RECEIVED BY THE EARTH AND DISSIPATED GLOBALLY: IMPLICATIONS FOR EMERGY ANALYSIS

    EPA Science Inventory

    Solar transformities for the tidal energy received by the earth and the tidal energy dissipated globally can be calculated because both solar energy and the gravitational attraction of the sun and moon drive independent processes that produce an annual flux of geopotential energy...

  8. New technologies for solar energy silicon - Cost analysis of dichlorosilane process

    NASA Technical Reports Server (NTRS)

    Yaws, C. L.; Li, K.-Y.; Chu, T. C. T.; Fang, C. S.; Lutwack, R.; Briglio, A., Jr.

    1981-01-01

    A reduction in the cost of silicon for solar cells is an important objective in a project concerned with the reduction of the cost of electricity produced with solar cells. The cost goal for the silicon material is about $14 per kg (1980 dollars). The process which is currently employed to produce semiconductor grade silicon from trichlorosilane is not suited for meeting this cost goal. Other processes for producing silicon are, therefore, being investigated. A description is presented of results obtained for the DCS process which involves the production of dichlorosilane as a silicon source material for solar energy silicon. Major benefits of dichlorosilane as a silicon source material include faster reaction rates for chemical vapor deposition of silicon. The DCS process involves the reaction 2SiHCl3 yields reversibly SiH2Cl2 + SiCl4. The results of a cost analysis indicate a total product cost without profit of $1.29/kg of SiH2Cl2.

  9. Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: Coffee Cut-Stems case.

    PubMed

    García, Carlos A; Peña, Álvaro; Betancourt, Ramiro; Cardona, Carlos A

    2018-06-15

    Forest residues are an important source of biomass. Among these, Coffee Cut-Stems (CCS) are an abundant wood waste in Colombia obtained from coffee crops renovation. However, only low quantities of these residues are used directly in combustion processes for heating and cooking in coffee farms where their energy efficiency is very low. In the present work, an energy and environmental assessment of two bioenergy production processes (ethanol fermentation and gasification) using CCS as raw material was performed. Biomass gasification seems to be the most promising thermochemical method for bioenergy production whereas, ethanol fermentation is a widely studied biochemical method to produce biofuels. Experimental runs of the CCS gasification were carried out and the synthesis gas composition was monitored. Prior to the fermentation process, a treatment of the CCS is required from which sugar content was determined and then, in the fermentation process, the ethanol yield was calculated. Both processes were simulated in order to obtain the mass and energy balance that are used to assess the energy efficiency and the potential environmental impact (PEI). Moderate high energy efficiency and low environmental impacts were obtained from the CCS gasification. In contrast, high environmental impacts in different categories and low energy efficiencies were calculated from the ethanolic fermentation. Biomass gasification seems to be the most promising technology for the use of Coffee Cut-Stems with high energy yields and low environmental issues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Sustainable manufacturing by calculating the energy demand during turning of AISI 1045 steel

    NASA Astrophysics Data System (ADS)

    Nur, R.; Nasrullah, B.; Suyuti, M. A.; Apollo

    2018-01-01

    Sustainable development will become important issues for many fields, including production, industry, and manufacturing. In order to achieve sustainable development, industry should be able to perform of sustainable production processes and environmentally friendly. Therefore, there is need to minimize the energy demand in the machining process. This paper presents a calculation method of energy consumption in the machining process, especially turning process which calculated by summing the number of energy consumption, such as the electric energy consumed during the machining preparation, the electrical energy during the cutting processes, and the electrical energy to produce a cutting tool. A case study was performed on dry turning of mild carbon steel using coated carbide. This approach can be used to determine the total amount of electrical energy consumed in the specific machining process. It concluded that the energy consumption will be an increase for using the high cutting speed as well as for the feed rate was increased.

  11. Evaluation of a Stirling Solar Dynamic System for Lunar Oxygen Production

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Wong, Wayne A.

    2006-01-01

    An evaluation of a solar concentrator-based system for producing oxygen from the lunar regolith was performed. The system utilizes a solar concentrator mirror to provide thermal energy for the oxygen production process as well as thermal energy to power a Stirling heat engine for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The oxygen production method utilized in the analysis was the hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process rate effected the oxygen production rate.

  12. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.

    PubMed

    Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A

    2016-02-01

    To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  13. 10 CFR 32.22 - Self-luminous products containing tritium, krypton-85 or promethium-147: Requirements for license...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... promethium-147: Requirements for license to manufacture, process, produce, or initially transfer. 32.22 Section 32.22 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER..., or initially transfer. (a) An application for a specific license to manufacture, process, or produce...

  14. Mobil process converts methanol to high-quality synthetic gasoline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, A.

    1978-12-11

    If production of gasoline from coal becomes commercially attractive in the United States, a process under development at the Mobil Research and Development Corp. may compete with better known coal liquefaction processes. Mobil process converts methanol to high-octane, unleaded gasoline; methanol can be produced commercially from coal. If gasoline is the desired product, the Mobil process offers strong technical and cost advantages over H-coal, Exxon donor solvent, solvent-refined coal, and Fischer--Tropsch processes. The cost analysis, contained in a report to the Dept. of Energy, concludes that the Mobil process produces more-expensive liquid products than any other liquefaction process except Fischer--Tropsch.more » But Mobil's process produces ready-to-use gasoline, while the others produce oils which require further expensive refining to yield gasoline. Disadvantages and advantages are discussed.« less

  15. Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, R; Becker, R; Rhee, M

    2004-09-24

    Lawrence Livermore National Laboratory participated in a U. S. Department of Energy/Office of Industrial Technology sponsored research project 'Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery', as a Cooperative Agreement TC-02028 with the Alcoa Technical Center (ATC). The objective of the joint project with Alcoa is to develop a numerical modeling capability to optimize the hot rolling process used to produce aluminum plate. Product lost in the rolling process and subsequent recycling, wastes resources consumed in the energy-intensive steps of remelting and reprocessing the ingot. The modeling capability developed by project partners willmore » be used to produce plate more efficiently and with reduced product loss.« less

  16. From Animal Waste to Energy; A Study of Methane Gas converted to Energy.

    NASA Astrophysics Data System (ADS)

    Weiss, S.

    2016-12-01

    Does animal waste produce enough harvestable energy to power a household, and if so, what animal's waste can produce the most methane that is usable. What can we power using this methane and how can we power these appliances within an average household using the produced methane from animal waste. The waste product from animals is readily available all over the world, including third world countries. Using animal waste to produce green energy would allow low cost energy sources and give independence from fossil fuels. But which animal produces the most methane and how hard is it to harvest? Before starting this experiment I knew that some cow farms in the northern part of the Central California basin were using some of the methane from the waste to power their machinery as a safer, cheaper and greener source through the harnessed methane gas in a digester. The fermentation process would occur in the digester producing methane gasses as a side product. Methane that is collected can later be burned for energy. I have done a lot of research on this experiment and found that many different farm and ranch animals produce methane, but it was unclear which produced the most. I decided to focus my study on the waste from cows, horses, pig and dogs to try to find the most efficient and strongest source of methane from animal waste. I produced an affordable methane digester from plastic containers with a valve to attach a hose. By putting in the waste product and letting it ferment with water, I was able to produce and capture methane, then measure the amount with a Gaslab meter. By showing that it is possible to create energy with this simple digester, it could reduce pollution and make green energy easily available to communities all over the world. Eventually this could result into our sewer systems converting waste to energy, producing an energy source right in your home.

  17. A Computational Study on Porosity Evolution in Parts Produced by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Tan, J. L.; Tang, C.; Wong, C. H.

    2018-06-01

    Selective laser melting (SLM) is a powder-bed additive manufacturing process that uses laser to melt powders, layer by layer to generate a functional 3D part. There are many different parameters, such as laser power, scanning speed, and layer thickness, which play a role in determining the quality of the printed part. These parameters contribute to the energy density applied on the powder bed. Defects arise when insufficient or excess energy density is applied. A common defect in these cases is the presence of porosity. This paper studies the formation of porosities when inappropriate energy densities are used. A computational model was developed to simulate the melting and solidification process of SS316L powders in the SLM process. Three different sets of process parameters were used to produce 800-µm-long melt tracks, and the characteristics of the porosities were analyzed. It was found that when low energy density parameters were used, the pores were found to be irregular in shapes and were located near the top surface of the powder bed. However, when high energy density parameters were used, the pores were either elliptical or spherical in shapes and were usually located near the bottom of the keyholes.

  18. The conversion of anaerobic digestion waste into biofuels via a novel Thermo-Catalytic Reforming process.

    PubMed

    Neumann, Johannes; Meyer, Johannes; Ouadi, Miloud; Apfelbacher, Andreas; Binder, Samir; Hornung, Andreas

    2016-01-01

    Producing energy from biomass and other organic waste residues is essential for sustainable development. Fraunhofer UMSICHT has developed a novel reactor which introduces the Thermo-Catalytic Reforming (TCR®) process. The TCR® is a process which can convert any type of biomass and organic feedstocks into a variety of energy products (char, bio-oil and permanent gases). The aim of this work was to demonstrate this technology using digestate as the feedstock and to quantify the results from the post reforming step. The temperature of a post reformer was varied to achieve optimised fuel products. The hydrogen rich permanent gases produced were maximised at a post reforming temperature of 1023 K. The highly de-oxygenated liquid bio-oil produced contained a calorific value of 35.2 MJ/kg, with significantly improved fuel physical properties, low viscosity and acid number. Overall digestate showed a high potential as feedstock in the Thermo-Catalytic Reforming to produce pyrolysis fuel products of superior quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Maximum entropy production in environmental and ecological systems.

    PubMed

    Kleidon, Axel; Malhi, Yadvinder; Cox, Peter M

    2010-05-12

    The coupled biosphere-atmosphere system entails a vast range of processes at different scales, from ecosystem exchange fluxes of energy, water and carbon to the processes that drive global biogeochemical cycles, atmospheric composition and, ultimately, the planetary energy balance. These processes are generally complex with numerous interactions and feedbacks, and they are irreversible in their nature, thereby producing entropy. The proposed principle of maximum entropy production (MEP), based on statistical mechanics and information theory, states that thermodynamic processes far from thermodynamic equilibrium will adapt to steady states at which they dissipate energy and produce entropy at the maximum possible rate. This issue focuses on the latest development of applications of MEP to the biosphere-atmosphere system including aspects of the atmospheric circulation, the role of clouds, hydrology, vegetation effects, ecosystem exchange of energy and mass, biogeochemical interactions and the Gaia hypothesis. The examples shown in this special issue demonstrate the potential of MEP to contribute to improved understanding and modelling of the biosphere and the wider Earth system, and also explore limitations and constraints to the application of the MEP principle.

  20. Using geothermal energy to heat a portion of a formation for an in situ heat treatment process

    DOEpatents

    Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich

    2010-06-08

    Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.

  1. A study of the effectiveness and energy efficiency of ultrasonic emulsification.

    PubMed

    Li, Wu; Leong, Thomas S H; Ashokkumar, Muthupandian; Martin, Gregory J O

    2017-12-20

    Three essential experimental parameters in the ultrasonic emulsification process, namely sonication time, acoustic amplitude and processing volume, were individually investigated, theoretically and experimentally, and correlated to the emulsion droplet sizes produced. The results showed that with a decrease in droplet size, two kinetic regions can be separately correlated prior to reaching a steady state droplet size: a fast size reduction region and a steady state transition region. In the fast size reduction region, the power input and sonication time could be correlated to the volume-mean diameter by a power-law relationship, with separate power-law indices of -1.4 and -1.1, respectively. A proportional relationship was found between droplet size and processing volume. The effectiveness and energy efficiency of droplet size reduction was compared between ultrasound and high-pressure homogenisation (HPH) based on both the effective power delivered to the emulsion and the total electric power consumed. Sonication could produce emulsions across a broad range of sizes, while high-pressure homogenisation was able to produce emulsions at the smaller end of the range. For ultrasonication, the energy efficiency was higher at increased power inputs due to more effective droplet breakage at high ultrasound intensities. For HPH the consumed energy efficiency was improved by operating at higher pressures for fewer passes. At the laboratory scale, the ultrasound system required less electrical power than HPH to produce an emulsion of comparable droplet size. The energy efficiency of HPH is greatly improved at large scale, which may also be true for larger scale ultrasonic reactors.

  2. Pathways for Energization of Ca in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.

    2015-01-01

    We investigate the possible pathways to produce the extreme energy observed in the calcium exosphere of Mercury. Any mechanism must explain the facts that Ca in Mercury's exosphere is extremely hot, that it is seen almost exclusively on the dawnside of the planet, and that its content varies seasonally, not sporadically. Simple diatomic molecules or their clusters are considered, focusing on calcium oxides while acknowledging that Ca sulfides may also be the precursor molecules. We first discuss impact vaporization to justify the assumption that CaO and Ca-oxide clusters are expected from impacts on Mercury. Then we discuss processes by which the atomic Ca is energized to a 70,000 K gas. The processes considered are (1) electron-impact dissociation of CaO molecules, (2) spontaneous dissociation of Ca-bearing molecules following impact vaporization, (3) shock-induced dissociative ionization, (4) photodissociation and (5) sputtering. We conclude that electron-impact dissociation cannot produce the required abundance of Ca, and sputtering cannot reproduce the observed spatial and temporal variation that is measured. Spontaneous dissociation is unlikely to result in the high energy that is seen. Of the two remaining processes, shock induced dissociative ionization produces the required energy and comes close to producing the required abundance, but rates are highly dependent on the incoming velocity distribution of the impactors. Photodissociation probably can produce the required abundance of Ca, but simulations show that photodissociation cannot reproduce the observed spatial distribution.

  3. Apparatus for hydrogen and carbon production via carbon aerosol-catalyzed dissociation of hydrocarbons

    NASA Technical Reports Server (NTRS)

    Tabatabaie-Raissi, Ali (Inventor); Muradov, Nazim Z. (Inventor); Smith, Franklyn (Inventor)

    2012-01-01

    A novel process and apparatus is disclosed for sustainable, continuous production of hydrogen and carbon by catalytic dissociation or decomposition of hydrocarbons at elevated temperatures using in-situ generated carbon particles. Carbon particles are produced by decomposition of carbonaceous materials in response to an energy input. The energy input can be provided by at least one of a non-oxidative and oxidative means. The non-oxidative means of the energy input includes a high temperature source, or different types of plasma, such as, thermal, non-thermal, microwave, corona discharge, glow discharge, dielectric barrier discharge, or radiation sources, such as, electron beam, gamma, ultraviolet (UV). The oxidative means of the energy input includes oxygen, air, ozone, nitrous oxide (NO.sub.2) and other oxidizing agents. The method, apparatus and process of the present invention is applicable to any gaseous or liquid hydrocarbon fuel and it produces no or significantly less CO.sub.2 emissions compared to conventional processes.

  4. Efficient process for producing saccharides and ethanol from a biomass feedstock

    DOEpatents

    Okeke, Benedict C.; Nanjundaswamy, Ananda K.

    2017-04-11

    Described herein is a process for producing saccharides and ethanol from biomass feedstock that includes (a) producing an enzyme composition by culturing a fungal strain(s) in the presence of a lignocellulosic medium, (b) using the enzyme composition to saccharify the biomass feedstock, and (c) fermenting the saccharified biomass feedstock to produce ethanol. The process is scalable and, in certain aspects, is capable of being deployed on farms, thereby allowing local production of saccharides and ethanol and resulting in a reduction of energy and other costs for farm operators. Optional steps to improve the biomass-to-fuel conversion efficiency are also contemplated, as are uses for byproducts of the process described herein.

  5. Chemical vapor infiltration using microwave energy

    DOEpatents

    Devlin, David J.; Currier, Robert P.; Laia, Jr., Joseph R.; Barbero, Robert S.

    1993-01-01

    A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

  6. Development Program of IS Process Pilot Test Plant for Hydrogen Production With High-Temperature Gas-Cooled Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Iwatsuki; Atsuhiko Terada; Hiroyuki Noguchi

    2006-07-01

    At the present time, we are alarmed by depletion of fossil energy and effects on global environment such as acid rain and global warming, because our lives depend still heavily on fossil energy. So, it is universally recognized that hydrogen is one of the best energy media and its demand will be increased greatly in the near future. In Japan, the Basic Plan for Energy Supply and Demand based on the Basic Law on Energy Policy Making was decided upon by the Cabinet on 6 October, 2003. In the plan, efforts for hydrogen energy utilization were expressed as follows; hydrogenmore » is a clean energy carrier without carbon dioxide (CO{sub 2}) emission, and commercialization of hydrogen production system using nuclear, solar and biomass, not fossil fuels, is desired. However, it is necessary to develop suitable technology to produce hydrogen without CO{sub 2} emission from a view point of global environmental protection, since little hydrogen exists naturally. Hydrogen production from water using nuclear energy, especially the high-temperature gas-cooled reactor (HTGR), is one of the most attractive solutions for the environmental issue, because HTGR hydrogen production by water splitting methods such as a thermochemical iodine-sulfur (IS) process has a high possibility to produce hydrogen effectively and economically. The Japan Atomic Energy Agency (JAEA) has been conducting the HTTR (High-Temperature Engineering Test Reactor) project from the view to establishing technology base on HTGR and also on the IS process. In the IS process, raw material, water, is to be reacted with iodine (I{sub 2}) and sulfur dioxide (SO{sub 2}) to produce hydrogen iodide (HI) and sulfuric acid (H{sub 2}SO{sub 4}), the so-called Bunsen reaction, which are then decomposed endo-thermically to produce hydrogen (H{sub 2}) and oxygen (O{sub 2}), respectively. Iodine and sulfur dioxide produced in the decomposition reactions can be used again as the reactants in the Bunsen reaction. In JAEA, continuous hydrogen production was demonstrated with the hydrogen production rate of about 30 NL/hr for one week using a bench-scale test apparatus made of glass. Based on the test results and know-how obtained through the bench-scale tests, a pilot test plant that can produce hydrogen of about 30 Nm{sup 3}/hr is being designed. The test plant will be fabricated with industrial materials such as glass coated steel, SiC ceramics etc, and operated under high pressure condition up to 2 MPa. The test plant will consist of a IS process plant and a helium gas (He) circulation facility (He loop). The He loop can simulate HTTR operation conditions, which consists of a 400 kW-electric heater for He hating, a He circulator and a steam generator working as a He cooler. In parallel to the design study, key components of the IS process such as the sulfuric acid (H{sub 2}SO{sub 4}) and the sulfur trioxide (SO{sub 3}) decomposers working under-high temperature corrosive environments have been designed and test-fabricated to confirm their fabricability. Also, other R and D's are under way such as corrosion, processing of HIx solutions. This paper describes present status of these activities. (authors)« less

  7. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material). Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A Numerical Assessment of Cosmic-Ray Energy Diffusion through Turbulent Media

    NASA Astrophysics Data System (ADS)

    Fatuzzo, M.; Melia, F.

    2014-04-01

    How and where cosmic rays are produced, and how they diffuse through various turbulent media, represent fundamental problems in astrophysics with far-reaching implications, both in terms of our theoretical understanding of high-energy processes in the Milky Way and beyond, and the successful interpretation of space-based and ground based GeV and TeV observations. For example, recent and ongoing detections, e.g., by Fermi (in space) and HESS (in Namibia), of γ-rays produced in regions of dense molecular gas hold important clues for both processes. In this paper, we carry out a comprehensive numerical investigation of relativistic particle acceleration and transport through turbulent magnetized environments in order to derive broadly useful scaling laws for the energy diffusion coefficients.

  9. Survey of power tower technology

    NASA Astrophysics Data System (ADS)

    Hildebrandt, A. F.; Dasgupta, S.

    1980-05-01

    The history of the power tower programs is reviewed, and attention is given to the current state of heliostat, receiver, and storage design. Economic considerations are discussed, as are simulation studies and implications. Also dealt with are alternate applications for the power tower and some financing and energy aspects of solar electric conversion. It is noted that with a national commitment to solar energy, the power tower concept could generate 40 GW of electricity and double this amount in process heat by the year 2000. Calculations show an energy amplification factor of 20 for solar energy plants; that is, the ratio of the electric energy produced over the lifetime of a power plant to the thermal energy required to produce the plant.

  10. Synthesis of Nano-Crystalline Gamma-TiAl Materials

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Vasquez, Peter

    2003-01-01

    One of the principal problems with nano-crystalline materials is producing them in quantities and sizes large enough for valid mechanical property evaluation. The purpose of this study was to explore an innovative method for producing nano-crystalline gamma-TiAl bulk materials using high energy ball milling and brief secondary processes. Nano-crystalline powder feedstock was produced using a Fritsch P4(TM) vario-planetary ball mill recently installed at NASA-LaRC. The high energy ball milling process employed tungsten carbide tooling (vials and balls) and no process control agents to minimize contamination. In a collaborative effort, two approaches were investigated, namely mechanical alloying of elemental powders and attrition milling of pre-alloyed powders. The objective was to subsequently use RF plasma spray deposition and short cycle vacuum hot pressing in order to effect consolidation while retaining nano-crystalline structure in bulk material. Results and discussion of the work performed to date are presented.

  11. Energy and climate impacts of producing synthetic hydrocarbon fuels from CO(2).

    PubMed

    van der Giesen, Coen; Kleijn, René; Kramer, Gert Jan

    2014-06-17

    Within the context of carbon dioxide (CO2) utilization there is an increasing interest in using CO2 as a resource to produce sustainable liquid hydrocarbon fuels. When these fuels are produced by solely using solar energy they are labeled as solar fuels. In the recent discourse on solar fuels intuitive arguments are used to support the prospects of these fuels. This paper takes a quantitative approach to investigate some of the claims made in this discussion. We analyze the life cycle performance of various classes of solar fuel processes using different primary energy and CO2 sources. We compare their efficacy with respect to carbon mitigation with ubiquitous fossil-based fuels and conclude that producing liquid hydrocarbon fuels starting from CO2 by using existing technologies requires much more energy than existing fuels. An improvement in life cycle CO2 emissions is only found when solar energy and atmospheric CO2 are used. Producing fuels from CO2 is a very long-term niche at best, not the panacea suggested in the recent public discourse.

  12. From Waste to Watts: The fermentation of animal waste occuring in a digester producing methane gasses as a side product and converted to energy.

    NASA Astrophysics Data System (ADS)

    Weiss, S.

    2015-12-01

    The waste product from animals is readily available all over the world, including third world countries. Using animal waste to produce green energy would allow low cost energy sources and give independence from fossil fuels. But which animal produces the most methane and how hard is it to harvest? Before starting this experiment I knew that some cow farms in the northern part of the Central California basin were using some of the methane from the waste to power their machinery as a safer, cheaper and greener source through the harnessed methane gas in a digester. The fermentation process would occur in the digester producing methane gasses as a side product. Methane that is collected can later be burned for energy. I have done a lot of research on this experiment and found that many different farm and ranch animals produce methane, but it was unclear which produced the most. I decided to focus my study on the waste from cows, horses, pig and dogs to try to find the most efficient and strongest source of methane from animal waste. I produced an affordable methane digester from plastic containers with a valve to attach a hose. By putting in the waste product and letting it ferment with water, I was able to produce and capture methane, then measure the amount with a Gaslab meter. By showing that it is possible to create energy with this simple digester, it could reduce pollution and make green energy easily available to communities all over the world. Eventually this could result into our sewer systems converting waste to energy, producing an energy source right in your home.

  13. Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation.

    PubMed

    Bray, G A; Kim, K K; Wilding, J P H

    2017-07-01

    This paper considers the argument for obesity as a chronic relapsing disease process. Obesity is viewed from an epidemiological model, with an agent affecting the host and producing disease. Food is the primary agent, particularly foods that are high in energy density such as fat, or in sugar-sweetened beverages. An abundance of food, low physical activity and several other environmental factors interact with the genetic susceptibility of the host to produce positive energy balance. The majority of this excess energy is stored as fat in enlarged, and often more numerous fat cells, but some lipid may infiltrate other organs such as the liver (ectopic fat). The enlarged fat cells and ectopic fat produce and secrete a variety of metabolic, hormonal and inflammatory products that produce damage in organs such as the arteries, heart, liver, muscle and pancreas. The magnitude of the obesity and its adverse effects in individuals may relate to the virulence or toxicity of the environment and its interaction with the host. Thus, obesity fits the epidemiological model of a disease process except that the toxic or pathological agent is food rather than a microbe. Reversing obesity will prevent most of its detrimental effects. © 2017 World Obesity Federation.

  14. Evidence for Secondary Emission as the Origin of Hard Spectra in TeV Blazars

    NASA Astrophysics Data System (ADS)

    Zheng, Y. G.; Kang, T.

    2013-02-01

    We develop a model for the possible origin of hard, very high energy (VHE) spectra from a distant blazar. In the model, both the primary photons produced in the source and secondary photons produced outside it contribute to the observed high-energy γ-ray emission. That is, the primary photons are produced through the synchrotron self-Compton process, and the secondary photons are produced through high-energy proton interactions with background photons along the line of sight. We apply the model to a characteristic case of VHE γ-ray emission in the distant blazar 1ES 1101-232. Assuming suitable electron and proton spectra, we obtain excellent fits to the observed spectra of this blazar. This indicated that the surprisingly low attenuation of the high-energy γ-rays, especially the shape of the VHE γ-ray tail of the observed spectra, can be explained by secondary γ-rays produced in interactions of cosmic-ray protons with background photons in intergalactic space.

  15. Progress on China nuclear data processing code system

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Wu, Xiaofei; Ge, Zhigang; Li, Songyang; Wu, Haicheng; Wen, Lili; Wang, Wenming; Zhang, Huanyu

    2017-09-01

    China is developing the nuclear data processing code Ruler, which can be used for producing multi-group cross sections and related quantities from evaluated nuclear data in the ENDF format [1]. The Ruler includes modules for reconstructing cross sections in all energy range, generating Doppler-broadened cross sections for given temperature, producing effective self-shielded cross sections in unresolved energy range, calculating scattering cross sections in thermal energy range, generating group cross sections and matrices, preparing WIMS-D format data files for the reactor physics code WIMS-D [2]. Programming language of the Ruler is Fortran-90. The Ruler is tested for 32-bit computers with Windows-XP and Linux operating systems. The verification of Ruler has been performed by comparison with calculation results obtained by the NJOY99 [3] processing code. The validation of Ruler has been performed by using WIMSD5B code.

  16. Press fluid pre-treatment optimisation of the integrated generation of solid fuel and biogas from biomass (IFBB) process approach.

    PubMed

    Corton, John; Toop, Trisha; Walker, Jonathan; Donnison, Iain S; Fraser, Mariecia D

    2014-10-01

    The integrated generation of solid fuel and biogas from biomass (IFBB) system is an innovative approach to maximising energy conversion from low input high diversity (LIHD) biomass. In this system water pre-treated and ensiled LIHD biomass is pressed. The press fluid is anaerobically digested to produce methane that is used to power the process. The fibrous fraction is densified and then sold as a combustion fuel. Two process options designed to concentrate the press fluid were assessed to ascertain their influence on productivity in an IFBB like system: sedimentation and the omission of pre-treatment water. By concentrating press fluid and not adding water during processing, energy production from methane was increased by 75% per unit time and solid fuel productivity increased by 80% per unit of fluid produced. The additional energy requirements for pressing more biomass in order to generate equal volumes of feedstock were accounted for in these calculations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Automatic, nondestructive test monitors in-process weld quality

    NASA Technical Reports Server (NTRS)

    Deal, F. C.

    1968-01-01

    Instrument automatically and nondestructively monitors the quality of welds produced in microresistance welding. It measures the infrared energy generated in the weld as the weld is made and compares this energy with maximum and minimum limits of infrared energy values previously correlated with acceptable weld-strength tolerances.

  18. Requirement, balance and energy efficiency under two models of cropping systems in the center-south of Buenos Aires, Argentina.

    NASA Astrophysics Data System (ADS)

    Zamora, Martin; Barbera, Agustin; Hansson, Alejandro; Carrasco, Natalia; Domenech, Marisa

    2017-04-01

    In a natural ecosystem, the solar energy is the main source. However, in the agro ecosystem we should use others in order to sustain specific processes or to avoid some interactions. This energy is introduced in the agro-system not only as fossil fuel but also as inputs like fertilizers and pesticides or for agricultural machines. Since February 2011, two adjacent fields were set at Barrow Experimental Station (Lat:-38.322844, Lon:-60.25572): one of them adopting agro-ecology principles (AGROE), as biodiversity increase, polyculture with legumes, less use of agrochemicals; while the other one is based on industrial model of agriculture (ACTUAL). This model is defined by its capital intensity and dependence on massive inputs like seeds, fertilizer, and pesticides. In both fields, beef cattle and agriculture production have been implemented with different intensity. The aim of this study was to compare the demand, production, balance and energy efficiency between these two agro-systems. To do this, we use tables of energy associated with different processes and inputs. For both systems, we estimate the energetic demand used in seeds, pesticides, fertilizers and labor during the crop sequence from February 2011 to December 2015; the energy production according to grains and meat yield achieved; the energetic balance calculated as the difference between inputs and outputs of energy in the system and finally, the energy efficiency which is the ratio between the energy produced and consumed. Inputs-outputs ratios of energy were transformed into equivalent units = GJ (Gigajoules). After a sequence of seven crops, ACTUAL consumed 60 GJ, which represents 158% more energy than AGROE. Particularly, ACTUAL consumed a 72% more energy in cultivation labor, 372% more in herbicides and 10 times more energy used in fertilizers than AGROE. Even though ACTUAL produced 37% more energy than AGROE (187 GJ vs 127 GJ) in grain and meat, the energetic balance was only 12% higher. However, AGROE double the energy efficiency (5.9 vs. 3.13). AGROE was more efficient in the use of energy resources and less energy-dependent to produce goods and food. In addition, this model produces less environmental deterioration, preserve natural resources and produce food on a sustainable basis.

  19. Characterization of cellulosic wastes and gasification products from chicken farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Paul, E-mail: p.joseph@ulster.ac.uk; Tretsiakova-McNally, Svetlana; McKenna, Siobhan

    Highlights: Black-Right-Pointing-Pointer The gas chromatography indicated the variable quality of the producer gas. Black-Right-Pointing-Pointer The char had appreciable NPK values, and can be used as a fertiliser. Black-Right-Pointing-Pointer The bio-oil produced was of poor quality, having high moisture content and low pH. Black-Right-Pointing-Pointer Mass and energy balances showed inadequate level energy recovery from the process. Black-Right-Pointing-Pointer Future work includes changing the operating parameters of the gasification unit. - Abstract: The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chickenmore » litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.« less

  20. Industrial energy systems and assessment opportunities

    NASA Astrophysics Data System (ADS)

    Barringer, Frank Leonard, III

    Industrial energy assessments are performed primarily to increase energy system efficiency and reduce energy costs in industrial facilities. The most common energy systems are lighting, compressed air, steam, process heating, HVAC, pumping, and fan systems, and these systems are described in this document. ASME has produced energy assessment standards for four energy systems, and these systems include compressed air, steam, process heating, and pumping systems. ASHRAE has produced an energy assessment standard for HVAC systems. Software tools for energy systems were developed for the DOE, and there are software tools for almost all of the most common energy systems. The software tools are AIRMaster+ and LogTool for compressed air systems, SSAT and 3E Plus for steam systems, PHAST and 3E Plus for process heating systems, eQUEST for HVAC systems, PSAT for pumping systems, and FSAT for fan systems. The recommended assessment procedures described in this thesis are used to set up an energy assessment for an industrial facility, collect energy system data, and analyze the energy system data. The assessment recommendations (ARs) are opportunities to increase efficiency and reduce energy consumption for energy systems. A set of recommended assessment procedures and recommended assessment opportunities are presented for each of the most common energy systems. There are many assessment opportunities for industrial facilities, and this thesis describes forty-three ARs for the seven different energy systems. There are seven ARs for lighting systems, ten ARs for compressed air systems, eight ARs for boiler and steam systems, four ARs for process heating systems, six ARs for HVAC systems, and four ARs for both pumping and fan systems. Based on a history of past assessments, average potential energy savings and typical implementation costs are shared in this thesis for most ARs. Implementing these ARs will increase efficiency and reduce energy consumption for energy systems in industrial facilities. This thesis does not explain all energy saving ARs that are available, but does describe the most common ARs.

  1. Solution-Processed Cu2Se Nanocrystal Films with Bulk-Like Thermoelectric Performance.

    PubMed

    Forster, Jason D; Lynch, Jared J; Coates, Nelson E; Liu, Jun; Jang, Hyejin; Zaia, Edmond; Gordon, Madeleine P; Szybowski, Maxime; Sahu, Ayaskanta; Cahill, David G; Urban, Jeffrey J

    2017-06-05

    Thermoelectric power generation can play a key role in a sustainable energy future by converting waste heat from power plants and other industrial processes into usable electrical power. Current thermoelectric devices, however, require energy intensive manufacturing processes such as alloying and spark plasma sintering. Here, we describe the fabrication of a p-type thermoelectric material, copper selenide (Cu 2 Se), utilizing solution-processing and thermal annealing to produce a thin film that achieves a figure of merit, ZT, which is as high as its traditionally processed counterpart, a value of 0.14 at room temperature. This is the first report of a fully solution-processed nanomaterial achieving performance equivalent to its bulk form and represents a general strategy to reduce the energy required to manufacture advanced energy conversion and harvesting materials.

  2. Establishing a Common Definition for Zero Energy Buildings: Time to Move the Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Kent; Torcellini, Paul; Taylor, Cody

    To change the current paradigm from buildings being consumers of energy to producers of energy requires a common language to facilitate market transformation. Common definitions help create market movement by sharing concepts across market actors. While the term 'zero energy buildings' has been in the marketplace for over 20 years, no common definition had been established. US DOE, last year, embarked on a process to evaluate current definitions and solicit industry input to formulate a common definition and nomenclature for zero energy buildings. This definition uses commonly available site measurements and national conversion factors to define zero energy buildings onmore » a source energy basis for a variety of boundary conditions including building, portfolio, campus, and community. Issues addressed include multiple fuel types, cogeneration, and renewable energy certificates. This paper describes the process used to arrive at the definition, looks at methods of calculating site to source energy conversions, and how boundary decisions affect a robust and stable definition that can be used to direct programs and policies for many years to come. This stability is critical to move building investments towards buildings that produce as much energy as they consume.« less

  3. Production of Energy Efficient Preform Structures (PEEPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. John A. Baumann

    2012-06-08

    Due to its low density, good structural characteristics, excellent fabrication properties, and attractive appearance, aluminum metal and its alloys continue to be widely utilized. The transportation industry continues to be the largest consumer of aluminum products, with aerospace as the principal driver for this use. Boeing has long been the largest single company consumer of heat-treated aluminum in the U.S. The extensive use of aluminum to build aircraft and launch vehicles has been sustained, despite the growing reliance on more structurally efficient carbon fiber reinforced composite materials. The trend in the aerospace industry over the past several decades has beenmore » to rely extensively on large, complex, thin-walled, monolithic machined structural components, which are fabricated from heavy billets and thick plate using high speed machining. The use of these high buy-to-fly ratio starting product forms, while currently cost effective, is energy inefficient, with a high environmental impact. The widespread implementation of Solid State Joining (SSJ) technologies, to produce lower buy-to-fly ratio starting forms, tailored to each specific application, offers the potential for a more sustainable manufacturing strategy, which would consume less energy, require less material, and reduce material and manufacturing costs. One objective of this project was to project the energy benefits of using SSJ techniques to produce high-performance aluminum structures if implemented in the production of the world fleet of commercial aircraft. A further objective was to produce an energy consumption prediction model, capable of calculating the total energy consumption, solid waste burden, acidification potential, and CO2 burden in producing a starting product form - whether by conventional or SSJ processes - and machining that to a final part configuration. The model needed to be capable of computing and comparing, on an individual part/geometry basis, multiple possible manufacturing pathways, to identify the best balance of energy consumption and environmental impact. This model has been created and populated with energy consumption data for individual SSJ processes and process platforms. Technology feasibility cases studies were executed, to validate the model, and confirm the ability to create lower buy-to-fly ratio performs and machine these to final configuration aircraft components. This model can now be used as a tool to select manufacturing pathways that offer significant energy savings and, when coupled with a cost model, drive implementation of the SSJ processes.« less

  4. Solar breeder: Energy payback time for silicon photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1977-01-01

    The energy expenditures of the prevailing manufacturing technology of terrestrial photovoltaic cells and panels were evaluated, including silicon reduction, silicon refinement, crystal growth, cell processing and panel building. Energy expenditures include direct energy, indirect energy, and energy in the form of equipment and overhead expenses. Payback times were development using a conventional solar cell as a test vehicle which allows for the comparison of its energy generating capability with the energies expended during the production process. It was found that the energy payback time for a typical solar panel produced by the prevailing technology is 6.4 years. Furthermore, this value drops to 3.8 years under more favorable conditions. Moreover, since the major energy use reductions in terrestrial manufacturing have occurred in cell processing, this payback time directly illustrates the areas where major future energy reductions can be made -- silicon refinement, crystal growth, and panel building.

  5. Directed-energy process technology efforts

    NASA Technical Reports Server (NTRS)

    Alexander, P.

    1985-01-01

    A summary of directed-energy process technology for solar cells was presented. This technology is defined as directing energy or mass to specific areas on solar cells to produce a desired effect in contrast to exposing a cell to a thermal or mass flow environment. Some of these second generation processing techniques are: ion implantation; microwave-enhanced chemical vapor deposition; rapid thermal processing; and the use of lasers for cutting, assisting in metallization, assisting in deposition, and drive-in of liquid dopants. Advantages of directed energy techniques are: surface heating resulting in the bulk of the cell material being cooler and unchanged; better process control yields; better junction profiles, junction depths, and metal sintering; lower energy consumption during processing and smaller factory space requirements. These advantages should result in higher-efficiency cells at lower costs. The results of the numerous contracted efforts were presented as well as the application potentials of these new technologies.

  6. The role of ion-exchange membrane in energy conversion

    NASA Astrophysics Data System (ADS)

    Khoiruddin, Aryanti, Putu T. P.; Hakim, Ahmad N.; Wenten, I. Gede

    2017-05-01

    Ion-exchange membrane (IEM) may play an important role in the future of electrical energy generation which is considered as renewable and clean energy. Fell cell (FC) is one of the promising technologies for solving energy issues in the future owing to the interesting features such as high electrical efficiency, low emissions, low noise level, and modularity. IEM-based processes, such as microbial fuel cell (MFC) and reverse electrodialysis (RED) may be combined with water or wastewater treatment into an integrated system. By using the integrated system, water and energy could be produced simultaneously. The IEM-based processes can be used for direct electricity generation or long term energy storage such as by harnessing surplus electricity from an existing renewable energy system to be converted into hydrogen gas via electrolysis or stored into chemical energy via redox flow battery (RFB). In this paper, recent development and applications of IEM-based processes in energy conversion are reviewed. In addition, perspective and challenges of IEM-based processes in energy conversion are pointed out.

  7. The National Nanotechnology Initiative: Second Assessment and Recommendations of the National Nanotechnology Advisory Panel

    DTIC Science & Technology

    2008-04-01

    approach can be applied to harvesting electrical energy from mechanical energy produced by body movement, light wind, vibration , and sound, with potential...the NNAP under the Act. Front cover: Scanning electron microscopy (SEM) image showing piezoelectric zinc oxide nanowires grown around two conductive...metal-coated microfibers to scrub those not coated with metal to produce electricity via a coupled piezoelectric - semiconducting process. This

  8. Forest biomass diversion in the Sierra Nevada: Energy, economics and emissions

    Treesearch

    Bruce Springsteen; Thomas Christofk; Robert A. York; Tad Mason; Stephen Baker; Emily Lincoln; Bruce Hartsough; Takuyuki Yoshioka

    2015-01-01

    As an alternative to open pile burning, use of forest wastes from fuel hazard reduction projects at Blodgett Forest Research Station for electricity production was shown to produce energy and emission benefits: energy (diesel fuel) expended for processing and transport was 2.5% of the biomass fuel (energy equivalent); based on measurements from a large pile...

  9. Energetic Characterization of Metal-Hybrid Fuels

    DTIC Science & Technology

    2013-03-31

    WL, Gallegos AAA, Sebastian PJ. Recycling of Aluminum to Produce Green Energy. Sol. Energy Mater. Sol. Cells 2005; 88(2): 237–43. 17. Hiraki T...Energy Congress and Exhibition, IHEC 2005, Istanbul, Turkey, 13–15 July 2005. 20. Hiraki T, Yamauchi S, Iida M, Uesugi H, Akiyama T. Process for

  10. Theoretical physics: Quarks fuse to release energy

    NASA Astrophysics Data System (ADS)

    Miller, Gerald A.

    2017-11-01

    In nuclear fusion, energy is produced by the rearrangement of protons and neutrons. The discovery of an analogue of this process involving particles called quarks has implications for both nuclear and particle physics. See Letter p.89

  11. Papaya drying and waste conversion system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-02-12

    This project, performed under United States Department of Energy Small-scale Appropriate Energy Technology Grant, involves demonstration of an integrated system using solar energy to process off-grade or reject fruit into marketable food products. The integrated system consists of three phases: (1) solar dehydration of usable fruit; (2) solar vacuum distillation of fermented wastes (peelings, rinds, skins, and seeds) to produce an ethanol fuel to use as a backup source of heat for dehydration; and (3) land reclamation by mixing stillage and compost with volcanic cinder and ash to produce on marginal land a rich soil suitable for growing more cropsmore » to dry. Although the system is not 100% complete the investigators have demonstrated that a small business can efficiently use solar energies in an integrated fashion to process waste into food, improve the quality of the land, and provide meaningful jobs in a region of very high unemployment.« less

  12. Integration of Power to Methane in a waste water treatment plant - A feasibility study.

    PubMed

    Patterson, Tim; Savvas, Savvas; Chong, Alex; Law, Ian; Dinsdale, Richard; Esteves, Sandra

    2017-12-01

    The integration of a biomethanation system within a wastewater treatment plant for conversion of CO 2 and H 2 to CH 4 has been studied. Results indicate that the CO 2 could be utilised to produce an additional 13,420m 3 /day of CH 4 , equivalent to approximately 133,826kWh of energy. The whole conversion process including electrolysis was found to have an energetic efficiency of 66.2%. The currently un-optimised biomethanation element of the process had a parasitic load of 19.9% of produced energy and strategies to reduce this to <5% are identified. The system could provide strategic benefits such as integrated management of electricity and gas networks, energy storage and maximising the deployment and efficiency of renewable energy assets. However, no policy or financial frameworks exist to attribute value to these increasingly important functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The biogeochemistry of anchialine caves: Progress and possibilities

    USGS Publications Warehouse

    Pohlman, John W.

    2011-01-01

    Recent investigations of anchialine caves and sinkholes have identified complex food webs dependent on detrital and, in some cases, chemosynthetically produced organic matter. Chemosynthetic microbes in anchialine systems obtain energy from reduced compounds produced during organic matter degradation (e.g., sulfide, ammonium, and methane), similar to what occurs in deep ocean cold seeps and mud volcanoes, but distinct from dominant processes operating at hydrothermal vents and sulfurous mineral caves where the primary energy source is mantle derived. This review includes case studies from both anchialine and non-anchialine habitats, where evidence for in situ chemosynthetic production of organic matter and its subsequent transfer to higher trophic level metazoans is documented. The energy sources and pathways identified are synthesized to develop conceptual models for elemental cycles and energy cascades that occur within oligotrophic and eutrophic anchialine caves. Strategies and techniques for testing the hypothesis of chemosynthesis as an active process in anchialine caves are also suggested.

  14. Solar energy for electricity and fuels.

    PubMed

    Inganäs, Olle; Sundström, Villy

    2016-01-01

    Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorganic, or hybrid materials for light collection and catalysis. We also briefly discuss challenges and needs for large-scale implementation of direct solar fuel technologies.

  15. Effect of Power Ultrasound on Food Quality

    NASA Astrophysics Data System (ADS)

    Lee, Hyoungill; Feng, Hao

    Recent food processing technology innovations have been centered around producing foods with fresh-like attributes through minimal processing or nonthermal processing technologies. Instead of using thermal energy to secure food safety that is often accompanied by quality degradation in processed foods, the newly developed processing modalities utilize other types of physical energy such as high pressure, pulsed electric field or magnetic field, ultraviolet light, or acoustic energy to process foods. An improvement in food quality by the new processing methods has been widely reported. In comparison with its low-energy (high-frequency) counterpart which finds applications in food quality inspection, the use of high-intensity ultrasound, also called power ultrasound, in food processing is a relatively new endeavor. To understand the effect of high-intensity ultrasound treatment on food quality, it is important to understand the interactions between acoustic energy and food ingredients, which is covered in Chapter 10. In this chapter, the focus will be on changes in overall food quality attributes that are caused by ultrasound, such as texture, color, flavor, and nutrients.

  16. Utilization of biogas produced by anaerobic digestion of agro-industrial waste: Energy, economic and environmental effects.

    PubMed

    Hublin, Andrea; Schneider, Daniel Rolph; Džodan, Janko

    2014-07-01

    Anaerobic digestion of agro-industrial waste is of significant interest in order to facilitate a sustainable development of energy supply. Using of material and energy potentials of agro-industrial waste, in the framework of technical, economic, and ecological possibilities, contributes in increasing the share of energy generated from renewable energy sources. The paper deals with the benefits arising from the utilization of biogas produced by co-digestion of whey and cow manure. The advantages of this process are the profitability of the plant and the convenience in realizing an anaerobic digestion plant to produce biogas that is enabled by the benefits from the sale of electric energy at favorable prices. Economic aspects are related to the capital cost (€ 2,250,000) of anaerobic digestion treatment in a biogas plant with a 300 kW power and 510 kW heating unit in a medium size farm (450 livestock units). Considering the optimum biogas yield of 20.7 dm(3) kg(-1) of wet substrate and methane content in the biogas obtained of 79%, the anaerobic process results in a daily methane production of 2,500 kg, with the maximum power generation of 2,160,000 kWh y(-1) and heat generation of 2,400,000 kWh y(-1) The net present value (NPV), internal rate of return (IRR) and payback period for implementation of profitable anaerobic digestion process is evaluated. Ecological aspects related to carbon dioxide (CO2) and methane (CH4) emission reduction are assessed. © The Author(s) 2014.

  17. 40 CFR 80.1426 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process energy 6 F Biodiesel, renewable diesel, jet fuel and heating oil Soy bean oil; Oil from annual... biomass and petroleum 4 G Biodiesel, heating oil Canola/Rapeseed oil Trans-Esterification using natural gas or biomass for process energy 4 H Biodiesel, renewable diesel, jet fuel and heating oil Soy bean...

  18. 40 CFR 80.1426 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fermentation using natural gas, biomass, or biogas for process energy 6 Biodiesel, and renewable diesel Soy... renewable biomass and petroleum 4 Biodiesel Canola oil Trans-Esterification using natural gas or biomass for process energy 4 Biodiesel, and renewable diesel Soy bean oil;Oil from annual covercrops; Algal oil...

