Sample records for energy resource utilization

  1. Optimal Energy Management for a Smart Grid using Resource-Aware Utility Maximization

    NASA Astrophysics Data System (ADS)

    Abegaz, Brook W.; Mahajan, Satish M.; Negeri, Ebisa O.

    2016-06-01

    Heterogeneous energy prosumers are aggregated to form a smart grid based energy community managed by a central controller which could maximize their collective energy resource utilization. Using the central controller and distributed energy management systems, various mechanisms that harness the power profile of the energy community are developed for optimal, multi-objective energy management. The proposed mechanisms include resource-aware, multi-variable energy utility maximization objectives, namely: (1) maximizing the net green energy utilization, (2) maximizing the prosumers' level of comfortable, high quality power usage, and (3) maximizing the economic dispatch of energy storage units that minimize the net energy cost of the energy community. Moreover, an optimal energy management solution that combines the three objectives has been implemented by developing novel techniques of optimally flexible (un)certainty projection and appliance based pricing decomposition in an IBM ILOG CPLEX studio. A real-world, per-minute data from an energy community consisting of forty prosumers in Amsterdam, Netherlands is used. Results show that each of the proposed mechanisms yields significant increases in the aggregate energy resource utilization and welfare of prosumers as compared to traditional peak-power reduction methods. Furthermore, the multi-objective, resource-aware utility maximization approach leads to an optimal energy equilibrium and provides a sustainable energy management solution as verified by the Lagrangian method. The proposed resource-aware mechanisms could directly benefit emerging energy communities in the world to attain their energy resource utilization targets.

  2. Job satisfaction in relation to energy resource consciousness and perceptions of energy utilization in selected Illinois manufacturing firms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynes, T.S.

    1986-01-01

    This study was developed through a synthesis and review of literature and research related to the current status of job satisfaction, energy resources, and perceptions of how energy is utilized in the manufacturing work environment. This synthesis and review revolved around several proven contributing factors of job satisfaction, such as age, education, and challenge from work itself. Quality of work life programs and their components are discussed in relation to their impact on job satisfaction. The nature of energy resource utilization is traced back through history with an emphasis on the limitations of current resources and options for the future.more » The review highlights the current debate over what should be the future path of energy resource development. The concept of satisfaction of human needs is reviewed and related to job satisfaction and energy resources. The purpose of this research study was to contribute to the understanding of how perceptions of energy resources relate to job satisfaction. Results of the study indicated that there were no significant differences between an individual's energy resource consciousness and perceptions of energy utilization in the work place, energy resource consciousness and job satisfaction, and job satisfaction and perceptions of energy utilization in the workplace.« less

  3. The Main Problems in the Development of Geothermal Energy Industry in China

    NASA Astrophysics Data System (ADS)

    Yan, Jiahong; Wang, Shejiao; Li, Feng

    2017-04-01

    As early as 1980-1985, the geothermal energy research group of the Institute of Geology and Geophisics (Chinese Academy of Sciences) has proposed to pay attention to geothermal energy resources in oil fields. PetroChina began to study the geothermal energy resources in the region of Beijing-Tianjin-Hebei from 1995. Subsequently, the geothermal resources in the Huabei, Daqing and Liaohe oil regions were evaluated. The total recoverable hot water of the three oilfields reached 19.3 × 1011m3. PetroChina and Kenya have carried out geothermal energy development and utilization projects, with some relevant technical achievements.On the basis of many years' research on geothermal energy, we summarized the main problems in the formation and development of geothermal energy in China. First of all, China's geothermal resources research is still unable to meet the needs of the geothermal energy industry. Secondly, the development and utilization of geothermal energy requires multi-disciplinary cooperation. Thirdly, the development and utilization of geothermal energy needs consideration of local conditions. Finally, the development and utilization of geothermal energy resources requires the effective management of local government.

  4. Evaluation of Cities in the Context of Energy Efficient Urban Planning Approach

    NASA Astrophysics Data System (ADS)

    Handan Yücel Yıldırım, H.; Burcu Gültekin, Arzuhan; Tanrıvermiş, Harun

    2017-10-01

    Due to the increase in energy need with urbanization as a result of industrialization and rapid population growth, preservation of natural resources has become impossible. As the energy generated particularly from non-renewable natural resources that are in danger of depletion such as coal, natural gas, petroleum is limited, and as environmental issues caused by energy resources increase, means of safe and continuous access to energy are searched in the world. Owing to the limited energy resources and energy dependence on foreign sources in the world, particularly in European Union countries, efforts of increasing the share of renewable energy sources in energy consumption increased in all industries, including urban planning as well. Concordantly, it is necessary to develop policies and approaches that enable utilization of domestic resources complying with the country’s conditions, and monitor developments in energy. Such policies and approaches, which must be implemented in urban planning as well, have great importance in terms of not deteriorating habitable environments of future generations while utilizing present-day energy resources, prevalence of utilization of renewable energy sources, and utilization of energy effectively. For that purpose, this paper puts forward a conceptual framework covering the principles, strategies, and methods on energy efficient urban planning approach, and discusses the energy efficient urban area examples within the scope of the suggested framework.

  5. 18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Utilization and conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND...

  6. 18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Utilization and conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND...

  7. 18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Utilization and conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND...

  8. 18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Utilization and conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND...

  9. Iceland's Central Highlands: Nature conservation, ecotourism, and energy resource utilization

    Treesearch

    Bjorn Gunnarsson; Maria-Victoria Gunnarsson

    2002-01-01

    Iceland’s natural resources include an abundance of geothermal energy and hydropower, of which only 10 to 15 percent is currently being utilized. These are clean, renewable sources of energy. The cost to convert these resources to electricity is relatively low, making them attractive and highly marketable for industrial development, particularly for heavy industry....

  10. Task 2 Report - A GIS-Based Technical Potential Assessment of Domestic Energy Resources for Electricity Generation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Nathan; Grue, Nicholas W; Rosenlieb, Evan

    The purpose of this report is to support the Lao Ministry of Energy and Mines in assessing the technical potential of domestic energy resources for utility scale electricity generation in the Lao PDR. Specifically, this work provides assessments of technical potential, and associated maps of developable areas, for energy technologies of interest. This report details the methodology, assumptions, and datasets employed in this analysis to provide a transparent, replicable process for future analyses. The methodology and results presented are intended to be a fundamental input to subsequent decision making and energy planning-related analyses. This work concentrates on domestic energy resourcesmore » for utility-scale electricity generation and considers solar photovoltaic, wind, biomass, and coal resources. This work does not consider potentially imported energy resources (e.g., natural gas) or domestic energy resources that are not present in sufficient quantity for utility-scale generation (e.g., geothermal resources). A technical potential assessment of hydropower resources is currently not feasible due to the absence of required data including site-level assessments of multiple characteristics (e.g., geology environment and access) as well as spatial data on estimated non-exploited hydropower resources. This report is the second output of the Energy Alternatives Study for the Lao PDR, a collaboration led by the Lao Ministry of Energy and Mines and the United States Agency for International Development under the auspices of the Smart Infrastructure for the Mekong program. The Energy Alternatives Study is composed of five successive tasks that collectively support the project's goals. This work is focused on Task 2 - Assess technical potential of domestic energy resources for electricity generation. The work was carried out by a team from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in collaboration with the Lao Ministry of Energy and Mines and other Lao power sector stakeholders. and datasets employed in this analysis to provide a transparent, replicable process for future analyses. The methodology and results presented are intended to be a fundamental input to subsequent decision making and energy planning-related analyses. This work concentrates on domestic energy resources for utility-scale electricity generation and considers solar photovoltaic, wind, biomass, and coal resources. This work does not consider potentially imported energy resources (e.g., natural gas) or domestic energy resources that are not present in sufficient quantity for utility-scale generation (e.g., geothermal resources). A technical potential assessment of hydropower resources is currently not feasible due to the absence of required data including site-level assessments of multiple characteristics (e.g., geology environment and access) as well as spatial data on estimated non-exploited hydropower resources.« less

  11. Energy minimization strategies and renewable energy utilization for desalination: a review.

    PubMed

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Exploration of sustainable development by applying green economy indicators.

    PubMed

    Chen, Yungkun; Chen, Chia-Yon; Hsieh, Tsuifang

    2011-11-01

    Following the global trend of sustainable development, development of green economy is the best way of slowing the negative ecological and environmental impact. This research establishes the Taiwan's green economic indicators based on the ecological footprint and energy analysis. The results are as follows: Taiwan's ecological footprint in 2008 intensity index was at 4.364; ecological overshoot index was at 3.364, showing that Taiwan's ecological system is in overload state. Moreover, this study utilizes energy analysis model to study the sustainable development of Taiwan. Findings showed that total energy use in 2008 was 3.14 × 10(23) sej (solar energy joule, sej), energy of renewable resources was 1.30 × 10(22) sej, energy of nonrenewable resources was 2.26 × 10(23) sej, energy of products from renewable resources was 1.30 × 10(22)sej, energy of currency flow was 8.02 × 10(22) sej and energy of wastes flow was 6.55 × 10(22) sej. Taiwan's energy per capita and the utilization rate of energy is lower while the environmental loading rate is significantly higher comparing to some other countries. The foregoing findings indicate that Taiwan currently belongs to an economic development pattern based on high resource consumption. The economic development is mainly established on the exploitation and utilization of nonrenewable resources. Therefore, Taiwan should change the development pattern, regulate the industrial structure, promote the utilization rate of resources, develop green pollution-free products, and enhance the sustainable development of ecological economic system.

  13. Electrical generation

    NASA Astrophysics Data System (ADS)

    Although electricity is not a natural resource in the sense of coal or oil and gas, the electric utility industry is an integral part of the energy sector of the economy. Electricity is derived by converting one type of energy resource (oil, gas, coal, uranium) into a usable energy form (electricity) and thus has unique properties as a source of energy for the end user. Electrical energy, however, is not only important to New Mexico because electric utilities consume a portion of the natural gas and a large portion of coal resources extracted in the state, but also because electricity affects industrial growth in both the energy and non-energy sectors of the state's economy.

  14. Foundational Report Series: Advanced Distribution Management Systems for Grid Modernization, DMS Integration of Distributed Energy Resources and Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ravindra; Reilly, James T.; Wang, Jianhui

    Deregulation of the electric utility industry, environmental concerns associated with traditional fossil fuel-based power plants, volatility of electric energy costs, Federal and State regulatory support of “green” energy, and rapid technological developments all support the growth of Distributed Energy Resources (DERs) in electric utility systems and ensure an important role for DERs in the smart grid and other aspects of modern utilities. DERs include distributed generation (DG) systems, such as renewables; controllable loads (also known as demand response); and energy storage systems. This report describes the role of aggregators of DERs in providing optimal services to distribution networks, through DERmore » monitoring and control systems—collectively referred to as a Distributed Energy Resource Management System (DERMS)—and microgrids in various configurations.« less

  15. Pawnee Nation Energy Option Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-31

    In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Based on the request of Pawnee Nation’s Energy Task Force themore » research team, consisting Tribal personnel and Summit Blue Consulting, focused on a review of renewable energy resource development potential, funding sources and utility organizational along with energy savings options. Elements of the energy demand forecasting and characterization and demand side options review remained in the scope of work, but were only addressed at a high level. Description of Activities Performed Renewable Energy Resource Development Potential The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Energy Efficiency Options While this was not a major focus of the project, the research team highlighted common strategies for reducing energy use in buildings. The team also discussed the benefits of adopting a building energy code and introduced two model energy codes Pawnee Nation should consider for adoption. Summary of Current and Expected Future Electricity Usage The research team provided a summary overview of electricity usage patterns in current buildings and included discussion of known plans for new construction. Utility Options Review Pawnee Nation electric utility options were analyzed through a four-phase process, which included: 1) summarizing the relevant utility background information; 2) gathering relevant utility assessment data; 3) developing a set of realistic Pawnee electric utility service options, and 4) analyzing the various Pawnee electric utility service options for the Pawnee Energy Team’s consideration. III. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor market developments in the bio-energy industry, establish contacts with research institutions with which the tribe could potentially partner in grant-funded research initiatives. In addition, a substantial effort by the Kaw and Cherokee tribes is underway to pursue wind development at the Chilocco School Site in northern Oklahoma where Pawnee is a joint landowner. Pawnee Nation representatives should become actively involved in these development discussions and should explore the potential for joint investment in wind development at the Chilocco site.« less

  16. 18 CFR 292.204 - Criteria for qualifying small power production facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... primary energy source of the facility must be biomass, waste, renewable resources, geothermal resources... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY REGULATORY... production facilities that use the same energy resource, are owned by the same person(s) or its affiliates...

  17. 18 CFR 292.303 - Electric utility obligations under this subpart.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Electric utility obligations under this subpart. 292.303 Section 292.303 Conservation of Power and Water Resources FEDERAL... energy or capacity under this subpart as if the qualifying facility were supplying energy or capacity...

  18. 18 CFR Appendix 1 to Part 301 - ASC Utility Filing Template

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false ASC Utility Filing Template 1 Appendix 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  19. 18 CFR Appendix 1 to Part 301 - ASC Utility Filing Template

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false ASC Utility Filing Template 1 Appendix 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  20. 18 CFR Appendix 1 to Part 301 - ASC Utility Filing Template

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false ASC Utility Filing Template 1 Appendix 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  1. 18 CFR Appendix 1 to Part 301 - ASC Utility Filing Template

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false ASC Utility Filing Template 1 Appendix 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  2. 18 CFR Appendix 1 to Part 301 - ASC Utility Filing Template

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false ASC Utility Filing Template 1 Appendix 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  3. Dynamic Resource Management for Parallel Tasks in an Oversubscribed Energy-Constrained Heterogeneous Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imam, Neena; Koenig, Gregory A; Machovec, Dylan

    2016-01-01

    Abstract: The worth of completing parallel tasks is modeled using utility functions, which monotonically-decrease with time and represent the importance and urgency of a task. These functions define the utility earned by a task at the time of its completion. The performance of such a system is measured as the total utility earned by all completed tasks over some interval of time (e.g., 24 hours). To maximize system performance when scheduling dynamically arriving parallel tasks onto a high performance computing (HPC) system that is oversubscribed and energy-constrained, we have designed, analyzed, and compared different heuristic techniques. Four utility-aware heuristics (i.e.,more » Max Utility, Max Utility-per-Time, Max Utility-per-Resource, and Max Utility-per-Energy), three FCFS-based heuristics (Conservative Backfilling, EASY Backfilling, and FCFS with Multiple Queues), and a Random heuristic were examined in this study. A technique that is often used with the FCFS-based heuristics is the concept of a permanent reservation. We compare the performance of permanent reservations with temporary place-holders to demonstrate the advantages that place-holders can provide. We also present a novel energy filtering technique that constrains the maximum energy-per-resource used by each task. We conducted a simulation study to evaluate the performance of these heuristics and techniques in an energy-constrained oversubscribed HPC environment. With place-holders, energy filtering, and dropping tasks with low potential utility, our utility-aware heuristics are able to significantly outperform the existing FCFS-based techniques.« less

  4. 77 FR 41481 - Integration of Variable Energy Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ...The Federal Energy Regulatory Commission is amending the pro forma Open Access Transmission Tariff to remove unduly discriminatory practices and to ensure just and reasonable rates for Commission- jurisdictional services. Specifically, this Final Rule removes barriers to the integration of variable energy resources by requiring each public utility transmission provider to: offer intra-hourly transmission scheduling; and, incorporate provisions into the pro forma Large Generator Interconnection Agreement requiring interconnection customers whose generating facilities are variable energy resources to provide meteorological and forced outage data to the public utility transmission provider for the purpose of power production forecasting.

  5. Wind Energy Resource Atlas of Sri Lanka and the Maldives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.; Schwartz, M.; Scott, G.

    2003-08-01

    The Wind Energy Resource Atlas of Sri Lanka and the Maldives, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group identifies the wind characteristics and distribution of the wind resource in Sri Lanka and the Maldives. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  6. Geothermal development plan: Yuma County

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The potential for utilizing geothermal energy was evaluated. Four potential geothermal resource areas with temperatures less than 900C (1940F) were identified, and in addition, two areas are inferred to contain geothermal resources with intermediate temperature potential. The resource areas are isolated. One resource site contains a hot dry rock resource. Anticipated population growth in the county is expected to be 2% per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without adverse affect on agriculture. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. It is suggested that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.

  7. Status report on renewable energy in the States

    NASA Astrophysics Data System (ADS)

    Swezey, B.; Sinclair, K.

    1992-12-01

    As the concept of integrated resource planning has spread among states and utilities, a reexamination of the role of renewable energy sources in the utility resource mix is taking place. This report documents the findings of a study of state regulatory commissions undertaken to: (1) help assess the state of knowledge and awareness about renewable energy resources and technologies; (2) assess the impacts of state policies on renewable energy development; and (3) identify important information needs. The key findings from this effort are: Renewable energy development has occurred only slowly over the last decade, and a small number of states account for the bulk of development. The development that has occurred has been limited to non-utility entities. Directed state policies have been a key driver in renewable energy development. Those states not currently addressing renewables may need more data and information before they proceed with directed policies. Other important observations are: The cost of renewables is an overriding concern. Regulators distinguish between 'emerging' and 'established' renewable energy technologies. Specific data are lacking on state-level renewable energy development. Detailed renewable resource assessments have yet to be performed in many states. This report identifies renewable energy information needs of state regulators. However, a number of concerns are also identified that must be addressed before renewables will receive serious attention in many of those states with limited renewables experience. Finally, the report catalogs a wide variety of policies that have been utilized in the states to promote greater development of renewable energy.

  8. 18 CFR 2.20 - Good faith requests for transmission services and good faith responses by transmitting utilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Good faith requests for transmission services and good faith responses by transmitting utilities. 2.20 Section 2.20 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES...

  9. 18 CFR 2.20 - Good faith requests for transmission services and good faith responses by transmitting utilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Good faith requests for transmission services and good faith responses by transmitting utilities. 2.20 Section 2.20 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES...

  10. 18 CFR 2.20 - Good faith requests for transmission services and good faith responses by transmitting utilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Good faith requests for transmission services and good faith responses by transmitting utilities. 2.20 Section 2.20 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES...

  11. Economics of wind energy for utilities

    NASA Technical Reports Server (NTRS)

    Mccabe, T. F.; Goldenblatt, M. K.

    1982-01-01

    Utility acceptance of this technology will be contingent upon the establishment of both its technical and economic feasibility. This paper presents preliminary results from a study currently underway to establish the economic value of central station wind energy to certain utility systems. The results for the various utilities are compared specifically in terms of three parameters which have a major influence on the economic value: (1) wind resource, (2) mix of conventional generation sources, and (3) specific utility financial parameters including projected fuel costs. The wind energy is derived from modeling either MOD-2 or MOD-0A wind turbines in wind resources determined by a year of data obtained from the DOE supported meteorological towers with a two-minute sampling frequency. In this paper, preliminary results for six of the utilities studied are presented and compared.

  12. Evaluation model of wind energy resources and utilization efficiency of wind farm

    NASA Astrophysics Data System (ADS)

    Ma, Jie

    2018-04-01

    Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.

  13. The utilization of solar energy to help meet our nation's energy needs

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.

    1973-01-01

    The nation's energy needs, domestic energy resources, and possible future energy resources are briefly discussed in this paper. Three potential solutions, coal, nuclear and solar are compared as to benefits and problems. The paper primarily discusses the options available in using solar energy as a natural energy resource. These options are discussed under the generation of electricity, heating and cooling of buildings, and the production of clean fuel.

  14. Optimal planning and design of a renewable energy based supply system for microgrids

    DOE PAGES

    Hafez, Omar; Bhattacharya, Kankar

    2012-03-03

    This paper presents a technique for optimal planning and design of hybrid renewable energy systems for microgrid applications. The Distributed Energy Resources Customer Adoption Model (DER-CAM) is used to determine the optimal size and type of distributed energy resources (DERs) and their operating schedules for a sample utility distribution system. Using the DER-CAM results, an evaluation is performed to evaluate the electrical performance of the distribution circuit if the DERs selected by the DER-CAM optimization analyses are incorporated. Results of analyses regarding the economic benefits of utilizing the optimal locations identified for the selected DER within the system are alsomore » presented. The actual Brookhaven National Laboratory (BNL) campus electrical network is used as an example to show the effectiveness of this approach. The results show that these technical and economic analyses of hybrid renewable energy systems are essential for the efficient utilization of renewable energy resources for microgird applications.« less

  15. Community Design for Optimal Energy and Resource Utilization.

    ERIC Educational Resources Information Center

    Bilenky, Stephen; And Others

    Presented is a study which investigated the energy and resource dynamics of a semi-autonomous domestic system for 30 people. The investigation is organized on three levels: (1) developing a preliminary design and design parameters; (2) development and quantification of the energy and resource dynamics; and (3) designing a model to extrapolate…

  16. 18 CFR 294.101 - Shortages of electric energy and capacity.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... energy and capacity. 294.101 Section 294.101 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY REGULATORY POLICIES ACT OF 1978 PROCEDURES FOR SHORTAGES OF ELECTRIC ENERGY AND CAPACITY UNDER SECTION 206 OF THE PUBLIC UTILITY...

  17. 18 CFR 294.101 - Shortages of electric energy and capacity.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... energy and capacity. 294.101 Section 294.101 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY REGULATORY POLICIES ACT OF 1978 PROCEDURES FOR SHORTAGES OF ELECTRIC ENERGY AND CAPACITY UNDER SECTION 206 OF THE PUBLIC UTILITY...

  18. Scoping study of integrated resource planning needs in the public utility sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrick, C J; Garrick, J M; Rue, D R

    Integrated resource planning (IRP) is an approach to utility resource planning that integrates the evaluation of supply- and demand-site options for providing energy services at the least cost. Many utilities practice IRP; however, most studies about IRP focus on investor-owned utilities (IOUs). This scoping study investigates the IRP activities and needs of public utilities (not-for-profit utilities, including federal, state, municipal, and cooperative utilities). This study (1) profiles IRP-related characteristics of the public utility sector, (2) articulates the needs of public utilities in understanding and implementing IRP, and (3) identifies strategies to advance IRP principles in public utility planning.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The report is an overview of electric energy efficiency programs. It takes a concise look at what states are doing to encourage energy efficiency and how it impacts electric utilities. Energy efficiency programs began to be offered by utilities as a response to the energy crises of the 1970s. These regulatory-driven programs peaked in the early-1990s and then tapered off as deregulation took hold. Today, rising electricity prices, environmental concerns, and national security issues have renewed interest in increasing energy efficiency as an alternative to additional supply. In response, new methods for administering, managing, and delivering energy efficiency programs aremore » being implemented. Topics covered in the report include: Analysis of the benefits of energy efficiency and key methods for achieving energy efficiency; evaluation of the business drivers spurring increased energy efficiency; Discussion of the major barriers to expanding energy efficiency programs; evaluation of the economic impacts of energy efficiency; discussion of the history of electric utility energy efficiency efforts; analysis of the impact of energy efficiency on utility profits and methods for protecting profitability; Discussion of non-utility management of energy efficiency programs; evaluation of major methods to spur energy efficiency - systems benefit charges, resource planning, and resource standards; and, analysis of the alternatives for encouraging customer participation in energy efficiency programs.« less

  20. DSM and electric utility competitiveness: An Illinois perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, P.W.

    1994-12-31

    A predominant theme in the current electric utility industry literature is that competitive forces have emerged and may become more prominent. The wholesale bulk power market is alreadly competitive, as non-utility energy service providers already have had a significant impact on that market; this trend was accelerated by the Energy Policy Act of 1992. Although competition at the retail level is much less pervasive, electric utility customers increasingly have greater choice in selecting energy services. These choices may include, depending on the customer, the ability to self-generate, switch fuels, move to a new location, or rely more heavily on demand-sidemore » management as a means of controlling electric energy use. This paper explores the subject of how demand-side management (DSM) programs, which are often developed by a utility to satisfy resource requirements as a part of its least-cost planning process, can affect the utility`s ability to compete in the energy services marketplace. In this context, the term `DSM` is used in this paper to refer to those demand-side services and programs which provide resources to the utility`s system. Depending on one`s perspective, DSM programs (so defined) can be viewed either as an enhancement to the competitive position of a utility by enabling it to provide its customers with a broader menu of energy services, simultaneously satisfying the objectives of the utility as well as those of the customers, or as a detractor to a utility`s ability to compete. In the latter case, the concern is with respect to the potential for adverse rate impacts on customers who are not participants in DSM programs. The paper consists of an identification of the pros and cons of DSM as a competitive strategy, the tradeoff which can occur between the cost impacts and rate impacts of DSM, and an examination of alternative strategies for maximizing the utilization of DSM both as a resource and as a competitive strategy.« less

  1. Analysis of PURPA and solar energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, M.

    The Public Utility Regulatory Policies Act of 1978 (PURPA) is designed to promote energy conservation, the efficient use of utility resources, and equitable rates. PURPA specifically directs the Federal Energy Regulatory Commission (FERC) to encourage small power production from renewable resources (and also cogeneration of electric energy as well as heat) by setting standards under which facilities qualify for interconnection, and guidelines for sales between utilities and independent facilities. The way FERC carries out this mandate may critically affect the development of solar alternatives to electric power production from fossil and nuclear resources. This report comments on proposed FERC regulationsmore » and suggests ways to encourage small power production within the PURPA mandate. In addition, some internal strains within PURPA are analyzed that seem to limit the effectiveness with which FERC can encourage independent facilities, and possible modifications to PURPA are suggested. 255 references.« less

  2. Energy Systems Integration News - September 2016 | Energy Systems

    Science.gov Websites

    , Smarter Grid Solutions demonstrated a new distributed energy resources (DER) software control platform utility interconnections require distributed generation (DG) devices to disconnect from the grid during OpenFMB distributed applications on the microgrid test site to locally optimize renewable energy resources

  3. Deb Vasquez | NREL

    Science.gov Websites

    , training, and resource development for Federal government energy projects that leverage utility industry The design of technical training plans for sustained performance of energy conservation measures Advanced Utility Energy Services Contract Training, 2012, accredited by the International Association for

  4. Dylan Cutler | NREL

    Science.gov Websites

    focuses on integration and optimization of distributed energy resources, specifically cost-optimal sizing Campus team which is focusing on NREL's own control system integration and energy informatics sizing and dispatch of distributed energy resources Integration of building and utility control systems

  5. An Energy Resource List.

    ERIC Educational Resources Information Center

    VocEd, 1979

    1979-01-01

    Selected energy resource information, from both federal and private sources, is listed under funding, general information and assistance, recycling, solar, transportation, utilities, and wind power. Books, pamphlets, films, journals, newsletters, and other materials are included. (MF)

  6. Atlas de Recursos Eólicos del Estado de Oaxaca (The Spanish version of Wind Energy Resource Atlas of Oaxaca) (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.; Schwartz, M.; Scott, G.

    The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  7. 18 CFR 292.310 - Procedures for utilities requesting termination of obligation to purchase from qualifying...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....310 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY REGULATORY POLICIES ACT OF 1978 REGULATIONS UNDER SECTIONS... PRODUCTION AND COGENERATION Arrangements Between Electric Utilities and Qualifying Cogeneration and Small...

  8. 48 CFR 917.7200 - Scope of subpart.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., conversion, and utilization of non-nuclear energy resources. [61 FR 41706, Aug. 9, 1996, as amended at 74 FR... Section 917.7200 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... application of all potentially beneficial nonnuclear energy sources and utilization technologies. (b) This...

  9. 48 CFR 917.7200 - Scope of subpart.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., conversion, and utilization of non-nuclear energy resources. [61 FR 41706, Aug. 9, 1996, as amended at 74 FR... Section 917.7200 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... application of all potentially beneficial nonnuclear energy sources and utilization technologies. (b) This...

  10. 48 CFR 917.7200 - Scope of subpart.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., conversion, and utilization of non-nuclear energy resources. [61 FR 41706, Aug. 9, 1996, as amended at 74 FR... Section 917.7200 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... application of all potentially beneficial nonnuclear energy sources and utilization technologies. (b) This...

  11. 48 CFR 917.7200 - Scope of subpart.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... application of all potentially beneficial non nuclear energy sources and utilization technologies. (b) This..., conversion, and utilization of non-nuclear energy resources. [61 FR 41706, Aug. 9, 1996, as amended at 74 FR... Section 917.7200 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND...

  12. 48 CFR 917.7200 - Scope of subpart.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., conversion, and utilization of non-nuclear energy resources. [61 FR 41706, Aug. 9, 1996, as amended at 74 FR... Section 917.7200 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... application of all potentially beneficial nonnuclear energy sources and utilization technologies. (b) This...

  13. 78 FR 1854 - Minnesota Energy Resources Corporation; Notice of Petition for Rate Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR13-21-000] Minnesota..., Minnesota Energy Resources Corporation (MERC) filed a rate election pursuant to section 284.123(b)(1) of the... that conform to the recently revised rates approved by the Minnesota Public Utilities Commission, as...

  14. Legal, regulatory & institutional issues facing distributed resources development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report describes legal, regulatory, and institutional considerations likely to shape the development and deployment of distributed resources. It is based on research co-sponsored by the National Renewable Energy Laboratory (NREL) and four investor-owned utilities (Central & South West Services, Cinergy Corp., Florida Power Corporation, and San Diego Gas & Electric Company). The research was performed between August 1995 and March 1996 by a team of four consulting firms experienced in energy and utility law, regulation, and economics. It is the survey phase of a project known as the Distributed Resources Institutional Analysis Project.

  15. Revision and extension of Eco-LCA metrics for sustainability assessment of the energy and chemical processes.

    PubMed

    Yang, Shiying; Yang, Siyu; Kraslawski, Andrzej; Qian, Yu

    2013-12-17

    Ecologically based life cycle assessment (Eco-LCA) is an appealing approach for the evaluation of resources utilization and environmental impacts of the process industries from an ecological scale. However, the aggregated metrics of Eco-LCA suffer from some drawbacks: the environmental impact metric has limited applicability; the resource utilization metric ignores indirect consumption; the renewability metric fails to address the quantitative distinction of resources availability; the productivity metric seems self-contradictory. In this paper, the existing Eco-LCA metrics are revised and extended for sustainability assessment of the energy and chemical processes. A new Eco-LCA metrics system is proposed, including four independent dimensions: environmental impact, resource utilization, resource availability, and economic effectiveness. An illustrative example of comparing assessment between a gas boiler and a solar boiler process provides insight into the features of the proposed approach.

  16. Energy supply and demand modeling. February 1985-March 1988 (Citations from the NTIS data base). Report for February 1985-March 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-04-01

    This bibliography contains citations concerning the utilization of mathematical models in trend analysis and forecasting of energy supply and demand factors. Models are presented for the industrial, transportation, and residential sectors. Aspects of long-term energy strategies and markets are discussed at the global, national, state, and regional levels. Energy demand and pricing, and econometrics of energy, are explored for electric utilities and natural resources, such as coal, oil, and natural gas. Energy resources are modeled both for fuel usage and for reserves. (This updated bibliography contains 201 citations, 129 of which are new entries to the previous edition.)

  17. Wind Energy Resource Atlas of the Dominican Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.; Schwartz, M.; George, R.

    2001-10-01

    The Wind Energy Resource Atlas of the Dominican Republic identifies the wind characteristics and the distribution of the wind resource in this country. This major project is the first of its kind undertaken for the Dominican Republic. The information contained in the atlas is necessary to facilitate the use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications. A computerized wind mapping system developed by NREL generated detailed wind resource maps for the entire country. This technique uses Geographic Information Systems (GIS) to produce high-resolution (1-square kilometer) annual average wind resource maps.

  18. Future directions: Integrated resource planning

    NASA Astrophysics Data System (ADS)

    Bauer, D. C.; Eto, J.

    Integrated resource planning or IRP is the process for integrating supply- and demand-side resources to provide energy services at a cost that balances the interests of all stakeholders. It now is the resource planning process used by electric utilities in over 30 states. The goals of IRP have evolved from least cost planning and encouragement of demand-side management to broader, more complex issues including core competitive business activity, risk management and sharing, accounting for externalities, and fuel switching between gas and electricity. IRP processes are being extended to other interior regions of the country, to non-investor owned utilities, and to regional (rather than individual utility) planning bases, and to other fuels (natural gas). The comprehensive, multi-valued, and public reasoning characteristics of IRP could be extended to applications beyond energy, e.g., transportation, surface water management, and health care in ways suggested.

  19. Principles of Improvement the Energy Efficiency in Pyrometallurgy of Copper: Utilization the Secondary Heat Energy of Intermediate Products

    NASA Astrophysics Data System (ADS)

    Ćirković, Milorad; Bugarin, Mile; Trujić, Vlastimir; Kamberović, Željko

    Having in mind that the energy is more and more expensive and that the natural energy resources are smaller and smaller, this research presents a contribution to the use of renewable thermoenergetic resources in terms of improving the economy and ecology in the pyrometallurgical copper production.

  20. Energy and Resources

    ERIC Educational Resources Information Center

    Sorensen, Bent

    1975-01-01

    Discusses the feasibility of utilizing continuous sources of of energy, particularly solar and wind energy. Outlines an energy plan for Denmark, which would supply all of Denmark's energy needs by the year 2050. (MLH)

  1. 18 CFR 292.310 - Procedures for utilities requesting termination of obligation to purchase from qualifying...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....310 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF... facility including whether the qualifying facility is interconnected as an energy or a network resource... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Procedures for...

  2. 18 CFR 292.602 - Exemption to qualifying facilities from the Public Utility Holding Company Act of 2005 and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....602 Section 292.602 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY REGULATORY POLICIES ACT OF 1978 REGULATIONS UNDER... produces electric energy solely by the use of biomass as a primary energy source. (b) Exemption from the...

  3. Effective management of combined renewable energy resources in Tajikistan.

    PubMed

    Karimov, Khasan S; Akhmedov, Khakim M; Abid, Muhammad; Petrov, Georgiy N

    2013-09-01

    Water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between downstream countries that utilize water mostly for irrigation and those upstream countries, which use water for generation of electric power. At present Uzbekistan is blocking railway connection that is going to Tajikistan to interfere to transportation of the equipment and materials for construction of Rogun hydropower plant. In order to avoid conflicts between Tajikistan and Uzbekistan a number of measures for the utilization of water resources of the trans-boundary Rivers Amu-Darya and Sir-Darya are discussed. In addition, utilization of water with the supplement of wind and solar energy projects for proper and efficient management of water resources in Central Asia; export-import exchanges of electric energy in summer and winter time between neighboring countries; development of small hydropower project, modern irrigation system in main water consuming countries and large water reservoir hydropower projects for control of water resources for hydropower and irrigation are also discussed. It is also concluded that an effective management of water resources can be achieved by signing Water treaty between upstream and downstream countries, first of all between Tajikistan and Uzbekistan. In this paper management of water as renewable energy resource in Tajikistan and Central Asian Republics are presented. Copyright © 2013. Published by Elsevier B.V.

  4. 75 FR 8322 - Tatanka Wind Power, LLC, Complainant, v. Montana-Dakota Utilities Company, a Division of MDU...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Wind Power, LLC (Complainant) filed a formal complaint against Montana-Dakota Utilities Company, a... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL10-41-000] Tatanka Wind Power, LLC, Complainant, v. Montana-Dakota Utilities Company, a Division of MDU Resources Group, Inc...

  5. Investigation on energy conversion technology using biochemical reaction elements, 2

    NASA Astrophysics Data System (ADS)

    1994-03-01

    For measures taken for resource/energy and environmental issues, a study is made on utilization of microbial biochemical reaction. As a reaction system using chemical energy, cited is production of petroleum substitution substances and food/feed by CO2 fixation using hydrogen energy and hydrogen bacteria. As to photo energy utilization, regarded as promising are CO2 fixation using photo energy and microalgae, and production of hydrogen and useful carbon compound using photosynthetic organisms. As living organism/electric energy interconversion, cited is the culture of chemoautotrophic bacteria which fix CO2 using electric energy. For enhancing its conversion efficiency, it is important to develop a technology of gene manipulation of the bacteria and a system to use functional biochemical elements adaptable to the electrode reaction. With regard to utilization of the microorganism metabolic function, the paper presents emission of soluble nitrogen in the hydrosphere into the atmosphere using denitrifying bacteria, removal of phosphorus, reduction in environmental pollution caused by heavy metal dilute solutions, and recovery as resources, etc.

  6. The State of U.S. Urban Water: Data and the Energy-Water Nexus

    NASA Astrophysics Data System (ADS)

    Chini, Christopher M.; Stillwell, Ashlynn S.

    2018-03-01

    Data on urban water resources are scarce, despite a majority of the U.S. population residing in urban environments. Further, information on the energy required to facilitate the treatment, distribution, and collection of urban water are even more limited. In this study, we evaluate the energy-for-water component of the energy-water nexus by providing and analyzing a unique primary database consisting of drinking water and wastewater utility flows and energy. These anthropogenic fluxes of water through the urban environment are used to assess the state of the U.S. urban energy-water nexus at over 160 utilities. The average daily per person water flux is estimated at 560 L of drinking water and 500 L of wastewater. Drinking water and wastewater utilities require 340 kWh/1,000 m3 and 430 kWh/1,000 m3 of energy, respectively, to treat these resources. The total national energy demand for water utilities accounts for 1.0% of the total annual electricity consumption of the United States. Additionally, the water and embedded energy loss associated with non-revenue water accounts for 9.1 × 109 m3 of water and 3,100 GWh, enough electricity to power 300,000 U.S. households annually. Finally, the water flux and embedded energy fluctuated monthly in many cities. As the nation's water resources become increasingly scarce and unpredictable, it is essential to have a set of empirical data for continuous evaluation and updates on the state of the U.S. urban energy-water nexus.

  7. National Conference on Integrated Resource Planning: Proceedings

    NASA Astrophysics Data System (ADS)

    Until recently, state regulators have focused most of their attention on the development of least-cost or integrated resource planning (IRP) processes for electric utilities. A number of commissions are beginning to scrutinize the planning processes of local gas distribution companies (LDCs) because of the increased control that LDCs have over their purchased gas costs (as well as the associated risks) and because of questions surrounding the role and potential of gas end-use efficiency options. Traditionally, resource planning (LDCs) has concentrated on options for purchasing and storing gas. Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. The National Association of Regulatory Utility Commissioners' (NARUC) Energy Conservation committee asked Lawrence Berkeley Laboratory (LBL) to survey state PUCs to determine the extent to which they have undertaken least cost planning for gas utilities. The survey included the following topics: status of state PUC least-cost planning regulations and practices for gas utilities; type and scope of natural gas DSM programs in effect, including fuel substitution; economic tests and analysis methods used to evaluate DSM programs; relationship between prudency reviews of gas utility purchasing practices and integrated resource planning; and key regulatory issues facing gas utilities during the next five years.

  8. Joint Peru/United States report on Peru/United States cooperative energy assessment. Volume 4 of 4 Volumes Annexes 8-11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-08-01

    A comprehensive assessment of the biofuel potential of Peru is presented. Topics discussed cover current biofuel utilization practices; evaluation of Peruvian biomass productivity; identification of Peruvian agricultural and forestry resources; assessment of resource development and management concerns; identification of market considerations; description of biofuel technological options; and regional identification of biofuel technology applications. The discussion of current biofuel utilization centers on a qualitative description of the main conversion approaches now being practiced in Peru. Biomass productivity is evaluated in the context of the terrain, soil, and climatic conditions found in Peru. A quantitative description of the energy potential that couldmore » be realized from agricultural and forestry resources of Peru follows. A regional picture is given for the production of agricultural residues and forest resources that could potentially supply energy. The assessment of resource development and management concerns focuses on harvesting, reforestation, training, and the environmental consequences of utilization of forest resources. Market factors assessed include: importation, internal market development, external market development, energy policy and pricing, and transportation. Ten biofuel technology options for Peru were identified: small- to medium-scale gasification, a wood waste inventory, stationary and mobile charcoal production systems, wood distillation, forest resource development and management, electrical cogeneration, anaerobic digestion technology, development of ethanol production capabilities, and agricultural strategies for fuel production.Based upon these biofuel options, nine applications were identified for the Costa Region, eight for the Sierra Region, and ten for the Selva Region.« less

  9. Assessment of Global Wind Energy Resource Utilization Potential

    NASA Astrophysics Data System (ADS)

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  10. Corrosion engineering in the utilization of the Raft River geothermal resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.L.

    1976-08-01

    The economic impact of corrosion and the particular problems of corrosion in the utilization of geothermal energy resources are noted. Corrosion is defined and the parameters that control corrosion in geothermal systems are discussed. A general background of corrosion is presented in the context of the various forms of corrosion, in relation to the Raft River geothermal system. A basic reference for mechanical design engineers involved in the design of geothermal energy recovery systems is provided.

  11. Energy as a Substancelike Quantity That Flows: Theoretical Considerations and Pedagogical Consequences

    ERIC Educational Resources Information Center

    Brewe, Eric

    2011-01-01

    Utilizing an energy-as-substance conceptual metaphor as a central feature of the introductory physics curriculum affords students a wealth of conceptual resources for reasoning about energy conservation, storage, and transfer. This paper first establishes the utility and function of a conceptual metaphor in developing student understanding of…

  12. JPRS Report, Science & Technology, China: Energy.

    DTIC Science & Technology

    1988-02-10

    bedrock growth anticlines, buried hill fault blocks, rolling anticlines, compression anticlines, draped anticlines, volcanic diapers and others. The...development and utilization of solar , wind, geothermal and other energy resources, the energy conservation capacity and newly-added energy resources were...equivalent to 20 million tons of standard coal. The firewood-saving capacity in wood and coal-saving stoves, biogas pits and solar cookers alone was

  13. Electric utility companies and geothermal power

    NASA Technical Reports Server (NTRS)

    Pivirotto, D. S.

    1976-01-01

    The requirements of the electric utility industry as the primary potential market for geothermal energy are analyzed, based on a series of structured interviews with utility companies and financial institution executives. The interviews were designed to determine what information and technologies would be required before utilities would make investment decisions in favor of geothermal energy, the time frame in which the information and technologies would have to be available, and the influence of the governmental politics. The paper describes the geothermal resources, electric utility industry, its structure, the forces influencing utility companies, and their relationship to geothermal energy. A strategy for federal stimulation of utility investment in geothermal energy is suggested. Possibilities are discussed for stimulating utility investment through financial incentives, amelioration of institutional barriers, and technological improvements.

  14. Geothermal development plan: Cochise/Santa Cruz Counties

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The regional market potential for utilizing geothermal energy was evaluated. Three potential geothermal resource areas with potential for resource temperatures less than 900C (1940F) were identified. Population growth rates are expected to average 3% per year over the next 30 years in Willcox; Bowie and San Simon are expected to grow much slower. Regional employment is based on agriculture and copper mining, though future growth in trade, services and international trade is expected. A regional energy use analysis is included. Urban use, copper mining and agriculture are the principal water users in the region and substantial reductions in water use are anticipated in the future. The development plan identifies potential geothermal energy users in the region. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy might economically provide the energy equivalent of 3,250,000 barrels of oil per year to the industrial sector. In addition, geothermal energy utilization might help stimulate an agricultural and livestock processing industry.

  15. Reviews of Data on Science Resources, No. 29. Current and Future Utilization of Scientific and Technical Personnel in Energy-Related Activities.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    This National Science Foundation (NSF) bulletin summarizes the NSF program of energy manpower studies that assessed the impact of past energy developments and future options for scientific and technical manpower. This document summarizes the utilization of scientific personnel in energy-related activities in private industry in 1975 and shortages…

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Small Wind Electric Systems: A Colorado Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to themore » utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.« less

  17. A hybrid geothermal energy conversion technology: Auxiliary heating of geothermally preheated water or CO2 - a potential solution for low-temperature resources

    NASA Astrophysics Data System (ADS)

    Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas

    2016-04-01

    Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we compare over a range of parameters the net power and efficiencies of hybrid geothermal power plants that use brine or CO2 as the subsurface working fluid, that are then heated further with a secondary energy source that is unspecified here. Parameters varied include the subsurface working fluid (brine vs. CO2), geothermal reservoir depth (2.5-4.5 km), and turbine inlet temperature (200-600°C) after auxiliary heating. The hybrid power plant is numerically modeled using an iterative coupling approach of TOUGH2-ECO2N/ECO2H (Pruess, 2004) for simulation of the subsurface reservoir and Engineering Equation Solver for well bore fluid flow and surface power plant performance. We find that hybrid power plants that are CO2-based (subsurface) systems produce more net power than the sum of the power produced by individual power plants at low turbine inlet temperatures and brine based systems produce more power at high turbine inlet temperatures. Specifically, our results indicate that geothermal hybrid plants that are CO2-based are more efficient than brine-based systems when the contribution of the geothermal resource energy is higher than 48%.

  18. 18 CFR 125.2 - General instructions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false General instructions. 125.2 Section 125.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY ACCOUNTS, FEDERAL POWER ACT PRESERVATION OF RECORDS OF PUBLIC UTILITIES AND LICENSEES...

  19. 18 CFR 125.2 - General instructions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false General instructions. 125.2 Section 125.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY ACCOUNTS, FEDERAL POWER ACT PRESERVATION OF RECORDS OF PUBLIC UTILITIES AND LICENSEES...

  20. 18 CFR 125.2 - General instructions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false General instructions. 125.2 Section 125.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY ACCOUNTS, FEDERAL POWER ACT PRESERVATION OF RECORDS OF PUBLIC UTILITIES AND LICENSEES...

  1. Managing Campus Energy: Compromising between Rapid Needs and Environmental Requirement

    NASA Astrophysics Data System (ADS)

    Ambariyanto, Ambariyanto; Utama, Yos J.; Purwanto

    2018-02-01

    The utilization of energy, especially electricity at Diponegoro University campus continues to increase in line with the development of the university. This increase has a direct impact on the increased costs to be paid by the university. Some of the causes of increased utilization of electrical energy is the construction of new buildings to meet the needs, increased learning activities and education, research activities in the laboratory, and various other activities. On the other hand, the increase of energy utilization is considered not good from the environment point of view, especially the utilization of electrical energy coming from non sustainable resources. Efforts to compromise on both are to develop policies in developing environmentally friendly buildings, efficiency in utilization of electrical energy, and development of sustainable energy sources.

  2. ENERGY STAR® Retail Products Platform (RPP): Conditions and Considerations in Evaluating Market Transformation Programs and Evaluation Guidance for RPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Michael; Banwell, Peter

    2018-01-09

    The purpose of this guide is to provide a resource for state utility regulators, utilities, the evaluation community and regulatory stakeholders on methods to measure energy savings from the ENERGY STAR Retail Products Platform (link is external). The guidelines outlined in this document were developed by evaluation experts.

  3. 18 CFR 292.602 - Exemption to qualifying facilities from the Public Utility Holding Company Act and certain State...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 292.602 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY REGULATORY POLICIES ACT OF 1978 REGULATIONS UNDER SECTIONS... capacity over 30 megawatts if such facility produces electric energy solely by the use of biomass as a...

