DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Caleb; Reis, Chuck; Nelson, Eric
This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.
Optical multi-species gas monitoring sensor and system
NASA Technical Reports Server (NTRS)
Korman, Valentin (Inventor); Polzin, Kurt A. (Inventor)
2012-01-01
The system includes at least one light source generating light energy having a corresponding wavelength. The system's sensor is based on an optical interferometer that receives light energy from each light source. The interferometer includes a free-space optical path disposed in an environment of interest. The system's sensor includes an optical device disposed in the optical path that causes light energy of a first selected wavelength to continue traversing the optical path whereas light energy of at least one second selected wavelength is directed away from the optical path. The interferometer generates an interference between the light energy of the first selected wavelength so-traversing the optical path with the light energy at the corresponding wavelength incident on the optical interferometer. A first optical detector detects the interference. At least one second detector detects the light energy at the at least one second selected wavelength directed away from the optical path.
Angular selective window systems: Assessment of technical potential for energy savings
Fernandes, Luis L.; Lee, Eleanor S.; McNeil, Andrew; ...
2014-10-16
Static angular selective shading systems block direct sunlight and admit daylight within a specific range of incident solar angles. The objective of this study is to quantify their potential to reduce energy use and peak demand in commercial buildings using state-of-the art whole-building computer simulation software that allows accurate modeling of the behavior of optically-complex fenestration systems such as angular selective systems. Three commercial systems were evaluated: a micro-perforated screen, a tubular shading structure, and an expanded metal mesh. This evaluation was performed through computer simulation for multiple climates (Chicago, Illinois and Houston, Texas), window-to-wall ratios (0.15-0.60), building codes (ASHRAEmore » 90.1-2004 and 2010) and lighting control configurations (with and without). The modeling of the optical complexity of the systems took advantage of the development of state-of-the-art versions of the EnergyPlus, Radiance and Window simulation tools. Results show significant reductions in perimeter zone energy use; the best system reached 28% and 47% savings, respectively without and with daylighting controls (ASHRAE 90.1-2004, south facade, Chicago,WWR=0.45). As a result, angular selectivity and thermal conductance of the angle-selective layer, as well as spectral selectivity of low-emissivity coatings, were identified as factors with significant impact on performance.« less
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.
1993-01-01
Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.
Considerations for performance evaluation of solar heating and cooling systems
NASA Technical Reports Server (NTRS)
Littles, J. W.; Cody, J. C.
1975-01-01
One of the many factors which must be considered in performance evaluation of solar energy systems is the relative merit of a given solar energy system when compared to a standard conventional system. Although initial and operational costs will be dominant factors in the comparison of the two types of systems and will be given prime consideration in system selection, sufficient data are not yet available for a definitive treatment of these variables. It is possible, however, to formulate relationships between the nonsolar energy requirements of the solar energy systems and the energy requirements of a conventional system in terms of the primary performance parameters of the systems. Derivations of such relationships, some parametric data for selected ranges of the performance parameters, and data with respect to limiting conditions are presented.
Dziendziel, Randolph J [Middle Grove, NY; DePoy, David Moore [Clifton Park, NY; Baldasaro, Paul Francis [Clifton Park, NY
2007-01-23
This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.
Dziendziel, Randolph J [Middle Grove, NY; Baldasaro, Paul F [Clifton Park, NY; DePoy, David M [Clifton Park, NY
2010-09-07
This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.
NASA Technical Reports Server (NTRS)
1976-01-01
The applicability of energy storage devices to any energy system depends on the performance and cost characteristics of the larger basic system. A comparative assessment of energy storage alternatives for application to IUS which addresses the systems aspects of the overall installation is described. Factors considered include: (1) descriptions of the two no-storage IUS baselines utilized as yardsticks for comparison throughout the study; (2) discussions of the assessment criteria and the selection framework employed; (3) a summary of the rationale utilized in selecting water storage as the primary energy storage candidate for near term application to IUS; (4) discussion of the integration aspects of water storage systems; and (5) an assessment of IUS with water storage in alternative climates.
Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku
2016-01-01
In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source’s radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks. PMID:26927119
Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku
2016-02-26
In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source's radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks.
NASA Astrophysics Data System (ADS)
Ward, Patrick A.; Corgnale, Claudio; Teprovich, Joseph A.; Motyka, Theodore; Hardy, Bruce; Sheppard, Drew; Buckley, Craig; Zidan, Ragaiy
2016-04-01
Recently, there has been increasing interest in thermal energy storage (TES) systems for concentrated solar power (CSP) plants, which allow for continuous operation when sunlight is unavailable. Thermochemical energy storage materials have the advantage of much higher energy densities than latent or sensible heat materials. Furthermore, thermochemical energy storage systems based on metal hydrides have been gaining great interest for having the advantage of higher energy densities, better reversibility, and high enthalpies. However, in order to achieve higher efficiencies desired of a thermal storage system by the US Department of Energy, the system is required to operate at temperatures >600 °C. Operation at temperatures >600 °C presents challenges including material selection, hydrogen embrittlement and permeation of containment vessels, appropriate selection of heat transfer fluids, and cost. Herein, the technical difficulties and proposed solutions associated with the use of metal hydrides as TES materials in CSP applications are discussed and evaluated.
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Abduraxit, Ablajan; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2010-04-01
An energy-discrimination K-edge x-ray computed tomography (CT) system is useful for controlling the image contrast of a target region by selecting both the photon energy and the energy width. The CT system has an oscillation-type linear cadmium telluride (CdTe) detectror. CT is performed by repeated linear scans and rotations of an object. Penetrating x-ray photons from the object are detected by a CdTe detector, and event signals of x-ray photons are produced using charge-sensitive and shaping amplifiers. Both photon energy and energy width are selected out using a multichannel analyzer, and the number of photons is counted by a counter card. In energy-discrimination CT, the tube voltage and tube current were 80 kV and 20 μA, respectively, and the x-ray intensity was 1.92 μGy/s at a distance of 1.0 m from the source and a tube voltage of 80 kV. The energy-discrimination CT was carried out by selecting x-ray photon energies.
NASA Astrophysics Data System (ADS)
Knapik, Maciej
2018-02-01
The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources) methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.
Development of anion-selective membranes. [for energy storage
NASA Technical Reports Server (NTRS)
Lacey, R. E.; Cowsar, D. R.
1975-01-01
Methods were studied of preparing anion-exchange membranes that would have low resistance, high selectivity, and physical and chemical stability when used in acidic media in a redox energy storage system. Of the twelve systems selected for study, only the system that was based on crosslinked poly-4-vinylpyridinium chloride produced physically strong membranes when equilibrated in l M HCl. The resistivity of the best membrane was 12 ohm-cm, and the transference number for chloride ions was 0.81.
Relay Selection for Cooperative Relaying in Wireless Energy Harvesting Networks
NASA Astrophysics Data System (ADS)
Zhu, Kaiyan; Wang, Fei; Li, Songsong; Jiang, Fengjiao; Cao, Lijie
2018-01-01
Energy harvesting from the surroundings is a promising solution to provide energy supply and extend the life of wireless sensor networks. Recently, energy harvesting has been shown as an attractive solution to prolong the operation of cooperative networks. In this paper, we propose a relay selection scheme to optimize the amplify-and-forward (AF) cooperative transmission in wireless energy harvesting cooperative networks. The harvesting energy and channel conditions are considered to select the optimal relay as cooperative relay to minimize the outage probability of the system. Simulation results show that our proposed relay selection scheme achieves better outage performance than other strategies.
Electrodynamic tethers for energy conversion
NASA Technical Reports Server (NTRS)
Nobles, W.
1986-01-01
Conductive tethers have been proposed as a new method for converting orbital mechanical energy into electrical power for use on-board a satellite (generator mode) or conversely (motor mode) as a method of providing electric propulsion using electrical energy from the satellite. The operating characteristics of such systems are functionally dependent on orbit altitude and inclination. Effects of these relationships are examined to determine acceptable regions of application. To identify system design considerations, a specific set of system performance goals and requirements are selected. The case selected is for a 25 kW auxiliary power system for use on Space Station. Appropriate system design considerations are developed, and the resulting system is described.