  19. 40 CFR 80.1426 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fermentation using natural gas, biomass, or biogas for process energy 6 Biodiesel, and renewable diesel Soy... renewable biomass and petroleum 4 Biodiesel Canola oil Trans-Esterification using natural gas or biomass for process energy 4 Biodiesel, and renewable diesel Soy bean oil;Oil from annual covercrops; Algal oil...

  20. Tree disease and wood decay as agents of environmental and social change

    Treesearch

    Kevin T. Smith

    2018-01-01

    The breakdown or decay of wood is a prominent process in landscape health and disease. The bulk of the energy captured and stored by natural woodlands, orchards, and agroforestry operations is allocated to produce wood. The release of that stored energy and the cycling of the constituent mineral elements into environmental pools and other organisms is through processes...

  1. Solution-Processed Cu 2Se Nanocrystal Films with Bulk-Like Thermoelectric Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forster, Jason D.; Lynch, Jared J.; Coates, Nelson E.

    Thermoelectric power generation can play a key role in a sustainable energy future by converting waste heat from power plants and other industrial processes into usable electrical power. Current thermoelectric devices, however, require energy intensive manufacturing processes such as alloying and spark plasma sintering. Here, we describe the fabrication of a p-type thermoelectric material, copper selenide (Cu 2 Se), utilizing solution-processing and thermal annealing to produce a thin film that achieves a figure of merit, ZT, which is as high as its traditionally processed counterpart, a value of 0.14 at room temperature. This is the first report of amore » fully solution-processed nanomaterial achieving performance equivalent to its bulk form and represents a general strategy to reduce the energy required to manufacture advanced energy conversion and harvesting materials.« less

  2. Solution-Processed Cu 2Se Nanocrystal Films with Bulk-Like Thermoelectric Performance

    DOE PAGES

    Forster, Jason D.; Lynch, Jared J.; Coates, Nelson E.; ...

    2017-06-05

    Thermoelectric power generation can play a key role in a sustainable energy future by converting waste heat from power plants and other industrial processes into usable electrical power. Current thermoelectric devices, however, require energy intensive manufacturing processes such as alloying and spark plasma sintering. Here, we describe the fabrication of a p-type thermoelectric material, copper selenide (Cu 2 Se), utilizing solution-processing and thermal annealing to produce a thin film that achieves a figure of merit, ZT, which is as high as its traditionally processed counterpart, a value of 0.14 at room temperature. This is the first report of amore » fully solution-processed nanomaterial achieving performance equivalent to its bulk form and represents a general strategy to reduce the energy required to manufacture advanced energy conversion and harvesting materials.« less

  3. Sonochemical and hydrodynamic cavitation reactors for laccase/hydrogen peroxide cotton bleaching.

    PubMed

    Gonçalves, Idalina; Martins, Madalena; Loureiro, Ana; Gomes, Andreia; Cavaco-Paulo, Artur; Silva, Carla

    2014-03-01

    The main goal of this work is to develop a novel and environmental-friendly technology for cotton bleaching with reduced processing costs. This work exploits a combined laccase-hydrogen peroxide process assisted by ultrasound. For this purpose, specific reactors were studied, namely ultrasonic power generator type K8 (850 kHz) and ultrasonic bath equipment Ultrasonic cleaner USC600TH (45 kHz). The optimal operating conditions for bleaching were chosen considering the highest levels of hydroxyl radical production and the lowest energy input. The capacity to produce hydroxyl radicals by hydrodynamic cavitation was also assessed in two homogenizers, EmulsiFlex®-C3 and APV-2000. Laccase nanoemulsions were produced by high pressure homogenization using BSA (bovine serum albumin) as emulsifier. The bleaching efficiency of these formulations was tested and the results showed higher whiteness values when compared to free laccase. The combination of laccase-hydrogen peroxide process with ultrasound energy produced higher whiteness levels than those obtained by conventional methods. The amount of hydrogen peroxide was reduced 50% as well as the energy consumption in terms of temperature (reduction of 40 °C) and operating time (reduction of 90 min). Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Waste management in the meat processing industry: Conversion of paunch and DAF sludge into solid fuel.

    PubMed

    Hamawand, Ihsan; Pittaway, Pam; Lewis, Larry; Chakrabarty, Sayan; Caldwell, Justin; Eberhard, Jochen; Chakraborty, Arpita

    2017-02-01

    This article addresses the novel dewatering process of immersion-frying of paunch and dissolved air flotation (DAF) sludge to produce high energy pellets. Literature have been analysed to address the feasibility of replacing conventional boiler fuel at meat processing facilities with high energy paunch-DAF sludge pellets (capsules). The value proposition of pelleting and frying this mixture into energy pellets is based on a Cost-Benefit Analysis (CBA). The CBA is based on information derived from the literature and consultation with the Australian Meat Processing Industry. The calorific properties of a mixture of paunch cake solids and DAF sludge were predicted from literature and industry consultation to validate the product. This study shows that the concept of pelletizing and frying paunch is economically feasible. The complete frying and dewatering of the paunch and DAF sludge mixture produces pellets with energy content per kilogram equivalent to coal. The estimated cost of this new product is half the price of coal and the payback period is estimated to be between 1.8 and 3.2years. Further research is required for proof of concept, and to identify the technical challenges associated with integrating this technology into existing meat processing plants. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  5. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M.; Wang, M.; Liu, J.

    2008-01-01

    Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(reg. sign) simulation for a corn-to-butanol production process, which describesmore » grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. In this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield, should be conducted.« less

  6. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel.

    PubMed

    Wu, May; Wang, Michael; Liu, Jiahong; Huo, Hong

    2008-01-01

    Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(R) simulation for a corn-to-butanol production process, which describes grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. In this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield, should be conducted.

  7. BioCO2 - a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products.

    PubMed

    Skjånes, Kari; Lindblad, Peter; Muller, Jiri

    2007-10-01

    Many areas of algae technology have developed over the last decades, and there is an established market for products derived from algae, dominated by health food and aquaculture. In addition, the interest for active biomolecules from algae is increasing rapidly. The need for CO(2) management, in particular capture and storage is currently an important technological, economical and global political issue and will continue to be so until alternative energy sources and energy carriers diminish the need for fossil fuels. This review summarizes in an integrated manner different technologies for use of algae, demonstrating the possibility of combining different areas of algae technology to capture CO(2) and using the obtained algal biomass for various industrial applications thus bringing added value to the capturing and storage processes. Furthermore, we emphasize the use of algae in a novel biological process which produces H(2) directly from solar energy in contrast to the conventional CO(2) neutral biological methods. This biological process is a part of the proposed integrated CO(2) management scheme.

  8. Bioethanol fermentation as alternative valorization route of agricultural digestate according to a biorefinery approach.

    PubMed

    Sambusiti, C; Monlau, F; Barakat, A

    2016-07-01

    This study investigates the feasibility of producing bioethanol from solid digestate after a mechanical fractionation (i.e. centrifugal milling), in order to improve the energy recovery from agricultural wastes and the sustainability of anaerobic digestion plants. A bioethanol yield of 37gkg(-1)TS was evaluated for the solid digestate fraction. Mass and energetic balances were performed and compared between two scenarios: (A) one-stage bioethanol fermentation and (B) two-stage anaerobic digestion-bioethanol fermentation, in order to evaluate the feasibility and the advantages of the two-stage process. Results revealed that, compared to the one-stage process, the dual anaerobic digestion-bioethanol process permitted: (i) to diversify biofuels production; (ii) to provide the thermal energy sufficient for drying digestate (13,351kWhthday(-1)), for the subsequent milling step; (iii) to reduce the electric energy requirement for the milling step (from 23,880 to 3580kWhelday(-1)); (iv) to produce extra electrical energy of 8483kWhelday(-1); (v) to improve the reduction of waste streams generated (from 13% to 54% of organic matter removal). Copyright © 2016. Published by Elsevier Ltd.

  9. Low-cost process for hydrogen production

    DOEpatents

    Cha, Chang Y.; Bauer, Hans F.; Grimes, Robert W.

    1993-01-01

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen an carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  10. Low-cost process for hydrogen production

    DOEpatents

    Cha, C.H.; Bauer, H.F.; Grimes, R.W.

    1993-03-30

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen and carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  11. Development of the Fray-Farthing-Chen Cambridge Process: Towards the Sustainable Production of Titanium and Its Alloys

    NASA Astrophysics Data System (ADS)

    Hu, Di; Dolganov, Aleksei; Ma, Mingchan; Bhattacharya, Biyash; Bishop, Matthew T.; Chen, George Z.

    2018-02-01

    The Kroll process has been employed for titanium extraction since the 1950s. It is a labour and energy intensive multi-step semi-batch process. The post-extraction processes for making the raw titanium into alloys and products are also excessive, including multiple remelting steps. Invented in the late 1990s, the Fray-Farthing-Chen (FFC) Cambridge process extracts titanium from solid oxides at lower energy consumption via electrochemical reduction in molten salts. Its ability to produce alloys and powders, while retaining the cathode shape also promises energy and material efficient manufacturing. Focusing on titanium and its alloys, this article reviews the recent development of the FFC-Cambridge process in two aspects, (1) resource and process sustainability and (2) advanced post-extraction processing.

  12. Positron-Induced Luminescence.

    PubMed

    Stenson, E V; Hergenhahn, U; Stoneking, M R; Pedersen, T Sunn

    2018-04-06

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  13. Positron-Induced Luminescence

    NASA Astrophysics Data System (ADS)

    Stenson, E. V.; Hergenhahn, U.; Stoneking, M. R.; Pedersen, T. Sunn

    2018-04-01

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  14. Thermodynamic modelling of an onsite methanation reactor for upgrading producer gas from commercial small scale biomass gasifiers.

    PubMed

    Vakalis, S; Malamis, D; Moustakas, K

    2018-06-15

    Small scale biomass gasifiers have the advantage of having higher electrical efficiency in comparison to other conventional small scale energy systems. Nonetheless, a major drawback of small scale biomass gasifiers is the relatively poor quality of the producer gas. In addition, several EU Member States are seeking ways to store the excess energy that is produced from renewables like wind power and hydropower. A recent development is the storage of energy by electrolysis of water and the production of hydrogen in a process that is commonly known as "power-to-gas". The present manuscript proposes an onsite secondary reactor for upgrading producer gas by mixing it with hydrogen in order to initiate methanation reactions. A thermodynamic model has been developed for assessing the potential of the proposed methanation process. The model utilized input parameters from a representative small scale biomass gasifier and molar ratios of hydrogen from 1:0 to 1:4.1. The Villar-Cruise-Smith algorithm was used for minimizing the Gibbs free energy. The model returned the molar fractions of the permanent gases, the heating values and the Wobbe Index. For mixtures of hydrogen and producer gas on a 1:0.9 ratio the increase of the heating value is maximized with an increase of 78%. For ratios higher than 1:3, the Wobbe index increases significantly and surpasses the value of 30 MJ/Nm 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Experimental Investigations of the Energy and Environmental Indices of Operation of a Low-Capacity Combined Gas Producer and Hot-Water Boiler

    NASA Astrophysics Data System (ADS)

    Bodnar, L. A.; Stepanov, D. V.; Dovgal‧, A. N.

    2015-07-01

    It has been shown that the introduction of combined gas producers and boilers on renewable energy sources is a pressing issue. A structural diagram of a low-capacity combined gas producer and boiler on renewable energy sources has been given; a bench and procedures for investigation and processing of results have been developed. Experimental investigations of the energy and environmental indices of a 40-kW combined gas producer and hotwater boiler burning wood have been carried out. Results of the experimental investigations have been analyzed. Distinctive features have been established and a procedure of thermal calculation of the double furnace of a lowcapacity combined gas producer and boiler burning solid fuel has been proposed. The calculated coefficients of heat transfer from the gases in the convection bank have been compared with the obtained experimental results. A calculation dependence for the heat transfer from the gases in convection banks of low-capacity hot-water boilers has been proposed. The quantities of harmful emissions from the combined gas producer and boiler on renewable energy sources have been compared with the existing Ukrainian and foreign standards. It has been established that the environmental efficiency of the boiler under study complies with most of the standard requirements of European countries.

  16. Final Technical Report - Advanced Optical Sensors to Minimize Energy Consumption in Polymer Extrusion Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan J. Foulk

    Project Objective: The objectives of this study are to develop an accurate and stable on-line sensor system to monitor color and composition on-line in polymer melts, to develop a scheme for using the output to control extruders to eliminate the energy, material and operational costs of off-specification product, and to combine or eliminate some extrusion processes. Background: Polymer extrusion processes are difficult to control because the quality achieved in the final product is complexly affected by the properties of the extruder screw, speed of extrusion, temperature, polymer composition, strength and dispersion properties of additives, and feeder system properties. Extruder systemsmore » are engineered to be highly reproducible so that when the correct settings to produce a particular product are found, that product can be reliably produced time after time. However market conditions often require changes in the final product, different products or grades may be processed in the same equipment, and feed materials vary from lot to lot. All of these changes require empirical adjustment of extruder settings to produce a product meeting specifications. Optical sensor systems that can continuously monitor the composition and color of the extruded polymer could detect process upsets, drift, blending oscillations, and changes in dispersion of additives. Development of an effective control algorithm using the output of the monitor would enable rapid corrections for changes in materials and operating conditions, thereby eliminating most of the scrap and recycle of current processing. This information could be used to identify extruder systems issues, diagnose problem sources, and suggest corrective actions in real-time to help keep extruder system settings within the optimum control region. Using these advanced optical sensor systems would give extruder operators real-time feedback from their process. They could reduce the amount of off-spec product produced and significantly reduce energy consumption. Also, because blending and dispersion of additives and components in the final product could be continuously verified, we believe that, in many cases, intermediate compounding steps could be eliminated (saving even more time and energy).« less

  17. Technical and economic assessment of processes for the production of butanol and acetone

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This report represents a preliminary technical and economic evaluation of a process which produces mixed solvents (butaol/acetone/ethanol) via fermentation of sugars derived from renewable biomass resources. The objective is to assess the technology of producing butanol/acetone from biomass, and select a viable process capable of serving as a base case model for technical and economic analysis. It is anticipated that the base case process developed herein can then be used as the basis for subsequent studies concerning biomass conversion processes capable of producing a wide range of chemicals. The general criteria utilized in determining the design basis for the process are profit potential and non-renewable energy displacement potential. The feedstock chosen, aspen wood, was selected from a number of potential renewable biomass resources as the most readily available in the United States and for its relatively large potential for producing reducing sugars.

  18. Producing Hydrogen by Plasma Pyrolysis of Methane

    NASA Technical Reports Server (NTRS)

    Atwater, James; Akse, James; Wheeler, Richard

    2010-01-01

    Plasma pyrolysis of methane has been investigated for utility as a process for producing hydrogen. This process was conceived as a means of recovering hydrogen from methane produced as a byproduct of operation of a life-support system aboard a spacecraft. On Earth, this process, when fully developed, could be a means of producing hydrogen (for use as a fuel) from methane in natural gas. The most closely related prior competing process - catalytic pyrolysis of methane - has several disadvantages: a) The reactor used in the process is highly susceptible to fouling and deactivation of the catalyst by carbon deposits, necessitating frequent regeneration or replacement of the catalyst. b) The reactor is highly susceptible to plugging by deposition of carbon within fixed beds, with consequent channeling of flow, high pressure drops, and severe limitations on mass transfer, all contributing to reductions in reactor efficiency. c) Reaction rates are intrinsically low. d) The energy demand of the process is high.

  19. Critical analysis of pyrolysis process with cellulosic based municipal waste as renewable source in energy and technical perspective.

    PubMed

    Agarwal, Manu; Tardio, James; Venkata Mohan, S

    2013-11-01

    To understand the potential of cellulosic based municipal waste as a renewable feed-stock, application of pyrolysis by biorefinery approach was comprehensively studied for its practicable application towards technical and environmental viability in Indian context. In India, where the energy requirements are high, the pyrolysis of the cellulosic waste shows numerous advantages for its applicability as a potential waste-to-energy technology. The multiple energy outputs of the process viz., bio-gas, bio-oil and bio-char can serve the two major energy sectors, viz., electricity and transportation. The process suits best for high bio-gas and electrical energy production when energy input is satisfied from bio-char in form of steam (scheme-1). The bio-gas generated through the process shows its direct utility as a transportation fuel while the bio-oil produced can serve as fuel or raw material to chemical synthesis. On a commercial scale the process is a potent technology towards sustainable development. The process is self-sustained when operated on a continuous mode. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Planning Study to Establish DoD Manufacturing Technology Information Analysis Center.

    DTIC Science & Technology

    1981-01-01

    model for an MTIAC. 5-3 I Type of information inputs from potential MTIAC sources. 5-5 5-3 Processing functions required to produce MTIAC outputs. 5-8...short supply * Energy conservation and concerns of energy inten- siveness of various manufacturing processes and systems required for production of DOD...not play a major role in the process of MT invention, innovation, or diffusion. MT productivity efforts for private industry are carried out by

  1. Graphene oxide and H2 production from bioelectrochemical graphite oxidation.

    PubMed

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-11-17

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES.

  2. Graphene oxide and H2 production from bioelectrochemical graphite oxidation

    PubMed Central

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-01-01

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES. PMID:26573014

  3. High efficiency, low cost, thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, Bhushan L.

    2001-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  4. High efficiency low cost thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, Bhushan L.

    1999-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  5. Hot cell purification of strontium-82, 85 and other isotopes from proton irradiated molybdenum

    DOEpatents

    Bentley, G.E.; Barnes, J.W.

    1979-10-17

    A process suitable for producing curie quantities of quite pure Sr-82,85 is given. After a Mo target is irradiated with energetic protons having energies greater than about 200 MeV, thus producing a large number of radioactive species, the particular species of Sr-82,85 are substantially separated from the other products by a 6-step process. The process comprises dissolution of the target in H/sub 2/O/sub 2/, followed by use of several ion exchange resins, extraction with an organophosphorus compound, and several adjustments of pH values. Other embodiments include processes for producing relatively pure long-lived Rb isotopes, Y-88, and Zr-88.

  6. Hot cell purification of strontium-82, 85 and other isotopes from proton irradiated molybdenum

    DOEpatents

    Bentley, Glenn E.; Barnes, John W.

    1981-01-01

    A process suitable for producing curie quantities of quite pure Sr-82,85 is given. After a Mo target is irradiated with energetic protons having energies greater than about 200 MeV, thus producing a large number of radioactive species, the particular species of Sr-82,85 are substantially separated from the other products by a 6-step process. The process comprises dissolution of the target in H.sub.2 O.sub.2, followed by use of several ion exchange resins, extraction with an organophosphorus compound, and several adjustments of pH values. Other embodiments include processes for producing relatively pure long-lived Rb isotopes, Y-88, and Zr-88.

  7. Gamma-ray vortices from nonlinear inverse Thomson scattering of circularly polarized light.

    PubMed

    Taira, Yoshitaka; Hayakawa, Takehito; Katoh, Masahiro

    2017-07-10

    Inverse Thomson scattering is a well-known radiation process that produces high-energy photons both in nature and in the laboratory. Nonlinear inverse Thomson scattering occurring inside an intense light field is a process which generates higher harmonic photons. In this paper, we theoretically show that the higher harmonic gamma-ray produced by nonlinear inverse Thomson scattering of circularly polarized light is a gamma-ray vortex, which means that it possesses a helical wave front and carries orbital angular momentum. Our work explains a recent experimental result regarding nonlinear inverse Thomson scattering that clearly shows an annular intensity distribution as a remarkable feature of a vortex beam. Our work implies that gamma-ray vortices should be produced in various situations in astrophysics in which high-energy electrons and intense circularly polarized light fields coexist. Nonlinear inverse Thomson scattering is a promising radiation process for realizing a gamma-ray vortex source based on currently available laser and accelerator technologies, which would be an indispensable tool for exploring gamma-ray vortex science.

  8. Vitra-violet process for producing flame resistant polyamides and products produced thereby. [protective clothing for high oxygen environments

    NASA Technical Reports Server (NTRS)

    Toy, M. S.; Stringham, R. S. (Inventor)

    1980-01-01

    Aromatic polyamides with improved nonflammability characteristics are produced by contacting a polyamide substrate with a gaseous medium comprising a minor amount of a haloolefinic material and an inert diluent in the presence of light having sufficient energy to effect chemical addition of the haloolefin to the polyamide substrate.

  9. Bio-hydrogen production from tempeh and tofu processing wastes via fermentation process using microbial consortium: A mini-review

    NASA Astrophysics Data System (ADS)

    Rengga, Wara Dyah Pita; Wati, Diyah Saras; Siregar, Riska Yuliana; Wulandari, Ajeng Riswanti; Lestari, Adela Ayu; Chafidz, Achmad

    2017-03-01

    One of alternative energies that can replace fossil fuels is hydrogen. Hydrogen can be used to generate electricity and to power combustion engines for transportation. Bio-hydrogen produced from tempeh and tofu processing waste can be considered as a renewable energy. Bio-hydrogen produced from tempeh and tofu processing waste is beneficial because the waste of soybean straw and tofu processing waste is plentiful, cheap, renewable and biodegradable. Specification of tempeh and tofu processing waste were soybean straw and sludge of tofu processing. They contain carbohydrates (cellulose, hemicellulose, and lignin) and methane. This paper reviews the optimal condition to produce bio-hydrogen from tempeh and tofu processing waste. The production of bio-hydrogen used microbial consortium which were enriched from cracked cereals and mainly dominated by Clostridium butyricum and Clostridium roseum. The production process of bio-hydrogen from tempeh and tofu processing waste used acid pre-treatment with acid catalyzed hydrolysis to cleave the bond of hemicellulose and cellulose chains contained in biomass. The optimal production of bio-hydrogen has a yield of 6-6.8 mL/g at 35-60 °C, pH 5.5-7 in hydraulic retention time (HRT) less than 16 h. The production used a continuous system in an anaerobic digester. This condition can be used as a reference for the future research.

  10. Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niessen, W.R.; Marks, C.H.; Sommerlad, R.E.

    1996-08-01

    This report identifies seven developers whose gasification technologies can be used to treat the organic constituents of municipal solid waste: Energy Products of Idaho; TPS Termiska Processor AB; Proler International Corporation; Thermoselect Inc.; Battelle; Pedco Incorporated; and ThermoChem, Incorporated. Their processes recover heat directly, produce a fuel product, or produce a feedstock for chemical processes. The technologies are on the brink of commercial availability. This report evaluates, for each technology, several kinds of issues. Technical considerations were material balance, energy balance, plant thermal efficiency, and effect of feedstock contaminants. Environmental considerations were the regulatory context, and such things as composition,more » mass rate, and treatability of pollutants. Business issues were related to likelihood of commercialization. Finally, cost and economic issues such as capital and operating costs, and the refuse-derived fuel preparation and energy c onversion costs, were considered. The final section of the report reviews and summarizes the information gathered during the study.« less

  11. Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.

    PubMed

    Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P

    2014-06-01

    In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.

  12. Shielding materials for highly penetrating space radiations

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Orwoll, Robert A.

    1995-01-01

    Interplanetary travel involves the transfer from an Earth orbit to a solar orbit. Once outside the Earth's magnetosphere, the major sources of particulate radiation are solar cosmic rays (SCR's) and galactic cosmic rays (GCR's). Intense fluxes of SCR's come from solar flares and consist primarily of protons with energies up to 1 GeV. The GCR consists of a low flux of nuclei with energies up to 10(exp 10) GeV. About 70 percent of the GCR are protons, but a small amount (0.6 percent) are nuclei with atomic numbers greater than 10. High energy charged particles (HZE) interact with matter by transferring energy to atomic electrons in a Coulomb process and by reacting with an atomic nucleus. Energy transferred in the first process increases with the square of the atomic number, so particles with high atomic numbers would be expected to lose large amounts of energy by this process. Nuclear reactions produced by (HZE) particles produce high-energy secondary particles which in turn lose energy to the material. The HZE nuclei are a major concern for radiation protection of humans during interplanetary missions because of the very high specific ionization of both primary and secondary particles. Computer codes have been developed to calculate the deposition of energy by very energetic charged particles in various materials. Calculations show that there is a significant buildup of secondary particles from nuclear fragmentation and Coulomb dissociation processes. A large portion of these particles are neutrons. Since neutrons carry no charge, they only lose energy by collision or reaction with a nucleus. Neutrons with high energies transfer large amounts of energy by inelastic collisions with nuclei. However, as the neutron energy decreases, elastic collisions become much more effective for energy loss. The lighter the nucleus, the greater the fraction of the neutron's kinetic energy that can be lost in an elastic collision. Thus, hydrogen-containing materials such as polymers are most effective in reducing the energy of neutrons. Once neutrons are reduced to very low energies, the probability for undergoing a reaction with a nucleus (the cross section) becomes very high. The product of such a reaction is often radioactive and can involve the release of a significant amount of energy. Thus, it is important to provide protection from low energy neutrons during a long duration space flight. Among the light elements, lithium and boron each have an isotope with a large thermal neutron capture cross section, Li-6 and B-10. However, B-10 is more abundant in the naturally-occurring element than Li-6, has a thermal neutron capture cross section four times that of Li-6, and produces the stable products, He-4 and Li-7 in the interaction while Li-6 produces radioactive tritium (H-3). Thus, boron is the best light-weight material for thermal neutron absorption in spacecraft. The work on this project was focused in two areas: computer design where existing computer codes were used, and in some cases modified, to calculate the propagation and interactions of high energy charged particles through various media, and materials development where boron was incorporated into high performance materials.

  13. Improving Biofuels Recovery Processes for Energy Efficiency and Sustainability

    EPA Science Inventory

    Biofuels are made from living or recently living organisms. For example, ethanol can be made from fermented plant materials. Biofuels have a number of important benefits when compared to fossil fuels. Biofuels are produced from renewable energy sources such as agricultural resou...

  14. Anaerobic digestion of stillage fractions - estimation of the potential for energy recovery in bioethanol plants.

    PubMed

    Drosg, B; Fuchs, W; Meixner, K; Waltenberger, R; Kirchmayr, R; Braun, R; Bochmann, G

    2013-01-01

    Stillage processing can require more than one third of the thermal energy demand of a dry-grind bioethanol production plant. Therefore, for every stillage fraction occurring in stillage processing the potential of energy recovery by anaerobic digestion (AD) was estimated. In the case of whole stillage up to 128% of the thermal energy demand in the process can be provided, so even an energetically self-sufficient bioethanol production process is possible. For wet cake the recovery potential of thermal energy is 57%, for thin stillage 41%, for syrup 40% and for the evaporation condensate 2.5%. Specific issues for establishing AD of stillage fractions are evaluated in detail; these are high nitrogen concentrations, digestate treatment and trace element supply. If animal feed is co-produced at the bioethanol plant and digestate fractions are to be reused as process water, a sufficient quality is necessary. Most interesting stillage fractions as substrates for AD are whole stillage, thin stillage and the evaporation condensate. For these fractions process details are presented.

  15. Enhancement of biogas production by co-digestion of potato pulp with cow manure in a CSTR system.

    PubMed

    Sanaei-Moghadam, Akbar; Abbaspour-Fard, Mohammad Hossein; Aghel, Hasan; Aghkhani, Mohammad Hossein; Abedini-Torghabeh, Javad

    2014-08-01

    Anaerobic digestion (AD) process is a well-established method to generate energy from the organic wastes both from the environmental and economical perspectives. The purpose of present study is to evaluate energy production from potato wastes by incorporating cow manure into the process. Firstly, a laboratory pilot of one-stage biogas production was designed and built according to continuously stirred tank reactor (CSTR) system. The setup was able to automatically control the environmental conditions of the process including temperature, duration, and rate of stirring. AD experiment was exclusively performed on co-digestion of potato peel (PP) and cow manure (CM) in three levels of mixing ratio including 20:80, 50:50, 80:20 (PP:CM), and 0:100 as control treatment based on the volatile solid (VS) weight without adding initial inoculums. After hydraulic retention time (HRT) of 50 days on average 193, 256, 348, and 149 norm liter (LN) (kg VS)(-1), methane was produced for different mixing ratios, respectively. Statistical analysis shows that these gas productions are significantly different. The average energy was determined based on the produced methane which was about 2.8 kWh (kg VS)(-1), implying a significant energy production potential. The average chemical oxygen demand (COD) removal of treatments was about 61%, showing that it can be leached significantly with high organic matter by the employed pilot. The energy efficiency of 92% of the process also showed the optimum control of the process by the pilot.

  16. Fast Nitrogen Atoms from Dissociative Excitation of N2 by Electron Impact

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Ciocca, Marco

    1996-01-01

    The Doppler profiles of one of the fine structure lines of the N I (1200 A) g (sup 4)S(sup 0)-(sup 4)P multiplet and of the N II (1085 A) g (sup 3)p(sup O)-(sup 3)D multiplet have been measured. Excitation of the multiplets is produced by electron impact dissociative excitation of N2. The experimental line profiles are evaluated by fast Fourier transform (FFT) techniques and analysis of the profiles yields the kinetic energy distribution of fragments. The full width at half maximum (FWHM) of N I (1200 A) increases from 27+/-6 mA at 30 eV to 37+/-4 mA at 100 eV as the emission cross section of the dissociative ionization excitation process becomes more important relative to the dissociative excitation process. The FWHM of the N II (1085 A) line is 36+/-4 mA at 100 eV. For each multiplet the kinetic energy distribution function of each of the two fragment N atoms (ions) is much broader than thermal with a mean energy above 1.0 eV. The dissociation process with the largest cross section is predissociation and predominantly produces N atoms with kinetic energy distributions having mean energies above 0.5 eV. Dissociative processes can lead to a substantial escape flux of N I atoms from the satellites, Titan and Triton of the outer planets.

  17. Economic screening of renewable energy technologies: Incineration, anaerobic digestion, and biodiesel as applied to waste water scum.

    PubMed

    Anderson, Erik; Addy, Min; Ma, Huan; Chen, Paul; Ruan, Roger

    2016-12-01

    In the U.S., the total amount of municipal solid waste is continuously rising each year. Millions of tons of solid waste and scum are produced annually that require safe and environmentally sound disposal. The availability of a zero-cost energy source like municipal waste scum is ideal for several types of renewable energy technologies. However, the way the energy is produced, distributed and valued also contributes to the overall process sustainability. An economic screening method was developed to compare the potential energy and economic value of three waste-to-energy technologies; incineration, anaerobic digestion, and biodiesel. A St. Paul, MN wastewater treatment facility producing 3175 "wet" kilograms of scum per day was used as a basis of the comparison. After applying all theoretically available subsidies, scum to biodiesel was shown to have the greatest economic potential, valued between $491,949 and $610,624/year. The incineration of scum yielded the greatest reclaimed energy potential at 29billion kilojoules/year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon

    DOEpatents

    Kaschmitter, J.L.; Sigmon, T.W.

    1995-10-10

    A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby the amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenation can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

  19. Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon

    DOEpatents

    Kaschmitter, James L.; Sigmon, Thomas W.

    1995-01-01

    A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby to amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenization can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

  20. Renewable energy: energy from agricultural products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-06-01

    This study discusses major issues concerning fuels derived from agricultural products. Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10% of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10% mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Principle areas of interest are: Growing crops such as napier grass or harvestingmore » water hyacinths to produce methane that can be substituted for natural gas; expanded use of sugar, starch, and industrial and agricultural wastes as raw materials for ethanol production; improved efficiency in conversion processes such as anaerobic digestion and fermentation. The Institute of Food and Agricultural Sciences at the University of Florida plays a leading national role in energy crops research, while Walt Disney World is using a demonstration project to convert water hyacinths into methane. Increased use of fuels produced from agricultural products depends largely on their costs compared to other fuels. Ethanol is currently attractive because of federal and state tax incentives. The growth potential of ethanol and methane is enhanced by the ease with which they can be blended with fossil fuels and thereby utilize the current energy distribution system. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production.« less

  1. Renewable energy: energy from agricultural products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-06-01

    This report discusses the major issues concerning fuels derived from agricultural products. Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10 percent of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10 percent mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Principle areas of interest are: growing crops such as napiermore » grass or harvesting water hyacinths to produce methane that can be substituted for natural gas; expanded use of sugar, starch, and industrial and agricultural wastes as raw materials for ethanol production; and improved efficiency in conversion processes such as anaerobic digestion and fermentation. The Institute of Food and Agricultural Sciences at the University of Florida plays a leading national role in energy crops research, while Walt Disney World is using a demonstration project to convert water hyacinths into methane. Increased use of fuels produced from agricultural products depends largely on their costs compared to other fuels. Ethanol is currently attractive because of federal and state tax incentives. The growth potential of ethanol and methane is enhanced by the ease with which they can be blended with fossil fuels and thereby utilize the current energy distribution system. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production.« less

  2. Solar silicon via the Dow Corning process

    NASA Technical Reports Server (NTRS)

    Hunt, L. P.; Dosaj, V. D.

    1979-01-01

    Technical feasibility for high volume production of solar cell-grade silicon is investigated. The process consists of producing silicon from pure raw materials via the carbothermic reduction of quartz. This silicon was then purified to solar grade by impurity segregation during Czochralski crystal growth. Commercially available raw materials were used to produce 100 kg quantities of silicon during 60 hour periods in a direct arc reactor. This silicon produced single crystalline ingot, during a second Czochralski pull, that was fabricated into solar cells having efficiencies ranging from 8.2 percent to greater than 14 percent. An energy analysis of the entire process indicated a 5 month payback time.

  3. Formation of hydrothermal biochar and char stability in soils

    NASA Astrophysics Data System (ADS)

    Baumert, Julia; Gleixner, Gerd

    2010-05-01

    The use of charcoal as an artificial soil additive is suggested to beneficially modify degraded soil, reduce greenhouse gas emission and improve crop yields. So far research has been mainly done using pyrolysis chars which are produced by dry pyrolysis of biomass. Here we used hydrothermal carbonisation (HTC). In this process wet biomass is converted to char at moderate temperatures (~200°C). Due to the exothermal carbonisation reaction this process is almost energy neutral, i.e. the energy needed to start the carbonisation equals the energy released during carbonisation. Different process parameters have been used to modify the properties of the produced chars. We examined the chemical and morphological properties of hydrothermally synthesized biochar. Cellulose, yeast and sucrose were used as model substances for a range of parent material types like organic and garden waste as well as residues from biogas production. By modifying the process conditions of hydrothermal carbonisation concerning temperature (180°C to 220°C) and duration (6 hours to 24 hours) we produced a variety of different biochars. Our findings suggest that the elemental composition and the thermal stability of resulting chars depend on the feedstock and production conditions. Functional group chemistry determined by NMR shows that the aromaticity of the product increases as a function of temperature whereas the amount of O-alkylic compounds declines, concurrently. Our results show that the properties of the biochar can be manipulated by the modification of process conditions. This opens the opportunity to adjust the charcoal to a given soil type.

  4. Effect of Laser Power and Gas Flow Rate on Properties of Directed Energy Deposition of Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Mahamood, Rasheedat M.

    2018-03-01

    Laser metal deposition (LMD) process belongs to the directed energy deposition class of additive manufacturing processes. It is an important manufacturing technology with lots of potentials especially for the automobile and aerospace industries. The laser metal deposition process is fairly new, and the process is very sensitive to the processing parameters. There is a high level of interactions among these process parameters. The surface finish of part produced using the laser metal deposition process is dependent on the processing parameters. Also, the economy of the LMD process depends largely on steps taken to eliminate or reduce the need for secondary finishing operations. In this study, the influence of laser power and gas flow rate on the microstructure, microhardness and surface finish produced during the laser metal deposition of Ti6Al4V was investigated. The laser power was varied between 1.8 kW and 3.0 kW, while the gas flow rate was varied between 2 l/min and 4 l/min. The microstructure was studied under an optical microscope, the microhardness was studied using a Metkon microhardness indenter, while the surface roughness was studied using a Jenoptik stylus surface analyzer. The results showed that better surface finish was produced at a laser power of 3.0 kW and a gas flow rate of 4 l/min.

  5. Impacts of retrofitting analysis on first generation ethanol production: process design and techno-economics.

    PubMed

    Rajendran, Karthik; Rajoli, Sreevathsava; Teichert, Oliver; Taherzadeh, Mohammad J

    2015-02-01

    More than half of the bioethanol plants in operation today use corn or grains as raw materials. The downstream processing of mash after fermentation to produce ethanol and distiller grains is an energy-demanding process, which needs retrofitting for optimization. In addition, the fluctuation in the ethanol and grain prices affects the overall profitability of the plant. For this purpose, a process simulation was performed in Aspen Plus(®) based on an existing industrial plant located in Sweden. The simulations were compared using different scenarios including different concentrations of ethanol, using the stillage for biogas production to produce steam instead of distiller grains as a by-product, and altering the purity of the ethanol produced. Using stillage for biogas production, as well as utilizing the steam, reduced the overall energy consumption by 40% compared to the plant in operation. The fluctuations in grain prices had a high impact on the net present value (NPV), where grain prices greater than 349 USD/ton reached a zero NPV. After 20 years, the plant in operation producing 41,600 tons ethanol/year can generate a profit of 78 million USD. Compared to the base case, the less purified ethanol resulted in a lower NPV of 30 million USD.

  6. Process for fractionating fast-pyrolysis oils, and products derived therefrom

    DOEpatents

    Chum, Helena L.; Black, Stuart K.

    1990-01-01

    A process is disclosed for fractionating lignocellulosic materials fast-prolysis oils to produce phenol-containing compositions suitable for the manufacture of phenol-formaldehyde resins. The process includes admixing the oils with an organic solvent having at least a moderate solubility parameter and good hydrogen The United States Government has rights in this invention under Contract No. DE-AC02-83CH10093 between the United States Department of Energy and the Solar Energy Research Institute, a Division of the Midwest Research Institute.

  7. Extracting black-hole rotational energy: The generalized Penrose process

    NASA Astrophysics Data System (ADS)

    Lasota, J.-P.; Gourgoulhon, E.; Abramowicz, M.; Tchekhovskoy, A.; Narayan, R.

    2014-01-01

    In the case involving particles, the necessary and sufficient condition for the Penrose process to extract energy from a rotating black hole is absorption of particles with negative energies and angular momenta. No torque at the black-hole horizon occurs. In this article we consider the case of arbitrary fields or matter described by an unspecified, general energy-momentum tensor Tμν and show that the necessary and sufficient condition for extraction of a black hole's rotational energy is analogous to that in the mechanical Penrose process: absorption of negative energy and negative angular momentum. We also show that a necessary condition for the Penrose process to occur is for the Noether current (the conserved energy-momentum density vector) to be spacelike or past directed (timelike or null) on some part of the horizon. In the particle case, our general criterion for the occurrence of a Penrose process reproduces the standard result. In the case of relativistic jet-producing "magnetically arrested disks," we show that the negative energy and angular-momentum absorption condition is obeyed when the Blandford-Znajek mechanism is at work, and hence the high energy extraction efficiency up to ˜300% found in recent numerical simulations of such accretion flows results from tapping the black hole's rotational energy through the Penrose process. We show how black-hole rotational energy extraction works in this case by describing the Penrose process in terms of the Noether current.

  8. Recent development on sustainable biodiesel production using sewage sludge.

    PubMed

    Srivastava, Neha; Srivastava, Manish; Gupta, Vijai Kumar; Manikanta, Ambepu; Mishra, Kajal; Singh, Shipra; Singh, Sangram; Ramteke, P W; Mishra, P K

    2018-05-01

    Biodiesel as a renewable energy is an important alternative to biofuels in current scenario to explore green energy sources. It is well known that the major cost involved in biodiesel production technology is dependent upon the used feedstock. This review presents an overview of biodiesel production using municipal sewage sludge as a cost-effective substrate. Municipal sewage sludge which possesses high lipid content with zero cost availability can meet the characteristics of a potential feedstock to produce biodiesel. Different types of substrates based processes to produce biodiesel have been also explored in brief. In addition, limitations of the existing process technology for biodiesel production with sustainable solutions have been also discussed.

  9. A techno-economic evaluation of anaerobic biogas producing systems in developing countries.

    PubMed

    Morgan, Hervan Marion; Xie, Wei; Liang, Jianghui; Mao, Hanping; Lei, Hanwu; Ruan, Roger; Bu, Quan

    2018-02-01

    Biogas production has been the focus of many individuals in the developing world; there have been several investigations that focus on improving the production process and product quality. In the developing world the lack of advanced technology and capital has hindered the development of energy production. Renewable energy has the potential to improve the standard of living for most of the 196 countries which are classified as developing economies. One of the easiest renewable energy compounds that can be produced is biogas (bio-methane). Biogas can be produced from almost any source of biomass through the anaerobic respiration of micro-organisms. Low budget energy systems are reviewed in this article along with various feedstock sources. Adapted gas purification and storage systems are also reviewed, along with the possible economic, social, health and environmental benefits of its implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Polymer surface treatment with particle beams

    DOEpatents

    Stinnett, Regan W.; VanDevender, J. Pace

    1999-01-01

    A polymer surface and near surface treatment process produced by irradiation with high energy particle beams. The process is preferably implemented with pulsed ion beams. The process alters the chemical and mechanical properties of the polymer surface in a manner useful for a wide range of commercial applications.

  11. Laser ablation of ceramic Al2O3 at 193 nm and 248 nm: The importance of single-photon ionization processes

    NASA Astrophysics Data System (ADS)

    Peláez, R. J.; Afonso, C. N.; Bator, M.; Lippert, T.

    2013-06-01

    The aim of this work is to demonstrate that single-photon photoionization processes make a significant difference in the expansion and temperature of the plasma produced by laser ablation of ceramic Al2O3 in vacuum as well as to show their consequences in the kinetic energy distribution of the species that eventually will impact on the film properties produced by pulsed laser deposition. This work compares results obtained by mass spectrometry and optical spectroscopy on the composition and features of the plasma produced by laser ablation at 193 nm and 248 nm, i.e., photon energies that are, respectively, above and below the ionization potential of Al, and for fluences between threshold for visible plasma and up to ≈2 times higher. The results show that the ionic composition and excitation of the plasma as well as the ion kinetic energies are much higher at 193 nm than at 248 nm and, in the latter case, the population of excited ions is even negligible. The comparison of Maxwell-Boltzmann temperature, electron temperatures, and densities of the plasmas produced with the two laser wavelengths suggests that the expansion of the plasma produced at 248 nm is dominated by a single population. Instead, the one produced at 193 nm is consistent with the existence of two populations of cold and hot species, the latter associated to Al+ ions that travel at the forefront and produced by single photon ionization as well as Al neutrals and double ionized ions produced by electron-ion impact. The results also show that the most energetic Al neutrals in the plasma produced at the two studied wavelengths are in the ground state.

  12. Moving toward energy security and sustainability in 2050 by reconfiguring biofuel production

    USDA-ARS?s Scientific Manuscript database

    To achieve energy security and sustainability by 2050 requires reconfiguring biofuel production both by building on current infrastructure and existing technology and also by making substantial improvements and changes in the feedstocks used, the process technologies applied, and the fuels produced....

  13. Energy regeneration model of self-consistent field of electron beams into electric power*

    NASA Astrophysics Data System (ADS)

    Kazmin, B. N.; Ryzhov, D. R.; Trifanov, I. V.; Snezhko, A. A.; Savelyeva, M. V.

    2016-04-01

    We consider physic-mathematical models of electric processes in electron beams, conversion of beam parameters into electric power values and their transformation into users’ electric power grid (onboard spacecraft network). We perform computer simulation validating high energy efficiency of the studied processes to be applied in the electric power technology to produce the power as well as electric power plants and propulsion installation in the spacecraft.

  14. Semiconductor photoelectrochemistry

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.

    1983-01-01

    Semiconductor photoelectrochemical reactions are investigated. A model of the charge transport processes in the semiconductor, based on semiconductor device theory, is presented. It incorporates the nonlinear processes characterizing the diffusion and reaction of charge carriers in the semiconductor. The model is used to study conditions limiting useful energy conversion, specifically the saturation of current flow due to high light intensity. Numerical results describing charge distributions in the semiconductor and its effects on the electrolyte are obtained. Experimental results include: an estimate rate at which a semiconductor photoelectrode is capable of converting electromagnetic energy into chemical energy; the effect of cell temperature on the efficiency; a method for determining the point of zero zeta potential for macroscopic semiconductor samples; a technique using platinized titanium dioxide powders and ultraviolet radiation to produce chlorine, bromine, and iodine from solutions containing their respective ions; the photoelectrochemical properties of a class of layered compounds called transition metal thiophosphates; and a technique used to produce high conversion efficiency from laser radiation to chemical energy.

  15. Renewable energy from corn residues by thermochemical conversion

    NASA Astrophysics Data System (ADS)

    Yu, Fei

    Declining fossil oil reserve, skyrocket price, unsecured supplies, and environment pollution are among the many energy problems we are facing today. It is our conviction that renewable energy is a solution to these problems. The long term goal of the proposed research is to develop commercially practical technologies to produce energy from renewable resources. The overall objective of my research is to study and develop thermochemical processes for converting bulky and low-energy-density biomass materials into bio-fuels and value-added bio-products. The rationale for the proposed research is that, once such processes are developed, processing facility can be set up on or near biomass product sites, reducing the costs associated with transport of bulky biomass which is a key technical barrier to biomass conversion. In my preliminary research, several conversion technologies including atmospheric pressure liquefaction, high pressure liquefaction, and microwave pyrolysis have been evaluated. Our data indicated that microwave pyrolysis had the potential to become a simple and economically viable biomass conversion technology. Microwave pyrolysis is an innovative process that provides efficient and uniform heating, and are robust to type, size and uniformity of feedstock and therefore suitable for almost any waste materials without needing to reduce the particle size. The proposed thesis focused on in-depth investigations of microwave pyrolysis of corn residues. My first specific aim was to examine the effects of processing parameters on product yields. The second specific research aim was to characterize the products (gases, bio-oils, and solid residues), which was critical to process optimization and product developments. Other research tasks included conducting kinetic modeling and preliminary mass and energy balance. This study demonstrated that microwave pyrolysis could be optimized to produce high value syngas, liquid fuels and pyrolytic carbons, and had a great potential to become a commercial process according to the mass and energy balance. One-step global model and two-step consecutive-reaction kinetic model offered a clue to the key mechanistic steps in the overall pyrolysis of corn residues. These results should have a positive impact on advancing renewable energy technologies and establishing the University's leadership status in the area of renewable energy development.

  16. 10 CFR 1017.28 - Processing on Automated Information Systems (AIS).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Processing on Automated Information Systems (AIS). 1017.28... UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Physical Protection Requirements § 1017.28 Processing on Automated Information Systems (AIS). UCNI may be processed or produced on any AIS that complies with the guidance in OMB...