  4. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies DivisionMarch 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satchwell, Andrew; Cappers, Peter; Goldman, Charles

    2011-03-22

    Energy efficiency resource standards (EERS) are a prominent strategy to potentially achieve rapid and aggressive energy savings goals in the U.S. As of December 2010, twenty-six U.S. states had some form of an EERS with savings goals applicable to energy efficiency (EE) programs paid for by utility customers. The European Union has initiated a similar type of savings goal, the Energy End-use Efficiency and Energy Services Directive, where it is being implemented in some countries through direct partnership with regulated electric utilities. U.S. utilities face significant financial disincentives under traditional regulation which affects the interest of shareholders and managers inmore » aggressively pursuing cost-effective energy efficiency. Regulators are considering some combination of mandated goals ('sticks') and alternative utility business model components ('carrots' such as performance incentives) to align the utility's business and financial interests with state and federal energy efficiency public policy goals. European countries that have directed their utilities to administer EE programs have generally relied on non-binding mandates and targets; in the U.S., most state regulators have increasingly viewed 'carrots' as a necessary condition for successful achievement of energy efficiency goals and targets. In this paper, we analyze the financial impacts of an EERS on a large electric utility in the State of Arizona using a pro-forma utility financial model, including impacts on utility earnings, customer bills and rates. We demonstrate how a viable business model can be designed to improve the business case while retaining sizable ratepayer benefits. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other countries looking to significantly increase savings targets that can be achieved from their own utility-administered EE programs.« less

  5. 18 CFR 367.82 - Rents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Rents. 367.82 Section 367.82 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL POWER ACT AND NATURAL...

  6. Assessment of Peruvian biofuel resources and alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, J.P.; Smith, W.; Mariani, E.

    1979-08-01

    Comprehensive assessment of the biofuel potential of Peru is based on: determination of current biofuel utilization practices, evauation of Peruvian biomass productivity, identification of Peruvian agricultural and forestry resources, assessment of resource development and management concerns, identification of market considerations, description of biofuel technological options, and identification of regional biofuel technology applications. Discussion of current biofuel utilization centers on a qualitative description of the main conversion approaches currently being practiced in Peru. Biomass productivity evaluations consider the terrain and soil, and climatic conditions found in Peru. The potential energy from Peruvian agricultural and forestry resources is described quantitatively. Potental regionalmore » production of agricultural residues and forest resources that could supply energy are identified. Assessment of resource development and management concerns focuses on harvesting, reforestation, training, and environmental consequences of utilization of forest resources. Market factors assessed include: importation, internal market development, external market development, energy policy and pricing, and transportation. Nine biofuel technology options for Peru are identified: (1) small-to-medium-scale gasification, (2) a wood waste inventory, (3) stationary and mobile charcoal production systems, (4) wood distillation, (5) forest resource development and management, (6) electrical cogeneration, (7) anaerobic digestion technology, (8) development of ethanol production capabilities, and (9) agricultural strategies for fuel production. Applications of these biofuel options are identified for each of the three major regions - nine applications for the Costa Region, eight for the Sierra Region, and ten for the Selva Region.« less

  7. Final Technical Report: "Achieving Regional Energy Efficiency Potential in the Southeast”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, Mandy

    The overall objective of this award was to facilitate sharing of DOE resources and best practices as well as provide technical assistance to key stakeholders to support greater compliance with energy efficiency standards and increased energy savings. The outcomes of this award include greater awareness among key stakeholders on energy efficiency topics, increased deployment and utilization of DOE resources, and effective policies and programs to support energy efficiency in the Southeast.

  8. 18 CFR 366.22 - Accounts and records of service companies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... service companies. 366.22 Section 366.22 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... utility customers with respect to jurisdictional rates. (2) Transition period. Until December 31, 2007...

  9. 18 CFR 366.22 - Accounts and records of service companies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... service companies. 366.22 Section 366.22 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... utility customers with respect to jurisdictional rates. (2) Transition period. Until December 31, 2007...

  10. 18 CFR 366.22 - Accounts and records of service companies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... service companies. 366.22 Section 366.22 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... utility customers with respect to jurisdictional rates. (2) Transition period. Until December 31, 2007...

  11. 18 CFR 366.22 - Accounts and records of service companies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... service companies. 366.22 Section 366.22 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... utility customers with respect to jurisdictional rates. (2) Transition period. Until December 31, 2007...

  12. Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority (Revised) (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-06-01

    Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connectmore » a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.« less

  13. Recent Progress in Energy-Driven Water Splitting.

    PubMed

    Tee, Si Yin; Win, Khin Yin; Teo, Wee Siang; Koh, Leng-Duei; Liu, Shuhua; Teng, Choon Peng; Han, Ming-Yong

    2017-05-01

    Hydrogen is readily obtained from renewable and non-renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non-renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost-effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic-integrated solar-driven water electrolysis.

  14. An Overview of Army Mobility Energy Research and Development

    DTIC Science & Technology

    1981-10-01

    The very basis of defense depends on a guaranteed energy supply , particularly in the form of liquid hydrocarbon fuels. Energy alternatives are needed...efficiency, development of alternate and renewable resources ; an~d discusses the national goals, the role of government and public in achieving energy...Outlines the best methods of utilizing domestic resources for trans- portitton fuels. Deals primarily with alternative fuels, alcohol fuels in particular. 27

  15. Package of online Teacher Resources for Generate, the EPA Energy Game

    EPA Science Inventory

    These materials will enable teachers to make and utilize their own copy of the energy board game, called Generate, that has been developed in ORD and used in local EPA-RTP STEM outreach. The teacher resource package includes: (1) Webinar presentation for National Science Teach...

  16. Catching the Wind in a Bottle: Collection Development for Wind Energy Technology Programs at Universities and Colleges

    ERIC Educational Resources Information Center

    Johnson-Renvall, Poppy

    2009-01-01

    This article aims to assist information professionals in developing a resource collection that serves Wind Energy students in academic settings. Traditional as well as Internet resources should be utilized in order to meet the needs of this unique student population.

  17. 18 CFR 35.44 - Protections against affiliate cross-subsidization.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Protections against affiliate cross-subsidization. 35.44 Section 35.44 Conservation of Power and Water Resources FEDERAL ENERGY... electric energy may be made between a franchised public utility with captive customers and a market...

  18. A Framework for Organizing Current and Future Electric Utility Regulatory and Business Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satchwell, Andrew; Cappers, Peter; Schwartz, Lisa

    In this report, we will present a descriptive and organizational framework for incremental and fundamental changes to regulatory and utility business models in the context of clean energy public policy goals. We will also discuss the regulated utility's role in providing value-added services that relate to distributed energy resources, identify the "openness" of customer information and utility networks necessary to facilitate change, and discuss the relative risks, and the shifting of risks, for utilities and customers.

  19. Edison Electric, Exxon Push Nuclear Power in Nation's Classrooms

    ERIC Educational Resources Information Center

    Feldman, Dede

    1978-01-01

    Pro-nuclear power "educational materials" designed or promoted by energy and utility companies lack objectivity about alternative energy resources. A free comic book distributed to public schools in New Mexico and a simulation game supplied to Maryland public schools at the expense of utility customers are described. (SW)

  20. Analysis to develop a program for energy-integrated farm systems

    NASA Astrophysics Data System (ADS)

    Eakin, D. E.; Clark, M. A.; Inaba, L. K.; Johnson, K. I.

    1981-09-01

    A program to use renewable energy resources and possibly develop decentralization of energy systems for agriculture is discussed. The program's objective is determined by: (1) an analysis of the technologies that could be utilized to transform renewable farm resources to energy by the year 2000, (2) the quantity of renewable farm resources that are available, and (3) current energy-use patterns. Individual research, development, and demonstration projects are fit into a national program of energy-integrated farm systems on the basis of market need, conversion potential, technological opportunities, and acceptability. Quantification of these factors for the purpose of establishing program guidelines is conducted using the following four precepts: (1) market need is identified by current use of energy for agricultural production; (2) conversion potential is determined by the availability of renewable resources; and (3) technological opportunities are determined by the state-of-the-art methods, techniques, and processes that can convert renewable resources into farm energy.

  1. Mashreq Arab interconnected power system potential for economic energy trading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Shehri, A.M.; El-Amin, I.M.; Opoku, G.

    1994-12-01

    The Mashreq Arab countries covered in this study are Bahrain, Egypt, Jordan, Lebanon, Oman, Qatar, Saudi Arabia, Syria, the United Arab Emirates, and Yemen. A feasibility study for the interconnection of the electrical networks of the Mashreq Arab countries, sponsored by the Arab Fund, was completed in June 1992. Each country is served by one utility except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. Thesemore » are the ones considered in this study. The Mashreq Arab region has a considerable mix of energy resources. Egypt and Syria have some limited amounts of hydropower resources, and the Arabian Gulf region is abundant in fossil fuel reserves. Owing to the differences in energy production costs, a potential exists for substantial energy trading between electric utilities in the region. The major objective of this project is to study the feasibility of electric energy trading between the Mashreq Arab countries. The basis, assumptions, and methodologies on which this energy trading study is based relate to the results and conclusions arising out of the previous study, power plant characteristics and costs, assumptions on economic parameters, rules for economy energy exchange, etc. This paper presents the basis, methodology, and major findings of the study.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friese, Ryan; Khemka, Bhavesh; Maciejewski, Anthony A

    Rising costs of energy consumption and an ongoing effort for increases in computing performance are leading to a significant need for energy-efficient computing. Before systems such as supercomputers, servers, and datacenters can begin operating in an energy-efficient manner, the energy consumption and performance characteristics of the system must be analyzed. In this paper, we provide an analysis framework that will allow a system administrator to investigate the tradeoffs between system energy consumption and utility earned by a system (as a measure of system performance). We model these trade-offs as a bi-objective resource allocation problem. We use a popular multi-objective geneticmore » algorithm to construct Pareto fronts to illustrate how different resource allocations can cause a system to consume significantly different amounts of energy and earn different amounts of utility. We demonstrate our analysis framework using real data collected from online benchmarks, and further provide a method to create larger data sets that exhibit similar heterogeneity characteristics to real data sets. This analysis framework can provide system administrators with insight to make intelligent scheduling decisions based on the energy and utility needs of their systems.« less

  3. Recent Progress in Energy‐Driven Water Splitting

    PubMed Central

    Tee, Si Yin; Win, Khin Yin; Teo, Wee Siang; Koh, Leng‐Duei; Liu, Shuhua; Teng, Choon Peng

    2017-01-01

    Hydrogen is readily obtained from renewable and non‐renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non‐renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost‐effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic‐integrated solar‐driven water electrolysis. PMID:28546906

  4. Designing and visualizing the water-energy-food nexus system

    NASA Astrophysics Data System (ADS)

    Endo, A.; Kumazawa, T.; Yamada, M.; Kato, T.

    2017-12-01

    The objective of this study is to design and visualize a water-energy-food nexus system to identify the interrelationships between water-energy-food (WEF) resources and to understand the subsequent complexity of WEF nexus systems holistically, taking an interdisciplinary approach. Object-oriented concepts and ontology engineering methods were applied according to the hypothesis that the chains of changes in linkages between water, energy, and food resources holistically affect the water-energy-food nexus system, including natural and social systems, both temporally and spatially. The water-energy-food nexus system that is developed is significant because it allows us to: 1) visualize linkages between water, energy, and food resources in social and natural systems; 2) identify tradeoffs between these resources; 3) find a way of using resources efficiently or enhancing the synergy between the utilization of different resources; and 4) aid scenario planning using economic tools. The paper also discusses future challenges for applying the developed water-energy-food nexus system in other areas.

  5. 18 CFR 2.12 - Calculation of taxes for property of public utilities and licensees constructed or acquired after...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Calculation of taxes for property of public utilities and licensees constructed or acquired after January 1, 1970. 2.12 Section 2.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF...

  6. 18 CFR 2.12 - Calculation of taxes for property of public utilities and licensees constructed or acquired after...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Calculation of taxes for property of public utilities and licensees constructed or acquired after January 1, 1970. 2.12 Section 2.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF...

  7. 18 CFR 2.12 - Calculation of taxes for property of public utilities and licensees constructed or acquired after...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Calculation of taxes for property of public utilities and licensees constructed or acquired after January 1, 1970. 2.12 Section 2.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF...

  8. 18 CFR 2.12 - Calculation of taxes for property of public utilities and licensees constructed or acquired after...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Calculation of taxes for property of public utilities and licensees constructed or acquired after January 1, 1970. 2.12 Section 2.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF...

  9. Space Resource Utilization: Technologies and Potential Synergism with Terrestrial Mining

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2015-01-01

    Space Resources and Their Uses: The idea of using resources in space to support human exploration and settlement or for economic development and profit beyond the surface of Earth has been proposed and discussed for decades. Work on developing a method to extract oxygen from lunar regolith started even before humans set foot on the Moon for the first time. The use of space resources, commonly referred to as In Situ Resource Utilization (ISRU), involves the processes and operations to harness and utilize resources in space (both natural and discarded) to create products for subsequent use. Potential space resources include water, solar wind implanted volatiles (hydrogen, helium, carbon, nitrogen, etc.), vast quantities of metals and minerals in extraterrestrial soils, atmospheric constituents, unlimited solar energy, regions of permanent light and darkness, the vacuum and zero-gravity of space itself, trash and waste from human crew activities, and discarded hardware that has completed its primary purpose. ISRU covers a wide variety of concepts, technical disciplines, technologies, and processes. When considering all aspects of ISRU, there are 5 main areas that are relevant to human space exploration and the commercialization of space: 1. Resource Characterization and Mapping, 2. In Situ Consumables Production, 3. Civil Engineering and Construction, 4. In Situ Energy Production and Storage, and 5. In Situ Manufacturing.

  10. Taming B.C. Hydro: Site C and the implementation of the B.C. Utilities Commission Act

    NASA Astrophysics Data System (ADS)

    Smith, L. Graham

    1988-07-01

    Public policy making in resources management is greatly influenced by the institutional arrangements that arise out of the legal powers, administrative structures, and financial provisions of the decision system. In British Columbia, the institutional arrangements for energy planning in the province have been greatly altered by the passage of the Utilities Commission Act in 1980. This act redefines the policy implementation process for energy in British Columbia and provides for the regulation of the province's power utility, B.C. Hydro. This is the first time that the hitherto autonomous utility has been subject to regulation and the Utilities Commission Act represents a major reform in the institutional arrangements for energy planning in the province. The article evaluates the effectiveness of the 1980 B.C. Utilities Commission Act and assesses the impact of the legislation upon the institutional arrangements for energy planning in the province. Data for the article were derived from written sources and a series of personal interviews with key participants involved with energy planning in B.C. It is shown that the act represented a major departure in the management of energy resources in B.C. Moreover the implementation of the act's provisions, particularly in regard to B.C. Hydro, had a dramatic impact on the development of new energy projects in the province. It is suggested that while the political and economic climate during the period also favored restraint, the major influence on “taming” the utility was passage of the Utilities Commission Act. The article concludes by exploring the implications of policy changes that have occurred as a consequence of the act's impact on B.C. Hydro.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Small Wind Electric Systems: A Colorado Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it'smore » possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less

  12. Solar Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  13. Multi-state time-varying reliability evaluation of smart grid with flexible demand resources utilizing Lz transform

    NASA Astrophysics Data System (ADS)

    Jia, Heping; Jin, Wende; Ding, Yi; Song, Yonghua; Yu, Dezhao

    2017-01-01

    With the expanding proportion of renewable energy generation and development of smart grid technologies, flexible demand resources (FDRs) have been utilized as an approach to accommodating renewable energies. However, multiple uncertainties of FDRs may influence reliable and secure operation of smart grid. Multi-state reliability models for a single FDR and aggregating FDRs have been proposed in this paper with regard to responsive abilities for FDRs and random failures for both FDR devices and information system. The proposed reliability evaluation technique is based on Lz transform method which can formulate time-varying reliability indices. A modified IEEE-RTS has been utilized as an illustration of the proposed technique.

  14. The U.S.Geological Survey Energy Resources Program

    USGS Publications Warehouse

    ,

    2010-01-01

    Energy resources are an essential component of modern society. Adequate, reliable, and affordable energy supplies obtained using environmentally sustainable practices underpin economic prosperity, environmental quality and human health, and political stability. National and global demands for all forms of energy are forecast to increase significantly over the next several decades. Throughout its history, our Nation has faced important, often controversial, decisions regarding the competing uses of public lands, the supply of energy to sustain development and enable growth, and environmental stewardship. The U.S. Geological Survey (USGS) Energy Resources Program (ERP) provides information to address these challenges by supporting scientific investigations of energy resources, such as research on the geology, geochemistry, and geophysics of oil, gas, coal, heavy oil and natural bitumen, oil shale, uranium, and geothermal resources, emerging resources such as gas hydrates, and research on the effects associated with energy resource occurrence, production, and (or) utilization. The results from these investigations provide impartial, robust scientific information about energy resources and support the U.S. Department of the Interior's (DOI's) mission of protecting and responsibly managing the Nation's natural resources. Primary consumers of ERP information and products include the DOI land- and resource-management Bureaus; other Federal, State, and local agencies; the U.S. Congress and the Administration; nongovernmental organizations; the energy industry; academia; international organizations; and the general public.

  15. Renewable Energy Deployment in Colorado and the West: Extended Policy Sensitivities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrows, Clayton P.; Stoll, Brady; Mooney, Meghan E.

    The Resource Planning Model is a capacity expansion model designed for a regional power system, such as a utility service territory, state, or balancing authority. We apply a geospatial analysis to Resource Planning Model renewable energy capacity expansion results to understand the likelihood of renewable development on various lands within Colorado.

  16. 18 CFR 367.4350 - Account 435, Extraordinary deductions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 435, Extraordinary deductions. 367.4350 Section 367.4350 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT...

  17. 18 CFR 367.4340 - Account 434, Extraordinary income.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 434, Extraordinary income. 367.4340 Section 367.4340 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT UNIFOR...

  18. Utilizing an Energy Management System with Distributed Resources to Manage Critical Loads and Reduce Energy Costs

    DTIC Science & Technology

    2014-09-01

    peak shaving, conducting power factor correction, matching critical load to most efficient distributed resource, and islanding a system during...photovoltaic arrays during islanding, and power factor correction, the implementation of the ESS by itself is likely to prove cost prohibitive. The DOD...These functions include peak shaving, conducting power factor correction, matching critical load to most efficient distributed resource, and islanding a

  19. Proceedings of the Conference on Research for the Development of Geothermal Energy Resources

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The proceedings of a conference on the development of geothermal energy resources are presented. The purpose of the conference was to acquaint potential user groups with the Federal and National Science Foundation geothermal programs and the method by which the users and other interested members can participate in the program. Among the subjects discussed are: (1) resources exploration and assessment, (2) environmental, legal, and institutional research, (3) resource utilization projects, and (4) advanced research and technology.

  20. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 1: Solar energy

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1974-01-01

    The utilization of solar energy to meet the energy needs of the U.S. is discussed. Topics discussed include: availability of solar energy, solar energy collectors, heating for houses and buildings, solar water heater, electric power generation, and ocean thermal power.

  1. 2006 Pacific Northwest Loads and Resources Study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration.

    2006-03-01

    The Pacific Northwest Loads and Resources Study (White Book), which is published annually by the Bonneville Power Administration (BPA), establishes one of the planning bases for supplying electricity to customers. The White Book contains projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. The White Book also contains information obtained from formalized resource planning reports and data submittals including those from individual utilities, the Northwest Power and Conservation Council (Council), and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determiningmore » BPA revenues, although the database that generates the data for the White Book analysis contributes to the development of BPA's inventory and ratemaking processes. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions that include expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. The load resource balance of both the Federal system and the region is determined by comparing resource availability to an expected level of total retail electricity consumption. Resources include projected energy capability plus contract purchases. Loads include a forecast of retail obligations plus contract obligations. Surplus energy is available when resources are greater than loads. This surplus energy could be marketed to increase revenues. Energy deficits occur when resources are less than loads. These energy deficits will be met by any combination of the following: better-than-critical water conditions, demand-side management and conservation programs, permanent loss of loads due to economic conditions or closures, additional contract purchases, and/or the addition of new generating resources. This study incorporates information on Pacific Northwest (PNW) regional retail loads, contract obligations, and contract resources. This loads and resources analysis simulates the operation of the power system in the PNW. The simulated hydro operation incorporates plant characteristics, streamflows, and non-power requirements from the current Pacific Northwest Coordination Agreement (PNCA). Additional resource capability estimates were provided by BPA, PNW Federal agency, public agency, cooperative, U.S. Bureau of Reclamation (USBR), and investor-owned utility (IOU) customers furnished through annual PNUCC data submittals for 2005 and/or direct submittals to BPA. The 2006 White Book is presented in two documents: (1) this summary document of Federal system and PNW region loads and resources, and (2) a technical appendix which presents regional loads, grouped by major PNW utility categories, and detailed contract and resource information. The technical appendix is available only in electronic form. Individual customer information for marketer contracts is not detailed due to confidentiality agreements. The 2006 White Book analysis updates the 2004 White Book. This analysis shows projections of the Federal system and region's yearly average annual energy consumption and resource availability for the study period, OY 2007-2016. The study also presents projections of Federal system and region expected 1-hour monthly peak demand, monthly energy demand, monthly 1-hour peak generating capability, and monthly energy generation for OY 2007, 2011, and 2016. BPA is investigating a new approach in capacity planning depicting the monthly Federal system 120-hour peak generating capability and 120-hour peak surplus/deficit for OY 2007, 2011, and 2016. This document analyzes the PNW's projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger PNW regional power system loads and resources that include the Federal system as well other PNW entities.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zygarlicke, C J; Schmidt, D D; Olson, E S

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area ofmore » developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.« less

  3. Municipal Solid Waste Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  4. Program evaluation in integrated resource planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Council, C.D.

    1994-12-31

    The Western Area Power Administration along with the Southwestern and Southeastern Power Administrations joined together to develop a set of integrated resource planning (IRP) tools to help their customers development and implement an IRP process. The project has been entitled the Resource Planning Guide (RPG), and is specifically designed to help small- to mid-sized utilities analyze supply- and demand-side alternatives as part of an IRP process. The RPG project will be available in January 1994 and will include such support as: workshops, technical assistance, an RPG hotline, and an RPG User`s Group for the project. The RPG grew out ofmore » the interest shown by utility customers who wanted a user-friendly tool to aid in their application of the IRP process. The project has been field tested by 43 utilities and related organizations over the last year, has sparked interest both nationally and internationally, and is now available for public use. The program evaluation aspects of the IRP process are heightened by a requirement of the Energy Policy Act of 1992 which requires all long-term power customers of the Western Area Power Administration to develop, implement, and monitor an IRP process. The EPAct defines IRP as: A planning process for new energy resources that evaluates the full range of alternatives, including new generating capacity, power purchases, energy conservation and efficiency, cogeneration and district heating and cooling applications, and renewable energy resources, to provide adequate and reliable service to its electric customers at the lowest system cost. The process takes into account necessary features for system operation, such as diversity, reliability, dispatchability, and other factors of risk; the ability to verify energy savings achieved through energy conservation and efficiency and the projected durability of such savings measured over time; and treats demand and supply resources on a consistent and integrated basis.« less

  5. Harnessing the hybrid power supply systems of utility grid and photovoltaic panels at retrofit residential single family building in Medan

    NASA Astrophysics Data System (ADS)

    Pangaribuan, A. B.; Rahmat, R. F.; Lidya, M. S.; Zálešák, M.

    2017-01-01

    The paper describes improvisation mode of energy supply source by collaboration between national utility grid as represented by fossil fuels and PV as independent renewable power resource in order to aim the energy consumptions efficiently in retrofit single family house. In this case, one existing single family house model in Medan, Indonesia was observed for the possibility of future refurbishment. The eco-design version of the house model and prediction analyses regarding nearby potential renewable energy resource (solar system) had been made using Autodesk Revit MEP 2015, Climate Consultant 6.0 and Green Building Studio Analysis. Economical evaluation of using hybrid power supply is discussed as well.

  6. Alexandra Aznar | NREL

    Science.gov Websites

    policies Climate change impacts on natural resources (including energy systems and energy-water systems Solar's Impacts to Utility Planning and Operations. Solar Electric Power Association and the National

  7. Proceedings: Second Annual Pacific Northwest Alternative and Renewable Energy Resources Conference.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-01-01

    Papers presented at the conference are published in this volume. The purpose of the conference was to solicit regional cooperation in the promoting of near-term development of such alternative and renewable energy resources in the Pacific Northwest as: cogeneration; biomass; wind; small hydro; solar end-use applications; and geothermal direct heat utilization. Separate abstracts of selected papers were prepared for inclusion in the Energy Data Base.

  8. Understanding and managing the food-energy-water nexus - opportunities for water resources research

    NASA Astrophysics Data System (ADS)

    Cai, Ximing; Wallington, Kevin; Shafiee-Jood, Majid; Marston, Landon

    2018-01-01

    Studies on the food, energy, and water (FEW) nexus lay a shared foundation for researchers, policy makers, practitioners, and stakeholders to understand and manage linked production, utilization, and security of FEW systems. The FEW nexus paradigm provides the water community specific channels to move forward in interdisciplinary research where integrated water resources management (IWRM) has fallen short. Here, we help water researchers identify, articulate, utilize, and extend our disciplinary strengths within the broader FEW communities, while informing scientists in the food and energy domains about our unique skillset. This paper explores the relevance of existing and ongoing scholarship within the water community, as well as current research needs, for understanding FEW processes and systems and implementing FEW solutions through innovations in technologies, infrastructures, and policies. Following the historical efforts in IWRM, hydrologists, water resources engineers, economists, and policy analysts are provided opportunities for interdisciplinary studies among themselves and in collaboration with energy and food communities, united by a common path to achieve sustainability development goals.

  9. Environmental implications of increased biomass energy use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, T.R. Sr.; Miles, T.R. Jr.

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range ofmore » studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.« less

  10. 18 CFR 367.4581 - Account 458.1, Direct costs charged to non-associate companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 458.1, Direct... Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY..., FEDERAL POWER ACT AND NATURAL GAS ACT Operating Revenue Chart of Accounts § 367.4581 Account 458.1, Direct...

  11. 18 CFR 367.4571 - Account 457.1, Direct costs charged to associate companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 457.1, Direct... Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY..., FEDERAL POWER ACT AND NATURAL GAS ACT Operating Revenue Chart of Accounts § 367.4571 Account 457.1, Direct...

  12. Geothermal Energy: Resource and Utilization. A Teaching Module.

    ERIC Educational Resources Information Center

    Nguyen, Van Thanh

    The search for new energy resources as alternatives to fossil fuels have generated new interest in the heat of the earth itself. New geothermal areas with a variety of characteristics are being explored, as are new ways of extracting work from naturally heated steam and hot water. Some of this effort is discussed in this three-part module. Five…

  13. Renewable Energy Deployment in Colorado and the West: A Modeling Sensitivity and GIS Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrows, Clayton; Mai, Trieu; Haase, Scott

    2016-03-01

    The Resource Planning Model is a capacity expansion model designed for a regional power system, such as a utility service territory, state, or balancing authority. We apply a geospatial analysis to Resource Planning Model renewable energy capacity expansion results to understand the likelihood of renewable development on various lands within Colorado.

  14. 18 CFR 366.7 - Procedures for obtaining exempt wholesale generator and foreign utility company status.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Procedures for... Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER... RECORDS Definitions and Provisions Under PUHCA 2005, the Federal Power Act and the Natural Gas Act § 366.7...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This Spanish version of the popular Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system tomore » the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This Spanish version of the popular Small Wind Electric Systems: A New Mexico Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a systemmore » to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less

  17. The National Geothermal Energy Research Program

    NASA Technical Reports Server (NTRS)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  18. NASA Earth Resources Survey Symposium. Volume 1-B: Geology, Information Systems and Services

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A symposium was conducted on the practical applications of earth resources survey technology including utilization and results of data from programs involving LANDSAT, the Skylab earth resources experiment package, and aircraft. Topics discussed include geological structure, landform surveys, energy and extractive resources, and information systems and services.

  19. Research status of geothermal resources in China

    NASA Astrophysics Data System (ADS)

    Zhang, Lincheng; Li, Guang

    2017-08-01

    As the representative of the new green energy, geothermal resources are characterized by large reserve, wide distribution, cleanness and environmental protection, good stability, high utilization factor and other advantages. According to the characteristics of exploitation and utilization, they can be divided into high-temperature, medium-temperature and low-temperature geothermal resources. The abundant and widely distributed geothermal resources in China have a broad prospect for development. The medium and low temperature geothermal resources are broadly distributed in the continental crustal uplift and subsidence areas inside the plate, represented by the geothermal belt on the southeast coast, while the high temperature geothermal resources concentrate on Southern Tibet-Western Sichuan-Western Yunnan Geothermal Belt and Taiwan Geothermal Belt. Currently, the geothermal resources in China are mainly used for bathing, recuperation, heating and power generation. It is a country that directly makes maximum use of geothermal energy in the world. However, China’s geothermal power generation, including installed generating capacity and power generation capacity, are far behind those of Western European countries and the USA. Studies on exploitation and development of geothermal resources are still weak.

  20. Resource physiology of conifers: Acquisition, allocation, and utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, W.K.; Hinckley, T.M.

    1995-03-01

    This book focuses on a synthetic view of the resource physiology of conifer trees with an emphasis on developing a perspective that can integrate across the biological hierarchy. This objective is in concert with more scientific goals of maintaining biological diversity and the sustainability of forest systems. The preservation of coniferous forest ecosystems is a major concern today. This volume deals with the topics of resource acquisition, allocation, and utilization in conifers. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  1. Global renewable energy-based electricity generation and smart grid system for energy security.

    PubMed

    Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  2. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    PubMed Central

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  3. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 1: (Executive summary)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Integrated Utility Systems (IUS) have been suggested as a means of reducing the cost and conserving the nonrenewable energy resources required to supply utility services (energy, water, and waste disposal) to developments of limited size. The potential for further improving the performance and reducing the cost of IUS installations through the use of energy storage devices is examined and the results are summarized. Candidate energy storage concepts in the general areas of thermal, inertial, superconducting magnetic, electrochemical, chemical, and compressed air energy storage are assessed and the storage of thermal energy as the sensible heat of water is selected as the primary candidate for near term application to IUS.

  4. SMUD Community Renewable Energy Deployment Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sison-Lebrilla, Elaine; Tiangco, Valentino; Lemes, Marco

    2015-06-08

    This report summarizes the completion of four renewable energy installations supported by California Energy Commission (CEC) grant number CEC Grant PIR-11-005, the US Department of Energy (DOE) Assistance Agreement, DE-EE0003070, and the Sacramento Municipal Utility District (SMUD) Community Renewable Energy Deployment (CRED) program. The funding from the DOE, combined with funding from the CEC, supported the construction of a solar power system, biogas generation from waste systems, and anaerobic digestion systems at dairy facilities, all for electricity generation and delivery to SMUD’s distribution system. The deployment of CRED projects shows that solar projects and anaerobic digesters can be successfully implementedmore » under favorable economic conditions and business models and through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region. In addition to reducing GHG emissions, the projects also demonstrate that solar projects and anaerobic digesters can be readily implemented through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region.« less

  5. Energy and resource consumption

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The present and projected energy requirements for the United States are discussed. The energy consumption and demand sectors are divided into the categories: residential and commercial, transportation, and industrial and electrical generation (utilities). All sectors except electrical generation use varying amounts of fossile fuel resources for non-energy purposes. The highest percentage of non-energy use by sector is industrial with 71.3 percent. The household and commercial sector uses 28.4 percent, and transportation about 0.3 percent. Graphs are developed to project fossil fuel demands for non-energy purposes and the perdentage of the total fossil fuel used for non-energy needs.

  6. National Action Plan for Energy Efficiency

    EPA Pesticide Factsheets

    Provides resources for policy-makers, consumers, utilities, and others produced through NAPEE - a private-public initiative to create a sustainable, aggressive national commitment to energy efficiency through a collaborative effort of stakeholders.

  7. Potentials of storing solar energy in the form of hydrogen for Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel, A.A.L.; Mohamed, M.A.

    1989-01-01

    A seemingly insatiable demand for energy characterizes Egypt as it approaches the end of the twentieth century. With the limited energy resources in the country, R and D to utilize renewable sources of energy is a must. This paper examines first the energy situation in Egypt and explores the potential of using solar energy in hydrogen production from water. Different schemes of dissociating water are reviewed next. Finally, research findings are reported for some experimental runs carried out for the electrolysis of water by solar energy, utilizing an eight-water photovoltaic cell (Telephonken type) to generate the DC current.

  8. Energy-water-food nexus under financial constraint environment: good, the bad, and the ugly sustainability reforms in sub-Saharan African countries.

    PubMed

    Zaman, Khalid; Shamsuddin, Sadaf; Ahmad, Mehboob

    2017-05-01

    Environmental sustainability agenda are generally compromised by energy, water, and food production resources, while in the recent waves of global financial crisis, it mediates to increase the intensity of air pollutants, which largely affected the less developing countries due to their ease of environmental regulation policies and lack of optimal utilization of economic resources. Sub-Saharan African (SSA) countries are no exception that majorly hit by the recent global financial crisis, which affected the country's natural environment through the channel of unsustainable energy-water-food production. The study employed panel random effect model that addresses the country-specific time-invariant shocks to examine the non-linear relationship between water-energy-food resources and air pollutants in a panel of 19 selected SSA countries, for a period of 2000-2014. The results confirmed the carbon-fossil-methane environmental Kuznets curve (EKC) that turned into inverted U-shaped relationships in a panel of selected SSA countries. Food resources largely affected greenhouse gas (GHG), methane (CH 4 ), and nitrous oxide (N 2 O) emissions while water resource decreases carbon dioxide (CO 2 ), fossil fuel, and CH 4 emissions in a region. Energy efficiency improves air quality indicators while industry value added increases CO 2 emissions, fossil fuel energy, and GHG emissions. Global financial crisis increases the risk of climate change across countries. The study concludes that although SSA countries strive hard to take some "good" initiatives to reduce environmental degradation in a form of improved water and energy sources, however, due to lack of optimal utilization of food resources and global financial constraints, it leads to "the bad" and "the ugly" sustainability reforms in a region.

  9. Economic and environmental evaluations of extractable coal resources conducted by the U. S. Geological Survey

    USGS Publications Warehouse

    Ellis, M.S.; Rohrbacher, T.J.; Carter, M.D.; Molnia, C.L.; Osmonson, L.M.; Scott, D.C.

    2001-01-01

    The Economic and Environmental Evaluations of Extractable Coal Resources (E4CR) project integrates economic analyses of extractable coal resources with environmental and coal quality considerations in order to better understand the contribution that coal resources can make to help meet the Nation’s future energy needs. The project utilizes coal resource information derived from the recent National Coal Resource Assessment (NCRA), National Oil and Gas Assessment (NOGA), and Coal Availability and Recoverability Studies (CARS) conducted by the U.S. Geological Survey and other State and Federal cooperating agencies. The E4CR evaluations are designed to augment economic models created by the U.S. Geological Survey CARS and NCRA projects and by the Department of Energy/Energy Information Administration (DOE/EIA). E4CR evaluations are conducted on potentially minable coal beds within selected coalfields in the United States. Emphasis is placed on coalfields containing Federally owned coal and within or adjacent to Federal lands, as shown in U.S. Geological Survey Fact Sheets 012-98, 145-99, and 011-00 (U.S. Geological Survey, 1998, 1999, 2000). Other considerations for the selection of study areas include coal quality, potential environmental impact of coal production activities and coal utilization, the potential for coalbed methane development from the coal, and projected potential for future mining. Completion dates for the E4CR studies loosely follow the schedule for analogous NOGA studies to allow for a comparison of different energy resources in similar geographic areas.

  10. A Boundary Delineation System for the Bureau of Ocean Energy Management

    NASA Astrophysics Data System (ADS)

    Vandegraft, Douglas L.

    2018-05-01

    Federal government mapping of the offshore areas of the United States in support of the development of oil and gas resources began in 1954. The first mapping system utilized a network of rectangular blocks defined by State Plane coordinates which was later revised to utilize the Universal Transverse Mercator grid. Creation of offshore boundaries directed by the Submerged Lands Act and Outer Continental Shelf Lands Act were mathematically determined using early computer programs that performed the required computations, but required many steps. The Bureau of Ocean Energy Management has revised these antiquated methods using GIS technology which provide the required accuracy and produce the mapping products needed for leasing of energy resources, including renewable energy projects, on the outer continental shelf. (Note: this is an updated version of a paper of the same title written and published in 2015).

  11. Ultra-low-head hydroelectric technology: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Daqing; Deng, Zhiqun

    In recent years, distributed renewable energy-generation technologies, such as wind and solar, have developed rapidly. Nevertheless, the utilization of ultra-low-head (ULH) water energy (i.e., situations where the hydraulic head is less than 3 m or the water flow is more than 0.5 m/s with zero head) has received little attention. We believe that, through technological innovations and cost reductions, ULH hydropower has the potential to become an attractive, renewable, and sustainable resource. This paper investigates potential sites for ULH energy resources, the selection of relevant turbines and generators, simplification of civil works, and project costs. This review introduces the currentmore » achievements on ULH hydroelectric technology to stimulate discussions and participation of stakeholders to develop related technologies for further expanding its utilization as an important form of renewable energy.« less

  12. Energy supply and demand modeling. (Latest citations from the NTIS bibliographic database). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    The bibliography contains citations concerning the use of mathematical models in trend analysis and forecasting of energy supply and demand factors. Models are presented for the industrial, transportation, and residential sectors. Aspects of long term energy strategies and markets are discussed at the global, national, state, and regional levels. Energy demand and pricing, and econometrics of energy, are explored for electric utilities and natural resources, such as coal, oil, and natural gas. Energy resources are modeled both for fuel usage and for reserves. (Contains 250 citations and includes a subject term index and title list.)

  13. Energy supply and demand modeling. (Latest citations from the NTIS data base). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-10-01

    The bibliography contains citations concerning the use of mathematical models in trend analysis and forecasting of energy supply and demand factors. Models are presented for the industrial, transportation, and residential sectors. Aspects of long term energy strategies and markets are discussed at the global, national, state, and regional levels. Energy demand and pricing, and econometrics of energy, are explored for electric utilities and natural resources, such as coal, oil, and natural gas. Energy resources are modeled both for fuel usage and for reserves. (Contains 250 citations and includes a subject term index and title list.)

  14. Energy supply and demand modeling. (Latest citations from the NTIS bibliographic database). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-12-01

    The bibliography contains citations concerning the use of mathematical models in trend analysis and forecasting of energy supply and demand factors. Models are presented for the industrial, transportation, and residential sectors. Aspects of long term energy strategies and markets are discussed at the global, national, state, and regional levels. Energy demand and pricing, and econometrics of energy, are explored for electric utilities and natural resources, such as coal, oil, and natural gas. Energy resources are modeled both for fuel usage and for reserves. (Contains 250 citations and includes a subject term index and title list.)

  15. Community energy management in Sitka, Alaska: What strategies can help increase energy independence?

    Treesearch

    David Nicholls; Trista Patterson

    2013-01-01

    This report summarizes practical energy management strategies that could help communities in southeast Alaska move closer to energy independence while utilizing local resources more effectively. Our analysis focuses primarily on Sitka, Alaska, yet could be relevant to other communities having similar energy structures that rely primarily on hydroelectric power...

  16. Symposium in the field of geothermal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must bemore » surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.« less

  17. 7 CFR 1710.400 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... alternative energy resources in their service territory. These programs may be considered an essential utility... GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND GUARANTEES Energy Efficiency and... to loans and loan guarantees to finance Energy Efficiency and Conservation programs (EE Programs...

  18. 18 CFR 292.204 - Criteria for qualifying small power production facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY REGULATORY... production capacity of any other small power production facilities that use the same energy resource, are... production facilities within one mile of such facilities. (b) Fuel use. (1)(i) The primary energy source of...

  19. 18 CFR 292.601 - Exemption to qualifying facilities from the Federal Power Act.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... such facility uses any primary energy source other than geothermal resources. (c) General rule. Any... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY REGULATORY... Federal Power Act, except: (1) Sections 205 and 206; however, sales of energy or capacity made by...

  20. Research on the coordination framework for water resources utilization on the interests of mutual compensation in Lancang-Mekong River

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Fang, D., VI; Xu, J.; Dong, Q.

    2017-12-01

    The Lancang-Mekong River is an important international river, cascaded hydropower stations development in which attracts the attention of downstream countries. In this paper, we proposed a coordination framework for water resources utilization on the interests of mutual compensation to relieve the conflict of upstream and downstream countries. Firstly, analyze the benefits and risks caused by the cascaded hydropower stations development and the evolution process of water resources use conflict between upstream and downstream countries. Secondly, evaluate the benefits and risks of flood control, water supply, navigation and power generation based on the energy theory of cascaded hydropower stations development in Lancang-Mekong River. Thirdly, multi-agent cooperation motivation and cooperation conditions between upstream and downstream countries in Lancang-Mekong River is given. Finally, the coordination framework for water resources utilization on the interests of mutual compensation in Lancang-Mekong River is presented. This coordination framework for water resources utilization can increase comprehensive benefits in Lancang-Mekong River.

  1. Geochemical database of feed coal and coal combustion products (CCPs) from five power plants in the United States

    USGS Publications Warehouse

    Affolter, Ronald H.; Groves, Steve; Betterton, William J.; William, Benzel; Conrad, Kelly L.; Swanson, Sharon M.; Ruppert, Leslie F.; Clough, James G.; Belkin, Harvey E.; Kolker, Allan; Hower, James C.

    2011-01-01

    The principal mission of the U.S. Geological Survey (USGS) Energy Resources Program (ERP) is to (1) understand the processes critical to the formation, accumulation, occurrence, and alteration of geologically based energy resources; (2) conduct scientifically robust assessments of those resources; and (3) study the impacts of energy resource occurrence and (or) their production and use on both the environment and human health. The ERP promotes and supports research resulting in original, geology-based, non-biased energy information products for policy and decision makers, land and resource managers, other Federal and State agencies, the domestic energy industry, foreign governments, non-governmental groups, and academia. Investigations include research on the geology of oil, gas, and coal, and the impacts associated with energy resource occurrence, production, quality, and utilization. The ERP's focus on coal is to support investigations into current issues pertaining to coal production, beneficiation and (or) conversion, and the environmental impact of the coal combustion process and coal combustion products (CCPs). To accomplish these studies, the USGS combines its activities with other organizations to address domestic and international issues that relate to the development and use of energy resources.

  2. Geothermal Power/Oil & Gas Coproduction Opportunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOE

    2012-02-01

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.

  3. An Analysis of Current Energy Policy Initiatives in New Mexico. What are the Potential Impacts to the State's Water Resources?

    NASA Astrophysics Data System (ADS)

    Klise, G. T.; Hart, W. E.; Kobos, P. H.; Malczynski, L. A.; Tidwell, V. C.

    2008-12-01

    Population in New Mexico is increasing rapidly with recent projections showing that the state will add more than 1 million people by 2035. This growth will create a demand for additional energy and water supplies that have yet to be developed. New Mexico currently exports about 50% of the energy generated within the state to neighboring states, and existing power plants predominately utilize traditional fossil fuels such as coal, oil and natural gas. Because traditional electric generation technologies utilize large quantities of water, New Mexico can also be seen as exporting water for the benefit of electricity consumed in neighboring states. As it is, both surface water and groundwater supplies are stretched thin and these internal and external stresses stemming from population growth will have a substantial impact on the state's water resources. In 2004, the Governor laid out a plan to make New Mexico a "Clean Energy State" by implementing renewable portfolio standards, developing renewable energy transmission infrastructure, creating an alternative energy innovation fund and creating state specific tax credits for renewable energy production and manufacturing. Recent work in the National Energy-Water Roadmap has pointed out that certain renewable sources of energy utilize less water than traditional power plants, and technological fixes to existing power plants will result in less water consumption. If New Mexico carries out its energy initiative, what will be the impacts to the state's water resources? Will it be possible to meet competing demands for this water? These questions and others will be analyzed in a decision-support tool that can look at the connection between both the physical and economic systems to see what the tradeoffs might be as a result of specific policy decisions. The ability to plan for future energy needs and understanding potential impacts to the state's limited water resources will be an invaluable tool for decision-makers in New Mexico. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. The Frontiers of Resource-Related Scientific Research

    NASA Astrophysics Data System (ADS)

    McNutt, M. K.

    2012-12-01

    Today's and tomorrow's challenges with respect to energy rise beyond assessing the volume, type, distribution, and viability of various energy resources. Access to clean, reliable, and affordable energy supplies requires a much more comprehensive understanding of the full costs, benefits, and inherent risks encompassing the entire life cycle of both the energy commodity/capability itself, as well as those supplementary resources needed for energy production and use, such as water and minerals. Research and assessment science conducted by the US Geological Survey (USGS) spans this range from traditional energy resources such as oil, gas, and coal; to currently under utilized resources such as geothermal, wind, and uranium; as well as more long-term future resources such as gas hydrates. With mission space that includes energy and minerals, water, natural hazards, environmental health, ecosystems, and climate and land use change, increasingly USGS is taking advantage of its integrated science approach and its tradition of working with partners to conduct collaborative research developing methodologies that build on traditional energy-related research. The USGS is incorporating scientific information about geologic, geophysical, biologic, hydrologic, and in some cases socio-economic, trade-offs to be considered by decision makers regarding energy resource development and use. This basic resource information informs the Nation's decisions of how to manage a dynamically evolving energy mix in both an economically and environmentally sustainable manner.

  5. The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterling, John; Davidovich, Ted; Cory, Karlynn

    2015-09-01

    This paper seeks to provide a flexible utility roadmap for identifying the steps that need to be taken to place the utility in the best position for addressing solar in the future. Solar growth and the emergence of new technologies will change the electric utility of tomorrow. Although not every utility, region, or market will change in the same way or magnitude, developing a path forward will be needed to reach the Electric System of the Future in the coming decades. In this report, a series of potential future states are identified that could result in drastically different energy mixesmore » and profiles: 1) Business as Usual, 2) Low Carbon, Centralized Generation, 3) Rapid Distributed Energy Resource Growth, 4) Interactivity of Both the Grid and Demand, and 5) Grid or Load Defection. Complicating this process are a series of emerging disruptions; decisions or events that will cause the electric sector to change. Understanding and preparing for these items is critical for the transformation to any of the future states to be successful. Predicting which future state will predominate 15 years from now is not possible; however, utilities still will need to look ahead and try to anticipate how factors will impact their planning, operations, and business models. In order to dig into the potential transformations facing the utility industry, the authors conducted a series of utility interviews, held a working session at a major industry solar conference, and conducted a quantitative survey. To focus conversations, the authors leveraged the Rapid Distributed Energy Resource (DER) Growth future to draw out how utilities would have to adapt from current processes and procedures in order to manage and thrive in that new environment. Distributed solar was investigated specifically, and could serve as a proxy resource for all distributed generation (DG). It can also provide the foundation for all DERs.« less

  6. Photovoltaic technology for sustainability: An investigation of the distributed utility concept as a policy framework

    NASA Astrophysics Data System (ADS)

    Letendre, Steven Emery

    The U.S. electric utility sector in its current configuration is unsustainable. The majority of electricity in the United States is produced using finite fossil fuels. In addition, significant potential exists to improve the nation's efficient use of energy. A sustainable electric utility sector will be characterized by increased use of renewable energy sources and high levels of end-use efficiency. This dissertation analyzes two alternative policy approaches designed to move the U.S. electric utility sector toward sustainability. One approach is labeled incremental which involves maintaining the centralized structure of the electric utility sector but facilitating the introduction of renewable energy and efficiency into the electrical system through the pricing mechanism. A second policy approach was described in which structural changes are encouraged based on the emerging distributed utility (DU) concept. A structural policy orientation attempts to capture the unique localized benefits that distributed renewable resources and energy efficiency offer to electric utility companies and their customers. A market penetration analysis of PV in centralized energy supply and distributed peak-shaving applications is conducted for a case-study electric utility company. Sensitivity analysis was performed based on incremental and structural policy orientations. The analysis provides compelling evidence which suggests that policies designed to bring about structural change in the electric utility sector are needed to move the industry toward sustainability. Specifically, the analysis demonstrates that PV technology, a key renewable energy option likely to play an important role in a renewable energy future, will begin to penetrate the electrical system in distributed peak-shaving applications long before the technology is introduced as a centralized energy supply option. Most policies to date, which I term incremental, attempt to encourage energy efficiency and renewables through the pricing system. Based on past policy experience, it is unlikely that such an approach would allow PV to compete in Delaware as an energy supply option in the next ten to twenty years. Alternatively, a market-based, or green pricing, approach will not create significant market opportunities for PV as a centralized energy supply option. However, structural policies designed to encourage the explicit recognition of the localized benefits of distributed resources could result in PV being introduced into the electrical system early in the next century.