Economic Evaluation of Townhouse Solar Energy System
NASA Technical Reports Server (NTRS)
1982-01-01
Solar-energy site in Columbia, South Carolina, is comprised of four townhouse apartments. Report summarizes economic evaluation of solar--energy system and projected performance of similar systems in four other selected cities. System is designed to supply 65 percent of heating and 75 percent of hot water.
NASA Astrophysics Data System (ADS)
Cao, Yang; Liu, Chun; Huang, Yuehui; Wang, Tieqiang; Sun, Chenjun; Yuan, Yue; Zhang, Xinsong; Wu, Shuyun
2017-02-01
With the development of roof photovoltaic power (PV) generation technology and the increasingly urgent need to improve supply reliability levels in remote areas, islanded microgrid with photovoltaic and energy storage systems (IMPE) is developing rapidly. The high costs of photovoltaic panel material and energy storage battery material have become the primary factors that hinder the development of IMPE. The advantages and disadvantages of different types of photovoltaic panel materials and energy storage battery materials are analyzed in this paper, and guidance is provided on material selection for IMPE planners. The time sequential simulation method is applied to optimize material demands of the IMPE. The model is solved by parallel algorithms that are provided by a commercial solver named CPLEX. Finally, to verify the model, an actual IMPE is selected as a case system. Simulation results on the case system indicate that the optimization model and corresponding algorithm is feasible. Guidance for material selection and quantity demand for IMPEs in remote areas is provided by this method.
Thermal energy storage systems using fluidized bed heat exchangers
NASA Technical Reports Server (NTRS)
Ramanathan, V.; Weast, T. E.; Ananth, K. P.
1980-01-01
The viability of using fluidized bed heat exchangers (FBHX) for thermal energy storage (TES) in applications with potential for waste heat recovery was investigated. Of the candidate applications screened, cement plant rotary kilns and steel plant electric arc furnaces were identified, via the chosen selection criteria, as having the best potential for successful use of FBHX/TES system. A computer model of the FBHX/TES systems was developed and the technical feasibility of the two selected applications was verified. Economic and tradeoff evaluations in progress for final optimization of the systems and selection of the most promising system for further concept validation are described.
Thermophotovoltaic energy generation
Celanovic, Ivan; Chan, Walker; Bermel, Peter; Yeng, Adrian Y. X.; Marton, Christopher; Ghebrebrhan, Michael; Araghchini, Mohammad; Jensen, Klavs F.; Soljacic, Marin; Joannopoulos, John D.; Johnson, Steven G.; Pilawa-Podgurski, Robert; Fisher, Peter
2015-08-25
Inventive systems and methods for the generation of energy using thermophotovoltaic cells are described. Also described are systems and methods for selectively emitting electromagnetic radiation from an emitter for use in thermophotovoltaic energy generation systems. In at least some of the inventive energy generation systems and methods, a voltage applied to the thermophotovoltaic cell (e.g., to enhance the power produced by the cell) can be adjusted to enhance system performance. Certain embodiments of the systems and methods described herein can be used to generate energy relatively efficiently.