  17. A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic Wastewater Treatment

    PubMed Central

    2014-01-01

    Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high quality effluent with minimal energy demands. The combined system was operated continuously for 50 days at room temperature (∼25 °C) with domestic wastewater having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time (HRT) for both processes of 9 h, the effluent tCOD was reduced to 16 ± 3 mg/L (92.5% removal), and there was nearly complete removal of total suspended solids (TSS; from 45 ± 10 mg/L to <1 mg/L). The AFMBR was operated at a constant high permeate flux of 16 L/m2/h over 50 days, without the need or use of any membrane cleaning or backwashing. Total electrical energy required for the operation of the MFC-AFMBR system was 0.0186 kWh/m3, which was slightly less than the electrical energy produced by the MFCs (0.0197 kWh/m3). The energy in the methane produced in the AFMBR was comparatively negligible (0.005 kWh/m3). These results show that a combined MFC-AFMBR system could be used to effectively treat domestic primary effluent at ambient temperatures, producing high effluent quality with low energy requirements. PMID:24568605

  18. Control of the dehydration process in production of intermediate-moisture meat products: a review.

    PubMed

    Chang, S F; Huang, T C; Pearson, A M

    1996-01-01

    IM meat products are produced by lowering the aw to 0.90 to 0.60. Such products are stable at ambient temperature and humidity and are produced in nearly every country in the world, especially in developing areas where refrigeration is limited or unavailable. Traditionally IM meats use low cost sources of energy for drying, such as sun drying, addition of salt, or fermentation. Products produced by different processes are of interest since they do not require refrigeration during distribution and storage. Many different IM meat products can be produced by utilizing modern processing equipment and methods. Production can be achieved in a relatively short period of time and their advantages during marketing and distribution can be utilized. Nevertheless, a better understanding of the principles involved in heat transfer and efficiency of production are still needed to increase efficiency of processing. A basic understanding of the influence of water vapor pressure and sorption phenomena on water activity can materially improve the efficiency of drying of IM meats. Predrying treatments, such as fermentation and humidity control, can also be taken advantage of during the dehydration process. Such information can lead to process optimization and reduction of energy costs during production of IM meats. The development of sound science-based methods to assure the production of high-quality and nutritious IM meats is needed. Finally, such products also must be free of pathogenic microorganisms to assure their success in production and marketing.

  19. Design of pyrolysis reactor for production of bio-oil and bio-char simultaneously

    NASA Astrophysics Data System (ADS)

    Aladin, Andi; Alwi, Ratna Surya; Syarif, Takdir

    2017-05-01

    The residues from the wood industry are the main contributors to biomass waste in Indonesia. The conventional pyrolysis process, which needs a large energy as well as to produce various toxic chemical to the environment. Therefore, a pyrolysis unit on the laboratory scale was designed that can be a good alternative to achieve zero-waste and low energy cost. In this paper attempts to discuss design and system of pyrolysis reactor to produce bio-oil and bio-char simultaneously.

  20. Computational study of hot electron generation and energy transport in intense laser produced hot dense matter

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini

    Present ultra high power lasers are capable of producing high energy density (HED) plasmas, in controlled way, with a density greater than solid density and at a high temperature of keV (1 keV ˜ 11,000,000° K). Matter in such extreme states is particularly interesting for (HED) physics such as laboratory studies of planetary and stellar astrophysics, laser fusion research, pulsed neutron source etc. To date however, the physics in HED plasma, especially, the energy transport, which is crucial to realize applications, has not been understood well. Intense laser produced plasmas are complex systems involving two widely distinct temperature distributions and are difficult to model by a single approach. Both kinetic and collisional process are equally important to understand an entire process of laser-solid interaction. By implementing atomic physics models, such as collision, ionization, and radiation damping, self consistently, in state-of-the-art particle-in-cell code (PICLS) has enabled to explore the physics involved in the HED plasmas. Laser absorption, hot electron transport, and isochoric heating physics in laser produced hot dense plasmas are studied with a help of PICLS simulations. In particular, a novel mode of electron acceleration, namely DC-ponderomotive acceleration, is identified in the super intense laser regime which plays an important role in the coupling of laser energy to a dense plasma. Geometric effects on hot electron transport and target heating processes are examined in the reduced mass target experiments. Further, pertinent to fast ignition, laser accelerated fast electron divergence and transport in the experiments using warm dense matter (low temperature plasma) is characterized and explained.

  1. Comparative SIFT-MS, GC-MS and FTIR analysis of methane fuel produced in biogas stations and in artificial photosynthesis over acidic anatase TiO2 and montmorillonite

    NASA Astrophysics Data System (ADS)

    Knížek, Antonín; Dryahina, Ksenyia; Španěl, Patrik; Kubelík, Petr; Kavan, Ladislav; Zukalová, Markéta; Ferus, Martin; Civiš, Svatopluk

    2018-06-01

    The era of fossil fuels is slowly nearing its inevitable end and the urgency of alternative energy sources basic research, exploration and testing becomes ever more important. Storage and alternative production of energy from fuels, such as methane, represents one of the many alternative approaches. Natural gas containing methane represents a powerful source of energy producing large volume of greenhouse gases. However, methane can be also produced in closed, CO2-neutral cycles. In our study, we compare detailed chemical composition of CH4 fuel produced in two different processes: Classical production of biogas in a rendering station, industrial wastewater treatment station and landfill gas station together with novel approach of artificial photosynthesis from CO2 over acidic anatase TiO2 in experimental apparatus developed in our laboratory. The analysis of CH4 fuel produced in these processes is important. Trace gaseous traces can be for example corrosive or toxic, low quality of the mixture suppresses effectivity of energy production, etc. In this analysis, we present a combination of two methods: High resolution Fourier transform infrared spectroscopy (HR-FTIR) suitable for the main component analysis; and the complementary extremely sensitive method of Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) and gas chromatography (GC-MS), which are in turn best suited for trace analysis. The combination of these methods provides more information than any single of them would be able to and promises a new possible analytical approach to fuel and gaseous mixture analysis.

  2. Controlling Explosive Sensitivity of Energy-Related Materials by Means of Production and Processing in Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Rodzevich, A. P.; Gazenaur, E. G.; Kuzmina, L. V.; Krasheninin, V. I.; Sokolov, P. N.

    2016-08-01

    The present work is one of the world first attempts to develop effective methods for controlling explosive sensitivity of energy-related materials with the help of weak electric (up to 1 mV/cm) and magnetic (0.001 T) fields. The resulting experimental data can be used for purposeful alternation of explosive materials reactivity, which is of great practical importance. The proposed technology of producing and processing materials in a weak electric field allows forecasting long-term stability of these materials under various energy impacts.

  3. Manufacture of silicon carbide using solar energy

    DOEpatents

    Glatzmaier, Gregory C.

    1992-01-01

    A method is described for producing silicon carbide particles using solar energy. The method is efficient and avoids the need for use of electrical energy to heat the reactants. Finely divided silica and carbon are admixed and placed in a solar-heated reaction chamber for a time sufficient to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.

  4. A case study of pyrolysis of oil palm wastes in Malaysia

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

    2013-05-01

    Biomass seems to have a great potential as a source of renewable energy compared with other sources. The use of biomass as a source of energy could help to reduce the wastes and also to minimize the dependency on non-renewable energy, hence minimize environmental degradation. Among other types of biomass, oil palm wastes are the major contribution for energy production in Malaysia since Malaysia is one of the primary palm oil producers in the world. Currently, Malaysia's plantation area covers around 5 million hectares. In the oil palm mill, only 10% palm oil is produced and the other 90% is in the form of wastes such as empty fruit bunches (EFB), oil palm shells (OPS), oil palm fibre (OPFb) and palm oil mill effluent (POME). If these wastes are being used as a source of renewable energy, it is believed that it will help to increase the country's economy. Recently, the most potential and efficient thermal energy conversion technology is pyrolysis process. The objective of this paper is to review the current research on pyrolysis of oil palm wastes in Malaysia. The scope of this paper is to discuss on the types of pyrolysis process and its production. At present, most of the research conducted in this country is on EFB and OPS by fast, slow and microwave-assisted pyrolysis processes for fuel applications.

  5. New technologies for solar energy silicon - Cost analysis of BCL process

    NASA Technical Reports Server (NTRS)

    Yaws, C. L.; Li, K.-Y.; Fang, C. S.; Lutwack, R.; Hsu, G.; Leven, H.

    1980-01-01

    New technologies for producing polysilicon are being developed to provide lower cost material for solar cells which convert sunlight into electricity. This article presents results for the BCL Process, which produces the solar-cell silicon by reduction of silicon tetrachloride with zinc vapor. Cost, sensitivity, and profitability analysis results are presented based on a preliminary process design of a plant to produce 1000 metric tons/year of silicon by the BCL Process. Profitability analysis indicates a sales price of $12.1-19.4 per kg of silicon (1980 dollars) at a 0-25 per cent DCF rate of return on investment after taxes. These results indicate good potential for meeting the goal of providing lower cost material for silicon solar cells.

  6. Microbial fuel cell coupled to biohydrogen reactor: a feasible technology to increase energy yield from cheese whey.

    PubMed

    Wenzel, J; Fuentes, L; Cabezas, A; Etchebehere, C

    2017-06-01

    An important pollutant produced during the cheese making process is cheese whey which is a liquid by-product with high content of organic matter, composed mainly by lactose and proteins. Hydrogen can be produced from cheese whey by dark fermentation but, organic matter is not completely removed producing an effluent rich in volatile fatty acids. Here we demonstrate that this effluent can be further used to produce energy in microbial fuel cells. Moreover, current production was not feasible when using raw cheese whey directly to feed the microbial fuel cell. A maximal power density of 439 mW/m 2 was obtained from the reactor effluent which was 1000 times more than when using raw cheese whey as substrate. 16S rRNA gene amplicon sequencing showed that potential electroactive populations (Geobacter, Pseudomonas and Thauera) were enriched on anodes of MFCs fed with reactor effluent while fermentative populations (Clostridium and Lactobacillus) were predominant on the MFC anode fed directly with raw cheese whey. This result was further demonstrated using culture techniques. A total of 45 strains were isolated belonging to 10 different genera including known electrogenic populations like Geobacter (in MFC with reactor effluent) and known fermentative populations like Lactobacillus (in MFC with cheese whey). Our results show that microbial fuel cells are an attractive technology to gain extra energy from cheese whey as a second stage process during raw cheese whey treatment by dark fermentation process.

  7. Polymer surface treatment with particle beams

    DOEpatents

    Stinnett, R.W.; VanDevender, J.P.

    1999-05-04

    A polymer surface and near surface treatment process produced by irradiation with high energy particle beams is disclosed. The process is preferably implemented with pulsed ion beams. The process alters the chemical and mechanical properties of the polymer surface in a manner useful for a wide range of commercial applications. 16 figs.

  8. Process intensification of biodiesel production by using microwave and ionic liquids as catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handayani, Prima Astuti; Chemical Engineering Program, Faculty of Engineering, Semarang State University; Abdullah

    The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will bemore » discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.« less

  9. Process intensification of biodiesel production by using microwave and ionic liquids as catalyst

    NASA Astrophysics Data System (ADS)

    Handayani, Prima Astuti; Abdullah, dan Hadiyanto

    2015-12-01

    The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.

  10. Continuous Severe Plastic Deformation Processing of Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan Srinivasan; Prabir K. Chaudhury; Balakrishna Cherukuri

    2006-06-30

    Metals with grain sizes smaller than 1-micrometer have received much attention in the past decade. These materials have been classified as ultra fine grain (UFG) materials (grain sizes in the range of 100 to 1000-nm) and nano-materials (grain size <100-nm) depending on the grain size. This report addresses the production of bulk UFG metals through the use of severe plastic deformation processing, and their subsequent use as stock material for further thermomechanical processing, such as forging. A number of severe plastic deformation (SPD) methods for producing bulk UFG metals have been developed since the early 1990s. The most promising ofmore » these processes for producing large size stock that is suitable for forging is the equal channel angular extrusion or pressing (ECAE/P) process. This process involves introducing large shear strain in the work-piece by pushing it through a die that consists of two channels with the same cross-sectional shape that meet at an angle to each other. Since the cross-sections of the two channels are the same, the extruded product can be re-inserted into the entrance channel and pushed again through the die. Repeated extrusion through the ECAE/P die accumulates sufficient strain to breakdown the microstructure and produce ultra fine grain size. It is well known that metals with very fine grain sizes (< 10-micrometer) have higher strain rate sensitivity and greater elongation to failure at elevated temperature, exhibiting superplastic behavior. However, this superplastic behavior is usually manifest at high temperature (> half the melting temperature on the absolute scale) and very low strain rates (< 0.0001/s). UFG metals have been shown to exhibit superplastic characteristics at lower temperature and higher strain rates, making this phenomenon more practical for manufacturing. This enables part unitization and forging more complex and net shape parts. Laboratory studies have shown that this is particularly true for UFG metals produced by SPD techniques. This combination of properties makes UFG metals produced by SPD very attractive as machining, forging or extrusion stock, both from the point of view of formability as well as energy and cost saving. However, prior to this work there had been no attempt to transfer these potential benefits observed in the laboratory scale to industrial shop floor. The primary reason for this was that the laboratory scale studies had been conducted to develop a scientific understanding of the processes that result in grain refinement during SPD. Samples that had been prepared in the laboratory scale were typically only about 10-mm diameter and 50-mm long (about 0.5-inch diameter and 2-inches long). The thrust of this project was three-fold: (i) to show that the ECAE/P process can be scaled up to produce long samples, i.e., a continuous severe plastic deformation (CSPD) process, (ii) show the process can be scaled up to produce large cross section samples that could be used as forging stock, and (iii) use the large cross-section samples to produce industrial size forgings and demonstrate the potential energy and cost savings that can be realized if SPD processed stock is adopted by the forging industry. Aluminum alloy AA-6061 was chosen to demonstrate the feasibility of the approach used. The CSPD process developed using the principles of chamber-less extrusion and drawing, and was demonstrated using rolling and wire drawing equipment that was available at Oak Ridge National Laboratory. In a parallel effort, ECAE/P dies were developed for producing 100-mm square cross section SPD billets for subsequent forging. This work was carried out at Intercontinental Manufacturing Co. (IMCO), Garland TX. Forging studies conducted with the ECAE/P billets showed that many of the potential benefits of using UFG material can be realized. In particular, the material yield can be increased, and the amount of material that is lost as scrap can be reduced by as much as 50%. Forging temperatures can also be reduced by over 150ºC, resulting in energy savings in the operation of billet heating furnaces. Looking at only the energy required to make forgings from stock materials, estimated energy savings associated with reduced scrap and lower furnace operating temperatures were greater than 40% if ECAE/P stock material was used instead of conventionally extruded stock. Subsequent heat treatment of the forged materials to the T6 condition showed that the mechanical properties of parts made from the ECAE/P stock material were the same as of those made from conventional extruded stock material. Therefore, the energy and cost savings benefits can be realized by the use SPD processed material as forging stock without sacrificing properties in the final part.« less

  11. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, L.K.; Phylipsen, G.J.M.; Worrell, E.

    Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop and as demand for steel products such as materials, automobiles, and appliances increases. In this report, we describe the key steel processes, discuss typical energy-intensity values for these processes, review historical trends in iron and steel production by process inmore » five key developing countries, describe the steel industry in each of the five key developing countries, present international comparisons of energy use and carbon dioxide emissions among these countries, and provide our assessment of the technical potential to reduce these emissions based on best-practice benchmarking. Using a best practice benchmark, we find that significant savings, in the range of 33% to 49% of total primary energy used to produce steel, are technically possible in these countries. Similarly, we find that the technical potential for reducing intensities of carbon dioxide emissions ranges between 26% and 49% of total carbon dioxide emissions from steel production in these countries.« less

  13. Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill

    PubMed Central

    Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.

    2016-01-01

    A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was <4%, whereas the reduction was about 7-8% without the binder. With 4% binder and 33% (w.b.) feedstock moisture content, the bulk density and durability values observed of the dried pellets were >510 kg/m3 and >98%, respectively, and the percent fine particles generated was reduced to <3%. PMID:27340875

  14. Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill.

    PubMed

    Tumuluru, Jaya Shankar; Conner, Craig C; Hoover, Amber N

    2016-06-15

    A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was <4%, whereas the reduction was about 7-8% without the binder. With 4% binder and 33% (w.b.) feedstock moisture content, the bulk density and durability values observed of the dried pellets were >510 kg/m(3) and >98%, respectively, and the percent fine particles generated was reduced to <3%.

  15. Life cycle assessment of innovative technology for energy production from automotive shredder residue.

    PubMed

    Rinaldi, Caterina; Masoni, Paolo; Salvati, Fabio; Tolve, Pietro

    2015-07-01

    Automotive Shredder Residue (ASR) is a problematic waste material remaining after shredding and recovery processes of end-of-life vehicles (ELVs). Its heterogeneous grain size and composition make difficult its recovery or disposal. Although ASR accounts for approximately 20% to 25% of the weight of an ELV, the European Union (EU)'s ELV Directive (2000/53/EC) requires that by 2015 a minimum 95% of the weight of an ELV must be reused or recovered, including a 10% weight energy recovery. The quantity of ASR is relevant: Approximately 2.4 million tons are generated in the EU each year and most of it is sent to landfills. This article describes a life cycle model of the "TEKNE-Fluff" process designed to make beneficial use of ASR that is based on the results of an experimental pilot plant for pyro-gasification, combustion, cogeneration, and emissions treatment of ASR. The goal of the research was the application of life cycle assessment (LCA) methodology to identify the environmental hot spots of the "TEKNE system" and use scenario analysis to check solutions to improve its environmental profile, supporting the design and industrialization process. The LCA was conducted based on data modeled from the experimental campaign. Moreover, different scenarios on shares of electricity and thermal energy produced by the cogeneration system and alternative treatment processes for the waste produced by the technology were compared. Despite the limitation of the research (results based on scaling up experimental data by modeling), impact assessment results are promising and sufficiently robust, as shown by Monte Carlo analysis. The TEKNE technology may become an interesting solution for the problem of ASR management: Besides representing an alternative to landfill disposal, the energy produced could avoid significant impacts on fossil resources depletion (a plant of 40,000 tons/y capacity could produce ∼ 147,000 GJ/yr, covering the annual need of ∼ 13,500 households). © 2015 SETAC.

  16. High efficiency low cost thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, B.L.

    1999-04-27

    A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.

  17. Estimating decades-long trends in petroleum field energy return on investment (EROI) with an engineering-based model.

    PubMed

    Tripathi, Vinay S; Brandt, Adam R

    2017-01-01

    This paper estimates changes in the energy return on investment (EROI) for five large petroleum fields over time using the Oil Production Greenhouse Gas Emissions Estimator (OPGEE). The modeled fields include Cantarell (Mexico), Forties (U.K.), Midway-Sunset (U.S.), Prudhoe Bay (U.S.), and Wilmington (U.S.). Data on field properties and production/processing parameters were obtained from a combination of government and technical literature sources. Key areas of uncertainty include details of the oil and gas surface processing schemes. We aim to explore how long-term trends in depletion at major petroleum fields change the effective energetic productivity of petroleum extraction. Four EROI ratios are estimated for each field as follows: The net energy ratio (NER) and external energy ratio (EER) are calculated, each using two measures of energy outputs, (1) oil-only and (2) all energy outputs. In all cases, engineering estimates of inputs are used rather than expenditure-based estimates (including off-site indirect energy use and embodied energy). All fields display significant declines in NER over the modeling period driven by a combination of (1) reduced petroleum production and (2) increased energy expenditures on recovery methods such as the injection of water, steam, or gas. The fields studied had NER reductions ranging from 46% to 88% over the modeling periods (accounting for all energy outputs). The reasons for declines in EROI differ by field. Midway-Sunset experienced a 5-fold increase in steam injected per barrel of oil produced. In contrast, Prudhoe Bay has experienced nearly a 30-fold increase in amount of gas processed and reinjected per unit of oil produced. In contrast, EER estimates are subject to greater variability and uncertainty due to the relatively small magnitude of external energy investments in most cases.

  18. Estimating decades-long trends in petroleum field energy return on investment (EROI) with an engineering-based model

    PubMed Central

    Tripathi, Vinay S.

    2017-01-01

    This paper estimates changes in the energy return on investment (EROI) for five large petroleum fields over time using the Oil Production Greenhouse Gas Emissions Estimator (OPGEE). The modeled fields include Cantarell (Mexico), Forties (U.K.), Midway-Sunset (U.S.), Prudhoe Bay (U.S.), and Wilmington (U.S.). Data on field properties and production/processing parameters were obtained from a combination of government and technical literature sources. Key areas of uncertainty include details of the oil and gas surface processing schemes. We aim to explore how long-term trends in depletion at major petroleum fields change the effective energetic productivity of petroleum extraction. Four EROI ratios are estimated for each field as follows: The net energy ratio (NER) and external energy ratio (EER) are calculated, each using two measures of energy outputs, (1) oil-only and (2) all energy outputs. In all cases, engineering estimates of inputs are used rather than expenditure-based estimates (including off-site indirect energy use and embodied energy). All fields display significant declines in NER over the modeling period driven by a combination of (1) reduced petroleum production and (2) increased energy expenditures on recovery methods such as the injection of water, steam, or gas. The fields studied had NER reductions ranging from 46% to 88% over the modeling periods (accounting for all energy outputs). The reasons for declines in EROI differ by field. Midway-Sunset experienced a 5-fold increase in steam injected per barrel of oil produced. In contrast, Prudhoe Bay has experienced nearly a 30-fold increase in amount of gas processed and reinjected per unit of oil produced. In contrast, EER estimates are subject to greater variability and uncertainty due to the relatively small magnitude of external energy investments in most cases. PMID:28178318

  19. Energy Profiles of an Agricultural Frontier: The American Great Plains, 1860-2000.

    PubMed

    Cunfer, Geoff; Watson, Andrew; MacFadyen, Joshua

    2018-04-01

    Agro-ecosystem energy profiles reveal energy flows into, within, and out of U.S. Great Plains farm communities across 140 years. This study evaluates external energy inputs such as human labor, machinery, fuel, and fertilizers. It tracks the energy content of land produce, including crops, grazed pasture, and firewood, and also accounts unharvested energy that remains available for wildlife. It estimates energy redirected through livestock feed into draft power, meat, and milk, and estimates the energy content of final produce available for local consumption or market sale. The article presents energy profiles for three case studies in Kansas in 1880, 1930, 1954, and 1997. Two energy transformations occurred during that time. The first, agricultural colonization , saw farm communities remake the landscape, turning native grassland into a mosaic of cropland and pasture, a process that reduced overall landscape energy productivity. A second energy transition occurred in the mid-twentieth century, characterized by fossil fuel energy imports. That outside energy raised harvested and unharvested energy flows, reused biomass energy, and also final produce. This socio-ecological transition increased landscape energy productivity by 33 to 45 percent above pre-settlement conditions in grain-growing regions. These energy developments were not uniform across the plains. Variations in rainfall and soil quality constrained or favored energy productivity in different places. The case studies reveal the spatial variation of energy profiles in Great Plains agro-ecosystems, while the longitudinal approach tracks temporal change.

  20. A Framework for Engaging Navajo Women in Clean Energy Development through Applied Theatre

    ERIC Educational Resources Information Center

    Osnes, Beth; Manygoats, Adrian; Weitkamp, Lindsay

    2015-01-01

    Through applied theatre, Navajo women can participate in authoring a new story for how energy is mined, produced, developed, disseminated and used in the Navajo Nation. This article is an analysis of a creative process that was utilised with primarily Navajo women to create a Navajo Women's Energy Project (NWEP). The framework for this creative…

  1. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release.

    PubMed

    Guibelin, E

    2004-01-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO2, CH4, N2O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best ways to minimize greenhouse effect gases emission.

  2. Efficient conversion of solar energy to biomass and electricity

    PubMed Central

    2014-01-01

    The Earth receives around 1000 W.m−2 of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture. PMID:24976951

  3. Efficient conversion of solar energy to biomass and electricity.

    PubMed

    Parlevliet, David; Moheimani, Navid Reza

    2014-01-01

    The Earth receives around 1000 W.m(-2) of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture.

  4. The "Supercritical Pile" Model for GRB: Tapping the Proton Energy and Getting the v F(sub V) Peak at Approx. 1 MeV

    NASA Technical Reports Server (NTRS)

    Kazanas, D.; Georganopoulos, M.; Mastichladis, A.

    2003-01-01

    We propose a process by which the kinetic energy of the protons, that carry most of the energy of GRB relativistic blast waves (RBW) of Lorentz factor is converted explosively into relativistic electrons of the same Lorentz factor, which subsequently produce the observed prompt gamma-ray emission of the burst. This conversion is the result of the combined effects of the reflection of photons produced within the flow by upstream located matter, their re-interception and conversion into e(+) e(-) pairs on the RBW by the p gamma (right arrow) p e(+) e(-) reaction.

  5. Corrosion Considerations for Thermochemical Biomass Liquefaction Process Systems in Biofuel Production

    NASA Astrophysics Data System (ADS)

    Brady, M. P.; Keiser, J. R.; Leonard, D. N.; Whitmer, L.; Thomson, J. K.

    2014-12-01

    Thermochemical liquefaction processing of biomass to produce bio-derived fuels (e.g., gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc., to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic oxygenates, including acids, which make the bio-oil a potential source of corrosion issues in transport, storage, and use. Efforts devoted to modified/further processing of bio-oils to make them less corrosive are currently being widely pursued. Another issue that must also be addressed in bio-oil liquefaction is potential corrosion issues in the process equipment. Depending on the specific process, bio-oil liquefaction production temperatures are typically in the 300-600°C range, and the process environment can contain aggressive sulfur and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. This paper summarizes recent, ongoing efforts to assess the extent of corrosion of bio-oil process equipment, with the ultimate goal of providing a basis for the selection of the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.

  6. Reaction and electronic excitation in crossed-beams collisions of low-energy O(3P) atoms with H2O and CO2

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Chutjian, A.; Murad, E.

    1990-01-01

    Collisions of low-energy (5-20 eV), ground-state oxygen atoms with H2O and CO2 in a crossed-beams geometry lead to chemical reaction in the case of H2O to produce OH (A2Sigma+ - X2Pi) emissions; and to inelastic electronic excitation in the case of CO2 to produce CO2 flame bands. Species identifications are made through known wavelengths and emission intensities in the range 300-400 nm. The measured difference in threshold energies for the two processes confirm the channels involved. These are the first measurements in this energy range of optical emissions through collisions of fast neutral species.

  7. How Things Work. Teacher's Guide.

    ERIC Educational Resources Information Center

    Brown, Mark; And Others

    This unit examines the earth's processes and systems from an energy perspective. A technical language for discussion of energy systems is developed. Objectives include the ability of students to discuss earth's carbon/oxygen cycle, hydrological cycle, and heat patterns and the functioning of producers, consumers and decomposers in the environment.…

  8. Isolation, Characterization, and Quantification of Steroidal Saponins in Switchgrass (Panicum virgatum L.)

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) has been identified for development into an efficient and environment friendly biomass energy crop. A recent five-year study demonstrated that switchgrass grown for biofuel production produced 540 percent more energy than what is needed to grow, harvest and process...

  9. Photochemical Upconversion: A Physical or Inorganic Chemistry Experiment for Undergraduates Using a Conventional Fluorimeter

    ERIC Educational Resources Information Center

    Wilke, Bryn M.; Castellano, Felix N.

    2013-01-01

    Photochemical upconversion is a regenerative process that transforms lower-energy photons into higher-energy light through two sequential bimolecular reactions, triplet sensitization of an appropriate acceptor followed by singlet fluorescence producing triplet-triplet annihilation derived from two energized acceptors. This laboratory directly…

  10. Current experiences in applied underground coal gasification

    NASA Astrophysics Data System (ADS)

    Peters, Justyn

    2010-05-01

    The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is set to become the leading producer of cleaner liquid fuels and other associated products. UCG has now been developed to a point where the commercialisation of the process is no longer questioned, the economics of the process are compelling, and is now seen as a method that resolves energy security for countries that have access to deep coal previously thought to have no economic value.

  11. Lateral distribution of high energy hadrons and gamma ray in air shower cores observed with emulsion chambers

    NASA Technical Reports Server (NTRS)

    Matano, T.; Machida, M.; Kawasumi, N.; Tsushima, I.; Honda, K.; Hashimoto, K.; Navia, C. E.; Matinic, N.; Aquirre, C.

    1985-01-01

    A high energy event of a bundle of electrons, gamma rays and hadronic gamma rays in an air shower core were observed. The bundles were detected with an emulsion chamber with thickness of 15 cm lead. This air shower is estimated to be initiated with a proton with energy around 10 to the 17th power to 10 to the 18th power eV at an altitude of around 100 gmc/2. Lateral distributions of the electromagnetic component with energy above 2 TeV and also the hadronic component of energy above 6 TeV of this air shower core were determined. Particles in the bundle are produced with process of the development of the nuclear cascade, the primary energy of each interaction in the cascade which produces these particles is unknown. To know the primary energy dependence of transverse momentum, the average products of energy and distance for various average energies of secondary particles are studied.

  12. Energy Conversion and Storage Program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  13. Hydrogen as a Fuel for DOD (Defense Horizons, Number 36, Nov 2003)

    DTIC Science & Technology

    2003-11-01

    could extend this period or expand this use considerably, longer-term options are still needed. The ultimate form of nuclear energy is fusion energy . If... fusion energy is eventually developed, it can be used to produce hydrogen by either electrolysis or thermochemical processes. It is expected that...hydrogen is very low, and removal of tritium from the hydro- gen would be impractical. Serious design studies were performed using fusion energy for

  14. Thermochemical conversion of waste tyres-a review.

    PubMed

    Labaki, Madona; Jeguirim, Mejdi

    2017-04-01

    A review of the energy recovery from waste tyres is presented and focuses on the three thermochemical processes used to valorise waste tyres: pyrolysis, gasification, and combustion/incineration. After recalling the chemical composition of tyres, the thermogravimetric behaviours of tyres or their components under different atmospheres are described. Different kinetic studies on the thermochemical processes are treated. Then, the three processes were investigated, with a particular attention given to the gasification, due to the information unavailability on this process. Pyrolysis is a thermochemical conversion to produce a hydrocarbon rich gas mixture, condensable liquids or tars, and a carbon-rich solid residue. Gasification is a form of pyrolysis, carried out at higher temperatures and under given atmosphere (air, steam, oxygen, carbon dioxide, etc.) in order to yield mainly low molecular weight gaseous products. Combustion is a process that needs a fuel and an oxidizer with an ignition system to produce heat and/or steam. The effects of various process parameters such as temperature, heating rate, residence time, catalyst addition, etc. on the energy efficiency and the products yields and characteristics are mainly reviewed. These thermochemical processes are considered to be the more attractive and practicable methods for recovering energy and material from waste tyres. For the future, they are the main promising issue to treat and valorise used tyres. However, efforts should be done in developing more efficient technical systems.

  15. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M.; Wang, M.; Liu, J.

    2007-12-31

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel.more » The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.« less

  16. System Identification of a Heaving Point Absorber: Design of Experiment and Device Modeling

    DOE PAGES

    Bacelli, Giorgio; Coe, Ryan; Patterson, David; ...

    2017-04-01

    Empirically based modeling is an essential aspect of design for a wave energy converter. These models are used in structural, mechanical and control design processes, as well as for performance prediction. The design of experiments and methods used to produce models from collected data have a strong impact on the quality of the model. This study considers the system identification and model validation process based on data collected from a wave tank test of a model-scale wave energy converter. Experimental design and data processing techniques based on general system identification procedures are discussed and compared with the practices often followedmore » for wave tank testing. The general system identification processes are shown to have a number of advantages. The experimental data is then used to produce multiple models for the dynamics of the device. These models are validated and their performance is compared against one and other. Furthermore, while most models of wave energy converters use a formulation with wave elevation as an input, this study shows that a model using a hull pressure sensor to incorporate the wave excitation phenomenon has better accuracy.« less

  17. System Identification of a Heaving Point Absorber: Design of Experiment and Device Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacelli, Giorgio; Coe, Ryan; Patterson, David

    Empirically based modeling is an essential aspect of design for a wave energy converter. These models are used in structural, mechanical and control design processes, as well as for performance prediction. The design of experiments and methods used to produce models from collected data have a strong impact on the quality of the model. This study considers the system identification and model validation process based on data collected from a wave tank test of a model-scale wave energy converter. Experimental design and data processing techniques based on general system identification procedures are discussed and compared with the practices often followedmore » for wave tank testing. The general system identification processes are shown to have a number of advantages. The experimental data is then used to produce multiple models for the dynamics of the device. These models are validated and their performance is compared against one and other. Furthermore, while most models of wave energy converters use a formulation with wave elevation as an input, this study shows that a model using a hull pressure sensor to incorporate the wave excitation phenomenon has better accuracy.« less

  18. Gamma-ray emission and electron acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Petrosian, Vahe; Mctiernan, James M.; Marschhauser, Holger

    1994-01-01

    Recent observations have extended the spectra of the impulsive phase of flares to the GeV range. Such high-energy photons can be produced either by electron bremsstrahlung or by decay of pions produced by accelerated protons. In this paper we investigate the effects of processes which become important at high energies. We examine the effects of synchrotron losses during the transport of electrons as they travel from the acceleration region in the corona to the gamma-ray emission sites deep in the chromosphere and photosphere, and the effects of scattering and absorption of gamma rays on their way from the photosphere to space instruments. These results are compared with the spectra from so-called electron-dominated flares, observed by GRS on the Solar Maximum Mission, which show negligible or no detectable contribution from accelerated protons. The spectra of these flares show a distinct steepening at energies below 100 keV and a rapid falloff at energies above 50 MeV. Following our earlier results based on lower energy gamma-ray flare emission we have modeled these spectra. We show that neither the radiative transfer effects, which are expected to become important at higher energies, nor the transport effects (Coulomb collisions, synchrotron losses, or magnetic field convergence) can explain such sharp spectral deviations from a simple power law. These spectral deviations from a power law are therefore attributed to the acceleration process. In a stochastic acceleration model the low-energy steepening can be attributed to Coulomb collision and the rapid high-energy steepening can result from synchrotron losses during the acceleration process.

  19. Fueling industrial biotechnology growth with bioethanol.

    PubMed

    Otero, José Manuel; Panagiotou, Gianni; Olsson, Lisbeth

    2007-01-01

    Industrial biotechnology is the conversion of biomass via biocatalysis, microbial fermentation, or cell culture to produce chemicals, materials, and/or energy. Industrial biotechnology processes aim to be cost-competitive, environmentally favorable, and self-sustaining compared to their petrochemical equivalents. Common to all processes for the production of energy, commodity, added value, or fine chemicals is that raw materials comprise the most significant cost fraction, particularly as operating efficiencies increase through practice and improving technologies. Today, crude petroleum represents the dominant raw material for the energy and chemical sectors worldwide. Within the last 5 years petroleum prices, stability, and supply have increased, decreased, and been threatened, respectively, driving a renewed interest across academic, government, and corporate centers to utilize biomass as an alternative raw material. Specifically, bio-based ethanol as an alternative biofuel has emerged as the single largest biotechnology commodity, with close to 46 billion L produced worldwide in 2005. Bioethanol is a leading example of how systems biology tools have significantly enhanced metabolic engineering, inverse metabolic engineering, and protein and enzyme engineering strategies. This enhancement stems from method development for measurement, analysis, and data integration of functional genomics, including the transcriptome, proteome, metabolome, and fluxome. This review will show that future industrial biotechnology process development will benefit tremendously from the precedent set by bioethanol - that enabling technologies (e.g., systems biology tools) coupled with favorable economic and socio-political driving forces do yield profitable, sustainable, and environmentally responsible processes. Biofuel will continue to be the keystone of any industrial biotechnology-based economy whereby biorefineries leverage common raw materials and unit operations to integrate diverse processes to produce demand-driven product portfolios.

  20. Corrosion considerations for thermochemical biomass liquefaction process systems in biofuel production

    DOE PAGES

    Brady, Michael P.; Keiser, James R.; Leonard, Donovan N.; ...

    2014-11-11

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oilsmore » to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 °C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. Lastly, this paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.« less

  1. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    NASA Astrophysics Data System (ADS)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahayu, Suparni Setyowati, E-mail: suparnirahayu@yahoo.co.id; Department of Mechanical Engineering, State Polytechnic of Semarang, Semarang Indonesia; Purwanto,, E-mail: p.purwanto@che.undip.ac.id

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogasmore » as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.« less

  3. Performance of biofuel processes utilising separate lignin and carbohydrate processing.

    PubMed

    Melin, Kristian; Kohl, Thomas; Koskinen, Jukka; Hurme, Markku

    2015-09-01

    Novel biofuel pathways with increased product yields are evaluated against conventional lignocellulosic biofuel production processes: methanol or methane production via gasification and ethanol production via steam-explosion pre-treatment. The novel processes studied are ethanol production combined with methanol production by gasification, hydrocarbon fuel production with additional hydrogen produced from lignin residue gasification, methanol or methane synthesis using synthesis gas from lignin residue gasification and additional hydrogen obtained by aqueous phase reforming in synthesis gas production. The material and energy balances of the processes were calculated by Aspen flow sheet models and add on excel calculations applicable at the conceptual design stage to evaluate the pre-feasibility of the alternatives. The processes were compared using the following criteria: energy efficiency from biomass to products, primary energy efficiency, GHG reduction potential and economy (expressed as net present value: NPV). Several novel biorefinery concepts gave higher energy yields, GHG reduction potential and NPV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Catalytic Destruction Of Toxic Organic Compounds

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.

    1990-01-01

    Proposed process disposes of toxic organic compounds in contaminated soil or carbon beds safely and efficiently. Oxidizes toxic materials without producing such other contaminants as nitrogen oxides. Using air, fuel, catalysts, and steam, system consumes less fuel and energy than decontamination processes currently in use. Similar process regenerates carbon beds used in water-treatment plants.

  5. Low-cost high purity production

    NASA Technical Reports Server (NTRS)

    Kapur, V. K.

    1978-01-01

    Economical process produces high-purity silicon crystals suitable for use in solar cells. Reaction is strongly exothermic and can be initiated at relatively low temperature, making it potentially suitable for development into low-cost commercial process. Important advantages include exothermic character and comparatively low process temperatures. These could lead to significant savings in equipment and energy costs.

  6. Dissipation of Electrical Energy in Submerged Arc Furnaces Producing Silicomanganese and High-Carbon Ferromanganese

    NASA Astrophysics Data System (ADS)

    Steenkamp, Joalet Dalene; Hockaday, Christopher James; Gous, Johan Petrus; Nzima, Thabo Witness

    2017-09-01

    Submerged-arc furnace technology is applied in the primary production of ferroalloys. Electrical energy is dissipated to the process via a combination of arcing and resistive heating. In processes where a crater forms between the charge zone and the reaction zone, electrical energy is dissipated mainly through arcing, e.g., in coke-bed based processes, through resistive heating. Plant-based measurements from a device called "Arcmon" indicated that in silicomanganese (SiMn) production, at times up to 15% of the electrical energy used is transferred by arcing, 30% in high-carbon ferromanganese (HCFeMn) production, compared with 5% in ferrochromium and 60% in ferrosilicon production. On average, the arcing is much less at 3% in SiMn and 5% in HCFeMn production.

  7. Understanding D-Ribose and Mitochondrial Function.

    PubMed

    Mahoney, Diane E; Hiebert, John B; Thimmesch, Amanda; Pierce, John T; Vacek, James L; Clancy, Richard L; Sauer, Andrew J; Pierce, Janet D

    2018-01-01

    Mitochondria are important organelles referred to as cellular powerhouses for their unique properties of cellular energy production. With many pathologic conditions and aging, mitochondrial function declines, and there is a reduction in the production of adenosine triphosphate. The energy carrying molecule generated by cellular respiration and by pentose phosphate pathway, an alternative pathway of glucose metabolism. D-ribose is a naturally occurring monosaccharide found in the cells and particularly in the mitochondria is essential in energy production. Without sufficient energy, cells cannot maintain integrity and function. Supplemental D-ribose has been shown to improve cellular processes when there is mitochondrial dysfunction. When individuals take supplemental D-ribose, it can bypass part of the pentose pathway to produce D-ribose-5-phosphate for the production of energy. In this article, we review how energy is produced by cellular respiration, the pentose pathway, and the use of supplemental D-ribose.

  8. Evaluation of hydrolysis-esterification biodiesel production from wet microalgae.

    PubMed

    Song, Chunfeng; Liu, Qingling; Ji, Na; Deng, Shuai; Zhao, Jun; Li, Shuhong; Kitamura, Yutaka

    2016-08-01

    Wet microalgae hydrolysis-esterification route has the advantage to avoid the energy-intensive units (e.g. drying and lipid extraction) in the biodiesel production process. In this study, techno-economic evaluation of hydrolysis-esterification biodiesel production process was carried out and compared with conventional (usually including drying, lipid extraction, esterification and transesterification) biodiesel production process. Energy and material balance of the conventional and hydrolysis-esterification processes was evaluated by Aspen Plus. The simulation results indicated that drying (2.36MJ/L biodiesel) and triolein transesterification (1.89MJ/L biodiesel) are the dominant energy-intensive stages in the conventional route (5.42MJ/L biodiesel). By contrast, the total energy consumption of hydrolysis-esterification route can be reduced to 1.81MJ/L biodiesel, and approximately 3.61MJ can be saved to produce per liter biodiesel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Low cost composite materials for wind energy conversion systems

    NASA Technical Reports Server (NTRS)

    Weingart, O.

    1980-01-01

    A winding process utilizing a low-cost E-glass fabric called transverse-filament tape for low-cost production of wind turbine generators (WTG) is described. The process can be carried out continuously at high speed to produce large one-piece parts with tapered wall thicknesses on a tapered mandrel. It is being used to manufacture blades for the NASA/DOE 200-ft-diameter MOD-1 WTG and Rockwell/DOE 40-kW small wind energy conversion system (SWECS).

  10. 75 FR 17397 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project, Kern County, CA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... and potable water pipelines, a transmission line, a natural gas supply pipeline, a CO 2 pipeline... line. HECA would also construct an approximately 8-mile natural gas supply pipeline extending southeast... produce synthesis gas (syngas), which would then be processed and purified to produce a hydrogen-rich fuel...

  11. Collisional Penrose process with spinning particles

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sajal

    2018-03-01

    In this article, we have investigated collisional Penrose process (CPP) using spinning particles in a Kerr spacetime. Recent studies have shown that the collision between two spinning particles can produce a significantly high energy in the center of mass frame. Here, we explicitly compute the energy extraction and efficiency as measured by an observer at infinity. We consider the colliding particles as well as the escaping particles may contain spins. It has been shown that the energy extraction is larger than the non-spinning case and also their possibility to escape to infinity is wider than the geodesics.

  12. A New Use for High-Sulfur Coal

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; England, C.

    1982-01-01

    New process recovers some of economic value of high-sulfur coal. Although high-sulfur content is undesirable in most coal-utilization schemes (such as simple burning), proposed process prefers high-sulfur coal to produce electrical power or hydrogen. Potential exists for widespread application in energy industry.

  13. [Thermoconversion of carbonaceous materials to produce synthetic fuels: the biomass case].

    PubMed

    Dupont, Capucine; Chataing, Thierry; Rougé, Sylvie

    2008-01-01

    In the present energy context, there is a growing interest for the fuel production from biomass. While the first generation of biofuels has shown its limits, a second generation appears that is based on the valorisation of the unused resources of lignocellulosic biomass. This could significantly increase the biofuels potential in France. Up to 40 % of the total needs of transport fuel could be covered. Among the processes under development, the Biomass to Liquid (BtL) process seems as an interesting route, able to be shortly implemented at an industrial scale. This process consists in producing liquid fuel (such as Diesel Fischer-Trospch) through a synthetic gas obtained by biomass gasification However R&D work is still needed to solve the remaining key issues of the process. These studies are performed in several laboratories in Europe, especially in Germany and in the Nordic countries, and also more recently in France, notably in the Commissariat à l'Energie Atomique.

  14. Conceptual Design of Low-Temperature Hydrogen Production and High-Efficiency Nuclear Reactor Technology

    NASA Astrophysics Data System (ADS)

    Fukushima, Kimichika; Ogawa, Takashi

    Hydrogen, a potential alternative energy source, is produced commercially by methane (or LPG) steam reforming, a process that requires high temperatures, which are produced by burning fossil fuels. However, as this process generates large amounts of CO2, replacement of the combustion heat source with a nuclear heat source for 773-1173K processes has been proposed in order to eliminate these CO2 emissions. In this paper, a novel method of nuclear hydrogen production by reforming dimethyl ether (DME) with steam at about 573K is proposed. From a thermodynamic equilibrium analysis of DME steam reforming, the authors identified conditions that provide high hydrogen production fraction at low pressure and temperatures of about 523-573K. By setting this low-temperature hydrogen production process upstream from a turbine and nuclear reactor at about 573K, the total energy utilization efficiency according to equilibrium mass and heat balance analysis is about 50%, and it is 75%for a fast breeder reactor (FBR), where turbine is upstream of the reformer.

  15. System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

    DOEpatents

    McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian

    2016-11-22

    A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.

  16. Mechanism on brain information processing: Energy coding

    NASA Astrophysics Data System (ADS)

    Wang, Rubin; Zhang, Zhikang; Jiao, Xianfa

    2006-09-01

    According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, the authors present a brand new scientific theory that offers a unique mechanism for brain information processing. They demonstrate that the neural coding produced by the activity of the brain is well described by the theory of energy coding. Due to the energy coding model's ability to reveal mechanisms of brain information processing based upon known biophysical properties, they cannot only reproduce various experimental results of neuroelectrophysiology but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, they estimate that the theory has very important consequences for quantitative research of cognitive function.

  17. CNRS interdisciplinary research program for solar energy development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The contributions of CNRS to the French national solar energy R and D program are reviewed. The three principal processes in which solar radiation is converted into other, directly usable energy forms are discussed in detail. These include thermodynamic conversion, photovoltaic conversion, and bioconversion to produce a substitute fuel. Related research on insolation and the weather is mentioned and relations with the industrial sector are considered. French collaboration with other countries in solar energy is discussed.

  18. A possible new approach to understanding mental disorder.

    PubMed

    Sharples, P J

    2012-09-01

    The aetiology of mental disorders is not fully understood. This paper presents an analysis of the conceptual control process exploring the tools of conceptual application and the phases and the mechanism of the control process and seeks to show how the illness states of mental disorder naturally come to occur. Living occurs in a world of change. For living to occur some control is required and to exert control, to provide direction for the conceptual process, some interpretation of significance, some definition of need is also required. Such interpretation, monitoring significance in relation to the many aspects of change, forms the base on which living occurs. Change in human terms is intrinsically insecure and interpretation of significance is an interpretation of security, an interpretation of control in living. Conceptual control is a process applied to maintain security, to maintain a secure base for the interpretation of significance, it is a process applied to produce and hold a sense of control. Powering a process, producing and holding a sense of control, is an active process and so requires some form of energy. Human beings have a sense of that energy, something exhibited in terms such as full of energy, tired, exhausted. As energy is required to power the control process, accompanying the sense of energy is a sense of the ability to provide power, is a sense of the ability to hold and maintain control, is a sense of security. As available energy reduces there is difficulty holding the same sense of control, a person in the same setting comes to feel more insecure. This can result in a person experiencing mental disorder from mild to severe degree. Mild where conceptual process is applied to manage just one or a very few particular needs, severe and more general where the insecurity affects the base of interpretation. In this later case seeking to protect security can lead to mania, mood-incongruent delusions, schizophrenia. Failing ability to protect can lead to generalized anxiety disorder, mood-congruent delusions, different presentations and degrees of depression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Calorimetry of electron beams and the calibration of dosimeters at high doses

    NASA Astrophysics Data System (ADS)

    Humphreys, J. C.; McLaughlin, W. L.