  7. Photocatalytic Conversion of CO2 on Mars

    NASA Technical Reports Server (NTRS)

    Meier, Annie; Hare, Bryan

    2016-01-01

    Light on Mars shows potential for providing the energy means necessary for enhanced In-Situ Resource Utilization (ISRU). Through photocatalysis, the energy barrier required to convert CO2 is lowered and CH4 production is favorable.

  8. Joint Peru/United States report on Peru/United States cooperative energy assessment. Volume 1. Executive summary, main report and appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-08-01

    In 1978, the US and Peru conducted a comprehensive assessment of Peru's energy resources, needs, and uses and developed several alternative energy strategies that utilize the available resources to meet their energy requirements. This Volume I reports the findings of the assessment and contains the executive summary, the main report, and five appendices of information that support the integrated energy supply and demand analysis. The following chapters are included: The Energy Situation in Peru (economic context and background, energy resources and production, energy consumption patterns); Reference Supply and Demand Projection (approach, procedures, and assumptions; economic projections; energy demand and supplymore » projections; supply/demand integration; uncertainties); and The Development of Strategies and Options (the analysis of options; strategies; increased use of renewables, hydropower, coal; increased energy efficiency; and financial analysis of strategies).« less

  9. Adaptive Resource Utilization Prediction System for Infrastructure as a Service Cloud.

    PubMed

    Zia Ullah, Qazi; Hassan, Shahzad; Khan, Gul Muhammad

    2017-01-01

    Infrastructure as a Service (IaaS) cloud provides resources as a service from a pool of compute, network, and storage resources. Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on the type of resources and time span size. Buffers are read by R language based statistical system. These buffers' data are checked to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive Integrated Moving Average (ARIMA) is applied; otherwise Autoregressive Neural Network (AR-NN) is applied. In ARIMA process, a model is selected based on minimum Akaike Information Criterion (AIC) values. Similarly, in AR-NN process, a network with the lowest Network Information Criterion (NIC) value is selected. We have evaluated our system with real traces of CPU utilization of an IaaS cloud of one hundred and twenty servers.

  10. Adaptive Resource Utilization Prediction System for Infrastructure as a Service Cloud

    PubMed Central

    Hassan, Shahzad; Khan, Gul Muhammad

    2017-01-01

    Infrastructure as a Service (IaaS) cloud provides resources as a service from a pool of compute, network, and storage resources. Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on the type of resources and time span size. Buffers are read by R language based statistical system. These buffers' data are checked to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive Integrated Moving Average (ARIMA) is applied; otherwise Autoregressive Neural Network (AR-NN) is applied. In ARIMA process, a model is selected based on minimum Akaike Information Criterion (AIC) values. Similarly, in AR-NN process, a network with the lowest Network Information Criterion (NIC) value is selected. We have evaluated our system with real traces of CPU utilization of an IaaS cloud of one hundred and twenty servers. PMID:28811819

  11. Foreign Direct Investment and Energy Supply in the Middle East and North Africa: A Correlational Study

    NASA Astrophysics Data System (ADS)

    Elghali, Siddig

    Middle East and North Africa countries have been criticized for failing to utilize foreign direct investment energy resources efficiently. The changing of energy resources environment of the past decades with its growing emphasis on the importance of imminent energy supply challenges require strategists to consider different types of energy resources investment to improve energy supply. One type of energy investment will show effectiveness and efficiency in utilizing foreign direct investment in exposing RE, fossil fuels, natural gas, and reducing CO2 emissions. The purpose of this quantitative correlational study was to utilize foreign direct investment to predict total primary energy supply in the Middle East and North Africa region between 1971 and 2013. The study was conducted using a sample size of 43 years of energy supply resources and foreign direct investment from 1971 to 2013, which includes all of the years for which FDI is available. RE potential may equip Middle East and North Africa countries with sustainable and clean electricity for centuries to come, as non-renewable energy resources may not meet the demands globally and domestically or environmentally. As demands for fossil fuels grow, carbon emissions will increase. RE may be a better option of CO 2 emissions sequestration and will increase electricity to rural areas without government subsidies and complex decision-making policies. RE infrastructure will reduce water desalinization costs, cooling systems, and be useful in heating. Establishing concentrated solar power may be useful for the region cooperation, negotiations, and integration to share this energy. The alternative sought to fossil fuels was nuclear power. However, nuclear power depends on depleting, non-renewable uranium resources. The cost of uranium will increase if widely used and the presence of a nuclear plant in an unstable region is unsafe. Thus, renewable energy as a long-term option is efficient. A nonlinear regression analysis performed to test the foreign direct investment and energy supply predictor variables with the control variables relate to renewable energy resources, fossil fuels, natural gas, nuclear energy, and CO2 emissions. FDI to predict the total primary energy supply in the MENA region between 1971 and 2013. The predictor variable was FDI evaluated for all years between 1971 and 2013. The criterion variables were total primary energy supply from four distinct sources: fossil fuels (including crude oil, natural gas liquid, and refinery feedstocks); natural gas; renewables and waste; and electricity. The results of the nonlinear regression supported FDI inflow was significantly predictive of the total primary energy supply in the Middle East between 1971 and 2013. A future quantitative study could examine FDI and Energy Supply in the MENA for strategic energy and investment policies indicators. Significant prediction between FDI and energy supply should serve as a red flag to researchers and cause them to research further. The study outlines steps that could be followed in making a determination whether selected FDI were consistent with energy data, which would then suggest the need for further FDI and energy supply investigation.

  12. 18 CFR 38.1 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., or controls facilities used for the transmission of electric energy in interstate commerce or for the sale of electric energy at wholesale in interstate commerce and to any non-public utility that seeks... Section 38.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF...

  13. 18 CFR 38.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., or controls facilities used for the transmission of electric energy in interstate commerce or for the sale of electric energy at wholesale in interstate commerce and to any non-public utility that seeks... Section 38.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF...

  14. Wind Energy Applications for Municipal Water Services: Opportunities, Situation Analyses, and Case Studies; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economicallymore » meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.« less

  15. Battery cycle life balancing in a microgrid through flexible distribution of energy and storage resources

    NASA Astrophysics Data System (ADS)

    Khasawneh, Hussam J.; Illindala, Mahesh S.

    2014-09-01

    In this paper, a microgrid consisting of four fuel cell-battery hybrid Distributed Energy Resources (DERs) is devised for an industrial crusher-conveyor load. Each fuel cell was accompanied by a Li-ion battery to provide energy storage support under islanded condition of the microgrid since the fuel cells typically have poor transient response characteristics. After carrying out extensive modeling and analysis in MATLAB®, the battery utilization was found to vary significantly based on the DER's 'electrical' placement within the microgrid. This paper presents, under such conditions, a variety of battery life balancing solutions through the use of the new framework of Flexible Distribution of EneRgy and Storage Resources (FDERS). It is based on an in-situ reconfiguration approach through 'virtual' reactances that help in changing the 'electrical' position of each DER without physically displacing any component in the system. Several possible approaches toward balancing the battery utilization are compared in this paper taking advantage of the flexibility that FDERS offers. It was observed that the estimated battery life is dependent on factors such as cycling sequence, pattern, and occurrence.

  16. Analysis of Low-Temperature Utilization of Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Brian

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis ofmore » the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford Geothermal Workshop. We also have incorporated our wellbore model into TOUGH2-EGS and began coding TOUGH2-EGS with the wellbore model into GEOPHIRES as a reservoir thermal drawdown option. Additionally, case studies for the WVU and Cornell campuses were performed to assess the potential for district heating and cooling at these two eastern U.S. sites.« less

  17. Central Africa Energy: Utilizing NASA Earth Observations to Explore Flared Gas as an Energy Source Alternative to Biomass in Central Africa

    NASA Technical Reports Server (NTRS)

    Jones, Amber; White, Charles; Castillo, Christopher; Hitimana, Emmanuel; Nguyen, Kenny; Mishra, Shikher; Clark, Walt

    2014-01-01

    Much of Central Africa's economy is centered on oil production. Oil deposits lie below vast amounts of compressed natural gas. The latter is often flared off during oil extraction due to a lack of the infrastructure needed to utilize it for productive energy generation. Though gas flaring is discouraged by many due to its contributions to greenhouse emissions, it represents a waste process and is rarely tracked or recorded in this region. In contrast to this energy waste, roughly 80% of Africa's population lacks access to electricity and in turn uses biomass such as wood for heat and light. In addition to the dangers incurred from collecting and using biomass, the practice commonly leads to ecological change through the acquisition of wood from forests surrounding urban areas. The objective of this project was to gain insight on domestic energy usage in Central Africa, specifically Angola, Gabon, and the Republic of Congo. This was done through an analysis of deforestation, an estimation of gas flared, and a suitability study for the infrastructure needed to realize the natural gas resources. The energy from potential natural gas production was compared to the energy equivalent of the biomass being harvested. A site suitability study for natural gas pipeline routes from flare sites to populous locations was conducted to assess the feasibility of utilizing natural gas for domestic energy needs. Analyses and results were shared with project partners, as well as this project's open source approach to assessing the energy sector. Ultimately, Africa's growth demands energy for its people, and natural gas is already being produced by the flourishing petroleum industry in numerous African countries. By utilizing this gas, Africa could reduce flaring, recuperate the financial and environmental loss that flaring accounts for, and unlock a plentiful domestic energy source for its people. II. Introduction Background Africa is home to numerous burgeoning economies; a significant number rely on oil production as their primary source of revenue. Relative to its size and population density, the continent has a wealth of natural resources, including oil and natural gas deposits. The exploration of these resources is not a new endeavor, but rather one that spans decades, up to a century in some places. Their resources, if realized, could provide a great means of economic and social mobility for the people of Africa. Currently, Africa represents about 12 % of the energy market, yet at the same time, consumes only 3 % of the world's energy (Kasekende 2009). The higher

  18. An approach to modeling and optimization of integrated renewable energy system (ires)

    NASA Astrophysics Data System (ADS)

    Maheshwari, Zeel

    The purpose of this study was to cost optimize electrical part of IRES (Integrated Renewable Energy Systems) using HOMER and maximize the utilization of resources using MATLAB programming. IRES is an effective and a viable strategy that can be employed to harness renewable energy resources to energize remote rural areas of developing countries. The resource- need matching, which is the basis for IRES makes it possible to provide energy in an efficient and cost effective manner. Modeling and optimization of IRES for a selected study area makes IRES more advantageous when compared to hybrid concepts. A remote rural area with a population of 700 in 120 households and 450 cattle is considered as an example for cost analysis and optimization. Mathematical models for key components of IRES such as biogas generator, hydropower generator, wind turbine, PV system and battery banks are developed. A discussion of the size of water reservoir required is also presented. Modeling of IRES on the basis of need to resource and resource to need matching is pursued to help in optimum use of resources for the needs. Fixed resources such as biogas and water are used in prioritized order whereas movable resources such as wind and solar can be used simultaneously for different priorities. IRES is cost optimized for electricity demand using HOMER software that is developed by the NREL (National Renewable Energy Laboratory). HOMER optimizes configuration for electrical demand only and does not consider other demands such as biogas for cooking and water for domestic and irrigation purposes. Hence an optimization program based on the need-resource modeling of IRES is performed in MATLAB. Optimization of the utilization of resources for several needs is performed. Results obtained from MATLAB clearly show that the available resources can fulfill the demand of the rural areas. Introduction of IRES in rural communities has many socio-economic implications. It brings about improvement in living environment and community welfare by supplying the basic needs such as biogas for cooking, water for domestic and irrigation purposes and electrical energy for lighting, communication, cold storage, educational and small- scale industrial purposes.

  19. Nick Grue | NREL

    Science.gov Websites

    geospatial data analysis using parallel processing High performance computing Renewable resource technical potential and supply curve analysis Spatial database utilization Rapid analysis of large geospatial datasets energy and geospatial analysis products Research Interests Rapid, web-based renewable resource analysis

  20. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structures: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark; Pratt, Annabelle; Lunacek, Monte

    2015-07-17

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is poorly understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time of use tariff to estimate economic and physical impacts on both the households and the distribution utilities. HEMS reduce consumers’ electric bills by precooling housesmore » in the hours before peak electricity pricing. Household savings are greater than the reduction utility net revenue indicating that HEMS can provide a societal benefit providing tariffs are structured so that utilities remain solvent. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices and resulting in a higher peak load.« less

  1. Sokaogon Chippewa Community Emission-Free and Treaty Resource Protection Clean Energy Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quade, Ron

    Final Report for DOE project DE-IE0000036 The Sokaogon Chippewa Community received a tribal clean energy initiative grant and installed a community wide solar system estimated to produce 606 kw of carbon free clean energy on seventeen (17) tribal buildings and three (3) residential homes significantly reducing the tribes’ energy bills over the life of the system, potentially saving the tribe up to $2.7 million in energy savings over a thirty (30) year time span. Fifteen (15) solar installations utilized aluminum roof-top mounting systems while two (2) installations utilized a ground mount aluminum racking system.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, L.; Kaiser, M.

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, more than 750 utilities--or about 25% of all utilities nationally--provide their customers a "green power" option. Through these programs, more than 70 million customers have the ability to purchase renewable energy to meet some portion or all of their electricity needs--or make contributions to support the development of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2006 data on utility green pricing programs, and examines trendsmore » in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities to benchmark the success of their green power programs.« less

  3. Sistemas Eolicos Pequenos para Generacion de Electricidad: Una guia para consumidores en Nuevo Mexico (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2007-09-01

    This Spanish version of the popular Small Wind Electric Systems: A New Mexico Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a systemmore » to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less

  4. Sistemas Eolicos Pequenos para Generacion de Electridad (Spanish version of Small Wind Electric Systems: A U.S. Consumer's Guide) (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-07-01

    This Spanish version of the popular Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system tomore » the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less

  5. 18 CFR 292.601 - Exemption to qualifying facilities from the Federal Power Act.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... megawatts, if such facility uses any primary energy source other than geothermal resources. (c) General rule... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY REGULATORY... of the Federal Power Act, except: (1) Sections 205 and 206; however, sales of energy or capacity made...

  6. A Groundwater Model to Assess Water Resource Impacts at the Brenda Solar Energy Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, John; Carr, Adrianne E.; Greer, Chris

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support utility-scale solar energy development at the Brenda Solar Energy Zone (SEZ), as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program.

  7. Developing Intelligent System Dynamic Management Instruments on Water-Food-Energy Nexus in Response to Urbanization

    NASA Astrophysics Data System (ADS)

    Tsai, W. P.; Chang, F. J.; Lur, H. S.; Fan, C. H.; Hu, M. C.; Huang, T. L.

    2016-12-01

    Water, food and energy are the most essential natural resources needed to sustain life. Water-Food-Energy Nexus (WFE Nexus) has nowadays caught global attention upon natural resources scarcity and their interdependency. In the past decades, Taiwan's integrative development has undergone drastic changes due to population growth, urbanization and excessive utilization of natural resources. The research intends to carry out interdisciplinary studies on WFE Nexus based on data collection and analysis as well as technology innovation, with a mission to develop a comprehensive solution to configure the synergistic utilization of WFE resources in an equal and secure manner for building intelligent dynamic green cities. This study aims to establish the WFE Nexus through interdisciplinary research. This study will probe the appropriate and secure resources distribution and coopetition relationship by applying and developing techniques of artificial intelligence, system dynamics, life cycle assessment, and synergy management under data mining, system analysis and scenario analysis. The issues of synergy effects, economic benefits and sustainable social development will be evaluated as well. First, we will apply the system dynamics to identify the interdependency indicators of WFE Nexus in response to urbanization and build the dynamic relationship among food production, irrigation water resource and energy consumption. Then, we conduct comparative studies of WFE Nexus between the urbanization and the un-urbanization area (basin) to provide a referential guide for optimal resource-policy nexus management. We expect to the proposed solutions can help achieve the main goals of the research, which is the promotion of human well-being and moving toward sustainable green economy and prosperous society.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laitner, S.

    In the current economic climate and for the foreseeable future, resource policy (especially with respect to energy consumption) has the potential to make a profound impact upon the economic life of our communities. Energy and economic policies should be viewed as catalysts that can help a community - and ultimately a state, or even a nation - achieve larger societal goals such as enhanced employment opportunities. To achieve this potential, we must divorce ourselves from unproductive past concepts and understand the inherent constraints associated with resource utilization to better work them to the advantage of the community. The key elementmore » here is to ensure that community economic goals shape the policymaking process. Without such considerations neither communities nor their respective nations will be able to offset fully the growing economic burden imposed by restrictions arising from a ''business-as-usual'' approach to resource utilization.« less

  9. 2003 Pacific Northwest Loads and Resources Study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration.

    2003-12-01

    The Pacific Northwest Loads and Resources Study (White Book), which is published annually by the Bonneville Power Administration (BPA), establishes one of the planning bases for supplying electricity to customers. The White Book contains projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. The White Book also contains information obtained from formalized resource planning reports and data submittals including those from individual utilities, the Northwest Power and Conservation Council (Council), and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determiningmore » BPA revenues, although the database that generates the data for the White Book analysis contributes to the development of BPA's inventory and ratemaking processes. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions that include expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. In this loads and resources study, resource availability is compared to an expected level of total retail electricity consumption. The forecasted annual energy electricity retail load plus contract obligations are subtracted from the sum of the projected annual energy capability of existing resources and contract purchases to determine whether BPA and/or the region will be surplus or deficit. Surplus energy is available when resources are greater than loads. This energy could be marketed to increase revenues. Deficits occur when resources are less than loads. Energy deficits could be met by any combination of the following: better-than-critical water conditions, demand-side management and conservation programs, permanent loss of a load (i.e., due to economic conditions or closures), additional contract purchases, and/or new generating resources. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA). The PNCA defines the planning and operation of seventeen U.S. Pacific Northwest utilities and other parties with generating facilities within the region's hydroelectric (hydro) system. The hydroregulation study used for the 2003 White Book incorporates measures from the National Oceanographic and Atmospheric Administration Fisheries (NOAA Fisheries) Biological Opinion dated December 2000, and the U.S. Fish and Wildlife Service's 2000 Biological Opinion (2000 FCRPS BiOps) for the Snake River and Columbia River projects. These measures include: (1) Increased flow augmentation for juvenile fish migrations in the Snake and Columbia rivers in the spring and summer; (2) Mandatory spill requirements at the Lower Snake and Columbia dams to provide for non-turbine passage routes for juvenile fish migrants; and (3) Additional flows for Kootenai River white sturgeon in the spring. The hydroregulation criteria for this analysis includes: an updated Detailed Operation Plan for Treaty reservoirs for Operating Year (OY) 2004, updated PNCA planning criteria for OY 2003, and revised juvenile fish bypass spill levels for 2000 FCRPS BiOps implementation. The 2003 White Book is presented in two documents: (1) this summary document of Federal system and PNW region loads and resources, and (2) a technical appendix which presents regional loads, grouped by major PNW utility categories, and detailed contract and resource information. The technical appendix is available only in electronic form. Individual customer information regarding marketer contracts is not detailed due to confidentiality agreements. The 2003 White Book analysis updates the December 2002 White Book. This analysis projects the yearly average energy consumption and resource availability for the study period, OY 2005 through 2014. The study shows the Federal system's and the region's expected monthly peak demand, monthly energy demand, monthly peak generating capability, and monthly energy generation for OY 2005, 2009, and 2014. The Federal system and regional monthly capacity surplus/deficit projections are summarized for the 10 operating years of the study period. This document analyzes the PNW's projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger PNW regional power system loads and resources that include the Federal system as well other PNW entities.« less

  10. Oilfield geothermal exploitation in China-A case study from the Liaohe oilfield in Bohai Bay Basin

    NASA Astrophysics Data System (ADS)

    Wang, Shejiao; Yao, Yanhua; Fan, Xianli; Yan, Jiahong

    2017-04-01

    The clean geothermal energy can play a huge role in solving the problem of severe smog in China as it can replace large coal-fired heating in winter. Chinese government has paid close attention on the development and utilization of geothermal energy. In the "13th Five-Year" plan, the geothermal development is included into the national plan for the first time. China is very rich in the medium and low-temperature geothermal resources, ranking first in the geothermal direct use in the world for a long time. The geothermal resources are mainly concentrated in sedimentary basins, especially in petroliferous basins distributed in North China (in North China, heating is needed in winter). These basins are usually close to the large- and medium-sized cities. Therefore, tapping oilfield geothermal energy have attracted a great attention in the last few years as the watercut achieved above 90% in most oilfields and significant progress has been made. In this paper, taking the Liaohe Oilfield in the Bohai Bay Basin as an example, we discussed the distribution and potential of the geothermal resources, discussed how to use the existed technology to harness geothermal energy more effectively, and forecasted the development prospect of the oilfield geothermal energy. By using the volumetric method, we calculated the geothermal resources of the Guantao Formation, Dongying Formation, Shahejie Formation and basement rock in the Liaohe depression. We tested the geothermal energy utilization efficiency in different conditions by applying different pump technologies and utilizing geothermal energy in different depth, such as shallow geothermal energy (0-200m), middle-deep depth geothermal energy (200-4000m), and oilfield sewage heat produced with oil production. For the heat pump systems, we tested the conventional heat pump system, high-temperature heat pump system, super high-temperature heat pump system, and gas heat pump system. Finally, based on the analysis of national policy, the heat demands of oilfield, and the exploration and development technologies, we discussed the potential of the oilfield geothermal energy development for the industrial and the civil applications in the future.

  11. 18 CFR 290.101 - Applicability and exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... total sales of electric energy by such utility for purposes other than resale exceed 500 million... by name in Appendix A to this part; or (2) That has total sales of electric energy for purposes other... exemptions. 290.101 Section 290.101 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...

  12. 18 CFR 290.101 - Applicability and exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... total sales of electric energy by such utility for purposes other than resale exceed 500 million... by name in Appendix A to this part; or (2) That has total sales of electric energy for purposes other... exemptions. 290.101 Section 290.101 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...

  13. Energy Policy Case Study - California: Renewables and Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homer, Juliet S.; Bender, Sadie R.; Weimar, Mark R.

    2016-09-19

    The purpose of this document is to present a case study of energy policies in California related to power system transformation and renewable and distributed energy resources (DERs). Distributed energy resources represent a broad range of technologies that can significantly impact how much, and when, electricity is demanded from the grid. Key policies and proceedings related to power system transformation and DERs are grouped into the following categories: 1.Policies that support achieving environmental and climate goals 2.Policies that promote deployment of DERs 3.Policies that support reliability and integration of DERs 4.Policies that promote market animation and support customer choice. Majormore » challenges going forward are forecasting and modeling DERs, regulatory and utility business model issues, reliability, valuation and pricing, and data management and sharing.« less

  14. Energy management system turns data into market info

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traynor, P.J.; Ackerman, W.J.

    1996-09-01

    The designers claim that Wisconsin Power & Light Co`s new energy management system is the first system of its type in the world in terms of the comprehensiveness and scope of its stored and retrievable data. Furthermore, the system`s link to the utility`s generating assets enables powerplant management to dispatch generation resources based on up-to-date unit characteristics. That means that the new system gives WP&L a competitive tool to optimize operations as well as fine-tune its EMS based on timely load and unit response information. Additionally, the EMS gives WP&L insight into the complex issues related to the unbundling ofmore » generation resources.« less

  15. GeoEn -Research on Geo-Energy

    NASA Astrophysics Data System (ADS)

    Liebscher, A.; Scheck-Wenderoth, M.; GeoEn Research Group

    2012-04-01

    Axel Liebscher1, Magdalena Scheck-Wenderoth1 and the GeoEn Research Group1, 2,3 1 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany 2 University Potsdam, Germany 3 BTU Cottbus, Germany One of the pressing challenges for the 21st century is a secure, sustainable and economical energy supply at simultaneous mitigation of its climate impact. Besides a switch to renewable energy resources, the exploration and exploitation of new, unconventional energy resources will play a major role as will the further use of fossil fuels. With the switch to renewable energies the question of geological energy storage will become an important topic whereas further use of fossil fuels requires strategies like CCS to reduce its negative climate impacts. These different aspects of geo-energy make complementary or competitive demands on the subsurface and its use. It is therefore essential to treat the subsurface as a geo-resource of its own right. So far, geo-resource related research has often focused on specific resource systems, e.g. ore forming systems, hydrocarbon systems or geothermal systems, providing results largely applicable only to the restricted range of physicochemical properties of the respective geo-resource systems. However, with the increasing use of the subsurface as important geo-resource, the different geo-resource systems tend to overlap and interact and also become much more complex due to the additional use or presence of artificial and technical matter, as is the case in geological CO2 storage. On the other hand, the combined use of the subsurface for different purposes may also create synergetic effects. GeoEn is a joint research project explicitly addressing the fundamental questions related to the sustainable and holistic use of the geo-resource subsurface with a special focus on geo-energy. Project partners are the German Research Centre for Geosciences (GFZ), the University of Potsdam (UP) and the Brandenburg University of Technology (BTU). GeoEn research addresses CO2 capture, transport and utilization, CO2 storage, the unconventional energy resource shale gas and geothermal technologies. These four core topics are studied in an integrated approach using the synergy of cross-cutting themes. The latter encompass new exploration and reservoir technologies as well as innovative monitoring methods, both complemented by numerical simulations of the relevant processes including flow dynamics or heat transfer in the subsurface and along the technological process chains. Accordingly, synergies derived from the cross-cutting topics improve both methodological development applicable in equal measure to the utilization of geothermal energy and of shale gas as well as to the use and monitoring of CO2 storage. Complementary, new modelling approaches are developed that allow the simulation of involved processes to predict the occurrence and physical properties of potential reservoirs and the changes that may be induced by their utilization. We present first results with respect to exploration strategies, monitoring technologies and modeling approaches for the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß-Schönebeck, where the respective technologies are tested and monitored.

  16. A study on the oil-based drilling cutting pyrolysis residue resource utilization by the exploration and development of shale gas.

    PubMed

    Wang, Chao-Qiang; Jin, Ji-Zhong; Lin, Xiao-Yan; Xiong, De-Ming; Mei, Xu-Dong

    2017-07-01

    Based on the requirement of national energy conservation and environmental protection, attention has been given to building an environment-friendly and resource-saving society. Shale gas oil-based drilling cutting pyrolysis residues (ODPRs) have been used as the main research object to developing new technology which can convert the residues into a harmless and recyclable material. Using the test data of ODPR, we analyze the development prospect in the building material industry and provide a scheme to utilize this particular solid-waste efficiently. Theoretically speaking, the ODPR resource utilization such as admixture of cement, making sintered brick, and non-fired brick, by the exploration and development of Fuling shale gas is feasible.

  17. Investigation of Cost and Energy Optimization of Drinking Water Distribution Systems.

    PubMed

    Cherchi, Carla; Badruzzaman, Mohammad; Gordon, Matthew; Bunn, Simon; Jacangelo, Joseph G

    2015-11-17

    Holistic management of water and energy resources through energy and water quality management systems (EWQMSs) have traditionally aimed at energy cost reduction with limited or no emphasis on energy efficiency or greenhouse gas minimization. This study expanded the existing EWQMS framework and determined the impact of different management strategies for energy cost and energy consumption (e.g., carbon footprint) reduction on system performance at two drinking water utilities in California (United States). The results showed that optimizing for cost led to cost reductions of 4% (Utility B, summer) to 48% (Utility A, winter). The energy optimization strategy was successfully able to find the lowest energy use operation and achieved energy usage reductions of 3% (Utility B, summer) to 10% (Utility A, winter). The findings of this study revealed that there may be a trade-off between cost optimization (dollars) and energy use (kilowatt-hours), particularly in the summer, when optimizing the system for the reduction of energy use to a minimum incurred cost increases of 64% and 184% compared with the cost optimization scenario. Water age simulations through hydraulic modeling did not reveal any adverse effects on the water quality in the distribution system or in tanks from pump schedule optimization targeting either cost or energy minimization.

  18. 18 CFR 35.23 - General provisions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... costs, such utility may make an abbreviated rate filing detailing how it will recover emissions... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false General provisions. 35.23 Section 35.23 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION...

  19. 18 CFR 35.23 - General provisions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... costs, such utility may make an abbreviated rate filing detailing how it will recover emissions... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false General provisions. 35.23 Section 35.23 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION...

  20. A Groundwater Model to Assess Water Resource Impacts at the Imperial East Solar Energy Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, John; Greer, Chris; O'Connor, Ben L.

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support the utility-scale solar energy development at the Imperial East Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM) solar energy program.

  1. Large wind turbines: A utility option for the generation of electricity

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Thomas, R. L.; Baldwin, D. H.

    1980-01-01

    The wind resource is such that wind energy generation has the potential to save 6-7 quads of energy nationally. Thus, the Federal Government is sponsoring and encouraging the development of cost effective and reliable wind turbines. One element of the Federal Wind Energy Programs, Large Horizontal Axis Wind Turbine Development, is managed by the NASA Lewis Research Center for the Department of Energy. There are several ongoing wind system development projects oriented primarily toward utility application within this program element. In addition, a comprehensive technology program supporting the wind turbine development projects is being conducted. An overview is presented of the NASA activities with emphasis on application of large wind turbines for generation of electricity by utility systems.

  2. Ecosystem Modelling for Impact Assessment of Possible Methane Leakage during Methane Hydrate Utilization

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Nakano, Y.; Monoe, D.; Oomi, T.; Doi, T.; Nakata, K.; Fukushima, T.

    2005-05-01

    Natural methane hydrate has been scientifically studied as a carbon reservoir globally. However, in Japan, the potential for energy resource has been industrially highlighted. There is less domestic oil and natural gas resources in Japan, but many potential deposition areas for methane hydrate in ocean around Japan are the reasons. Less CO2 discharge from methane compared with coal, oil and conventional natural gas when the same calorie value we get is considered as the advantage for energy resource. However, because methane hydrate distributes in shallower sediment layer in ocean floor, accidental leakage of methane may occur while we utilize methane hydrate. Methane itself has 21-times impact on the greenhouse effect, if it reaches the atmosphere. Therefore, it is necessary to estimate the behavior in the environment after the leakage, if we want to use methane hydrate as energy resource. The mass balance after leakage of methane on seafloor and in water column is numerically studied through the analyses of methane emissions from natural cold seepages and hydrothermal activities in this research. The outline structure of mass balance ecosystem model creating is introduced and some preliminary examination results from the test calculation are discussed.

  3. Utility involvement in cogeneration and small power production since PURPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallaron, S.A.

    One of the objectives of PURPA was more efficient energy production through cogeneration and the use of renewable resources. Under PURPA regulations, cogeneration and small power-producing plants may file for qualifying status to receive benefits allowed by the National Energy Act. There has been a steady increase in the number of qualifying facilities (QFs) and some electric utilities have increased ownership of small power-producing facilities as well as electric purchases from QFs. QFs are not only exempt from federal and state utility regulations under PURPA, but they also may be eligible for an exemption from the provisions of the Fuelmore » Use Act of 1978 which prohibits or limits use of oil and natural gas in power plants and other major fuel-burning installations. To obtain QF status under PURPA, small power-producing facilities are limited to a capacity of 80 MW or less and must use some combination of biomass, waste, geothermal, or other renewable resource as the primary energy source. Cogenerators are not limited in size or fuel. The purchase of electricity from cogenerators and small power producers can be an attractive alternative for utilities in meeting future demands.« less

  4. Feeling of competition may raise utility efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-05-01

    In an attempt to provide the Federal Energy Regulatory Commission (FERC) with a means of encouragement to regulated but non-competitive utilities to offer their customers the lowest possible rates, the Resources Consulting Group Inc. (RCG) devised an incentive regulation program that would award payments to those utilities that are able to reduce the level of and growth in rates. The program has the advantages of promoting the minimization of costs better than traditional regulation does; cost cuts are encouraged in consideration of both long- and short-term resource production and utilization; and ratepayers are able to achieve the greatest possible sharemore » of economic benefits associated with improved performance.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Lori; Kaiser, Marshall

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, more than 750 utilities—or about 25% of all utilities nationally—provide their customers a “green power” option. Through these programs, more than 70 million customers have the ability to purchase renewable energy to meet some portion or all of their electricity needs—or make contributions to support the development of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2006 data on utility green pricing programs, and examines trendsmore » in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities to benchmark the success of their green power programs.« less

  6. Lunar in situ resource utilization by activated thermites

    NASA Astrophysics Data System (ADS)

    Hobosyan, Mkhitar; Martirosyan, Karen

    2011-10-01

    NASA's anticipated returns to the Moon by 2020, subsequent establishment of lunar in situ resource utilization technologies are essential. The surface of Moon is covered with small eroded particles of regolith called lunar dust that adheres electro-statically to everything coming in contact with it, and is of much concern for future lunar base because of its continual mitigation. The next major concern is the protection of equipment and personnel in long term expeditions from harmful UV radiation, which can be made by constructing protective buildings. For construction of permanent structures it is highly desired to have regular shaped sintered regolith with utilization of local materials and with minimum energy consumption. In this study the concept of sintering of lunar regolith with activated thermite reactions is discussed. The thermodynamic calculations as well as the experimental procedure is provided to prove the effectiveness of activated thermites for regolith sintering using local lunar resources with a low (15 wt. %) concentration of aluminum or magnesium. The thermite method is much more energy efficient than the other sintering methods suggested in literature.

  7. An Evaluation of the Consumer Costs and Benefits of Energy Efficiency Resource Standards

    NASA Astrophysics Data System (ADS)

    Lessans, Mark D.

    Of the modern-day policies designed to encourage energy efficiency, one with a significant potential for impact is that of Energy Efficiency Resource Standards (EERS). EERS policies place the responsibility for meeting an efficiency target on the electric and gas utilities, typically setting requirements for annual reductions in electricity generation or gas distribution to customers as a percentage of sales. To meet these requirements, utilities typically implement demand-side management (DSM) programs, which encourage energy efficiency at the customer level through incentives and educational initiatives. In Maryland, a statewide EERS has provided for programs which save a significant amount of energy, but is ultimately falling short in meeting the targets established by the policy. This study evaluates residential DSM programs offered by Pepco, a utility in Maryland, for cost-effectiveness. However, unlike most literature on the topic, analysis focuses on the costs-benefit from the perspective of the consumer, and not the utility. The results of this study are encouraging: the majority of programs analyzed show that the cost of electricity saved, or levelized cost of saved energy (LCSE), is less expensive than the current retail cost of electricity cost in Maryland. A key goal of this study is to establish a metric for evaluating the consumer cost-effectiveness of participation in energy efficiency programs made available by EERS. In doing so, the benefits of these programs can be effectively marketed to customers, with the hope that participation will increase. By increasing consumer awareness and buy-in, the original goals set out through EERS can be realized and the policies can continue to receive support.

  8. Commercialization of fuels from Pinyon-Juniper biomass in Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, G.P.

    1994-12-31

    This study analyzes and defines energy applications and markets that could stimulate the commercial use of Eastern Nevada`s Pinyon-Juniper resources. The commercialization potential for producing energy from Pinyon-Juniper biomass is analyzed by examining the resource base and resource availability for a commercial harvesting and processing operation. The study considered the spectrum of available equipment and technology for carrying out harvesting and processing operations, investigated the markets that might be able to use energy products derived from Pinyon-Juniper biomass, analyzed the costs of harvesting, processing, and transporting Pinyon-Juniper fuels, and set forth a plan for developing the commercial potential of thesemore » resources. The emerging residential pellet-fuels market is a promising entry market for the commercialization of an energy from Pinyon-Juniper biomass industry in Eastern Nevada, although there are serious technical issues that may render Pinyon-Juniper biomass an unsuitable feedstock for the manufacture of pellet fuels. These issues could be investigated at a moderate cost in order to determine whether to proceed with development efforts in this direction. In the longer term, one or two biomass-fired power plants in the size range of 5-10 MW could provide a stable and predictable market for the production and utilization of fuels derived from local Pinyon-Juniper biomass resources, and would provide valuable economic and environmental benefits to the region. Municipal utility ownership of such facilities could help to enhance the economic benefits of the investments by qualifying them for federal energy credits and tax-free financing.« less

  9. Energy efficiency, renewable energy and sustainable development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importancemore » of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.« less

  10. Newly emerging resource efficiency manager programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, S.; Howell, C.

    1997-12-31

    Many facilities in the northwest such as K--12 schools, community colleges, and military installations are implementing resource-efficiency awareness programs. These programs are generally referred to as resource efficiency manager (REM) or resource conservation manager (RCM) programs. Resource efficiency management is a systems approach to managing a facility`s energy, water, and solid waste. Its aim is to reduce utility budgets by focusing on behavioral changes, maintenance and operation procedures, resource accounting, education and training, and a comprehensive awareness campaign that involves everyone in the organization.

  11. 2025 California Demand Response Potential Study - Charting California’s Demand Response Future. Final Report on Phase 2 Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alstone, Peter; Potter, Jennifer; Piette, Mary Ann

    California’s legislative and regulatory goals for renewable energy are changing the power grid’s dynamics. Increased variable generation resource penetration connected to the bulk power system, as well as, distributed energy resources (DERs) connected to the distribution system affect the grid’s reliable operation over many different time scales (e.g., days to hours to minutes to seconds). As the state continues this transition, it will require careful planning to ensure resources with the right characteristics are available to meet changing grid management needs. Demand response (DR) has the potential to provide important resources for keeping the electricity grid stable and efficient, tomore » defer upgrades to generation, transmission and distribution systems, and to deliver customer economic benefits. This study estimates the potential size and cost of future DR resources for California’s three investor-owned utilities (IOUs): Pacific Gas and Electric Company (PG&E), Southern California Edison Company (SCE), and San Diego Gas & Electric Company (SDG&E). Our goal is to provide data-driven insights as the California Public Utilities Commission (CPUC) evaluates how to enhance DR’s role in meeting California’s resource planning needs and operational requirements. We address two fundamental questions: 1. What cost-competitive DR service types will meet California’s future grid needs as it moves towards clean energy and advanced infrastructure? 2. What is the size and cost of the expected resource base for the DR service types?« less

  12. Energy and water quality management systems for water utility's operations: a review.

    PubMed

    Cherchi, Carla; Badruzzaman, Mohammad; Oppenheimer, Joan; Bros, Christopher M; Jacangelo, Joseph G

    2015-04-15

    Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems. For utilities with an installed EWQMS, operating cost savings of 8-15% have been reported due to higher use of cheaper tariff periods and better operating efficiencies, resulting in the reduction in energy consumption of ∼6-9%. This review provides the current state-of-knowledge on EWQMS typical structural features and operational strategies and benefits and drawbacks are analyzed. The review also highlights the challenges encountered during installation and implementation of EWQMS and identifies the knowledge gaps that should motivate new research efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. 2004 Pacific Northwest Loads and Resources Study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration.

    2004-12-01

    The Pacific Northwest Loads and Resources Study (White Book), which is published annually by the Bonneville Power Administration (BPA), establishes one of the planning bases for supplying electricity to customers. The White Book contains projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. The White Book also contains information obtained from formalized resource planning reports and data submittals including those from individual utilities, the Northwest Power and Conservation Council (Council), and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determiningmore » BPA revenues, although the database that generates the data for the White Book analysis contributes to the development of BPA's inventory and ratemaking processes. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions that include expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. The load resource balance of BPA and/or the region is determined by comparing resource availability to an expected level of total retail electricity consumption. Resources include projected energy capability plus contract purchases. Loads include a forecast of retail obligations plus contract obligations. Surplus energy is available when resources are greater than loads. This energy could be marketed to increase revenues. Energy deficits occur when resources are less than loads. These deficits could be met by any combination of the following: better-than-critical water conditions, demand-side management and conservation programs, permanent loss of loads due to economic conditions or closures, additional contract purchases, and/or the addition of new generating resources. The loads and resources analysis in this study simulates the operation of the power system under the current Pacific Northwest Coordination Agreement (PNCA). The PNCA defines the planning and operation of seventeen U.S. Pacific Northwest utilities and other parties with generating facilities within the region's hydroelectric (hydro) system. The hydroregulation study used for the 2004 White Book incorporates measures from the National Oceanographic and Atmospheric Administration Fisheries (NOAA Fisheries) Biological Opinion dated December 2000, and the U.S. Fish and Wildlife Service's 2000 Biological Opinion (2000 FCRPS BiOps) for the Snake River and Columbia River projects. These measures include: (1) Increased flow augmentation for juvenile fish migrations in the Snake and Columbia rivers in the spring and summer; (2) Mandatory spill requirements at the Lower Snake and Columbia dams to provide for non-turbine passage routes for juvenile fish migrants; and (3) Additional flows for Kootenai River white sturgeon in the spring; The hydroregulation criteria for this analysis includes the following: (1) Detailed Operation Plan operation for Treaty reservoirs for Operating Year (OY) 2004; (2) PNCA planning criteria for OY 2004; and (3) Juvenile fish bypass spill levels for 2000 FCRPS BiOps implementation. The 2004 White Book is presented in two documents: (1) this summary document of Federal system and PNW region loads and resources, and (2) a technical appendix which presents regional loads, grouped by major PNW utility categories, and detailed contract and resource information. The technical appendix is available only in electronic form. Individual customer information for marketer contracts is not detailed due to confidentiality agreements. The 2004 White Book analysis updates the 2003 White Book. This analysis projects the yearly average energy consumption and resource availability for the study period, OY 2006 through 2015. The study shows the Federal system's and the region's expected monthly peak demand, monthly energy demand, monthly peak generating capability, and monthly energy generation for OY 2006, 2010, and 2015. The Federal system and regional monthly capacity surplus/deficit projections are summarized for the 10 operating years of the study period. This document analyzes the PNW's projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger PNW regional power system loads and resources that include the Federal system as well other PNW entities.« less

  14. Energy supply and demand modeling. February 1985-March 1988 (A Bibliography from the NTIS data base). Report for February 1985-March 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-06-01

    This bibliography contains citations concerning the use of mathematical models in trend analysis and forecasting of energy supply and demand factors. Models are presented for the industrial, transportation, and residential sectors. Aspects of long term energy strategies and markets are discussed at the global, national, state, and regional levels. Energy demand and pricing, and econometrics of energy, are explored for electric utilities and natural resources, such as coal, oil, and natural gas. Energy resources are modeled both for fuel usage and for reserves. (This updated bibliography contains 201 citations, none of which are new entries to the previous edition.)

  15. Energy supply and demand modeling. April 1988-June 1990 (A Bibliography from the NTIS data base). Report for April 1988-June 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-06-01

    This bibliography contains citations concerning the use of mathematical models in trend analysis and forecasting of energy supply and demand factors. Models are presented for the industrial, transportation, and residential sectors. Aspects of long term energy strategies and markets are discussed at the global, national, state, and regional levels. Energy demand and pricing, and econometrics of energy, are explored for electric utilities and natural resources, such as coal, oil, and natural gas. Energy resources are modeled both for fuel usage and for reserves. (This updated bibliography contains 200 citations, all of which are new entries to the previous edition.)

  16. The GreenLab Research Facility: A Micro-Grid Integrating Production, Consumption and Storage of Clean Energy

    NASA Technical Reports Server (NTRS)

    McDowell Bomani, Bilal Mark; Elbuluk, Malik; Fain, Henry; Kankam, Mark D.

    2012-01-01

    There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The NASA Glenn Research Center (GRC) has initiated a laboratory-pilot study that concentrates on using biofuels as viable alternative fuel resources for the field of aviation, as well as, utilizing wind and solar technologies as alternative renewable energy resources, and in addition, the use of pumped water for storage of energy that can be retrieved through hydroelectric generation. This paper describes the GreenLab Research Facility and its power and energy sources with .recommendations for worldwide expansion and adoption of the concept of such a facility

  17. H2@Scale Resource and Market Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark

    The 'H2@Scale' concept is based on the potential for wide-scale utilization of hydrogen as an energy intermediate where the hydrogen is produced from low cost energy resources and it is used in both the transportation and industrial sectors. H2@Scale has the potential to address grid resiliency, energy security, and cross-sectoral emissions reductions. This presentation summarizes the status of an ongoing analysis effort to quantify the benefits of H2@Scale. It includes initial results regarding market potential, resource potential, and impacts of when electrolytic hydrogen is produced with renewable electricity to meet the potential market demands. It also proposes additional analysis effortsmore » to better quantify each of the factors.« less

  18. Did You Know – Transactive Energy Provides the Next Big Step in DER Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Thomas E.

    This is an invited blog article for the Utility Variable Generation Integration Group (UVIG) on the topic of distributed energy resource (DER) integration. Summarizes DER progress since 2004, which signifies a maturing industry. Proposes transactive energy as a means of integrating more DER without special incentives or mitigation techniques.

  19. TransFormers for Ensuring Long-Term Operations in Lunar Extreme Environments

    NASA Technical Reports Server (NTRS)

    Mantovani, J. G.; Stoica, A.; Alkalai, L.; Wilcox, B.; Quadrelli, M.

    2016-01-01

    "Surviving Extreme Space Environments" (EE) is one of NASA's Space Technology Grand Challenges. Power generation and thermal control are the key survival ingredients that allow a robotic explorer to cope with the EE using resources available to it, for example, by harvesting the local solar energy or by utilizing an onboard radioisotope thermoelectric generator (RTG). TransFormers (TFs) are a new technology concept designed to transform a localized area within a harsh extreme environment into a survivable micro-environment by projecting energy to the precise location where robots or humans operate. For example, TFs placed at a location on the rim of Shackleton Crater, which is illuminated by solar radiation for most of the year, would be able to reflect solar energy onto robots operating in the dark cold crater. TFs utilize a shape transformation mechanism to un-fold from a compact volume to a large reflective surface, and to control how much-and where-the energy is projected, and by adjusting for the changing position of the sun. TFs would enable in-situ resource utilization (ISRU) activities within locations of high interest that would normally be unreachable because of their extreme environment

  20. Closing the cycle on food and energy resource flows in order to create a more sustainable rural economy in Nicaragua

    NASA Astrophysics Data System (ADS)

    Casillas, C. E.