A GIS-based 3D online information system for underground energy storage in northern Germany
NASA Astrophysics Data System (ADS)
Nolde, Michael; Malte, Schwanebeck; Ehsan, Biniyaz; Rainer, Duttmann
2015-04-01
We would like to present the concept and current state of development of a GIS-based 3D online information system for underground energy storage. Its aim is to support the local authorities through pre-selection of possible sites for thermal, electrical and substantial underground energy storages. Since the extension of renewable energies has become legal requirement in Germany, the underground storing of superfluously produced green energy (such as during a heavy wind event) in the form of compressed air, gas or heated water has become increasingly important. However, the selection of suitable sites is a complex task. The presented information system uses data of geological features such as rock layers, salt domes and faults enriched with attribute data such as rock porosity and permeability. This information is combined with surface data of the existing energy infrastructure, such as locations of wind and biogas stations, powerline arrangement and cable capacity, and energy distribution stations. Furthermore, legal obligations such as protected areas on the surface and current underground mining permissions are used for the process of pre-selecting sites suitable for energy storage. Not only the current situation but also prospective scenarios, such as expected growth in produced amount of energy are incorporated in the system. While the process of pre-selection itself is completely automated, the user has full control of the weighting of the different factors via the web interface. The system is implemented as an online 3D server GIS environment, so that it can easily be utilized in any web browser. The results are visualized online as interactive 3d graphics. The information system is implemented in the Python programming language in combination with current Web standards, and is build using only free and open source software. It is being developed at Kiel University as part of the ANGUS+ project (lead by Prof. Sebastian Bauer) for the federal state of Schleswig-Holstein in northern Germany.
Relay selection in energy harvesting cooperative networks with rateless codes
NASA Astrophysics Data System (ADS)
Zhu, Kaiyan; Wang, Fei
2018-04-01
This paper investigates the relay selection in energy harvesting cooperative networks, where the relays harvests energy from the radio frequency (RF) signals transmitted by a source, and the optimal relay is selected and uses the harvested energy to assist the information transmission from the source to its destination. Both source and the selected relay transmit information using rateless code, which allows the destination recover original information after collecting codes bits marginally surpass the entropy of original information. In order to improve transmission performance and efficiently utilize the harvested power, the optimal relay is selected. The optimization problem are formulated to maximize the achievable information rates of the system. Simulation results demonstrate that our proposed relay selection scheme outperform other strategies.
Optimal planning and design of a renewable energy based supply system for microgrids
Hafez, Omar; Bhattacharya, Kankar
2012-03-03
This paper presents a technique for optimal planning and design of hybrid renewable energy systems for microgrid applications. The Distributed Energy Resources Customer Adoption Model (DER-CAM) is used to determine the optimal size and type of distributed energy resources (DERs) and their operating schedules for a sample utility distribution system. Using the DER-CAM results, an evaluation is performed to evaluate the electrical performance of the distribution circuit if the DERs selected by the DER-CAM optimization analyses are incorporated. Results of analyses regarding the economic benefits of utilizing the optimal locations identified for the selected DER within the system are alsomore » presented. The actual Brookhaven National Laboratory (BNL) campus electrical network is used as an example to show the effectiveness of this approach. The results show that these technical and economic analyses of hybrid renewable energy systems are essential for the efficient utilization of renewable energy resources for microgird applications.« less
Comparative evaluation of distributed-collector solar thermal electric power plants
NASA Technical Reports Server (NTRS)
Fujita, T.; El Gabalawi, N.; Herrera, G. G.; Caputo, R. S.
1978-01-01
Distributed-collector solar thermal-electric power plants are compared by projecting power plant economics of selected systems to the 1990-2000 timeframe. The approach taken is to evaluate the performance of the selected systems under the same weather conditions. Capital and operational costs are estimated for each system. Energy costs are calculated for different plant sizes based on the plant performance and the corresponding capital and maintenance costs. Optimum systems are then determined as the systems with the minimum energy costs for a given load factor. The optimum system is comprised of the best combination of subsystems which give the minimum energy cost for every plant size. Sensitivity analysis is done around the optimum point for various plant parameters.
Feasibility study of solar energy utilization in modular integrated utility systems
NASA Technical Reports Server (NTRS)
1975-01-01
The feasibility and benefits were evaluated of solar thermal energy systems on Integrated Utility Systems. The effort included the identification of potential system concepts, evaluation of hardware status, and performance of weighted system evaluations to select promising system concepts deserving of further study.
Energy systems research and development for petroleum refineries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, J.L.