    Graphite or metal calorimeters are used to make absolute dosimetric measurements of high-energy electron beams. These calibrated beams are then used to calibrate several types of dosimeters for high-dose applications such as medical-product sterilization, polymer modification, food processing, or electronic-device hardness testing. The electron beams are produced either as continuous high-power beams at approximately 4.5 MeV by d.c. type accelerators or in the energy range of approximately 8 to 50 MeV using pulsed microwave linear accelerators (linacs). The continuous beams are generally magnetically scanned to produce a broad, uniform radiation environment for the processing of materials of extended lateral dimensions. The higher-energy pulsed beams may also be scanned for processing applications or may be used in an unscanned, tightly-focused mode to produce maximum absorbed dose rates such as may be required for electronic-device radiation hardness testing. The calorimeters are used over an absorbed dose range of 10 2 to 10 4 Gy. Intercomparison studies are reported between National Institute of Standards and Technology (NIST) and UK National Physical Laboratory (NPL) graphite disk calorimeters at high doses, using the NPL 10-MeV linac, and agreement was found within 1.5%. It was also shown that the electron-beam responses of radiochromic film dosimeters and alanine pellet dosimeters can be accurately calibrated by comparison with calorimeter readings.

  20. Effects of carbohydrates on satiety: differences between liquid and solid food.

    PubMed

    Pan, An; Hu, Frank B

    2011-07-01

    To examine the satiety effect of carbohydrates with a focus on the comparison of liquid and solid food and their implications for energy balance and weight management. A number of studies have examined the role of dietary fiber, whole grains, and glycemic index or glycemic load on satiety and subsequent energy intake, but results remain inconclusive. Intake of liquid carbohydrates, particularly sugar-sweetened beverages, has increased considerably across the globe in recent decades in both adolescents and adults. In general, liquid carbohydrates produce less satiety compared with solid carbohydrates. Some energy from liquids may be compensated for at subsequent meals but because the compensation is incomplete, it leads to an increase in total long-term energy intake. Recent studies also suggest some potential differential responses of satiety by characteristics of the patients (e.g., race, sex, and body weight status). These differences warrant further research. Satiety is a complex process influenced by a number of properties in food. The physical form (solid vs. liquid) of carbohydrates is an important component that may affect the satiety process and energy intake. Accumulating evidence suggests that liquid carbohydrates generally produce less satiety than solid forms.

  1. Development of a strategy for energy efficiency improvement in a Kraft process based on systems interactions analysis

    NASA Astrophysics Data System (ADS)

    Mateos-Espejel, Enrique

    The objective of this thesis is to develop, validate, and apply a unified methodology for the energy efficiency improvement of a Kraft process that addresses globally the interactions of the various process systems that affect its energy performance. An implementation strategy is the final result. An operating Kraft pulping mill situated in Eastern Canada with a production of 700 adt/d of high-grade bleached pulp was the case study. The Pulp and Paper industry is Canada's premier industry. It is characterized by large thermal energy and water consumption. Rising energy costs and more stringent environmental regulations have led the industry to refocus its efforts toward identifying ways to improve energy and water conservation. Energy and water aspects are usually analyzed independently, but in reality they are strongly interconnected. Therefore, there is a need for an integrated methodology, which considers energy and water aspects, as well as the optimal utilization and production of the utilities. The methodology consists of four successive stages. The first stage is the base case definition. The development of a focused, reliable and representative model of an operating process is a prerequisite to the optimization and fine tuning of its energy performance. A four-pronged procedure has been developed: data gathering, master diagram, utilities systems analysis, and simulation. The computer simulation has been focused on the energy and water systems. The second stage corresponds to the benchmarking analysis. The benchmarking of the base case has the objectives of identifying the process inefficiencies and to establish guidelines for the development of effective enhancement measures. The studied process is evaluated by a comparison of its efficiency to the current practice of the industry and by the application of new energy and exergy content indicators. The minimum energy and water requirements of the process are also determined in this step. The third stage is the core of the methodology; it represents the formulation of technically feasible energy enhancing options. Several techniques are applied in an iterative procedure to cast light on their synergies and counter-actions. The objective is to develop a path for improving the process so as to maximize steam savings while minimizing the investment required. The fourth stage is the implementation strategy. As the existing process configuration and operating conditions vary from process to process it is important to develop a strategy for the implementation of energy enhancement programs in the most advantageous way for each case. A three-phase strategy was selected for the specific case study in the context of its management strategic plan: the elimination of fossil fuel, the production of power and the liberation of steam capacity. A post-benchmarking analysis is done to quantify the improvement of the energy efficiency. The performance indicators are computed after all energy enhancing measures have been implemented. The improvement of the process by applying the unified methodology results in substantially more steam savings than by applying individually the typical techniques that it comprises: energy savings of 5.6 GJ/adt (27% of the current requirement), water savings of 32 m3/adt (34% of the current requirement) and an electricity production potential of 44.5MW. As a result of applying the unified methodology the process becomes eco-friendly as it does not require fossil fuel for producing steam; its water and steam consumptions are below the Canadian average and it produces large revenues from the production of green electricity.

  2. 40 CFR 279.11 - Used oil specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... burned for energy recovery, and any fuel produced from used oil by processing, blending, or other... levels of the constituents and properties shown in Table 1. Once used oil that is to be burned for energy recovery has been shown not to exceed any allowable level and the person making that showing complies with...

  3. High-Level Radioactive Waste.

    ERIC Educational Resources Information Center

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  4. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition.

    PubMed

    Lewis, Brett B; Stanford, Michael G; Fowlkes, Jason D; Lester, Kevin; Plank, Harald; Rack, Philip D

    2015-01-01

    Platinum-carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IV)Me3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top-down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. In addition to purification, the post-deposition electron stimulated oxygen purification process enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.

  5. Realizing synchronous energy harvesting and ion separation with graphene oxide membranes.

    PubMed

    Sun, Pengzhan; Zheng, Feng; Zhu, Miao; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Zhu, Hongwei

    2014-07-02

    A synchronous ion separation and electricity generation process has been developed using G-O membranes. In addition to the size effect proposed prevsiouly, the separation of ions can be attributed to the different interactions between ions and G-O membranes; the generation of electricity is due to the confinement of G-O membranes, and the mobility difference of ions. Efficient energy transduction has been achieved with G-O membranes, converting magnetic, thermal and osmotic energy to electricity, distinguishing this material from other commercial semi-permeable membranes. Our study indicated that G-O membranes could find potential applications in the purification of wastewater, while producing electricity simultaneously. With G-O membranes, industrial magnetic leakage and waste heat could also be used to produce electricity, affording a superior approach for energy recovery.

  6. Biological Hydrogen Production: Simultaneous Saccharification and Fermentation with Nitrogen and Phosphorus Removal from Wastewater Effluent

    DTIC Science & Technology

    2012-03-01

    the Haber - Bosch process, in which hydrogen is first produced from methane (eq. 1), then ammonia is produced from nitrogen and hydrogen: N2 (g...3H2 (g) - 2NH3 (g) (5) Agronomists have calculated that well over one-third of the world’s present population is fed by virtue of the Haber - Bosch ...fixation of nitrogen through the Haber - Bosch process, leading to a potential confluence of energy and fertilizer crises. Biological nitrogen fixation

  7. Fuel-Flexible Gasification-Combustion Technology for Production of Hydrogen and Sequestration-Ready Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizeq, George; West, Janice; Frydman, Arnaldo

    Electricity produced from hydrogen in fuel cells can be highly efficient relative to competing technologies and has the potential to be virtually pollution free. Thus, fuel cells may become an ideal solution to this nation's energy needs if one has a satisfactory process for producing hydrogen from available energy resources such as coal, and low-cost alternative feedstocks such as biomass. GE EER is developing an innovative fuel-flexible advanced gasification-combustion (AGC) technology for production of hydrogen for fuel cells or combustion turbines, and a separate stream of sequestration-ready CO2. The AGC module can be integrated into a number of Vision- 21more » power systems. It offers increased energy efficiency relative to conventional gasification and combustion systems and near-zero pollution. The R&D on the AGC technology is being conducted under a Vision-21 award from the U.S. DOE NETL with co-funding from GE EER, Southern Illinois University at Carbondale (SIU-C), and the California Energy Commission (CEC). The AGC technology converts coal and air into three separate streams of pure hydrogen, sequestration-ready CO2, and high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The three-year program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. Process and kinetic modeling studies as well as an economic assessment will also be performed. This paper provides an overview of the program and its objectives, and discusses first-year R&D activities, including design of experimental facilities and results from initial tests and modeling studies. In particular, the paper describes the design of the bench-scale facility and initial process modeling data. In addition, a process flow diagram is shown for a complete plant incorporating the AGC module with other Vision-21 plant components to maximize hydrogen production and process efficiency.« less

  8. Thermodynamic Investigation of the Reduction-Distillation Process for Rare Earth Metals Production

    NASA Astrophysics Data System (ADS)

    Judge, W. D.; Azimi, G.

    2017-10-01

    Owing to their high vapor pressure, the four rare earth metals samarium, europium, thulium, and ytterbium are produced by reduction-distillation whereby their oxides are reduced with metallic lanthanum in vacuo, and the produced metal is subsequently vaporized off. Here, we performed a thorough thermodynamic investigation to establish a fundamental understanding of the reduction-distillation process. Thermodynamic functions including vapor pressures, Gibbs free energies, and enthalpies of reaction were calculated and compared with available experimental data. Furthermore, the kinetics of the process was explored and theoretical evaporation rates were calculated from thermodynamic data. The thermodynamic model developed in this work can help optimize processing conditions to maximize the yield and improve the overall process.

  9. Modeling of the steam hydrolysis in a two-step process for hydrogen production by solar concentrated energy

    NASA Astrophysics Data System (ADS)

    Valle-Hernández, Julio; Romero-Paredes, Hernando; Pacheco-Reyes, Alejandro

    2017-06-01

    In this paper the simulation of the steam hydrolysis for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 to lower-valence cerium oxide, at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. The modeling of endothermic reduction step was presented at the Solar Paces 2015. This work shows the modeling of the exothermic step; the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For this model, three sections of the pipe where the reaction occurs were considered; the steam water inlet, the porous medium and the hydrogen outlet produced. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).

  10. Investigation of sewage sludge treatment using air plasma assisted gasification.

    PubMed

    Striūgas, Nerijus; Valinčius, Vitas; Pedišius, Nerijus; Poškas, Robertas; Zakarauskas, Kęstutis

    2017-06-01

    This study presents an experimental investigation of downdraft gasification process coupled with a secondary thermal plasma reactor in order to perform experimental investigations of sewage sludge gasification, and compare process parameters running the system with and without the secondary thermal plasma reactor. The experimental investigation were performed with non-pelletized mixture of dried sewage sludge and wood pellets. To estimate the process performance, the composition of the producer gas, tars, particle matter, producer gas and char yield were measured at the exit of the gasification and plasma reactor. The research revealed the distribution of selected metals and chlorine in the process products and examined a possible formation of hexachlorobenzene. It determined that the plasma assisted processing of gaseous products changes the composition of the tars and the producer gas, mostly by destruction of hydrocarbon species, such as methane, acetylene, ethane or propane. Plasma processing of the producer gas reduces their calorific value but increases the gas yield and the total produced energy amount. The presented technology demonstrated capability both for applying to reduce the accumulation of the sewage sludge and production of substitute gas for drying of sewage sludge and electrical power. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Environmental Assessment for Developing Renewable Energy Enhanced Use Lease Facilities at Robins Air Force Base

    DTIC Science & Technology

    2013-12-15

    Blufftown is underlain by igneous and metamorphic rocks which are equivalent to those of the Georgia Piedmont. Potable and process waters are produced...Final Environmental Assessment for Developing Renewable Energy Enhanced Use Lease Facilities at Robins Air Force Base...TITLE AND SUBTITLE Final Environmental Assessment for Developing Renewable Energy Enhanced Use Lease Facilities at Robins Air Force Base 5a. CONTRACT

  12. Environmental Assessment for Developing Renewable Energy Enhanced Use Lease Facilities at Robins Air Force Base

    DTIC Science & Technology

    2013-12-15

    underlain by igneous and metamorphic rocks which are equivalent to those of the Georgia Piedmont. Potable and process waters are produced from the...Final Environmental Assessment for Developing Renewable Energy Enhanced Use Lease Facilities at Robins Air Force Base...RENEWABLE ENERGY ENHANCED USE LEASE FACILITIES AT ROBINS AIR FORCE BASE In accordance with the National Environmental Policy Act (NEPA) of 1969 (42 U.S

  13. USGS investigations of water produced during hydrocarbon reservoir development

    USGS Publications Warehouse

    Engle, Mark A.; Cozzarelli, Isabelle M.; Smith, Bruce D.

    2014-01-01

    Significant quantities of water are present in hydrocarbon reservoirs. When brought to the land surface during oil, gas, and coalbed methane production, the water—either naturally occurring or injected as a method to enhance production—is termed produced water. Produced water is currently managed through processes such as recycling, treatment and discharge, spreading on roads, evaporation or infiltration, and deep well injection. U.S. Geological Survey (USGS) scientists conduct research and publish data related to produced water, thus providing information and insight to scientists, decisionmakers, the energy industry, and the public. The information advances scientific knowledge, informs resource management decisions, and facilitates environmental protection. This fact sheet discusses integrated research being conducted by USGS scientists supported by programs in the Energy and Minerals and Environmental Health Mission Areas. The research products help inform decisions pertaining to understanding the nature and management of produced water in the United States.

  14. Prediction of FAD binding sites in electron transport proteins according to efficient radial basis function networks and significant amino acid pairs.

    PubMed

    Le, Nguyen-Quoc-Khanh; Ou, Yu-Yen

    2016-07-30

    Cellular respiration is a catabolic pathway for producing adenosine triphosphate (ATP) and is the most efficient process through which cells harvest energy from consumed food. When cells undergo cellular respiration, they require a pathway to keep and transfer electrons (i.e., the electron transport chain). Due to oxidation-reduction reactions, the electron transport chain produces a transmembrane proton electrochemical gradient. In case protons flow back through this membrane, this mechanical energy is converted into chemical energy by ATP synthase. The convert process is involved in producing ATP which provides energy in a lot of cellular processes. In the electron transport chain process, flavin adenine dinucleotide (FAD) is one of the most vital molecules for carrying and transferring electrons. Therefore, predicting FAD binding sites in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. We used an independent data set to evaluate the performance of the proposed method, which had an accuracy of 69.84 %. We compared the performance of the proposed method in analyzing two newly discovered electron transport protein sequences with that of the general FAD binding predictor presented by Mishra and Raghava and determined that the accuracy of the proposed method improved by 9-45 % and its Matthew's correlation coefficient was 0.14-0.5. Furthermore, the proposed method enabled reducing the number of false positives significantly and can provide useful information for biologists. We developed a method that is based on PSSM profiles and SAAPs for identifying FAD binding sites in newly discovered electron transport protein sequences. This approach achieved a significant improvement after we added SAAPs to PSSM features to analyze FAD binding proteins in the electron transport chain. The proposed method can serve as an effective tool for predicting FAD binding sites in electron transport proteins and can help biologists understand the functions of the electron transport chain, particularly those of FAD binding sites. We also developed a web server which identifies FAD binding sites in electron transporters available for academics.

  15. Characterizing variable biogeochemical changes during the treatment of produced oilfield waste.

    PubMed

    Hildenbrand, Zacariah L; Santos, Inês C; Liden, Tiffany; Carlton, Doug D; Varona-Torres, Emmanuel; Martin, Misty S; Reyes, Michelle L; Mulla, Safwan R; Schug, Kevin A

    2018-09-01

    At the forefront of the discussions about climate change and energy independence has been the process of hydraulic fracturing, which utilizes large amounts of water, proppants, and chemical additives to stimulate sequestered hydrocarbons from impermeable subsurface strata. This process also produces large amounts of heterogeneous flowback and formation waters, the subsurface disposal of which has most recently been linked to the induction of anthropogenic earthquakes. As such, the management of these waste streams has provided a newfound impetus to explore recycling alternatives to reduce the reliance on subsurface disposal and fresh water resources. However, the biogeochemical characteristics of produced oilfield waste render its recycling and reutilization for production well stimulation a substantial challenge. Here we present a comprehensive analysis of produced waste from the Eagle Ford shale region before, during, and after treatment through adjustable separation, flocculation, and disinfection technologies. The collection of bulk measurements revealed significant reductions in suspended and dissolved constituents that could otherwise preclude untreated produced water from being utilized for production well stimulation. Additionally, a significant step-wise reduction in pertinent scaling and well-fouling elements was observed, in conjunction with notable fluctuations in the microbiomes of highly variable produced waters. Collectively, these data provide insight into the efficacies of available water treatment modalities within the shale energy sector, which is currently challenged with improving the environmental stewardship of produced water management. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. 40 CFR 80.1426 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... annual covercrops Fermentation using natural gas, biomass, or biogas for process energy 6 F Biodiesel...-Esterification Hydrotreating Excluding processes that co-process renewable biomass and petroleum 4 G Biodiesel... Biodiesel, renewable diesel, jet fuel and heating oil Soy bean oil; Oil from annual covercrops; Algal oil...

  17. Neutrinos, supernovae, and the origin of the heavy elements

    NASA Astrophysics Data System (ADS)

    Qian, YongZhong

    2018-04-01

    Stars of 8-100 M ⊙ end their lives as core-collapse supernovae (SNe). In the process they emit a powerful burst of neutrinos, produce a variety of elements, and leave behind either a neutron star or a black hole. The wide mass range for SN progenitors results in diverse neutrino signals, explosion energies, and nucleosynthesis products. A major mechanism to produce nuclei heavier than iron is rapid neutron capture, or the r process. This process may be connected to SNe in several ways. A brief review is presented on current understanding of neutrino emission, explosion, and nucleosynthesis of SNe.

  18. Thermochemical valorization and characterization of household biowaste.

    PubMed

    Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Vekkos, K; Baratieri, M

    2017-12-01

    Valorization of municipal solid waste (MSW), by means of energy and material recovery, is considered to be a crucial step for sustainable waste management. A significant fraction of MSW is comprised from food waste, the treatment of which is still a challenge. Therefore, the conventional disposal of food waste in landfills is being gradually replaced by recycling aerobic treatment, anaerobic digestion and waste-to-energy. In principle, thermal processes like combustion and gasification are preferred for the recovery of energy due to the higher electrical efficiency and the significantly less time required for the process to be completed when compared to biological process, i.e. composting, anaerobic digestion and transesterification. Nonetheless, the high water content and the molecular structure of biowaste are constraining factors in regard to the application of thermal conversion pathways. Investigating alternative solutions for the pre-treatment and more energy efficient handling of this waste fraction may provide pathways for the optimization of the whole process. In this study, by means of utilizing drying/milling as an intermediate step, thermal treatment of household biowaste has become possible. Household biowaste has been thermally processed in a bench scale reactor by means of torrefaction, carbonization and high temperature pyrolysis. According to the operational conditions, fluctuating fractions of biochar, bio-oil (tar) and syngas were recovered. The thermochemical properties of the feedstock and products were analyzed by means of Simultaneous Thermal Analysis (STA), Ultimate and Proximate analysis and Attenuated Total Reflectance (ATR). The analysis of the products shows that torrefaction of dried household biowaste produces an energy dense fuel and high temperature pyrolysis produces a graphite-like material with relatively high yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Industrial symbiosis: corn ethanol fermentation, hydrothermal carbonization, and anaerobic digestion.

    PubMed

    Wood, Brandon M; Jader, Lindsey R; Schendel, Frederick J; Hahn, Nicholas J; Valentas, Kenneth J; McNamara, Patrick J; Novak, Paige M; Heilmann, Steven M

    2013-10-01

    The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By substantially eliminating evaporation of water, reductions in downstream energy consumption from 65% to 73% were achieved while generating hydrochar, fatty acids, treated process water, and biogas co-products providing new opportunities for the industry. Processing whole stillage in this manner produced the four co-products, eliminated centrifugation and evaporation, and substantially reduced drying. With thin stillage, all four co-products were again produced, as well as a high quality animal feed. Anaerobic digestion of the aqueous product stream from the hydrothermal carbonization of thin stillage reduced chemical oxygen demand (COD) by more than 90% and converted 83% of the initial COD to methane. Internal use of this biogas could entirely fuel the HTC process and reduce overall natural gas usage. Copyright © 2013 Wiley Periodicals, Inc.

  20. Scale Up of Malonic Acid Fermentation Process: Cooperative Research and Development Final Report, CRADA Number CRD-16-612

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schell, Daniel J

    The goal of this work is to use the large fermentation vessels in the National Renewable Energy Laboratory's (NREL) Integrated Biorefinery Research Facility (IBRF) to scale-up Lygos' biological-based process for producing malonic acid and to generate performance data. Initially, work at the 1 L scale validated successful transfer of Lygos' fermentation protocols to NREL using a glucose substrate. Outside of the scope of the CRADA with NREL, Lygos tested their process on lignocellulosic sugars produced by NREL at Lawrence Berkeley National Laboratory's (LBNL) Advanced Biofuels Process Development Unit (ABPDU). NREL produced these cellulosic sugar solutions from corn stover using amore » separate cellulose/hemicellulose process configuration. Finally, NREL performed fermentations using glucose in large fermentors (1,500- and 9,000-L vessels) to intermediate product and to demonstrate successful performance of Lygos' technology at larger scales.« less

  1. A New Method for Low Cost Production of Titanium Alloys for Reducing Energy Consumption of Mechanical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Z. Zak; Chandran, Ravi; Koopman, Mark

    This project investigated an innovative manufacturing process intended to minimize the cost of production of titanium materials and components, and increase the adoption of Ti components for energy consuming applications, such as automobiles. A key innovation of the proposed manufacturing approach is a novel Ti powder sintering technology for making titanium materials with ultrafine grain microstructure in the as-sintered state with minimum, or an absence, of post-sintering processes. The new sintering technology is termed Hydrogen Sintering and Phase Transformations (HSPT), and constitutes a promising manufacturing technology that can be used to produce titanium (Ti) materials and components in a near-net-shapemore » form, thus also minimizing machining costs. Our objective was to meet, or possibly surpass, the mechanical property levels for ASTM B348 Grade 5 for wrought Ti-6Al-4V. Although specific applications call for varying mechanical property requirements, ASTM B348 was created for the demanding applications of the aerospace industry, and is the established standard for Ti-6Al-4V. While the primary goal was to meet, or exceed this standard, the team also had the goal of demonstrating this could be done at a significantly lower cost of production. Interim goals of the project were to fully develop this novel sintering process, and provide sufficient baseline testing to make the method practical and attractive to industry. By optimizing the process parameters for the sintering of titanium hydride (TiH 2) powders in a hydrogen atmosphere and controlling the phase transformations during and after sintering, the HSPT process was expected to reduce the energy consumption, and thus cost, of making Ti alloys and fabricating Ti components. The process was designed such that no high temperature melting is required for producing Ti alloys; little or no post-sintering processing is needed for producing desired microstructures (and therefore enhanced mechanical properties), and finally, minimum machining is needed to fabricate finished Ti components. An energy analysis within this report provides more detail, but calculated values indicate that the HSPT process is less than half as energy intensive as conventional wrought processing, while producing mechanical properties that are comparable. In addition to the energy savings anticipated from the industrial production of Ti components, a second prong of energy savings resides in the use phase of components produced, primarily from use in the transportation sector. Titanium has a number of material qualities appropriate for the auto industry, particularly low mass and corrosion resistance. By reducing the weight of automobiles and other vehicles, energy costs and CO 2 production will be reduced over the lifetime of the vehicles, and components in corrosive environments on vehicles, such as exhaust systems and other under carriage parts, may not have to be replaced during a vehicle’s lifetime. Our analysis indicates that by replacing only 5.6 kg of steel parts in an auto with Ti components across the entire US fleet would save approximately 486 million gallons of gasoline per year. This correlates to a reduction of 3.6 million metric tons of CO 2 per year. The potential for replacing many more of the steel parts in automobiles with lighter weight titanium components is clear. The project was very successful overall, meeting all milestones and surpassing project goals in terms of mechanical properties and microstructures produced. In addition to tensile properties, fatigue properties were emphasized in the project work. Powder metallurgy processes often have porosity to some degree in their final microstructure, and porosity is a well-known cause of crack initiation and low fatigue performance. Although many automobile applications do not undergo fatigue stress regimes, many others do encounter cyclic stress, and design criteria in the latter case require good fatigue properties. Production and testing of HSPT parts showed excellent tensile properties and fracture toughness, and fatigue properties that exceeded all previously reported powder metallurgy Ti methods, overlapping with wrought processed values. Fatigue limits exceeded 500 MPa and tensile strength exceeded 1,000 MPa while maintaining good ductility. Microstructures produced during the project period easily surpassed pre-project expectations. In addition to producing very fine grains in the as-sintered state (without post sintered thermo-mechanical work), porosity was reduced and industrially relevant microstructures previously undemonstrated in any other powder metallurgy titanium method were produced using HSPT materials. These microstructures, both bi-modal and globularized, were produced with simple post-sinter heat treatments, but without the need for energy intensive mechanical work. The employed heat treatments expanded the available mechanical property range (tensile strength vs. ductility) of the HSPT system in Ti-6Al-4V. The project has resulted in the publication, thus far, of five refereed journal articles and five conference proceedings papers, as well as a patent application, two dissertations and a master’s thesis. Two additional journal articles are currently under review, and at least three others are currently in preparation, with several additional students anticipated to graduate within the coming year. Presentations and papers were a particular focus of the second half of the project, once significant experimentation had been performed and analyzed. As part of our efforts to disseminate information of our results, the Ti research teams within Prof. Fang’s and Prof. Chandran’s research groups had a strong presence at the 13th World Conference on Ti, August 16-20, 2015, in San Diego. Several research groups in the US and in Europe are now performing experiments using the HSPT process. Accompanying efforts to bring HSPT to the Ti community at large, and industry in particular, work has continued with our partners and with other interested industrial Ti users and producers, including Boeing and GKN (a major powder metallurgy parts manufacturer). Commercialization has been a central focus of the final phase of the project, and Reading Alloys signed a provisional licensing agreement in summer of 2015. They are currently seeking an appropriate customer with which to pursue initial parts manufacturing efforts. Other licensing options and partners are continuing to be pursued. The promise of lightweight, strong and corrosion resistant Ti alloys with long fatigue lifetimes for automobile or transportation applications has been the vision of the metal industry since titanium came to the attention of scientists and engineers. The sole limitation of realizing these goals has been cost, which is primarily a function of energy used in production. The HSPT process was shown through this work to be capable of realizing this goal, and facilitating the practical use of titanium in US automotive and other industries.« less

  2. Simulation of secondary emission calorimeter for future colliders

    NASA Astrophysics Data System (ADS)

    Yetkin, E. A.; Yetkin, T.; Ozok, F.; Iren, E.; Erduran, M. N.

    2018-03-01

    We present updated results from a simulation study of a conceptual sampling electromagnetic calorimeter based on secondary electron emission process. We implemented the secondary electron emission process in Geant4 as a user physics list and produced the energy spectrum and yield of secondary electrons. The energy resolution of the SEE calorimeter was σ/E = (41%) GeV1/2/√E and the response linearity to electromagnetic showers was to within 1.5%. The simulation results were also compared with a traditional scintillator calorimeter.

  3. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, R.W.

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  4. Carboxylate platform: the MixAlco process part 1: comparison of three biomass conversion platforms.

    PubMed

    Holtzapple, Mark T; Granda, Cesar B

    2009-05-01

    To convert biomass to liquid fuels, three platforms are compared: thermochemical, sugar, and carboxylate. To create a common basis, each platform is fed "ideal biomass," which contains polysaccharides (68.3%) and lignin (31.7%). This ratio is typical of hardwood biomass and was selected so that when gasified and converted to hydrogen, the lignin has sufficient energy to produce ethanol from the carboxylic acids produced by the carboxylate platform. Using balanced chemical reactions, the theoretical yield and energy efficiency were determined for each platform. For all platforms, the ethanol yield can be increased by 71% to 107% by supplying external hydrogen produced from other sources (e.g., solar, wind, nuclear, fossil fuels). The alcohols can be converted to alkanes with a modest loss of energy efficiency (3 to 5 percentage points). Of the three platforms considered, the carboxylate platform has demonstrated the highest product yields.

  5. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    NASA Astrophysics Data System (ADS)

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; Sun, Pei; Butler, Brady G.

    2017-02-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wrought-like microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistant microstructures via simple heat treatments. The exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.

  6. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    DOE PAGES

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; ...

    2017-02-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wroughtlike microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistantmore » microstructures via simple heat treatments. Finally, the exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.« less

  7. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wroughtlike microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistantmore » microstructures via simple heat treatments. Finally, the exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.« less

  8. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    PubMed Central

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; Sun, Pei; Butler, Brady G.

    2017-01-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wrought-like microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistant microstructures via simple heat treatments. The exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing. PMID:28145527

  9. The importance of utility systems in today's biorefineries and a vision for tomorrow.

    PubMed

    Eggeman, Tim; Verser, Dan

    2006-01-01

    Heat and power systems commonly found in today's corn processing facilities, sugar mills, and pulp and paper mills will be reviewed. We will also examine concepts for biorefineries of the future. We will show that energy ratio, defined as the ratio of renewable energy produced divided by the fossil energy input, can vary widely from near unity to values greater than 12. Renewable-based utility systems combined with low-fossil input agricultural systems lead to high-energy ratios.

  10. Combined high-power ultrasound and high-pressure homogenization nanoemulsification: The effect of energy density, oil content and emulsifier type and content.

    PubMed

    Calligaris, Sonia; Plazzotta, Stella; Valoppi, Fabio; Anese, Monica

    2018-05-01

    Combinations of ultrasound (US) and high-pressure homogenization (HPH) at low-medium energy densities were studied as alternative processes to individual US and HPH to produce Tween 80 and whey protein stabilized nanoemulsions, while reducing the energy input. To this aim, preliminary trials were performed to compare emulsification efficacy of single and combined HPH and US treatments delivering low-medium energy densities. Results highlighted the efficacy of US-HPH combined process in reducing the energy required to produce nanoemulsions stabilized with both Tween 80 and whey protein isolate. Subsequently, the effect of emulsifier content (1-3% w/w), oil amount (10-20% w/w) and energy density (47-175 MJ/m 3 ) on emulsion mean particle diameter was evaluated by means of a central composite design. Particles of 140-190 nm were obtained by delivering 175 MJ/m 3 energy density at emulsions containing 3% (w/w) Tween 80 and 10% (w/w) oil. In the case of whey protein isolate stabilized emulsions, a reduced emulsifier amount (1% w/w) and intermediate energy density (120 MJ/m 3 ) allowed a minimum droplet size around 220-250 nm to be achieved. Results showed that, in both cases, at least 50% of the energy density should be delivered by HPH to obtain the minimum particle diameter. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. REF Onida Approval

    EPA Pesticide Factsheets

    This update August 9, 2016 letter from EPA approves, with modifications, the petition from Ring-neck Energy & Feed, LLC, REF Onida facility, with modifications, regarding non-grandfathered ethanol produced through a dry mill process

  12. The Feasibility and Current Estimated Capital Costs of Producing Jet Fuel at Sea Using Carbon Dioxide and Hydrogen

    DTIC Science & Technology

    2010-09-29

    process is CO2 neutral and also eliminates the emission of sulfur and nitrogen compounds that are produced from the combustion of petroleum derived...Mohanasundaram, S. Renewable Power Generation-Utilising Thermal Energy from Oceans. Enviro . Sci. & Eng. 2007, 4, 35. 13. Avery, W. H.; Wu, C. Renewable

  13. Multistep process to produce fermentable sugars and lignosulfonates from softwood enzymolysis residues

    Treesearch

    Yalan Liu; Jinwu Wang; Michael P. Wolcott

    2016-01-01

    The residual solids from enzymatic hydrolysis are usually burned to produce energy and have been explored as a feedstock for various products including activated carbon and lignin based polymers. These products require additional procedures unrelated to the existing biorefinery equipment. In the current study, we proposed successive sulfite treatments to utilize the...

  14. A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy.

    PubMed

    Wang, Peng; Chung, Tai-Shung

    2012-09-01

    The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Hydrogen Production in Radioactive Solutions in the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CRAWFORD, CHARLES L.

    2004-05-26

    In the radioactive slurries and solutions to be processed in the Defense Waste Processing Facility (DWPF), hydrogen will be produced continuously by radiolysis. This production results from alpha, beta, and gamma rays from decay of radionuclides in the slurries and solutions interacting with the water. More than 1000 research reports have published data concerning this radiolytic production. The results of these studies have been reviewed in a comprehensive monograph. Information about radiolytic hydrogen production from the different process tanks is necessary to determine air purge rates necessary to prevent flammable mixtures from accumulating in the vapor spaces above these tanks.more » Radiolytic hydrogen production rates are usually presented in terms of G values or molecules of hydrogen produced per 100ev of radioactive decay energy absorbed by the slurry or solution. With the G value for hydrogen production, G(H2), for a particular slurry and the concentrations of radioactive species in that slurry, the rate of H2 production for that slurry can be calculated. An earlier investigation estimated that the maximum rate that hydrogen could be produced from the sludge slurry stream to the DWPF is with a G value of 0.45 molecules per 100ev of radioactive decay energy sorbed by the slurry.« less

  16. Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States.

    PubMed

    Cai, Hao; Dunn, Jennifer B; Wang, Zhichao; Han, Jeongwoo; Wang, Michael Q

    2013-10-02

    The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse fertigation. Forage sorghum-based ethanol can achieve a 49% WTW GHG emission reduction when ethanol plants meet process energy demands with CHP. In the case of forage sorghum and an integrated sweet sorghum pathway, the use of a portion of feedstock to fuel CHP systems significantly reduces fossil fuel consumption and GHG emissions. This study provides new insight into life-cycle energy use and GHG emissions of multiple sorghum-based ethanol production pathways in the US. Our results show that adding sorghum feedstocks to the existing options for ethanol production could help in meeting the requirements for volumes of renewable, advanced and cellulosic bioethanol production in the US required by the EPA's Renewable Fuel Standard program.

  17. Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States

    PubMed Central

    2013-01-01

    Background The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Results Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse fertigation. Forage sorghum-based ethanol can achieve a 49% WTW GHG emission reduction when ethanol plants meet process energy demands with CHP. In the case of forage sorghum and an integrated sweet sorghum pathway, the use of a portion of feedstock to fuel CHP systems significantly reduces fossil fuel consumption and GHG emissions. Conclusions This study provides new insight into life-cycle energy use and GHG emissions of multiple sorghum-based ethanol production pathways in the US. Our results show that adding sorghum feedstocks to the existing options for ethanol production could help in meeting the requirements for volumes of renewable, advanced and cellulosic bioethanol production in the US required by the EPA’s Renewable Fuel Standard program. PMID:24088388

  18. Solar Grade Silicon from Agricultural By-products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laine, Richard M

    2012-08-20

    In this project, Mayaterials developed a low cost, low energy and low temperature method of purifying rice hull ash to high purity (5-6Ns) and converting it by carbothermal reduction to solar grade quality silicon (Sipv) using a self-designed and built electric arc furnace (EAF). Outside evaluation of our process by an independent engineering firm confirms that our technology greatly lowers estimated operating expenses (OPEX) to $5/kg and capital expenses (CAPEX) to $24/kg for Sipv production, which is well below best-in-class plants using a Siemens process approach (OPEX of 14/kg and CAPEX of $87/kg, respectively). The primary limiting factor in themore » widespread use of photovoltaic (PV) cells is the high cost of manufacturing, compared to more traditional sources to reach 6 g Sipv/watt (with averages closer to 8+g/watt). In 2008, the spot price of Sipv rose to $450/kg. While prices have since dropped to a more reasonable $25/kg; this low price level is not sustainable, meaning the longer-term price will likely return to $35/kg. The 6-8 g Si/watt implies that the Sipv used in a module will cost $0.21-0.28/watt for the best producers (45% of the cost of a traditional solar panel), a major improvement from the cost/wafer driven by the $50/kg Si costs of early 2011, but still a major hindrance in fulfilling DOE goal of lowering the cost of solar energy below $1/watt. The solar cell industry has grown by 40% yearly for the past eight years, increasing the demand for Sipv. As such, future solar silicon price spikes are expected in the next few years. Although industry has invested billions of dollars to meet this ever-increasing demand, the technology to produce Sipv remains largely unchanged requiring the energy intensive, and chlorine dependent Siemens process or variations thereof. While huge improvements have been made, current state-of-the-art industrial plant still use 65 kWh/kg of silicon purified. Our technology offers a key distinction to other technologies as it starts one step upstream from all other Sipv production efforts. Our process starts by producing high purity SiO2/C feedstocks from which Sipv can be produced in a single, chlorine free, final EAF step. Specifically, our unique technology, and the resultant SiO2/C product can serve as high purity feedstocks to existing metallurgical silicon (Simet) producers, allowing them to generate Sipv with existing US manufacturing infrastructure, reducing the overall capital and commissioning schedule. Our low energy, low CAPEX and OPEX process purifies the silica and carbon present in rice hull ash (RHA) at low temperatures (< 200C) to produce high purity (5-6 Ns) feedstock for production of Sipv using furnaces similar to those used to produce Simet. During the course of this project we partnered with Wadham Energy LP (Wadham), who burns 220k ton of rice hulls (RH)/yr generating 200 GWh of electricity/yr and >30k ton/yr RHA. The power generation step produces much more energy (42 kWh/kg of final silicon produced) than required to purify the RHA (5 kWh/kg of Sipv, compared to 65 kWh/kg noted above. Biogenic silica offers three very important foundations for producing high purity silicon. First, wastes from silica accumulating plants, such as rice, corn, many grasses, algae and grains, contain very reactive, amorphous silica from which impurities are easily removed. Second, plants take up only a limited set of, and minimal quantities of the heavy metals present in nature, meaning fewer minerals must be removed. Third, biomass combustion generates a product with intrinsic residual carbon, mixed at nanometer length scales with the SiO2. RHA is 80-90 wt% high surface area (20 m2/g), amorphous SiO2 with some simple mineral content mixed intimately with 5-15 wt% carbon. The mineral content is easily removed by low cost, acid washes using Mayaterials IP, leading to purified rice hull ash (RHAclean) at up to 6N purity. This highly reactive silica is partially extracted from RHAclean at 200 C in an environmentally benign process to adjust SiO2:C ratios to those needed in EAF processing to Sipv. EAF processing with silica depleted rice hull ash (RHASD), with nanometer scale carbon/silica mixing, reacts up to 10x faster than in traditional EAF processing because the physical distances over which the reactions occur are measured in nm vs cm. We have focused on demonstrating the efficiency in existing furnace technologies, meaning our success offers the potential to convert some portion of existing US furnace infrastructure (for Simet) to high purity silicon production. The linkage of our process to the existing infrastructure of the U.S. silicon manufacturing industry, already a world leader, is unique compared to all other initiatives trying to produce Sipv. Purifying the silica/carbon mixture before EAF conversion to Sipv greatly reduces CAPEX and OPEX costs, reducing the final solar energy cost by $0.18-0.24/watt.« less

  19. Fusion processing of itraconazole solid dispersions by kinetisol dispersing: a comparative study to hot melt extrusion.

    PubMed

    DiNunzio, James C; Brough, Chris; Miller, Dave A; Williams, Robert O; McGinity, James W

    2010-03-01

    KinetiSol Dispersing (KSD) is a novel high energy manufacturing process investigated here for the production of pharmaceutical solid dispersions. Solid dispersions of itraconazole (ITZ) and hypromellose were produced by KSD and compared to identical formulations produced by hot melt extrusion (HME). Materials were characterized for solid state properties by modulated differential scanning calorimetry and X-ray diffraction. Dissolution behavior was studied under supersaturated conditions. Oral bioavailability was determined using a Sprague-Dawley rat model. Results showed that KSD was able to produce amorphous solid dispersions in under 15 s while production by HME required over 300 s. Dispersions produced by KSD exhibited single phase solid state behavior indicated by a single glass transition temperature (T(g)) whereas compositions produced by HME exhibited two T(g)s. Increased dissolution rates for compositions manufactured by KSD were also observed compared to HME processed material. Near complete supersaturation was observed for solid dispersions produced by either manufacturing processes. Oral bioavailability from both processes showed enhanced AUC compared to crystalline ITZ. Based on the results presented from this study, KSD was shown to be a viable manufacturing process for the production of pharmaceutical solid dispersions, providing benefits over conventional techniques including: enhanced mixing for improved homogeneity and reduced processing times. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  20. Method of making self-aligned lightly-doped-drain structure for MOS transistors

    DOEpatents

    Weiner, Kurt H.; Carey, Paul G.

    2001-01-01

    A process for fabricating lightly-doped-drains (LDD) for short-channel metal oxide semiconductor (MOS) transistors. The process utilizes a pulsed laser process to incorporate the dopants, thus eliminating the prior oxide deposition and etching steps. During the process, the silicon in the source/drain region is melted by the laser energy. Impurities from the gas phase diffuse into the molten silicon to appropriately dope the source/drain regions. By controlling the energy of the laser, a lightly-doped-drain can be formed in one processing step. This is accomplished by first using a single high energy laser pulse to melt the silicon to a significant depth and thus the amount of dopants incorporated into the silicon is small. Furthermore, the dopants incorporated during this step diffuse to the edge of the MOS transistor gate structure. Next, many low energy laser pulses are used to heavily dope the source/drain silicon only in a very shallow region. Because of two-dimensional heat transfer at the MOS transistor gate edge, the low energy pulses are inset from the region initially doped by the high energy pulse. By computer control of the laser energy, the single high energy laser pulse and the subsequent low energy laser pulses are carried out in a single operational step to produce a self-aligned lightly-doped-drain-structure.

  1. Survey of electrochemical metal winning processes. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaaler, L.E.

    1979-03-01

    The subject program was undertaken to find electrometallurgical technology that could be developed into energy saving commercial metal winning processes. Metals whose current production processes consume significant energy (excepting copper and aluminum) are magnesium, zinc, lead, chromium, manganese, sodium, and titanium. The technology of these metals, with the exception of titanium, was reviewed. Growth of titanium demand has been too small to justify the installation of an electrolyte process that has been developed. This fact and the uncertainty of estimates of future demand dissuaded us from reviewing titanium technology. Opportunities for developing energy saving processes were found for magnesium, zinc,more » lead, and sodium. Costs for R and D and demonstration plants have been estimated. It appeared that electrolytic methods for chromium and manganese cannot compete energywise or economically with the pyrometallurgical methods of producing the ferroalloys, which are satisfactory for most uses of chromium and manganese.« less

  2. Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.

    A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m 3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water frommore » oil and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.« less

  3. Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process

    DOE PAGES

    Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.; ...

    2015-08-01

    A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m 3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water frommore » oil and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.« less

  4. Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process.

    PubMed

    Golkarnarenji, Gelayol; Naebe, Minoo; Badii, Khashayar; Milani, Abbas S; Jazar, Reza N; Khayyam, Hamid

    2018-03-05

    To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR) and Artificial Neural Network (ANN), were studied and compared, with a limited dataset obtained to predict physical property (density) of oxidative stabilized PAN fiber (OPF) in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large.

  5. Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process

    PubMed Central

    Golkarnarenji, Gelayol; Naebe, Minoo; Badii, Khashayar; Milani, Abbas S.; Jazar, Reza N.; Khayyam, Hamid

    2018-01-01

    To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR) and Artificial Neural Network (ANN), were studied and compared, with a limited dataset obtained to predict physical property (density) of oxidative stabilized PAN fiber (OPF) in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large. PMID:29510592

  6. Process for recovering products from oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, H.R.; Udell, K.S.

    A process is claimed for recovering hydrocarbon products from a body of fragmented or rubblized oil shale. The process includes initiating a combustion zone adjacent the lower end of a body of oil shale and using the thermal energy therefrom for volatilizing the shale oil from the oil shale above the combustion front. Improved recovery of hydrocarbon products is realized by refluxing the heavier fractions in the volatilized shale oil. The heavier fractions are refluxed by condensing the heavier fractions and allowing the resulting condensate to flow downwardly toward the combustion front. Thermal energy from the combustion zone cracks themore » condensate producing additional lower molecular weight fractions and a carbonaceous residue. The carbonaceous residue is burned in the combustion front to supply the thermal energy. The temperature of the combustion front is maintained by regulating input of oxygen to the combustion zone. The process also includes sweeping the volatilized products from the rubblized oil shale with a noncombustible gas. The flow rate of sweep gas is also controlled to regulate the temperature of the combustion front. The recovered products can be enriched with hydrogen by using water vapor as part of the noncombustible sweep gas and cracking the water vapor with the hot carbon in the combustion front to produce hydrogen and an oxide of carbon.« less

  7. An investigation on co-axial water-jet assisted fiber laser cutting of metal sheets

    NASA Astrophysics Data System (ADS)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.

    2016-02-01

    Water assisted laser cutting has received significant attention in recent times with assurance of many advantages than conventional gas assisted laser cutting. A comparative study between co-axial water-jet and gas-jet assisted laser cutting of thin sheets of mild steel (MS) and titanium (Ti) by fiber laser is presented. Fiber laser (1.07 μm wavelength) was utilised because of its low absorption in water. The cut quality was evaluated in terms of average kerf, projected dross height, heat affected zone (HAZ) and cut surface roughness. It was observed that a broad range process parameter could produce consistent cut quality in MS. However, oxygen assisted cutting could produce better quality only with optimised parameters at high laser power and high cutting speed. In Ti cutting the water-jet assisted laser cutting performed better over the entire range of process parameters compared with gas assisted cutting. The specific energy, defined as the amount of laser energy required to remove unit volume of material was found more in case of water-jet assisted laser cutting process. It is mainly due to various losses associated with water assisted laser processing such as absorption of laser energy in water and scattering at the interaction zone.

  8. Digestive Diseases

    MedlinePlus

    ... cells and provide energy. This process is called digestion. Your digestive system is a series of hollow organs joined ... are also involved. They produce juices to help digestion. There are many types of digestive disorders. The ...