    2009-12-01

    The ecologically sustainable development of economies is often discussed at the urban scale and framed in terms of the environmental threats that accompany rapid growth. The dynamics of rural economies are less complex and provide valuable insights into how resource flows may be better utilized, as well what are the critical roles and relationships of government and society. This paper will present a case study of economic and ecologically appropriate innovations that can be made to the production and consumption behavior within a community on the Atlantic Coast of Nicaragua. Orinoco is a small Garifuna community situated on the Pearl Lagoon basin. It has a population of over 1000 people and its economy is primarily based on the exploitation of declining shrimp and fish resources. This paper will quantify the monetary and material resource flows comprising the current economy, and present technically viable alternatives that would utilize the abundant natural resources in a more ecologically sustainable manner, while decreasing the dependence on imported food and fuels. Specifically, the paper will describe how recently implemented projects of energy conservation can be coupled with improved agricultural and fishing practices in order to meet local and external market demands for fish and vegetable oil. Secondary products can be utilized to eliminate the dependence on imported liquid and gas fossil fuels for cooking and electricity generation.

  1. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming

    2013-01-07

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive controlmore » (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.« less

  2. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming

    2013-04-03

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive controlmore » (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.« less

  3. Energy density and variability in abundance of pigeon guillemot prey: Support for the quality-variability trade-off hypothesis

    USGS Publications Warehouse

    Litzow, Michael A.; Piatt, John F.; Abookire, Alisa A.; Robards, Martin D.

    2004-01-01

    1. The quality-variability trade-off hypothesis predicts that (i) energy density (kJ g-1) and spatial-temporal variability in abundance are positively correlated in nearshore marine fishes; and (ii) prey selection by a nearshore piscivore, the pigeon guillemot (Cepphus columba Pallas), is negatively affected by variability in abundance. 2. We tested these predictions with data from a 4-year study that measured fish abundance with beach seines and pigeon guillemot prey utilization with visual identification of chick meals. 3. The first prediction was supported. Pearson's correlation showed that fishes with higher energy density were more variable on seasonal (r = 0.71) and annual (r = 0.66) time scales. Higher energy density fishes were also more abundant overall (r = 0.85) and more patchy at a scale of 10s of km (r = 0.77). 4. Prey utilization by pigeon guillemots was strongly non-random. Relative preference, defined as the difference between log-ratio transformed proportions of individual prey taxa in chick diets and beach seine catches, was significantly different from zero for seven of the eight main prey categories. 5. The second prediction was also supported. We used principal component analysis (PCA) to summarize variability in correlated prey characteristics (energy density, availability and variability in abundance). Two PCA scores explained 32% of observed variability in pigeon guillemot prey utilization. Seasonal variability in abundance was negatively weighted by these PCA scores, providing evidence of risk-averse selection. Prey availability, energy density and km-scale variability in abundance were positively weighted. 6. Trophic interactions are known to create variability in resource distribution in other systems. We propose that links between resource quality and the strength of trophic interactions may produce resource quality-variability trade-offs.

  4. Multi-Dimensional Optimization for Cloud Based Multi-Tier Applications

    ERIC Educational Resources Information Center

    Jung, Gueyoung

    2010-01-01

    Emerging trends toward cloud computing and virtualization have been opening new avenues to meet enormous demands of space, resource utilization, and energy efficiency in modern data centers. By being allowed to host many multi-tier applications in consolidated environments, cloud infrastructure providers enable resources to be shared among these…

  5. 18 CFR 35.16 - Notice of succession.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Notice of succession. 35.16 Section 35.16 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Filing Requirements § 35.16 Notice of succession. Whenever the name of a public utility is changed, or...

  6. 18 CFR 35.16 - Notice of succession.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Notice of succession. 35.16 Section 35.16 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Filing Requirements § 35.16 Notice of succession. Whenever the name of a public utility is changed, or...

  7. 18 CFR 35.16 - Notice of succession.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Notice of succession. 35.16 Section 35.16 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Filing Requirements § 35.16 Notice of succession. Whenever the name of a public utility is changed, or...

  8. 18 CFR 35.16 - Notice of succession.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Notice of succession. 35.16 Section 35.16 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Filing Requirements § 35.16 Notice of succession. Whenever the name of a public utility is changed, or...

  9. 18 CFR 35.16 - Notice of succession.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Notice of succession. 35.16 Section 35.16 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Filing Requirements § 35.16 Notice of succession. Whenever the name of a public utility is changed, or...

  10. 18 CFR 1b.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Definitions. 1b.1 Section 1b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF... pipelines, electric utilities and hydroelectric projects. [43 FR 27174, June 23, 1978, as amended by Order...

  11. 18 CFR 367.1310 - Account 131, Cash.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT Balance Sheet... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 131, Cash. 367.1310 Section 367.1310 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION...

  12. 18 CFR 292.305 - Rates for sales.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Rates for sales. 292.305 Section 292.305 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... SECTIONS 201 AND 210 OF THE PUBLIC UTILITY REGULATORY POLICIES ACT OF 1978 WITH REGARD TO SMALL POWER...

  13. 18 CFR 35.18 - Asset retirement obligations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Asset retirement obligations. 35.18 Section 35.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Other Filing Requirements § 35.18 Asset retirement obligations. (a) A public utility that files a rate...

  14. 18 CFR 35.18 - Asset retirement obligations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Asset retirement obligations. 35.18 Section 35.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Other Filing Requirements § 35.18 Asset retirement obligations. (a) A public utility that files a rate...

  15. 18 CFR 35.18 - Asset retirement obligations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Asset retirement obligations. 35.18 Section 35.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Other Filing Requirements § 35.18 Asset retirement obligations. (a) A public utility that files a rate...

  16. 18 CFR 35.18 - Asset retirement obligations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Asset retirement obligations. 35.18 Section 35.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Other Filing Requirements § 35.18 Asset retirement obligations. (a) A public utility that files a rate...

  17. 18 CFR 35.18 - Asset retirement obligations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Asset retirement obligations. 35.18 Section 35.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Other Filing Requirements § 35.18 Asset retirement obligations. (a) A public utility that files a rate...

  18. A proposed concept for the extraction of energy stored in magnetic or electric fields in space

    NASA Technical Reports Server (NTRS)

    Papailiou, D. D.

    1976-01-01

    It is known that enormous energy resources associated with electric, magnetic, gravitational, and other fields exist in space. It is also known that the major difficulty in 'tapping' this energy arises from the extremely low density level at which this energy exists. An analytical study has been made of a particular scheme that appears promising for an efficient utilization of some of these energy resources in propulsion. The principle involves the exchange of energy between a fluctuating magnetic field and a velocity field of electrically conducting fluid in turbulent motion located onboard a spacecraft. Under certain conditions the total energy of the turbulent flow field onboard the spacecraft can be increased and this increase appears in the form of Joulean heat. The utilization of the fluctuating part of the magnetic field, in the form of Joulean dissipation (because of its random character) does not introduce any drag on the spacecraft. The application appears promising for flights in the vicinity of Jupiter and other planets. The rate at which energy is gained by the conducting fluid is of the order of 100 watts when the rms value of the fluctuating magnetic field strength is about 1 gauss.

  19. Terrestrial Micro Renewable Energy Applications of Space Technology

    NASA Astrophysics Data System (ADS)

    Komerath, N. M.; Komerath, P. P.

    This paper explores the synergy between technologies intended for extraterrestrial in situ resource utilization and those for terrestrial mass-market micro renewable power generation systems. The case for a micro renewable energy architecture is presented. The obstacles hindering market success are summarized, along with opportunities from recent demonstrations suggesting that the public appetite for sophisticated technology worldwide may be underappreciated by technical researchers. Technical innovations from space research are summarized along with estimates of possible conversion efficiencies. It is argued that the cost-effectiveness of micro power generation must be viewed through the value of the first few watts of available power, rather than the marginal cost per kilowatt-hour of electric power from utility power grids. This leads to the finding that the actual target cost per unit power, and efficiency, are well within reach of space technology products. Hybrid systems integrating power extraction from multiple resources, and adaptable for multiple applications, can break through mass market price barriers. Recent work to develop learning resources and test beds as part of a Micro Renewable Energy Laboratory is summarized.

  20. Securing the Data Storage and Processing in Cloud Computing Environment

    ERIC Educational Resources Information Center

    Owens, Rodney

    2013-01-01

    Organizations increasingly utilize cloud computing architectures to reduce costs and energy consumption both in the data warehouse and on mobile devices by better utilizing the computing resources available. However, the security and privacy issues with publicly available cloud computing infrastructures have not been studied to a sufficient depth…

  1. Assessment of Distributed Generation Potential in JapaneseBuildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan

    2005-05-25

    To meet growing energy demands, energy efficiency, renewable energy, and on-site generation coupled with effective utilization of exhaust heat will all be required. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems (or microgrids). This research investigates a method of choosing economically optimal DER, expanding on prior studies at the Berkeley Lab using the DER design optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM finds the optimal combination of installed equipment from available DER technologies, given prevailing utility tariffs, site electrical and thermal loads, and a menu of available equipment.more » It provides a global optimization, albeit idealized, that shows how the site energy loads can be served at minimum cost by selection and operation of on-site generation, heat recovery, and cooling. Five prototype Japanese commercial buildings are examined and DER-CAM applied to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Based on the optimization results, energy and emission reductions are evaluated. Furthermore, a Japan-U.S. comparison study of policy, technology, and utility tariffs relevant to DER installation is presented. Significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the DER-CAM results. Savings were most noticeable in the sports facility (a very favourable CHP site), followed by the hospital, hotel, and office building.« less

  2. Interaction and Impact Studies for Distributed Energy Resource, Transactive Energy, and Electric Grid, using High Performance Computing ?based Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, B. M.

    The electric utility industry is undergoing significant transformations in its operation model, including a greater emphasis on automation, monitoring technologies, and distributed energy resource management systems (DERMS). With these changes and new technologies, while driving greater efficiencies and reliability, these new models may introduce new vectors of cyber attack. The appropriate cybersecurity controls to address and mitigate these newly introduced attack vectors and potential vulnerabilities are still widely unknown and performance of the control is difficult to vet. This proposal argues that modeling and simulation (M&S) is a necessary tool to address and better understand these problems introduced by emergingmore » technologies for the grid. M&S will provide electric utilities a platform to model its transmission and distribution systems and run various simulations against the model to better understand the operational impact and performance of cybersecurity controls.« less

  3. Quantifying Energy and Water Savings in the U.S. Residential Sector.

    PubMed

    Chini, Christopher M; Schreiber, Kelsey L; Barker, Zachary A; Stillwell, Ashlynn S

    2016-09-06

    Stress on water and energy utilities, including natural resource depletion, infrastructure deterioration, and growing populations, threatens the ability to provide reliable and sustainable service. This study presents a demand-side management decision-making tool to evaluate energy and water efficiency opportunities at the residential level, including both direct and indirect consumption. The energy-water nexus accounts for indirect resource consumption, including water-for-energy and energy-for-water. We examine the relationship between water and energy in common household appliances and fixtures, comparing baseline appliances to ENERGY STAR or WaterSense appliances, using a cost abatement analysis for the average U.S. household, yielding a potential annual per household savings of 7600 kWh and 39 600 gallons, with most upgrades having negative abatement cost. We refine the national average cost abatement curves to understand regional relationships, specifically for the urban environments of Los Angeles, Chicago, and New York. Cost abatement curves display per unit cost savings related to overall direct and indirect energy and water efficiency, allowing utilities, policy makers, and homeowners to consider the relationship between energy and water when making decisions. Our research fills an important gap of the energy-water nexus in a residential unit and provides a decision making tool for policy initiatives.

  4. Study benefit value of utilization water resources for energy and sustainable environment

    NASA Astrophysics Data System (ADS)

    Juniah, Restu; Sastradinata, Marwan

    2017-11-01

    Referring to the concept of sustainable development, the environment is said to be sustainable if the fulfillment of three pillars of development that is economic, social and ecological or the environment itself. The environment can sustained in the principle of ecology or basic principles of environmental science, when the three environmental components, namely the natural environment, the artificial environment (the built environment) and the social environment can be aligned for sustainability. The natural environment in this study is the water resources, the artificial environment is micro hydroelectric power generation (MHPG), and the social environment is the community living around the MHPG. The existence of MHPG is intended for the sustainability of special electrical energy for areas not yet reached by electricity derived from the state electricity company (SEC). The utilization of MHPG Singalaga in South Ogan Komering Ulu (OKUS) district is not only intended for economic, ecological, and social sustainability in Southern OKU district especially those who live in Singalaga Village, Kisam Tinggi District. This paper discusses the economic, ecological and social benefits of water resources utilization in Southern OKU District for MHPG Singalaga. The direct economic benefits that arise for people living around MHPG Singalaga is the cost incurred by the community for the use of electricity is less than if the community uses electricity coming from outside the MHPG. The cost to society in the form of dues amounting to IDR 15,000 a month / household. Social benefits with the absorption of manpower to manage the MHPG is chairman, secretary and 3 members, while the ecological benefits of water resources and sustainable energy as well as the community while maintaining the natural vegetation that is located around the MHPG for the continuity of water resources.

  5. Sustainable Water Infrastructure

    EPA Pesticide Factsheets

    Resources for state and local environmental and public health officials, and water, infrastructure and utility professionals to learn about sustainable water infrastructure, sustainable water and energy practices, and their role.

  6. Challenge theme 5: Current and future needs of energy and mineral resources in the Borderlands and the effects of their development: Chapter 7 in United States-Mexican Borderlands: Facing tomorrow's challenges through USGS science

    USGS Publications Warehouse

    Updike, Randall G.; Ellis, Eugene G.; Page, William R.; Parker, Melanie J.; Hestbeck, Jay B.; Horak, William F.

    2013-01-01

    Exploration and extraction activities related to energy and mineral resources in the Borderlands—such as coal-fired power plants, offshore drilling, and mining—can create issues that have potentially major economic and environmental implications. Resource assessments and development projects, environmental studies, and other related evaluations help to understand some of these issues, such as power plant emissions and the erosion/denudation of abandoned mine lands. Information from predictive modeling, monitoring, and environmental assessments are necessary to understand the full effects of energy and mineral exploration, development, and utilization. The exploitation of these resources can negatively affect human health and the environment, its natural resources, and its ecological services (air, water, soil, recreation, wildlife, etc.). This chapter describes the major energy and mineral issues of the Borderlands and how geologic frameworks, integrated interdisciplinary (geobiologic) investigations, and other related studies can address the anticipated increases in demands on natural resources in the region.

  7. Classification of geothermal resources by potential

    NASA Astrophysics Data System (ADS)

    Rybach, L.

    2015-03-01

    When considering and reporting resources, the term "geothermal potential" is often used without clearly stating what kind of potential is meant. For renewable energy resources it is nowadays common to use different potentials: theoretical, technical, economic, sustainable, developable - decreasing successively in size. In such a sequence, the potentials are progressively realizable and more and more rewarding financially. The theoretical potential describes the physically present energy, the technical potential the fraction of this energy that can be used by currently available technology and the economic potential the time- and location-dependent fraction of the previous category; the sustainable potential constrains the fraction of the economic potential that can be utilized in the long term; the developable potential is the fraction of the economic resource which can be developed under realistic conditions. In converting theoretical to technical potential, the recovery factor (the ratio extractable heat/heat present at depth) is of key importance. An example (global geothermal resources) is given, with numerical values of the various potentials. The proposed classification could and should be used as a kind of general template for future geothermal energy resources reporting.

  8. Nanomaterials for renewable energy

    DOE PAGES

    Chen, Shimou; Li, Liang; Sun, Hanwen; ...

    2015-05-19

    With demand for sustainable energy, resource, and environment protection, new material technologies are constantly expanding during the last few couple of decades. An intensive attention has been given by the scientific communities. In particular, nanomaterials are increasingly playing an active role either by increasing the efficiency of the energy storage and conversion processes or by improving the device design and performance. This special issue presents recent research advances in various aspects of energy storage technologies, advanced batteries, fuel cells, solar cell, biofuels, and so on. Design and synthesis of novel materials have demonstrated great impact on the utilization of themore » sustainable energy, which need to solve the increasing shortage of resource and the issues of environmental pollution.« less

  9. Utility-Scale Photovoltaic Deployment Scenarios of the Western United States: Implications for Solar Energy Zones in Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frew, Bethany; Mai, Trieu; Krishnan, Venkat

    2016-12-01

    In this study, we use the National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment System (ReEDS) capacity expansion model to estimate utility-scale photovoltaic (UPV) deployment trends from present day through 2030. The analysis seeks to inform the U.S. Bureau of Land Management's (BLM's) planning activities related to UPV development on federal lands in Nevada as part of the Resource Management Plan (RMP) revision for the Las Vegas and Pahrump field offices. These planning activities include assessing the demand for new or expanded additional Solar Energy Zones (SEZ), per the process outlined in BLM's Western Solar Plan process.

  10. Profiles in Renewable Energy: Case Studies of Successful Utility-Sector

    Science.gov Websites

    Shape of Renewable Energy Technologies Today Biomass Wood-Burning Plant Reduces Air Pollution Kettle Economical Altamont Pass Windplants U.S. Windpower, Inc. For More Information The Shape of Renewable Energy temperatures >175 degrees C), which rely on flashing the hot water to steam, and binary plants (for resource

  11. Utilization of patient resources in physiotherapy interventions: Analysis of the interaction concerning non-specific low back pain.

    PubMed

    Josephson, Iréne; Bülow, Pia H

    2014-01-01

    This paper reports on an empirical study in Sweden of how patient resources come into play in physiotherapy interventions. A qualitative analysis was conducted of five video-recorded first encounters between patients with non-specific low back pain (NSLBP) and physiotherapists in primary care, using Conservation of Resource Theory (COR) to identify and focus on how physiotherapists made use of patients' resources (objects, conditions, personal characteristics and energies). The findings reveal variations in how these resources are utilized during the intervention. Resources with implications for what happens in the examination room during the ongoing encounter and resources characterized by professional familiarity were both employed in the intervention. However, underutilized resources were featured in the broader lifeworld perspective of laypeople and of other professional frames. The findings raise questions about professional challenges that go beyond professional skills. This implies that professionals need to improve skills in understanding and integrating patient resources into interventions.

  12. Harvest and utilization of chemical energy in wastes by microbial fuel cells.

    PubMed

    Sun, Min; Zhai, Lin-Feng; Li, Wen-Wei; Yu, Han-Qing

    2016-05-21

    Organic wastes are now increasingly viewed as a resource of energy that can be harvested by suitable biotechnologies. One promising technology is microbial fuel cells (MFC), which can generate electricity from the degradation of organic pollutants. While the environmental benefits of MFC in waste treatment have been recognized, their potential as an energy producer is not fully understood. Although progresses in material and engineering have greatly improved the power output from MFC, how to efficiently utilize the MFC's energy in real-world scenario remains a challenge. In this review, fundamental understandings on the energy-generating capacity of MFC from real waste treatment are provided and the challenges and opportunities are discussed. The limiting factors restricting the energy output and impairing the long-term reliability of MFC are also analyzed. Several energy storage and in situ utilization strategies for the management of MFC's energy are proposed, and future research needs for real-world application of this approach are explored.

  13. No Cost – Low Cost Compressed Air System Optimization in Industry

    NASA Astrophysics Data System (ADS)

    Dharma, A.; Budiarsa, N.; Watiniasih, N.; Antara, N. G.

    2018-04-01

    Energy conservation is a systematic, integrated of effort, in order to preserve energy sources and improve energy utilization efficiency. Utilization of energy in efficient manner without reducing the energy usage it must. Energy conservation efforts are applied at all stages of utilization, from utilization of energy resources to final, using efficient technology, and cultivating an energy-efficient lifestyle. The most common way is to promote energy efficiency in the industry on end use and overcome barriers to achieve such efficiency by using system energy optimization programs. The facts show that energy saving efforts in the process usually only focus on replacing tools and not an overall system improvement effort. In this research, a framework of sustainable energy reduction work in companies that have or have not implemented energy management system (EnMS) will be conducted a systematic technical approach in evaluating accurately a compressed-air system and potential optimization through observation, measurement and verification environmental conditions and processes, then processing the physical quantities of systems such as air flow, pressure and electrical power energy at any given time measured using comparative analysis methods in this industry, to provide the potential savings of energy saving is greater than the component approach, with no cost to the lowest cost (no cost - low cost). The process of evaluating energy utilization and energy saving opportunities will provide recommendations for increasing efficiency in the industry and reducing CO2 emissions and improving environmental quality.

  14. Third geopressured-geothermal energy conference.Vol 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meriwether, J.

    1977-11-16

    Twenty papers were included covering the Edna Delcambre Test Well, legal studies, environmental studies, economic studies, and resource utilization. Separate abstracts were prepared for each paper. (MHR)

  15. Implementing PURPA : Renewable Resource Development in the Pacific Northwest : Executive Summary.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington State Energy Office.

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities (QFs) and purchase electricity at a rate based upon their full avoided cost of providing both capacity and energy. Facilities that qualify for PURPA benefits include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. The mandate of PURPA, coupled with the electrical energy deficits projected to occur in the Pacific Northwest by the mid 1980s, led to resurgence of interest in the development ofmore » small, decentralized, non-utility owned and operated generating stations. A variety of would-be developers conducted feasibility studies and initiated environmental permitting and power marketing discussions with appropriate authorities. While many proposed PURPA projects fill by the wayside, others were successfully brought on-line. A variety of public and private sector developers, including cities, counties, irrigation districts, utilities, ranchers, timber companies, and food processing plants, successfully negotiated PURPA-based, or share-the-savings'' power purchase contracts. Other developers run their meter backwards'' or provide energy to their local utilities at the same rate that would otherwise be paid to Bonneville. This document provides a summary resource development of these renewable projects in the Pacific Northwest.« less

  16. Evaluation of Geothermal and Natural Gas Resources Beneath Camp Dawson and Opportunities for Deep Direct Use of Geothermal Energy or Natural Gas for Heat and Electricity Production; NETL-TRS-8-2017; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2017; p 148.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Means, Ken; Muring, Timothy M.; Sams, Neal W.

    NETL has reviewed available information and evaluated the deep geothermal and natural gas resources located beneath the Camp Dawson National Guard Training Center in West Virginia. This facility is located in the northeastern portion of the state in Preston County, near the town of Kingwood. This study reviews options for the onsite drilling of wells for the production of geothermal heat or natural gas, as well as the utilization of these resources for on-site power and heating needs. Resources of potential interest are at subsurface depths between 7,000 feet and 15,000 feet.

  17. Energy Recovery Hydropower: Prospects for Off-Setting Electricity Costs for Agricultural, Municipal, and Industrial Water Providers and Users; July 2017 - September 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Aaron L.; Curtis, Taylor L.; Johnson, Kurt

    Energy recovery hydropower is one of the most cost-effective types of new hydropower development because it is constructed utilizing existing infrastructure, and it is typically able to complete Federal Energy Regulatory Commission (FERC) review in 60 days. Recent changes in federal and state policy have supported energy recovery hydropower. In addition, some states have developed programs and policies to support energy recovery hydropower, including resource assessments, regulatory streamlining initiatives, and grant and loan programs to reduce project development costs. This report examines current federal and state policy drivers for energy recovery hydropower, reviews market trends, and looks ahead at futuremore » federal resource assessments and hydropower reform legislation.« less

  18. 18 CFR 367.3910 - Account 391, Office furniture and equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... furniture and equipment. 367.3910 Section 367.3910 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... other cabinets. (5) Floor covering. (6) Library and library equipment. (7) Mechanical office equipment...

  19. 18 CFR 367.3910 - Account 391, Office furniture and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... furniture and equipment. 367.3910 Section 367.3910 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... other cabinets. (5) Floor covering. (6) Library and library equipment. (7) Mechanical office equipment...

  20. 18 CFR 367.3910 - Account 391, Office furniture and equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... furniture and equipment. 367.3910 Section 367.3910 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... other cabinets. (5) Floor covering. (6) Library and library equipment. (7) Mechanical office equipment...

  1. Performance simulation of a grid connected photovoltaic power system using TRNSYS 17

    NASA Astrophysics Data System (ADS)

    Raja Sekhar, Y.; Ganesh, D.; Kumar, A. Suresh; Abraham, Raju; Padmanathan, P.

    2017-11-01

    Energy plays an important role in a country’s economic growth in the current energy scenario, the major problem is depletion of energy sources (non-renewable) are more than being formed. One of the prominent solutions is minimizing the use of fossil fuels by utilization of renewable energy resources. A photovoltaic system is an efficient option in terms of utilizing the solar energy resource. The electricity output produced by the photovoltaic systems depends upon the incident solar radiation. This paper examines the performance simulation of 200KW photovoltaic power system at VIT University, Vellore. The main objective of this paper is to correlate the results between the predicted simulation data and the experimental data. The simulation tool used here is TRNSYS. Using TRNSYS modelling prediction of electricity produced throughout the year can be calculated with the help of TRNSYS weather station. The deviation of the simulated results with the experimented results varies due to the choice of weather station. Results from the field test and simulation results are to be correlated to attain the maximum performance of the system.

  2. 76 FR 3625 - Sunshine Act Meeting Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Integration of Variable Renewable Generation. ELECTRIC E-1 RM04-7-009 Market-Based Rates for Wholesale Sales of Electric Energy, Capacity and Ancillary Services by Public Utilities. E-2 RM10-20-000 Market-Based..., Eagle Creek Water Resources, LLC, Eagle Creek Land Resources, LLC. CERTIFICATES C-1 CP10-496-000 Cameron...

  3. 18 CFR 35.10a - Forms of service agreements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Forms of service agreements. 35.10a Section 35.10a Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... service agreement for a service other than market-based power sales, the public utility shall include as...

  4. Mini Solar and Sea Current Power Generation System

    NASA Astrophysics Data System (ADS)

    Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu

    2017-07-01

    The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.

  5. Unraveling the Importance of Climate Change Resilience in Planning the Future Sustainable Energy System

    NASA Astrophysics Data System (ADS)

    Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.

    2017-12-01

    In response to concerns regarding the environmental impacts of the current energy resource mix, significant research efforts have been focused on determining the future energy resource mix to meet emissions reduction and environmental sustainability goals. Many of these studies focus on various constraints such as costs, grid operability requirements, and environmental performance, and develop different plans for the rollout of energy resources between the present and future years. One aspect that has not yet been systematically taken into account in these planning studies, however, is the potential impacts that changing climates may have on the availability and performance of key energy resources that compose these plans. This presentation will focus on a case study for California which analyzes the impacts of climate change on the greenhouse gas emissions and renewable resource utilization of an energy resource plan developed by Energy Environmental Economics for meeting the state's year 2050 greenhouse gas goal of 80% reduction in emissions by the year 2050. Specifically, climate change impacts on three aspects of the energy system are investigated: 1) changes in hydropower generation due to altered precipitation, streamflow and runoff patterns, 2) changes in the availability of solar thermal and geothermal power plant capacity due to shifting water availability, and 3) changes in the residential and commercial electric building loads due to increased temperatures. These impacts were discovered to cause the proposed resource plan to deviate from meeting its emissions target by up to 5.9 MMT CO2e/yr and exhibit a reduction in renewable resource penetration of up to 3.1% of total electric energy. The impacts of climate change on energy system performance were found to be mitigated by increasing the flexibility of the energy system through increased storage and electric load dispatchability. Overall, this study highlights the importance of taking into account and building resilience against potential climate change impacts on the energy system in planning the future energy resource mix.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Lori; Brown, Elizabeth

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, more than 600 utilities—or about 20% of all utilities nationally—provide their customers a “green power” option. Because some utilities offer programs in conjunction with cooperative associations or other publicly owned power entities, the number of distinct programs totals more than 130. Through these programs, more than 50 million customers have the ability to purchase renewable energy to meet some portion or all of their electricity needs—or make contributions to support the development of renewable energy resources. Typically,more » customers pay a premium above standard electricity rates for this service. This report presents year-end 2005 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities to benchmark the success of their green power programs.« less

  7. 18 CFR 367.1520 - Account 152, Fuel stock expenses undistributed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 152, Fuel stock... REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... TO THE PROVISIONS OF THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL POWER ACT AND NATURAL...

  8. Chicano Workers: Their Utilization and Development. Chicano Studies Center Publications Monograph No. 8.

    ERIC Educational Resources Information Center

    Romero, Fred E.

    Chicano human resources have never been properly utilized in the labor markets of the Southwest. The slow rate of Chicano economic growth can be attributed to underdevelopment of their skills, knowledge and talent and underutilization of their energies and capabilities. This book, a factual presentation of that underdevelopment and…

  9. Martian resource locations: Identification and optimization

    NASA Astrophysics Data System (ADS)

    Chamitoff, Gregory; James, George; Barker, Donald; Dershowitz, Adam

    2005-04-01

    The identification and utilization of in situ Martian natural resources is the key to enable cost-effective long-duration missions and permanent human settlements on Mars. This paper presents a powerful software tool for analyzing Martian data from all sources, and for optimizing mission site selection based on resource collocation. This program, called Planetary Resource Optimization and Mapping Tool (PROMT), provides a wide range of analysis and display functions that can be applied to raw data or imagery. Thresholds, contours, custom algorithms, and graphical editing are some of the various methods that can be used to process data. Output maps can be created to identify surface regions on Mars that meet any specific criteria. The use of this tool for analyzing data, generating maps, and collocating features is demonstrated using data from the Mars Global Surveyor and the Odyssey spacecraft. The overall mission design objective is to maximize a combination of scientific return and self-sufficiency based on utilization of local materials. Landing site optimization involves maximizing accessibility to collocated science and resource features within a given mission radius. Mission types are categorized according to duration, energy resources, and in situ resource utilization. Preliminary optimization results are shown for a number of mission scenarios.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, M.; Pratt, A.; Lunacek, M.

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is not well understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electricmore » bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load. used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load.« less

  11. Sacramento Municipal Utility District PV and Smart Grid Pilot at Anatolia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawson, Mark; Sanchez, Eddie Paul

    2013-12-30

    Under DE-FOA-0000085 High Penetration Solar Deployment, the U. S. Department of Energy funded agreements with SMUD and Navigant Consulting, SunPower, GridPoint, the National Renewable Energy Laboratory, and the California Energy Commission for this pilot demonstration project. Funding was $5,962,409.00. Cost share of $500,000 was also provided by the California Energy Commission. The project has strategic implications for SMUD, other utilities and the PV and energy-storage industries in business and resource planning, technology deployment and asset management. These implications include: -At this point, no dominant business models have emerged and the industry is open for new ideas. -Demonstrated two business modelsmore » for using distributed PV and energy storage, and brainstormed several dozen more, each with different pros and cons for SMUD, its customers and the industry. -Energy storage can be used to manage high penetrations of PV and mitigate potential issues such as reverse power flow, voltage control violations, power quality issues, increased wear and tear on utility equipment, and system wide power supply issues. - Smart meters are another tool utilities can use to manage high penetrations of PV. The necessary equipment and protocols exist, and the next step is to determine how to integrate the functionality with utility programs and what level of utility control is required. - Time-of-use rates for the residential customers who hosted energy storage systems did not cause a significant change in energy usage patterns. However, the rates we used were not optimized for PV and energy storage. Opportunities exist for utilities to develop new structures.« less

  12. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    NASA Technical Reports Server (NTRS)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  13. Energy Information Resources.

    ERIC Educational Resources Information Center

    Gaddy, Carol T., Ed.; Wells, Kathy, Ed.

    This document was published with the small energy user in mind--the student writing a term paper, the homemaker seeking tips on cutting utility bills, the elderly, farmers, small business owners, factory managers, and Arkansans in all walks of life. Although the volume contains a significant selection of books, magazines, films, and organizations…

  14. Increasing the percentage of renewable energy in the Southwestern United States

    USDA-ARS?s Scientific Manuscript database

    Combining the output of wind farms with that of Concentrating Solar Power (CSP) plants (including a heat storage system) resulted in a substantial percentage (40%) of the total utility electrical generation in the Southwestern United States being met by renewable energy. Using wind and solar resourc...

  15. 18 CFR 367.9210 - Account 921, Office supplies and expenses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... supplies and expenses. 367.9210 Section 367.9210 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005... service expenses to include telephone, telegraph, wire transfer, micro-wave, and other similar items. (6...

  16. Evaluating the Competitive Use of the Subsurface: The Influence of Energy Storage and Production in Groundwater

    NASA Astrophysics Data System (ADS)

    Helmig, R.; Becker, B.; Flemisch, B.

    2015-12-01

    The natural subsurface is gaining in importance for a variety of engineering applications related to energy supply. At the same time it is already utilized in many ways. On the one hand, the subsurface with its groundwater system represents the most important source of drinking water; on the other hand, it contains natural resources such as petroleum, natural gas and coal. In recent years, the subsurface has been gaining importance as a resource of energy and as an energy and waste repository. It can serve as a short-, medium- or long-term storage medium for energy in various forms, e.g. in the form of methane (CH4), hydrogen (H2) or compressed air. The subsurface is also attracting increasing interest as a natural source of energy, regarding, for instance, the extraction of fossil methane by hydraulic fracturing or the utilization of geothermal energy as a renewable energy source. As a result, with increasing exploitation, resource conflicts are becoming more and more common and complex. Modeling concepts for simulating multiphase flow that can reproduce the high complexity of the underlying processes in an efficient way need to be developed. The application of these model concepts is of great importance with respect to feasibility, risk analysis, storage capacity and sensitivity issues. This talk will give an overview on possible utilization conflicts in subsurface systems and how the groundwater is affected. It will focus on presenting fundamental properties and functions of a compositional multiphase system in a porous medium and introduce basic multiscale and multiphysics concepts as well as formulate conser­vation laws for simulating energy storage in the subsurface. Large-scale simulations that show the general applicability of the modeling concepts of such complicated natural systems, especially the impact on the groundwater of simultaneously using geothermal energy and storing chemical and thermal energy, and how such real large-scale systems provide a good environment for balancing the efficiency potential and possible weaknesses of the approaches will be discussed.

  17. Biomass resources in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiangco, V.M.; Sethi, P.S.

    1993-12-31

    The biomass resources in California which have potential for energy conversion were assessed and characterized through the project funded by the California Energy Commission and the US Department of Energy`s Western Regional Biomass Energy Program (WRBEP). The results indicate that there is an abundance of biomass resources as yet untouched by the industry due to technical, economic, and environmental problems, and other barriers. These biomass resources include residues from field and seed crops, fruit and nut crops, vegetable crops, and nursery crops; food processing wastes; forest slash; energy crops; lumber mill waste; urban wood waste; urban yard waste; livestock manure;more » and chaparral. The estimated total potential of these biomass resource is approximately 47 million bone dry tons (BDT), which is equivalent to 780 billion MJ (740 trillion Btu). About 7 million BDT (132 billion MJ or 124 trillion Btu) of biomass residue was used for generating electricity by 66 direct combustion facilities with gross capacity of about 800 MW. This tonnage accounts for only about 15% of the total biomass resource potential identified in this study. The barriers interfering with the biomass utilization both in the on-site harvesting, collection, storage, handling, transportation, and conversion to energy are identified. The question whether these barriers present significant impact to biomass {open_quotes}availability{close_quotes} and {open_quotes}sustainability{close_quotes} remains to be answered.« less

  18. Electric network interconnection of Mashreq Arab Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Amin, I.M.; Al-Shehri, A.M.; Opoku, G.

    1994-12-01

    Power system interconnection is a well established practice for a variety of technical and economical reasons. Several interconnected networks exist worldwide for a number of factors. Some of these networks cross international boundaries. This presentation discusses the future developments of the power systems of Mashreq Arab Countries (MAC). MAC consists of Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, United Arab Emirates (UAE), and Yemen. Mac power systems are operated by government or semigovernment bodies. Many of these countries have national or regional electric grids but are generally isolated from each other. With the exception of Saudi Arabiamore » power systems, which employ 60 Hz, all other MAC utilities use 50 Hz frequency. Each country is served by one utility, except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi Consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The energy resources in MAC are varied. Countries such as Egypt, Iraq, and Syria have significant hydro resources.The gulf countries and Iraq have abundant fossil fuel, The variation in energy resources as well as the characteristics of the electric load make it essential to look into interconnections beyond the national boundaries. Most of the existing or planned interconnections involve few power systems. A study involving 12 countries and over 20 utilities with different characteristics represents a very large scale undertaking.« less

  19. More diesel generation could further fossil fuel economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffs, E.

    1976-05-01

    Following the introduction last year of their Seahorse medium-speed diesel engine, the manufacturers, Hawthorn Leslie (Engineers) Ltd., of Newcastle upon Tyne, have made an extensive analysis of the resource effectiveness of diesel-driven generating sets. Though directed towards the raising of funds to construct a demonstration power plant in the UK, the analysis is relevant elsewhere. In addition, the firm has now developed an energy recovery package for use with the basic engine to further improve the overall thermal efficiency of the system. Looked at in a British context, the basis of Hawthorn Leslie's case is this. The importance of coalmore » in electicity generation is evidence of its value as a national resource. Now that North Sea oil has emerged as a national energy resource, it must be used to the greatest effect; this means building diesel power stations to take over the mid-load cycle of utility operations. The analysis compares five prime movers: gas turbines, diesel engines, and steam turbines powered by oil- or coal-fired boilers, or thermal reactors. Capital and fixed running costs are shown. The diesel engine is the most efficient prime mover for electricity generation. With this novel energy recovery principle, greater utilization of fuel energy can be realized if direct heating is not required. (MCW)« less

  20. Colorado Public Utility Commission's Xcel Wind Decision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehr, R. L.; Nielsen, J.; Andrews, S.

    2001-09-20

    In early 2001 the Colorado Public Utility Commission ordered Xcel Energy to undertake good faith negotiations for a wind plant as part of the utility's integrated resource plan. This paper summarizes the key points of the PUC decision, which addressed the wind plant's projected impact on generation cost and ancillary services. The PUC concluded that the wind plant would cost less than new gas-fired generation under reasonable gas cost projections.

  1. Energy Systems Integration Newsletter | Energy Systems Integration Facility

    Science.gov Websites

    -one that other utilities, even in mainland states, will be able to follow as they embark on their own distributed energy resources (DERs), is one example of this process. With leadership from NREL, the IEEE P1547 Working Group completed revisions to the standard in the fall of 2017 after four years of significant

  2. Energy Systems Integration Newsletter April 2018 | Energy Systems

    Science.gov Websites

    -one that other utilities, even in mainland states, will be able to follow as they embark on their own distributed energy resources (DERs), is one example of this process. With leadership from NREL, the IEEE P1547 Working Group completed revisions to the standard in the fall of 2017 after four years of significant

  3. Sustainable Development Strategies of Biomass Energy in Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, H. Z.; Huang, B. R.

    2017-10-01

    The development of biomass energy industry can effectively improve the rural environment and alleviate the shortage of living energy in rural areas, especially in mountain areas. In order to make clear the current situation of biomass energy industry development in Beijing, this paper analyzed the status of biomass resources and biomass energy utilization and discussed the factors hindering the development of biomass energy industry in Beijing. Based on the analysis, suggestions for promoting sustainable development of Biomass Energy Industry in Beijing are put forward.

  4. Research on Utilization of Geo-Energy

    NASA Astrophysics Data System (ADS)

    Bock, Michaela; Scheck-Wenderoth, Magdalena; GeoEn Working Group

    2013-04-01

    The world's energy demand will increase year by year and we have to search for alternative energy resources. New concepts concerning the energy production from geo-resources have to be provided and developed. The joint project GeoEn combines research on the four core themes geothermal energy, shale gas, CO2 capture and CO2 storage. Sustainable energy production from deep geothermal energy resources is addressed including all processes related to geothermal technologies, from reservoir exploitation to energy conversion in the power plant. The research on the unconventional natural gas resource, shale gas, is focussed on the sedimentological, diagenetic and compositional characteristics of gas shales. Technologies and solutions for the prevention of the greenhouse gas carbon dioxide are developed in the research fields CO2 capture technologies, utilization, transport, and CO2 storage. Those four core themes are studied with an integrated approach using the synergy of cross-cutting methodologies. New exploration and reservoir technologies and innovative monitoring methods, e.g. CSMT (controlled-source magnetotellurics) are examined and developed. All disciplines are complemented by numerical simulations of the relevant processes. A particular strength of the project is the availability of large experimental infrastructures where the respective technologies are tested and monitored. These include the power plant Schwarze Pumpe, where the Oxyfuel process is improved, the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß Schönebeck, with two deep wells and an experimental plant overground for research on corrosion. In addition to fundamental research, the acceptance of new technologies, especially in the field of CCS is examined. Another focus addressed is the impact of shale gas production on the environment. A further important goal is the education of young scientists in the new field "geo-energy" to fight skills shortage in this field of growing economic and ecologic relevance.

  5. Evolving urban water and residuals management paradigms: water reclamation and reuse, decentralization, and resource recovery.

    PubMed

    Daigger, Glen T

    2009-08-01

    Population growth and improving standards of living, coupled with dramatically increased urbanization, are placing increased pressures on available water resources, necessitating new approaches to urban water management. The tradition linear "take, make, waste" approach to managing water increasingly is proving to be unsustainable, as it is leading to water stress (insufficient water supplies), unsustainable resource (energy and chemicals) consumption, the dispersion of nutrients into the aquatic environment (especially phosphorus), and financially unstable utilities. Different approaches are needed to achieve economic, environmental, and social sustainability. Fortunately, a toolkit consisting of stormwater management/rainwater harvesting, water conservation, water reclamation and reuse, energy management, nutrient recovery, and source separation is available to allow more closed-loop urban water and resource management systems to be developed and implemented. Water conservation and water reclamation and reuse (multiple uses) are becoming commonplace in numerous water-short locations. Decentralization, enabled by new, high-performance treatment technologies and distributed stormwater management/rainwater harvesting, is furthering this transition. Likewise, traditional approaches to residuals management are evolving, as higher levels of energy recovery are desired, and nutrient recovery and reuse is to be enhanced. A variety of factors affect selection of the optimum approach for a particular urban area, including local hydrology, available water supplies, water demands, local energy and nutrient-management situations, existing infrastructure, and utility governance structure. A proper approach to economic analysis is critical to determine the most sustainable solutions. Stove piping (i.e., separate management of drinking, storm, and waste water) within the urban water and resource management profession must be eliminated. Adoption of these new approaches to urban water and resource management can lead to more sustainable solutions, defined as financially stable, using locally sustainable water supplies, energy-neutral, providing responsible nutrient management, and with access to clean water and appropriate sanitation for all.

  6. Smart City Energy Interconnection Technology Framework Preliminary Research

    NASA Astrophysics Data System (ADS)

    Zheng, Guotai; Zhao, Baoguo; Zhao, Xin; Li, Hao; Huo, Xianxu; Li, Wen; Xia, Yu

    2018-01-01

    to improve urban energy efficiency, improve the absorptive ratio of new energy resources and renewable energy sources, and reduce environmental pollution and other energy supply and consumption technology framework matched with future energy restriction conditions and applied technology level are required to be studied. Relative to traditional energy supply system, advanced information technology-based “Energy Internet” technical framework may give play to energy integrated application and load side interactive technology advantages, as a whole optimize energy supply and consumption and improve the overall utilization efficiency of energy.

  7. The development of an EDSS: Lessons learned and implications for DSS research

    USGS Publications Warehouse

    El-Gayar, O.; Deokar, A.; Michels, L.; Fosnight, G.

    2011-01-01

    The Solar and Wind Energy Resource Assessment (SWERA) project is focused on providing renewable energy (RE) planning resources to the public. Examples include wind, solar, and hydro assessments. SWERA DSS consists of three major components. First, SWERA 'Product Archive' provides for a discovery DSS upon which users can find and access renewable energy data and supporting models. Second, the 'Renewable Resource EXplorer' (RREX) component serves as a web-based, GIS analysis tool for viewing RE resource data available through the SWERA Product Archive. Third, the SWERA web service provides computational access to the data available in the SWERA spatial database through a location based query, and is also utilized in the RREX component. We provide a discussion of various design decisions used in the construction of this EDSS, followed by project experiences and implications for EDSS and broader DSS research. ?? 2011 IEEE.

  8. Optimal control, investment and utilization schemes for energy storage under uncertainty

    NASA Astrophysics Data System (ADS)

    Mirhosseini, Niloufar Sadat

    Energy storage has the potential to offer new means for added flexibility on the electricity systems. This flexibility can be used in a number of ways, including adding value towards asset management, power quality and reliability, integration of renewable resources and energy bill savings for the end users. However, uncertainty about system states and volatility in system dynamics can complicate the question of when to invest in energy storage and how best to manage and utilize it. This work proposes models to address different problems associated with energy storage within a microgrid, including optimal control, investment, and utilization. Electric load, renewable resources output, storage technology cost and electricity day-ahead and spot prices are the factors that bring uncertainty to the problem. A number of analytical methodologies have been adopted to develop the aforementioned models. Model Predictive Control and discretized dynamic programming, along with a new decomposition algorithm are used to develop optimal control schemes for energy storage for two different levels of renewable penetration. Real option theory and Monte Carlo simulation, coupled with an optimal control approach, are used to obtain optimal incremental investment decisions, considering multiple sources of uncertainty. Two stage stochastic programming is used to develop a novel and holistic methodology, including utilization of energy storage within a microgrid, in order to optimally interact with energy market. Energy storage can contribute in terms of value generation and risk reduction for the microgrid. The integration of the models developed here are the basis for a framework which extends from long term investments in storage capacity to short term operational control (charge/discharge) of storage within a microgrid. In particular, the following practical goals are achieved: (i) optimal investment on storage capacity over time to maximize savings during normal and emergency operations; (ii) optimal market strategy of buy and sell over 24-hour periods; (iii) optimal storage charge and discharge in much shorter time intervals.

  9. The NSF/RANN FY 1975 program for geothermal resources research and technology

    NASA Technical Reports Server (NTRS)

    Kruger, P.

    1974-01-01

    The specific goal of the NSF geothermal program is the rapid development by industry of the nation's geothermal resources that can be demonstrated to be commercially, environmentally and socially acceptable as alternate energy sources. NSF, as the lead agency for the federal geothermal energy research program, is expediting a program which encompasses the objectives necessary for significant utilization. These include: acceleration of exploration and assessment methods to identify commercial geothermal resources; development of innovative and improved technology to achieve economic feasibility; evaluation of policy options to resolve environmental, legal, and institutional problems; and support of experimental research facilities for each type of geothermal resource. Specific projects in each of these four objective areas are part of the NSF program for fiscal year 1975.

  10. Achieving Land, Energy, and Environmental Compatibility: Utility-Scale Solar Energy Potential and Land-Use in California

    NASA Astrophysics Data System (ADS)

    Hoffacker, M. K.; Hernandez, R. R.; Field, C. B.

    2013-12-01

    Solar energy is an archetype renewable energy technology with great potential to reduce greenhouse gas emissions when substituted for carbon-intensive energy. Utility-scale solar energy (USSE; i.e., > 1 MW) necessitates large quantities of space making the efficient use of land for USSE development critical to realizing its full potential. However, studies elucidating the interaction between land-use and utility-scale solar energy (USSE) are limited. In this study, we assessed 1) the theoretical and technical potential of terrestrial-based USSE systems, and 2) land-use and land-cover change impacts from actual USSE installations (> 20 MW; planned, under construction, operating), using California as a case study due to its early adoption of renewable energy systems, unique constraints on land availability, immense energy demand, and vast natural resources. We used topo-climatic (e.g., slope, irradiance), infrastructural (e.g., proximity to transmission lines), and ecological constraints (e.g., threatened and endangered species) to determine highly favorable, favorable, and unfavorable locations for USSE and to assess its technical potential. We found that the theoretical potential of photovoltaic (PV) and concentrating solar power (CSP) in California is 26,097 and 29,422 kWh/m2/day, respectively. We identified over 150 planned, under construction, and operating USSE installations in California, ranging in size from 20 to 1,000 MW. Currently, 29% are located on shrub- and scrublands, 23% on cultivated crop land, 13% on pasture/hay areas, 11% on grassland/herbaceous and developed open space, and 7% in the built environment. Understanding current land-use decisions of USSE systems and assessing its future potential can be instructive for achieving land, energy, and environmental compatibility, especially for other global regions that share similar resource demands and limitations.

  11. The path to clean energy: direct coupling of nuclear and renewable technologies for thermal and electrical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bragg-Sitton, Shannon; Boardman, Richard; Ruth, Mark

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can significantly reduce environmental impacts in an efficient and economically viable manner while utilizing both clean energy generation sources and hydrocarbon resources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean nuclear and renewable energy generation sources. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that better optimizesmore » energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing energy (thermal or electrical) where it is needed, when it is needed. For the purposes of this work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. This definition requires coupling of subsystems ‘‘behind’’ the electrical transmission bus, where energy flows are dynamically apportioned as necessary to meet demand and the system has a single connection to the grid that provides dispatchable electricity as required while capital intensive generation assets operate at full capacity. Development of integrated energy systems for an “energy park” must carefully consider the intended location and the associated regional resources, traditional industrial processes, energy delivery infrastructure, and markets to identify viable region-specific system configurations. This paper will provide an overview of the current status of regional hybrid energy system design, development and application of dynamic analysis tools to assess technical and economic performance, and roadmap development to identify and prioritize component, subsystem and system testing that will lead to prototype demonstration.« less

  12. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2015-08-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  13. Challenges for fuel cells as stationary power resource in the evolving energy enterprise

    NASA Astrophysics Data System (ADS)

    Rastler, Dan

    The primary market challenges for fuel cells as stationary power resources in evolving energy markets are reviewed. Fuel cell power systems have significant barriers to overcome in their anticipated role as decentralized energy power systems. Market segments for fuel cells include combined heat and power; low-cost energy, premium power; peak shaving; and load management and grid support. Understanding the role and fit of fuel cell systems in evolving energy markets and the highest value applications are a major challenge for developers and government funding organizations. The most likely adopters of fuel cell systems and the challenges facing each adopter in the target market segment are reviewed. Adopters include generation companies, utility distribution companies, retail energy service providers and end-users. Key challenges include: overcoming technology risk; achieving retail competitiveness; understanding high value markets and end-user needs; distribution and service channels; regulatory policy issues; and the integration of these decentralized resources within the electrical distribution system.

  14. Exploring New Models for Utility Distributed Energy Resource Planning and Integration: SMUD and Con Edison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2018-01-23

    As a result of the rapid growth of renewable energy in the United States, the U.S. electric grid is undergoing a monumental shift away from its historical status quo. These changes are occurring at both the centralized and local levels and have been driven by a number of different factors, including large declines in renewable energy costs, federal and state incentives and mandates, and advances in the underlying technology. Higher levels of variable-generation renewable energy, however, may require new and increasingly complex methods for utilities to operate and maintain the grid while also attempting to limit the costly build-out ofmore » supporting grid infrastructure.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jennifer

    The Washoe Tribe of Nevada and California was awarded funding to complete the Washoe Tribe Alternative Energy Feasibility Study project. The main goal of the project was to complete an alternative energy feasibility study. This study was completed to evaluate “the potential for development of a variety of renewable energy projects and to conduct an alternative energy feasibility study that determines which alternative energy resources have the greatest economic opportunity for the Tribe, while respecting cultural and environmental values” (Baker-Tilly, 2014). The study concluded that distributed generation solar projects are the best option for renewable energy development and asset ownershipmore » for the Washoe Tribe. Concentrating solar projects, utility scale wind projects, geothermal, and biomass resource projects were also evaluated during the study and it was determined that these alternatives would not be feasible at this time.« less

  16. Developing a framework for energy technology portfolio selection

    NASA Astrophysics Data System (ADS)

    Davoudpour, Hamid; Ashrafi, Maryam

    2012-11-01

    Today, the increased consumption of energy in world, in addition to the risk of quick exhaustion of fossil resources, has forced industrial firms and organizations to utilize energy technology portfolio management tools viewed both as a process of diversification of energy sources and optimal use of available energy sources. Furthermore, the rapid development of technologies, their increasing complexity and variety, and market dynamics have made the task of technology portfolio selection difficult. Considering high level of competitiveness, organizations need to strategically allocate their limited resources to the best subset of possible candidates. This paper presents the results of developing a mathematical model for energy technology portfolio selection at a R&D center maximizing support of the organization's strategy and values. The model balances the cost and benefit of the entire portfolio.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, L.; Brown, E.

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, nearly 600 utilities in regulated electricity markets--or almost 20% of all utilities nationally--provide their customers a "green power" option. Because some utilities offer programs in conjunction with cooperative associations or other publicly owned power entities, the number of distinct programs totals about 125. Through these programs, more than 40 million customers spanning 34 states have the ability to purchase renewable energy to meet some portion or all of their electricity needs--or make contributions to support the developmentmore » of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2004 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities as benchmarks by which to gauge the success of their green power programs.« less

  18. CO2 utilization: an enabling element to move to a resource- and energy-efficient chemical and fuel production.

    PubMed

    Ampelli, Claudio; Perathoner, Siglinda; Centi, Gabriele

    2015-03-13

    CO(2) conversion will be at the core of the future of low-carbon chemical and energy industry. This review gives a glimpse into the possibilities in this field by discussing (i) CO(2) circular economy and its impact on the chemical and energy value chain, (ii) the role of CO(2) in a future scenario of chemical industry, (iii) new routes for CO(2) utilization, including emerging biotechnology routes, (iv) the technology roadmap for CO(2) chemical utilization, (v) the introduction of renewable energy in the chemical production chain through CO(2) utilization, and (vi) CO(2) as a suitable C-source to move to a low-carbon chemical industry, discussing in particular syngas and light olefin production from CO(2). There are thus many stimulating possibilities offered by using CO(2) and this review shows this new perspective on CO(2) at the industrial, societal and scientific levels. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. 43 CFR 3212.15 - Will my lease remain in effect if I cease production and I do not have an approved suspension?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Lease Suspensions, Cessation of Production, Royalty Rate Reductions, and Energy Policy Act Royalty Rate Conversions § 3212.15 Will my lease remain in... commercial quantities; (iii) Continue to make diligent efforts to utilize the geothermal resource; and (iv...

  20. [Optimum population analysis of Jilin Province, China based on comprehensive carrying capacity.

    PubMed

    Li, Xiu Xia; Meng, Mei

    2017-10-01

    The regional moderate population model was constructed using state-space method, and the weights of relevant factors were obtained using principal component analysis. The optimum population of Jilin Province during 2005-2014 was calculated and the causes for its formation were discussed. The results showed that the optimum population of Jilin Province was in deficit from 2005-2014, and the imbalance existed between the population, resources and environment. The resources carrying population was significantly higher than the economic carrying and the ecological carrying population, indicating that the economic development of Jilin Province was established at the expense of destroying the environment. Moreover, the land resources carrying population was substantially higher than the water and energy carrying population, which was at a deficit, indicating that the economic development of Jilin Province was based on the depletion of energy and water resources. In the future, water resources carrying capacity should be improved according to the local conditions, the energy efficiency should be enhanced via the development of new energy sources, the extensive and consumption-based resource utilization should be transformed to the intensive and low-carbon type, and the production mode and consumption patterns should be changed to protect the ecological environment.

  1. Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report summarizes a workshop hosted by the U.S. Department of Energy's Bioenergy Technologies Office on May 23–24, 2017, in Orlando, Florida. The event gathered stakeholder input through facilitated discussions focused on innovative technologies and business strategies for growing algae on waste carbon dioxide resources.

  2. Energy: Education and Industry Changes for a New Era Utilization System Modifications.

    ERIC Educational Resources Information Center

    Dille, Earl K.; Dreifke, Gerald E.

    This paper provides data and opinions on long- and short-term challenges and changes required to meet the human resource and educational needs in a nuclear electric era as seen from a utility company's point of view. In particular, statements on engineering education curriculum, statistics on certain future manpower requirements, electric utility…

  3. Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2017-05-01

    The Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report summarizes a workshop hosted by the U.S. Department of Energy's Bioenergy Technologies Office on May 23–24, 2017, in Orlando, Florida. The event gathered stakeholder input through facilitated discussions focused on innovative technologies and business strategies for growing algae on waste carbon dioxide resources.

  4. Fly Ash: From Cradle to Grave

    USGS Publications Warehouse

    Ellis, Margaret S.; Affolter, Ronald H.

    2007-01-01

    The Energy Resources Program of the U.S. Geological Survey promotes and supports coal research to improve the understanding of the coal endowment of the United States. This results in geologically based, non-biased energy information products for policy and decision makers, land and resource managers, other federal and state agencies, the domestic energy industry, foreign governments, nongovernmental groups, academia, and other scientists. A more integrated approach to our coal quality work involves what we call a 'cradle to grave' approach. These types of studies focus not on just one aspect of the coal but rather on how or where different quality parameters form and (or) occur and what happens to them through the mining, production, transport, utilization and waste disposal process. An extensive suite of coal quality analyses, mineralogical, petrology, and leaching investigations are determined on samples taken from the different phases of the coal utilization process. This report consists of a tutorial that was given on June 10, 2007 at the 32nd International Technical Conference on Coal Utilization & Fuel Systems, The Power of Coal, Clearwater Coal Conference in Clearwater, Florida, USA. This tutorial covers how these studies are conducted and the importance of providing improved, comprehensive, science-based data sets for policy and decision makers.

  5. Material flow analysis for resource management towards resilient palm oil production

    NASA Astrophysics Data System (ADS)

    Kamahara, H.; Faisal, M.; Hasanudin, U.; Fujie, K.; Daimon, H.

    2018-03-01

    Biomass waste generated from palm oil mill can be considered not only as the feedstock of renewable energy but also as the nutrient-rich resources to produce organic fertilizer. This study explored the appropriate resource management towards resilient palm oil production by applying material flow analysis. This study was conducted based on two palm oil mills in Lampung, Indonesia. The results showed that the empty fruit bunch (EFB) has the largest potential in terms of amount and energy among the biomass waste. The results also showed that the palm oil mills themselves had already self-managed their energy consumption thatwas obtained from palm kernel shell and palm press fiber. Finally, this study recommended the several utilization options of EFB for improvement of soil sustainability to contribute towards resilient palm oil production.

  6. The Marshall Space Flight Center Low-Energy Ion Facility: A preliminary report

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Reynolds, J. W.; Chisholm, W. L., Jr.; Hunt, R. D.

    1983-01-01

    The Low-Energy Ion Facility (LEIF) is designed for laboratory research of low-energy ion beams similar to those present in the magnetosphere. In addition, it provides the ability to develop and calibrate low-energy, less than 50 eV, plasma instrumentation over its full range of energy, mass, flux, and arrival angle. The current status of this evolving resource is described. It also provides necessary information to allow users to utilize it most efficiently.

  7. Optimal urban water conservation strategies considering embedded energy: coupling end-use and utility water-energy models.

    NASA Astrophysics Data System (ADS)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.

    2014-12-01

    Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our assessment.

  8. Energy Information Abstracts Annual 1988. Volume 13.

    ERIC Educational Resources Information Center

    Yuster, Leigh C., Ed.; And Others

    This publication is a compilation of information and resource material concerning energy for the year 1988. The first section details the coverage and usage of this volume. Section 2 contains a review of events in 1988, a compilation of statistical information, an article concerning coal flyash utilization, and a listing of conferences and events…

  9. 18 CFR 366.23 - FERC Form No. 60, Annual reports of centralized service companies, and FERC-61, Narrative...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... functions. 366.23 Section 366.23 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL... or narrative description. (b) Transition period. Service companies in holding company systems...

  10. 18 CFR 366.23 - FERC Form No. 60, Annual reports of centralized service companies, and FERC-61, Narrative...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... functions. 366.23 Section 366.23 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL... or narrative description. (b) Transition period. Service companies in holding company systems...

  11. 18 CFR 366.23 - FERC Form No. 60, Annual reports of centralized service companies, and FERC-61, Narrative...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... functions. 366.23 Section 366.23 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL... or narrative description. (b) Transition period. Service companies in holding company systems...

  12. 18 CFR 366.23 - FERC Form No. 60, Annual reports of centralized service companies, and FERC-61, Narrative...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... functions. 366.23 Section 366.23 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL... or narrative description. (b) Transition period. Service companies in holding company systems...

  13. 18 CFR 366.23 - FERC Form No. 60, Annual reports of centralized service companies, and FERC-61, Narrative...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... functions. 366.23 Section 366.23 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL... or narrative description. (b) Transition period. Service companies in holding company systems...

  14. An Analysis of the DER Adoption Climate in Japan UsingOptimization Results for Prototype Buildings with U.S. Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan

    2006-06-16

    This research demonstrates economically optimal distributedenergy resource (DER) system choice using the DER choice and operationsoptimization program, the Distributed Energy Resources Customer AdoptionModel (DER-CAM). DER-CAM finds the optimal combination of installedequipment given prevailing utility tariffs and fuel prices, siteelectrical and thermal loads (including absorption cooling), and a menuof available equipment. It provides a global optimization, albeitidealized, that shows how site useful energy loads can be served atminimum cost. Five prototype Japanese commercial buildings are examinedand DER-CAM is applied to select the economically optimal DER system foreach. Based on the optimization results, energy and emission reductionsare evaluated. Significant decreases in fuelmore » consumption, carbonemissions, and energy costs were seen in the DER-CAM results. Savingswere most noticeable in the prototype sports facility, followed by thehospital, hotel, and office building. Results show that DER with combinedheat and power equipment is a promising efficiency and carbon mitigationstrategy, but that precise system design is necessary. Furthermore, aJapan-U.S. comparison study of policy, technology, and utility tariffsrelevant to DER installation is presented.« less

  15. INL-EXT--18-50231-Revision-0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Seth W; Simon, A.J.

    There is an urgency to advancing wastewater technologies due to aging water infrastructure and emerging regulations. A crosscutting working group proposes a conceptual design for a test bed network to understand and evaluate wastewater technologies to drive acceptance and deployment of new technologies to enhance performance. The working group includes contributors from the U.S. Department of Energy, the U.S. Environmental Protection Agency, the U.S. National Science Foundation, and the Water Research Foundation (formerly known as the Water Environment & Reuse Foundation). In “The Water-Energy Nexus: Challenges and Opportunities” (June 2014), the U.S. Department of Energy identified key issues with water-energymore » interdependencies and identified water resource recovery (broadly referred to as “wastewater management” or “sewage treatment”) as a locus of opportunities to improve energy and water security. Traditional sewage treatment uses more than 30 billion kWh per year, almost one percent of our electricity supply (EPRI 2013), and energy use grew 74 percent from 1996 to 2011 (Tarallo 2014). Wastewater is a potential alternative source to address water scarcity. In addition, wastewater contains valuable energy, nutrient, and mineral resources. Traditional sewage treatment does not recover water or other resources. With improved technology and design, reclaimed wastewater could supplement existing water supplies and mitigate water stress. The energy (biogas and heat), nutrients (primarily nitrogen and phosphorus), and minerals in wastewater could displace fossil sources, reduce America’s dependence on imported energy, and reduce greenhouse gas emissions. If fully implemented, resource recovery would reduce discharges to the environment and provide ecosystem services. The primary role of both public and private wastewater facilities is to reduce risk to human health and the environment. The institutional driver is to meet regulatory requirements. Capital budgets and revenue from taxes and services are limited at wastewater utilities, reducing the ability to invest in innovation. Therefore, utilities are very risk averse and slow to adopt new technologies that go beyond their traditional historical mandate.« less

  16. The Potential of Geothermal as a Major Supplier of U.S. Primary Energy using EGS technology

    NASA Astrophysics Data System (ADS)

    Tester, J. W.

    2012-12-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well-distributed nationally. To transition from our current hydrocarbon-based energy system, we will need to expand and diversify the portfolio of options we currently have. One such option that has been undervalued and often ignored completely in national assessments is geothermal energy from both conventional hydrothermal resources and enhanced or engineered geothermal systems (EGS). Although geothermal energy is currently used for both electric and non-electric applications worldwide from conventional hydrothermal resources and in groundsource heat pumps, most of the emphasis in the US has been generating electricity. For example, a 2006 MIT-led study focused on the potential for EGS to provide 100,000 MWe of base-load electric generating capacity in the US by 2050. Since that time, a Cornell-led study has evaluated the potential for geothermal to meet the more than 25 EJ per year demand in the US for low temperature thermal energy for heating and other direct process applications Field testing of EGS in the US, Europe, and Australia is reviewed to outline what remains to be done for large-scale deployment. Research, Development and Demonstration (RD&D) needs in five areas important to geothermal deployment on a national scale will be reviewed: 1. Resource - estimating the magnitude and distribution of the US resource 2. Reservoir Technology - establishing requirements for extracting and utilizing energy from EGS reservoirs including drilling, reservoir design and stimulation 3. Utilization - exploring end use options for district heating, electricity generation and co-generation. 4. Environmental impacts and tradeoffs -- dealing with water and land use and seismic risk and quantifying the reduction in carbon emissions with increased deployment 5. Economics - projecting costs for EGS supplied electricity as a function of invested R&D and deployment in evolving US energy markets

  17. Mechanical power efficiency of modified turbine blades

    NASA Astrophysics Data System (ADS)

    Mahmud, Syahir; Sampebatu, Limbran; Kwang, Suendy Ciayadi

    2017-01-01

    Abstract-The problem of energy crisis has become one of the unsolved issues until today. Indonesia has a lot of non-conventional energy sources that does not utilized effectively yet. For that the available resources must utilized efficiently due to the energy crisis and the growing energy needs. Among the abundant resources of energy, one potential source of energy is hydroelectric energy. This research compares the mechanical power efficiency generated by the Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. The comparation of the mechanical power amongst the three turbine starts from the measurement of the water flow rate, water temperature, turbine rotation and force on the shaft on each type of turbine. The comparison will show the mechanical power efficiency of each turbine to find the most efficient turbine that can work optimally. The results show that with 0.637m/s flow velocity and 44.827 Watt of water flow power, the Darrieus-Savonius turbine can generate power equal to 29.927 Watt and shaft force around by 17 N. The Darrieus-Savonius turbine provides around 66.76% efficiency betwen the three turbines; Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. Overall, the Darrieus Savonius turbine has the ability to work optimally at the research location.

  18. Utilization of biomass in the U.S. for the production of ethanol fuel as a gasoline replacement. I - Terrestrial resource potential. II - Energy requirements, with emphasis on lignocellulosic conversion

    NASA Astrophysics Data System (ADS)

    Ferchak, J. D.; Pye, E. K.

    The paper assesses the biomass resource represented by starch derived from feed corn, surplus and distressed grain, and high-yield sugar crops planted on set-aside land in the U.S. It is determined that the quantity of ethanol produced may be sufficient to replace between 5 to 27% of present gasoline requirements. Utilization of novel cellulose conversion technology may in addition provide fermentable sugars from municipal, agricultural and forest wastes, and ultimately from highly productive silvicultural operations. The potential additional yield of ethanol from lignocellulosic biomass appears to be well in excess of liquid fuel requirements of an enhanced-efficiency transport sector at present mileage demands. No conflict with food production would be entailed. A net-energy assessment is made for lignocellulosic biomass feedstocks' conversion to ethanol and an almost 10:1 energy yield/energy cost ratio determined. It is also found that novel cellulose pretreatment and enzymatic conversion methods still under development may significantly improve even that figure, and that both chemical-feedstocks and energy-yielding byproducts such as carbon dioxide, biogas and lignin make ethanol production potentially energy self-sufficient. A final high-efficiency production approach incorporates site-optimized, nonpolluting energy sources such as solar and geothermal.

  19. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  20. Water Resource Impacts Embedded in the Western US Electrical Energy Trade; Current Patterns and Adaptation to Future Drought

    NASA Astrophysics Data System (ADS)

    Adams, E. A.; Herron, S.; Qiu, Y.; Tidwell, V. C.; Ruddell, B. L.

    2013-12-01

    Water resources are a key element in the global coupled natural-human (CNH) system, because they are tightly coupled with the world's social, environmental, and economic subsystems, and because water resources are under increasing pressure worldwide. A fundamental adaptive tool used especially by cities to overcome local water resource scarcity is the outsourcing of water resource impacts through substitutionary economic trade. This is generally understood as the indirect component of a water footprint, and as ';virtual water' trade. This work employs generalized CNH methods to reveal the trade in water resource impacts embedded in electrical energy within the Western US power grid, and utilizes a general equilibrium economic trade model combined with drought and demand growth constraints to estimate the future status of this trade. Trade in embedded water resource impacts currently increases total water used for electricity production in the Western US and shifts water use to more water-limited States. Extreme drought and large increases in electrical energy demand increase the need for embedded water resource impact trade, while motivating a shift to more water-efficient generation technologies and more water-abundant generating locations. Cities are the largest users of electrical energy, and in the 21st Century will outsource a larger fraction of their water resource impacts through trade. This trade exposes cities to risks associated with disruption of long-distance transmission and distant hydrological droughts.

  1. RTG resource book for western states and provinces: Final proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Western Interstate Energy Board held a workshop and liaison activities among western states, provinces, and utilities on the formation of Regional Transmission Groups (RTGs). Purpose of the activities was to examine the policy implications for western states and provinces in the formation of RTGs in the West, the implications for western ratepayers and utilities of the RTG formation and potential impacts of RTGs on the western electricity system. The workshop contributed to fulfilling the transmission access and competition objectives of Title VII of the Energy Policy Act of 1992.

  2. Joint Egypt/United States report on Egypt/United States cooperative energy assessment. Volume 1 of 5 Vols. Executive summary, main report and appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-01

    The International Energy Assessment Program between Egypt and the U.S. was formulated from mid-March to mid-July, 1978. The assessment identified energy demand and supply options for Egypt that are consistent with its indigenous energy resources; assessed Egypt's ability to effectively use those options; and identified measures by which Egypt's energy-planning activities could be improved. The assessment addressed all known and potential energy supply options (oil, gas, coal, oil shale, hydroelectric, nuclear power, geothermal, solar, wind, and biomass). Using the Reference Energy System, two future energy supply/demand balances are constructed (for 1985 and the year 2000) and these are compared withmore » a historical (1975) supply/demand balance. The feasibility of each of the options is established in terms of the availability of the required resources and of the processing, conversion, transport, and utilization technology.« less

  3. The feasibility of applying geopressured-geothermal resources to direct uses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunis, B.C.; Negus-de Wys, J.; Plum, M.M.

    1991-09-01

    This study concludes that direct use technologies, especially desalinated water production, can contribute significantly to the value added process and the overall economic viability in developing a geopressured resource. Although agriculture and aquaculture applications are marginal projects when they are the only use of a geopressured well, the small margin of profitability can contribute to improving the overall economics of the direct use development. The added complexity from a technical and management aspect may add to the overall risk and unpredictability of the project. Six combination of direct uses received economic evaluation that resulted in 15% discounted payback periods rangingmore » from 4 to over 10 years. Many other combinations are possible depending on the resource and market variables. Selection of appropriate technologies and sizes of applications will be established by the developer that engages in geopressured resource utilization. Currently, many areas of the country where geopressured resources are located also have surplus electrical capacity and generation, thus power utilities have been selling power for less than 2 cents per kWH, well below a reasonable breakeven value for geopressured produced electricity. However, when the energy demand of the integrated geopressured facility is large enough to install power generation equipment, operating expenses can be reduced by not paying the 10 to 12 cents per kWH utility rate. The study includes an analysis of a geothermal turbine unit installed with a desalination and an agriculture/aquaculture facility, taking advantage of the cascading energy values. Results suggest that this scenario becomes profitable only where the market price for electricity exceeds five cents per kWH.« less

  4. The feasibility of applying geopressured-geothermal resources to direct uses

    NASA Astrophysics Data System (ADS)

    Lunis, Ben C.; Dewys, Jane Negus; Plum, Martin M.; Lienau, Paul J.; Spencer, F. J.; Nitschke, George F.

    1991-09-01

    This study concludes that direct use technologies, especially desalinated water production, can contribute significantly to the value added process and the overall economic viability in developing a geopressured resource. Although agriculture and aquaculture applications are marginal projects when they are the only use of a geopressured well, the small margin of profitability can contribute to improving the overall economics of the direct use development. The added complexity from a technical and management aspect may add to the overall risk and unpredictability of the project. Six combinations of direct uses received economic evaluation that resulted in 15 percent discounted payback periods ranging from 4 to over 10 years. Many other combinations are possible depending on the resource and market variables. Selection of appropriate technologies and sizes of applications will be established by the developer that engages in geopressured resource utilization. Currently, many areas of the country where geopressured resources are located also have surplus electrical capacity and generation; thus power utilities have been selling power for less than two cents per kWH, well below a reasonable breakeven value for geopressured produced electricity. However, when the energy demand of the integrated geopressured facility is large enough to install power generation equipment, operating expenses can be reduced by not paying the 10 to 12 cents per kWH utility rate. The study includes an analysis of a geothermal turbine unit installed with a desalination and an agriculture/aquaculture facility, taking advantage of the cascading energy values. Results suggest that this scenario becomes profitable only where the market price for electricity exceeds five cents per kWH.

  5. Learning energy literacy concepts from energy-efficient homes

    NASA Astrophysics Data System (ADS)

    Paige, Frederick Eugene

    The purpose of this study is to understand ways that occupants' and visitors' interaction with energy efficient home design affects Energy Literacy. Using a case study approach including interviews, surveys, and observations, I examined the potential for affordable energy efficient homes in the Greenville South Carolina area to "teach" concepts from an Energy Literacy framework developed by dozens of educational partners and federal agencies that comprise the U.S. Global Change Research Program Partners. I paid particular attention to concepts from the framework that are transferable to energy decisions beyond a home's walls. My research reveals ways that interaction with high efficiency homes can effect understanding of the following Energy Literacy concepts: human use of energy is subject to limits and constraints, conservation is one way to manage energy resources, electricity is generated in multiple ways, social and technological innovations effect the amount of energy used by society, and energy use can be calculated and monitored. Examples from my case studies show how the at-home examples can make lessons on energy more personally relevant, easy to understand, and applicable. Specifically, I found that: • Home occupants learn the limits of energy in relation to the concrete and constricting costs associated with their consumption. • Heating and cooling techniques showcase the limits and constraints on different sources of energy. • Relatable systems make it easier to understand energy's limits and constraints. • Indistinct and distant power utilities allow consumers to overlook the root of electricity sources. • Visible examples of electricity generation systems make it clear that electricity is generated in multiple ways. • Small and interactive may mean inefficient electricity generation, but efficient energy education. • Perceptions of expense and complexity create a disconnect between residential energy consumers and renewable electricity generation. • Utility bill limits and constraints exemplify the ability to conserve energy resources. • Replicable examples teach lessons on conservation. • Via an understanding of the water-energy nexus, water conservation lessons transfer to energy saving lessons. • Passive design exemplifies how a shift in thinking can conserve energy resources through informed efficient decision-making. • Societal shifts in energy consumption are evident at home. • Efficient homes provide applicable examples of social and technological innovations. • The home is the environment in which memorable lessons on energy are passed through cultures. • Home energy consumption comparisons are a popular and effective social innovation, but people have mixed emotions about their usefulness. • A utility bill communicates that utility companies are monitoring energy use to calculate cost. • Interactivity enhances feedback from energy monitors. • Calculating and monitoring energy use is perceived as a complex mathematical process. • Energy consumption feedback at the appliance level is desired to inform decisions. • There is a separation between personal energy monitoring and public monitoring. Implications of this research are that an energy literate society will have the knowledge that is a prerequisite for the motivation to address energy and climate issues. Educators, policy makers, engineers, and designers all play a role in creating a built environment that encourages energy saving behavior.

  6. Energy Smart Colorado, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gitchell, John M.; Palmer, Adam L.

    2014-03-31

    Energy Smart Colorado is an energy efficiency program established in 2011 in the central mountain region of Colorado. The program was funded through a grant of $4.9 million, awarded in August 2010 by the U.S. Department of Energy’s Better Buildings Program. As primary grant recipient, Eagle County coordinated program activities, managed the budget, and reported results. Eagle County staff worked closely with local community education and outreach partner Eagle Valley Alliance for Sustainability (now Walking Mountains Science Center) to engage residents in the program. Sub-recipients Pitkin County and Gunnison County assigned local implementation of the program in their regions tomore » their respective community efficiency organizations, Community Office for Resource Efficiency (CORE) in Pitkin County, and Office for Resource Efficiency (ORE) in Gunnison County. Utility partners contributed $166,600 to support Home Energy Assessments for their customers. Program staff opened Energy Resource Centers, engaged a network of qualified contractors, developed a work-flow, an enrollment website, a loan program, and a data management system to track results.« less

  7. Long term load forecasting accuracy in electric utility integrated resource planning

    DOE PAGES

    Carvallo, Juan Pablo; Larsen, Peter H.; Sanstad, Alan H.; ...

    2018-05-23

    Forecasts of electricity consumption and peak demand over time horizons of one or two decades are a key element in electric utilities’ meeting their core objective and obligation to ensure reliable and affordable electricity supplies for their customers while complying with a range of energy and environmental regulations and policies. These forecasts are an important input to integrated resource planning (IRP) processes involving utilities, regulators, and other stake-holders. Despite their importance, however, there has been little analysis of long term utility load forecasting accuracy. We conduct a retrospective analysis of long term load forecasts on twelve Western U. S. electricmore » utilities in the mid-2000s to find that most overestimated both energy consumption and peak demand growth. A key reason for this was the use of assumptions that led to an overestimation of economic growth. We find that the complexity of forecast methods and the accuracy of these forecasts are mildly correlated. In addition, sensitivity and risk analysis of load growth and its implications for capacity expansion were not well integrated with subsequent implementation. As a result, we review changes in the utilities load forecasting methods over the subsequent decade, and discuss the policy implications of long term load forecast inaccuracy and its underlying causes.« less

  8. Long term load forecasting accuracy in electric utility integrated resource planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvallo, Juan Pablo; Larsen, Peter H.; Sanstad, Alan H.

    Forecasts of electricity consumption and peak demand over time horizons of one or two decades are a key element in electric utilities’ meeting their core objective and obligation to ensure reliable and affordable electricity supplies for their customers while complying with a range of energy and environmental regulations and policies. These forecasts are an important input to integrated resource planning (IRP) processes involving utilities, regulators, and other stake-holders. Despite their importance, however, there has been little analysis of long term utility load forecasting accuracy. We conduct a retrospective analysis of long term load forecasts on twelve Western U. S. electricmore » utilities in the mid-2000s to find that most overestimated both energy consumption and peak demand growth. A key reason for this was the use of assumptions that led to an overestimation of economic growth. We find that the complexity of forecast methods and the accuracy of these forecasts are mildly correlated. In addition, sensitivity and risk analysis of load growth and its implications for capacity expansion were not well integrated with subsequent implementation. As a result, we review changes in the utilities load forecasting methods over the subsequent decade, and discuss the policy implications of long term load forecast inaccuracy and its underlying causes.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seal, Brian; Huque, Aminul; Rogers, Lindsey

    In 2011, EPRI began a four-year effort under the Department of Energy (DOE) SunShot Initiative Solar Energy Grid Integration Systems - Advanced Concepts (SEGIS-AC) to demonstrate smart grid ready inverters with utility communication. The objective of the project was to successfully implement and demonstrate effective utilization of inverters with grid support functionality to capture the full value of distributed photovoltaic (PV). The project leveraged ongoing investments and expanded PV inverter capabilities, to enable grid operators to better utilize these grid assets. Developing and implementing key elements of PV inverter grid support capabilities will increase the distribution system’s capacity for highermore » penetration levels of PV, while reducing the cost. The project team included EPRI, Yaskawa-Solectria Solar, Spirae, BPL Global, DTE Energy, National Grid, Pepco, EDD, NPPT and NREL. The project was divided into three phases: development, deployment, and demonstration. Within each phase, the key areas included: head-end communications for Distributed Energy Resources (DER) at the utility operations center; methods for coordinating DER with existing distribution equipment; back-end PV plant master controller; and inverters with smart-grid functionality. Four demonstration sites were chosen in three regions of the United States with different types of utility operating systems and implementations of utility-scale PV inverters. This report summarizes the project and findings from field demonstration at three utility sites.« less

  10. Advanced Inverter Functions and Communication Protocols for Distribution Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarajan, Adarsh; Palmintier, Bryan; Baggu, Murali

    2016-05-05

    This paper aims at identifying the advanced features required by distribution management systems (DMS) service providers to bring inverter-connected distributed energy resources into use as an intelligent grid resource. This work explores the standard functions needed in the future DMS for enterprise integration of distributed energy resources (DER). The important DMS functionalities such as DER management in aggregate groups, including the discovery of capabilities, status monitoring, and dispatch of real and reactive power are addressed in this paper. It is intended to provide the industry with a point of reference for DER integration with other utility applications and to providemore » guidance to research and standards development organizations.« less

  11. Process Demonstration For Lunar In Situ Resource Utilization-Molten Oxide Electrolysis (MSFC Independent Research and Development Project No. 5-81)

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Ethridge, E. C.; Hudson, S. B.; Miller, T. Y.; Grugel, R. N.; Sen, S.; Sadoway, D. R.

    2006-01-01

    The purpose of this Focus Area Independent Research and Development project was to conduct, at Marshall Space Flight Center, an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis process to produce oxygen and metal. In essence, the vision was to develop two key technologies, the first to produce materials (oxygen, metals, and silicon) from lunar resources and the second to produce energy by photocell production on the Moon using these materials. Together, these two technologies have the potential to greatly reduce the costs and risks of NASA s human exploration program. Further, it is believed that these technologies are the key first step toward harvesting abundant materials and energy independent of Earth s resources.

  12. Fossil Energy Planning for Navajo Nation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acedo, Margarita

    This project includes fossil energy transition planning to find optimal solutions that benefit the Navajo Nation and stakeholders. The majority of the tribe’s budget currently comes from fossil energy-revenue. The purpose of this work is to assess potential alternative energy resources including solar photovoltaics and biomass (microalgae for either biofuel or food consumption). This includes evaluating carbon-based reserves related to the tribe’s resources including CO 2 emissions for the Four Corners generating station. The methodology for this analysis will consist of data collection from publicly available data, utilizing expertise from national laboratories and academics, and evaluating economic, health, and environmentalmore » impacts. Finally, this report will highlight areas of opportunities to implement renewable energy in the Navajo Nation by presenting the technology requirements, cost, and considerations to energy, water, and environment in an educational structure.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvarli, H.

    The high energy demand in Turkey is closely linked to economic growth, industrialization, and population increase. Turkish general energy policies are designed to support economic and social development. Natural conditions of Turkey are favorable for utilization of new and renewable energies, such as hydraulic energy, geothermal energy, wind energy, biomass energy, solar energy, and, probably, nuclear energy. As the use of hydraulic and coal in Turkey will reach its full capacity by 2020, imported natural gas, coal, and other resources will be used to meet the energy demand. By 2020, approximately 75% of final energy demand and 67% of electricitymore » supply will be met by coal, oil, and natural gas. Energy investments, which are closely related with the environmental protection, require massive financial resources. It is also important to use standardized equipment and materials in all areas of energy generation, transmission, distribution, and trade. For a sustainable development, the next investments on industry should be made for the clean technologies in regard with being environment-friendly.« less

  14. Constructing the electricity-carbohydrate-hydrogen cycle for a sustainability revolution.

    PubMed

    Zhang, Y-H Percival; Huang, Wei-Dong

    2012-06-01

    In this opinion, we suggest the electricity-carbohydrate-hydrogen (ECHo) cycle which bridges primary energies and secondary energies. Carbohydrates are sources of food, feed, liquid biofuels, and renewable materials and are a high-density hydrogen carrier and electricity storage compounds (e.g. >3000 Wh/kg). One element of this ECHo cycle can be converted to another reversibly and efficiently depending on resource availability, needs and costs. This cycle not only supplements current and future primary energy utilization systems for facilitating electricity and hydrogen storage and enhancing secondary energy conversion efficiencies, but also addresses such sustainability challenges as transportation fuel production, CO(2) utilization, fresh water conservation, and maintenance of a small closed ecosystem in emergency situations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. To kill a kangaroo: understanding the decision to pursue high-risk/high-gain resources.

    PubMed

    Jones, James Holland; Bird, Rebecca Bliege; Bird, Douglas W

    2013-09-22

    In this paper, we attempt to understand hunter-gatherer foraging decisions about prey that vary in both the mean and variance of energy return using an expected utility framework. We show that for skewed distributions of energetic returns, the standard linear variance discounting (LVD) model for risk-sensitive foraging can produce quite misleading results. In addition to creating difficulties for the LVD model, the skewed distributions characteristic of hunting returns create challenges for estimating probability distribution functions required for expected utility. We present a solution using a two-component finite mixture model for foraging returns. We then use detailed foraging returns data based on focal follows of individual hunters in Western Australia hunting for high-risk/high-gain (hill kangaroo) and relatively low-risk/low-gain (sand monitor) prey. Using probability densities for the two resources estimated from the mixture models, combined with theoretically sensible utility curves characterized by diminishing marginal utility for the highest returns, we find that the expected utility of the sand monitors greatly exceeds that of kangaroos despite the fact that the mean energy return for kangaroos is nearly twice as large as that for sand monitors. We conclude that the decision to hunt hill kangaroos does not arise simply as part of an energetic utility-maximization strategy and that additional social, political or symbolic benefits must accrue to hunters of this highly variable prey.

  16. Electricity Storage

    EPA Pesticide Factsheets

    Details technologies that can be used to store electricity so it can be used at times when demand exceeds generation, which helps utilities operate more effectively, reduce brownouts, and allow for more renewable energy resources to be built and used.

  17. Roles For Thermography In Utility Company Residential Energy Audits

    NASA Astrophysics Data System (ADS)

    Schott, William A.

    1981-01-01

    Basin Electric Power Cooperative, Bismarck, North Dakota, provides wholesale electricity to more than 100 rural electric cooperatives of the Missouri Pasin Region. The Cooperative, in cooperation with Aadland*Hoffmann*Pieri Energy Associates, Inc., Minneapolis, MN has developed a three-fold program which involves the analytical approach, the instructional approach and the motivational approach (A'IsM) to an energy audit. This three-fold program utilizes infrared thermography to pinpoint where heat loss is occurring in the home. The auditor can motivate the homeowner to initiate energy conserving improvements and practices by showing where money can be saved. Infrared thermography is a most valuable tool in helping the rural electrics conserve energy and the nation's natural resources. Over 180 energy auditors have been trained through this program in this area and 5,000 trained in the nation.

  18. Energy Efficiency and Demand Response for Residential Applications

    NASA Astrophysics Data System (ADS)

    Wellons, Christopher J., II

    The purpose of this thesis is to analyze the costs, feasibility and benefits of implementing energy efficient devices and demand response programs to a residential consumer environment. Energy efficiency and demand response are important for many reasons, including grid stabilization. With energy demand increasing, as the years' pass, the drain on the grid is going up. There are two key solutions to this problem, increasing supply by building more power plants and decreasing demand during peak periods, by increasing participation in demand response programs and by upgrading residential and commercial customers to energy efficient devices, to lower demand throughout the day. This thesis focuses on utilizing demand response methods and energy efficient device to reduce demand. Four simulations were created to analyze these methods. These simulations show the importance of energy efficiency and demand response participation to help stabilize the grid, integrate more alternative energy resources, and reduce emissions from fossil fuel generating facilities. The results of these numerical analyses show that demand response and energy efficiency can be beneficial to consumers and utilities. With demand response being the most beneficial to the utility and energy efficiency, specifically LED lighting, providing the most benefits to the consumer.

  19. Initial assessment of public perception and acceptance of Geothermal Energy applications in Çanakkale, NW Turkey.

    NASA Astrophysics Data System (ADS)

    Sedat Çetiner, Ziya; Çekiç, Osman; Ertekin, Can; Bakırcı, Mesut

    2016-04-01

    Growing need of energy in global scale has resulted in increasing number of research and development of renewable energy technologies. Turkey, being very rich in the renewable energy resources, has recently paid special attention to accelerate utilization of these resources to reduce the carbon based energy cost. Among these, Geothermal Energy resources in the country, mainly utilized in district heating and balneological applications, has been shifted toward harvesting electric energy in the shed of recent incentives. While these developments are happening at the policy level, the knowledge and the perception of the public is important to shape the future policies and acceptance of such resources in daily life. In light of these developments, the aim of this study is to identify and analyze the public awareness and acceptance mechanisms for the successful deployment of future and ongoing geothermal investments in Çanakkale region of the Biga Peninsula using geological, social and economic constraints in a well-defined questionnaire. The study employed a mixed method to explore the public perception. Mixed method studies involve qualitative and quantitative techniques and intends to explore an issue in-depth. Thus a sequential explanatory design was used to gather the public's perception. Exploratory design involves a qualitative study followed by a design of a quantitative survey and analysis. The researchers, firs, interviewed 24 college students about their knowledge and perceptions of geothermal resources using a semi-structured interview protocol. The protocol comprised of 8 open ended questions. With the help of the literature and the qualitative survey results, an item database with 51 questions were constructed. The initial survey and the items then were sent to 5 experts. Following the expert review, the survey was given its final form and the item numbers were dropped to 34. Then this survey was applied to a group of 100 college students. The survey also include descriptive information, such as level of education, students' residence, gender, etc. İt is important to note that the participants of the study were college students. This group was selected intentionally to explore the subject in depth, with the assumption that the college students might have more information about the energy resources than the general public. The results were analyzed using descriptive statistics. The results provided that the students did not have enough knowledge about geothermal resources and their economic use in Turkey. The next steps will involve a factor analysis and expanding the survey to the general public. Some recommendations also included in the study to inform the public on the use of geothermal resources in energy sector.

  20. Improving an Assessment of Tidal Stream Energy Resource for Anchorage, Alaska

    NASA Astrophysics Data System (ADS)

    Xu, T.; Haas, K. A.

    2016-12-01

    Increasing global energy demand is driving the pursuit of new and innovative energy sources leading to the need for assessing and utilizing alternative, productive and reliable energy resources. Tidal currents, characterized by periodicity and predictability, have long been explored and studied as a potential energy source, focusing on many different locations with significant tidal ranges. However, a proper resource assessment cannot be accomplished without accurate knowledge of the spatial-temporal distribution and availability of tidal currents. Known for possessing one of the top tidal energy sources along the U.S. coastline, Cook Inlet, Alaska is the area of interest for this project. A previous regional scaled resource assessment has been completed, however, the present study is to focus the assessment on the available power specifically near Anchorage while significantly improving the accuracy of the assessment following IEC guidelines. The Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system is configured to simulate the tidal flows with grid refinement techniques for a minimum of 32 days, encompassing an entire lunar cycle. Simulation results are validated by extracting tidal constituents with harmonic analysis and comparing tidal components with National Oceanic and Atmospheric Administration (NOAA) observations and predictions. Model calibration includes adjustments to bottom friction coefficients and the usage of different tidal database. Differences between NOAA observations and COAWST simulations after applying grid refinement decrease, compared with results from a former study without grid refinement. Also, energy extraction is simulated at potential sites to study the impact on the tidal resources. This study demonstrates the enhancement of the resource assessment using grid refinement to evaluate tidal energy near Anchorage within Cook Inlet, Alaska, the productivity that energy extraction can achieve and the change in tidal currents caused by energy extraction.

  1. CEOS Contributions to Informing Energy Management and Policy Decision Making Using Space-Based Earth Observations

    NASA Technical Reports Server (NTRS)

    Eckman, Richard S.

    2009-01-01

    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the "space arm" for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. I discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space-weather impacts on the power grid, and improve energy efficiency in the built environment.

  2. Space Resource Roundtable Rationale

    NASA Astrophysics Data System (ADS)

    Duke, Michael

    1999-01-01

    Recent progress in the U.S. Space Program has renewed interest in space resource issues. The Lunar Prospector mission conducted in NASA's Discovery Program has yielded interesting new insights into lunar resource issues, particularly the possibility that water is concentrated in cold traps at the lunar poles. This finding has not yet triggered a new program of lunar exploration or development, however it opens the possibility that new Discovery Missions might be viable. Several asteroid missions are underway or under development and a mission to return samples from the Mars satellite, Phobos, is being developed. These exploration missions are oriented toward scientific analysis, not resource development and utilization, but can provide additional insight into the possibilities for mining asteroids. The Mars Surveyor program now includes experiments on the 2001 lander that are directly applicable to developing propellants from the atmosphere of Mars, and the program has solicited proposals for the 2003/2005 missions in the area of resource utilization. These are aimed at the eventual human exploration of Mars. The beginning of construction of the International Space Station has awakened interest in follow-on programs of human exploration, and NASA is once more studying the human exploration of Moon, Mars and asteroids. Resource utilization will be included as objectives by some of these human exploration programs. At the same time, research and technology development programs in NASA such as the Microgravity Materials Science Program and the Cross-Enterprise Technology Development Program are including resource utilization as a valid area for study. Several major development areas that could utilize space resources, such as space tourism and solar power satellite programs, are actively under study. NASA's interests in space resource development largely are associated with NASA missions rather than the economic development of resources for industrial processes. That is why there is an emphasis in NASA programs on propellant production on Mars - NASA plans missions to Mars, so could make use of those propellants. For other types of applications, however, it will be up to market forces to define the materials and products needed and develop the technologies for extracting them from space resources. Some leading candidates among the potential products from space resources are propellants for other space activities, water from the Moon for use in space, silicon for photovoltaic energy collection in space, and, eventually, He-3 from the Moon for fusion energy production. As the capabilities for manufacturing materials in space are opened up by research aboard the International Space Station, new opportunities for utilization of space resources may emerge. Whereas current research emphasizes increasing knowledge, one program objective should be the development of industrial production techniques for space. These will be based on the development of value-added processing in space, where materials are brought to the space facility, processed there, and returned to Earth. If enough such space processing is developed that the materials transportation requirements are measured in the hundreds of tons a year level, opportunities for substituting lunar materials may develop. The fundamental message is that it is not possible to develop space resources in a vacuum. One must have three things: a recoverable resource, technology to recover it, and a customer. Of these, the customer probably is the most important. All three must be integrated in a space resource program. That is what the Space Resource Roundtable, initiated with this meeting, will bring together.

  3. Measuring the embodied energy in drinking water supply systems: a case study in the Great Lakes region.

    PubMed

    Mo, Weiwei; Nasiri, Fuzhan; Eckelman, Matthew J; Zhang, Qiong; Zimmerman, Julie B

    2010-12-15

    A sustainable supply of both energy and water is critical to long-term national security, effective climate policy, natural resource sustainability, and social wellbeing. These two critical resources are inextricably and reciprocally linked; the production of energy requires large volumes of water, while the treatment and distribution of water is also significantly dependent upon energy. In this paper, a hybrid analysis approach is proposed to estimate embodied energy and to perform a structural path analysis of drinking water supply systems. The applicability of this approach is then tested through a case study of a large municipal water utility (city of Kalamazoo) in the Great Lakes region to provide insights on the issues of water-energy pricing and carbon footprints. Kalamazoo drinking water requires approximately 9.2 MJ/m(3) of energy to produce, 30% of which is associated with indirect inputs such as system construction and treatment chemicals.