  9. Modelling the energy dependence of black hole binary flows

    NASA Astrophysics Data System (ADS)

    Mahmoud, Ra'ad D.; Done, Chris

    2018-01-01

    We build a full spectral-timing model for the low/hard state of black hole binaries assuming that the spectrum of the X-ray hot flow can be produced by two Comptonization zones. Slow fluctuations generated at the largest radii/softest spectral region of the flow propagate down to modulate the faster fluctuations produced in the spectrally harder region close to the black hole. The observed spectrum and variability are produced by summing over all regions in the flow, including its emission reflected from the truncated disc. This produces energy-dependent Fourier lags qualitatively similar to those in the data. Given a viscous frequency prescription, the model predicts Fourier power spectral densities and lags for any energy bands. We apply this model to archival Rossi X-ray Timing Explorer data from Cyg X-1, using the time-averaged energy spectrum together with an assumed emissivity to set the radial bounds of the soft and hard Comptonization regions. We find that the power spectra cannot be described by any smooth model of generating fluctuations, instead requiring that there are specific radii in the flow where noise is preferentially produced. We also find fluctuation damping between spectrally distinct regions is required to prevent all the variability power generated at large radii being propagated into the inner regions. Even with these additions, we can fit either the power spectra at each energy or the lags between energy bands, but not both. We conclude that either the spectra are more complex than two zone models, or that other processes are important in forming the variability.

  10. Dynamic Exergy Method for Evaluating the Control and Operation of Oxy-Combustion Boiler Island Systems.

    PubMed

    Jin, Bo; Zhao, Haibo; Zheng, Chuguang; Liang, Zhiwu

    2017-01-03

    Exergy-based methods are widely applied to assess the performance of energy conversion systems; however, these methods mainly focus on a certain steady-state and have limited applications for evaluating the control impacts on system operation. To dynamically obtain the thermodynamic behavior and reveal the influences of control structures, layers and loops, on system energy performance, a dynamic exergy method is developed, improved, and applied to a complex oxy-combustion boiler island system for the first time. The three most common operating scenarios are studied, and the results show that the flow rate change process leads to less energy consumption than oxygen purity and air in-leakage change processes. The variation of oxygen purity produces the largest impact on system operation, and the operating parameter sensitivity is not affected by the presence of process control. The control system saves energy during flow rate and oxygen purity change processes, while it consumes energy during the air in-leakage change process. More attention should be paid to the oxygen purity change because it requires the largest control cost. In the control system, the supervisory control layer requires the greatest energy consumption and the largest control cost to maintain operating targets, while the steam control loops cause the main energy consumption.

  11. Division of energy biosciences: Annual report and summaries of FY 1995 activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    The mission of the Division of Energy Biosciences is to support research that advances the fundamental knowledge necessary for the future development of biotechnologies related to the Department of Energy`s mission. The departmental civilian objectives include effective and efficient energy production, energy conservation, environmental restoration, and waste management. The Energy Biosciences program emphasizes research in the microbiological and plant sciences, as these understudied areas offer numerous scientific opportunities to dramatically influence environmentally sensible energy production and conservation. The research supported is focused on the basic mechanisms affecting plant productivity, conversion of biomass and other organic materials into fuels and chemicalsmore » by microbial systems, and the ability of biological systems to replace energy-intensive or pollutant-producing processes. The Division also addresses the increasing number of new opportunities arising at the interface of biology with other basic energy-related sciences such as biosynthesis of novel materials and the influence of soil organisms on geological processes.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Statistical data on energy production and consumption and supporting information were obtained from US Bureau of Mines records supplemented by additional data obtained in Portugal. Geologic descriptions and analysis of known areas and of areas having possible future potential have been prepared by the US Geological Survey. Portugal lacks sufficient indigenous supplies of organic fuels to meet its energy demands, and so must import large quantities of petroleum and coal. Approximately 80% of Portugal's electric energy is produced by hydroelectric stations; thermal stations produce the other 20%. Portugal has produced no crude oil, natural gas, or condensate; no resources ormore » reserves in these categories are listed for Portugal in the 1976 World Energy Conference report. Until the last year or so (1980), no significant onshore petroleum exploration had been done in Portugal since 1963. Production of coal in Portugal has declined steadily to the present annual yield of about 200,000 metric tons. On the basis of estimates in only three coal fields, resources of coal of all ranks in Portugal total at least 76 million (10/sup 6/) metric tons. Uranium is mined near Viseu and Guarda in the northern part of Portugal; the Nisa mine in east-central Portugal will begin producing uranium ore in 1985 after installation of a processing plant. Portugal produced 95 metric tons of uranium oxide (U/sub 3/O/sub 8/) from ore stocks in each year from 1972 through 1974; production is assumed to have continued at the same rate since then. Geothermal energy has not been developed in mainland Portugal; however, hot springs that may have geothermal energy potential are known in the Minho district in the northwest. Geothermal energy resources exist in the Azores and a program of evaluation and exploration with technical assistance from the USGS is presently in progress there.« less

  13. Heat currents in electronic junctions driven by telegraph noise

    NASA Astrophysics Data System (ADS)

    Entin-Wohlman, O.; Chowdhury, D.; Aharony, A.; Dattagupta, S.

    2017-11-01

    The energy and charge fluxes carried by electrons in a two-terminal junction subjected to a random telegraph noise, produced by a single electronic defect, are analyzed. The telegraph processes are imitated by the action of a stochastic electric field that acts on the electrons in the junction. Upon averaging over all random events of the telegraph process, it is found that this electric field supplies, on the average, energy to the electronic reservoirs, which is distributed unequally between them: the stronger is the coupling of the reservoir with the junction, the more energy it gains. Thus the noisy environment can lead to a temperature gradient across an unbiased junction.

  14. Anaerobic gaseous biofuel production using microalgal biomass - A review.

    PubMed

    Wirth, Roland; Lakatos, Gergely; Böjti, Tamás; Maróti, Gergely; Bagi, Zoltán; Rákhely, Gábor; Kovács, Kornél L

    2018-05-24

    Most photosynthetic organisms store and convert solar energy in an aerobic process and produce biomass for various uses. Utilization of biomass for the production of renewable energy carriers employs anaerobic conditions. This review focuses on microalgal biomass and its use for biological hydrogen and methane production. Microalgae offer several advantages compared to terrestrial plants. Strategies to maintain anaerobic environment for biohydrogen production are summarized. Efficient biogas production via anaerobic digestion is significantly affected by the biomass composition, pretreatment strategies and the parameters of the digestion process. Coupled biohydrogen and biogas production increases the efficiency and sustainability of renewable energy production. Copyright © 2018. Published by Elsevier Ltd.

  15. Stability of zinc stearate under alpha irradiation in the manufacturing process of SFR nuclear fuels

    NASA Astrophysics Data System (ADS)

    Gracia, J.; Vermeulen, J.; Baux, D.; Sauvage, T.; Venault, L.; Audubert, F.; Colin, X.

    2018-03-01

    The manufacture of new fuels for sodium-cooled fast reactors (SFRs) will involve powders derived from recycling existing fuels in order to keep on producing electricity while saving natural resources and reducing the amount of waste produced by spent MOX fuels. Using recycled plutonium in this way will significantly increase the amount of 238Pu, a high energy alpha emitter, in the powders. The process of shaping powders by pressing requires the use of a solid lubricant, zinc stearate, to produce pellets with no defects compliant with the standards. The purpose of this study is to determine the impact of alpha radiolysis on this additive and its lubrication properties. Experiments were conducted on samples in contact with PuO2, as well as under external helium ion beam irradiation, in order to define the kinetics of radiolytic gas generation. The yield results relating to the formation of these gases (G0) show that the alpha radiation of plutonium can be simulated using external helium ion beam irradiation. The isotopic composition of plutonium has little impact on the yield. However, an increased yield was globally observed with increasing the mean linear energy transfer (LET). A radiolytic degradation process is proposed.

  16. Producing Mono-energetic Neutrons for Research

    NASA Astrophysics Data System (ADS)

    Jepeal, Steven

    2014-09-01

    Free neutrons are seldom produced in nature and are unstable, decaying back to protons with a mean life of 881s. The only natural sources are spontaneous fission of actinides and cosmic ray interactions, both of which are rare processes. The detection of neutrons indicates unusual nuclear activity, allowing neutron detection the roll of the ``smoking gun'' for seeking potential nuclear terrorism. Recently, there has been a push for the development of new neutron detectors, ideally sufficiently inexpensive that a detector can be carried by all first responders such as police and fire fighters. One promising new material is the inorganic scintillator CLYC, a crystal of chlorine, lithium, yttrium and cesium. CLYC has a high energy resolution not only for gamma rays, but also for fast neutrons. At the University of Massachusetts, Lowell, CLYC is being developed in collaboration with local industrial companies. To evaluate its response to neutrons, in to 500 keV to 4 MeV energy range, the CN Van de Graaff generator is used to produce neutrons, via the 7Li(p,n)7Be reaction. However, the important energy regime of 4--10 MeV is currently inaccessible. This current project is to build a gas-cell target to enable the D(d,n)3He reaction and produce neutrons of energy up to 9 MeV, an approach that has been used successfully at the University of Kentucky. The project involves some mechanical engineering management, then chamber construction, vacuum testing, developing thin window technology, and finally commissioning of the gas cell using accelerated beams. The commissioning will be physics rich in quantifying the flux and energy resolution of the neutron beam produced. Free neutrons are seldom produced in nature and are unstable, decaying back to protons with a mean life of 881s. The only natural sources are spontaneous fission of actinides and cosmic ray interactions, both of which are rare processes. The detection of neutrons indicates unusual nuclear activity, allowing neutron detection the roll of the ``smoking gun'' for seeking potential nuclear terrorism. Recently, there has been a push for the development of new neutron detectors, ideally sufficiently inexpensive that a detector can be carried by all first responders such as police and fire fighters. One promising new material is the inorganic scintillator CLYC, a crystal of chlorine, lithium, yttrium and cesium. CLYC has a high energy resolution not only for gamma rays, but also for fast neutrons. At the University of Massachusetts, Lowell, CLYC is being developed in collaboration with local industrial companies. To evaluate its response to neutrons, in to 500 keV to 4 MeV energy range, the CN Van de Graaff generator is used to produce neutrons, via the 7Li(p,n)7Be reaction. However, the important energy regime of 4--10 MeV is currently inaccessible. This current project is to build a gas-cell target to enable the D(d,n)3He reaction and produce neutrons of energy up to 9 MeV, an approach that has been used successfully at the University of Kentucky. The project involves some mechanical engineering management, then chamber construction, vacuum testing, developing thin window technology, and finally commissioning of the gas cell using accelerated beams. The commissioning will be physics rich in quantifying the flux and energy resolution of the neutron beam produced. Made possible by the support of the Glynn Family Honors Program at the University of Notre Dame.

  17. Physical evaluations of Co-Cr-Mo parts processed using different additive manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Ghani, Saiful Anwar Che; Mohamed, Siti Rohaida; Harun, Wan Sharuzi Wan; Noar, Nor Aida Zuraimi Md

    2017-12-01

    In recent years, additive manufacturing with highly design customization has gained an important technique for fabrication in aerospace and medical fields. Despite the ability of the process to produce complex components with highly controlled architecture geometrical features, maintaining the part's accuracy, ability to fabricate fully functional high density components and inferior surfaces quality are the major obstacles in producing final parts using additive manufacturing for any selected application. This study aims to evaluate the physical properties of cobalt chrome molybdenum (Co-Cr-Mo) alloys parts fabricated by different additive manufacturing techniques. The full dense Co-Cr-Mo parts were produced by Selective Laser Melting (SLM) and Direct Metal Laser Sintering (DMLS) with default process parameters. The density and relative density of samples were calculated using Archimedes' principle while the surface roughness on the top and side surface was measured using surface profiler. The roughness average (Ra) for top surface for SLM produced parts is 3.4 µm while 2.83 µm for DMLS produced parts. The Ra for side surfaces for SLM produced parts is 4.57 µm while 9.0 µm for DMLS produced parts. The higher Ra values on side surfaces compared to the top faces for both manufacturing techniques was due to the balling effect phenomenon. The yield relative density for both Co-Cr-Mo parts produced by SLM and DMLS are 99.3%. Higher energy density has influence the higher density of produced samples by SLM and DMLS processes. The findings of this work demonstrated that SLM and DMLS process with default process parameters have effectively produced full dense parts of Co-Cr-Mo with high density, good agreement of geometrical accuracy and better surface finish. Despite of both manufacturing process yield that produced components with higher density, the current finding shows that SLM technique could produce components with smoother surface quality compared to DMLS process with default parameters.

  18. Real-time multiple-look synthetic aperture radar processor for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Wu, C.; Tyree, V. C. (Inventor)

    1981-01-01

    A spaceborne synthetic aperture radar (SAR) having pipeline multiple-look data processing is described which makes use of excessive azimuth bandwidth in radar echo signals to produce multiple-looking images. Time multiplexed single-look image lines from an azimuth correlator go through an energy analyzer which analyzes the mean energy in each separate look to determine the radar antenna electric boresight for use in generating the correct reference functions for the production of high quality SAR images. The multiplexed single look image lines also go through a registration delay to produce multi-look images.

  19. Hynol: An economic process for methanol production from biomass and natural gas with reduced CO2 emission

    NASA Astrophysics Data System (ADS)

    Steinberg, M.; Dong, Yuanji

    1993-10-01

    The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO2 emission. This new process consists of three reaction steps: (1) hydrogasification of biomass, (2) steam reforming of the produced gas with additional natural gas feedstock, and (3) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps. The H2-rich gas remaining after methanol synthesis is recycled to gasify the biomass in an energy neutral reactor so that there is no need for an expensive oxygen plant as required by commercial steam gasifiers. Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventional while the plant still maintains high methanol yield. Energy recovery designed into the process minimizes heat loss and increases the process thermal efficiency. If the Hynol methanol is used as an alternative and more efficient automotive fuel, an overall 41% reduction in CO2 emission can be achieved compared to the use of conventional gasoline fuel. A preliminary economic estimate shows that the total capital investment for a Hynol plant is 40% lower than that for a conventional biomass gasification plant. The methanol production cost is $0.43/gal for a 1085 million gal/yr Hynol plant which is competitive with current U.S. methanol and equivalent gasoline prices. Process flowsheet and simulation data using biomass and natural gas as cofeedstocks are presented. The Hynol process can convert any condensed carbonaceous material, especially municipal solid waste (MSW), to produce methanol.

  20. Thermal and mechanical stabilization process of the organic fraction of the municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giudicianni, Paola, E-mail: giudicianni@irc.cnr.it; Bozza, Pio, E-mail: pi.bozza@studenti.unina.it; Sorrentino, Giancarlo, E-mail: g.sorrentino@unina.it

    2015-10-15

    Graphical abstract: Display Omitted - Highlights: • A domestic scale prototype for the pre-treatment of OFMSW has been tested. • Two grinding techniques are compared and thermopress is used for the drying stage. • Increasing temperature up to 170 °C reduces energy consumption of the drying stage. • In the range 5–10 bar a reduction of 97% of the initial volume is obtained. • In most cases energy recovery from the dried waste matches energy consumption. - Abstract: In the present study a thermo-mechanical treatment for the disposal of the Organic Fraction of Municipal Solid Waste (OFMSW) at apartment ormore » condominium scale is proposed. The process presents several advantages allowing to perform a significant volume and moisture reduction of the produced waste at domestic scale thus producing a material with an increased storability and improved characteristics (e.g. calorific value) that make it available for further alternative uses. The assessment of the applicability of the proposed waste pretreatment in a new scheme of waste management system requires several research steps involving different competences and application scales. In this context, a preliminary study is needed targeting to the evaluation and minimization of the energy consumption associated to the process. To this aim, in the present paper, two configurations of a domestic appliance prototype have been presented and the effect of some operating variables has been investigated in order to select the proper configuration and the best set of operating conditions capable to minimize the duration and the energy consumption of the process. The performances of the prototype have been also tested on three model mixtures representing a possible daily domestic waste and compared with an existing commercially available appliance. The results obtained show that a daily application of the process is feasible given the short treatment time required and the energy consumption comparable to the one of the common domestic appliances. Finally, the evaluation of the energy recovered in the final product per unit weight of raw material shows that in most cases it is comparable to the energy required from the treatment.« less

  1. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Miles; Childress, Amy; Hiibel, Sage

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) andmore » single phase convective heat/mass transfer.« less

  2. Design, construction, operation and costs of a modern small-scale fuel-alcohol plant

    NASA Astrophysics Data System (ADS)

    Leeper, S. A.; Dawley, L. J.; Wolfram, J. H.; Berglund, G. R.; Richardson, J. G.; McAtee, R. E.

    1982-01-01

    The design used for the small-scale fuel alcohol plant (SSFAP) is discussed. By incorporating a microprocessor into the plant design, most plant operations were automated and labor requirements were reduced. Continuous processing made energy conservation possible, thus reducing energy requirements. A low-temperature, continuous plug-flow cooker design made high yields possible. Ethanol was consistently produced at the SSFAP from corn at a yield of 2.6 gallons (anhydrous) per bushel and an energy requirement of 30,000 to 35,000 Btu/gallon (190-proof). In addition, barley, grain dust, and potato waste were converted at the SSFAP. The capacity of the SSFAP is 180,000 gallons per year (300 days operation). Competitively priced ethanol is produced at this capacity.

  3. Energy Recovery

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The United States and other countries face the problem of waste disposal in an economical, environmentally safe manner. A widely applied solution adopted by Americans is "waste to energy," incinerating the refuse and using the steam produced by trash burning to drive an electricity producing generator. NASA's computer program PRESTO II, (Performance of Regenerative Superheated Steam Turbine Cycles), provides power engineering companies, including Blount Energy Resources Corporation of Alabama, with the ability to model such features as process steam extraction, induction and feedwater heating by external sources, peaking and high back pressure. Expansion line efficiency, exhaust loss, leakage, mechanical losses and generator losses are used to calculate the cycle heat rate. The generator output program is sufficiently precise that it can be used to verify performance quoted in turbine generator supplier's proposals.

  4. Status summary of chemical processing development in plutonium-238 supply program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Emory D.; Benker, Dennis; Wham, Robert M.

    This document summarizes the status of development of chemical processing in the Plutonium-238 Supply Program (PSP) near the end of Demonstration 1. The objective of the PSP is “to develop, demonstrate, and document a production process that meets program objectives and to prepare for its operation” (Frazier et al. 2016). Success in the effort includes establishing capability using the current infrastructure to produce Np targets for irradiation in Department of Energy research reactors, chemically processing the irradiated targets to separate and purify the produced Pu and transferring the PuO 2 product to Los Alamos National Laboratory (LANL) at an averagemore » rate of 1.5 kg/y.« less

  5. Pluri-energy analysis of livestock systems--a comparison of dairy systems in different territories.

    PubMed

    Vigne, Mathieu; Vayssières, Jonathan; Lecomte, Philippe; Peyraud, Jean-Louis

    2013-09-15

    This paper introduces a generic assessment method called pluri-energy analysis. It aims to assess the types of energy used in agricultural systems and their conversion efficiencies. Four types of energy are considered: fossil energy, gross energy contained in the biomass, energy from human and animal labor and solar energy. The method was applied to compare smallholder low-input dairy-production systems, which are common in developing countries, to the high-input systems encountered in OECD countries. The pluri-energy method is useful for analyzing the functioning of agricultural systems by highlighting their modes of energy management. Since most dairy systems in South Mali (SM) are low-input systems, they are primarily based on solar and labor energy types and do not require substantial fossil-energy inputs to produce milk. Farms in Poitou-Charentes (PC) and Bretagne (BR) show intermediate values of fossil-energy use for milk production, similar to that found in the literature for typical European systems. However, fossil-energy use for milk production is higher on PC than BR farms because of a higher proportion of maize silage in the forage area; grazing pastures are more common on BR farms. Farms on Reunion Island (RI) require a relatively large amount of fossil energy to produce milk, mainly because the island context limits the amount of arable land. Consequently, milk production is based on large imports of concentrated feed with a high fossil-energy cost. The method also enables assessment of fossil-energy-use efficiency in order to increase the performance of biological processes in agricultural systems. Comparing the low-input systems represented by SM to the high-input systems represented by RI, PC and BR, an increase in solar-energy conversion, and thus land productivity, was observed due to intensification via increased fossil-energy use. Conversely, though fossil-energy use at the herd level increased milk productivity, its effect on gross-energy conversion by the herd was less evident. Partitioning the total on-farm gross energy produced among animal co-products (milk, meat and manure) highlights the major functions of SM herds, which are managed to produce organic crop fertilizers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Multi-spatial analysis of forest residue utilization for bioenergy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Ryan A.; Keefe, Robert F.; Smith, Alistair M. S.

    2016-06-17

    The alternative energy sector is expanding quickly in the USA since passage of the Energy Policy Act of 2005 and the Energy Independence and Security Act of 2007. Increased interest in wood-based bioenergy has led to the need for robust modeling methods to analyze woody biomass operations at landscape scales. However, analyzing woody biomass operations in regions like the US Inland Northwest is difficult due to highly variable terrain and wood characteristics. We developed the Forest Residue Economic Assessment Model (FREAM) to better integrate with Geographical Information Systems and overcome analytical modeling limitations. FREAM analyzes wood-based bioenergy logistics systems andmore » provides a modeling platform that can be readily modified to analyze additional study locations. We evaluated three scenarios to test the FREAM's utility: a local-scale scenario in which a catalytic pyrolysis process produces gasoline from 181 437 Mg yr-1 of forest residues, a regional-scale scenario that assumes a biochemical process to create aviation fuel from 725 748 Mg yr-1 of forest residues, and an international scenario that assumes a pellet mill producing pellets for international markets from 272 155 Mg yr-1 of forest residues. The local scenario produced gasoline for a modeled cost of $22.33 GJ-1*, the regional scenario produced aviation fuel for a modeled cost of $35.83 GJ-1 and the international scenario produced pellets for a modeled cost of $10.51 GJ-1. Results show that incorporating input from knowledgeable stakeholders in the designing of a model yields positive results.« less

  7. The contribution of microbunching instability to solar flare emission in the GHz to THz range of frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klopf, J. Michael; Kaufmann, Pierre; Raulin, Jean-Pierre

    2014-07-01

    Recent solar flare observations in the sub-terahertz range have provided evidence of a new spectral component with fluxes increasing for larger frequencies, separated from the well-known microwave emission that maximizes in the gigahertz range. Suggested interpretations explain the terahertz spectral component but do not account for the simultaneous microwave component. We present a mechanism for producing the observed "double spectra." Based on coherent enhancement of synchrotron emission at long wavelengths in laboratory accelerators, we consider how similar processes may occur within a solar flare. The instability known as microbunching arises from perturbations that produce electron beam density modulations, giving risemore » to broadband coherent synchrotron emission at wavelengths comparable to the characteristic size of the microbunch structure. The spectral intensity of this coherent synchrotron radiation (CSR) can far exceed that of the incoherent synchrotron radiation (ISR), which peaks at a higher frequency, thus producing a double-peaked spectrum. Successful CSR simulations are shown to fit actual burst spectral observations, using typical flaring physical parameters and power-law energy distributions for the accelerated electrons. The simulations consider an energy threshold below which microbunching is not possible because of Coulomb repulsion. Only a small fraction of the radiating charges accelerated to energies above the threshold is required to produce the microwave component observed for several events. The ISR/CSR mechanism can occur together with other emission processes producing the microwave component. It may bring an important contribution to microwaves, at least for certain events where physical conditions for the occurrence of the ISR/CSR microbunching mechanism are possible.« less

  8. The atmospheric heat engine response to climate change

    NASA Astrophysics Data System (ADS)

    Pauluis, O. M.

    2014-12-01

    Moist convection is characterized by complex interactions between dynamics and thermodynamics. As air parcels within the atmosphere, they experience multiple thermodynamic transformations, such as compression and expansion, diabatic heating and cooling, condensation and mixing. These transformations correspond to those of a heat engine that produces kinetic energy while transporting energy from a warm source to a colder sink. This atmospheric heat engine is however directly affected by moist processes. First, falling precipitation acts as a break on the circulation by dissipating a significant amount of kinetic energy. Second, evaporation of unsaturated water and diffusion of water vapor are irrevesible processes that also reduce the amount of work that can be produced. An important challenge is to quantify the impacts that these two effects have on the generation of kinetic energy. Here, I will introduce a new technique - the Mean Air Flow As Lagragian Dynamics Approximation (MAFALDA) - that can be used to systematically analyze the thermodynamic behavior of complex atmospheric flows. This approach relies on sorting the upward mass transport in terms of the equivalent potential temperature of the air parcels to obtain an isentropic streamfunction. This streamfunction is then used to determine the thermodynamic evolution of air parcels as they move through the atmosphere. This approach is applied to analyze how convective systems would behave in a warmer climate. It is shown that an increase in atmospheric temperature lead to a significant increase of the amount of kinetic energy that is produced per unit of mass of air transported. At the same time, the total generation of kinetic energy is only slightly affected. Taken together, these findings imply that, in a warming atmosphere, the number of intense convective events will be reduced, while their intensity should increase. I will also discuss the new possibility of systematically studying the thermodynamic transformation in atmospheric models.

  9. Pressure retarded osmosis for energy production: membrane materials and operating conditions.

    PubMed

    Kim, H; Choi, J-S; Lee, S

    2012-01-01

    Pressure retarded osmosis (PRO) is a novel membrane process to produce energy. PRO has the potential to convert the osmotic pressure difference between fresh water (i.e. river water) and seawater to electricity. Moreover, it can recover energy from highly concentrated brine in seawater desalination. Nevertheless, relatively little research has been undertaken for fundamental understanding of the PRO process. In this study, the characteristics of the PRO process were examined using a proof-of-concept device. Forward osmosis (FO), reverse osmosis (RO), and nanofiltration (NF) membranes were compared in terms of flux rate and concentration polarization ratio. The results indicated that the theoretical energy production by PRO depends on the membrane type as well as operating conditions (i.e. back pressure). The FO membrane had the highest energy efficiency while the NF membrane had the lowest efficiency. However, the energy production rate was low due to high internal concentration polarization (ICP) in the PRO membrane. This finding suggests that the control of the ICP is essential for practical application of PRO for energy production.

  10. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp.

    PubMed

    Barta, Zsolt; Kreuger, Emma; Björnsson, Lovisa

    2013-04-22

    The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103-128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with higher value products are primarily suggested. Further, practical investigations on increased substrate concentration in biogas and ethanol production, recycling of the liquid in anaerobic digestion and separation of low solids flows into solid and a liquid fraction for improved reactor applications deserves further attention.

  11. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp

    PubMed Central

    2013-01-01

    Background The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Results Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103–128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. Conclusions To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with higher value products are primarily suggested. Further, practical investigations on increased substrate concentration in biogas and ethanol production, recycling of the liquid in anaerobic digestion and separation of low solids flows into solid and a liquid fraction for improved reactor applications deserves further attention. PMID:23607263

  12. Solar energy demand (SED) of commodity life cycles.

    PubMed

    Rugani, Benedetto; Huijbregts, Mark A J; Mutel, Christopher; Bastianoni, Simone; Hellweg, Stefanie

    2011-06-15

    The solar energy demand (SED) of the extraction of 232 atmospheric, biotic, fossil, land, metal, mineral, nuclear, and water resources was quantified and compared with other energy- and exergy-based indicators. SED represents the direct and indirect solar energy required by a product or service during its life cycle. SED scores were calculated for 3865 processes, as implemented in the Ecoinvent database, version 2.1. The results showed that nonrenewable resources, and in particular minerals, formed the dominant contribution to SED. This large share is due to the indirect solar energy required to produce these resource inputs. Compared with other energy- and exergy-based indicators, SED assigns higher impact factors to minerals and metals and smaller impact factors to fossil energetic resources, land use, and nuclear energy. The highest differences were observed for biobased and renewable energy generation processes, whose relative contribution of renewable resources such as water, biomass, and land occupation was much lower in SED than in energy- and exergy-based indicators.

  13. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  14. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-02-07

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  15. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-01-01

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  16. Acceleration of electrons and ions by strong lower-hybrid turbulence in solar flares

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.; Bingham, R.; Su, J. J.; Shapiro, V. D.; Shevchenko, V.; Ma, S.; Dawson, J. M.; Mcclements, K. G.

    1994-01-01

    One of the outstanding problems in solar flare theory is how to explain the 10-20 keV and greater hard x-ray emissions by a thick target bremsstrahlung model. The model requires the acceleration mechanism to accelerate approximately 10(exp 35) electrons sec(exp -l) with comparable energies, without producing a large return current which persists for long time scales after the beam ceases to exist due to Lenz's law, thereby, producing a self-magnetic field of order a few mega-Gauss. In this paper, we investigate particle acceleration resulting from the relaxation of unstable ion ring distributions, producing strong wave activity at the lower hybrid frequency. It is shown that strong lower hybrid wave turbulence collapses in configuration space producing density cavities containing intense electrostatic lower hybrid wave activity. The collapse of these intense nonlinear wave packets saturate by particle acceleration producing energetic electron and ion tails. There are several mechanisms whereby unstable ion distributions could be formed in the solar atmosphere, including reflection at perpendicular shocks, tearing modes, and loss cone depletion. Numerical simulations of ion ring relaxation processes, obtained using a 2 1/2-D fully electromagnetic, relativistic particle in cell code are discussed. We apply the results to the problem of explaining energetic particle production in solar flares. The results show the simultaneous acceleration of both electrons and ions to very high energies: electrons are accelerated to energies in the range 10-500 keV, while ions are accelerated to energies of the order of MeVs, giving rise to x-ray emission and gamma-ray emission respectively. Our simulations also show wave generation at the electron cyclotron frequency. We suggest that these waves are the solar millisecond radio spikes. The strong turbulence collapse process leads to a highly filamented plasma producing many localized regions for particle acceleration and resulting in approximately 10(exp 17) electron 'beamlets' of width approximately equal to 10 lambda sub De which eliminates the production of large magnetic fields. In this paper, we demonstrate that the model produces an energetic electron spectrum with the right flux to account for the hard x-ray observations.

  17. Production of low kinetic energy electrons and energetic ion pairs by Intermolecular Coulombic Decay.

    PubMed

    Hergenhahn, Uwe

    2012-12-01

    The paper gives an introduction into Interatomic and Intermolecular Coulombic Decay (ICD). ICD is an autoionization process, which contrary to Auger decay involves neighbouring sites of the initial vacancy as an integral part of the decay transition. As a result of ICD, slow electrons are produced which generally are known to be active in radiation damage. The author summarizes the properties of ICD and reviews a number of important experiments performed in recent years. Intermolecular Coulombic Decay can generally take place in weakly bonded aggregates in the presence of ionizing particles or ionizing radiation. Examples collected here mostly use soft X-rays produced by synchrotron radiation to ionize, and use rare-gas clusters, water clusters or solutes in a liquid jet to observe ICD after irradiation. Intermolecular Coulombic Decay is initiated by single ionization into an excited state. The subsequent relaxation proceeds via an ultra-fast energy transfer to a neighbouring site, where a second ionization occurs. Secondary electrons from ICD have clearly been identified in numerous systems. ICD can take place after primary ionization, as the second step of a decay cascade which also involves Auger decay, or after resonant excitation with an energy which exceeds the ionization potential of the system. ICD is expected to play a role whenever particles or radiation with photon energies above the ionization energies for inner valence electrons are present in weakly bonded matter, e.g., biological tissue. The process produces at the same time a slow electron and two charged atomic or molecular fragments, which will lead to structural changes around the ionized site.

  18. Low-Pressure Alcohol Distillation

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Zur Burg, F. W.; Cody, J. C.

    1984-01-01

    Heat requirements lowered for process. Temperature requirements lowered enough to make solar heat absorbed by flat-plate collectors feasible energy source. Alcohol produced without adding other solvents, eliminating need for dehydration or hydrocarbon stripping as final step.

  19. Processing of solid fossil-fuel deposits by electrical induction heating

    NASA Astrophysics Data System (ADS)

    Fisher, S. T.

    1980-02-01

    A study has been made to determine the feasibility of extracting the energy commodities electricity, gas, petroleum, chemical feedstocks, and coke from the solid fossil fuels coal, oil shale, oil sand, and heavy oil by the electrical induction heating of the deposits. Available electrical, physical, and chemical data indicate that this process may be technically and economically feasible. Some basic data are missing, and it has been necessary to indicate possible ranges of values for some parameters. The tentative conclusions drawn are the following. All four solid fossil fuels can be processed successfully underground. All five energy commodities can be produced economically in adequate quantities for a period of a century or more in North America, without recourse to any other major energy source. The development and construction time required is short enough to permit an uninterrupted supply of all energy commodities as present sources decline

  20. Physics and psychophysics of color reproduction

    NASA Astrophysics Data System (ADS)

    Giorgianni, Edward J.

    1991-08-01

    The successful design of a color-imaging system requires knowledge of the factors used to produce and control color. This knowledge can be derived, in part, from measurements of the physical properties of the imaging system. Color itself, however, is a perceptual response and cannot be directly measured. Though the visual process begins with physics, as radiant energy reaching the eyes, it is in the mind of the observer that the stimuli produced from this radiant energy are interpreted and organized to form meaningful perceptions, including the perception of color. A comprehensive understanding of color reproduction, therefore, requires not only a knowledge of the physical properties of color-imaging systems but also an understanding of the physics, psychophysics, and psychology of the human observer. The human visual process is quite complex; in many ways the physical properties of color-imaging systems are easier to understand.

  1. Energy Conversion in Natural and Artificial Photosynthesis

    PubMed Central

    McConnell, Iain; Li, Gonghu; Brudvig, Gary W.

    2010-01-01

    Summary Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil fuel dependence has severe consequences including energy security issues and greenhouse gas emissions. The consequences of fossil fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices including photoelectrochemical cells for solar energy conversion. PMID:20534342

  2. Technologies and Applications of Airborne Power Ultrasound in Food Processing

    NASA Astrophysics Data System (ADS)

    Gallego-Juárez, Juan A.; Riera, Enrique

    Applications of ultrasonic waves are generally divided into two groups: low intensity and high intensity. Low-intensity applications are those wherein the objective is to obtain information about the propagation medium without producing any modification of its state. On the contrary, high-intensity applications are those wherein ultrasonic energy is used to produce permanent changes in the treated medium.

  3. The 2010 Field Demonstration of the Solar Carbothermal Reduction of Regolith to Produce Oxygen

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony; Gustafson, Robert (Bob)

    2010-01-01

    This slide presentation reviews a demonstration of the use of solar carbothermal reduction processing of regolith to produce oxygen and silicon from silica. A contractor developed the Carbothermal Regolith Reduction Module to demonstrate the extraction of oxygen from lunar regolith simulant using concentrated solar energy at a site that has similar terrain to the moon and Mars.

  4. Interstellar Matter

    NASA Astrophysics Data System (ADS)

    Savage, B.; Murdin, P.

    2000-11-01

    The enormous volume of space between the stars in the Milky Way Galaxy is filled with interstellar matter (ISM). The ISM plays a central role in the processes of STAR FORMATION and GALAXY EVOLUTION. Stars form from the ISM in dense molecular clouds. The radiant and mechanical energy produced by stars heats, ionizes, and produces structures in the ISM. Gradual or catastrophic mass loss from stars ...

  5. Energy conversion and storage program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy conversion; (4) characterization of complex chemical processes; and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  6. Scalable Production of Si Nanoparticles Directly from Low Grade Sources for Lithium-Ion Battery Anode.

    PubMed

    Zhu, Bin; Jin, Yan; Tan, Yingling; Zong, Linqi; Hu, Yue; Chen, Lei; Chen, Yanbin; Zhang, Qiao; Zhu, Jia

    2015-09-09

    Silicon, one of the most promising candidates as lithium-ion battery anode, has attracted much attention due to its high theoretical capacity, abundant existence, and mature infrastructure. Recently, Si nanostructures-based lithium-ion battery anode, with sophisticated structure designs and process development, has made significant progress. However, low cost and scalable processes to produce these Si nanostructures remained as a challenge, which limits the widespread applications. Herein, we demonstrate that Si nanoparticles with controlled size can be massively produced directly from low grade Si sources through a scalable high energy mechanical milling process. In addition, we systematically studied Si nanoparticles produced from two major low grade Si sources, metallurgical silicon (∼99 wt % Si, $1/kg) and ferrosilicon (∼83 wt % Si, $0.6/kg). It is found that nanoparticles produced from ferrosilicon sources contain FeSi2, which can serve as a buffer layer to alleviate the mechanical fractures of volume expansion, whereas nanoparticles from metallurgical Si sources have higher capacity and better kinetic properties because of higher purity and better electronic transport properties. Ferrosilicon nanoparticles and metallurgical Si nanoparticles demonstrate over 100 stable deep cycling after carbon coating with the reversible capacities of 1360 mAh g(-1) and 1205 mAh g(-1), respectively. Therefore, our approach provides a new strategy for cost-effective, energy-efficient, large scale synthesis of functional Si electrode materials.

  7. Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals.

    PubMed

    Hughes, Stephen R; Qureshi, Nasib; López-Núñez, Juan Carlos; Jones, Marjorie A; Jarodsky, Joshua M; Galindo-Leva, Luz Ángela; Lindquist, Mitchell R

    2017-04-01

    Inulins are polysaccharides that belong to an important class of carbohydrates known as fructans and are used by many plants as a means of storing energy. Inulins contain 20 to several thousand fructose units joined by β-2,1 glycosidic bonds, typically with a terminal glucose unit. Plants with high concentrations of inulin include: agave, asparagus, coffee, chicory, dahlia, dandelion, garlic, globe artichoke, Jerusalem artichoke, jicama, onion, wild yam, and yacón. To utilize inulin as its carbon and energy source directly, a microorganism requires an extracellular inulinase to hydrolyze the glycosidic bonds to release fermentable monosaccharides. Inulinase is produced by many microorganisms, including species of Aspergillus, Kluyveromyces, Penicillium, and Pseudomonas. We review various inulinase-producing microorganisms and inulin feedstocks with potential for industrial application as well as biotechnological efforts underway to develop sustainable practices for the disposal of residues from processing inulin-containing crops. A multi-stage biorefinery concept is proposed to convert cellulosic and inulin-containing waste produced at crop processing operations to valuable biofuels and bioproducts using Kluyveromyces marxianus, Yarrowia lipolytica, Rhodotorula glutinis, and Saccharomyces cerevisiae as well as thermochemical treatments.

  8. Hydrogen production from carbonaceous material

    DOEpatents

    Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

    2004-09-14

    Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

  9. Microbial utilization of lignin: available biotechnologies for its degradation and valorization.

    PubMed

    Palazzolo, Martín A; Kurina-Sanz, Marcela

    2016-10-01

    Lignocellulosic biomasses, either from non-edible plants or from agricultural residues, stock biomacromolecules that can be processed to produce both energy and bioproducts. Therefore, they become major candidates to replace petroleum as the main source of energy. However, to shift the fossil-based economy to a bio-based one, it is imperative to develop robust biotechnologies to efficiently convert lignocellulosic streams in power and platform chemicals. Although most of the biomass processing facilities use celluloses and hemicelluloses to produce bioethanol and paper, there is no consolidated bioprocess to produce valuable compounds out of lignin at industrial scale available currently. Usually, lignin is burned to provide heat or it remains as a by-product in different streams, thus arising environmental concerns. In this way, the biorefinery concept is not extended to completion. Due to Nature offers an arsenal of biotechnological tools through microorganisms to accomplish lignin valorization or degradation, an increasing number of projects dealing with these tasks have been described recently. In this review, outstanding reports over the last 6 years are described, comprising the microbial utilization of lignin to produce a variety of valuable compounds as well as to diminish its ecological impact. Furthermore, perspectives on these topics are given.

  10. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.

    PubMed

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2014-04-01

    The fuel processor in which hydrogen is produced from fuels is an important unit in a fuel cell system. The aim of this study is to apply a thermodynamic concept to identify a suitable reforming process for an ethanol-fueled solid oxide fuel cell (SOFC). Three different reforming technologies, i.e., steam reforming, partial oxidation and autothermal reforming, are considered. The first and second laws of thermodynamics are employed to determine an energy demand and to describe how efficiently the energy is supplied to the reforming process. Effect of key operating parameters on the distribution of reforming products, such as H2, CO, CO2 and CH4, and the possibility of carbon formation in different ethanol reformings are examined as a function of steam-to-ethanol ratio, oxygen-to-ethanol ratio and temperatures at atmospheric pressure. Energy and exergy analysis are performed to identify the best ethanol reforming process for SOFC applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Energy valuation methods for biofuels in South Florida: Introduction to life cycle assessment and emergy approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treese II, J. Van; Hanlon, Edward A.; Amponsah, Nana

    Here, recent changes in the United States requiring the use of ethanol in gasoline for most vehicular transportation have created discussion about important issues, such as shifting the use of certain plants from food production to energy supply, related federal subsidies, effects on soil, water and atmosphere resources, tradeoffs between food production and energy production, speculation about biofuels as a possible means for energy security, potential reduction of greenhouse gas (GHG) emissions or development and expansion of biofuels industry. A sustainable approach to biofuel production requires understanding inputs (i.e., energy required to carry out a process, both natural and anthropogenic)more » and outputs (i.e., energy produced by that process) and cover the entire process, as well as environmental considerations that can be overlooked in a more traditional approach. This publication gives an overview of two methods for evaluating energy transformations in biofuels production: (1) Life Cycle Assessment (LCA) and (2) Emergy Assessment (EA). The LCA approach involves measurements affecting greenhouse gases (GHG), which can be linked to the energy considerations used in the EA. Although these two methods have their basis in energy or GHG evaluations, their approaches can lead to a reliable judgment regarding a biofuel process. Using these two methods can ensure that the energy components are well understood and can help to evaluate the economic environmental component of a biofuel process. In turn, using these two evaluative tools will allow for decisions about biofuel processes that favor sustainability« less

  12. Method of drying passivated micromachines by dewetting from a liquid-based process

    DOEpatents

    Houston, Michael R.; Howe, Roger T.; Maboudian, Roya; Srinivasan, Uthara

    2000-01-01

    A method of fabricating a micromachine includes the step of constructing a low surface energy film on the micromachine. The micromachine is then rinsed with a rinse liquid that has a high surface energy, relative to the low surface energy film, to produce a contact angle of greater than 90.degree. between the low surface energy film and the rinse liquid. This relatively large contact angle causes any rinse liquid on the micromachine to be displaced from the micromachine when the micromachine is removed from the rinse liquid. In other words, the micromachine is dried by dewetting from a liquid-based process. Thus, a separate evaporative drying step is not required, as the micromachine is removed from the liquid-based process in a dry state. The relatively large contact angle also operates to prevent attractive capillary forces between micromachine components, thereby preventing contact and adhesion between adjacent microstructure surfaces. The low surface energy film may be constructed with a fluorinated self-assembled monolayer film. The processing of the invention avoids the use of environmentally harmful, health-hazardous chemicals.

  13. Design methodology for integrated downstream separation systems in an ethanol biorefinery

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh Rohani, Navid

    Energy security and environmental concerns have been the main drivers for a historic shift to biofuel production in transportation fuel industry. Biofuels should not only offer environmental advantages over the petroleum fuels they replace but also should be economically sustainable and viable. The so-called second generation biofuels such as ethanol which is the most produced biofuel are mostly derived from lignocellulosic biomasses. These biofuels are more difficult to produce than the first generation ones mainly due to recalcitrance of the feedstocks in extracting their sugar contents. Costly pre-treatment and fractionation stages are required to break down lignocellulosic feedstocks into their constituent elements. On the other hand the mixture produced in fermentation step in a biorefinery contains very low amount of product which makes the subsequent separation step more difficult and more energy consuming. In an ethanol biorefinery, the dilute fermentation broth requires huge operating cost in downstream separation for recovery of the product in a conventional distillation technique. Moreover, the non-ideal nature of ethanol-water mixture which forms an iseotrope at almost 95 wt%, hinders the attainment of the fuel grade ethanol (99.5 wt%). Therefore, an additional dehydration stage is necessary to purify the ethanol from its azeotropic composition to fuel-grade purity. In order to overcome the constraint pertaining to vapor-liquid equilibrium of ethanol-water separation, several techniques have been investigated and proposed in the industry. These techniques such as membrane-based technologies, extraction and etc. have not only sought to produce a pure fuel-grade ethanol but have also aimed at decreasing the energy consumption of this energy-intensive separation. Decreasing the energy consumption of an ethanol biorefinery is of paramount importance in improving its overall economics and in facilitating the way to displacing petroleum transportation fuel and obtaining energy security. On the other hand, Process Integration (PI) as defined by Natural Resource Canada as the combination of activities which aim at improving process systems, their unit operations and their interactions in order to maximize the efficiency of using water, energy and raw materials can also help biorefineries lower their energy consumptions and improve their economics. Energy integration techniques such as pinch analysis adopted by different industries over the years have ensured using heat sources within a plant to supply the demand internally and decrease the external utility consumption. Therefore, adopting energy integration can be one of the ways biorefinery technology owners can consider in their process development as well as their business model in order to improve their overall economics. The objective of this thesis is to propose a methodology for designing integrated downstream separation in a biorefinery. This methodology is tested in an ethanol biorefinery case study. Several alternative separation techniques are evaluated in their energy consumption and economics in three different scenarios; stand-alone without energy integration, stand-alone with internal energy integration and integrated-with Kraft. The energy consumptions and capital costs of separation techniques are assessed in each scenario and the cost and benefit of integration are determined and finally the best alternative is found through techno-economic metrics. Another advantage of this methodology is the use of a graphical tool which provides insights on decreasing energy consumption by modifying the process condition. The pivot point of this work is the use of a novel energy integration method called Bridge analysis. This systematic method which originally is intended for retrofit situation is used here for integration with Kraft process. Integration potentials are identified through this method and savings are presented for each design. In stand-alone with internal integration scenario, the conventional pinch method is used for energy analysis. The results reveal the importance of energy integration in reducing energy consumption. They also show that in an ethanol biorefinery, by adopting energy integration in the conventional distillation separation, we can achieve greater energy saving compared to other alternative techniques. This in turn suggests that new alternative technologies which imply big risks for the company might not be an option for reducing the energy consumption as long as an internal and external integration is incorporated in the business model of an ethanol biorefinery. It is also noteworthy that the methodology developed in this work can be extended as a future work to include a whole biorefinery system. (Abstract shortened by UMI.).