  4. Summaries of FY 1994 geosciences research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-12-01

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward the long-term fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy byproducts of man. The Program is divided into five broad categories: Geophysics and earth dynamics; Geochemistry; Energy resource recognition, evaluation, and utilization; Hydrogeology and exogeochemistry; and Solar-terrestrial interactions. The summaries in this document, prepared by the investigators, describe the scopemore » of the individual programs in these main areas and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.« less

  5. Carolina Offshore Wind Integration Case Study: Phases I and II Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallon, Christopher; Piper, Orvane; Hazelip, William

    2015-04-30

    Duke Energy performed a phase 1 study to assess the impact of offshore wind development in the waters off the coasts of North Carolina and South Carolina. The study analyzed the impacts to the Duke Energy Carolinas electric power system of multiple wind deployment scenarios. Focusing on an integrated utility system in the Carolinas provided a unique opportunity to assess the impacts of offshore wind development in a region that has received less attention regarding renewables than others in the US. North Carolina is the only state in the Southeastern United States that currently has a renewable portfolio standard (RPS)more » which requires that 12.5% of the state’s total energy requirements be met with renewable resources by 2021. 12.5% of the state’s total energy requirements in 2021 equates to approximately 17,000 GWH of energy needed from renewable resources. Wind resources represent one of the ways to potentially meet this requirement. The study builds upon and augments ongoing work, including a study by UNC to identify potential wind development sites and the analysis of impacts to the regional transmission system performed by the NCTPC, an Order 890 planning entity of which DEC is a member. Furthermore, because the region does not have an independent system operator (ISO) or regional transmission organization (RTO), the study will provide additional information unique to non-RTO/ISO systems. The Phase 2 study builds on the results of Phase 1 and investigates the dynamic stability of the electrical network in Task 4, the operating characteristics of the wind turbines as they impact operating reserve requirements of the DEC utility in Task 5, and the production cost of integrating the offshore wind resources into the DEC generation fleet making comparisons to future planned operation without the addition of the wind resources in Task 6.« less

  6. Development and the environmental impact analysis of tidal current energy turbines in China

    NASA Astrophysics Data System (ADS)

    Liu, Yuxin; Ma, Changlei; Jiang, Bo

    2018-02-01

    Chinese government pays more attentions to renewable energies (RE) in the context of increasing energy demand and climate change problems. As a promising RE, the utilization of marine renewable energy (MRE) is engaging in the world, including the wave energy and tidal current energy mainly. At the same time, the tidal current energy resources in China are abundant. Thus, the utilization of tidal current energy becomes an inevitable choice for China to meet the challenge of global climate change. The Renewable Energy Law (amendment) and “Twelfth Five-Year” Plan of Renewable Energy Development (2011-2015) were released in recent years in China, the tidal current energy are successfully implemented in China, including the R&D and pilot projects. After the summary of the status of tidal current energy converters in recent years in China, especially the devices being in the open sea test. The environmental impact study in China is also introduced in order to offer reference for the environmental impact assessment of tidal current power generation.

  7. Self-Biased Hybrid Piezoelectric-Photoelectrochemical Cell with Photocatalytic Functionalities.

    PubMed

    Tan, Chuan Fu; Ong, Wei Li; Ho, Ghim Wei

    2015-07-28

    Utilizing solar energy for environmental and energy remediations based on photocatalytic hydrogen (H2) generation and water cleaning poses great challenges due to inadequate visible-light power conversion, high recombination rate, and intermittent availability of solar energy. Here, we report an energy-harvesting technology that utilizes multiple energy sources for development of sustainable operation of dual photocatalytic reactions. The fabricated hybrid cell combines energy harvesting from light and vibration to run a power-free photocatalytic process that exploits novel metal-semiconductor branched heterostructure (BHS) of its visible light absorption, high charge-separation efficiency, and piezoelectric properties to overcome the aforementioned challenges. The desirable characteristics of conductive flexible piezoelectrode in conjunction with pronounced light scattering of hierarchical structure originate intrinsically from the elaborate design yet facile synthesis of BHS. This self-powered photocatalysis system could potentially be used as H2 generator and water treatment system to produce clean energy and water resources.

  8. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploitmore » this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.« less

  9. Asynchronous Incremental Stochastic Dual Descent Algorithm for Network Resource Allocation

    NASA Astrophysics Data System (ADS)

    Bedi, Amrit Singh; Rajawat, Ketan

    2018-05-01

    Stochastic network optimization problems entail finding resource allocation policies that are optimum on an average but must be designed in an online fashion. Such problems are ubiquitous in communication networks, where resources such as energy and bandwidth are divided among nodes to satisfy certain long-term objectives. This paper proposes an asynchronous incremental dual decent resource allocation algorithm that utilizes delayed stochastic {gradients} for carrying out its updates. The proposed algorithm is well-suited to heterogeneous networks as it allows the computationally-challenged or energy-starved nodes to, at times, postpone the updates. The asymptotic analysis of the proposed algorithm is carried out, establishing dual convergence under both, constant and diminishing step sizes. It is also shown that with constant step size, the proposed resource allocation policy is asymptotically near-optimal. An application involving multi-cell coordinated beamforming is detailed, demonstrating the usefulness of the proposed algorithm.

  10. Hierarchical control framework for integrated coordination between distributed energy resources and demand response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Lian, Jianming; Sun, Yannan

    Demand response is representing a significant but largely untapped resource that can greatly enhance the flexibility and reliability of power systems. In this paper, a hierarchical control framework is proposed to facilitate the integrated coordination between distributed energy resources and demand response. The proposed framework consists of coordination and device layers. In the coordination layer, various resource aggregations are optimally coordinated in a distributed manner to achieve the system-level objectives. In the device layer, individual resources are controlled in real time to follow the optimal power generation or consumption dispatched from the coordination layer. For the purpose of practical applications,more » a method is presented to determine the utility functions of controllable loads by taking into account the real-time load dynamics and the preferences of individual customers. The effectiveness of the proposed framework is validated by detailed simulation studies.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satchwell, Andrew; Cappers, Peter; Schwartz, Lisa C.

    Many regulators, utilities, customer groups, and other stakeholders are reevaluating existing regulatory models and the roles and financial implications for electric utilities in the context of today’s environment of increasing distributed energy resource (DER) penetrations, forecasts of significant T&D investment, and relatively flat or negative utility sales growth. When this is coupled with predictions about fewer grid-connected customers (i.e., customer defection), there is growing concern about the potential for serious negative impacts on the regulated utility business model. Among states engaged in these issues, the range of topics under consideration is broad. Most of these states are considering whether approachesmore » that have been applied historically to mitigate the impacts of previous “disruptions” to the regulated utility business model (e.g., energy efficiency) as well as to align utility financial interests with increased adoption of such “disruptive technologies” (e.g., shareholder incentive mechanisms, lost revenue mechanisms) are appropriate and effective in the present context. A handful of states are presently considering more fundamental changes to regulatory models and the role of regulated utilities in the ownership, management, and operation of electric delivery systems (e.g., New York “Reforming the Energy Vision” proceeding).« less

  12. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Bruce Albert

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutianmore » Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGen® Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.« less

  13. CO2 Mineralization and Utilization using Steel Slag for Establishing a Waste-to-Resource Supply Chain.

    PubMed

    Pan, Shu-Yuan; Chung, Tai-Chun; Ho, Chang-Ching; Hou, Chin-Jen; Chen, Yi-Hung; Chiang, Pen-Chi

    2017-12-08

    Both steelmaking via an electric arc furnace and manufacturing of portland cement are energy-intensive and resource-exploiting processes, with great amounts of carbon dioxide (CO 2 ) emission and alkaline solid waste generation. In fact, most CO 2 capture and storage technologies are currently too expensive to be widely applied in industries. Moreover, proper stabilization prior to utilization of electric arc furnace slag are still challenging due to its high alkalinity, heavy metal leaching potentials and volume instability. Here we deploy an integrated approach to mineralizing flue gas CO 2 using electric arc furnace slag while utilizing the reacted product as supplementary cementitious materials to establish a waste-to-resource supply chain toward a circular economy. We found that the flue gas CO 2 was rapidly mineralized into calcite precipitates using electric arc furnace slag. The carbonated slag can be successfully utilized as green construction materials in blended cement mortar. By this modulus, the global CO 2 reduction potential using iron and steel slags was estimated to be ~138 million tons per year.

  14. Measure for Measure: Urban Water and Energy

    NASA Astrophysics Data System (ADS)

    Chini, C.; Stillwell, A. S.

    2017-12-01

    Urban environments in the United States account for a majority of the population and, as such, require large volumes of treated drinking water supply and wastewater removal, both of which need energy. Despite the large share of water that urban environments demand, there is limited accounting of these water resources outside of the city itself. In this study, we provide and analyze a database of drinking water and wastewater utility flows and energy that comprise anthropogenic fluxes of water through the urban environment. We present statistical analyses of the database at an annual, spatial, and intra-annual scale. The average daily per person water flux is estimated as 563 liters of drinking water and 496 liters of wastewater, requiring 340 kWh/1000 m3 and 430 kWh/1000 m3 of energy, respectively, to treat these resources. This energy demand accounts for 1% of the total annual electricity production of the United States. Additionally, the water and embedded energy loss associated with non-revenue water (estimated at 15.8% annually) accounts for 9.1 km3of water and 3600 GWh, enough electricity to power 300,000 U.S. households annually. Through the analysis and benchmarking of the current state of urban water fluxes, we propose the term `blue city,' which promotes urban sustainability and conservation policy focusing on water resources. As the nation's water resources become scarcer and more unpredictable, it is essential to include water resources in urban sustainability planning and continue data collection of these vital resources.

  15. University of Arizona Compressed Air Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the costmore » of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.« less

  16. Produced Water Utilization Act of 2009

    THOMAS, 111th Congress

    Rep. Hall, Ralph M. [R-TX-4

    2009-01-13

    Senate - 02/12/2009 Received in the Senate and Read twice and referred to the Committee on Energy and Natural Resources. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  17. Protocol to Exploit Waiting Resources for UASNs.

    PubMed

    Hung, Li-Ling; Luo, Yung-Jeng

    2016-03-08

    The transmission speed of acoustic waves in water is much slower than that of radio waves in terrestrial wireless sensor networks. Thus, the propagation delay in underwater acoustic sensor networks (UASN) is much greater. Longer propagation delay leads to complicated communication and collision problems. To solve collision problems, some studies have proposed waiting mechanisms; however, long waiting mechanisms result in low bandwidth utilization. To improve throughput, this study proposes a slotted medium access control protocol to enhance bandwidth utilization in UASNs. The proposed mechanism increases communication by exploiting temporal and spatial resources that are typically idle in order to protect communication against interference. By reducing wait time, network performance and energy consumption can be improved. A performance evaluation demonstrates that when the data packets are large or sensor deployment is dense, the energy consumption of proposed protocol is less than that of existing protocols as well as the throughput is higher than that of existing protocols.

  18. A fuel cycle assessment guide for utility and state energy planners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-01

    This guide, one in a series of documents designed to help assess fuel cycles, is a framework for setting parameters, collecting data, and analyzing fuel cycles for supply-side and demand-side management. It provides an automated tool for entering comparative fuel cycle data that are meaningful to state and utility integrated resource planning, collaborative, and regional energy planning activities. It outlines an extensive range of energy technology characteristics and environmental, social, and economic considerations within each stage of a fuel cycle. The guide permits users to focus on specific stages or effects that are relevant to the technology being evaluated andmore » that meet the user`s planning requirements.« less

  19. An optimization method of VON mapping for energy efficiency and routing in elastic optical networks

    NASA Astrophysics Data System (ADS)

    Liu, Huanlin; Xiong, Cuilian; Chen, Yong; Li, Changping; Chen, Derun

    2018-03-01

    To improve resources utilization efficiency, network virtualization in elastic optical networks has been developed by sharing the same physical network for difference users and applications. In the process of virtual nodes mapping, longer paths between physical nodes will consume more spectrum resources and energy. To address the problem, we propose a virtual optical network mapping algorithm called genetic multi-objective optimize virtual optical network mapping algorithm (GM-OVONM-AL), which jointly optimizes the energy consumption and spectrum resources consumption in the process of virtual optical network mapping. Firstly, a vector function is proposed to balance the energy consumption and spectrum resources by optimizing population classification and crowding distance sorting. Then, an adaptive crossover operator based on hierarchical comparison is proposed to improve search ability and convergence speed. In addition, the principle of the survival of the fittest is introduced to select better individual according to the relationship of domination rank. Compared with the spectrum consecutiveness-opaque virtual optical network mapping-algorithm and baseline-opaque virtual optical network mapping algorithm, simulation results show the proposed GM-OVONM-AL can achieve the lowest bandwidth blocking probability and save the energy consumption.

  20. Solar energy utilization by physical methods.

    PubMed

    Wolf, M

    1974-04-19

    On the basis of the estimated contributions of these differing methods of the utilization of solar energy, their total energy delivery impact on the projected U.S. energy economy (9) can be evaluated (Fig. 5). Despite this late energy impact, the actual sales of solar energy utilization equipment will be significant at an early date. Potential sales in photovoltaic arrays alone could exceed $400 million by 1980, in order to meet the projected capacity buildup (10). Ultimately, the total energy utilization equipment industry should attain an annual sales volume of several tens of billion dollars in the United States, comparable to that of several other energy related industries. Varying amounts of technology development are required to assure the technical and economic feasibility of the different solar energy utilization methods. Several of these developments are far enough along that the paths can be analyzed from the present time to the time of demonstration of technical and economic feasibility, and from there to production and marketing readiness. After that point, a period of market introduction will follow, which will differ in duration according to the type of market addressed. It may be noted that the present rush to find relief from the current energy problem, or to be an early leader in entering a new market, can entail shortcuts in sound engineering practice, particularly in the areas of design for durability and easy maintenance, or of proper application engineering. The result can be loss of customer acceptance, as has been experienced in the past with various products, including solar water heaters. Since this could cause considerable delay in achieving the expected total energy impact, it will be important to spend adequate time at this stage for thorough development. Two other aspects are worth mentioning. The first is concerned with the economic impacts. Upon reflection on this point, one will observe that largescale solar energy utilization will not cause a greater impact than other new energy sources, based on the reasoning that a self-consistent set of conditions will have to be fulfilled in order to achieve such large-scale use. Without cost competitiveness, other energy resources would fill the requirements, or, if their resource and cost structure also would create severe problems, the economic forecasts simply cannot be fulfilled. We also should not think of a "solar-only" energy future. First, there is still enough coal to last for several hundred years. Second, there should be enough fissionable fuel available to operate breeder reactors for a similar time span, and geothermal energy could satisfy some requirements for a long time. And finally, there may be fusion. It would be unlikely that any one of the available options should play a really dominant role. Rather, we should expect to be using an energy mix, just as we do now, with each energy source supplying the requirements which it can satisfy in the most suitable way, and solar energy should play an important role in this long-range future.

  1. Winnebago Resource Study. Cooperative Research and Development Final Report, CRADA Number CRD-09-329

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, A.; Robichaud, R.

    2015-03-01

    Since 2005 the NREL Native American Tall Tower Loan program has assisted Native American tribes to assess their wind resource by lending tall (30m - 50m) anemometer. This program has allowed tribes a lower risk way to gather financeable wind data for potential utility scale wind energy projects. These projects offer Tribes a significant economic development opportunity.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakafuji, Dora; Gouveia, Lauren

    This project supports development of the next generation, integrated energy management infrastructure (EMS) able to incorporate advance visualization of behind-the-meter distributed resource information and probabilistic renewable energy generation forecasts to inform real-time operational decisions. The project involves end-users and active feedback from an Utility Advisory Team (UAT) to help inform how information can be used to enhance operational functions (e.g. unit commitment, load forecasting, Automatic Generation Control (AGC) reserve monitoring, ramp alerts) within two major EMS platforms. Objectives include: Engaging utility operations personnel to develop user input on displays, set expectations, test and review; Developing ease of use and timelinessmore » metrics for measuring enhancements; Developing prototype integrated capabilities within two operational EMS environments; Demonstrating an integrated decision analysis platform with real-time wind and solar forecasting information and timely distributed resource information; Seamlessly integrating new 4-dimensional information into operations without increasing workload and complexities; Developing sufficient analytics to inform and confidently transform and adopt new operating practices and procedures; Disseminating project lessons learned through industry sponsored workshops and conferences;Building on collaborative utility-vendor partnership and industry capabilities« less

  3. Optical properties of II-VI structures for solar energy utilization

    NASA Astrophysics Data System (ADS)

    Schrier, Joshua; Demchenko, Denis; Wang, Lin-Wang

    2007-03-01

    Although II-VI semiconductor materials are abundant, stable, and have direct band gaps, the band gaps are too large for optimal photovoltaic efficiency. However, staggered band alignments of pairs of these materials, and also the formation of intermediate impurity levels in the band gap (which has been demonstrated to increase the efficiency as compared to both single-junction devices), could be utilized to improve the suitability of these materials for solar energy utilization. Previous theoretical studies of these materials are limited, due to the well-known band gap underestimation by density-functional theory. To calculate the absorption spectra, we utilize a band-corrected planewave pseudopotential approach, which gives agreements of within 0.1 eV of the bulk optical gaps values. In this talk, I will present our work on predicting the optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures, nanostructures, and alloys. This work was supported by U.S. Department of Energy under Contract No.DE-AC02-05CH11231 and used the resources of the National Energy Research Scientific Computing Center.

  4. Space and Planetary Resources

    NASA Astrophysics Data System (ADS)

    Abbud-Madrid, Angel

    2018-02-01

    The space and multitude of celestial bodies surrounding Earth hold a vast wealth of resources for a variety of space and terrestrial applications. The unlimited solar energy, vacuum, and low gravity in space, as well as the minerals, metals, water, atmospheric gases, and volatile elements on the Moon, asteroids, comets, and the inner and outer planets of the Solar System and their moons, constitute potential valuable resources for robotic and human space missions and for future use in our own planet. In the short term, these resources could be transformed into useful materials at the site where they are found to extend mission duration and to reduce the costly dependence from materials sent from Earth. Making propellants and human consumables from local resources can significantly reduce mission mass and cost, enabling longer stays and fueling transportation systems for use within and beyond the planetary surface. Use of finely grained soils and rocks can serve for habitat construction, radiation protection, solar cell fabrication, and food growth. The same material could also be used to develop repair and replacement capabilities using advanced manufacturing technologies. Following similar mining practices utilized for centuries on Earth, identifying, extracting, and utilizing extraterrestrial resources will enable further space exploration, while increasing commercial activities beyond our planet. In the long term, planetary resources and solar energy could also be brought to Earth if obtaining these resources locally prove to be no longer economically or environmentally acceptable. Throughout human history, resources have been the driving force for the exploration and settling of our planet. Similarly, extraterrestrial resources will make space the next destination in the quest for further exploration and expansion of our species. However, just like on Earth, not all challenges are scientific and technological. As private companies start working toward exploiting the resources from asteroids, the Moon, and Mars, an international legal framework is also needed to regulate commercial exploration and the use of space and planetary resources for the benefit of all humanity. These resources hold the secret to unleash an unprecedented wave of exploration and of economic prosperity by utilizing the full potential and value of space. It is up to us humans here on planet Earth to find the best way to use these extraterrestrial resources effectively and responsibly to make this promise a reality.

  5. Save water to save carbon and money: developing abatement costs for expanded greenhouse gas reduction portfolios.

    PubMed

    Stokes, Jennifer R; Hendrickson, Thomas P; Horvath, Arpad

    2014-12-02

    The water-energy nexus is of growing interest for researchers and policy makers because the two critical resources are interdependent. Their provision and consumption contribute to climate change through the release of greenhouse gases (GHGs). This research considers the potential for conserving both energy and water resources by measuring the life-cycle economic efficiency of greenhouse gas reductions through the water loss control technologies of pressure management and leak management. These costs are compared to other GHG abatement technologies: lighting, building insulation, electricity generation, and passenger transportation. Each cost is calculated using a bottom-up approach where regional and temporal variations for three different California water utilities are applied to all alternatives. The costs and abatement potential for each technology are displayed on an environmental abatement cost curve. The results reveal that water loss control can reduce GHGs at lower cost than other technologies and well below California's expected carbon trading price floor. One utility with an energy-intensive water supply could abate 135,000 Mg of GHGs between 2014 and 2035 and save--rather than spend--more than $130/Mg using the water loss control strategies evaluated. Water loss control technologies therefore should be considered in GHG abatement portfolios for utilities and policy makers.

  6. Energy

    DTIC Science & Technology

    2003-01-01

    and universal service. In 1978 the Public Utility Regulatory Policy Act ( PURPA ) was enacted to permit non-utilities to enter the electric power...and renewable resources as alternate sources for electricity.[87] PURPA opened the door to a new paradigm – power didn’t have to come from large...industry and provided the basis for the current structure of the entire power industry. EPACT and PURPA have freed, in an economic sense, most power

  7. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  8. [Applications of GIS in biomass energy source research].

    PubMed

    Su, Xian-Ming; Wang, Wu-Kui; Li, Yi-Wei; Sun, Wen-Xiang; Shi, Hai; Zhang, Da-Hong

    2010-03-01

    Biomass resources have the characteristics of widespread and dispersed distribution, which have close relations to the environment, climate, soil, and land use, etc. Geographic information system (GIS) has the functions of spatial analysis and the flexibility of integrating with other application models and algorithms, being of predominance to the biomass energy source research. This paper summarized the researches on the GIS applications in biomass energy source research, with the focus in the feasibility study of bioenergy development, assessment of biomass resources amount and distribution, layout of biomass exploitation and utilization, evaluation of gaseous emission from biomass burning, and biomass energy information system. Three perspectives of GIS applications in biomass energy source research were proposed, i. e., to enrich the data source, to improve the capacity on data processing and decision-support, and to generate the online proposal.

  9. Geospatial assessment of solar energy potential for utility scale parabolic trough collector power plant in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Ibarra, Mercedes; Gherboudj, Imen; Al Rished, Abdulaziz; Ghedira, Hosni

    2017-06-01

    Given ambitious plans to increase the amount of electricity production from renewable resources and the natural resources of the Kingdom of Saudi Arabia (KSA), solar energy stands as a technology with a great development potential in this country. In this work, the suitability of the territory is assess through a geospatial analysis, using a PTC performance model to account for the technical potential. As a result, a land suitability map is presented, where the North-West area of the country is identified as the one with more highly suitable area.

  10. Evaluation index system of steel industry sustainable development based on entropy method and topsis method

    NASA Astrophysics Data System (ADS)

    Ronglian, Yuan; Mingye, Ai; Qiaona, Jia; Yuxuan, Liu

    2018-03-01

    Sustainable development is the only way for the development of human society. As an important part of the national economy, the steel industry is an energy-intensive industry and needs to go further for sustainable development. In this paper, we use entropy method and Topsis method to evaluate the development of China’s steel industry during the “12th Five-Year Plan” from four aspects: resource utilization efficiency, main energy and material consumption, pollution status and resource reuse rate. And we also put forward some suggestions for the development of China’s steel industry.

  11. Distributed Energy Systems: Security Implications of the Grid of the Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamber, Kevin L.; Kelic, Andjelka; Taylor, Robert A.

    2017-01-01

    Distributed Energy Resources (DER) are being added to the nation's electric grid, and as penetration of these resources increases, they have the potential to displace or offset large-scale, capital-intensive, centralized generation. Integration of DER into operation of the traditional electric grid requires automated operational control and communication of DER elements, from system measurement to control hardware and software, in conjunction with a utility's existing automated and human-directed control of other portions of the system. Implementation of DER technologies suggests a number of gaps from both a security and a policy perspective. This page intentionally left blank.

  12. Proceedings: Twenty years of energy policy: Looking toward the twenty-first century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    In 1973, immediately following the Arab Oil Embargo, the Energy Resources Center, University of Illinois at Chicago initiated an innovative annual public service program called the Illinois Energy Conference. The objective was to provide a public forum each year to address an energy or environmental issue critical to the state, region and nation. Twenty years have passed since that inaugural program, and during that period we have covered a broad spectrum of issues including energy conservation nuclear power, Illinois coal, energy policy options, natural gas, alternative fuels, new energy technologies, utility deregulation and the National Energy Strategy.

  13. Trade-offs between energy maximization and parental care in a central place forager, the sea otter

    USGS Publications Warehouse

    Thometz, N M; Staedler, M.M.; Tomoleoni, Joseph; Bodkin, James L.; Bentall, G.B.; Tinker, M. Tim

    2016-01-01

    Between 1999 and 2014, 126 archival time–depth recorders (TDRs) were used to examine the foraging behavior of southern sea otters (Enhydra lutris nereis) off the coast of California, in both resource-abundant (recently occupied, low sea otter density) and resource-limited (long-occupied, high sea otter density) locations. Following predictions of foraging theory, sea otters generally behaved as energy rate maximizers. Males and females without pups employed similar foraging strategies to optimize rates of energy intake in resource-limited habitats, with some exceptions. Both groups increased overall foraging effort and made deeper, longer and more energetically costly dives as resources became limited, but males were more likely than females without pups to utilize extreme dive profiles. In contrast, females caring for young pups (≤10 weeks) prioritized parental care over energy optimization. The relative importance of parental care versus energy optimization for adult females with pups appeared to reflect developmental changes as dependent young matured. Indeed, contrary to females during the initial stages of lactation, females with large pups approaching weaning once again prioritized optimizing energy intake. The increasing prioritization of energy optimization over the course of lactation was possible due to the physiological development of pups and likely driven by the energetic deficit incurred by females early in lactation. Our results suggest that regardless of resource availability, females at the end of lactation approach a species-specific ceiling for percent time foraging and that reproductive females in the central portion of the current southern sea otter range are disproportionately affected by resource limitation.

  14. Performance-Based Regulation In A High Distributed Energy Resources Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton Lowry, Mark; Woolf, Tim; Schwartz, Lisa C.

    Performance-based regulation (PBR) of utilities has emerged as an important ratemaking option in the last 25 years. It has been implemented in numerous jurisdictions across the United States and is common in many other advanced industrialized countries. PBR’s appeal lies chiefly in its ability to strengthen utility performance incentives relative to traditional cost-of-service regulation (COSR). Some forms of PBR can streamline regulation and provide utilities with greater operating flexibility. Ideally, the benefits of better performance are shared by the utility and its customers. The shortcomings of traditional COSR in providing electric utilities with incentives that are aligned with certain regulatorymore » goals are becoming increasingly clear. In particular, COSR can provide strong incentives to increase electricity sales and utility rate base. Further, some parties express concern that traditional COSR does not provide utilities with appropriate financial incentives to address evolving industry challenges such as changing customer demands for electricity services, increased levels of distributed energy resources (DERs), and growing pressure to mitigate carbon dioxide emissions. In addition, attention to potential new regulatory models to support the “utility of the future” has renewed interest in PBR. This report describes key elements of PBR and explains some of the advantages and disadvantages of various PBR options. We present pertinent issues from the perspectives of utilities and customers. In practice, these different perspectives are not diametrically opposed. Nonetheless, this framework is useful for illustrating how various aspects of PBR may be viewed by those key groups. Regulators have a unique perspective, in that they must balance consumer, utility, and other interests with the goal of achieving a result that is in the overall public interest.« less

  15. Identifying Pathways toward Sustainable Electricity Supply and Demand Using an Integrated Resource Strategic Planning Model for Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alabbas, Nabeel H.

    Despite holding 16% of proved oil reserves in the world, Saudi Arabia might be on an unsustainable path to become a net oil importer by the 2030s. Decades of domestic energy subsidies accompanied by a high population growth rate have encouraged inefficient production and high domestic consumption of fossil fuel energy, which has resulted in environmental degradation, and significant social and economic consequences. In addition, the government's dependence on oil as a main source of revenue (89%) to finance its development programs cannot be sustained due to oil's exhaustible nature and rapidly increasing domestic consumption. The electricity and water sectors consume more energy than other sectors. The literature review revealed that electricity use in Saudi Arabia is following an unsustainable path (7-8% annual growth over the last decade). The water sector is another major energy consumer due to an unprecedented demand for water in the Kingdom (18% of world's total desalinated water output with per capita consumption is twice the world average). Multiple entities have been involved in fragmented planning activities on the supply-side as well as to a certain extent on the demand-side; moreover, comprehensive integrated resource strategic plans have been lacking at the national level. This dissertation established an integrated resource strategic planning (IRSP) model for Saudi Arabia's electricity and water sectors. The IRSP can clearly determine the Kingdom's future vision of its utility sector, including goals, policies, programs, and an execution timetable, taking into consideration economic, environmental and social benefits. Also, a weather-based hybrid end-use econometric demand forecasting model was developed to project electricity demand until 2040. The analytical economic efficiency and technical assessments reveal that Saudi Arabia can supply almost 75% of its electricity from renewable energy sources with a significant achievable potential for saving 26% of peak demand by 2040. However, the development of sustainable energy systems in the country's utility sector will not occur automatically. Thus, several actions are proposed for developing the sustainable energy roadmap, strategies, and policies for Saudi Arabia's utility sector, supporting its position as a new vehicle of growth that facilitates national and socio-economic development and economic diversification plan.

  16. Wave Resource Characterization at US Wave Energy Converter (WEC) Test Sites

    NASA Astrophysics Data System (ADS)

    Dallman, A.; Neary, V. S.

    2016-02-01

    The US Department of Energy's (DOE) Marine and Hydrokinetic energy (MHK) Program is supporting a diverse research and development portfolio intended to accelerate commercialization of the marine renewable industry by improving technology performance, reducing market barriers, and lowering the cost of energy. Wave resource characterization at potential and existing wave energy converter (WEC) test sites and deployment locations contributes to this DOE goal by providing a catalogue of wave energy resource characteristics, met-ocean data, and site infrastructure information, developed utilizing a consistent methodology. The purpose of the catalogue is to enable the comparison of resource characteristics among sites to facilitate the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and operations and maintenance. The first edition included three sites: the Pacific Marine Energy Center (PMEC) North Energy Test Site (NETS) offshore of Newport, Oregon, the Kaneohe Bay Naval Wave Energy Test Site (WETS) offshore of Oahu, HI, and a potential site offshore of Humboldt Bay, CA (Eureka, CA). The second edition was recently finished, which includes five additional sites: the Jennette's Pier Wave Energy Converter Test Site in North Carolina, the US Army Corps of Engineers (USACE) Field Research Facility (FRF), the PMEC Lake Washington site, the proposed PMEC South Energy Test Site (SETS), and the proposed CalWave Central Coast WEC Test Site. The operational sea states are included according to the IEC Technical Specification on wave energy resource assessment and characterization, with additional information on extreme sea states, weather windows, and representative spectra. The methodology and a summary of results will be discussed.

  17. Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-12-31

    The benchmark goal that drives the report is to achieve a 20 percent reduction in carbon dioxide (CO{sub 2}) emissions in Colorado's electricity sector below 2005 levels by 2020. We refer to this as the '20 x 20 goal.' In discussing how to meet this goal, the report concentrates particularly on the role of utility-scale renewable energy and high-voltage transmission. An underlying recognition is that any proposed actions must not interfere with electric system reliability and should minimize financial impacts on customers and utilities. The report also describes the goals of Colorado's New Energy Economy5 - identified here, in summary,more » as the integration of energy, environment, and economic policies that leads to an increased quality of life in Colorado. We recognize that a wide array of options are under constant consideration by professionals in the electric industry, and the regulatory community. Many options are under discussion on this topic, and the costs and benefits of the options are inherently difficult to quantify. Accordingly, this report should not be viewed as a blueprint with specific recommendations for the timing, siting, and sizing of generating plants and high-voltage transmission lines. We convened the project with the goal of supplying information inputs for consideration by the state's electric utilities, legislators, regulators, and others as we work creatively to shape our electricity sector in a carbon-constrained world. The report addresses various issues that were raised in the Connecting Colorado's Renewable Resources to the Markets report, also known as the SB07-91 Report. That report was produced by the Senate Bill 2007-91 Renewable Resource Generation Development Areas Task Force and presented to the Colorado General Assembly in 2007. The SB07-91 Report provided the Governor, the General Assembly, and the people of Colorado with an assessment of the capability of Colorado's utility-scale renewable resources to contribute electric power in the state from 10 Colorado generation development areas (GDAs) that have the capacity for more than 96,000 megawatts (MW) of wind generation and 26,000 MW of solar generation. The SB07-91 Report recognized that only a small fraction of these large capacity opportunities are destined to be developed. As a rough comparison, 13,964 MW of installed nameplate capacity was available in Colorado in 2008. The legislature did not direct the SB07-91 task force to examine several issues that are addressed in the REDI report. These issues include topics such as transmission, regulation, wildlife, land use, permitting, electricity demand, and the roles that different combinations of supply-side resources, demand-side resources, and transmission can play to meet a CO{sub 2} emissions reduction goal. This report, which expands upon research from a wide array of sources, serves as a sequel to the SB07-91 Report. Reports and research on renewable energy and transmission abound. This report builds on the work of many, including professionals who have dedicated their careers to these topics. A bibliography of information resources is provided, along with many citations to the work of others. The REDI Project was designed to present baseline information regarding the current status of Colorado's generation and transmission infrastructure. The report discusses proposals to expand the infrastructure, and identifies opportunities to make further improvements in the state's regulatory and policy environment. The report offers a variety of options for consideration as Colorado seeks pathways to meet the 20 x 20 goal. The primary goal of the report is to foster broader discussion regarding how the 20 x 20 goal interacts with electric resource portfolio choices, particularly the expansion of utility-scale renewable energy and the high-voltage transmission infrastructure. The report also is intended to serve as a resource when identifying opportunities stemming from the American Recovery and Reinvestment Act of 2009.« less

  18. Philippines: Small-scale renewable energy update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    This paper gives an overview of the application of small scale renewable energy sources in the Philippines. Sources looked at include solar, biomass, micro-hydroelectric, mini-hydroelectric, wind, mini-geothermal, and hybrid. A small power utilities group is being spun off the major utility, to provide a structure for developing rural electrification programs. In some instances, private companies have stepped forward, avoiding what is perceived as overwhelming beaurocracy, and installed systems with private financing. The paper provides information on survey work which has been done on resources, and the status of cooperative programs to develop renewable systems in the nation.

  19. Advanced Cloud Forecasting for Solar Energy’s Impact on Grid Modernization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werth, D.; Nichols, R.

    Solar energy production is subject to variability in the solar resource – clouds and aerosols will reduce the available solar irradiance and inhibit power production. The fact that solar irradiance can vary by large amounts at small timescales and in an unpredictable way means that power utilities are reluctant to assign to their solar plants a large portion of future energy demand – the needed power might be unavailable, forcing the utility to make costly adjustments to its daily portfolio. The availability and predictability of solar radiation therefore represent important research topics for increasing the power produced by renewable sources.

  20. Clean and Secure Energy from Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Philip; Davies, Lincoln; Kelly, Kerry

    2014-08-31

    The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO 2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues.

  1. Energy management of a university campus utilizing short-term load forecasting with an artificial neural network

    NASA Astrophysics Data System (ADS)

    Palchak, David

    Electrical load forecasting is a tool that has been utilized by distribution designers and operators as a means for resource planning and generation dispatch. The techniques employed in these predictions are proving useful in the growing market of consumer, or end-user, participation in electrical energy consumption. These predictions are based on exogenous variables, such as weather, and time variables, such as day of week and time of day as well as prior energy consumption patterns. The participation of the end-user is a cornerstone of the Smart Grid initiative presented in the Energy Independence and Security Act of 2007, and is being made possible by the emergence of enabling technologies such as advanced metering infrastructure. The optimal application of the data provided by an advanced metering infrastructure is the primary motivation for the work done in this thesis. The methodology for using this data in an energy management scheme that utilizes a short-term load forecast is presented. The objective of this research is to quantify opportunities for a range of energy management and operation cost savings of a university campus through the use of a forecasted daily electrical load profile. The proposed algorithm for short-term load forecasting is optimized for Colorado State University's main campus, and utilizes an artificial neural network that accepts weather and time variables as inputs. The performance of the predicted daily electrical load is evaluated using a number of error measurements that seek to quantify the best application of the forecast. The energy management presented utilizes historical electrical load data from the local service provider to optimize the time of day that electrical loads are being managed. Finally, the utilization of forecasts in the presented energy management scenario is evaluated based on cost and energy savings.

  2. Assessing global resource utilization efficiency in the industrial sector.

    PubMed

    Rosen, Marc A

    2013-09-01

    Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Catalytic Deoxygenation of Biomass Pyrolysis Vapors to Improve Bio-oil Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayton, David C.

    2016-12-22

    The President’s Advanced Energy Initiative called for a change in the way Americans fuel their vehicles to promote improved energy security. Increasing biofuels production from domestic lignocellulosic resources requires advanced technology development to achieve the aggressive targets set forth to reduce motor gasoline consumption by 20% in ten years (by 2017). The U.S. Department of Energy (USDOE) Office of the Biomass Program (currently Bioenergy Technologies Office) is actively funding research and development in both biochemical and thermochemical conversion technologies to accelerate the deployment of biofuels technologies in the near future to meet the goals of the Advanced Energy Initiative. Thermochemicalmore » conversion technology options include both gasification and pyrolysis to enable the developing lignocellulosic biorefineries and maximize biomass resource utilization for production of biofuels.« less

  4. Coal conversion legislation. Part I. Hearings before the Subcommittee on Energy Production and Supply of the Committee on Energy and Natural Resources, United States Senate, Ninety-Fifth Congress, First Session on S. 272, S. 273, and S. 977, March 21 and 29, 1977. [Coal utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    The legislation on greater coal utilization before the committee includes S. 272 (requiring, to the extent practicable, electric power plants and major fuel-bearing installations to utilize fuels other than natural gas); S. 273 (requiring, to the extent practicable, new electric power plants and new major fuel-burning installations be constructed to utliize fuels other than natural gas or petroleum); and S. 977 (requiring, to the extent practicable, existing electric power plants and major fuel-burning installations to utilize fuels other than natural gas or petroleum). Statements were heard from seven senators and representatives from the following: American Electric Power Service Corp., Americanmore » Boiler Manufactures Association, National Electric Reliability Council, Virgina Electric and Power Co., Fossil Power Systems, Houston Lighting and Power Co., other electric utility industry representatives, and the Federal Energy Adminstration. Additional material from the Wall Street Journal and the Washington Post is included. (MCW)« less

  5. Tracking contaminant flux from aquatic to terrestrial food webs

    EPA Science Inventory

    Aquatic insects provide a critical energy subsidy to riparian food webs, yet their role as vectors of contaminants to terrestrial ecosystems is poorly understood. We investigated aquatic resource utilization and contaminant exposure among riparian invertivores (spiders and herpt...

  6. 18 CFR 292.308 - Standards for operating reliability.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... reliability. 292.308 Section 292.308 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... SMALL POWER PRODUCTION AND COGENERATION Arrangements Between Electric Utilities and Qualifying... may establish reasonable standards to ensure system safety and reliability of interconnected...

  7. Optimal throughput for cognitive radio with energy harvesting in fading wireless channel.

    PubMed

    Vu-Van, Hiep; Koo, Insoo

    2014-01-01

    Energy resource management is a crucial problem of a device with a finite capacity battery. In this paper, cognitive radio is considered to be a device with an energy harvester that can harvest energy from a non-RF energy resource while performing other actions of cognitive radio. Harvested energy will be stored in a finite capacity battery. At the start of the time slot of cognitive radio, the radio needs to determine if it should remain silent or carry out spectrum sensing based on the idle probability of the primary user and the remaining energy in order to maximize the throughput of the cognitive radio system. In addition, optimal sensing energy and adaptive transmission power control are also investigated in this paper to effectively utilize the limited energy of cognitive radio. Finding an optimal approach is formulated as a partially observable Markov decision process. The simulation results show that the proposed optimal decision scheme outperforms the myopic scheme in which current throughput is only considered when making a decision.

  8. A technical analysis for cogeneration systems with potential applications in twelve California industrial plants. [energy saving heat-electricity utility systems

    NASA Technical Reports Server (NTRS)

    Moretti, V. C.; Davis, H. S.; Slonski, M. L.

    1978-01-01

    In a study sponsored by the State of California Energy Resources Conservation and Development Commission, 12 industrial plants in five utility districts were surveyed to assess the potential applications of the cogeneration of heat and electricity in California industry. Thermodynamic calculations were made for each plant in determining the energy required to meet the existing electrical and steam demands. The present systems were then compared to conceptual cogeneration systems specified for each plant. Overall energy savings were determined for the cogeneration applications. Steam and gas turbine topping cycle systems were considered as well as bottoming cycle systems. Types of industries studied were: pulp and paper, timber, cement, petroleum refining, enhanced oil recovery, foods processing, steel and glass

  9. The Cost of Saving Electricity Through Energy Efficiency Programs Funded by Utility Customers: 2009–2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Ian M.; Goldman, Charles A.; Murphy, Sean

    The average cost to utilities to save a kilowatt-hour (kWh) in the United States is 2.5 cents, according to the most comprehensive assessment to date of the cost performance of energy efficiency programs funded by electricity customers. These costs are similar to those documented earlier. Cost-effective efficiency programs help ensure electricity system reliability at the most affordable cost as part of utility planning and implementation activities for resource adequacy. Building on prior studies, Berkeley Lab analyzed the cost performance of 8,790 electricity efficiency programs between 2009 and 2015 for 116 investor-owned utilities and other program administrators in 41 states. Themore » Berkeley Lab database includes programs representing about three-quarters of total spending on electricity efficiency programs in the United States.« less

  10. Design of State-of-the-art Flow Cells for Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ping

    The worldwide energy demand is increasing every day and it necessitates rational and efficient usage of renewable energy. Undoubtedly, utilization of renewable energy can address various environmental challenges. However, all current renewable energy resources (wind, solar, and hydroelectric power) are intermittent and fluctuating in their nature that raises an important question of introducing effective energy storage solutions. Utilization of redox flow cells (RFCs) has recently been recognized as a viable technology for large-scale energy storage and, hence, is well suited for integrating renewable energy and balancing electricity grids. In brief, RFC is an electrochemical storage device (Fig. 1), where energymore » is stored in chemical bonds, similar to a battery, but with reactants external to the cell. The state-of-the-art in flow cell technology uses an aqueous acidic electrolyte and simple metal redox couples. Several of these systems have been commercialized although current technologies, such as vanadium (V) and zinc-bromine (Zn-Br 2) RFCs, for grid level energy storage, suffer from a number of drawbacks, i.e. expensive and resource-limited active materials (vanadium RFCc), and low current performance (Zn-Br 2 RFCs due to Zn dendrite formation). Thus, there is an urgent call to develop efficient (high-energy density) and low-cost RFCs to meet the efflorescent energy storage demands. Approach: To address the first challenge of achieving high-energy density, we plan to design and further modify complexes composed of bifunctional multidentate ligands and specific metal centers, capable of storing as many electrons as possible.« less

  11. Resource theory for work and heat

    NASA Astrophysics Data System (ADS)

    Sparaciari, Carlo; Oppenheim, Jonathan; Fritz, Tobias

    2017-11-01

    Several recent results on thermodynamics have been obtained using the tools of quantum information theory and resource theories. So far, the resource theories utilized to describe thermodynamics have assumed the existence of an infinite thermal reservoir, by declaring that thermal states at some background temperature come for free. Here, we propose a resource theory of quantum thermodynamics without a background temperature, so that no states at all come for free. We apply this resource theory to the case of many noninteracting systems and show that all quantum states are classified by their entropy and average energy, even arbitrarily far away from equilibrium. This implies that thermodynamics takes place in a two-dimensional convex set that we call the energy-entropy diagram. The answers to many resource-theoretic questions about thermodynamics can be read off from this diagram, such as the efficiency of a heat engine consisting of finite reservoirs, or the rate of conversion between two states. This allows us to consider a resource theory which puts work and heat on an equal footing, and serves as a model for other resource theories.

  12. Energy Technology Allocation for Distributed Energy Resources: A Technology-Policy Framework

    NASA Astrophysics Data System (ADS)

    Mallikarjun, Sreekanth

    Distributed energy resources (DER) are emerging rapidly. New engineering technologies, materials, and designs improve the performance and extend the range of locations for DER. In contrast, constructing new or modernizing existing high voltage transmission lines for centralized generation are expensive and challenging. In addition, customer demand for reliability has increased and concerns about climate change have created a pull for swift renewable energy penetration. In this context, DER policy makers, developers, and users are interested in determining which energy technologies to use to accommodate different end-use energy demands. We present a two-stage multi-objective strategic technology-policy framework for determining the optimal energy technology allocation for DER. The framework simultaneously considers economic, technical, and environmental objectives. The first stage utilizes a Data Envelopment Analysis model for each end-use to evaluate the performance of each energy technology based on the three objectives. The second stage incorporates factor efficiencies determined in the first stage, capacity limitations, dispatchability, and renewable penetration for each technology, and demand for each end-use into a bottleneck multi-criteria decision model which provides the Pareto-optimal energy resource allocation. We conduct several case studies to understand the roles of various distributed energy technologies in different scenarios. We construct some policy implications based on the model results of set of case studies.

  13. Market study for direct utilization of geothermal resources by selected sectors of economy

    NASA Astrophysics Data System (ADS)

    1980-08-01

    A comprehensive analysis is presented of industrial markets potential for direct use of geothermal energy by a total of six industry sectors: food and kindred products; tobacco manufactures; textile mill products; lumber and wood products (except furniture); chemicals and allied products; and leather and leather products. Location determinants and potential for direct use of geothermal resources are presented. The data was gathered through interviews with 30 senior executives in the six sectors of economy selected for study. Probable locations of plants in geothermal resource areas and recommendations for geothermal resource marketing are presented.

  14. THE CLEAN ENERGY-ENVIRONMENT GUIDE TO ACTION ...

    EPA Pesticide Factsheets

    The Guide to Action identifies and describes sixteen clean energy policies and strategies that are delivering economic and environmental results for states. For each policy, the Guide describes: Objectives and benefits of the policy; Examples of states that have implemented the policy; Responsibilities of key players at the state level, including typical roles of the main stakeholders; Opportunities to coordinate implementation with other federal and state policies, partnerships and technical assistance resources; Best practices for policy design, implementation, and evaluation, including state examples; Action steps for states to take when adopting or modifying their clean energy policies, based on existing state experiences; Resources for additional information on individual state policies, legislative and regulatory language, and analytical tools and methods. States participating in the Clean Energy-Environment State Partnership Program will use the Guide to Action to: Develop their own Clean Energy-Environment Action Plan that is appropriate to their state; Identify the roles and responsibilities of key decision-makers, such as environmental regulators, state legislatures, public utility commissioners, and state energy offices; Access and apply technical assistance resources, models, and tools available for state-specific analyses and program implementation; and Learn from each other as they develop their own clean energy programs and policies.

  15. Development of geothermal energy in the Gulf Coast: socio-economic, demographic, and political considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letlow, K.; Lopreato, S.C.; Meriwether, M.

    The institutional aspect of the study attempts to identify possible effects of geothermal research, development, and utilization on the area and its inhabitants in three chapters. Chapters I and II address key socio-economic and demographic variables. The initial chapter provides an overview of the area where the resource is located. Major data are presented that can be used to establish a baseline description of the region for comparison over time and to delineate crucial area for future study with regard to geothermal development. The chapter highlights some of the variables that reflect the cultural nature of the Gulf Coast, itsmore » social characteristics, labor force, and service in an attempt to delineate possible problems with and barriers to the development of geothermal energy in the region. The following chapter focuses on the local impacts of geothermal wells and power-generating facilities using data on such variables as size and nature of construction and operating crews. Data are summarized for the areas studied. A flow chart is utilized to describe research that is needed in order to exploit the resource as quickly and effectively as possible. Areas of interface among various parts of the research that will include exchange of data between the social-cultural group and the institutional, legal, environmental, and resource utilization groups are identified. (MCW)« less

  16. An energy- and resource-saving technology for utilizing the sludge from thermal power station water treatment facilities

    NASA Astrophysics Data System (ADS)

    Nikolaeva, L. A.; Khusaenova, A. Z.

    2014-05-01

    A method for utilizing production wastes is considered, and a process circuit arrangement is proposed for utilizing a mixture of activated silt and sludge from chemical water treatment by incinerating it with possible heat recovery. The sorption capacity of the products from combusting a mixture of activated silt and sludge with respect to gaseous emissions is experimentally determined. A periodic-duty adsorber charged with a fixed bed of sludge is calculated, and the heat-recovery boiler efficiency is estimated together with the technical-economic indicators of the proposed utilization process circuit arrangement.

  17. Hopi Sustainable Energy Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman Honie, Jr.; Margie Schaff; Mark Hannifan

    2004-08-01

    The Hopi Tribal Government as part of an initiative to ?Regulate the delivery of energy and energy services to the Hopi Reservation and to create a strategic business plan for tribal provision of appropriate utility, both in a manner that improves the reliability and cost efficiency of such services,? established the Hopi Clean Air Partnership Project (HCAPP) to support the Tribe?s economic development goals, which is sensitive to the needs and ways of the Hopi people. The Department of Energy (DOE) funded, Formation of Hopi Sustainable Energy Program results are included in the Clean Air Partnership Report. One of themore » Hopi Tribe?s primary strategies to improving the reliability and cost efficiency of energy services on the Reservation and to creating alternative (to coal) economic development opportunities is to form and begin implementation of the Hopi Sustainable Energy Program. The Hopi Tribe through the implementation of this grant identified various economic opportunities available from renewable energy resources. However, in order to take advantage of those opportunities, capacity building of tribal staff is essential in order for the Tribe to develop and manage its renewable energy resources. As Arizona public utilities such as APS?s renewable energy portfolio increases the demand for renewable power will increase. The Hopi Tribe would be in a good position to provide a percentage of the power through wind energy. It is equally important that the Hopi Tribe begin a dialogue with APS and NTUA to purchase the 69Kv transmission on Hopi and begin looking into financing options to purchase the line.« less

  18. Energy conversion of animal manures: Feasibility analysis for thirteen western states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittier, J.; Haase, S.; Milward, R.

    1993-12-31

    The growth and concentration of the livestock industry has led to environmental disposal problems for large quantities of manure at feedlots, dairies, poultry production plants, animal holding areas and pasturelands. Consequently, waste management systems that facilitate energy recovery are becoming increasingly attractive since they address pollution problems and allow for energy generation from manure resources. This paper presents a manure resource assessment for the 13 US Department of Energy, Western Regional Biomass Energy Program states, describes and evaluates available energy conversion technologies, identifies environmental and regulatory factors associated with manure collection, storage and disposal, and identifies common disposal practices specificmore » to animal types and areas within the WRBEP region. The paper also presents a pro forma economic analysis for selected manure-to-energy conversion technologies. The annual energy potential of various manures within the WRBEP region is equivalent to approximately 111 {times} 10{sup 13} Btu. Anaerobic digestion systems, both lagoon and plug flow, offer positive economic returns in a broad range of utility service territories.« less

  19. Energy law service. Volume 2. Monographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, H.P.

    1978-01-01

    This volume (a companion to the Energy Guide, Vol. 1) contains the following: Monograph 1A - The National Energy Act; Monograph 3A - The Surface Mining Control and Reclamation Act; Monograph 4A - Gasoline: regulation of price and supply; Monograph 5A - Electric utility rate design; Monograph 6A - Nuclear export control; Monograph 6B - Nuclear Regulatory Commission practice and procedure; Monograph 6C - The Three Mile Island episode: liability and financial implications; Monograph 8A - The Environmental Policy Act; Monograph 10A - Collection and analysis of energy information by the Federal Government; Monograph 11A - Management of energy resourcesmore » on Federal lands; Monograph 12A - Regulation of costs under Department of Energy contracts; Monograph 13A - Foreign investment in United States energy resources; and Monograph 14A - Transportation of energy resources. In addition, a Supplement published July 1979, with updated information on Monographs 4A, 5A, 6B, 10A, 11A, and 12A is included.« less

  20. National Hydroelectric Power Resources Study: Environmental Assessment. Volume 8

    DTIC Science & Technology

    1981-09-01

    hydropower developers were initiated as a result of the Public Utility Regulatory Policies Act ( PURPA ) and the Energy Security Act. Those acts and...1980a). With the passage of The Public Utilities Regulatory Policy Act ( PURPA ), DOE was authorized to promote small-scale hydropower. Under its Small...requested. In addition, OMB has decided not to request the $300 million construction loan appropriation authorized under the PURPA because OMB

  1. Mars Mission Optimization Based on Collocation of Resources

    NASA Technical Reports Server (NTRS)

    Chamitoff, G. E.; James, G. H.; Barker, D. C.; Dershowitz, A. L.

    2003-01-01

    This paper presents a powerful approach for analyzing Martian data and for optimizing mission site selection based on resource collocation. This approach is implemented in a program called PROMT (Planetary Resource Optimization and Mapping Tool), which provides a wide range of analysis and display functions that can be applied to raw data or imagery. Thresholds, contours, custom algorithms, and graphical editing are some of the various methods that can be used to process data. Output maps can be created to identify surface regions on Mars that meet any specific criteria. The use of this tool for analyzing data, generating maps, and collocating features is demonstrated using data from the Mars Global Surveyor and the Odyssey spacecraft. The overall mission design objective is to maximize a combination of scientific return and self-sufficiency based on utilization of local materials. Landing site optimization involves maximizing accessibility to collocated science and resource features within a given mission radius. Mission types are categorized according to duration, energy resources, and in-situ resource utilization. Optimization results are shown for a number of mission scenarios.

  2. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    NASA Astrophysics Data System (ADS)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion systems and energy storage in electric power systems and provide useful input to the managerial decision process.

  3. Third-space Architecture for Learning in 3D

    DTIC Science & Technology

    2011-01-01

    wind, and geothermal ( Fogg , 1997). A viable Mars ecosystem rests on whether energy resources can be harnessed profitably. In other words, net...Lessons in curriculum, instruction, assessment, and professional development. Mahwah, NJ: Erlbaum. Fogg , M. J. (1997). The utility of geothermal

  4. Megan Day | NREL

    Science.gov Websites

    research, analysis, and technical assistance on municipal energy planning and policy, utility-scale Baseline Analysis of Municipal Codification across the U.S., NREL Technical Report (2016) Navajo Generating Station & Federal Resource Planning - Volume 1: Sectoral, Technical, and Economic Trends, NREL

  5. Analysis of asymmetries in air pollution with water resources, and energy consumption in Iran.

    PubMed

    Ashouri, Mohammad Javad; Rafei, Meysam

    2018-04-17

    Iran should pay special attention to its excessive consumption of energy and air pollution due to the limited availability of water resources. This study explores the effects of the consumption of energy and water resources on air pollution in Iran from 1971 to 2014. It utilizes the non-linear autoregressive distributed lag approach to establish a robust relationship between the variables which show that both long- and short-run coefficients are asymmetrical. The positive and negative aspects of the long-run coefficients of energy consumption and water resources were found to be 0.19, - 1.63, 0.18, and 2.36, respectively, while only the negative ones were significant for energy consumption. Based on the cumulative effects, it can be established that there are important and significant differences in the responses of air pollution to positive and negative changes in water productivity and energy consumption. In particular, CO 2 gas emissions are affected by negative changes in H 2 O productivity both in terms of the total and the GDP per unit of energy use in Iran. In regard to short-run results, considerable asymmetric effects occur on all the variables for CO 2 emissions. Based on the results obtained, some recommendations are presented, which policymakers can adopt in efforts to address the issues of pollution and consumption.

  6. "Living off the land": resource efficiency of wetland wastewater treatment.

    PubMed

    Nelson, M; Odum, H T; Brown, M T; Alling, A

    2001-01-01

    Bioregenerative life support technologies for space application are advantageous if they can be constructed using locally available materials, and rely on renewable energy resources, lessening the need for launch and resupply of materials. These same characteristics are desirable in the global Earth environment because such technologies are more affordable by developing countries, and are more sustainable long-term since they utilize less non-renewable, imported resources. Subsurface flow wetlands (wastewater gardens(TM)) were developed and evaluated for wastewater recycling along the coast of Yucatan. Emergy evaluations, a measure of the environmental and human economic resource utilization, showed that compared to conventional sewage treatment, wetland wastewater treatment systems use far less imported and purchased materials. Wetland systems are also less energy-dependent, lessening dependence on electrical infrastructure, and require simpler maintenance since the system largely relies on the ecological action of microbes and plants for their efficacy. Detailed emergy evaluations showed that wetland systems use only about 15% the purchased emergy of conventional sewage systems, and that renewable resources contribute 60% of total emergy used (excluding the sewage itself) compared to less than 1% use of renewable resources in the high-tech systems. Applied on a larger scale for development in third world countries, wetland systems would require the electrical energy of conventional sewage treatment (package plants), and save of total capital and operating expenses over a 20-year timeframe. In addition, there are numerous secondary benefits from wetland systems including fiber/fodder/food from the wetland plants, creation of ecosystems of high biodiversity with animal habitat value, and aesthestic/landscape enhancement of the community. Wetland wastewater treatment is an exemplar of ecological engineering in that it creates an interface ecosystem to handle byproducts of the human economy, maximizing performance of the both the natural economy and natural ecosystems. Wetland systems accomplish this with far greater resource economy than other sewage treatment approaches, and thus offer benefits for both space and Earth applications. c 2001. COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  7. ``Living off the land'': resource efficiency of wetland wastewater treatment

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Odum, H. T.; Brown, M. T.; Alling, A.

    Bioregenerative life support technologies for space application are advantageous if they can be constructed using locally available materials, and rely on renewable energy resources, lessening the need for launch and resupply of materials. These same characteristics are desirable in the global Earth environment because such technologies are more affordable by developing countries, and are more sustainable long-term since they utilize less non-renewable, imported resources. Subsurface flow wetlands (wastewater gardens™) were developed and evaluated for wastewater recycling along the coast of Yucatan. Emergy evaluations, a measure of the environmental and human economic resource utilization, showed that compared to conventional sewage treatment, wetland wastewater treatment systems use far less imported and purchased materials. Wetland systems are also less energy-dependent, lessening dependence on electrical infrastructure, and require simpler maintenance since the system largely relies on the ecological action of microbes and plants for their efficacy. Detailed emergy evaluations showed that wetland systems use only about 15% the purchased emergy of conventional sewage systems, and that renewable resources contribute 60% of total emergy used (excluding the sewage itself) compared to less than 1% use of renewable resources in the high-tech systems. Applied on a larger scale for development in third world countries, wetland systems would require 1/5 the electrical energy of conventional sewage treatment (package plants), and save 2/3 of total capital and operating expenses over a 20-year timeframe. In addition, there are numerous secondary benefits from wetland systems including fiber/fodder/food from the wetland plants, creation of ecosystems of high biodiversity with animal habitat value, and aesthestic/landscape enhancement of the community. Wetland wastewater treatment is an exemplar of ecological engineering in that it creates an interface ecosystem to handle byproducts of the human economy, maximizing performance of the both the natural economy and natural ecosystems. Wetland systems accomplish this with far greater resource economy than other sewage treatment approaches, and thus offer benefits for both space and Earth applications.

  8. Proceedings of the second US Department of Energy environmental control symposium. Volume 1. Fossil energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-06-01

    These proceedings document the presentations given at the Second Environmental Control Symposium. Symposium presentations highlighted environmental control activities which span the entire DOE. Volume I contains papers relating to coal preparation, oil shales, coal combustion, advanced coal utilization (fluidized bed combustion, MHD generators, OCGT, fuel cells), coal gasification, coal liquefaction, and fossil resource extraction (enhanced recovery). Separate abstracts for individual papers are prepared for inclusion in the Energy Data Base. (DMC)

  9. C&RE-SLC: Database for conservation and renewable energy activities

    NASA Astrophysics Data System (ADS)

    Cavallo, J. D.; Tompkins, M. M.; Fisher, A. G.

    1992-08-01

    The Western Area Power Administration (Western) requires all its long-term power customers to implement programs that promote the conservation of electric energy or facilitate the use of renewable energy resources. The hope is that these measures could significantly reduce the amount of environmental damage associated with electricity production. As part of preparing the environmental impact statement for Western's Electric Power Marketing Program, Argonne National Laboratory constructed a database of the conservation and renewable energy activities in which Western's Salt Lake City customers are involved. The database provides information on types of conservation and renewable energy activities and allows for comparisons of activities being conducted at different utilities in the Salt Lake City region. Sorting the database allows Western's Salt Lake City customers to be classified so the various activities offered by different classes of utilities can be identified; for example, comparisons can be made between municipal utilities and cooperatives or between large and small customers. The information included in the database was collected from customer planning documents in the files of Western's Salt Lake City office.

  10. Overview of Existing Wind Energy Ordinances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oteri, F.

    2008-12-01

    Due to increased energy demand in the United States, rural communities with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to ensure that ordinances will be established to aid the development of safe facilities that will be embraced by the community. The purpose of this reportmore » is to educate and engage state and local governments, as well as policymakers, about existing large wind energy ordinances. These groups will have a collection of examples to utilize when they attempt to draft a new large wind energy ordinance in a town or county without existing ordinances.« less

  11. Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Release 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Greg; Hunt, W. D.; Pugh, Ray

    2011-08-31

    This release is an update and expansion of the information provided in Release 1.0 of the Metering Best Practice Guide that was issued in October 2007. This release, as was the previous release, was developed under the direction of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The mission of FEMP is to facilitate the Federal Government's implementation of sound cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Each of these activities is directly related to achieving requirements set forth in the Energy Policy Acts of 1992 and 2005, the Energymore » Independence and Security Act (EISA) of 2007, and the goals that have been established in Executive Orders 13423 and 13514 - and also those practices that are inherent in sound management of Federal financial and personnel resources.« less

  12. Multi-objective generation scheduling with hybrid energy resources

    NASA Astrophysics Data System (ADS)

    Trivedi, Manas

    In economic dispatch (ED) of electric power generation, the committed generating units are scheduled to meet the load demand at minimum operating cost with satisfying all unit and system equality and inequality constraints. Generation of electricity from the fossil fuel releases several contaminants into the atmosphere. So the economic dispatch objective can no longer be considered alone due to the environmental concerns that arise from the emissions produced by fossil fueled electric power plants. This research is proposing the concept of environmental/economic generation scheduling with traditional and renewable energy sources. Environmental/economic dispatch (EED) is a multi-objective problem with conflicting objectives since emission minimization is conflicting with fuel cost minimization. Production and consumption of fossil fuel and nuclear energy are closely related to environmental degradation. This causes negative effects to human health and the quality of life. Depletion of the fossil fuel resources will also be challenging for the presently employed energy systems to cope with future energy requirements. On the other hand, renewable energy sources such as hydro and wind are abundant, inexhaustible and widely available. These sources use native resources and have the capacity to meet the present and the future energy demands of the world with almost nil emissions of air pollutants and greenhouse gases. The costs of fossil fuel and renewable energy are also heading in opposite directions. The economic policies needed to support the widespread and sustainable markets for renewable energy sources are rapidly evolving. The contribution of this research centers on solving the economic dispatch problem of a system with hybrid energy resources under environmental restrictions. It suggests an effective solution of renewable energy to the existing fossil fueled and nuclear electric utilities for the cheaper and cleaner production of electricity with hourly emission targets. Since minimizing the emissions and fuel cost are conflicting objectives, a practical approach based on multi-objective optimization is applied to obtain compromised solutions in a single simulation run using genetic algorithm. These solutions are known as non-inferior or Pareto-optimal solutions, graphically illustrated by the trade-off curves between criterions fuel cost and pollutant emission. The efficacy of the proposed approach is illustrated with the help of different sample test cases. This research would be useful for society, electric utilities, consultants, regulatory bodies, policy makers and planners.

  13. Energy: the states' response in 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, Earl S.

    A compilation of all state legislative energy enactments for legislature, in 1978 is presented. It provides source material to legislators and their staff. Each bill is separated into one or more of the 37 major subject categories. Broad categories cover public utilities; tax exemption; tax application; franchise protection; conservation; resource development; solar easements; mineral extraction regulation; management; emergency powers; anti-trust; anit-environment; and miscellaneous legislation.

  14. A Study of Navajo Perceptions of the Impact of Environmental Changes Relating to Energy Resource Development. Final Report.

    ERIC Educational Resources Information Center

    Schoepfle, G. Mark; And Others

    Ethnographic interview methods were utilized to determine the social costs of energy development (i.e. uranium mining) and the mitigation of these costs. Determination was made from the viewpoint of the Navajos in the Burnhams Chapter (a geopolitical unit) in Western New Mexico; they anticipated four major costs (losses) to their present way of…

  15. Electric Power: Contemporary Issues and the Federal Role in Oversight and Regulation.

    DTIC Science & Technology

    1981-12-21

    Regulatory Commission NRECA National Rural Electric Cooperative Asso- ciation PURPA Public Utility Regulatory Policies Act of 1978 REA Rural...energy efficiency standards for certain products and processes, and sets standards for solar energy and conservation in Federal buildings. PURPA --the...conservation, efficient use of facilities and resources, and equitable rates to electric consumers. PURPA also (1) encourages the use of cogeneration and

  16. Maximization of revenues for power sales from a solid waste resources recovery facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-01

    The report discusses the actual implementation of the best alternative in selling electrical power generated by an existing waste-to-energy facility, the Metro-Dade County Resources Recovery Plant. After the plant processes and extracts various products out of the municipal solid waste, it burns it to produce electrical power. The price for buying power to satisfy the internal needs of our Resources Recovery Facility (RRF) is substantially higher than the power price for selling electricity to any other entity. Therefore, without any further analysis, it was decided to first satisfy those internal needs and then export the excess power. Various alternatives weremore » thoroughly explored as to what to do with the excess power. Selling power to the power utilities or utilizing the power in other facilities were the primary options.« less

  17. Heat-pump-centered integrated community energy systems: System development summary

    NASA Astrophysics Data System (ADS)

    Calm, J. M.

    1980-02-01

    An introduction to district heating systems employing heat pumps to enable use of low temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service water heating, and other thermal services. Otherwise wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. More than one quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less scarce resources not practical in smaller, individual building systems. Seven studies performed for the system development phase are summarized.

  18. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae

    PubMed Central

    Park, Hanwool

    2016-01-01

    Abstract Microalgae have long been considered as one of most promising feedstocks with better characteristics for biofuels production over conventional energy crops. There have been a wide range of estimations on the feasibility of microalgal biofuels based on various productivity assumptions and data from different scales. The theoretical maximum algal biofuel productivity, however, can be calculated by the amount of solar irradiance and photosynthetic efficiency (PE), assuming other conditions are within the optimal range. Using the actual surface solar irradiance data around the world and PE of algal culture systems, maximum algal biomass and biofuel productivities were calculated, and feasibility of algal biofuel were assessed with the estimation. The results revealed that biofuel production would not easily meet the economic break‐even point and may not be sustainable at a large‐scale with the current algal biotechnology. Substantial reductions in the production cost, improvements in lipid productivity, recycling of resources, and utilization of non‐conventional resources will be necessary for feasible mass production of algal biofuel. Among the emerging technologies, cultivation of microalgae in the ocean shows great potentials to meet the resource requirements and economic feasibility in algal biofuel production by utilizing various marine resources. PMID:27782372

  19. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae.

    PubMed

    Park, Hanwool; Lee, Choul-Gyun

    2016-11-01

    Microalgae have long been considered as one of most promising feedstocks with better characteristics for biofuels production over conventional energy crops. There have been a wide range of estimations on the feasibility of microalgal biofuels based on various productivity assumptions and data from different scales. The theoretical maximum algal biofuel productivity, however, can be calculated by the amount of solar irradiance and photosynthetic efficiency (PE), assuming other conditions are within the optimal range. Using the actual surface solar irradiance data around the world and PE of algal culture systems, maximum algal biomass and biofuel productivities were calculated, and feasibility of algal biofuel were assessed with the estimation. The results revealed that biofuel production would not easily meet the economic break-even point and may not be sustainable at a large-scale with the current algal biotechnology. Substantial reductions in the production cost, improvements in lipid productivity, recycling of resources, and utilization of non-conventional resources will be necessary for feasible mass production of algal biofuel. Among the emerging technologies, cultivation of microalgae in the ocean shows great potentials to meet the resource requirements and economic feasibility in algal biofuel production by utilizing various marine resources. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Boosting CSP Production with Thermal Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, P.; Mehos, M.

    2012-06-01

    Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PVmore » electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.« less

  1. Coordinative Voltage Control Strategy with Multiple Resources for Distribution Systems of High PV Penetration: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiangqi; Zhang, Yingchen

    This paper presents an optimal voltage control methodology with coordination among different voltage-regulating resources, including controllable loads, distributed energy resources such as energy storage and photovoltaics (PV), and utility voltage-regulating devices such as voltage regulators and capacitors. The proposed methodology could effectively tackle the overvoltage and voltage regulation device distortion problems brought by high penetrations of PV to improve grid operation reliability. A voltage-load sensitivity matrix and voltage-regulator sensitivity matrix are used to deploy the resources along the feeder to achieve the control objectives. Mixed-integer nonlinear programming is used to solve the formulated optimization control problem. The methodology has beenmore » tested on the IEEE 123-feeder test system, and the results demonstrate that the proposed approach could actively tackle the voltage problem brought about by high penetrations of PV and improve the reliability of distribution system operation.« less

  2. Geothermal energy program overview

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  3. Transported Low-Temperature Geothermal Energy for Thermal End Uses Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhiyao; Liu, Xiaobing; Gluesenkamp, Kyle R

    2016-10-01

    The use of geothermal energy is an emerging area for improving the nation’s energy resiliency. Conventionally, geothermal energy applications have focused on power generation using high temperature hydrothermal resources or enhanced geothermal systems. However, many low temperature (below 150°C/300°F) geothermal resources are also available but have not been fully utilized. For example, it is estimated that 25 billion barrels of geothermal fluid (mostly water and some dissolved solids) at 176°F to 302°F (80°C to 150°C) is coproduced annually at oil and gas wells in the United States (DOE 2015). The heat contained in coproduced geothermal fluid (also referred as “coproducedmore » water”) is typically wasted because the fluid is reinjected back into the ground without extracting the heat.« less

  4. Resource Legacies of Organic and Conventional Management Differentiate Soil Microbial Carbon Use

    PubMed Central

    Arcand, Melissa M.; Levy-Booth, David J.; Helgason, Bobbi L.

    2017-01-01

    Long-term contrasts in agricultural management can shift soil resource availability with potential consequences to microbial carbon (C) use efficiency (CUE) and the fate of C in soils. Isothermal calorimetry was combined with 13C-labeled glucose stable isotope probing (SIP) of 16S rRNA genes to test the hypothesis that organically managed soils would support microbial communities with greater thermodynamic efficiency compared to conventional soils due to a legacy of lower resource availability and a resultant shift toward communities supportive of more oligotrophic taxa. Resource availability was greater in conventionally managed soils, with 3.5 times higher available phosphorus, 5% more nitrate, and 36% more dissolved organic C. The two management systems harbored distinct glucose-utilizing populations of Proteobacteria and Actinobacteria, with a higher Proteobacteria:Actinobacteria ratio (2.4 vs. 0.7) in conventional soils. Organically managed soils also harbored notable activity of Firmicutes. Thermodynamic efficiency indices were similar between soils, indicating that glucose was metabolized at similar energetic cost. However, differentially abundant glucose utilizers in organically managed soils were positively correlated with soil organic matter (SOM) priming and negatively correlated to soil nutrient and carbon availability, respiration, and heat production. These correlation patterns were strongly reversed in the conventionally managed soils indicating clear differentiation of microbial functioning related to soil resource availability. Fresh C addition caused proportionally more priming of SOM decomposition (57 vs. 51%) in organically managed soils likely due to mineralization of organic nutrients to satisfy microbial demands during glucose utilization in these more resource deprived soils. The additional heat released from SOM oxidation may explain the similar community level thermodynamic efficiencies between management systems. Restoring fertility to soils with a legacy of nutrient limitation requires a balanced supply of both nutrients and energy to protect stable SOM from microbial degradation. These results highlight the need to consider managing C for the energy it provides to ıcritical biological processes that underpin soil health. PMID:29230199

  5. Distribution System Pricing with Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hledik, Ryan; Lazar, Jim; Schwartz, Lisa

    Technological changes in the electric utility industry bring tremendous opportunities and significant challenges. Customers are installing clean sources of on-site generation such as rooftop solar photovoltaic (PV) systems. At the same time, smart appliances and control systems that can communicate with the grid are entering the retail market. Among the opportunities these changes create are a cleaner and more diverse power system, the ability to improve system reliability and system resilience, and the potential for lower total costs. Challenges include integrating these new resources in a way that maintains system reliability, provides an equitable sharing of system costs, and avoidsmore » unbalanced impacts on different groups of customers, including those who install distributed energy resources (DERs) and low-income households who may be the least able to afford the transition.« less

  6. 18 CFR 37.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Definitions. 37.3... Definitions. (a) Transmission Provider means any public utility that owns, operates, or controls facilities used for the transmission of electric energy in interstate commerce. (b) Transmission Customer means...

  7. NASA Central Operation of Resources for Educators (CORE): Educational Materials Catalog

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This catalog contains order information for video cassettes with topics such as: aeronautics, earth science, weather, space exploration/satellites, life sciences, energy, living in space, manned spaceflight, social sciences, space art, space sciences, technology education and utilization, and mathematics/physics.

  8. Synfuels and the energy transition

    NASA Astrophysics Data System (ADS)

    Balzhiser, R. E.

    1981-08-01

    Various synfuel options and their impact on the electric utility industry are discussed. The energy transition for the U.S.A. is seen as moving from natural fluid fuels to solid fuels and renewable energy resources. The key to this transition is electrification, which can encompass both nuclear and renewable resources, centralized and dispersed technologies. It is shown that the fraction of total energy converted to electricity has risen steadily for the past 30 years, reaching 33% last year. The abundance and cost of production of the various fossil energy resources, including natural gas, heavy oil, oil shale, and coal are considered. EPRI analyses indicate that an integrated-combined-cycle power plant could be competitive with conventional coal plant technology. These plants would use only half the water of current coal-fired plants, would meet tighter sulfur emission standards, and would produce a vitreous ash that is less leachable than the ash from today's coal plants. Solvent-refined coal processes, currently being developed in the U.S.A. are a second approach to converting coal to liquid fuels. It is pointed out, however, that synfuels will complement, not replace, other sources of energy in the continued electrification of the U.S.A.

  9. Geospatial Relationships between Awareness and Utilization of Community Exercise Resources and Physical Activity Levels in Older Adults.

    PubMed

    Dondzila, Christopher J; Swartz, Ann M; Keenan, Kevin G; Harley, Amy E; Azen, Razia; Strath, Scott J

    2014-01-01

    Introduction. It is unclear if community-based fitness resources (CBFR) translate to heightened activity levels within neighboring areas. The purpose of this study was to determine whether awareness and utilization of fitness resources and physical activity differed depending on residential distance from CBFR. Methods. Four hundred and seventeen older adults (72.9 ± 7.7 years) were randomly recruited from three spatial tiers (≤1.6, >1.6 to ≤3.2, and >3.2 to 8.0 km) surrounding seven senior centers, which housed CBFR. Participants completed questionnaires on health history, CBFR, and physical activity, gathering data on CBFR awareness, utilization, and barriers, overall levels, and predictors to engagement in moderate to vigorous physical activity (MVPA). Results. Across spatial tiers, there were no differences in positive awareness rates of CBFR or CBFR utilization. Engagement in MVPA differed across spatial tiers (P < 0.001), with the >3.2 to 8.0 km radius having the highest mean energy expenditure. Across all sites, age and income level (P < 0.05) were significant predictors of low and high amounts of MVPA, respectively, and current health status and lack of interest represented barriers to CBFR utilization (P < 0.05). Conclusion. Closer proximity to CBFR did not impact awareness or utilization rates and had an inverse relationship with physical activity.

  10. DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhil, Abbas A.; Huff, Georgianne; Currier, Aileen B.

    2016-09-01

    The Electricity Storage Handbook (Handbook) is a how-to guide for utility and rural cooperative engineers, planners, and decision makers to plan and implement energy storage projects. The Handbook also serves as an information resource for investors and venture capitalists, providing the latest developments in technologies and tools to guide their evaluations of energy storage opportunities. It includes a comprehensive database of the cost of current storage systems in a wide variety of electric utility and customer services, along with interconnection schematics. A list of significant past and present energy storage projects is provided for a practical perspective. This Handbook, jointlymore » sponsored by the U.S. Department of Energy and the Electric Power Research Institute in collaboration with the National Rural Electric Cooperative Association, is published in electronic form at www.sandia.gov/ess.« less

  11. California Publicly-Owned Utilities (POUs) – LBNL ‘Beyond Widgets’ Project. Task: ambient lighting and occupancy-based plug load control. System Program Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Alastair; Mathew, Paul A.; Regnier, Cynthia

    This program manual contains detailed technical information for implementing an incentive program for task-ambient lighting and occupancy-based plug load control. This manual was developed by Lawrence Berkeley National Laboratory, in collaboration with the California Publicly-Owned Utilities (CA POUs) as a partner in the ‘Beyond Widgets’ program funded by the U.S. Department of Energy Building Technologies Office. The primary audience for this manual is the program staff of the various CA POUs. It may also be used by other utility incentive programs to help develop similar programs. It is anticipated that the content of this manual be utilized by the CAmore » POU staff for developing related documents such as the Technical Resource Manual and other filings pertaining to the rollout of an energy systems-based rebate incentive program.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This bibliography provides documentation for use by state public utility commissions and major nonregulated utilities in evaluating the applicability of a wide range of electric utility rate design and regulatory concepts in light of certain regulatory objectives. Part I, Utility Regulatory Objectives, contains 2084 citations on conservation of energy and capital; efficient use of facilities and resources; and equitable rates to electricity consumers. Part II, Rate Design Concepts, contains 1238 citations on time-of-day rates; seasonally-varying rates; cost-of-service rates; interruptible rates (including the accompanying use of load management techniques); declining block rates; and lifeline rates. Part III, Regulatory Concepts, contains 1282more » references on restrictions on master metering; procedures for review of automatic adjustment clauses; prohibitions of rate or regulatory discrimination against solar, wind, or other small energy systems; treatment of advertising expenses; and procedures to protect ratepayers from abrupt termination of service.« less

  13. Prospect and policy of palm oil mill effluents for future electricity in east kalimantan (utilization of pome as renewable energy)

    NASA Astrophysics Data System (ADS)

    Aipassa, M. I.; Kristiningrum, R.; Tarukan, V. Y.

    2018-04-01

    East Kalimantan economy for four decades was mainly based on natural resources extraction and dominated by primary sectorwith the six highest GDP in 2013. But, the contribution of oil and gas were decreasing production due to the absence of new wells.One of the mission was create natural resources and renewable energy based economic people oriented. The Goverment of EK Province chose a strategy of socio-economic transformation based on renewable natural resources. This strategy has been applied in the regional development plan by mainstreaming climate change issues. Data related to energy source and its potential, remote rural electrification, bioenergy feedstock, etc including from the Palm Oil company was collected and subsequently analized in line with the EK Governor Letter. Currently (2014) available of Biogas-Pome as bioenergy feedstock is 162 million m3year-1, where as currently utilized is only 22 millionm3year-1. Power demand supply status in January 2015 indicated as available capacity is 467 MW where the peak demand is 444 MW. About 22% of households without electricity are difficult to be electrified without breakthrough efforts. About 215 thousand households are un-electrified, with more power need about 150 MW in total capacity. As business opportunity, high demand for rural electrification, particularly in Kutai Kartanegera, Kutai Timur, Kutai Barat, Berau and Paser.

  14. Twenty-First Century Energy Policy Making in New Hampshire: Lessons for Collaboration

    NASA Astrophysics Data System (ADS)

    Herndon, Henry Phillip

    In this thesis I investigate the organizational field that is New Hampshire's energy policy-making community as it engages with the state regulatory institution, the Public Utilities Commission, to grapple the challenges of designing a 21st century electricity marketplace. The Public Utilities Commission structure and function are evolving. Historically, the Commission has used adjudicative proceedings to carry out a ratemaking function for monopoly utilities. The Commission's adjudicative process is evolving to become increasingly collaborative as it begins to carry out its new function of 21st century electricity market design. I analyze both the new structure (collaboration) and the new function (21 st century electricity market design) of the Commission through three in-depth case studies of dockets (policy-making processes): Energy Efficiency Resource Standard, Electric Grid Modernization, and Net Metering. My findings identify ways in which the Public Utilities Commission structure for making energy policy decisions is flexible and may be shaped by stakeholders engaging in policy processes. Stakeholders have the power to collectively design regulatory proceedings to incorporate greater opportunities for collaboration to better suit the challenges posed by a 21st century electricity sector. I provide recommendations on how that redesign should occur.

  15. LANDSAT-4 TM image data quality analysis for energy-related applications

    NASA Technical Reports Server (NTRS)

    Wukelic, G. E.; Foote, H. P.

    1983-01-01

    LANDSAT-4 Thematic Mapper (TM) data performance and utility characteristics from an energy research and technology perspective is evaluated. The program focuses on evaluating applicational implications of using such data, in combination with other digital data, for current and future energy research and technology activities. Prime interest is in using TM data for siting, developing and operating federal energy facilities. Secondary interests involve the use of such data for resource exploration, environmental monitoring and basic scientific initiatives such as in support of the Continental Scientific Drilling Program.

  16. Agent-Based Modleing of Power Plants Placement to Evaluate the Clean Energy Standard Goal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omitaomu, Olufemi A

    2014-01-01

    There is a political push for utilities to supply a specified share of their electricity sales from clean energy resources under the clean energy standard (CES). The goal is to achieve 80% clean energy by 2035. However, there are uncertainties about the ability of the utility industry to ramp up quickly even with the incentives that will be provided. Water availability from the streams is one of the major factors. The contiguous United States is divided into eighteen water regions, and multiple states share water from a single water region. Consequently, water usage decisions made in one state (located upstreammore » of a water region that crosses multiple states) will greatly impact what is available downstream in another state. In this paper, an agent-based modeling approach is proposed to evaluate the clean energy standard goal for water-dependent energy resources. Specifically, using a water region rather than a state boundary as a bounding envelope for the modeling and starting at the headwaters, virtual power plants are placed based on the conditions that there is: (i) suitable land to site a particular power plant, (ii) enough water that meet regulatory guidelines within 20 miles of the suitable land, and (iii) a 20-mile buffer zone from an existing or a virtual power plant. The results obtained are discussed in the context of the proposed clean energy standard goal for states that overlap with one water region.« less

  17. DOE Voluntary Partnership Program with Utilities and Local Governments Supports the Design of New Data Access Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Monisha; Burr, Andrew; Schulte, Andrew

    2016-08-26

    The Better Buildings Energy Data Accelerator (BBEDA) is a unique effort that has supported 22 pairs of local governments and their utility companies to help building owners gain access to their whole-building energy data. Municipal and Utility BBEDA Partners committed to develop streamlined and easy-to-use solutions to provide whole-building energy data, especially for multitenant commercial buildings, by the end of 2015. As a result, building owners would be able to make data-driven decisions about their buildings by utilizing readily available energy consumption data for entire buildings. Traditionally, data access was difficult to implement due to technical barriers and the lackmore » of clear value propositions for the utilities. During the past two years, BBEDA has taken a hands-on approach to overcome these barriers by offering a platform for the partners to discuss their challenges and solutions. Customized support was also provided to Partners building their local strategies. Based on the lessons learned from the partners, BBEDA developed a final toolkit with guiding documents that addressed key barriers and served as a resource for the other cities and utilities attempting to establish whole-building data access, including an exploration of opportunities to apply the whole-building data to various aspects of utility demand-side management (DSM) programs. BBEDA has been a catalyst for market transformation by addressing the upstream (to efficiency implementation) barrier of data access, demonstrated through the success of the BBEDA partners to address policy, engagement, and technical hurdles and arrive at replicable solutions to make data access a standard practice nationwide. As a result of best practices identified by the BBEDA, 18 utilities serving more than 2.6 million commercial customers nationwide will provide whole-building energy data access to building owners by 2017. This historic expansion of data accessibility will increase building energy benchmarking, the first step many building owners take to improve the energy efficiency of their buildings.« less

  18. The Future of Utility Customer-Funded Energy Efficiency Programs in the United States: Projected Spending and Savings to 2025

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbose, Galen; Goldman, Charles; Hoffman, Ian

    2012-09-11

    We develop projections of future spending on, and savings from, energy efficiency programs funded by electric and gas utility customers in the United States, under three scenarios through 2025. Our analysis, which updates a previous LBNL study, relies on detailed bottom-up modeling of current state energy efficiency policies, regulatory decisions, and demand-side management and utility resource plans. The three scenarios are intended to represent a range of potential outcomes under the current policy environment (i.e., without considering possible major new policy developments). By 2025, spending on electric and gas efficiency programs (excluding load management programs) is projected to double frommore » 2010 levels to $9.5 billion in the medium case, compared to $15.6 billion in the high case and $6.5 billion in the low case. Compliance with statewide legislative or regulatory savings or spending targets is the primary driver for the increase in electric program spending through 2025, though a significant share of the increase is also driven by utility DSM planning activity and integrated resource planning. Our analysis suggests that electric efficiency program spending may approach a more even geographic distribution over time in terms of absolute dollars spent, with the Northeastern and Western states declining from over 70% of total U.S. spending in 2010 to slightly more than 50% in 2025, with the South and Midwest splitting the remainder roughly evenly. Under our medium case scenario, annual incremental savings from customer-funded electric energy efficiency programs increase from 18.4 TWh in 2010 in the U.S. (which is about 0.5% of electric utility retail sales) to 28.8 TWh in 2025 (0.8% of retail sales). These savings would offset the majority of load growth in the Energy Information Administration’s most recent reference case forecast, given specific assumptions about the extent to which future energy efficiency program savings are captured in that forecast. However, the pathway that customer-funded efficiency programs ultimately take will depend on a series of key challenges and uncertainties associated both with the broader market and policy context and with the implementation and regulatory oversight of the energy efficiency programs themselves.« less

  19. Search for supersymmetry in 8 TeV proton-proton collision events with bottom-quark jets and missing transverse energy

    NASA Astrophysics Data System (ADS)

    Kreis, Benjamin

    In the absence of meaningful federal action, many states have adopted clean energy policies aimed at reducing carbon emissions. Among these policies is the energy efficiency resource standard (EERS), adopted by 33 states mostly in the last decade, which sets an energy consumption reduction target for some or all regulated utilities within a state. My paper examines what factors affect a state's likelihood of adopting an EERS, and whether those factors are different for EERS policies compared with other clean energy policies. The energy policy literature features many studies of clean energy policy adoption, but none have focused specifically on EERS adoption. I theorized that energy efficiency potential being relatively homogeneously distributed across states (compared to renewable energy potential) and efficiency's relative inexpensiveness as a resource would result in a unique set of factors being associated with the likelihood of EERS adoption. Specifically, I expected that three internal determinants--the presence of utility rate decoupling in a state, a state's political ideology, and the state's average retail price of residential electricity--affect a state's likelihood of adopting an EERS. To test these hypotheses, I estimated several multiple regression models using an event history analysis approach and found that citizen liberalism, level of electricity consumption, and a time counter variable were all statistically significant and positive predictors of state adoption of an EERS, all else equal. I found no association between decoupling or electricity price and EERS adoption, though in the case of the former that may be a result of insufficient data.

  20. Performance analysis of low temperature heat source of organic Rankine cycle for geothermal application

    NASA Astrophysics Data System (ADS)

    Pintoro, A.; Ambarita, H.; Nur, T. B.; Napitupulu, F. H.

    2018-02-01

    Indonesia has a high potential energy resources from geothermal activities. Base on the report of Asian Development Bank and World Bank, the estimated of Indonesian hydrothermal geothermal resource considered to be the largest among the world. If it’s can be utilized to produce the electric power, it’s can contribute to increasing the electrification rates in Indonesia. In this study, an experimental studied of electric power generation, utilizing the Organic Rankine Cycle (ORC) system to convert the low level heat of hydrothermal as an energy source. The temperature of hydrothermal was modelled as hot water from water boiler which has a temperature range from 60 °C - 100 °C to heat up the organic working fluid of ORC system. The system can generated 1,337.7 watts of electricity when operated using R134A with hot water inlet temperature of 100 °C. Changing system working fluid to R245fa, the net power obtained increase to 1,908.9 watts with the same heat source condition. This study showed that the ORC system can be implemented to utilize low temperature heat source of hydrothermal in Indonesia.

  1. Assessing the sustainability of lead utilization in China.

    PubMed

    Sun, Lingyu; Zhang, Chen; Li, Jinhui; Zeng, Xianlai

    2016-12-01

    Lead is not only one of heavy metals imposing environment and health risk, but also critical resource to maintain sustainable development of many industries. Recently, due to the shortage of fossil fuels, clean energy vehicles, including electric bicycle, have emerged and are widely adopted soon in the world. China became the world's largest producer of primary lead and a very significant consumer in the past decade, which has strained the supplies of China's lead deposits from lithosphere and boost the anthropogenic consumption of metallic lead and lead products. Here we summarize that China's lead demand will continually increase due to the rapid growth of electric vehicle, resulting in a short carrying duration of lead even with full lead recycling. With these applications increasing at an annual rate of 2%, the carrying duration of lead resource until 2030 will oblige that recycling rate should be not less than 90%. To sustain lead utilization in China, one approach would be to improve the utilization technology, collection system and recycling technology towards closed-loop supply chain. Other future endeavors should include optimizing lead industrial structure and development of new energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Energy: An annotated selected bibliography

    NASA Technical Reports Server (NTRS)

    Blow, S. J. (Compiler); Peacock, R. W. (Compiler); Sholy, J. J. (Compiler)

    1979-01-01

    This updated bibliography contains approximately 7,000 selected references on energy and energy related topics from bibliographic and other data sources from June 1977. Under each subject heading the entries are arranged by the data, with the latest works first. Subject headings include: resources supply/demand, and forecasting; policy, legislation, and regulation; environment; consumption, conservation, and economics; analysis, systems, and modeling, and information sources and documentation. Fossil fuels, hydrogen and other fuels, liquid/solid wastes and biomass, waste heat utilization, and nuclear power sources are also included.

  3. Introduction: Man and his total environment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Environmental changes and the utilization of finite resources are analyzed. Beyond the satisfaction of basic physical needs, the advancement of civilization toward an ever-improving quality of like is likewise dependent upon mans' interaction with his entire environment. This larger system is controlled externally by electromagnetic and particle energy from the sun and internally by the dynamic interchange of energy between the solid earth, oceans, the atmosphere, and the magnetosphere. This exchange of energy that determines the structure of the earth's environemental system is evaluated.

  4. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “allmore » of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.« less

  5. Utility residential new construction programs: Going beyond the code. A report from the Database on Energy Efficiency Programs (DEEP) Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vine, E.

    Based on an evaluation of 10 residential new construction programs, primarily sponsored by investor-owned utilities in the United States, we find that many of these programs are in dire straits and are in danger of being discontinued because current inclusion of only direct program effects leads to the conclusion that they are not cost-effective. We believe that the cost-effectiveness of residential new construction programs can be improved by: (1) promoting technologies and advanced building design practices that significantly exceed state and federal standards; (2) reducing program marketing costs and developing more effective marketing strategies; (3) recognizing the role of thesemore » programs in increasing compliance with existing state building codes; and (4) allowing utilities to obtain an ``energy-savings credit`` from utility regulators for program spillover (market transformation) impacts. Utilities can also leverage their resources in seizing these opportunities by forming strong and trusting partnerships with the building community and with local and state government.« less

  6. Powering the planet: Chemical challenges in solar energy utilization

    PubMed Central

    Lewis, Nathan S.; Nocera, Daniel G.

    2006-01-01

    Global energy consumption is projected to increase, even in the face of substantial declines in energy intensity, at least 2-fold by midcentury relative to the present because of population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of CO2 emissions in the atmosphere demands that holding atmospheric CO2 levels to even twice their preanthropogenic values by midcentury will require invention, development, and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable energy resources, solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year. In view of the intermittency of insolation, if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user. An especially attractive approach is to store solar-converted energy in the form of chemical bonds, i.e., in a photosynthetic process at a year-round average efficiency significantly higher than current plants or algae, to reduce land-area requirements. Scientific challenges involved with this process include schemes to capture and convert solar energy and then store the energy in the form of chemical bonds, producing oxygen from water and a reduced fuel such as hydrogen, methane, methanol, or other hydrocarbon species. PMID:17043226

  7. Powering the planet: chemical challenges in solar energy utilization.

    PubMed

    Lewis, Nathan S; Nocera, Daniel G

    2006-10-24

    Global energy consumption is projected to increase, even in the face of substantial declines in energy intensity, at least 2-fold by midcentury relative to the present because of population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of CO(2) emissions in the atmosphere demands that holding atmospheric CO(2) levels to even twice their preanthropogenic values by midcentury will require invention, development, and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable energy resources, solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year. In view of the intermittency of insolation, if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user. An especially attractive approach is to store solar-converted energy in the form of chemical bonds, i.e., in a photosynthetic process at a year-round average efficiency significantly higher than current plants or algae, to reduce land-area requirements. Scientific challenges involved with this process include schemes to capture and convert solar energy and then store the energy in the form of chemical bonds, producing oxygen from water and a reduced fuel such as hydrogen, methane, methanol, or other hydrocarbon species.

  8. Optimal Design of Biomass Utilization System for Rural Area Includes Technical and Economic Dimensions

    NASA Astrophysics Data System (ADS)

    Morioka, Yasuki; Nakata, Toshihiko

    In order to design optimal biomass utilization system for rural area, OMNIBUS (The Optimization Model for Neo-Integrated Biomass Utilization System) has been developed. OMNIBUS can derive the optimal system configuration to meet different objective function, such as current account balance, amount of biomass energy supply, and CO2 emission. Most of biomass resources in a focused region e.g. wood biomass, livestock biomass, and crop residues are considered in the model. Conversion technologies considered are energy utilization technologies e.g. direct combustion and methane fermentation, and material utilization technologies e.g. composting and carbonization. Case study in Miyakojima, Okinawa prefecture, has been carried out for several objective functions and constraint conditions. Considering economics of the utilization system as a priority requirement, composting and combustion heat utilization are mainly chosen in the optimal system configuration. However gasification power plant and methane fermentation are included in optimal solutions, only when both biomass energy utilization and CO2 reduction have been set as higher priorities. External benefit of CO2 reduction has large impacts on the system configuration. Provided marginal external benefit of more than 50,000 JPY/t-C, external benefit becomes greater than the revenue from electricity and compost etc. Considering technological learning in the future, expensive technologies such as gasification power plant and methane fermentation will have economic feasibility as well as market competitiveness.