  14. Development and Testing of Building Energy Model Using Non-Linear Auto Regression Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Arida, Maya Ahmad

    In 1972 sustainable development concept existed and during The years it became one of the most important solution to save natural resources and energy, but now with rising energy costs and increasing awareness of the effect of global warming, the development of building energy saving methods and models become apparently more necessary for sustainable future. According to U.S. Energy Information Administration EIA (EIA), today buildings in the U.S. consume 72 percent of electricity produced, and use 55 percent of U.S. natural gas. Buildings account for about 40 percent of the energy consumed in the United States, more than industry and transportation. Of this energy, heating and cooling systems use about 55 percent. If energy-use trends continue, buildings will become the largest consumer of global energy by 2025. This thesis proposes procedures and analysis techniques for building energy system and optimization methods using time series auto regression artificial neural networks. The model predicts whole building energy consumptions as a function of four input variables, dry bulb and wet bulb outdoor air temperatures, hour of day and type of day. The proposed model and the optimization process are tested using data collected from an existing building located in Greensboro, NC. The testing results show that the model can capture very well the system performance, and The optimization method was also developed to automate the process of finding the best model structure that can produce the best accurate prediction against the actual data. The results show that the developed model can provide results sufficiently accurate for its use in various energy efficiency and saving estimation applications.

  15. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, James A.; Hayden, Jr., Howard W.

    1995-01-01

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  16. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  17. Development of pulsed processes for the manufacture of solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.

    1979-01-01

    Low-energy ion implantation processes for the automated production of silicon solar cells were investigated. Phosphorus ions at an energy of 10 keV and dose of 2 x 10 to the 15th power/sq cm were implanted in silicon solar cells to produce junctions, while boron ions at 25 keV and 5 x 10 to the 15th power were implanted in the cells to produce effective back surface fields. An ion implantation facility with a beam current up to 4 mA and a production throughput of 300 wafers per hour was designed and installed. A design was prepared for a 100 mA, automated implanter with a production capacity of 100 MW sub e/sq cm per year. Two process sequences were developed which employ ion implantation and furnace or pulse annealing. A computer program was used to determine costs for junction formation by ion implantation and various furnace annealing cycles to demonstrate cost effectiveness of these methods.

  18. Recycling of SmCo5 magnets by HD process

    NASA Astrophysics Data System (ADS)

    Eldosouky, Anas; Škulj, Irena

    2018-05-01

    Hydrogen decrepitation process has been applied for the first time for the direct recycling of SmCo5 magnets. Industrially produced sintered SmCo5 magnets were decrepitated by hydrogen gas at a pressure of 1 bar to 9.5 bar at room temperature in a planetary rotating jar. After decrepitation, the starting sintered magnets were reduced to a powder with a particle size of less than 200 μm. The produced powder was used for the preparation of recycled SmCo5 magnets. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction studies and magnetic measurements were used to follow the decrepitation and the sintering processes. The measured remanence and maximum energy product of the recycled magnet are 0.94 T and 171.1 kJ/m3, respectively, in comparison with 0.91 T and 156.8 kJ/m3, respectively for the original magnet before recycling. It was also observed that, there is refinement in the microstructure after recycling in comparison to the original magnet.

  19. Renewable hydrogen production via thermochemical/electrochemical coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosini, Andrea; Babiniec, Sean Michael; Miller, James E.

    A coupled electrochemical/thermochemical cycle was investigated to produce hydrogen from renewable resources. Like a conventional thermochemical cycle, this cycle leverages chemical energy stored in a thermochemical working material that is reduced thermally by solar energy. However, in this concept, the stored chemical energy only needs to be partially, but not fully, capable of splitting steam to produce hydrogen. To complete the process, a proton-conducting membrane is driven to separate hydrogen as it is produced, thus shifting the thermodynamics toward further hydrogen production. This novel coupled-cycle concept provides several benefits. First, the required oxidation enthalpy of the reversible thermochemical material ismore » reduced, enabling the process to occur at lower temperatures. Second, removing the requirement for spontaneous steam-splitting widens the scope of materials compositions, allowing for less expensive/more abundant elements to be used. Lastly, thermodynamics calculations suggest that this concept can potentially reach higher efficiencies than photovoltaic-to-electrolysis hydrogen production methods. This Exploratory Express LDRD involved assessing the practical feasibility of the proposed coupled cycle. A test stand was designed and constructed and proton-conducting membranes were synthesized. While the full proof of concept was not achieved, the individual components of the experiment were validated and new capabilities that can be leveraged by a variety of programs were developed.« less

  20. 40 CFR 80.1416 - Petition process for evaluation of new renewable fuels pathways.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... definition of renewable biomass. (ii) Market value of the feedstock. (iii) List of other uses for the feedstock. (iv) List of chemical inputs needed to produce the renewable biomass source of the feedstock and prepare the renewable biomass for processing into feedstock. (v) Identify energy needed to obtain the...

  1. Application of membrane processes to alcohol-water separation: Improving the energy efficiency of biofuel production(Singapore)

    EPA Science Inventory

    The prospect of dwindling oil supplies, concern over the carbon balance of the planet, and the availability of waste and non-waste biomass materials has generated renewed interest in the use of fermentation processes to produce commodity chemicals and fuels. The economics of fer...

  2. Nitrogenase Inspired Peptide-Functionalized Catalyst for Efficient, Emission-Free Ammonia Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gellett, Wayne; Ayers, Katherine; Renner, Julie

    Ammonia production is one of the most important industrial processes in the world, as the major component of fertilizer to sustain higher food production. It is also one of the most energy intensive and carbon intensive chemical processes worldwide, primarily due to the steam methane reforming step to produce hydrogen for the reaction. Currently, ammonia is produced via the Haber Bosch process, which requires high temperature and pressure, and has low equilibrium efficiency. Due to these reaction conditions, the process is most economical at extremely large scale (100,000s of tons per day). In order to enable more distributed production scalesmore » which better match with renewable energy input and sustainable reactant sources, alternative methods of ammonia synthesis are needed, which scale more effectively and economically. One such approach is electrochemical synthesis based on ion exchange membrane cells. Peptide templating to form catalyst nanoparticles of controlled size, combined with peptide surface adsorbtion to model the nitrogenase active site, was used to develop novel catalyst materials and deposit them on electrodes.« less

  3. Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells (MFCs).

    PubMed

    Puig, S; Serra, M; Coma, M; Balaguer, M D; Colprim, J

    2011-01-01

    Microbial fuel cells (MFCS) can be used in wastewater treatment and to simultaneously produce electricity (renewable energy). MFC technology has already been applied successfully in lab-scale studies to treat domestic wastewater, focussing on organic matter removal and energy production. However, domestic wastewater also contains nitrogen that needs to be treated before being discharged. The goal of this paper is to assess simultaneous domestic wastewater treatment and energy production using an air-cathode MFC, paying special attention to nitrogen compound transformations. An air-cathode MFC was designed and run treating 1.39 L d(-1) of wastewater with an organic load rate of 7.2 kg COD m(-3) d(-1) (80% removal efficiency) and producing 1.42 W m(-3). In terms of nitrogen transformations, the study demonstrates that two different processes took place in the MFC: physical-chemical and biological. Nitrogen loss was observed increasing in line with the power produced. A low level of oxygen was present in the anodic compartment, and ammonium was oxidised to nitrite and nitrate.

  4. On the energy spectrum of cosmogenic neutrons

    NASA Astrophysics Data System (ADS)

    Malgin, A. S.

    2017-11-01

    The processes of the generation of cosmogenic neutrons (cg-neutrons) underground are considered. The neutrons produced by cosmic-ray muons in their interactions with matter are called cosmogenic. Deep-inelastic π A-collisions of pions in muon-induced hadronic showers are mainly their source at energies above 30 MeV. The characteristics of the energy spectrum for the generation of cg-neutrons have been determined by invoking the additive quark model of deep-inelastic soft processes and the mechanism for the interactions of high-energy nucleons in a nucleus. The three-component shape of the spectrum is explained, and the energy of the "knee" in the spectrum has been found to depend on the mass number A. The peculiarities of deep-inelastic π A-scattering lead to the conclusion that the spectrum of cg-neutrons steepens sharply at energies above 1 GeV. The calculated quantitative characteristics of the spectrum are compared with those obtained in measurements.

  5. Process configuration of Liquid-nitrogen Energy Storage System (LESS) for maximum turnaround efficiency

    NASA Astrophysics Data System (ADS)

    Dutta, Rohan; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2017-12-01

    Diverse power generation sector requires energy storage due to penetration of variable renewable energy sources and use of CO2 capture plants with fossil fuel based power plants. Cryogenic energy storage being large-scale, decoupled system with capability of producing large power in the range of MWs is one of the options. The drawback of these systems is low turnaround efficiencies due to liquefaction processes being highly energy intensive. In this paper, the scopes of improving the turnaround efficiency of such a plant based on liquid Nitrogen were identified and some of them were addressed. A method using multiple stages of reheat and expansion was proposed for improved turnaround efficiency from 22% to 47% using four such stages in the cycle. The novelty here is the application of reheating in a cryogenic system and utilization of waste heat for that purpose. Based on the study, process conditions for a laboratory-scale setup were determined and presented here.

  6. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    NASA Astrophysics Data System (ADS)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  7. Potential improvement to a citric wastewater treatment plant using bio-hydrogen and a hybrid energy system

    NASA Astrophysics Data System (ADS)

    Zhi, Xiaohua; Yang, Haijun; Berthold, Sascha; Doetsch, Christian; Shen, Jianquan

    Treatment of highly concentrated organic wastewater is characterized as cost-consuming. The conventional technology uses the anaerobic-anoxic-oxic process (A 2/O), which does not produce hydrogen. There is potential for energy saving using hydrogen utilization associated with wastewater treatment because hydrogen can be produced from organic wastewater using anaerobic fermentation. A 50 m 3 pilot bio-reactor for hydrogen production was constructed in Shandong Province, China in 2006 but to date the hydrogen produced has not been utilized. In this work, a technical-economic model based on hydrogen utilization is presented and analyzed to estimate the potential improvement to a citric wastewater plant. The model assesses the size, capital cost, annual cost, system efficiency and electricity cost under different configurations. In a stand-alone situation, the power production from hydrogen is not sufficient for the required load, thus a photovoltaic array (PV) is employed as the power supply. The simulated results show that the combination of solar and bio-hydrogen has a much higher cost compared with the A 2/O process. When the grid is connected, the system cost achieved is 0.238 US t -1 wastewater, which is lower than 0.257 US t -1 by the A 2/O process. The results reveal that a simulated improvement by using bio-hydrogen and a FC system is effective and feasible for the citric wastewater plant, even when compared to the current cost of the A 2/O process. In addition, lead acid and vanadium flow batteries were compared for energy storage service. The results show that a vanadium battery has lower cost and higher efficiency due to its long lifespan and energy efficiency. Additionally, the cost distribution of components shows that the PV dominates the cost in the stand-alone situation, while the bio-reactor is the main cost component in the parallel grid.

  8. Nanocrystal ghosting: Extensive radiation damage in MgO induced by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Frankenfield, Zackery; Kane, Kenneth; Sawyer, William H.

    2017-03-01

    We report direct evidence of extensive radiation damage in MgO nanocrystals due to intense bombardment (2 × 10 electrons/nm sec) by electrons with beam energies between 60 keV and 120 keV. Based upon a minimum intensity necessary to produce the observed damage, we present an explanation based on the Knotek-Feibelman process.

  9. On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine

    Treesearch

    W. Zhu; Junyong Zhu; Roland Gleisner; X.J. Pan

    2010-01-01

    This study investigated the effects of chemical pretreatment and disk-milling conditions on energy consumption for size-reduction and the efficiency of enzymatic cellulose saccharification of a softwood. Lodgepole pine wood chips produced from thinnings of a 100-year-old unmanaged forest were pretreated by hot-water, dilute-acid, and two SPORL processes (Sulfite...

  10. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  11. Nanomaterials driven energy, environmental and biomedical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Prakash C.; Srinivasan, Sesha S.; Wilson, Jeremiah F.

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO{sub 2} nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For themore » successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH{sub 2} and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe{sub 2}O{sub 4} have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI)« less

  12. Study of combustion and emission characteristics of fuel derived from waste plastics by various waste to energy (W-t-E) conversion processes

    NASA Astrophysics Data System (ADS)

    Hazrat, M. A.; Rasul, M. G.; Khan, M. M. K.

    2016-07-01

    Reduction of plastic wastes by means of producing energy can be treated as a good investment in the waste management and recycling sectors. In this article, conversion of plastics into liquid fuel by two thermo-chemical processes, pyrolysis and gasification, are reviewed. The study showed that the catalytic pyrolysis of homogenous waste plastics produces better quality and higher quantity of liquefied fuel than that of non-catalytic pyrolysis process at a lower operating temperature. The syngas produced from gasification process, which occurs at higher temperature than the pyrolysis process, can be converted into diesel by the Fischer-Tropsch (FT) reaction process. Conducive bed material like Olivine in the gasification conversion process can remarkably reduce the production of tar. The waste plastics pyrolysis oil showed brake thermal efficiency (BTE) of about 27.75%, brake specific fuel consumption (BSFC) of 0.292 kg/kWh, unburned hydrocarbon emission (uHC) of 91 ppm and NOx emission of 904 ppm in comparison with the diesel for BTE of 28%, BSFC of 0.276 kg/kWh, uHC of 57 ppm and NOx of 855 ppm. Dissolution of Polystyrene (PS) into biodiesel also showed the potential of producing alternative transport fuel. It has been found from the literature that at higher engine speed, increased EPS (Expanded Polystyrene) quantity based biodiesel blends reduces CO, CO2, NOx and smoke emission. EPS-biodiesel fuel blend increases the brake thermal efficiency by 7.8%, specific fuel consumption (SFC) by 7.2% and reduces brake power (Pb) by 3.2%. More study using PS and EPS with other thermoplastics is needed to produce liquid fuel by dissolving them into biodiesel and to assess their suitability as a transport fuel. Furthermore, investigation to find out most suitable W-t-E process for effective recycling of the waste plastics as fuel for internal combustion engines is necessary to reduce environmental pollution and generate revenue which will be addressed in this article.

  13. A critical review on factors influencing fermentative hydrogen production.

    PubMed

    Kothari, Richa; Kumar, Virendra; Pathak, Vinayak V; Ahmad, Shamshad; Aoyi, Ochieng; Tyagi, V V

    2017-03-01

    Biohydrogen production by dark fermentation of different waste materials is a promising approach to produce bio-energy in terms of renewable energy exploration. This communication has reviewed various influencing factors of dark fermentation process with detailed account of determinants in biohydrogen production. It has also focused on different factors such as improved bacterial strain, reactor design, metabolic engineering and two stage processes to enhance the bioenergy productivity from substrate. The study also suggest that complete utilization of substrates for biological hydrogen production requires the concentrated research and development for efficient functioning of microorganism with integrated application for energy production and bioremediation. Various studies have been taken into account here, to show the comparative efficiency of different substrates and operating conditions with inhibitory factors and pretreatment option for biohydrogen production. The study reveals that an extensive research is needed to observe field efficiency of process using low cost substrates and integration of dark and photo fermentation process. Integrated approach of fermentation process will surely compete with conventional hydrogen process and replace it completely in future.

  14. The Wang Landau parallel algorithm for the simple grids. Optimizing OpenMPI parallel implementation

    NASA Astrophysics Data System (ADS)

    Kussainov, A. S.

    2017-12-01

    The Wang Landau Monte Carlo algorithm to calculate density of states for the different simple spin lattices was implemented. The energy space was split between the individual threads and balanced according to the expected runtime for the individual processes. Custom spin clustering mechanism, necessary for overcoming of the critical slowdown in the certain energy subspaces, was devised. Stable reconstruction of the density of states was of primary importance. Some data post-processing techniques were involved to produce the expected smooth density of states.

  15. Solar thermochemical process interface study

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design and analyses of a subsystem of a hydrogen production process are described. The process is based on solar driven thermochemical reactions. The subject subsystem receives sulfuric acid of 60% concentration at 100 C, 1 atm pressure. The acid is further concentrated, vaporized, and decomposed (at a rate of 122 g moles/sec H2SO4) into SO2, O2, and water. The produce stream is cooled to 100 C. Three subsystem options, each being driven by direct solar energy, were designed and analyzed. The results are compared with a prior study case in which solar energy was provided indirectly through a helium loop.

  16. IRIS, Hinode, SDO, and RHESSI Observations of a White Light Flare Produced Directly by Nonthermal Electrons

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Sun; Imada, Shinsuke; Watanabe, Kyoko; Bamba, Yumi; Brooks, David H.

    2017-02-01

    An X1.6 flare occurred in active region AR 12192 on 2014 October 22 at 14:02 UT and was observed by Hinode, IRIS, SDO, and RHESSI. We analyze a bright kernel that produces a white light (WL) flare with continuum enhancement and a hard X-ray (HXR) peak. Taking advantage of the spectroscopic observations of IRIS and Hinode/EIS, we measure the temporal variation of the plasma properties in the bright kernel in the chromosphere and corona. We find that explosive evaporation was observed when the WL emission occurred, even though the intensity enhancement in hotter lines is quite weak. The temporal correlation of the WL emission, HXR peak, and evaporation flows indicates that the WL emission was produced by accelerated electrons. To understand the WL emission process, we calculated the energy flux deposited by non-thermal electrons (observed by RHESSI) and compared it to the dissipated energy estimated from a chromospheric line (Mg II triplet) observed by IRIS. The deposited energy flux from the non-thermal electrons is about (3-7.7) × 1010 erg cm-2 s-1 for a given low-energy cutoff of 30-40 keV, assuming the thick-target model. The energy flux estimated from the changes in temperature in the chromosphere measured using the Mg II subordinate line is about (4.6-6.7) × 109 erg cm-2 s-1: ˜6%-22% of the deposited energy. This comparison of estimated energy fluxes implies that the continuum enhancement was directly produced by the non-thermal electrons.

  17. Pulsed energy synthesis and doping of silicon carbide

    DOEpatents

    Truher, J.B.; Kaschmitter, J.L.; Thompson, J.B.; Sigmon, T.W.

    1995-06-20

    A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate is disclosed, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27--730 C is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including HETEROJUNCTION-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.

  18. Pulsed energy synthesis and doping of silicon carbide

    DOEpatents

    Truher, Joel B.; Kaschmitter, James L.; Thompson, Jesse B.; Sigmon, Thomas W.

    1995-01-01

    A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27.degree.-730.degree. C. is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including hetero-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.

  19. Photovoltaic energy technologies: Health and environmental effects document

    NASA Astrophysics Data System (ADS)

    Moskowitz, P. D.; Hamilton, L. D.; Morris, S. C.; Rowe, M. D.

    1980-09-01

    The potential health and environmental consequences of producing electricity by photovoltaic energy systems was analyzed. Potential health and environmental risks are identified in representative fuel and material supply cycles including extraction, processing, refining, fabrication, installation, operation, and isposal for four photovoltaic energy systems (silicon N/P single crystal, silicon metal/insulator/semiconductor (MIS) cell, cadmium sulfide/copper sulfide backwall cell, and gallium arsenide heterojunction cell) delivering equal amounts of useful energy. Each step of the fuel and material supply cycles, materials demands, byproducts, public health, occupational health, and environmental hazards is identified.

  20. Line Profile of H Lyman (alpha) from Dissociative Excitation of H2 with Application to Jupiter

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Kasnik, Isik; Ahmed, Syed M.; Clarke, John T.

    1995-01-01

    Observations of the H Lyman(alpha) (Ly-alpha) emission from Jupiter have shown pronounced emissions, exceeding solar fluorescence, in the polar aurora and equatorial "bulge" regions. The H Ly-alpha line profiles from these regions are broader than expected, indicating high-energy processes producing fast atoms as determined from the observed Doppler broadening. Toward understanding that process a high-resolution ultraviolet (UV) spectrometer was employed for the first measurement of the H Ly-alpha emission Doppler profile from dissociative excitation of H2 by electron impact. Analysis of the deconvolved line profile reveals the existence of a narrow central peak of 40 +/- 4 mA full width at half maximum and a broad pedestal base about 240 mA wide. Two distinct dissociation mechanisms account for this Doppler structure. Slow H(2p) atoms characterized by a distribution function with peak energy near 80 meV produce the peak profile, which is nearly independent of the electron impact energy. Slow H(2p) atoms arise from direct dissociation and predissociation of singly excited states which have a dissociation limit of 14.68 eV. The wings of H Ly-alpha arise from dissociative excitation of a series of doubly excited states which cross the Franck-Condon region between 23 and 40 eV. The profile of the wings is dependent on the electron impact energy, and the distribution function of fast H(2p) atoms is therefore dependent on the electron impact energy. The fast atom kinetic energy distribution at 100 eV electron impact energy spans the energy range from 1 to 10 eV with a peak near 4 eV. For impact energies above 23 eV the fast atoms contribute to a slightly asymmetric structure of the line profile. The absolute cross sections of the H Ly-alpha line peak and wings were measured over the range from 0 to 200 eV. Analytic model coefficients are given for the measured cross sections which can be applied to planetary atmosphere auroral and dayglow calculations. The dissociative excitation process, while one contributing process, appears insufficient by itself to explain the line broadening observed at Jupiter.

  1. An Annotated Bibliography of Patents Related to Coastal Engineering. Volume III. 1974-1976. Appendix.

    DTIC Science & Technology

    1979-11-01

    infrared detectors produce signals which are proportional to the detected reflected radia- tion at the wavelengths k, and A,. A processing channel is con...instrument including an oscillator for sup- T___ plying AC energy to a transducer. The oscillator is keyed on /I by a multvibrator which produces clock pulses... includes dams including such units when installed, and methods of damming water flow. o- 3.786.640 .MEANS AND METHOD FOR PRODUCING STEPPED CONCRETE SLOPE

  2. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.

  3. Rapid surface hardening and enhanced tribological performance of 4140 steel by friction stir processing

    DOE PAGES

    Lorenzo-Martin, Cinta; Ajayi, Oyelayo O.

    2015-06-06

    Tribological performance of steel materials can be substantially enhanced by various thermal surface hardening processes. For relatively low-carbon steel alloys, case carburization is often used to improve surface performance and durability. If the carbon content of steel is high enough (>0.4%), thermal treatments such as induction, flame, laser, etc. can produce adequate surface hardening without the need for surface compositional change. This paper presents an experimental study of the use of friction stir processing (FSP) as a means to hardened surface layer in AISI 4140 steel. The impacts of this surface hardening process on the friction and wear performance weremore » evaluated under both dry and lubricated contact conditions in reciprocating sliding. FSP produced the same level of hardening and superior tribological performance when compared to conventional thermal treatment, using only 10% of the energy and without the need for quenching treatments. With FSP surface hardness of about 7.8 GPa (62 Rc) was achieved while water quenching conventional heat treatment produced about 7.5 GPa (61 Rc) hardness. Microstructural analysis showed that both FSP and conventional heat treatment produced martensite. Although the friction behavior for FSP treated surfaces and the conventional heat treatment were about the same, the wear in FSP processed surfaces was reduced by almost 2× that of conventional heat treated surfaces. Furthermore, the superior performance is attributed to the observed grain refinement accompanying the FSP treatment in addition to the formation of martensite. As it relates to tribological performance, this study shows FSP to be an effective, highly energy efficient, and environmental friendly (green) alternative to conventional heat treatment for steel.« less

  4. Mathematical Analysis of High-Temperature Co-electrolysis of CO2 and O2 Production in a Closed-Loop Atmosphere Revitalization System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael G. McKellar; Manohar S. Sohal; Lila Mulloth

    2010-03-01

    NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developedmore » and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon dioxide is split instead of water, which has a lower heat of formation. Hydrogenation with co-electrolysis offers the best overall power performance for two reasons: it requires no external water, and it produces its own water, which reduces the power requirement for co-electrolysis.« less

  5. Integration of photovoltaic and concentrated solar thermal technologies for H2 production by the hybrid sulfur cycle

    NASA Astrophysics Data System (ADS)

    Liberatore, Raffaele; Ferrara, Mariarosaria; Lanchi, Michela; Turchetti, Luca

    2017-06-01

    It is widely agreed that hydrogen used as energy carrier and/or storage media may significantly contribute in the reduction of emissions, especially if produced by renewable energy sources. The Hybrid Sulfur (HyS) cycle is considered as one of the most promising processes to produce hydrogen through the water-splitting process. The FP7 project SOL2HY2 (Solar to Hydrogen Hybrid Cycles) investigates innovative material and process solutions for the use of solar heat and power in the HyS process. A significant part of the SOL2HY2 project is devoted to the analysis and optimization of the integration of the solar and chemical (hydrogen production) plants. In this context, this work investigates the possibility to integrate different solar technologies, namely photovoltaic, solar central receiver and solar troughs, to optimize their use in the HyS cycle for a green hydrogen production, both in the open and closed process configurations. The analysis carried out accounts for different combinations of geographical location and plant sizing criteria. The use of a sulfur burner, which can serve both as thermal backup and SO2 source for the open cycle, is also considered.

  6. Peaceful Uses of Fusion

    DOE R&D Accomplishments Database

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  7. Rotational nonequilibrium mechanisms in pulsed H/sub 2/+F/sub 2/ chain reaction lasers. 2: Effect of VR energy exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerber, R.L.; Brown, R.C.; Emery, K.A.

    1980-01-15

    The occurrence of pure rotational-to-rotational lasing from high J levels suggests that present rotational nonequilibrium mechanisms are inadequate to explain all lasing behavior of the HF laser. A possible mechanism for explaining this behavior is vibrational-to-rotational energy transfer. The usual assumption that vibrational relaxation occurs with rotational levels at equilibrium at the translational temperature is replaced with a near resonant multiquanta VR process that results in the formation of highly excited rotational states. Computer simulations incorporating VR relaxation predicted significant occurrence of rotational lasing. A simpler model that produced rotational nonequilibrium from pumping and P-branch lasing did not exhibit rotationalmore » lasing. Rotational lasing did not decrease energy available to P-branch lasing and produced effects resembling an increase in rotational relaxation rates. Rotational lasing is very sensitive to kinetics for both VR energy exchange and rotational relaxation.« less

  8. Cluster correlation and fragment emission in 12C+12C at 95 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Tian, G.; Chen, Z.; Han, R.; Shi, F.; Luo, F.; Sun, Q.; Song, L.; Zhang, X.; Xiao, G. Q.; Wada, R.; Ono, A.

    2018-03-01

    The impact of cluster correlations has been studied in the intermediate mass fragment (IMF) emission in 12C+12C at 95 MeV/nucleon, using antisymmetrized molecular dynamics (AMD) model simulations. In AMD, the cluster correlation is introduced as a process to form light clusters with A ≤4 in the final states of a collision induced by the nucleon-nucleon residual interaction. Correlations between light clusters are also considered to form light nuclei with A ≤9 . This version of AMD, combined with GEMINI to calculate the decay of primary fragments, reproduces the experimental energy spectra of IMFs well overall with reasonable reproduction of light charged particles when we carefully analyze the excitation energies of primary fragments produced by AMD and their secondary decays. The results indicate that the cluster correlation plays a crucial role for producing fragments at relatively low excitation energies in the intermediate-energy heavy-ion collisions.

  9. Detailed analysis of acidic compounds in Mayan gas oil and hydrotreated products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturm, G.P. Jr.; Green, J.B.; Grigsby, R.D.

    1989-04-01

    The present and future importance of heavy crude as a primary energy resource is widely recognized in spite of the current oversupply of crude oil. Along with coal and shale oil, heavy crudes and heavy ends of conventional crude produced by primary and enhanced oil recovery methods are considered important and dependable resources to meet their nation's long-term energy needs. Heavy crudes impose more severe requirements upon refining technology to produce end products meeting current specifications in terms of stability, compatibility, and corrosiveness. This study is based on the premise that knowledge of the problem components in the feedstocks, intermediatemore » process streams, and products can aid in the development of efficient and economical means of producing higher quality products.« less

  10. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1979-01-01

    A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.

  11. Atmospheric Emissions from Forest Biomass Residues to Energy Supply Chain: A Case Study in Portugal.

    PubMed

    Rafael, Sandra; Tarelho, Luis; Monteiro, Alexandra; Monteiro, Tânia; Gonçalves, Catarina; Freitas, Sylvio; Lopes, Myriam

    2015-06-01

    During the past decades, pressures on global environment and energy security have led to an increasing demand on renewable energy sources and diversification of the world's energy supply. The Portuguese energy strategy considers the use of Forest Biomass Residues (FBR) to energy as being essential to accomplish the goals established in the National Energy Strategy for 2020. However, despite the advantages pointing to FBR to the energy supply chain, few studies have evaluated the potential impacts on air quality. In this context, a case study was selected to estimate the atmospheric emissions of the FBR to the energy supply chain in Portugal. Results revealed that production, harvesting, and energy conversion processes are the main culprits for the biomass energy supply chain emissions (with a contribution higher than 90%), while the transport processes have a minor importance for all the pollutants. Compared with the coal-fired plants, the FBR combustion produces lower greenhouses emissions, on a mass basis of fuel consumed; the same is true for NO X and SO 2 emissions.

  12. Atmospheric Emissions from Forest Biomass Residues to Energy Supply Chain: A Case Study in Portugal

    PubMed Central

    Rafael, Sandra; Tarelho, Luis; Monteiro, Alexandra; Monteiro, Tânia; Gonçalves, Catarina; Freitas, Sylvio; Lopes, Myriam

    2015-01-01

    Abstract During the past decades, pressures on global environment and energy security have led to an increasing demand on renewable energy sources and diversification of the world's energy supply. The Portuguese energy strategy considers the use of Forest Biomass Residues (FBR) to energy as being essential to accomplish the goals established in the National Energy Strategy for 2020. However, despite the advantages pointing to FBR to the energy supply chain, few studies have evaluated the potential impacts on air quality. In this context, a case study was selected to estimate the atmospheric emissions of the FBR to the energy supply chain in Portugal. Results revealed that production, harvesting, and energy conversion processes are the main culprits for the biomass energy supply chain emissions (with a contribution higher than 90%), while the transport processes have a minor importance for all the pollutants. Compared with the coal-fired plants, the FBR combustion produces lower greenhouses emissions, on a mass basis of fuel consumed; the same is true for NOX and SO2 emissions. PMID:26064039

  13. Modifying Current Collectors to Produce High Volumetric Energy Density and Power Density Storage Devices.

    PubMed

    Khani, Hadi; Dowell, Timothy J; Wipf, David O

    2018-06-27

    We develop zirconium-templated NiO/NiOOH nanosheets on nickel foam and polypyrrole-embedded in exfoliated carbon fiber cloth as complementary electrodes for an asymmetric battery-type supercapacitor device. We achieve high volumetric energy and power density by the modification of commercially available current collectors (CCs). The modified CCs provide the source of active material, actively participate in the charge storage process, provide a larger surface area for active material loading, need no additional binders or conductive additives, and retain the ability to act as the CC. Nickel foam (NF) CCs are modified by use of a soft-templating/solvothermal treatment to generate NiO/NiOOH nanosheets, where the NF is the source of Ni for the synthesis. Carbon-fiber cloth (CFC) CCs are modified by an electrochemical oxidation/reduction process to generate exfoliated core-shell structures (ECFC). Electropolymerization of pyrrole into the shell structure produces polypyrrole embedded in exfoliated core-shell material (PPy@rECFC). Battery-type supercapacitor devices are produced with NiO/NiOOH@NF and PPy@rECFC as positive and negative electrodes, respectively, to demonstrate the utility of this approach. Volumetric energy densities for the full-cell device are in the range of 2.60-4.12 mWh cm -3 with corresponding power densities in the range of 9.17-425.58 mW cm -3 . This is comparable to thin-film lithium-ion batteries (0.3-10 mWh cm -3 ) and better than some commercial supercapacitors (<1 mWh cm -3 ). 1 The energy and power density is impressive considering that it was calculated using the entire cell volume (active materials, separator, and both CCs). The full-cell device is highly stable, retaining 96% and 88% of capacity after 2000 and 5000 cycles, respectively. These results demonstrate the utility of directly modifying the CCs and suggest a new method to produce high volumetric energy density and power density storage devices.

  14. Ocean thermal energy conversion: Perspective and status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, A.; Hillis, D.L.

    1990-01-01

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully be George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250--400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smallermore » (10 MW) shore-based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed-cycle concept. Cost-effective heat-exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat-transfer augmentation techniques were identified, which promised a reduction on heat-exchanger size and cost. Fresh water was produced by an OTEC open-cycle flash evaporator, using the heat energy in the seawater itself. The current R D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open-cycle process. The 10 MW shore-based, closed-cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power -- both valuable commodities on many tropical islands. The open-cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources. 7 refs.« less

  15. Ocean thermal energy conversion: Perspective and status

    NASA Astrophysics Data System (ADS)

    Thomas, Anthony; Hillis, David L.

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully by George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250 to 400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed cycle concept. Cost effective heat exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat transfer augmentation techniques were identified, which promised a reduction on heat exchanger size and cost. Fresh water was produced by an OTEC open cycle flash evaporator, using the heat energy in the seawater itself. The current R and D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open cycle process. The 10 MW shore-based, closed cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power; both valuable commodities on many tropical islands. The open cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources.

  16. Crack-free conditions in welding of glass by ultrashort laser pulse.

    PubMed

    Miyamoto, Isamu; Cvecek, Kristian; Schmidt, Michael

    2013-06-17

    The spatial distribution of the laser energy absorbed by nonlinear absorption process in bulk glass w(z) is determined and thermal cycles due to the successive ultrashort laser pulse (USLP) is simulated using w(z) based on the transient thermal conduction model. The thermal stress produced in internal melting of bulk glass by USLP is qualitatively analyzed based on a simple thermal stress model, and crack-free conditions are studied in glass having large coefficient of thermal expansion. In heating process, cracks are prevented when the laser pulse impinges into glass with temperatures higher than the softening temperature of glass. In cooling process, shrinkage stress is suppressed to prevent cracks, because the embedded molten pool produced by nonlinear absorption process behaves like an elastic body under the compressive stress field unlike the case of CW-laser welding where the molten pool having a free surface produced by linear absorption process is plastically deformed under the compressive stress field.

  17. Simultaneous Purification and Perforation of Low-Grade Si Sources for Lithium-Ion Battery Anode.

    PubMed

    Jin, Yan; Zhang, Su; Zhu, Bin; Tan, Yingling; Hu, Xiaozhen; Zong, Linqi; Zhu, Jia

    2015-11-11

    Silicon is regarded as one of the most promising candidates for lithium-ion battery anodes because of its abundance and high theoretical capacity. Various silicon nanostructures have been heavily investigated to improve electrochemical performance by addressing issues related to structure fracture and unstable solid-electrolyte interphase (SEI). However, to further enable widespread applications, scalable and cost-effective processes need to be developed to produce these nanostructures at large quantity with finely controlled structures and morphologies. In this study, we develop a scalable and low cost process to produce porous silicon directly from low grade silicon through ball-milling and modified metal-assisted chemical etching. The morphology of porous silicon can be drastically changed from porous-network to nanowire-array by adjusting the component in reaction solutions. Meanwhile, this perforation process can also effectively remove the impurities and, therefore, increase Si purity (up to 99.4%) significantly from low-grade and low-cost ferrosilicon (purity of 83.4%) sources. The electrochemical examinations indicate that these porous silicon structures with carbon treatment can deliver a stable capacity of 1287 mAh g(-1) over 100 cycles at a current density of 2 A g(-1). This type of purified porous silicon with finely controlled morphology, produced by a scalable and cost-effective fabrication process, can also serve as promising candidates for many other energy applications, such as thermoelectrics and solar energy conversion devices.

  18. Energy from gasification of solid wastes.

    PubMed

    Belgiorno, V; De Feo, G; Della Rocca, C; Napoli, R M A

    2003-01-01

    Gasification technology is by no means new: in the 1850s, most of the city of London was illuminated by "town gas" produced from the gasification of coal. Nowadays, gasification is the main technology for biomass conversion to energy and an attractive alternative for the thermal treatment of solid waste. The number of different uses of gas shows the flexibility of gasification and therefore allows it to be integrated with several industrial processes, as well as power generation systems. The use of a waste-biomass energy production system in a rural community is very interesting too. This paper describes the current state of gasification technology, energy recovery systems, pre-treatments and prospective in syngas use with particular attention to the different process cycles and environmental impacts of solid wastes gasification.

  19. Low Temperature Regolith Bricks for In-Situ Structural Material

    NASA Technical Reports Server (NTRS)

    Grossman, Kevin; Sakthivel, Tamil S.; Mantovani, James; Seal, Sudipta

    2016-01-01

    Current technology for producing in-situ structural materials on future missions to Mars or the moon relies heavily on energy-intensive sintering processes to produce solid bricks from regolith. This process requires heating the material up to temperatures in excess of 1000 C and results in solid regolith pieces with compressive strengths in the range of 14000 to 28000 psi, but are heavily dependent on the porosity of the final material and are brittle. This method is currently preferred over a low temperature cementation process to prevent consumption of precious water and other non-renewable materials. A high strength structural material with low energy requirements is still needed for future colonization of other planets. To fulfill these requirements, a nano-functionalization process has been developed to produce structural bricks from regolith simulant and shows promising mechanical strength results. Functionalization of granular silicate particles into alkoxides using a simple low temperature chemical process produces a high surface area zeolite particles that are held together via inter-particle oxygen bonding. Addition of water in the resulting zeolite particles produces a sol-gel reaction called "inorganic polymerization" which gives a strong solid material after a curing process at 60 C. The aqueous solution by-product of the reaction is currently being investigated for its reusability; an essential component of any ISRU technology. For this study, two batches of regolith bricks are synthesized from JSC-1A; the first batch from fresh solvents and chemicals, the second batch made from the water solution by-product of the first batch. This is done to determine the feasibility of recycling necessary components of the synthesis process, mainly water. Characterization including BET surface area, SEM, and EDS has been done on the regolith bricks as well as the constituent particles,. The specific surface area of 17.53 sq m/g (average) of the granular regolith material was obtained from nitrogen adsorption isotherm measurement. The size, shape and textures of regolith from SEM shows that the particles are 25-50 micrometers in size and mostly irregular in shape (Figure 1a). The elemental composition of regolith was identified from EDS analysis showed the presence of Si, Al, Fe, Na, Mg, Ca, Ti, O and C (see figure 1b). Each set of cylindrical brick samples were prepared by low energy process, and cured for 21 and 28 days, respectively to compare their compressive strength. Figure 1c, and d shows the JSC-1A brick and the compressive strength measurements. The results from the 21 day cured bricks (2 bricks) have been done and yielded an aver-age strength of 3050 psi, considerably higher than Portland cement mortars (Type IV and V). This promising technology provides the benefits of construction material similar to concrete, with a low complexity, low energy synthesis process and the likelihood of complete reusability of precious resources. Compressive strength using this method can be improved by increasing the surface area of the particles, using bi-modal particle size distribution, and adding certain additives to increase inter-particle forces.

  20. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.

    PubMed

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-02-23

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies.

  1. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring

    PubMed Central

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-01-01

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297

  2. Considerations on the radio emission from extended air showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conti, E.; Sartori, G., E-mail: enrico.conti@pd.infn.it, E-mail: giorgio.sartori@unipd.it

    The process of radio emission from extended air showers produced by high energy cosmic rays has reached a good level of comprehension and prediction. It has a coherent nature, so the emitted power scales quadratically with the energy of the primary particle. Recently, a laboratory measurement has revealed that an incoherent radiation mechanism exists, namely, the bremsstrahlung emission. In this paper we expound why bremsstrahlung radiation, that should be present in showers produced by ultra high energy cosmic rays, has escaped detection so far, and why, on the other side, it could be exploited, in the 1–10 GHz frequency range,more » to detect astronomical γ-rays. We propose an experimental scheme to verify such hypothesis, which, if correct, would deeply impact on the observational γ-ray astronomy.« less

  3. Genetic improvement of plants for enhanced bio-ethanol production.

    PubMed

    Saha, Sanghamitra; Ramachandran, Srinivasan

    2013-04-01

    The present world energy situation urgently requires exploring and developing alternate, sustainable sources for fuel. Biofuels have proven to be an effective energy source but more needs to be produced to meet energy goals. Whereas first generation biofuels derived from mainly corn and sugarcane continue to be used and produced, the contentious debate between "feedstock versus foodstock" continues. The need for sources that can be grown under different environmental conditions has led to exploring newer sources. Lignocellulosic biomass is an attractive source for production of biofuel, but pretreatment costs to remove lignin are high and the process is time consuming. Genetically modified plants that have increased sugar or starch content, modified lignin content, or produce cellulose degrading enzymes are some options that are being explored and tested. This review focuses on current research on increasing production of biofuels by genetic engineering of plants to have desirable characteristics. Recent patents that have been filed in this area are also discussed.

  4. Minor metals and renewable energy—Diversifying America’s energy sources

    USGS Publications Warehouse

    Singerling, Sheryl A.; Nassar, Nedal T.

    2017-08-16

    Solar photovoltaic (PV) and wind turbine technologies are projected to make up an increasing proportion of electricity generation capacity in the United States in the coming decades. By 2050, they will account for 36 percent (or 566 gigawatts) of capacity compared with about 11 percent (or 118 gigawatts) in 2016 (fig. 1; EIA, 2017). There are several different types of commercial solar PV and wind turbine technologies, and each type makes use of different minor metals. “Minor metal” is the term used for metals for which world production is small compared with the more widely produced base metals, and they are often produced as byproducts of the mining or processing of base metals. Minor metals used in renewable energy technologies often have complex supply chains, are often produced primarily outside of the United States, and are also used in many other applications. A larger amount of minor metals will be needed in the future to support the projected increases in solar PV and wind energy production capacity (Nassar and others, 2016).

  5. Hydrogen and carbon nanotube production via catalytic decomposition of methane

    NASA Astrophysics Data System (ADS)

    Deniz, Cansu; Karatepe, Nilgün

    2013-09-01

    The future energy demand is expected to increase significantly due to an increasing world population and demands for higher standards of living and better air quality. Hydrogen is considered as an energy carrier because of its high conversion efficiency and low pollutant emissions. It can be produced from various sources and transformed into electricity and other energy forms with a low pollution. The catalytic decomposition of hydrocarbon has been seen as a really useful method for production of pure hydrogen and for the environmental concern. The objective of this study was to assess the impact of catalyst composition and processing parameters on COx-free hydrogen production and to produce an available solid form of co-product carbon as carbon nanotubes via catalytic decomposition of methane. The optimum experimental conditions for methane decomposition have been investigated. Fe, Co and Ni are used as catalysts (nano materials) over different substrates as SiO2 and MgO to produce hydrogen at optimum temperatures.

  6. Induction Consolidation of Thermoplastic Composites Using Smart Susceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsen, Marc R

    2012-06-14

    This project has focused on the area of energy efficient consolidation and molding of fiber reinforced thermoplastic composite components as an energy efficient alternative to the conventional processing methods such as autoclave processing. The expanding application of composite materials in wind energy, automotive, and aerospace provides an attractive energy efficiency target for process development. The intent is to have this efficient processing along with the recyclable thermoplastic materials ready for large scale application before these high production volume levels are reached. Therefore, the process can be implemented in a timely manner to realize the maximum economic, energy, and environmental efficiencies.more » Under this project an increased understanding of the use of induction heating with smart susceptors applied to consolidation of thermoplastic has been achieved. This was done by the establishment of processing equipment and tooling and the subsequent demonstration of this fabrication technology by consolidating/molding of entry level components for each of the participating industrial segments, wind energy, aerospace, and automotive. This understanding adds to the nation's capability to affordably manufacture high quality lightweight high performance components from advanced recyclable composite materials in a lean and energy efficient manner. The use of induction heating with smart susceptors is a precisely controlled low energy method for the consolidation and molding of thermoplastic composites. The smart susceptor provides intrinsic thermal control based on the interaction with the magnetic field from the induction coil thereby producing highly repeatable processing. The low energy usage is enabled by the fact that only the smart susceptor surface of the tool is heated, not the entire tool. Therefore much less mass is heated resulting in significantly less required energy to consolidate/mold the desired composite components. This energy efficiency results in potential energy savings of {approx}75% as compared to autoclave processing in aerospace, {approx}63% as compared to compression molding in automotive, and {approx}42% energy savings as compared to convectively heated tools in wind energy. The ability to make parts in a rapid and controlled manner provides significant economic advantages for each of the industrial segments. These attributes were demonstrated during the processing of the demonstration components on this project.« less

  7. Spheromaks and how plasmas may explain the ultra high energy cosmic ray mystery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T. Kenneth; Li, Hui

    In recent papers, we show how accretion disks around massive black holes could act as dynamos producing magnetic jets similar to the jets that create spheromaks in the laboratory. In this paper, we discuss how these magnetic astrophysical jets might naturally produce runaway ion beams accelerated tomore » $$10^{20}$$ eV or more, finally ejected as ultra high energy cosmic rays (UHECRs) long regarded as one of the mysteries of astrophysics. The acceleration is mainly due to the drift cyclotron loss cone kinetic instability known from plasma research. Finally, experiments and simulations are suggested to verify the acceleration process.« less

  8. Spheromaks and how plasmas may explain the ultra high energy cosmic ray mystery

    DOE PAGES

    Fowler, T. Kenneth; Li, Hui

    2016-10-10

    In recent papers, we show how accretion disks around massive black holes could act as dynamos producing magnetic jets similar to the jets that create spheromaks in the laboratory. In this paper, we discuss how these magnetic astrophysical jets might naturally produce runaway ion beams accelerated tomore » $$10^{20}$$ eV or more, finally ejected as ultra high energy cosmic rays (UHECRs) long regarded as one of the mysteries of astrophysics. The acceleration is mainly due to the drift cyclotron loss cone kinetic instability known from plasma research. Finally, experiments and simulations are suggested to verify the acceleration process.« less

  9. A comparison between fuel cells and other alternatives for marine electric power generation

    NASA Astrophysics Data System (ADS)

    Welaya, Yousri M. A.; El Gohary, M. Morsy; Ammar, Nader R.

    2011-06-01

    The world is facing a challenge in meeting its needs for energy. Global energy consumption in the last halfcentury has increased very rapidly and is expected to continue to grow over the next 50 years. However, it is expected to see significant differences between the last 50 years and the next. This paper aims at introducing a good solution to replace or work with conventional marine power plants. This includes the use of fuel cell power plant operated with hydrogen produced through water electrolysis or hydrogen produced from natural gas, gasoline, or diesel fuels through steam reforming processes to mitigate air pollution from ships.

  10. Continuous and scalable polymer capsule processing for inertial fusion energy target shell fabrication using droplet microfluidics.

    PubMed

    Li, Jin; Lindley-Start, Jack; Porch, Adrian; Barrow, David

    2017-07-24

    High specification, polymer capsules, to produce inertial fusion energy targets, were continuously fabricated using surfactant-free, inertial centralisation, and ultrafast polymerisation, in a scalable flow reactor. Laser-driven, inertial confinement fusion depends upon the interaction of high-energy lasers and hydrogen isotopes, contained within small, spherical and concentric target shells, causing a nuclear fusion reaction at ~150 M°C. Potentially, targets will be consumed at ~1 M per day per reactor, demanding a 5000x unit cost reduction to ~$0.20, and is a critical, key challenge. Experimentally, double emulsions were used as templates for capsule-shells, and were formed at 20 Hz, on a fluidic chip. Droplets were centralised in a dynamic flow, and their shapes both evaluated, and mathematically modeled, before subsequent shell solidification. The shells were photo-cured individually, on-the-fly, with precisely-actuated, millisecond-length (70 ms), uniform-intensity UV pulses, delivered through eight, radially orchestrated light-pipes. The near 100% yield rate of uniform shells had a minimum 99.0% concentricity and sphericity, and the solidification processing period was significantly reduced, over conventional batch methods. The data suggest the new possibility of a continuous, on-the-fly, IFE target fabrication process, employing sequential processing operations within a continuous enclosed duct system, which may include cryogenic fuel-filling, and shell curing, to produce ready-to-use IFE targets.