  9. DEVELOPMENT OF A RECYCLABLE HETEROGENEOUS CATALYST FOR BIODIESEL SYNTHESIS UTILIZING WASTE GREASE AS FEEDSTOCK

    EPA Science Inventory

    As fuel consumption continues depleting nonrenewable energy sources and environmental health concerns heighten due to its use, a movement toward sustainable alternatives is necessary for the stewardship of future generations. Biodiesel (BD) is one renewable resource being deve...

  10. Biomass for biorefining: Resources, allocation, utilization, and policies

    USDA-ARS?s Scientific Manuscript database

    The importance of biomass in the development of renewable energy, the availability and allocation of biomass, its preparation for use in biorefineries, and the policies affecting biomass are discussed in this chapter. Bioenergy development will depend on maximizing the amount of biomass obtained fro...

  11. White meat-Green farm: case study of Brinson Farms

    USDA-ARS?s Scientific Manuscript database

    Comprehensive on-farm resource utilization and renewable energy generation at the farm scale are not new concepts. However, truly encompassing implementation of these ideals is lacking. Brinson Farms operates 10 commercial broiler houses. The farm generates heat for its houses using biomass boile...

  12. Process and utility water requirements for cellulosic ethanol production processes via fermentation pathway

    EPA Science Inventory

    The increasing need of additional water resources for energy production is a growing concern for future economic development. In technology development for ethanol production from cellulosic feedstocks, a detailed assessment of the quantity and quality of water required, and the ...

  13. 18 CFR 301.6 - Appendix 1 instructions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST METHODOLOGY... 4: Average System Cost (f) The filing Utility must reference and attach work papers, documentation... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Appendix 1 instructions...

  14. 18 CFR 301.6 - Appendix 1 instructions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST METHODOLOGY... 4: Average System Cost (f) The filing Utility must reference and attach work papers, documentation... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Appendix 1 instructions...

  15. 18 CFR 301.6 - Appendix 1 instructions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST METHODOLOGY... 4: Average System Cost (f) The filing Utility must reference and attach work papers, documentation... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Appendix 1 instructions...

  16. 18 CFR 301.6 - Appendix 1 instructions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST METHODOLOGY... 4: Average System Cost (f) The filing Utility must reference and attach work papers, documentation... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Appendix 1 instructions...

  17. A System Level Mass and Energy Calculation for a Temperature Swing Adsorption Pump used for In-Situ Resource Utilization (ISRU) on Mars

    NASA Technical Reports Server (NTRS)

    Hasseeb, Hashmatullah; Iannetti, Anthony

    2017-01-01

    A major component of a Martian In-Situ Resource Utilization (ISRU) system is the CO2 acquisition subsystem. This subsystem must be able to extract and separate CO2 at ambient Martian pressures and then output the gas at high pressures for the chemical reactors to generate fuel and oxygen. The Temperature Swing Adsorption (TSA) Pump is a competitive design that can perform this task using heating and cooling cycles in an enclosed volume. The design of this system is explored and analyzed for an output pressure range of 50 kPa to 500 kPa and an adsorption temperature range of -50 C to 40 C while meeting notional requirements for two mission scenarios. Mass and energy consumption results are presented for 2-stage, 3-stage, and 4-stage systems using the following adsorbents: Grace 544 13X, BASF 13X, Grace 522 5A and VSA 10 LiX.

  18. Enabling opportunistic resources for CMS Computing Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hufnagel, Dirk

    With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize opportunistic resources resources not owned by, or a priori configured for CMS to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enablemore » access and bring the CMS environment into these non CMS resources. Finally, we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.« less

  19. Enabling opportunistic resources for CMS Computing Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hufnagel, Dick

    With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize “opportunistic” resources — resources not owned by, or a priori configured for CMS — to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are usedmore » to enable access and bring the CMS environment into these non CMS resources. Here we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.« less

  20. Enabling opportunistic resources for CMS Computing Operations

    DOE PAGES

    Hufnagel, Dirk

    2015-12-23

    With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize opportunistic resources resources not owned by, or a priori configured for CMS to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enablemore » access and bring the CMS environment into these non CMS resources. Finally, we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.« less

  1. Thermoelectric energy converter for generation of electricity from low-grade heat

    DOEpatents

    Jayadev, T.S.; Benson, D.K.

    1980-05-27

    A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

  2. Incremental Contingency Planning

    NASA Technical Reports Server (NTRS)

    Dearden, Richard; Meuleau, Nicolas; Ramakrishnan, Sailesh; Smith, David E.; Washington, Rich

    2003-01-01

    There has been considerable work in AI on planning under uncertainty. However, this work generally assumes an extremely simple model of action that does not consider continuous time and resources. These assumptions are not reasonable for a Mars rover, which must cope with uncertainty about the duration of tasks, the energy required, the data storage necessary, and its current position and orientation. In this paper, we outline an approach to generating contingency plans when the sources of uncertainty involve continuous quantities such as time and resources. The approach involves first constructing a "seed" plan, and then incrementally adding contingent branches to this plan in order to improve utility. The challenge is to figure out the best places to insert contingency branches. This requires an estimate of how much utility could be gained by building a contingent branch at any given place in the seed plan. Computing this utility exactly is intractable, but we outline an approximation method that back propagates utility distributions through a graph structure similar to that of a plan graph.

  3. Cooperative network clustering and task allocation for heterogeneous small satellite network

    NASA Astrophysics Data System (ADS)

    Qin, Jing

    The research of small satellite has emerged as a hot topic in recent years because of its economical prospects and convenience in launching and design. Due to the size and energy constraints of small satellites, forming a small satellite network(SSN) in which all the satellites cooperate with each other to finish tasks is an efficient and effective way to utilize them. In this dissertation, I designed and evaluated a weight based dominating set clustering algorithm, which efficiently organizes the satellites into stable clusters. The traditional clustering algorithms of large monolithic satellite networks, such as formation flying and satellite swarm, are often limited on automatic formation of clusters. Therefore, a novel Distributed Weight based Dominating Set(DWDS) clustering algorithm is designed to address the clustering problems in the stochastically deployed SSNs. Considering the unique features of small satellites, this algorithm is able to form the clusters efficiently and stably. In this algorithm, satellites are separated into different groups according to their spatial characteristics. A minimum dominating set is chosen as the candidate cluster head set based on their weights, which is a weighted combination of residual energy and connection degree. Then the cluster heads admit new neighbors that accept their invitations into the cluster, until the maximum cluster size is reached. Evaluated by the simulation results, in a SSN with 200 to 800 nodes, the algorithm is able to efficiently cluster more than 90% of nodes in 3 seconds. The Deadline Based Resource Balancing (DBRB) task allocation algorithm is designed for efficient task allocations in heterogeneous LEO small satellite networks. In the task allocation process, the dispatcher needs to consider the deadlines of the tasks as well as the residue energy of different resources for best energy utilization. We assume the tasks adopt a Map-Reduce framework, in which a task can consist of multiple subtasks. The DBRB algorithm is deployed on the head node of a cluster. It gathers the status from each cluster member and calculates their Node Importance Factors (NIFs) from the carried resources, residue power and compute capacity. The algorithm calculates the number of concurrent subtasks based on the deadlines, and allocates the subtasks to the nodes according to their NIF values. The simulation results show that when cluster members carry multiple resources, resource are more balanced and rare resources serve longer in DBRB than in the Earliest Deadline First algorithm. We also show that the algorithm performs well in service isolation by serving multiple tasks with different deadlines. Moreover, the average task response time with various cluster size settings is well controlled within deadlines as well. Except non-realtime tasks, small satellites may execute realtime tasks as well. The location-dependent tasks, such as image capturing, data transmission and remote sensing tasks are realtime tasks that are required to be started / finished on specific time. The resource energy balancing algorithm for realtime and non-realtime mixed workload is developed to efficiently schedule the tasks for best system performance. It calculates the residue energy for each resource type and tries to preserve resources and node availability when distributing tasks. Non-realtime tasks can be preempted by realtime tasks to provide better QoS to realtime tasks. I compared the performance of proposed algorithm with a random-priority scheduling algorithm, with only realtime tasks, non-realtime tasks and mixed tasks. It shows the resource energy reservation algorithm outperforms the latter one with both balanced and imbalanced workloads. Although the resource energy balancing task allocation algorithm for mixed workload provides preemption mechanism for realtime tasks, realtime tasks can still fail due to resource exhaustion. For LEO small satellite flies around the earth on stable orbits, the location-dependent realtime tasks can be considered as periodical tasks. Therefore, it is possible to reserve energy for these realtime tasks. The resource energy reservation algorithm preserves energy for the realtime tasks when the execution routine of periodical realtime tasks is known. In order to reserve energy for tasks starting very early in each period that the node does not have enough energy charged, an energy wrapping mechanism is also designed to calculate the residue energy from the previous period. The simulation results show that without energy reservation, realtime task failure rate can reach more than 60% when the workload is highly imbalanced. In contrast, the resource energy reservation produces zero RT task failures and leads to equal or better aggregate system throughput than the non-reservation algorithm. The proposed algorithm also preserves more energy because it avoids task preemption. (Abstract shortened by ProQuest.).

  4. Biomass resources for energy in Ohio: The OH-MARKAL modeling framework

    NASA Astrophysics Data System (ADS)

    Shakya, Bibhakar

    The latest reports from the Intergovernmental Panel on Climate Change have indicated that human activities are directly responsible for a significant portion of global warming trends. In response to the growing concerns regarding climate change and efforts to create a sustainable energy future, biomass energy has come to the forefront as a clean and sustainable energy resource. Biomass energy resources are environmentally clean and carbon neutral with net-zero carbon dioxide (CO2) emissions, since CO2 is absorbed or sequestered from the atmosphere during the plant growth. Hence, biomass energy mitigates greenhouse gases (GHG) emissions that would otherwise be added to the environment by conventional fossil fuels, such as coal. The use of biomass resources for energy is even more relevant in Ohio, as the power industry is heavily based on coal, providing about 90 percent of the state's total electricity while only 50 percent of electricity comes from coal at the national level. The burning of coal for electricity generation results in substantial GHG emissions and environmental pollution, which are responsible for global warming and acid rain. Ohio is currently one of the top emitters of GHG in the nation. This dissertation research examines the potential use of biomass resources by analyzing key economic, environmental, and policy issues related to the energy needs of Ohio over a long term future (2001-2030). Specifically, the study develops a dynamic linear programming model (OH-MARKAL) to evaluate biomass cofiring as an option in select coal power plants (both existing and new) to generate commercial electricity in Ohio. The OH-MARKAL model is based on the MARKAL (MARKet ALlocation) framework. Using extensive data on the power industry and biomass resources of Ohio, the study has developed the first comprehensive power sector model for Ohio. Hence, the model can serve as an effective tool for Ohio's energy planning, since it evaluates economic and environmental consequences of alternative energy scenarios for the future. The model can also be used to estimate the relative merits of various energy technologies. By developing OH-MARKAL as an empirical model, this study evaluates the prospects of biomass cofiring in Ohio to generate commercial electricity. As cofiring utilizes the existing infrastructure, it is an attractive option for utilizing biomass energy resources, with the objective of replacing non-renewable fuel (coal) with renewable and cleaner fuel (biomass). It addresses two key issues: first, the importance of diversifying the fuel resource base for the power industry; and second, the need to increase the use of biomass or renewable resources in Ohio. The results of the various model scenarios developed in this study indicate that policy interventions are necessary to make biomass co-firing competitive with coal, and that about 7 percent of electricity can be generated by using biomass feedstock in Ohio. This study recommends mandating an optimal level of a renewable portfolio standard (RPS) for Ohio to increase renewable electricity generation in the state. To set a higher goal of RPS than 7 percent level, Ohio needs to include other renewable sources such as wind, solar or hydro in its electricity generation portfolio. The results also indicate that the marginal price of electricity must increase by four fold to mitigate CO2 emissions 15 percent below the 2002 level, suggesting Ohio will also need to consider and invest in clean coal technologies and examine the option of carbon sequestration. Hence, Ohio's energy strategy should include a mix of domestic renewable energy options, energy efficiency, energy conservation, clean coal technology, and carbon sequestration options. It would seem prudent for Ohio to become proactive in reducing CO2 emissions so that it will be ready to deal with any future federal mandates, otherwise the consequences could be detrimental to the state's economy.

  5. Wastewater: A Potential Bioenergy Resource.

    PubMed

    Prakash, Jyotsana; Sharma, Rakesh; Ray, Subhasree; Koul, Shikha; Kalia, Vipin Chandra

    2018-06-01

    Wastewaters are a rich source of nutrients for microorganisms. However, if left unattended the biodegradation may lead to severe environmental hazards. The wastewaters can thus be utilized for the production of various value added products including bioenergy (H 2 and CH 4 ). A number of studies have reported utilization of various wastewaters for energy production. Depending on the nature of the wastewater, different reactor configurations, wastewater and inoculum pretreatments, co-substrate utilizations along with other process parameters have been studied for efficient product formation. Only a few studies have reported sequential utilization of wastewaters for H 2 and CH 4 production despite its huge potential for complete waste degradation.

  6. Application of fuel cells with heat recovery for integrated utility systems

    NASA Technical Reports Server (NTRS)

    Shields, V.; King, J. M., Jr.

    1975-01-01

    This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.

  7. Utilization of Sunlight into Methane Hydrate Production: Feasibility Study Based on Energy Balance Estimation

    NASA Astrophysics Data System (ADS)

    Shimada, J.; Shimada, M.; Tsunashima, K.; Aoyama, C.

    2017-12-01

    Methane hydrate is gaining remarkable attention as future natural gas resource. Collection procedures such as heating, depressurization, and chemical intrusion are being tested, but because of its high cost, they are still under development and not yet implemented. Cost reduction of the procedures cannot be expected as long as fossil fuel is used as power and heat source to extract methane gas from methane hydrate. In this regard, natural energy such as sunlight, wind, tidal, and wave powers should be implemented as energy resources as alternatives of fossil fuels. Using natural energy instead of fossil fuel will also help to prevent global warming. However, only a few proposals have been made regarding extraction methods to use clean natural energy effectively. In this study, authors will present a new extraction method using optical fibers to expose direct sunlight onto methane hydrate, and verify from various standpoints such as energy balance during extraction process and dependency of the environment.

  8. Assessing the Feasibility of Renewable Energy Development and Energy Efficiency Deployment on Tribal Lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nominelli, Gregg R.

    The Keweenaw Bay Indian Community (KBIC) is committed to preserving our natural environment and reducing the amount of fossil fuels consumed while developing "green" business manufacturing jobs on tribal lands. The Tribe's Comprehensive Strategic Plan seeks to diversify the Tribal Economy through the creation of alternative energy businesses, such as wind, solar and bio-mass facilities while protecting the waters of Lake Superior, tribal inland lakes and streams. In addition, the Community desired to utilize clean/green energy resources to promote the self-sufficiency of the Tribal Nation. The objective of the study is to preserve our environment and maintain our cultural goalsmore » of using the resources of the land wisely. To reduce our consumption of fossil fuels, mercury and carbon dioxide emissions, which harm our water and land; we have decided to evaluate the opportunities of utilizing wind power. Preliminary projections show that we may eliminate pollution from our land in a cost effective manner. This study will evaluate wind capacity and our current energy consumption while projecting the feasibility of converting to wind power for operations at our major facilities. This project will study the feasibility of wind power at two locations for the purpose of reducing the Tribe's reliance upon fossil fuels and creating business opportunities, jobs and revenue for the community.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, Jason; Tinnesand, Heidi; Baring-Gould, Ian

    In support of the U.S. Department of Energy (DOE) Wind and Water Power Technologies Office (WWPTO) goals, researchers from DOE's National Renewable Energy Laboratory (NREL), National Wind Technology Center (NWTC) are investigating the Distributed Wind Resource Assessment (DWRA) process, which includes pre-construction energy estimation as well as turbine site suitability assessment. DWRA can have a direct impact on the Wind Program goals of maximizing stakeholder confidence in turbine performance and safety as well as reducing the levelized cost of energy (LCOE). One of the major components of the LCOE equation is annual energy production. DWRA improvements can maximize the annualmore » energy production, thereby lowering the overall LCOE and improving stakeholder confidence in the distributed wind technology sector by providing more accurate predictions of power production. Over the long term, one of the most significant benefits of a more defined DWRA process could be new turbine designs, tuned to site-specific characteristics that will help the distributed wind industry follow a similar trajectory to the low-wind-speed designs in the utility-scale industry sector. By understanding the wind resource better, the industry could install larger rotors, capture more energy, and as a result, increase deployment while lowering the LCOE. a direct impact on the Wind Program goals of maximizing stakeholder confidence in turbine performance and safety as well as reducing the levelized cost of energy (LCOE). One of the major components of the LCOE equation is annual energy production. DWRA improvements can maximize the annual energy production, thereby lowering the overall LCOE and improving stakeholder confidence in the distributed wind technology sector by providing more accurate predictions of power production. Over the long term, one of the most significant benefits of a more defined DWRA process could be new turbine designs, tuned to site-specific characteristics that will help the distributed wind industry follow a similar trajectory to the low-wind-speed designs in the utility-scale industry sector. By understanding the wind resource better, the industry could install larger rotors, capture more energy, and as a result, increase deployment while lowering the LCOE.« less

  10. The Potential Wind Power Resource in Australia: A New Perspective

    PubMed Central

    Hallgren, Willow; Gunturu, Udaya Bhaskar; Schlosser, Adam

    2014-01-01

    Australia’s wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia’s electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia’s energy mix, this study sets out to analyze and interpret the nature of Australia’s wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast’s electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it’s intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale. PMID:24988222

  11. The potential wind power resource in Australia: a new perspective.

    PubMed

    Hallgren, Willow; Gunturu, Udaya Bhaskar; Schlosser, Adam

    2014-01-01

    Australia's wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia's electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia's energy mix, this study sets out to analyze and interpret the nature of Australia's wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast's electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it's intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale.

  12. NASA Space Engineering Research Center for Utilization of Local Planetary Resources

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Lewis, John S.

    1989-01-01

    Progress toward the goal of exploiting extraterrestrial resources for space missions is documented. Some areas of research included are as follows: Propellant and propulsion optimization; Automation of propellant processing with quantitative simulation; Ore reduction through chlorination and free radical production; Characterization of lunar ilmenite and its simulants; Carbothermal reduction of ilmenite with special reference to microgravity chemical reactor design; Gaseous carbonyl extraction and purification of ferrous metals; Overall energy management; and Information management for space processing.

  13. Joint Egypt/United States report on Egypt/United States cooperative energy assessment. Volume 4 of 5 Vols. Annexes 6--10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purvis, Edward E.; Teagan, Peter; Little, Arthur D.

    1979-04-01

    Annex 6, which investigates the possible hydroelectric resources of Egypt, reveals that presently the only existing sites are on the upper Nile at the High and Aswan Dams. There are 8 sites on the Nile where it is practical to add hydroelectric generation and, of these, only 4 are feasible for immediate construction. There are also pumped-storage sites on the Nile and the Red Sea. There is also the Qattara Depression in the Western Desert which can be utilized for conventional, as well as pumped-storage generation, by bringing water from the Mediterranean Sea to the depression by canal or tunnel.more » The options were considered for construction of hydro plants to met the electric load growth of Egypt when other forms of energy supply would be integrated into a comprehensive supply pattern. In Annex 7, the prospective use of nuclear energy to meet Egypt's resources (uranium and thorium) to implement a nuclear energy program, and potential effects of the expanded use of nuclear energy are discussed. Annex 8 discusses solar energy (technology descriptions and impacts, solar thermal power, photovoltaics). Also wind power generation, biomass utilization, desalination, solar air conditioning and refrigeration, and cost of power from diesel engines are discussed. Annex 9 covers geothermal potentials in Egypt, discussing resources with temperatures above 180/sup 0/C; from 150 to 180/sup 0/C; from 100 to 150/sup 0/C; and with temperatures below 100/sup 0/C. Annex 10 discusses the electric power systems in Egypt. The following subjects are covered: existing electric power systems; electrical power facilities under construction or planned for construction by 1985; past and projected growth of electrical energy; distribution; and electrical power system projected from 1985 to 2000. (MCW)« less

  14. DEEP-SaM - Energy-Efficient Provisioning Policies for Computing Environments

    NASA Astrophysics Data System (ADS)

    Bodenstein, Christian; Püschel, Tim; Hedwig, Markus; Neumann, Dirk

    The cost of electricity for datacenters is a substantial operational cost that can and should be managed, not only for saving energy, but also due to the ecologic commitment inherent to power consumption. Often, pursuing this goal results in chronic underutilization of resources, a luxury most resource providers do not have in light of their corporate commitments. This work proposes, formalizes and numerically evaluates DEEP-Sam, for clearing provisioning markets, based on the maximization of welfare, subject to utility-level dependant energy costs and customer satisfaction levels. We focus specifically on linear power models, and the implications of the inherent fixed costs related to energy consumption of modern datacenters and cloud environments. We rigorously test the model by running multiple simulation scenarios and evaluate the results critically. We conclude with positive results and implications for long-term sustainable management of modern datacenters.

  15. Socialization of Solar Energy Utilization in Ponpes Al Hidayah, Arjasa, Kangean Island, Sumenep

    NASA Astrophysics Data System (ADS)

    Cahyono, Y.; Setyaningrum, Y.; Sarasechan, A.; Nafsi, R. G.; Setiyono; Salamah, M. D.; Triyuliana, N. A.; Silvia, L.; Subagyo, B. A.; Zainuri, M.; Triwikantoro; Baqiya, M. A.; Endarko; Asrori, M. Z.; Pratapa, S.; Suasmoro; Darminto

    2018-03-01

    Electricity problem of most small islands in Indonesia has become a serious problem and need to be immediately resolved. In this present paper, Kangean Islands, Sumenep district of Madura, Indonesia, is one of the most suitable islands for an example. In this island, the existing electricity supply is mainly generated by diesel generators. Even though there are also electricity supplies from the government and private companies, it is very limited capacities just a few families. It is clear that the daily electricity requirements in the Kangean Islands are not adequately met. There is no self-supporting from the local residents to meet their daily energy needs. The community service activity helps to improve the understanding and the self-supporting of the Kangean Island community, especially for the young generation, in the field of electrical energy by utilizing renewable energy sources, especially solar cell system technology. Thus, it is expected that natural resources in Kangean Island can be utilized properly and able to increase the productivity. Finally, in this paper, the light intensity and surface temperature effects on the performance of a monocrystal solar cell are discussed.

  16. Sustainability.

    PubMed

    Chang, Chein-Chi; DiGiovanni, Kimberly; Zhang, Gong; Yang, Xiahua; You, Shao-Hong

    2015-10-01

    This review on Sustainability covers selected 2014 publications on the focus of the following sections: • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management.

  17. Preparation, properties, and bonding utilization of pyrolysis bio-oil

    USDA-ARS?s Scientific Manuscript database

    The rapid increase in energy consumption, limited fossil fuel resource, and environmental concerns have stimulated the research need for biomass-derived fuels and chemicals. Pyrolysis is a thermal degradation process of biomass in the absence of oxygen. The liquid product from pyrolysis is known as ...

  18. Daily time series evapotranspiration maps for Oklahoma and Texas panhandle

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) is an important process in ecosystems’ water budget and closely linked to its productivity. Therefore, regional scale daily time series ET maps developed at high and medium resolutions have large utility in studying the carbon-energy-water nexus and managing water resources. ...

  19. Comprehensive Renewable Energy Feasibility Study for Sealaska Corporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Lynette; John Wade: Larry Coupe

    2006-06-30

    The purposes of this project were: (1) to conduct a comprehensive feasibility study to determine the potential sustainability of wind and/or small hydroelectric power plants on Southeast Alaska native village lands, and (2) to provide the villages with an understanding of the requirements, costs, and benefits of developing and operating wind or small hydroelectric power plants. The program was sponsored by the Tribal Energy program, Office of Energy Efficiency and Renewable Energy, US Department of Energy. The Contractor was Sealaska Corporation, the Regional Native Corporation for Southeast Alaska that includes 12 village/urban corporations. Most villages are isolated from any centralmore » electric transmission and use diesel-electric systems for power generation, making them prime candidates for deploying renewable energy sources. Wind Energy - A database was assembled for all of the candidate sites in SE Alaska, including location, demographics, electricity supply and demand, existing and planned transmission interties with central generation, topographical maps, macro wind data, and contact personnel. Field trips were conducted at the five candidate villages that were deemed most likely to have viable wind resources. Meetings were held with local village and utility leaders and the requirements, costs, and benefits of having local renewable energy facilities were discussed. Two sites were selected for anemometry based on their needs and the probability of having viable wind resources – Yakutat and Hoonah. Anemometry was installed at both sites and at least one year of wind resource data was collected from the sites. This data was compared to long-term data from the closest weather stations. Reports were prepared by meteorologist John Wade that contains the details of the measured wind resources and energy production projections. Preliminary financial analysis of hypothetical wind power stations were prepared to gauge the economic viability of installing such facilities at each site. The average wind resources measured at Yakutat at three sites were very marginal, with an annual average of 4.0 mps (9 mph) at 60 meters above ground level. At Hoonah, the average wind resources measured on the 1,417 ft elevation ridge above the village were very low, with a six-month average of 3.9 mps (8.7 mph) at 60 meters above ground level. The wind resources at both sites were not sufficient to justify installation of wind turbines. In summary, although there are several known windy spots in SE Alaska (e.g., Skagway), we were not able to identify any isolated Native American villages that utilize diesel-electric power generation that have commercially viable wind resources. Small Hydroelectric - The study focused on the communities associated with Sealaska Corporation that use diesel-electric for electricity and have a potential for hydroelectric power generation. Most of them have had at least an assessment of hydroelectric potential, and a few have had feasibility studies of potential hydroelectric projects. Although none of the sites examined are financially viable without substantial grant funding, Hoonah, Kake, and Yakutat appear to have the best potential for new hydro facilities.« less

  20. Effects of enzyme supplementation on the nutrient, amino acid, and energy utilization efficiency of citrus pulp and hawthorn pulp in Linwu ducks.

    PubMed

    Zhang, Xu; Li, Haobang; Jiang, Guitao; Wang, Xiangrong; Huang, Xuan; Li, Chuang; Wu, Duanqin; Dai, Qiuzhong

    2018-04-11

    The objective of this study was to evaluate the effects of enzyme supplementation on the nutrient, amino acid, and energy utilization efficiency of citrus pulp and hawthorn pulp as unusual feedstuffs in Linwu ducks. Forty ducks were assigned to each treatment group and fed diets with or without complex enzyme supplementation. All birds received the same quantity of raw material (60 g) via the force-feeding procedure. With the exception of leucine and phenylalanine, amino acid concentrations in hawthorn pulp were twice those in citrus pulp. Enzyme supplementation significantly increased apparent dry matter digestibility (ADM) of citrus pulp (P < 0.05), but had no significant effects (P > 0.05) on the apparent and true utilization rates of other nutrients, apparent metabolizable energy (AME), or true metabolizable energy (TME), from citrus pulp and hawthorn pulp by Linwu ducks. However, enzyme supplementation significantly increased (P < 0.05) apparent gross energy, true gross energy, AME, and TME of hawthorn pulp for Linwu ducks. There were no differences in the apparent and true utilization rates of amino acids from citrus pulp (P > 0.56) between the groups, with the exception of arginine (P < 0.05). There was an increasing trend in the apparent and true utilization rates of alanine (P = 0.06) and tyrosine (P = 0.074) from citrus pulp with enzyme supplementation. The apparent and true utilization rates of threonine in hawthorn pulp were increased significantly (P < 0.05) following enzyme supplementation. The addition of exogenous enzymes improved the forage quality of citrus pulp and hawthorn pulp, which represent potential feed resources for husbandry production.

  1. Beyond Widgets -- Systems Incentive Programs for Utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regnier, Cindy; Mathew, Paul; Robinson, Alastair

    Utility incentive programs remain one of the most significant means of deploying commercialized, but underutilized building technologies to scale. However, these programs have been largely limited to component-based products (e.g., lamps, RTUs). While some utilities do provide ‘custom’ incentive programs with whole building and system level technical assistance, these programs require deeper levels of analysis, resulting in higher program costs. This results in custom programs being restricted to utilities with greater resources, and are typically applied mainly to large or energy-intensive facilities, leaving much of the market without cost effective access and incentives for these solutions. In addition, with increasinglymore » stringent energy codes, cost effective component-based solutions that achieve significant savings are dwindling. Building systems (e.g., integrated façade, HVAC and/or lighting solutions) can deliver higher savings that translate into large sector-wide savings if deployed at the scale of these programs. However, systems application poses a number of challenges – baseline energy use must be defined and measured; the metrics for energy and performance must be defined and tested against; in addition, system savings must be validated under well understood conditions. This paper presents a sample of findings of a project to develop validated utility incentive program packages for three specific integrated building systems, in collaboration with Xcel Energy (CO, MN), ComEd, and a consortium of California Public Owned Utilities (CA POUs) (Northern California Power Agency(NCPA) and the Southern California Public Power Authority(SCPPA)). Furthermore, these program packages consist of system specifications, system performance, M&V protocols, streamlined assessment methods, market assessment and implementation guidance.« less

  2. DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhil, Abbas Ali; Huff, Georgianne; Currier, Aileen B.

    2015-02-01

    The Electricity Storage Handbook (Handbook) is a how - to guide for utility and rural cooperative engineers, planners, and decision makers to plan and implement energy storage projects. The Handbook also serves as an information resource for investors and venture capitalists, providing the latest developments in technologies and tools to guide their evaluation s of energy storage opportunities. It includes a comprehensive database of the cost of current storage systems in a wide variety of electric utility and customer services, along with interconnection schematics. A list of significant past and present energy storage projects is provided for a practical perspectivemore » . This Handbook, jointly sponsored by the U.S. Department of Energy and the Electric Power Research Institute in collaboration with the National Rural Electric Cooperative Association, is published in electronic form at www.sandia.gov/ess. This Handbook is best viewed online.« less

  3. Load Forecasting in Electric Utility Integrated Resource Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvallo, Juan Pablo; Larsen, Peter H.; Sanstad, Alan H

    Integrated resource planning (IRP) is a process used by many vertically-integrated U.S. electric utilities to determine least-cost/risk supply and demand-side resources that meet government policy objectives and future obligations to customers and, in many cases, shareholders. Forecasts of energy and peak demand are a critical component of the IRP process. There have been few, if any, quantitative studies of IRP long-run (planning horizons of two decades) load forecast performance and its relationship to resource planning and actual procurement decisions. In this paper, we evaluate load forecasting methods, assumptions, and outcomes for 12 Western U.S. utilities by examining and comparing plansmore » filed in the early 2000s against recent plans, up to year 2014. We find a convergence in the methods and data sources used. We also find that forecasts in more recent IRPs generally took account of new information, but that there continued to be a systematic over-estimation of load growth rates during the period studied. We compare planned and procured resource expansion against customer load and year-to-year load growth rates, but do not find a direct relationship. Load sensitivities performed in resource plans do not appear to be related to later procurement strategies even in the presence of large forecast errors. These findings suggest that resource procurement decisions may be driven by other factors than customer load growth. Our results have important implications for the integrated resource planning process, namely that load forecast accuracy may not be as important for resource procurement as is generally believed, that load forecast sensitivities could be used to improve the procurement process, and that management of load uncertainty should be prioritized over more complex forecasting techniques.« less

  4. Quantitative assessment of energy and resource recovery in wastewater treatment plants based on plant-wide simulations.

    PubMed

    Fernández-Arévalo, T; Lizarralde, I; Fdz-Polanco, F; Pérez-Elvira, S I; Garrido, J M; Puig, S; Poch, M; Grau, P; Ayesa, E

    2017-07-01

    The growing development of technologies and processes for resource treatment and recovery is offering endless possibilities for creating new plant-wide configurations or modifying existing ones. However, the configurations' complexity, the interrelation between technologies and the influent characteristics turn decision-making into a complex or unobvious process. In this frame, the Plant-Wide Modelling (PWM) library presented in this paper allows a thorough, comprehensive and refined analysis of different plant configurations that are basic aspects in decision-making from an energy and resource recovery perspective. In order to demonstrate the potential of the library and the need to run simulation analyses, this paper carries out a comparative analysis of WWTPs, from a techno-economic point of view. The selected layouts were (1) a conventional WWTP based on a modified version of the Benchmark Simulation Model No. 2, (2) an upgraded or retrofitted WWTP, and (3) a new Wastewater Resource Recovery Facilities (WRRF) concept denominated as C/N/P decoupling WWTP. The study was based on a preliminary analysis of the organic matter and nutrient energy use and recovery options, a comprehensive mass and energy flux distribution analysis in each configuration in order to compare and identify areas for improvement, and a cost analysis of each plant for different influent COD/TN/TP ratios. Analysing the plants from a standpoint of resources and energy utilization, a low utilization of the energy content of the components could be observed in all configurations. In the conventional plant, the COD used to produce biogas was around 29%, the upgraded plant was around 36%, and 34% in the C/N/P decoupling WWTP. With regard to the self-sufficiency of plants, achieving self-sufficiency was not possible in the conventional plant, in the upgraded plant it depended on the influent C/N ratio, and in the C/N/P decoupling WWTP layout self-sufficiency was feasible for almost all influents, especially at high COD concentrations. The plant layouts proposed in this paper are just a sample of the possibilities offered by current technologies. Even so, the library presented here is generic and can be used to construct any other plant layout, provided that a model is available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Habte, Aron; Gueymard, Christian

    As the world looks for low-carbon sources of energy, solar power stands out as the single most abundant energy resource on Earth. Harnessing this energy is the challenge for this century. Photovoltaics, solar heating and cooling, and concentrating solar power (CSP) are primary forms of energy applications using sunlight. These solar energy systems use different technologies, collect different fractions of the solar resource, and have different siting requirements and production capabilities. Reliable information about the solar resource is required for every solar energy application. This holds true for small installations on a rooftop as well as for large solar powermore » plants; however, solar resource information is of particular interest for large installations, because they require substantial investment, sometimes exceeding 1 billion dollars in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need reliable data about the solar resource available at specific locations, including historic trends with seasonal, daily, hourly, and (preferably) subhourly variability to predict the daily and annual performance of a proposed power plant. Without this data, an accurate financial analysis is not possible. Additionally, with the deployment of large amounts of distributed photovoltaics, there is an urgent need to integrate this source of generation to ensure the reliability and stability of the grid. Forecasting generation from the various sources will allow for larger penetrations of these generation sources because utilities and system operators can then ensure stable grid operations. Developed by the foremost experts in the field who have come together under the umbrella of the International Energy Agency's Solar Heating and Cooling Task 46, this handbook summarizes state-of-the-art information about all the above topics.« less

  6. Economic and environmental optimization of a multi-site utility network for an industrial complex.

    PubMed

    Kim, Sang Hun; Yoon, Sung-Geun; Chae, Song Hwa; Park, Sunwon

    2010-01-01

    Most chemical companies consume a lot of steam, water and electrical resources in the production process. Given recent record fuel costs, utility networks must be optimized to reduce the overall cost of production. Environmental concerns must also be considered when preparing modifications to satisfy the requirements for industrial utilities, since wastes discharged from the utility networks are restricted by environmental regulations. Construction of Eco-Industrial Parks (EIPs) has drawn attention as a promising approach for retrofitting existing industrial parks to improve energy efficiency. The optimization of the utility network within an industrial complex is one of the most important undertakings to minimize energy consumption and waste loads in the EIP. In this work, a systematic approach to optimize the utility network of an industrial complex is presented. An important issue in the optimization of a utility network is the desire of the companies to achieve high profits while complying with the environmental regulations. Therefore, the proposed optimization was performed with consideration of both economic and environmental factors. The proposed approach consists of unit modeling using thermodynamic principles, mass and energy balances, development of a multi-period Mixed Integer Linear Programming (MILP) model for the integration of utility systems in an industrial complex, and an economic/environmental analysis of the results. This approach is applied to the Yeosu Industrial Complex, considering seasonal utility demands. The results show that both the total utility cost and waste load are reduced by optimizing the utility network of an industrial complex. 2009 Elsevier Ltd. All rights reserved.

  7. Taxonomy for Modeling Demand Response Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Daniel; Kiliccote, Sila; Sohn, Michael

    2014-08-01

    Demand response resources are an important component of modern grid management strategies. Accurate characterizations of DR resources are needed to develop systems of optimally managed grid operations and to plan future investments in generation, transmission, and distribution. The DOE Demand Response and Energy Storage Integration Study (DRESIS) project researched the degree to which demand response (DR) and energy storage can provide grid flexibility and stability in the Western Interconnection. In this work, DR resources were integrated with traditional generators in grid forecasting tools, specifically a production cost model of the Western Interconnection. As part of this study, LBNL developed amore » modeling framework for characterizing resource availability and response attributes of DR resources consistent with the governing architecture of the simulation modeling platform. In this report, we identify and describe the following response attributes required to accurately characterize DR resources: allowable response frequency, maximum response duration, minimum time needed to achieve load changes, necessary pre- or re-charging of integrated energy storage, costs of enablement, magnitude of controlled resources, and alignment of availability. We describe a framework for modeling these response attributes, and apply this framework to characterize 13 DR resources including residential, commercial, and industrial end-uses. We group these end-uses into three broad categories based on their response capabilities, and define a taxonomy for classifying DR resources within these categories. The three categories of resources exhibit different capabilities and differ in value to the grid. Results from the production cost model of the Western Interconnection illustrate that minor differences in resource attributes can have significant impact on grid utilization of DR resources. The implications of these findings will be explored in future DR valuation studies.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greg Retzlaff

    In January 2006 the Smith River Rancheria (SRR), located in Smith River, California, contracted with the team of Strategic Energy Solutions (SES) and Evergreen NRG to conduct a study for the community. The objective of the study was to identify renewable generation opportunities that would facilitate Rancheria energy independence through SRR owned and operated power projects. These generation facilities were to be located either on or near the reservation. Specifically, the Rancheria was interested in the viability of generating electric power using biomass and wind fuel resources. Initial research identified that a very small portion of the community's energy couldmore » be offset by renewable energy generation due to the low solar resource in this area, and the lack of significant wind or biomass resources on or near reservation land. Some larger projects were identified which offered little or no benefit to the Rancheria. As a result, the scope of this study was changed in October 2006 to focus on energy efficiency opportunities for key reservation facilities, with a continued analysis of smaller renewable energy opportunities within reservation boundaries. The consulting team initially performed a resource analysis for biomass and solar generation opportunities in the region of the Rancheria. It was quickly concluded that none of these options would yield renewable power for the Rancheria at costs competitive with current utility sources, and that any larger installations would require substantial funding that may not be available. Having made these conclusions early on, the study effort was redirected and the team investigated each of the major Rancheria buildings to look for solar, wind and conservation opportunities. The buildings were audited for energy use and the roof areas were examined for exposure of solar radiation. Wind resources were also investigated to determine if smaller wind turbines would offer power generation at a reasonable cost.« less

  9. Hualapai Tribal Utility Development Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hualapai Tribal Nation

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central powermore » grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West “mini-grid” sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribe’s wind resources.« less

  10. MIROS: A Hybrid Real-Time Energy-Efficient Operating System for the Resource-Constrained Wireless Sensor Nodes

    PubMed Central

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; Gholami, Khalid El

    2014-01-01

    Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant. PMID:25248069

  11. MIROS: a hybrid real-time energy-efficient operating system for the resource-constrained wireless sensor nodes.

    PubMed

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; El Gholami, Khalid

    2014-09-22

    Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant.

  12. Advanced Communication and Control Solutions of Distributed Energy Resources (DER)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asgeirsson, Haukur; Seguin, Richard; Sherding, Cameron

    2007-01-10

    This report covers work performed in Phase II of a two phase project whose objective was to demonstrate the aggregation of multiple Distributed Energy Resources (DERs) and to offer them into the energy market. The Phase I work (DE-FC36-03CH11161) created an integrated, but distributed, system and procedures to monitor and control multiple DERs from numerous manufacturers connected to the electric distribution system. Procedures were created which protect the distribution network and personnel that may be working on the network. Using the web as the communication medium for control and monitoring of the DERs, the integration of information and security wasmore » accomplished through the use of industry standard protocols such as secure SSL,VPN and ICCP. The primary objective of Phase II was to develop the procedures for marketing the power of the Phase I aggregated DERs in the energy market, increase the number of DER units, and implement the marketing procedures (interface with ISOs) for the DER generated power. The team partnered with the Midwest Independent System Operator (MISO), the local ISO, to address the energy market and demonstrate the economic dispatch of DERs in response to market signals. The selection of standards-based communication technologies offers the ability of the system to be deployed and integrated with other utilities’ resources. With the use of a data historian technology to facilitate the aggregation, the developed algorithms and procedures can be verified, audited, and modified. The team has demonstrated monitoring and control of multiple DERs as outlined in phase I report including procedures to perform these operations in a secure and safe manner. In Phase II, additional DER units were added. We also expanded on our phase I work to enhance communication security and to develop the market model of having DERs, both customer and utility owned, participate in the energy market. We are proposing a two-part DER energy market model--a utility need business model and an independent energy aggregator-business model. The approach of developing two group models of DER energy participation in the market is unique. The Detroit Edison (DECo, Utility)-led team includes: DTE Energy Technologies (Dtech, DER provider), Electrical Distribution Design (EDD, Virginia Tech company supporting EPRI’s Distribution Engineering Workstation, DEW), Systems Integration Specialists Company (SISCO, economic scheduling and real-time protocol integrator), and OSIsoft (PI software system for managing real-time information). This team is focused on developing the application engineering, including software systems necessary for DER’s integration, control and sale into the market place. Phase II Highlights Installed and tested an ICCP link with SSL (security) between DECo, the utility, and DTE Energy Technologies (DTECH), the aggregator, making DER data available to the utility for both monitoring and control. Installed and tested PI process book with circuit & DER operational models for DECo SOC/ROC operator’s use for monitoring of both utility circuit and customer DER parameters. The PI Process Book models also included DER control for the DECo SOC/ROC operators, which was tested and demonstrated control. The DER Tagging and Operating Procedures were developed, which allowed that control to be done in a safe manner, were modified for required MOC/MISO notification procedures. The Distribution Engineering Workstation (DEW) was modified to include temperature normalized load research statistics, using a 30 hour day-ahead weather feed. This allowed day-ahead forecasting of the customer load profile and the entire circuit to determine overload and low voltage problems. This forecast at the point of common coupling was passed to DTech DR SOC for use in their economic dispatch algorithm. Standard Work Instructions were developed for DER notification, sale, and operation into the MISO market. A software mechanism consisting of a suite of new and revised functionality was developed that integrated with the local ISO such that offers can be made electronically without human intervention. A suite of software was developed by DR SOC enabling DER usage in real time and day-ahead: Generation information file exchange with PI and the utility power flow A utility day-ahead information file Energy Offer Web Service Market Result Web Service Real-Time Meter Data Web Service Real-Time Notification Web Service Registered over 20 DER with MISO in Demand Response Market and demonstrated electronic sale to MISO.« less

  13. Certification and brand identity for energy efficiency in competitive energy services markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prindle, W.R.; Wiser, R.

    Resource commitments for energy efficiency from electricity companies are disappearing rapidly as the regulated Integrated Resource Planning and Demand-Side Management paradigms that fostered them give way to competitive power markets in a restructuring electricity industry. While free-market advocates claim that energy efficiency needs will be taken care of by competitive energy service providers, there is no assurance that efficiency will compete effectively with the panoply of other energy-related (and non-energy-related) services that are beginning to appear in early market offerings. This paper reports the results of a feasibility study for a certification and brand identity program for energy efficiency gearedmore » to competitive power markets. Funded by the Energy Foundation, this study involved a survey and personal interviews with stakeholders, plus a workshop to further the discussion. Stakeholders include independent power marketers and energy service companies, utility affiliate power marketers and energy service companies, government agencies, trade associations, non-profit organizations, equipment manufacturers, and consultants. The paper summarizes the study's findings on such key issues as: Whether a brand identity concept has a critical mass of interest and support; how qualification and certification could work in such a program; how a brand identity could be positioned in the market; how an efficiency brand identity could co-brand with renewable power branding programs and other green marketing efforts; and the resources and components needed to make such a program work on a national scale.« less

  14. 7 CFR 1744.202 - Borrowers may make qualified investments without prior approval of the Administrator.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... training and employment services, health care services, educational opportunities, energy utilization and... local government management capabilities, institutions, and programs related to rural development and... resources of rural areas. (e) As used in paragraph (d) of this section, the term rural development...

  15. 7 CFR 1744.202 - Borrowers may make qualified investments without prior approval of the Administrator.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... training and employment services, health care services, educational opportunities, energy utilization and... local government management capabilities, institutions, and programs related to rural development and... resources of rural areas. (e) As used in paragraph (d) of this section, the term rural development...

  16. 7 CFR 1744.202 - Borrowers may make qualified investments without prior approval of the Administrator.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... training and employment services, health care services, educational opportunities, energy utilization and... local government management capabilities, institutions, and programs related to rural development and... resources of rural areas. (e) As used in paragraph (d) of this section, the term rural development...

  17. 7 CFR 1744.202 - Borrowers may make qualified investments without prior approval of the Administrator.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... training and employment services, health care services, educational opportunities, energy utilization and... local government management capabilities, institutions, and programs related to rural development and... resources of rural areas. (e) As used in paragraph (d) of this section, the term rural development...

  18. 7 CFR 1744.202 - Borrowers may make qualified investments without prior approval of the Administrator.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... training and employment services, health care services, educational opportunities, energy utilization and... local government management capabilities, institutions, and programs related to rural development and... resources of rural areas. (e) As used in paragraph (d) of this section, the term rural development...

  19. Fiber composition of a diversity panel of the world collection of sugarcane (Saccharum sp.) and related grasses

    USDA-ARS?s Scientific Manuscript database

    The world collection of sugarcane (Saccharum hybrids) and related grasses (WCSRG) is an important genetic resource for sugarcane and energy cane (Saccharum hybrids) breeding. Fiber components and structural carbohydrates in bioenergy feedstocks are utilized for conversion to lignocellulosic biofuel....

  20. Large-Scale Power Production Potential on U.S. Department of Energy Lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandt, Alicen J.; Elgqvist, Emma M.; Gagne, Douglas A.

    This report summarizes the potential for independent power producers to generate large-scale power on U.S. Department of Energy (DOE) lands and export that power into a larger power market, rather than serving on-site DOE loads. The report focuses primarily on the analysis of renewable energy (RE) technologies that are commercially viable at utility scale, including photovoltaics (PV), concentrating solar power (CSP), wind, biomass, landfill gas (LFG), waste to energy (WTE), and geothermal technologies. The report also summarizes the availability of fossil fuel, uranium, or thorium resources at 55 DOE sites.

Top