  11. Very high-energy γ -ray observations of novae and dwarf novae with the MAGIC telescopes

    DOE PAGES

    Ahnen, M. L.

    2015-10-01

    In the last five years the Fermi Large Area Telescope (LAT) instrument detected GeV γ-ray emission from five novae. The GeV emission can be interpreted in terms of an inverse Compton process of electrons accelerated in a shock. In this case it is expected that protons in the same conditions can be accelerated to much higher energies. Consequently they may produce a second component in the γ-ray spectrum at TeV energies.

  12. Novel Round Energy Director for Use with Servo-driven Ultrasonic Welder

    NASA Astrophysics Data System (ADS)

    Savitski, Alex; Klinstein, Leo; Holt, Kenneth

    Increasingly stringent process repeatability and precision of assembly requirements are common for high-volume manufacturing for electronic, automotive and especially medical device industries, in which components for disposable medication delivery devices are produced in hundreds of millions annually. Ultrasonic welding, one of the most efficient of plastic welding processes often joins these small plastic parts together, and quite possibly, the one most broadly adopted for high volume assembly. The very fundamental factor in ultrasonic welding process performance is a proper joint design, the most common of which is a design utilizing an energy director. Keeping the energy director size and shape consistent on a part-to-part basis in high volume, multi-cavity operations presents a constant challenge to molded part vendors, as dimensional variations from cavity to cavity and variations in the molding process are always present. A newly developed concept of energy director design, when the tip of the energy director is round, addresses these problems, as the round energy director is significantly easier to mold and maintain its dimensional consistency. It also eliminates a major source of process variability for assembly operations. Materializing the benefits of new type of joint design became possible with the introduction of servo-driven ultrasonic welders, which allow an unprecedented control of material flow during the welding cycle and results in significantly improved process repeatability. This article summarizes results of recent studies focused on evaluating performance of round energy director and investigating the main factors responsible for the joint quality.

  13. Some Aspects of PDC Electrolysis

    NASA Astrophysics Data System (ADS)

    Poláčik, Ján; Pospíšil, Jiří

    2016-10-01

    In this paper, aspects of pulsed direct current (PDC) water splitting are described. Electrolysis is a simple and well-known method to produce hydrogen. The efficiency is relatively low in normal conditions using conventional DC. PDC in electrolysis brings about many advantages. It increases efficiency of hydrogen production, and performance of the electrolyser may be smoothly controlled without compromising efficiency of the process. In our approach, ultra-short pulses are applied. This method enhances efficiency of electrical energy in the process of decomposition of water into hydrogen and oxygen. Efficiency depends on frequency, shape and width of the electrical pulses. Experiments proved that efficiency was increased by 2 to 8 per cent. One of the prospects of PDC electrolysis producing hydrogen is in increase of efficiency of energy storage efficiency in the hydrogen. There are strong efforts to make the electrical grid more efficient and balanced in terms of production by installing electricity storage units. Using hydrogen as a fuel decreases air pollution and amount of carbon dioxide emissions in the air. In addition to energy storage, hydrogen is also important in transportation and chemical industry.

  14. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saksono, Nelson; Febiyanti, Irine Ayu, E-mail: irine.ayu41@ui.ac.id; Utami, Nissa

    2015-12-29

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H{sub 2}O{sub 2} amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical currentmore » throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.« less

  15. γ-radiation of excited nuclear discrete levels in peripheral heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Korotkikh, V. L.; Chikin, K. A.

    A new process of a nuclear excitation to discrete states in peripheral heavy ion collisions is studied. High-energy photons are emitted by the exited nuclei with energies up to a few tens of GeV at angles of a few hundred microradians with respect to the beam direction. We show that a two-stage process, where an electron-positron pair is produced by virtual photons emitted by nuclei and then the electron or positron excites the nucleus, has a large cross-section. It is equal to about 5 b for CaCa collisions. On the one hand, it produces a significant γ-rays background in the nuclear fragmentation region but, on the other hand, it could be used for monitoring the nuclear beam intensity at the LHC. These secondary nuclear photons could be a good signal for triggering peripheral nuclear collisions.

  16. Fission-Produced 99Mo Without a Nuclear Reactor.

    PubMed

    Youker, Amanda J; Chemerisov, Sergey D; Tkac, Peter; Kalensky, Michael; Heltemes, Thad A; Rotsch, David A; Vandegrift, George F; Krebs, John F; Makarashvili, Vakho; Stepinski, Dominique C

    2017-03-01

    99 Mo, the parent of the widely used medical isotope 99m Tc, is currently produced by irradiation of enriched uranium in nuclear reactors. The supply of this isotope is encumbered by the aging of these reactors and concerns about international transportation and nuclear proliferation. Methods: We report results for the production of 99 Mo from the accelerator-driven subcritical fission of an aqueous solution containing low enriched uranium. The predominately fast neutrons generated by impinging high-energy electrons onto a tantalum convertor are moderated to thermal energies to increase fission processes. The separation, recovery, and purification of 99 Mo were demonstrated using a recycled uranyl sulfate solution. Conclusion: The 99 Mo yield and purity were found to be unaffected by reuse of the previously irradiated and processed uranyl sulfate solution. Results from a 51.8-GBq 99 Mo production run are presented. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  17. The Ames Project (1942-1946)

    ScienceCinema

    None

    2018-04-26

    The Ames Laboratory was officially founded on May 17, 1947, following development of a process to purify uranium metal for the historic Manhattan Project. From 1942 to 1946, Ames Lab scientists produced over two-million pounds of uranium metal. A U.S. Department of Energy national research laboratory, the Ames Laboratory creates materials and energy solutions. Iowa State University operates Ames Laboratory under contract with the DOE.

  18. Energy conversion in natural and artificial photosynthesis.

    PubMed

    McConnell, Iain; Li, Gonghu; Brudvig, Gary W

    2010-05-28

    Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion. 2010 Elsevier Ltd. All rights reserved.

  19. Put a Coalatom in Your Tank: The Compelling Case for a Marriage of Coal and Nuclear Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penfield, Scott R. Jr.; Bolthrunis, Charles O.

    2006-07-01

    Increasing costs and security concerns with present fossil energy sources, plus environmental concerns related to CO{sub 2} emissions and the emergence of new technologies in the energy and transportation sectors set the stage for a marriage of convenience between coal and nuclear energy. As the price of oil continues to increase and supply becomes increasingly constrained, coal offers a secure domestic alternative to foreign oil as a source of liquid fuels. However, conventional technologies for converting coal to liquid fuels produce large quantities of CO{sub 2} that must be released or sequestered. Advanced nuclear technologies, particularly the High-Temperature Gas-Cooled Reactormore » (HTGR), have the potential to produce hydrogen via water splitting; however, the transportation and storage of hydrogen are significant barriers to the 'Holy Grail', the Hydrogen Economy. In a coal/nuclear marriage, the hydrogen and oxygen provided by nuclear energy are joined with coal as a source of carbon to provide liquid fuels with negligible CO{sub 2} release from the process. In combination with emerging hybrid vehicles, fuels based on a coal/nuclear marriage promise stable prices, increased domestic security and a reduction in CO{sub 2} emissions without the need to completely replace our transportation fuels infrastructure. The intent of this paper is to outline the technical basis for the above points and to show that process energy applications of nuclear energy can provide the basis for answering some of the tougher questions related to energy and the environment. (authors)« less

  20. The Energy-Efficient Quarry: Towards improved understanding and optimisation of energy use and minimisation of CO2 generation in the aggregates industry.

    NASA Astrophysics Data System (ADS)

    Hill, Ian; White, Toby; Owen, Sarah

    2014-05-01

    Extraction and processing of rock materials to produce aggregates is carried out at some 20,000 quarries across the EU. All stages of the processing and transport of hard and dense materials inevitably consume high levels of energy and have consequent significant carbon footprints. The FP7 project "the Energy Efficient Quarry" (EE-Quarry) has been addressing this problem and has devised strategies, supported by modelling software, to assist the quarrying industry to assess and optimise its energy use, and to minimise its carbon footprint. Aggregate quarries across Europe vary enormously in the scale of the quarrying operations, the nature of the worked mineral, and the processing to produce a final market product. Nevertheless most quarries involve most or all of a series of essential stages; deposit assessment, drilling and blasting, loading and hauling, and crushing and screening. The process of determining the energy-efficiency of each stage is complex, but is broadly understood in principle and there are numerous sources of information and guidance available in the literature and on-line. More complex still is the interaction between each of these stages. For example, using a little more energy in blasting to increase fragmentation may save much greater energy in later crushing and screening, but also generate more fines material which is discarded as waste and the embedded energy in this material is lost. Thus the calculation of the embedded energy in the waste material becomes an input to the determination of the blasting strategy. Such feedback loops abound in the overall quarry optimisation. The project has involved research and demonstration operations at a number of quarries distributed across Europe carried out by all partners in the EE-Quarry project, working in collaboration with many of the major quarrying companies operating in the EU. The EE-Quarry project is developing a sophisticated modelling tool, the "EE-Quarry Model" available to the quarrying industry on a web-based platform. This tool guides quarry managers and operators through the complex, multi-layered, iterative, process of assessing the energy efficiency of their own quarry operation. They are able to evaluate the optimisation of the energy-efficiency of the overall quarry through examining both the individual stages of processing, and the interactions between them. The project is also developing on-line distance learning modules designed for Continuous Professional Development (CPD) activities for staff across the quarrying industry in the EU and beyond. The presentation will describe development of the model, and the format and scope of the resulting software tool and its user-support available to the quarrying industry.

  1. Towards a turbulent magnetic dysnamo platform

    NASA Astrophysics Data System (ADS)

    Flippo, Kirk; Rasmus, Alexander; Li, Hui; Li, Shengtai; Kuranz, Carolyn; Levesque, Joseph; Klein, Sallee; Tzeferacos, Petros

    2017-10-01

    It is known through astronomical observations that most of the Universe is ionized, magnetized, and often turbulent and filled with jets. One theorized process to create strong magnetic fields and jets is the turbulent magnetic dynamo. The magnetic dynamo is a fundamental process in plasma physics, taking kinetic energy and converting it to magnetic energy and is very important to planetary physics and astrophysics. We report on recent Omega EP experiments to produce platform with a turbulent plume of magnetized material with which to study the turbulent magnetic dynamo process. The laser interaction with the target can seed magnetic fields that can be advected into the plume and amplified to saturation by the turbulent magnetic dynamo process. The experimentally measured plume characteristics are compared to hydro code calculations.

  2. High-efficiency power production from natural gas with carbon capture

    NASA Astrophysics Data System (ADS)

    Adams, Thomas A.; Barton, Paul I.

    A unique electricity generation process uses natural gas and solid oxide fuel cells at high electrical efficiency (74%HHV) and zero atmospheric emissions. The process contains a steam reformer heat-integrated with the fuel cells to provide the heat necessary for reforming. The fuel cells are powered with H 2 and avoid carbon deposition issues. 100% CO 2 capture is achieved downstream of the fuel cells with very little energy penalty using a multi-stage flash cascade process, where high-purity water is produced as a side product. Alternative reforming techniques such as CO 2 reforming, autothermal reforming, and partial oxidation are considered. The capital and energy costs of the proposed process are considered to determine the levelized cost of electricity, which is low when compared to other similar carbon capture-enabled processes.

  3. Infinite efficiency of the collisional Penrose process: Can a overspinning Kerr geometry be the source of ultrahigh-energy cosmic rays and neutrinos?

    NASA Astrophysics Data System (ADS)

    Patil, Mandar; Harada, Tomohiro; Nakao, Ken-ichi; Joshi, Pankaj S.; Kimura, Masashi

    2016-05-01

    The origin of the ultrahigh-energy particles we receive on Earth from outer space such as EeV cosmic rays and PeV neutrinos remains an enigma. All mechanisms known to us currently make use of electromagnetic interaction to accelerate charged particles. In this paper, we propose a mechanism exclusively based on gravity rather than electromagnetic interaction. We show that it is possible to generate ultrahigh-energy particles starting from particles with moderate energies using the collisional Penrose process in an overspinning Kerr spacetime transcending the Kerr bound only by an infinitesimal amount, i.e., with the Kerr parameter a =M (1 +ɛ ) , where we take the limit ɛ →0+. We consider two massive particles starting from rest at infinity that collide at r =M with divergent center-of-mass energy and produce two massless particles. We show that massless particles produced in the collision can escape to infinity with the ultrahigh energies exploiting the collisional Penrose process with the divergent efficiency η ˜1 /√{ɛ }→∞ . Assuming the isotropic emission of massless particles in the center-of-mass frame of the colliding particles, we show that half of the particles created in the collisions escape to infinity with the divergent energies, while the proportion of particles that reach infinity with finite energy is minuscule. To a distant observer, ultrahigh-energy particles appear to originate from a bright spot which is at the angular location ξ ˜2 M /robs with respect to the singularity on the side which is rotating toward the observer. We compute the spectrum of the high-energy massless particles and show that anisotropy in the emission in the center-of-mass frame leaves a distinct signature on its shape. Since the anisotropy is dictated by the differential cross section of the underlying particle physics process, the observation of the spectrum can constrain the particle physics model and serve as a unique probe into fundamental physics at ultrahigh energies at which particles collide. Thus, the existence of the near-extremal overspinning Kerr geometry in the Universe, either as a transient or permanent configuration, would have deep implications on astrophysics as well as fundamental particle physics.

  4. Energy efficiency technologies in cement and steel industry

    NASA Astrophysics Data System (ADS)

    Zanoli, Silvia Maria; Cocchioni, Francesco; Pepe, Crescenzo

    2018-02-01

    In this paper, Advanced Process Control strategies aimed at energy efficiency achievement and improvement in cement and steel industry are proposed. A flexible and smart control structure constituted by several functional modules and blocks has been developed. The designed control strategy is based on Model Predictive Control techniques, formulated on linear models. Two industrial control solutions have been developed, oriented to energy efficiency and process control improvement in cement industry clinker rotary kilns (clinker production phase) and in steel industry billets reheating furnaces. Tailored customization procedures for the design of ad hoc control systems have been executed, based on the specific needs and specifications of the analysed processes. The installation of the developed controllers on cement and steel plants produced significant benefits in terms of process control which resulted in working closer to the imposed operating limits. With respect to the previous control systems, based on local controllers and/or operators manual conduction, more profitable configurations of the crucial process variables have been provided.

  5. High-strength fermentable wastewater reclamation through a sequential process of anaerobic fermentation followed by microalgae cultivation.

    PubMed

    Qi, Wenqiang; Chen, Taojing; Wang, Liang; Wu, Minghong; Zhao, Quanyu; Wei, Wei

    2017-03-01

    In this study, the sequential process of anaerobic fermentation followed by microalgae cultivation was evaluated from both nutrient and energy recovery standpoints. The effects of different fermentation type on the biogas generation, broth metabolites' composition, algal growth and nutrients' utilization, and energy conversion efficiencies for the whole processes were discussed. When the fermentation was designed to produce hydrogen-dominating biogas, the total energy conversion efficiency (TECE) of the sequential process was higher than that of the methane fermentation one. With the production of hydrogen in anaerobic fermentation, more organic carbon metabolites were left in the broth to support better algal growth with more efficient incorporation of ammonia nitrogen. By applying the sequential process, the heat value conversion efficiency (HVCE) for the wastewater could reach 41.2%, if methane was avoided in the fermentation biogas. The removal efficiencies of organic metabolites and NH 4 + -N in the better case were 100% and 98.3%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Technoeconomical analysis of the co-production of hydrogen energy and carbon materials

    NASA Astrophysics Data System (ADS)

    Guerra, Zuimdie

    HECAM (Hydrogen Energy and Carbon Materials) is a new energy production strategy. The main paradigm of HECAM is that energy extracted from the carbon in hydrocarbon fuels is not worth the production of carbon dioxide. The hydrocarbon fuel is heated in an oxygen free environment and it is chemically decomposed by the heat into gases (mostly hydrogen and methane), small quantities of liquid (light oil and tar), and a solid residue containing carbon and ash (char or coke). More quantities of hydrocarbons will need to be used, but less carbon dioxide will be produced. HECAM is going to compete with steam methane reforming (SMR) to produce hydrogen. HECAM with thermocatalytic decomposition of methane and efficient sensible heat recovery has a production cost per gigajoule of hydrogen about 9% higher than SMR, but will produce about half the carbon dioxide emissions that SMR produces. If HECAM with efficient sensible heat recovery is used to produce electricity in a power plant, it will have a comparable electricity production cost and carbon dioxide emissions to a natural gas combined cycle (NGCC) power plant. The byproduct coke is not a waste residue, but a valuable co-product. Uses for the byproduct coke material may be carbon sequestration, mine land restoration, additive to enhance agricultural soils, low sulfur and mercury content heating fuel for power plants, new construction materials, or carbon-base industrial materials. This study investigated the use of byproduct coke for new construction materials. HECAM concrete substitute (HCS) materials will have a comparable cost with concrete when the cost of the raw materials is $65 per metric ton of HCS produced. HECAM brick substitute (HBS) materials will have 20% higher cost per brick than clay bricks. If the HECAM byproduct coke can be formed into bricks as a product of the HECAM process, the manufacture of HBS bricks will be cheaper and may be cost competitive with clay bricks. The results of this analysis are conservative because the model for the HECAM process is an approximated model, base on a metallurgical coke plant.

  7. Facile and rapid method of synthesizing Lithium Titanate for the use in energy storage

    NASA Astrophysics Data System (ADS)

    Samuel, J. J.; Beh, K. P.; Yam, F. K.

    2018-04-01

    Batteries are an important facet in today’s world. With smaller devices being produced, the challenge to power it with long lasting batteries continue to be quite the task. Recently, a new compound has proved its usefulness in battery fabrication that is Lithium Titanate (LTO). In this study a facile method of producing LTO via hydrolysis of Lithium Nitride and Titanium n-Butoxide. The method used in this study produced LTO in under 7 hours, much quicker than the standard processing time for LTO. The produced LTO is characterized using Raman Spectroscopy.

  8. Pyrolysis of forest residues: An approach to techno-economics for bio-fuel production

    DOE PAGES

    Carrasco, Jose L.; Gunukula, Sampath; Boateng, Akwasi A.; ...

    2017-04-01

    Here, the techno-economics for producing liquid fuels from Maine forest residues were determined from a combination of: (1) laboratory experiments at USDA-ARS’s Eastern Regional Research Center using hog fuel (a secondary woody residue produced from mill byproducts such as sawdust, bark and shavings) as a feedstock for pyrolysis to establish product yields and composition, and (2) Aspen Plus® process simulation for a feed rate of 2000 dry metric tons per day to estimate energy requirements and equipment sizes. The simulated plant includes feedstock sizing and drying, pyrolysis, hydrogen production and hydrotreatment of pyrolysis oils. The biomass is converted into bio-oilmore » (61% yield), char (24%) and gases (15%) in the pyrolysis reactor, with an energy demand of 17%. The bio-oil is then hydrotreated to remove oxygen, thereby producing hydrocarbon fuels. The final mass yield of gasoline/diesel hydrocarbons is 16% with a 40% energy yield based on the dry biomass fed, this yield represents a fuel production of 51.9 gallons per dry metric ton of feedstock. A unique aspect of the process simulated herein is that pyrolysis char and gases are used as sources for both thermal energy and hydrogen, greatly decreasing the need to input fossil energy. The total capital investment for a grass-roots plant was estimated to be US$427 million with an annual operational cost of US$154 million. With a 30 year project life, a minimum fuel selling price was determined to be US$6.25 per gallon. The economic concerns are related to high capital costs, high feedstock costs and short hydrotreating catalyst lifetimes.« less

  9. Pyrolysis of forest residues: An approach to techno-economics for bio-fuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco, Jose L.; Gunukula, Sampath; Boateng, Akwasi A.

    Here, the techno-economics for producing liquid fuels from Maine forest residues were determined from a combination of: (1) laboratory experiments at USDA-ARS’s Eastern Regional Research Center using hog fuel (a secondary woody residue produced from mill byproducts such as sawdust, bark and shavings) as a feedstock for pyrolysis to establish product yields and composition, and (2) Aspen Plus® process simulation for a feed rate of 2000 dry metric tons per day to estimate energy requirements and equipment sizes. The simulated plant includes feedstock sizing and drying, pyrolysis, hydrogen production and hydrotreatment of pyrolysis oils. The biomass is converted into bio-oilmore » (61% yield), char (24%) and gases (15%) in the pyrolysis reactor, with an energy demand of 17%. The bio-oil is then hydrotreated to remove oxygen, thereby producing hydrocarbon fuels. The final mass yield of gasoline/diesel hydrocarbons is 16% with a 40% energy yield based on the dry biomass fed, this yield represents a fuel production of 51.9 gallons per dry metric ton of feedstock. A unique aspect of the process simulated herein is that pyrolysis char and gases are used as sources for both thermal energy and hydrogen, greatly decreasing the need to input fossil energy. The total capital investment for a grass-roots plant was estimated to be US$427 million with an annual operational cost of US$154 million. With a 30 year project life, a minimum fuel selling price was determined to be US$6.25 per gallon. The economic concerns are related to high capital costs, high feedstock costs and short hydrotreating catalyst lifetimes.« less

  10. Magnesium Nanocomposites: Current Status and Prospects for Army Applications

    DTIC Science & Technology

    2011-09-01

    and reinforcement that cannot be produced through melt-based processing . In mechanical alloying , the powder and milling media are placed into...mixing vessels that are agitated in a high-energy milling machine. During the mixing process , the powder particles undergo repeated cycles of cold ...welding and fracturing of interparticle bonds. At the end of the process , the powder has been alloyed to the desired composition. Although typically used

  11. Low Cost and Energy Efficient Methods for the Manufacture of Semi-Solid (SSM) Feedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diran Apelian; Qingyue Pan; Makhlouf Makhlouf

    2005-11-07

    The SSM Consortium (now ACRC) at WPI has been carrying out fundamental, pre-competitive research in SSM for several years. Current and past research (at WPI) has generated many results of fundamental and applied nature, which are available to the SSM community. These include materials characterization, yield stress effects, alloy development, rheological properties, process modeling/simulation, semi-solid slurry formation, etc. Alternative method to produce SSM slurries at lower processing costs and with reduced energy consumption is a critical need. The production of low cost SSM feedstock will certainly lead to a dramatic increase in the tonnage of castings produced by SSM, andmore » will provide end users such as the transportation industry, with lighter, cheaper and high performance materials. In this program, the research team has addressed three critical issues in semi-solid processing. They are: (1) Development of low cost, reliable slurry-on-demand approaches for semi-solid processing; (2) Application of the novel permanent grain refining technology-SiBloy for the manufacture of high-quality SSM feedstock, and (3) Development of computational and modeling tools for semi-solid processing to enhance SSM process control. Salient results from these studies are summarized and detailed in our final technical report.« less

  12. Hydrogen transmission/storage with a metal hydride/organic slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breault, R.W.; Rolfe, J.; McClaine, A.

    1998-08-01

    Thermo Power Corporation has developed a new approach for the production, transmission, and storage of hydrogen. In this approach, a chemical hydride slurry is used as the hydrogen carrier and storage media. The slurry protects the hydride from unanticipated contact with moisture in the air and makes the hydride pumpable. At the point of storage and use, a chemical hydride/water reaction is used to produce high-purity hydrogen. An essential feature of this approach is the recovery and recycle of the spent hydride at centralized processing plants, resulting in an overall low cost for hydrogen. This approach has two clear benefits:more » it greatly improves energy transmission and storage characteristics of hydrogen as a fuel, and it produces the hydrogen carrier efficiently and economically from a low cost carbon source. The preliminary economic analysis of the process indicates that hydrogen can be produced for $3.85 per million Btu based on a carbon cost of $1.42 per million Btu and a plant sized to serve a million cars per day. This compares to current costs of approximately $9.00 per million Btu to produce hydrogen from $3.00 per million Btu natural gas, and $25 per million Btu to produce hydrogen by electrolysis from $0.05 per Kwh electricity. The present standard for production of hydrogen from renewable energy is photovoltaic-electrolysis at $100 to $150 per million Btu.« less

  13. Energy coding in biological neural networks

    PubMed Central

    Zhang, Zhikang

    2007-01-01

    According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, we present a brand new scientific theory that offers an unique mechanism for brain information processing. We demonstrate that the neural coding produced by the activity of the brain is well described by our theory of energy coding. Due to the energy coding model’s ability to reveal mechanisms of brain information processing based upon known biophysical properties, we can not only reproduce various experimental results of neuro-electrophysiology, but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, we estimate that the theory has very important consequences for quantitative research of cognitive function. PMID:19003513

  14. Engineering, construction, and operations in space

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W. (Editor); Wetzel, John P. (Editor)

    1990-01-01

    The century-old Mond process for carbonyl extraction of metals from ore shows great promise as an efficient low energy scheme for producing high-purity Fe, Ni, Cr, Mn, and Co from lunar or asteroidal feedstocks. Scenarios for winning oxygen from the lunar regolith can be enhanced by carbonyl processing of the metallic alloy by-products of such operations. The native metal content of asteroidal regoliths is even more suitable to carbonyl processing. High-purity, corrosion resistant Fe and Ni can be extracted from asteroidial feedstocks along with a Co-rich residue containing 0.5 percent platinum-group metals. The resulting gaseous metal carbonyl can produce a variety of end products using efficient vapor forming techniques.

  15. A GIS Based 3D Online Decision Assistance System for Underground Energy Storage in Northern Germany

    NASA Astrophysics Data System (ADS)

    Nolde, M.; Schwanebeck, M.; Biniyaz, E.; Duttmann, R.

    2014-12-01

    We would like to present a GIS-based 3D online decision assistance system for underground energy storage. Its aim is to support the local land use planning authorities through pre-selection of possible sites for thermal, electrical and substantial underground energy storages. Since the extension of renewable energies has become legal requirement in Germany, the underground storing of superfluously produced green energy (such as during a heavy wind event) in the form of compressed air, gas or heated water has become increasingly important. However, the selection of suitable sites is a complex task. The assistance system uses data of geological features such as rock layers, salt caverns and faults enriched with attribute data such as rock porosity and permeability. This information is combined with surface data of the existing energy infrastructure, such as locations of wind and biogas stations, power line arrangement and cable capacity, and energy distribution stations. Furthermore, legal obligations such as protected areas on the surface and current underground mining permissions are used for the decision finding process. Not only the current situation but also prospective scenarios, such as expected growth in produced amount of energy are incorporated in the system. The decision process is carried out via the 'Analytic Hierarchy Process' (AHP) methodology of the 'Multi Object Decision Making' (MODM) approach. While the process itself is completely automated, the user has full control of the weighting of the different factors via the web interface. The system is implemented as an online 3D server GIS environment, with no software needed to be installed on the user side. The results are visualized as interactive 3d graphics. The implementation of the assistance system is based exclusively on free and open source software, and utilizes the 'Python' programming language in combination with current web technologies, such as 'HTML5', 'CSS3' and 'JavaScript'. It is developed at Kiel University for the federal state of Schleswig-Holstein in northern Germany. This work is part of project 'ANGUS+', lead by Prof. Dr. Sebastian Bauer and funded by the German Ministry for Education and Research (BMBF).

  16. Ultralow Energy Electron Attachment at Sub-Millielectron Volt Resolution

    NASA Astrophysics Data System (ADS)

    Chutjian, Ara

    1999-10-01

    The technique of rare-gas photoionization(J. M. Ajello and A. Chutjian, J. Chem. Phys. 65), 5524 (1976). has been extended(A. Kortyna, M. Darrach and A. Chutjian, Bull. Am. Phys. Soc. 43), 1336 (1998). by use of direct laser ionization to electron energies ɛ in the range 0-100 meV, with a resolution Δɛ of 0.4-0.5 meV (FWHM). Tunable UV light at λ276 nm is produced using a pulsed Nd:YAG laser and nonlinear mixing techniques. The beam is frequency tripled in a pulsed jet of xenon. The VUV radiation, tunable at λ92 nm, is then used to photoionize Xe at its ^2P_1/2 threshold (single-photon ionization). The photoelectrons produced interact with admixed target gas to generate negative ions through the s-wave capture process. Recent results in electron attachment to SF6 will be reported which show resonance structure at the opening of the ground-state vibrational channels.^3,(H. Hotop et al., AIP Conf. Proc. Ser. 360 (AIP, New York, 1995), and private communication.) This structure corresponds to the process of vibrational excitation + attachment, which is superimposed on the underlying s-wave (direct) capture process. It should be a general phenomenon, present in a wide variety of zero-energy electron attaching molecules.

  17. Validity of Binary Collision Theory in Ion-Surface Interactions at 50-500 eV

    NASA Astrophysics Data System (ADS)

    Gordon, Michael; Giapis, Kostas

    2003-10-01

    Ion-surface interactions in the 50-500 eV regime have become increasingly important in plasma processing. Concerns exist in literature about the validity of the binary collision approximation (BCA) at low impact energies because peculiarities are frequently seen in the scattered ion energy distribution. Sub-surface processes, multiple bouncing, and super-elastic phenomena have all been hypothesized. This talk will explore the usefulness of BCA theory in predicting energy transfer during ion-surface collisions in the 50-500 eV energy range. Well-defined beams of rare gas ions (Ne, Ar, Kr) were scattered off semiconductor (Si, Ge) and metal surfaces (Ag, Au, Ni, Nb) to measure energy loss upon impact. The ion beams were produced from a floating ICP reactor coupled to a small accelerator beamline for transport and mass filtering. Exit channel energies were measured using a 90 gegree electrostatic sector coupled to a quadrupole mass filter with single ion detection capability. Although the BCA presents an over-simplified picture of the collision process, our results demonstrate that it is remarkably accurate in the low energy range for a variety of projectile-target combinations. In addition, reactive ion scattering of O2+ and O+ on inert and reactive surfaces (Au vs. Ag, Pt) suggests there may be rather high energy threshold processes which determine exit channel selectivity.

  18. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson

    2011-12-22

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnacemore » (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting iron ore to metallic iron nodules. Various types of coals including a bio-coal produced though torrefaction can result in production of NRI at reduced GHG levels. The process results coupled with earlier already reported developments indicate that this process technique should be evaluated at the next level in order to develop parameter information for full scale process design. Implementation of the process to full commercialization will require a full cost production analysis and comparison to other reduction technologies and iron production alternatives. The technical results verify that high quality NRI can be produced under various operating conditions at the pilot level.« less

  19. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processingmore » plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report formed the basis for much of the subsequent work under the grant. An explanation of the process is presented as well as the completed work on the four tasks.« less

  20. DEFE0023863 Final Report, Technology for GHG Emission Reduction and CostCompetitive MilSpec Jet Fuel Production using CTL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartvigsen, Joseph J; Dimick, Paul; Laumb, Jason D

    Ceramatec Inc, in collaboration with IntraMicron (IM), the Energy & Environmental Research Center (EERC) and Sustainable Energy Solutions, LLC (SES), have completed a three-year research project integrating their respective proprietary technologies in key areas to demonstrate production of a jet fuel from coal and biomass sources. The project goals and objectives were to demonstrate technology capable of producing a “commercially-viable quantity” of jet fuel and make significant progress toward compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements. The Ceramatec led team completed the demonstration of nominalmore » 2 bbl/day Fischer-Tropsch (FT) synthesis pilot plant design, capable of producing a nominal 1 bbl/day in the Jet-A/JP-8 fraction. This production rate would have a capacity of 1,000 gallons of jet fuel per month and provide the design basis of a 100 bbl/day module producing over 2,000 gallons of jet fuel per day. Co-gasification of coal-biomass blends enables a reduction of lifecycle greenhouse gas emissions from equivalent conventional petroleum derived fuel basis. Due to limits of biomass availability within an economic transportation range, implementation of a significant biomass feed fraction will require smaller plants than current world scale CTL and GTL FT plants. Hence a down-scaleable design is essential. The pilot plant design leverages Intramicron’s MicroFiber Entrapped Catalyst (MFEC) support which increases the catalyst bed thermal conductivity two orders of magnitude, allowing thermal management of the FT reaction exotherm in much larger reactor tubes. In this project, single tube reactors having 4.5 inch outer diameter and multi-tube reactors having 4 inch outer diameters were operated, with productivities as high as 1.5 gallons per day per linear foot of reactor tube. A significant reduction in tube count results from the use of large diameter reactor tubes, with an associated reduction in reactor cost. The pilot plant was designed with provisions for product collection capable of operating with conventional wax producing FT catalysts but was operated with a Chevron hybrid wax-free FT catalyst. Process simplification enabled by elimination of the wax hydrocracking process unit provides economic advantages in scaling to biomass capable plant sizes. Intramicron also provided a sulfur capture system based on their Oxidative Sulfur Removal (OSR) catalyst process. The integrated sulfur removal and FT systems were operated with syngas produced by the Transport Reactor Development Unit (TRDU) gasifier at the University of North Dakota EERC. SES performed modeling of their cryogenic carbon capture process on the energy, cost and CO2 emissions impact of the Coal-biomass synthetic fuel process.« less

  1. Carbon wastewater treatment process

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; Simmons, G. M.; Dowler, W. L.

    1974-01-01

    A new powdered-carbon treatment process is being developed for the elimination of the present problems, associated with the disposal of biologically active sewage waste solids, and with water reuse. This counter-current flow process produces an activated carbon, which is obtained from the pyrolysis of the sewage solids, and utilizes this material to remove the adulterating materials from the water. Additional advantages of the process are the elimination of odors, the removal of heavy metals, and the potential for energy conservation.

  2. Galactic Tidal Shocks Effects in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Cruz, F.; Aguilar, L.

    2001-07-01

    We present results of a set of N--Body simulations of 105--particle King models in the presence of a realistic Galactic tidal field. Tidal effects over a cluster are dominated by two processes, differentiated by the way they produc e mass loss in the system. The first one is the Roche lobe overflow, which depend s directly on the ratio of cluster to the Roche lobe size. The second process is tidal heating, produced by the time varying part of the Galactic tide, which injects energy directly on the orbits of the stars inside the cluster.

  3. Bitumen and heavy oil upgrading in Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrones, J.; Germain, R.R.

    1989-01-01

    A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulphur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgradermore » now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional projects, also based on hydrogenation, will use ebullated bed catalyst systems; the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.« less

  4. Bitumen and heavy oil upgrading in Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrones, J.

    1988-06-01

    A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulfur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgrader,more » now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional products, also based on hydrogenation, will use ebullated bed catalyst systems: the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, M.K.

    Technoeconomic analyses have been conducted on two processes to produce hydrogen from biomass: indirectly-heated gasification of biomass followed by steam reforming of the syngas, and biomass pyrolysis followed by steam reforming of the pyrolysis oil. The analysis of the gasification-based process was highly detailed, including a process flowsheet, material and energy balances calculated with a process simulation program, equipment cost estimation, and the determination of the necessary selling price of hydrogen. The pyrolysis-based process analysis was of a less detailed nature, as all necessary experimental data have not been obtained; this analysis is a follow-up to the preliminary economic analysismore » presented at the 1994 Hydrogen Program Review. A coproduct option in which pyrolysis oil is used to produce hydrogen and a commercial adhesive was also studied for economic viability. Based on feedstock availability estimates, three plant sizes were studied: 907 T/day, 272 T/day, and 27 T/day. The necessary selling price of hydrogen produced by steam reforming syngas from the Battelle Columbus Laboratories indirectly heated biomass gasifier falls within current market values for the large and medium size plants within a wide range of feedstock costs. Results show that the small scale plant does not produce hydrogen at economically competitive prices, indicating that if gasification is used as the upstream process to produce hydrogen, local refueling stations similar to current gasoline stations, would probably not be feasible.« less

  6. The energy trilogy: An integrated sustainability model to bridge wastewater treatment plant energy and emissions gaps

    NASA Astrophysics Data System (ADS)

    Al-Talibi, A. Adhim

    An estimated 4% of national energy consumption is used for drinking water and wastewater services. Despite the awareness and optimization initiatives for energy conservation, energy consumption is on the rise owing to population and urbanization expansion and to commercial and industrial business advancement. The principal concern is since energy consumption grows, the higher will be the energy production demand, leading to an increase in CO2 footprints and the contribution to global warming potential. This research is in the area of energy-water nexus, focusing on wastewater treatment plant (WWTP) energy trilogy -- the group of three related entities, which includes processes: (1) consuming energy, (2) producing energy, and (3) the resulting -- CO2 equivalents. Detailed and measurable energy information is not readily obtained for wastewater facilities, specifically during facility preliminary design phases. These limitations call for data-intensive research approach on GHG emissions quantification, plant efficiencies and source reduction techniques. To achieve these goals, this research introduced a model integrating all plant processes and their pertinent energy sources. In a comprehensive and "Energy Source-to-Effluent Discharge" pattern, this model is capable of bridging the gaps of WWTP energy, facilitating plant designers' decision-making for meeting energy assessment, sustainability and the environmental regulatory compliance. Protocols for estimating common emissions sources are available such as for fuels, whereas, site-specific emissions for other sources have to be developed and are captured in this research. The dissertation objectives were met through an extensive study of the relevant literature, models and tools, originating comprehensive lists of processes and energy sources for WWTPs, locating estimation formulas for each source, identifying site specific emissions factors, and linking the sources in a mathematical model for site specific CO2 e determination. The model was verified and showed a good agreement with billed and measured data from a base case study. In a next phase, a supplemental computational tool can be created for conducting plant energy design comparisons and plant energy and emissions parameters assessments. The main conclusions drawn from this research is that current approaches are severely limited, not covering plant's design phase and not fully considering the balance of energy consumed (EC), energy produced (EP) and the resulting CO2 e emission integration. Finally their results are not representative. This makes reported governmental and institutional national energy consumption figures incomplete and/or misleading, since they are mainly considering energy consumptions from electricity and some fuels or certain processes only. The distinction of the energy trilogy model over existing approaches is based on the following: (1) the ET energy model is unprecedented, prepared to fit WWTP energy assessment during the design and rehabilitation phases, (2) links the energy trilogy eliminating the need for using several models or tools, (3) removes the need for on-site expensive energy measurements or audits, (4) offers alternatives for energy optimization during plant's life-cycle, and (5) ensures reliable GHG emissions inventory reporting for permitting and regulatory compliance.

  7. Sustainable nanomaterials using waste agricultural residues

    EPA Science Inventory

    Sustainable synthetic processes developed during the past two decades involving the use of alternate energy inputs and greener reaction media are summarized. Learning from nature, one can produce a wide variety of nanoparticles using completely safe and benign materials such as ...

  8. IRIS , Hinode , SDO , and RHESSI Observations of a White Light Flare Produced Directly by Non-thermal Electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyoung-Sun; Imada, Shinsuke; Watanabe, Kyoko

    An X1.6 flare occurred in active region AR 12192 on 2014 October 22 at 14:02 UT and was observed by Hinode , IRIS , SDO , and RHESSI . We analyze a bright kernel that produces a white light (WL) flare with continuum enhancement and a hard X-ray (HXR) peak. Taking advantage of the spectroscopic observations of IRIS and Hinode /EIS, we measure the temporal variation of the plasma properties in the bright kernel in the chromosphere and corona. We find that explosive evaporation was observed when the WL emission occurred, even though the intensity enhancement in hotter lines ismore » quite weak. The temporal correlation of the WL emission, HXR peak, and evaporation flows indicates that the WL emission was produced by accelerated electrons. To understand the WL emission process, we calculated the energy flux deposited by non-thermal electrons (observed by RHESSI ) and compared it to the dissipated energy estimated from a chromospheric line (Mg ii triplet) observed by IRIS . The deposited energy flux from the non-thermal electrons is about (3–7.7) × 10{sup 10} erg cm{sup −2} s{sup −1} for a given low-energy cutoff of 30–40 keV, assuming the thick-target model. The energy flux estimated from the changes in temperature in the chromosphere measured using the Mg ii subordinate line is about (4.6–6.7) × 10{sup 9} erg cm{sup −2} s{sup −1}: ∼6%–22% of the deposited energy. This comparison of estimated energy fluxes implies that the continuum enhancement was directly produced by the non-thermal electrons.« less

  9. Study on the combined sewage sludge pyrolysis and gasification process: mass and energy balance.

    PubMed

    Wang, Zhonghui; Chen, Dezhen; Song, Xueding; Zhao, Lei

    2012-12-01

    A combined pyrolysis and gasification process for sewage sludge was studied in this paper for the purpose of its safe disposal with energy self-balance. Three sewage sludge samples with different dry basis lower heat values (LHV(db)) were used to evaluate the constraints on this combined process. Those samples were pre-dried and then pyrolysed within the temperature range of 400-550 degrees C. Afterwards, the char obtained from pyrolysis was gasified to produce fuel gas. The experimental results showed that the char yield ranged between 37.28 and 53.75 wt% of the dry sludge and it changed with ash content, pyrolysis temperature and LHV(db) of the sewage sludge. The gas from char gasification had a LHV around 5.31-5.65 MJ/Nm3, suggesting it can be utilized to supply energy in the sewage sludge drying and pyrolysis process. It was also found that energy balance in the combined process was affected by the LHV(db) of sewage sludge, moisture content and pyrolysis temperature. Higher LHV(db), lower moisture content and higher pyrolysis temperature benefit energy self-balance. For sewage sludge with a moisture content of 80 wt%, LHV(db) of sewage sludge should be higher than 18 MJ/kg and the pyrolysis temperature should be higher than 450 degrees C to maintain energy self-sufficiency when volatile from the pyrolysis process is the only energy supplier; when the LHV(db) was in the range of 14.65-18 MJ/kg, energy self-balance could be maintained in this combined process with fuel gas from char gasification as a supplementary fuel; auxiliary fuel was always needed if the LHV(db) was lower than 14.65 MJ/kg.

  10. Electron beam irradiation processing for industrial and medical applications

    NASA Astrophysics Data System (ADS)

    Ozer, Zehra Nur

    2017-09-01

    In recent years, electron beam processing has been widely used for medical and industrial applications. Electron beam accelerators are reliable and durable equipments that can produce ionizing radiation when it is needed for a particular commercial use. On the industrial scale, accelerators are used to generate electrons in between 0.1-100 MeV energy range. These accelerators are used mainly in plastics, automotive, wire and electric cables, semiconductors, health care, aerospace and environmental industries, as well as numerous researches. This study presents the current applications of electron beam processing in medicine and industry. Also planned study of a design for such a system in the energy range of 200-300 keV is introduced.

  11. Electron shuttles in biotechnology.

    PubMed

    Watanabe, Kazuya; Manefield, Mike; Lee, Matthew; Kouzuma, Atsushi

    2009-12-01

    Electron-shuttling compounds (electron shuttles [ESs], or redox mediators) are essential components in intracellular electron transfer, while microbes also utilize self-produced and naturally present ESs for extracellular electron transfer. These compounds assist in microbial energy metabolism by facilitating electron transfer between microbes, from electron-donating substances to microbes, and/or from microbes to electron-accepting substances. Artificially supplemented ESs can create new routes of electron flow in the microbial energy metabolism, thereby opening up new possibilities for the application of microbes to biotechnology processes. Typical examples of such processes include halogenated-organics bioremediation, azo-dye decolorization, and microbial fuel cells. Herein we suggest that ESs can be applied widely to create new microbial biotechnology processes.

  12. Artificial photosynthesis of oxalate and oxalate-based polymer by a photovoltaic reactor

    PubMed Central

    Nong, Guangzai; Chen, Shan; Xu, Yuanjin; Huang, Lijie; Zou, Qingsong; Li, Shiqiang; Mo, Haitao; Zhu, Pingchuan; Cen, Weijian; Wang, Shuangfei

    2014-01-01

    A photovoltaic reactor was designed for artificial photosynthesis, based on the reactions involved in high energy hydrogen atoms, which were produced from water electrolysis. Water and CO2, under the conditions studied, were converted to oxalate (H2C2O4) and a polymer. This was the first time that the oxalates and oxalate-based polymer were produced from the artificial photosynthesis process. PMID:24389750

  13. Biogas and energy production from cattle waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarthi, J.

    1997-12-31

    Biomass is one of the longest used energy sources employed in human activity. The bioconversion of organic matter to biogas is a complex anaerobic fermentation process involving the action of microorganisms such as methane producing bacteria. In this paper, biogas and energy production from cattle waste is investigated. There are two significant reasons that motivate this study. First, treating animal waste with the technology of anaerobic digestion can reduce environmental pollution and generate a relatively cheap and easily available source of energy in dairy farms. The gas produced can be used for space and water heating of farm houses, cooking,more » lighting, grain drying and as a fuel for heating greenhouses during cold weather. It also has the potential to run other small industries. Second, it is an effective way of managing cattle waste as well as producing a quick acting, non-toxic fertilizer for agricultural use. A working model of biogas plant is studied in this paper and its economic value as an alternative energy source is examined. An alternative to direct generation of electricity, is to convert the methane from the biomass to methanol. Methanol is an excellent fuel for internal combustion engines and can easily compete with gasoline in many nations where gasoline costs over $4 per US gallon.« less

  14. Formation, stability and dissociation dynamics of {{\\rm{N}}}_{2}{}^{{\\rm{n}}+} cations (n = 1 - 2) in 3.5 keV e - -N2 collisions studied using the energy resolved electron-ion coincidence technique

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Prajapati, S.; Singh, B.; Singh, B. K.; Shanker, R.

    2018-04-01

    Coincidences between energy selected electrons and ions produced in the decay of a core hole ionized (excited) state in a free nitrogen molecule have been measured at three specified energies of emitted electrons to reveal the individual pathways produced in 3.5 keV electron-induced fragmentation processes. From these measurements, it has been possible to show, for the first time, that in addition to the normal Auger decay, the resonant Auger excitation channels also share their appreciable contributions in producing singly charged parent ions in an electron-induced collision system. The correlations between ion fragmentation products and electronic structures with a hole configuration in singly-, doubly- and possibly in triply charged molecular electronic states populated in the electronic decay of the initial core hole have been studied and discussed. KER values obtained from our experiments are found to be consistent with the previous results of photo absorption experiments for fragmentation channel {{{{N}}}2}2+ → N+ + N+ however, N2+ fragment ions are found to arise mainly from the fragmentation channel {{{{N}}}2}2+ → N2+ + N and to possess relatively low kinetic energies in the considered region of binding energies.

  15. Optimization of permeate flux produced by solar energy driven membrane distillation process using central composite design approach.

    PubMed

    Bouguecha, Salah T; Boubakri, Ali; Aly, Samir E; Al-Beirutty, Mohammad H; Hamdi, Mohamed M

    2016-01-01

    Membrane distillation (MD) is considered as a relatively high-energy requirement. To overcome this drawback, it is recommended to couple the MD process with solar energy as the renewable energy source in order to provide heat energy required to optimize its performance to produce permeate flux. In the present work, an original solar energy driven direct contact membrane distillation (DCMD) pilot plant was built and tested under actual weather conditions at Jeddah, KSA, in order to model and optimize permeate flux. The dependency of permeate flux on various operating parameters such as feed temperature (46.6-63.4°C), permeate temperature (6.6-23.4°C), feed flow rate (199-451L/h) and permeate flow rate (199-451L/h) was studied by response surface methodology based on central composite design approach. The analysis of variance (ANOVA) confirmed that all independent variables had significant influence on the model (where P-value <0.05). The high coefficient of determination (R(2) = 0.9644 and R(adj)(2) = 0.9261) obtained by ANOVA demonstrated good correlation between experimental and predicted values of the response. The optimized conditions, determined using desirability function, were T(f) = 63.4°C, Tp = 6.6°C, Q(f) = 451L/h and Q(p) = 451L/h. Under these conditions, the maximum permeate flux of 6.122 kg/m(2).h was achieved, which was close to the predicted value of 6.398 kg/m(2).h.

  16. Theoretical study of catalytic efficiency of a Diels-Alderase catalytic antibody: an indirect effect produced during the maturation process.

    PubMed

    Martí, Sergio; Andrés, Juan; Moliner, Vicent; Silla, Estanislao; Tuñón, Iñaki; Bertrán, Juan

    2008-01-01

    The Diels-Alder reaction is one of the most important and versatile transformations available to organic chemists for the construction of complex natural products, therapeutics agents, and synthetic materials. Given the lack of efficient enzymes capable of catalyzing this kind of reaction, it is of interest to ask whether a biological catalyst could be designed from an antibody-combining site. In the present work, a theoretical study of the different behavior of a germline catalytic antibody (CA) and its matured form, 39 A-11, that catalyze a Diels-Alder reaction has been carried out. A free-energy perturbation technique based on a hybrid quantum-mechanics/molecular-mechanics scheme, together with internal energy minimizations, has allowed free-energy profiles to be obtained for both CAs. The profiles show a smaller barrier for the matured form, which is in agreement with the experimental observation. Free-energy profiles were obtained with this methodology, thereby avoiding the much more demanding two-dimensional calculations of the energy surfaces that are normally required to study this kind of reaction. Structural analysis and energy evaluations of substrate-protein interactions have been performed from averaged structures, which allows understanding of how the single mutations carried out during the maturation process can be responsible for the observed fourfold enhancement of the catalytic rate constant. The conclusion is that the mutation effect in this studied germline CA produces a complex indirect effect through coupled movements of the backbone of the protein and the substrate.

  17. Spiritual energy of Islamic prayers as a catalyst for psychotherapy.

    PubMed

    Henry, Hani M

    2015-04-01

    Islamic prayers can produce spiritual energy that may yield many psychological benefits, such as amelioration of stress and improvement in subjective well-being, interpersonal sensitivity, and mastery. Islamic prayers can also be integrated into mainstream therapeutic interventions with religious Muslim clients, and this integration can mobilize, transform, and invigorate the process of psychotherapy. This paper provides methods that can be used for the explicit integration of Islamic prayers into traditional psychotherapy. Further, the paper offers strategies for avoiding potential pitfalls that may hamper this process. Finally, a case study illustrating this therapeutic integration and its psychological benefits will be presented.

  18. Search for dark Higgsstrahlung in e+e- → μ+μ- and missing energy events with the KLOE experiment

    NASA Astrophysics Data System (ADS)

    Anastasi, A.; Babusci, D.; Bencivenni, G.; Berlowski, M.; Bloise, C.; Bossi, F.; Branchini, P.; Budano, A.; Caldeira Balkeståhl, L.; Cao, B.; Ceradini, F.; Ciambrone, P.; Curciarello, F.; Czerwiński, E.; D'Agostini, G.; Danè, E.; De Leo, V.; De Lucia, E.; De Santis, A.; De Simone, P.; Di Cicco, A.; Di Domenico, A.; Di Salvo, R.; Domenici, D.; D'Uffizi, A.; Fantini, A.; Felici, G.; Fiore, S.; Gajos, A.; Gauzzi, P.; Giardina, G.; Giovannella, S.; Graziani, E.; Happacher, F.; Heijkenskjöld, L.; Ikegami Andersson, W.; Johansson, T.; Kamińska, D.; Krzemien, W.; Kupsc, A.; Loffredo, S.; Mandaglio, G.; Martini, M.; Mascolo, M.; Messi, R.; Miscetti, S.; Morello, G.; Moricciani, D.; Moskal, P.; Nguyen, F.; Palladino, A.; Passeri, A.; Patera, V.; Perez del Rio, E.; Ranieri, A.; Santangelo, P.; Sarra, I.; Schioppa, M.; Silarski, M.; Sirghi, F.; Tortora, L.; Venanzoni, G.; Wiślicki, W.; Wolke, M.

    2015-07-01

    We searched for evidence of a Higgsstrahlung process in a secluded sector, leading to a final state with a dark photon U and a dark Higgs boson h‧, with the KLOE detector at DAΦNE. We investigated the case of h‧ lighter than U, with U decaying into a muon pair and h‧ producing a missing energy signature. We found no evidence of the process and set upper limits to its parameters in the range 2mμ

  19. Frequency-resolved Monte Carlo.

    PubMed

    López Carreño, Juan Camilo; Del Valle, Elena; Laussy, Fabrice P

    2018-05-03

    We adapt the Quantum Monte Carlo method to the cascaded formalism of quantum optics, allowing us to simulate the emission of photons of known energy. Statistical processing of the photon clicks thus collected agrees with the theory of frequency-resolved photon correlations, extending the range of applications based on correlations of photons of prescribed energy, in particular those of a photon-counting character. We apply the technique to autocorrelations of photon streams from a two-level system under coherent and incoherent pumping, including the Mollow triplet regime where we demonstrate the direct manifestation of leapfrog processes in producing an increased rate of two-photon emission events.

  20. Simulation of SEU Cross-sections using MRED under Conditions of Limited Device Information

    NASA Technical Reports Server (NTRS)

    Lauenstein, J. M.; Reed, R. A.; Weller, R. A.; Mendenhall, M. H.; Warren, K. M.; Pellish, J. A.; Schrimpf, R. D.; Sierawski, B. D.; Massengill, L. W.; Dodd, P. E.; hide

    2007-01-01

    This viewgraph presentation reviews the simulation of Single Event Upset (SEU) cross sections using the membrane electrode assembly (MEA) resistance and electrode diffusion (MRED) tool using "Best guess" assumptions about the process and geometry, and direct ionization, low-energy beam test results. This work will also simulate SEU cross-sections including angular and high energy responses and compare the simulated results with beam test data for the validation of the model. Using MRED, we produced a reasonably accurate upset response model of a low-critical charge SRAM without detailed information about the circuit, device geometry, or fabrication process

  1. Observational clues to the energy release process in impulsive solar bursts

    NASA Technical Reports Server (NTRS)

    Batchelor, David

    1990-01-01

    The nature of the energy release process that produces impulsive bursts of hard X-rays and microwaves during solar flares is discussed, based on new evidence obtained using the method of Crannell et al. (1978). It is shown that the hard X-ray spectral index gamma is negatively correlated with the microwave peak frequency, suggesting a common source for the microwaves and X-rays. The thermal and nonthermal models are compared. It is found that the most straightforward explanations for burst time behavior are shock-wave particle acceleration in the nonthermal model and thermal conduction fronts in the thermal model.

  2. Mecanismes d'ablation du silicium par laser ultrarapide amplifie par des nanostructures plasmoniques

    NASA Astrophysics Data System (ADS)

    Robitaille, Alexandre

    Ultrafast laser interaction with gold nanostructures deposited onto a silicon surface produces considerable field amplification that can result in the ablation of features with dimensions smaller than the diffraction limit. This field amplification in the near field of the nanostructures has been thoroughly investigated in the literature. However, while this is the main phenomenon that permits this nanoablation, energy deposition and diffusion processes cannot be neglected to interpret experimental results. In this work, we study plasmon-enhanced femtosecond laser ablation of silicon using gold nanorods and gold nanospheres to produce sub-diffraction limit holes. Atomic force microscopy and scanning electron microscopy of such features are done and hole depth as a function of fluence is measured. Especially for gold nanorods, hole shape is inconsistent with calculated field distribution. Field distribution alone would let us believe that each nanorod would produce two holes at its both ends. We show that using a model based on a differential equations system describing carriers excitation and diffusion, both shape and depth of the nanoholes can be predicted. Importance of the diffusion process is shown to arise from the extreme localization of the deposited energy around the nanostructure, compared to what is usually the case for conventional ablation of a surface. The characteristic shape of holes is revealed as a striking signature of the energy distribution through the electron-phonon carrier density dependant interaction.

  3. Sustainable and efficient biohydrogen production via electrohydrogenesis.

    PubMed

    Cheng, Shaoan; Logan, Bruce E

    2007-11-20

    Hydrogen gas has tremendous potential as an environmentally acceptable energy carrier for vehicles, but most hydrogen is generated from nonrenewable fossil fuels such as natural gas. Here, we show that efficient and sustainable hydrogen production is possible from any type of biodegradable organic matter by electrohydrogenesis. In this process, protons and electrons released by exoelectrogenic bacteria in specially designed reactors (based on modifying microbial fuel cells) are catalyzed to form hydrogen gas through the addition of a small voltage to the circuit. By improving the materials and reactor architecture, hydrogen gas was produced at yields of 2.01-3.95 mol/mol (50-99% of the theoretical maximum) at applied voltages of 0.2 to 0.8 V using acetic acid, a typical dead-end product of glucose or cellulose fermentation. At an applied voltage of 0.6 V, the overall energy efficiency of the process was 288% based solely on electricity applied, and 82% when the heat of combustion of acetic acid was included in the energy balance, at a gas production rate of 1.1 m(3) of H(2) per cubic meter of reactor per day. Direct high-yield hydrogen gas production was further demonstrated by using glucose, several volatile acids (acetic, butyric, lactic, propionic, and valeric), and cellulose at maximum stoichiometric yields of 54-91% and overall energy efficiencies of 64-82%. This electrohydrogenic process thus provides a highly efficient route for producing hydrogen gas from renewable and carbon-neutral biomass resources.

  4. Escape probability of the super-Penrose process

    NASA Astrophysics Data System (ADS)

    Ogasawara, Kota; Harada, Tomohiro; Miyamoto, Umpei; Igata, Takahisa

    2017-06-01

    We consider a head-on collision of two massive particles that move in the equatorial plane of an extremal Kerr black hole, which results in the production of two massless particles. Focusing on a typical case, where both of the colliding particles have zero angular momenta, we show that a massless particle produced in such a collision can escape to infinity with arbitrarily large energy in the near-horizon limit of the collision point. Furthermore, if we assume that the emission of the produced massless particles is isotropic in the center-of-mass frame but confined to the equatorial plane, the escape probability of the produced massless particle approaches 5 /12 , and almost all escaping massless particles have arbitrarily large energy at infinity and an impact parameter approaching 2 G M /c2, where M is the mass of the black hole.

  5. High energy nuclear interactions with matter and nuclear processes in nature. Final report. [Summaries of research activities at New York State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, O.A.

    1976-09-01

    The research conducted during the period 1965 to 1975 was concerned with two areas: (1) high energy proton interactions, and (2) nuclear reactions in nature. The systematics of high energy proton produced rare gas nuclides from Cu, Ag, Au, and U targets were investigated. It was found that the lower mass nuclides up to A approximately 30 were produced mainly by fragment emission, while the higher mass nuclides were produced mainly by spallation except for U targets for which fission dominates. The existence of ..beta beta.. decay was firmly established for the first time on experimental grounds. The half-life ofmore » the ..beta beta.. decay /sup 130/Te--/sup 130/Xe was measured to be 2.2 x 10/sup 21/ years. The meteorites St. Severin, Lost City, and Suchy Dul were investigated for cosmic ray proton produced rare gases. Cosmic ray exposure ages of 11, 8, and 23 million years respectively were determined. At the same time, the K--Ar ages were found to be 4.4, 4.1, and 1.9 billion years respectively. A model was proposed which allows a tektite strewn field to be at least 100 km from the impact crater. The model removes one of the major constraints on the terrestrial origins of tektites. It was found that /sup 228/Ra diffuses from sea sediments and as such is a good tracer for studying bottom currents and diffusion processes in the sea. A list of publications is included.« less

  6. Economics of polysilicon process: A view from Japan

    NASA Technical Reports Server (NTRS)

    Shimizu, Y.

    1986-01-01

    The production process of solar grade silicon (SOG-Si) through trichlorosilane (TCS) was researched in a program sponsored by New Energy Development Organization (NEDO). The NEDO process consists of the following two steps: TCS production from by-product silicon tetrachloride (STC) and SOG-Si formation from TCS using a fluidized bed reactor. Based on the data obtained during the research program, the manufacturing cost of the NEDO process and other polysilicon manufacturing processes were compared. The manufacturing cost was calculated on the basis of 1000 tons/year production. The cost estimate showed that the cost of producing silicon by all of the new processes is less than the cost by the conventional Siemens process. Using a new process, the cost of producing semiconductor grade silicon was found to be virtually the same with any to the TCS, diclorosilane, and monosilane processes when by-products were recycled. The SOG-Si manufacturing processes using the fluidized bed reactor, which needs further development, shows a greater probablility of cost reduction than the filament processes.

  7. DOE-GO-14154-1 OHIO FINAL report Velocys 30Sept08

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry J. Mazanec

    2008-09-30

    The overall goal of the OHIO project was to develop a commercially viable high intensity process to produce ethylene by controlled catalytic reaction of ethane with oxygen in a microchannel reactor. Microchannel technology provides a breakthrough solution to the challenges identified in earlier development work on catalytic ethane oxidation. Heat and mass transfer limitations at the catalyst surface create destructively high temperatures that are responsible for increased production of waste products (CO, CO2, and CH4). The OHIO project focused on microscale energy and mass transfer management, designed to alleviate these transport limitations, thereby improving catalyst selectivity and saving energy-rich feedstock.more » The OHIO project evaluated ethane oxidation in small scale microchannel laboratory reactors including catalyst test units, and full commercial length single- and multi-channel reactors. Small scale catalyst and single channel results met target values for ethylene yields, demonstrating that the microchannel concept improves mass and heat transport compared to conventional reactors and results in improved ethylene yield. Earlier economic sensitivity studies of ethane oxidation processes suggested that only modest improvements were necessary to provide a system that provides significant feedstock, energy, and capital benefits compared to conventional steam ethane cracking. The key benefit derived from the OHIO process is energy savings. Ethylene production consumes more energy than any other U.S. chemical process.1 The OHIO process offers improved feedstock utilization and substantial energy savings due to a novel reaction pathway and the unique abilities of microchannel process technology to control the reaction temperature and other critical process parameters. Based on projected economic benefits of the process, the potential energy savings could reach 150 trillion Btu/yr by the year 2020, which is the equivalent of over 25 million barrels of oil.« less

  8. The effect of anaerobic fermentation processing of cattle waste for biogas as a renewable energy resources on the number of contaminant microorganism

    NASA Astrophysics Data System (ADS)

    Kurnani, Tb. Benito A.; Hidayati, Yuli Astuti; Marlina, Eulis Tanti; Harlia, Ellin

    2016-02-01

    Beef cattle waste has a positive potential that can be exploited, as well as a negative potential that must be controlled so as not to pollute the environment. Beef cattle waste can be processed into an alternative energy, namely biogas. Anaerobic treatment of livestock waste to produce gas can be a solution in providing optional energy, while the resulted sludge as the fermentation residue can be used as organic fertilizer for crops. However, this sludge may containt patogenic microorganism that will damage human and environmet healt. Therefor, this study was aimed to know the potency of beef cattle waste to produce biogas and the decrease of the microorganism's number by using fixed dome digester. Beef cattle waste was processed into biogas using fixed dome digester with a capacity of 12 m3. Biogas composition was measured using Gas Cromatografi, will microorganism species was identified using Total plate Count Methode. The result of this study shows that the produced biogas contains of 75.77% Mol (CH4), 13.28% Mol (N), and 6.96% Mol (CO2). Furthermor, this study show that the anaerobic fermrntation process is capable of reducing microorganisms that could potentially pollute the environment. The number of Escherichia coli and Samonella sp. were <30 MPN/ml respectively save for environment. This process can reduce 84.70% the amount of molds. The only molds still existed after fermentation was A.fumigatus. The number of protozoa can be reduced in order of 94.73%. Protozoa that can be identified in cattle waste before, and after anaerobic fermentation was merely Eimeria sp.. The process also reduced the yeast of 86.11%. The remaining yeast after fermentation was Candida sp. Finally, about 93.7% of endoparasites was reduced by this process. In this case, every trematode and cestoda were 100% reduced, while the nematode only 75%. Reducing some microorganisms that have the potential to pollute the environment signifies sludge anaerobic fermentation residue is safe to be applied as organic fertilizer for crops.

  9. Simulating maar-diatreme volcanic systems in bench-scale experiments

    NASA Astrophysics Data System (ADS)

    Andrews, R. G.; White, J. D. L.; Dürig, T.; Zimanowski, B.

    2015-12-01

    Maar-diatreme eruptions are incompletely understood, and explanations for the processes involved in them have been debated for decades. This study extends bench-scale analogue experiments previously conducted on maar-diatreme systems and attempts to scale the results up to both field-scale experimentation and natural volcanic systems in order to produce a reconstructive toolkit for maar volcanoes. These experimental runs produced via multiple mechanisms complex deposits that match many features seen in natural maar-diatreme deposits. The runs include deeper single blasts, series of descending discrete blasts, and series of ascending blasts. Debris-jet inception and diatreme formation are indicated by this study to involve multiple types of granular fountains within diatreme deposits produced under varying initial conditions. The individual energies of blasts in multiple-blast series are not possible to infer from the final deposits. The depositional record of blast sequences can be ascertained from the proportion of fallback sedimentation versus maar ejecta rim material, the final crater size and the degree of overturning or slumping of accessory strata. Quantitatively, deeper blasts involve a roughly equal partitioning of energy into crater excavation energy versus mass movement of juvenile material, whereas shallower blasts expend a much greater proportion of energy in crater excavation.

  10. Extreme particle acceleration in the microquasar Cygnus X-3.

    PubMed

    Tavani, M; Bulgarelli, A; Piano, G; Sabatini, S; Striani, E; Evangelista, Y; Trois, A; Pooley, G; Trushkin, S; Nizhelskij, N A; McCollough, M; Koljonen, K I I; Pucella, G; Giuliani, A; Chen, A W; Costa, E; Vittorini, V; Trifoglio, M; Gianotti, F; Argan, A; Barbiellini, G; Caraveo, P; Cattaneo, P W; Cocco, V; Contessi, T; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Feroci, M; Ferrari, A; Fuschino, F; Galli, M; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Mattaini, E; Marisaldi, M; Mastropietro, M; Mauri, A; Mereghetti, S; Morelli, E; Morselli, A; Pacciani, L; Pellizzoni, A; Perotti, F; Picozza, P; Pilia, M; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Scalise, E; Soffitta, P; Vallazza, E; Vercellone, S; Zambra, A; Zanello, D; Pittori, C; Verrecchia, F; Giommi, P; Colafrancesco, S; Santolamazza, P; Antonelli, A; Salotti, L

    2009-12-03

    Super-massive black holes in active galaxies can accelerate particles to relativistic energies, producing jets with associated gamma-ray emission. Galactic 'microquasars', which are binary systems consisting of a neutron star or stellar-mass black hole accreting gas from a companion star, also produce relativistic jets, generally together with radio flares. Apart from an isolated event detected in Cygnus X-1, there has hitherto been no systematic evidence for the acceleration of particles to gigaelectronvolt or higher energies in a microquasar, with the consequence that we are as yet unsure about the mechanism of jet energization. Here we report four gamma-ray flares with energies above 100 MeV from the microquasar Cygnus X-3 (an exceptional X-ray binary that sporadically produces radio jets). There is a clear pattern of temporal correlations between the gamma-ray flares and transitional spectral states of the radio-frequency and X-ray emission. Particle acceleration occurred a few days before radio-jet ejections for two of the four flares, meaning that the process of jet formation implies the production of very energetic particles. In Cygnus X-3, particle energies during the flares can be thousands of times higher than during quiescent states.

  11. Solar industrial process heat: A study of applications and attitudes

    NASA Astrophysics Data System (ADS)

    Wilson, V.

    1981-04-01

    Data were gathered through site visits to 100 industrial plants. The site specific data suggests several possible near term market opportunities for solar thermal energy systems. Plants using electricity as their primary fuel for industrial process heat were identified, on the basis of their high fuel prices, as attractive early entry markets for solar energy. Additional opportunities were reflected in plants that had accomplished much of their conservation plans, or bad sizeable percentages of their operating budgets committed to energy expenses. A suitability analysis identified eleven industrial plants as highly suitable for solar thermal applications, they included producers of fluid milk, pottery, canned and bottled soft drinks, fabricated structural metal, refined petroleum, aluminum cans, chrome and nickel plating and stamped frame metal and metal finishings.

  12. Hydrogen peroxide bleaching of cotton in ultrasonic energy.

    PubMed

    Mistik, S Ilker; Yükseloglu, S Müge

    2005-12-01

    It is well known that, conventional hydrogen peroxide bleaching process is an important and a specific step for wet processors; however it has some problems such as long time, high energy consumption. On the other hand, using ultrasonic energy in bleaching is an alternative method for the conventional processes. In this work, 100% cotton materials of different forms such as raw fibre, ring-spun yarns and knitted fabrics produced from these cottons, were treated with hydrogen peroxide in two different concentrations (5 mL/L and 10 mL/L), at three different temperatures (20 degrees C, 30 degrees C, 40 degrees C) and times (20 min, 30 min, 60 min). Whiteness Index of the samples were then measured spectrophotometrically and the overall results were compared.

  13. Quark contact interactions at the LHC

    NASA Astrophysics Data System (ADS)

    Bazzocchi, F.; De Sanctis, U.; Fabbrichesi, M.; Tonero, A.

    2012-06-01

    Quark contact interactions are an important signal of new physics. We introduce a model in which the presence of a symmetry protects these new interactions from giving large corrections in flavor changing processes at low energies. This minimal model provides the basic set of operators which must be considered to contribute to the high-energy processes. To discuss their experimental signature in jet pairs produced in proton-proton collisions, we simplify the number of possible operators down to two. We show (for a representative integrated luminosity of 200pb-1 at s=7TeV) how the presence of two operators significantly modifies the bound on the characteristic energy scale of the contact interactions, which is obtained by keeping a single operator.

  14. Energy utilization: municipal waste incineration. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaBeck, M.F.

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process andmore » facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.« less

  15. China Report, Economic Affairs, No. 397

    DTIC Science & Technology

    1983-11-10

    porphyry copper have also been discovered, together with molybdenum, tungsten, gold, silver and iron. Tibet’s potential reserve of copper is...abroad aimed at using optical fibres instead of copper and aluminum wires for the relaying of information. According to statistics, the energy required...to produce this kind of fibre is only one-thousandth of the energy required to mine, smelt, and process the same length of copper wire. After the

  16. Process for producing carbon foams for energy storage devices

    DOEpatents

    Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.

    1998-01-01

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  17. Deceleration processes of secondary electrons produced by a high-energy Auger electron in a biological context.

    PubMed

    Kai, Takeshi; Yokoya, Akinari; Ukai, Masatoshi; Fujii, Kentaro; Watanabe, Ritsuko

    2016-11-01

    To simulate the deceleration processes of secondary electrons produced by a high-energy Auger electron in water, and particularly to focus on the spatial and temporal distributions of the secondary electron and the collision events (e.g. ionization, electronic excitation, and dissociative electron attachment) that are involved in the multiplication of lesions at sites of DNA damage. We developed a dynamic Monte Carlo code that considers the Coulombic force between an ejected electron and its parent cation produced by the Auger electron in water. Thus our code can simulate some return electrons to the parent cations. Using the code, we calculated to within the order of femtoseconds the temporal evolution of collision events, the mean energy, and the mean traveling distance (including its spatial probability distribution) of the electron at an ejected energy of 20 eV. Some of the decelerating electrons in water in the Coulombic field were attracted to the ionized atoms (cations) by the Coulombic force within hundreds of femtoseconds, although the force did not significantly enhance the number of ionization, electronic excitation, and dissociative electron attachment collision events leading to water radiolysis. The secondary electrons are decelerated in water by the Coulombic force and recombined to the ionized atoms (cations). Furthermore, the some return electrons might be prehydrated in water layer near the parent cation in DNA if the electrons might be emitted from the DNA. The prehydrated electron originated from the return electron might play a significant role in inducing DNA damage.

  18. Energy Intensity and Greenhouse Gas Emissions from Oil Production in the Eagle Ford Shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Sonia; Ghandi, Abbas; Scanlon, Bridget R.

    A rapid increase in horizontal drilling and hydraulic fracturing in shale and “tight” formations that began around 2000 has resulted in record increases in oil and natural gas production in the U.S. This study examines energy consumption and greenhouse gas (GHG) emissions from crude oil and natural gas produced from ~8,200 wells in the Eagle Ford Shale in southern Texas from 2009 to 2013. Our system boundary includes processes from primary exploration wells to the refinery entrance gate (henceforth well-to-refinery or WTR). The Eagle Ford includes four distinct production zones—black oil (BO), volatile oil (VO), condensate (C), and dry gasmore » (G) zones—with average monthly gas-to-liquids ratios (thousand cubic feet per barrel—Mcf/bbl) varying from 0.91 in the BO zone to 13.9 in the G zone. Total energy consumed in drilling, extracting, processing, and operating an Eagle Ford well is ~1.5% of the energy content of the produced crude and gas in the BO and VO zones, compared with 2.2% in the C and G zones. On average, the WTR GHG emissions of gasoline, diesel, and jet fuel derived from crude oil produced in the BO and VO zones in the Eagle Ford play are 4.3, 5.0, and 5.1 gCO2e/MJ, respectively. Comparing with other known conventional and unconventional crude production where upstream GHG emissions are in the range 5.9–30 gCO2e/MJ, oil production in the Eagle Ford has lower WTR GHG emissions.« less

  19. Neutral pion production in solar flares

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.; Rieger, E.; Cooper, J. F.; Share, G. H.

    1985-01-01

    The Gamma-Ray Spectrometer (GRS) on SMM has detected more than 130 flares with emission approx 300 keV. More than 10 of these flares were detected at photon energies 10 MeV. Although the majority of the emission at 10 MeV must be from electron bremsstrahlung, at least two of the flares have spectral properties 40 MeV that require gamma rays from the decay of neutral pions. It is found that pion production can occur early in the impulsive phase as defined by hard X-rays near 100 keV. It is also found in one of these flares that a significant portion of this high-energy emission is produced well after the impulsive phase. This extended production phase, most clearly observed at high energies, may be a signature of the acceleration process which produces solar energetic particles (SEP's) in space.

  20. Hybrid Vapor Stripping-Vapor Permeation Process for Recovery and Dehydration of 1-Butanol and Acetone/Butanol/Ethanol from Dilute Aqueous Solutions. Part 2. Experimental Validation with Simple Mixtures and Actual Fermentation Broth

    EPA Science Inventory

    BACKGROUND: In Part1 of this work, a process integrating vapor stripping, vapor compression, and a vapor permeation membrane separation step, Membrane Assisted Vapor Stripping (MAVS), was predicted to produce energy savings compared to traditional distillation systems for separat...

  1. Process chemistry of americium-241

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navratil, J.D.

    1983-01-01

    Americium-241, one of the most useful actinide isotopes, is produced as a by-product of plutonium scrap recovery operations. Rocky Flats has supplied high purity americium oxide to the US Department of Energy's Isotope Pool since 1962. Over the years, the evolving separation and purification processes have included such diverse operations as ion exchange, aqueous precipitation, and both molten-salt and organic-solvent extraction.

  2. Modeling of Melt Growth During Carbothermal Processing of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Gokoglu S.; Hegde, U.

    2012-01-01

    The carbothermal processing of lunar regolith has been proposed as a means to produce carbon monoxide and ultimately oxygen to support human exploration of the moon. In this process, gaseous methane is pyrolyzed as it flows over the hot surface of a molten zone of lunar regolith and is converted to carbon and hydrogen. Carbon gets deposited on the surface of the melt, and mixes and reacts with the metal oxides in it to produce carbon monoxide that bubbles out of the melt. Carbon monoxide is further processed in other reactors downstream to ultimately produce oxygen. The amount of oxygen produced crucially depends on the amount of regolith that is molten. In this paper we develop a model of the heat transfer in carbothermal processing. Regolith in a suitable container is heated by a heat flux at its surface such as by continuously shining a beam of solar energy or a laser on it. The regolith on the surface absorbs the energy and its temperature rises until it attains the melting point. The energy from the heat flux is then used for the latent heat necessary to change phase from solid to liquid, after which the temperature continues to rise. Thus a small melt pool appears under the heated zone shortly after the heat flux is turned on. As time progresses, the pool absorbs more heat and supplies the energy required to melt more of the regolith, and the size of the molten zone increases. Ultimately, a steady-state is achieved when the heat flux absorbed by the melt is balanced by radiative losses from the surface. In this paper, we model the melting and the growth of the melt zone with time in a bed of regolith when a portion of its surface is subjected to a constant heat flux. The heat flux is assumed to impinge on a circular area. Our model is based on an axisymmetric three-dimensional variation of the temperature field in the domain. Heat transfer occurs only by conduction, and effects of convective heat transport are assumed negligible. Radiative heat loss from the surface of the melt and the regolith to the surroundings is permitted. We perform numerical computations to determine the shape and the mass of the melt at steady state and its time evolution. We first neglect the volume change upon melting, and subsequently perform calculations including it. Predictions from our model are compared to test data to determine the effective thermal conductivities of the regolith and the melt that are compatible with the data

  3. Utilization of waste heat from aluminium electrolytic cell

    NASA Astrophysics Data System (ADS)

    Nosek, Radovan; Gavlas, Stanislav; Lenhard, Richard; Malcho, Milan; Sedlak, Veroslav; Teie, Sebastian

    2017-12-01

    During the aluminium production, 50% of the supplied energy is consumed by the chemical process, and 50% of the supplied energy is lost in form of heat. Heat losses are necessary to maintain a frozen side ledge to protect the side walls, so extra heat has to be wasted. In order to increase the energy efficiency of the process, it is necessary to significantly lower the heat losses dissipated by the furnace's external surface. Goodtech Recovery Technology (GRT) has developed a technology based on the use of heat pipes for utilization energy from the waste heat produced in the electrolytic process. Construction of condenser plays important role for efficient operation of energy systems. The condensation part of the heat pipe is situated on top of the heating zone. The thermal oil is used as cooling medium in the condenser. This paper analyses the effect of different operation condition of thermal oil to thermal performance. From the collected results it is obvious that the larger mass flow and higher temperature cause better thermal performance and lower pressure drop.

  4. Process wastewater treatability study for Westinghouse fluidized-bed coal gasification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winton, S.L.; Buvinger, B.J.; Evans, J.M.

    1983-11-01

    In the development of a synthetic fuels facility, water usage and wastewater treatment are major areas of concern. Coal gasification processes generally produce relatively large volumes of gas condensates. These wastewaters are typically composed of a variety of suspended and dissolved organic and inorganic solids and dissolved gaseous contaminants. Fluidized-bed coal gasification (FBG) processes are no exception to this rule. The Department of Energy's Morgantown Energy Technology Center (METC), the Gas Research Institute (GRI), and the Environmental Protection Agency (EPA/IERLRTP) recognized the need for a FBG treatment program to provide process design data for FBG wastewaters during the environmental, health,more » and safety characterization of the Westinghouse Process Development Unit (PDU). In response to this need, METC developed conceptual designs and a program plan to obtain process design and performance data for treating wastewater from commercial-scale Westinghouse-based synfuels plants. As a result of this plan, METC, GRI, and EPA entered into a joint program to develop performance data, design parameters, conceptual designs, and cost estimates for treating wastewaters from a FBG plant. Wastewater from the Westinghouse PDU consists of process quench and gas cooling condensates which are similar to those produced by other FBG processes such as U-Gas, and entrained-bed gasification processes such as Texaco. Therefore, wastewater from this facility was selected as the basis for this study. This paper outlines the current program for developing process design and cost data for the treatment of these wastewaters.« less

  5. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operationsmore » to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical feasibility studies were performed to identify the most viable approaches to NNS preform fabrication using basic powder metallurgy mill product forms as the building blocks and advanced joining techniques including fusion and solid state joining to assemble these building blocks into efficient machining performs.« less

  6. The 2010 Field Demonstration of the Solar Carbothermal Reduction of Regolith to Produce Oxygen

    NASA Technical Reports Server (NTRS)

    Gustafson, R. J.; White, B. C.; Fidler, M. J.; Muscatello, Anthony C.

    2010-01-01

    The Moon and other space exploration destinations are comprised of a variety of oxygen-bearing minerals, providing a virtually unlimited quantity of raw material which can be processed to produce oxygen. One attractive method to extract oxygen from the regolith is the carbothermal reduction process, which is not sensitive to variations in the mineral composition of the regolith. It also creates other valuable resources within the processed regolith, such as iron and silicon metals. Using funding from NASA, ORBITEC recently built and tested the Carbothermal Regolith Reduction Module to process lunar regolith simulants using concentrated solar energy. This paper summarizes the experimental test results obtained during a demonstration of the system at a lunar analog test site on the Mauna Kea volcano on Hawaii in February 2010.

  7. Apparatus for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2007-06-12

    Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.

  8. Evaluating opportunities to improve material and energy impacts in commodity supply chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanes, Rebecca J.; Carpenter, Alberta

    When evaluated at the scale of individual processes, next-generation technologies may be more energy and emissions intensive than current technology. Furthermore, many advanced technologies have the potential to reduce material and energy consumption in upstream or downstream processing stages. In order to fully understand the benefits and consequences of technology deployment, next-generation technologies should be evaluated in context, as part of a supply chain. This work presents the Materials Flow through Industry (MFI) supply chain modeling tool. The MFI tool is a cradle-to-gate linear network model of the US industrial sector that can model a wide range of manufacturing scenarios,more » including changes in production technology and increases in industrial energy efficiency. The MFI tool was developed to perform supply chain scale analyses in order to quantify the impacts and benefits of next-generation technologies and materials at that scale. For the analysis presented in this paper, the MFI tool is utilized to explore a case study comparing three lightweight vehicle supply chains to the supply chain of a conventional, standard weight vehicle. Several of the lightweight vehicle supply chains are evaluated under manufacturing scenarios that include next-generation production technologies and next-generation materials. Results indicate that producing lightweight vehicles is more energy and emission intensive than producing the non-lightweight vehicle, but the fuel saved during vehicle use offsets this increase. In this case study, greater reductions in supply chain energy and emissions were achieved through the application of the next-generation technologies than from application of energy efficiency increases.« less

  9. Evaluating opportunities to improve material and energy impacts in commodity supply chains

    DOE PAGES

    Hanes, Rebecca J.; Carpenter, Alberta

    2017-01-10

    When evaluated at the scale of individual processes, next-generation technologies may be more energy and emissions intensive than current technology. Furthermore, many advanced technologies have the potential to reduce material and energy consumption in upstream or downstream processing stages. In order to fully understand the benefits and consequences of technology deployment, next-generation technologies should be evaluated in context, as part of a supply chain. This work presents the Materials Flow through Industry (MFI) supply chain modeling tool. The MFI tool is a cradle-to-gate linear network model of the US industrial sector that can model a wide range of manufacturing scenarios,more » including changes in production technology and increases in industrial energy efficiency. The MFI tool was developed to perform supply chain scale analyses in order to quantify the impacts and benefits of next-generation technologies and materials at that scale. For the analysis presented in this paper, the MFI tool is utilized to explore a case study comparing three lightweight vehicle supply chains to the supply chain of a conventional, standard weight vehicle. Several of the lightweight vehicle supply chains are evaluated under manufacturing scenarios that include next-generation production technologies and next-generation materials. Results indicate that producing lightweight vehicles is more energy and emission intensive than producing the non-lightweight vehicle, but the fuel saved during vehicle use offsets this increase. In this case study, greater reductions in supply chain energy and emissions were achieved through the application of the next-generation technologies than from application of energy efficiency increases.« less

  10. Net Zero Energy Military Installations: A Guide to Assessment and Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, S.; Barnett, J.; Burman, K.

    2010-08-01

    The U.S. Department of Defense (DoD) recognizes the strategic importance of energy to its mission, and is working to reduce energy consumption and enhance energy self-sufficiency by drawing on local clean energy sources. A joint initiative formed between DoD and the U.S. Department of Energy (DOE) in 2008 to address military energy use led to a task force to examine the potential for net zero energy military installations, which would produce as much energy on site as they consume in buildings, facilities, and fleet vehicles. This report presents an assessment and planning process to examine military installations for net zeromore » energy potential. Net Zero Energy Installation Assessment (NZEIA) presents a systematic framework to analyze energy projects at installations while balancing other site priorities such as mission, cost, and security.« less

  11. A Review on Biomass Torrefaction Process and Product Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright

    2011-08-01

    Biomass Torrefaction is gaining attention as an important preprocessing step to improve the quality of biomass in terms of physical properties and chemical composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of approximately 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-280 C. Thus, the process can be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefactionmore » process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. The present review work looks into (a) torrefaction process and different products produced during the process and (b) solid torrefied material properties which include: (i) physical properties like moisture content, density, grindability, particle size distribution and particle surface area and pelletability; (ii) chemical properties like proximate and ultimate composition; and (iii) storage properties like off-gassing and spontaneous combustion.« less

  12. Multinucleon transfer dynamics in heavy-ion collisions near Coulomb-barrier energies

    NASA Astrophysics Data System (ADS)

    Niu, Fei; Chen, Peng-Hui; Guo, Ya-Fei; Ma, Chun-Wang; Feng, Zhao-Qing

    2017-12-01

    Multinucleon transfer reactions near barrier energies have been investigated with a multistep model based on the dinuclear system (DNS) concept, in which the capture of two colliding nuclei, the transfer dynamics, and the deexcitation process of primary fragments are described by an analytical formula, diffusion theory, and a statistical model, respectively. The nucleon transfer takes place after forming the DNS and is coupled to the dissipation of relative motion energy and angular momentum by solving a set of microscopically derived master equations within the potential energy surface. Specific reactions of Ca,4840+124Sn , 40Ca(40Ar,58Ni)+232Th , 40Ca(58Ni)+238U , and Ca,4840(58Ni)+248Cm near barrier energies are investigated. It is found that fragments are produced by multinucleon transfer reactions with maximal yields along the β -stability line. The isospin relaxation is particularly significant in the process of fragment formation. The incident energy dependence of heavy target-like fragments in the reaction of 58Ni+248Cm is analyzed thoroughly.

  13. The biodrying concept: an innovative technology creating energy from sewage sludge.

    PubMed

    Winkler, M-K H; Bennenbroek, M H; Horstink, F H; van Loosdrecht, M C M; van de Pol, G-J

    2013-11-01

    A full-scale biodrying installation was treating 150 kton (wet weight) of dewatered waste activated sludge per year. The waste was treated at thermophilic conditions (65-75 °C) in a 2-step forced aeration process reducing the total wet sludge weight by 73%. The final product had a high caloric value (7700-10,400 (kJ/kg)), allowing a combustion for energy generation in external facilities. The resulting product met the European microbial and heavy metal quality standards needed for an application as organic fertilizer. The facility used <0.5 MW of electricity and recovered 9.3 MW from biologically produced heat, which was internally used for the heating of office buildings. Produced ammonia, originating from the microbial conversion of organic matter, was recovered from the ventilated air in an acid gas scrubber as an ammonium sulphate solution 40% (w/w) (7.3 kton/year) and was sold as substitute for artificial fertilizers. The sustainability of this process is discussed relative to other sludge handling processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Chemical Processing of Non-Crop Plants for Jet Fuel Blends Production

    NASA Technical Reports Server (NTRS)

    Kulis, M. J.; Hepp, A. F.; McDowell, M.; Ribita, D.

    2009-01-01

    The use of Biofuels has been gaining in popularity over the past few years due to their ability to reduce the dependence on fossil fuels. Biofuels as a renewable energy source can be a viable option for sustaining long-term energy needs if they are managed efficiently. We describe our initial efforts to exploit algae, halophytes and other non-crop plants to produce synthetics for fuel blends that can potentially be used as fuels for aviation and non-aerospace applications. Our efforts have been dedicated to crafting efficient extraction and refining processes in order to extract constituents from the plant materials with the ultimate goal of determining the feasibility of producing biomass-based jet fuel from the refined extract. Two extraction methods have been developed based on communition processes, and liquid-solid extraction techniques. Refining procedures such as chlorophyll removal and transesterification of triglycerides have been performed. Gas chromatography in tandem with mass spectroscopy is currently being utilized in order to qualitatively determine the individual components of the refined extract. We also briefly discuss and compare alternative methods to extract fuel-blending agents from alternative biofuels sources.

  15. Influence of Powder Metallurgical Processing Routes on Phase Formations in a Multicomponent NbSi-Alloy

    NASA Astrophysics Data System (ADS)

    Seemüller, C.; Hartwig, T.; Mulser, M.; Adkins, N.; Wickins, M.; Heilmaier, M.

    2014-09-01

    Refractory metal silicide composites on the basis of Nbss-Nb5Si3 have been investigated as potential alternatives for nickel-base superalloys for years because of their low densities and good high-temperature strengths. NbSi-based composites are typically produced by arc-melting or casting. Samples in this study, however, were produced by powder metallurgy because of the potential for near net-shape component fabrication with very homogeneous microstructures. Either gas atomized powder or high-energy mechanically alloyed elemental powders were compacted by powder injection molding or hot isostatic pressing. Heat treatments were applied for phase stability evaluation. Slight compositional changes (oxygen, nitrogen, or iron) introduced by the processing route, i.e., powder production and consolidation, can affect phase formations and phase transitions during the process. Special focus is put on the distinction between different silicides (Nb5Si3 and Nb3Si) and silicide modifications (α-, β-, and γ-Nb5Si3), respectively. These were evaluated by x-ray diffraction and energy-dispersive spectroscopy measurements with the additional inclusion of thermodynamic calculations using the calculated phase diagram method.

  16. Diatom Milking: A Review and New Approaches

    PubMed Central

    Vinayak, Vandana; Manoylov, Kalina M.; Gateau, Hélène; Blanckaert, Vincent; Hérault, Josiane; Pencréac’h, Gaëlle; Marchand, Justine; Gordon, Richard; Schoefs, Benoît

    2015-01-01

    The rise of human populations and the growth of cities contribute to the depletion of natural resources, increase their cost, and create potential climatic changes. To overcome difficulties in supplying populations and reducing the resource cost, a search for alternative pharmaceutical, nanotechnology, and energy sources has begun. Among the alternative sources, microalgae are the most promising because they use carbon dioxide (CO2) to produce biomass and/or valuable compounds. Once produced, the biomass is ordinarily harvested and processed (downstream program). Drying, grinding, and extraction steps are destructive to the microalgal biomass that then needs to be renewed. The extraction and purification processes generate organic wastes and require substantial energy inputs. Altogether, it is urgent to develop alternative downstream processes. Among the possibilities, milking invokes the concept that the extraction should not kill the algal cells. Therefore, it does not require growing the algae anew. In this review, we discuss research on milking of diatoms. The main themes are (a) development of alternative methods to extract and harvest high added value compounds; (b) design of photobioreactors; (c) biodiversity and (d) stress physiology, illustrated with original results dealing with oleaginous diatoms. PMID:25939034

  17. Small Scale Gasification Application and Perspectives in Circular Economy

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Bisters, Valdis; Burlakovs, Juris

    2018-06-01

    Gasification is the process converting solid fuels as coal and organic plant matter, or biomass into combustible gas, called syngas. Gasification is a thermal conversion process using carbonaceous fuel, and it differs substantially from other thermal processes such as incineration or pyrolysis. The process can be used with virtually any carbonaceous fuel. It is an endothermic thermal conversion process, with partial oxidation being the dominant feature. Gasification converts various feedstock including waste to a syngas. Instead of producing only heat and electricity, synthesis gas produced by gasification may be transformed into commercial products with higher value as transport fuels, fertilizers, chemicals and even to substitute natural gas. Thermo-chemical conversion of biomass and solid municipal waste is developing as a tool to promote the idea of energy system without fossil fuels to a reality. In municipal solid waste management, gasification does not compete with recycling, moreover it enhances recycling programs. Pre-processing and after-processing must increase the amount of recyclables in the circular economy. Additionally, end of life plastics can serve as an energy feedstock for gasification as otherwise it cannot be sorted out and recycled. There is great potential for application of gasification technology within the biomass waste and solid waste management sector. Industrial self-consumption in the mode of combined heat and power can contribute to sustainable economic development within a circular economy.

  18. Techno-Economic Analysis of Magnesium Extraction from Seawater via a Catalyzed Organo-Metathetical Process

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Bearden, Mark D.; Fernandez, Carlos A.; Fifield, Leonard S.; Nune, Satish K.; Motkuri, Radha K.; Koech, Philip K.; McGrail, B. Pete

    2018-03-01

    Magnesium (Mg) has many useful applications especially in the form of various Mg alloys that can decrease weight while increasing strength compared with common steels. To increase the affordability and minimize environment consequence, a novel catalyzed organo-metathetical (COMET) process was proposed to extract Mg from seawater aiming to achieve a significant reduction in total energy and production cost compared with the melting salt electrolysis method currently adapted by US Mg LLC. A process flow sheet for a reference COMET process was set up using Aspen Plus. The energy consumption, production cost, and CO2 emissions were estimated using the Aspen economic analyzer. Our results showed that it is possible to produce Mg from seawater with a production cost of 2.0/kg-Mg while consuming about 35.6 kWh/kg-Mg and releasing 7.7 kg CO2/kg-Mg. Under the simulated conditions, the reference COMET process maintains a comparable CO2 emission rate, saves about 40% in production cost, and saves about 15% in energy consumption compared with a simplified US Mg process.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increasemore » efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an “opportunity fuel” for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administration’s “National Goal to Reduce Emissions Intensity.” 8« less

  20. AIAA/MSFC Symposium on Space Industrialization: Proceedings

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Current and projected technologies required for utilizing extraterrestrial environments to produce energy, information, or materials and provide services of value on Earth or to Earth are discussed. Topics include: space habitats, space transportation, materials processing, solar space power, and exoindustrial management concepts.

Top