1982-08-01
For the past several years, Exxon Reasearch and Engineering has carried out a specific RandD program aimed at improving refinery energy efficiency through optimization of energy systems. Energy systems include: steam/power systems, heat exchange systems including hot oil and hot water belts and fuel systems, as well as some of the processes. This paper will describe the three major thrusts of this program which are: development of methods to support Site Energy Survey activities; development of energy management methods; and energy system optimization, which includes development of consistent, realistic, economic incentives for energy system improvements. Project selection criteria will alsomore » be discussed. The technique of a site energy survey will also be described briefly.« less
NASA Technical Reports Server (NTRS)
Wolsko, T.; Buehring, W.; Cirillo, R.; Gasper, J.; Habegger, L.; Hub, K.; Newsom, D.; Samsa, M.; Stenehjem, E.; Whitfield, R.
1980-01-01
The energy systems concerned are the satellite power system, several coal technologies, geothermal energy, fission, fusion, terrestrial solar systems, and ocean thermal energy conversion. Guidelines are suggested for the characterization of these systems, side-by-side analysis, alternative futures analysis, and integration and aggregation of data. A description of the methods for assessing the technical, economic, environmental, societal, and institutional issues surrounding the development of the selected energy technologies is presented.
Reappraisal of solid selective emitters
NASA Technical Reports Server (NTRS)
Chubb, Donald L.
1990-01-01
New rare earth oxide emitters show greater efficiency than previous emitters. As a result, based on a simple model the efficiency of these emitters was calculated. Results indicate that the emission band of the selective emitter must be at relatively low energy (less than or equal to .52 eV) to obtain maximum efficiency at moderate emitter temperatures (less than or equal to 1500 K). Thus low bandgap energy PV materials are required to obtain an efficient thermophotovoltaic (TPV) system. Of the 4 specific rare earths (Nd, Ho, Er, Yb) studied Ho has the largest efficiency at moderate temperatures (72 percent at 1500 K). A comparison was made between a selective emitter TPV system and a TPV system that uses a thermal emitter plus a band pass filter to make the thermal emitter behave like a selective emitter. Results of the comparison indicate that only for very optimistic filter and thermal emitter properties will the filter TPV system have a greater efficiency than the selective emitter system.
Conceptual design of thermal energy storage systems for near-term electric utility applications
NASA Technical Reports Server (NTRS)
Hall, E. W.
1980-01-01
Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.
Application configuration selection for energy-efficient execution on multicore systems
Wang, Shinan; Luo, Bing; Shi, Weisong; ...
2015-09-21
Balanced performance and energy consumption are incorporated in the design of modern computer systems. Several runtime factors, such as concurrency levels, thread mapping strategies, and dynamic voltage and frequency scaling (DVFS) should be considered in order to achieve optimal energy efficiency fora workload. Selecting appropriate run-time factors, however, is one of the most challenging tasks because the run-time factors are architecture-specific and workload-specific. And while most existing works concentrate on either static analysis of the workload or run-time prediction results, we present a hybrid two-step method that utilizes concurrency levels and DVFS settings to achieve the energy efficiency configuration formore » a worldoad. The experimental results based on a Xeon E5620 server with NPB and PARSEC benchmark suites show that the model is able to predict the energy efficient configuration accurately. On average, an additional 10% EDP (Energy Delay Product) saving is obtained by using run-time DVFS for the entire system. An off-line optimal solution is used to compare with the proposed scheme. Finally, the experimental results show that the average extra EDP saved by the optimal solution is within 5% on selective parallel benchmarks.« less
NASA Astrophysics Data System (ADS)
Ibrahim, Khalil; Taha, Hatem; Mahbubur Rahman, M.; Kabir, Humayun; Jiang, Zhong-Tao
2018-03-01
Since solar-thermal collectors are considered to be the most direct way of converting solar energy into usable forms, in the last few years growing attention has been paid to the development of transition metal nitride and metal oxynitride based thin film selective surfaces for solar-thermal collectors, in order to harvest more solar energy. A solar-thermal energy system, generally, shows very high solar absorption of incident solar radiation from the solar-thermal collectors in the visible range (0.3 to 2.5 μm) and extremely low thermal losses through emission (or high reflection) in the infrared region (≥2.5 μm). The efficiency of a solar-thermal energy conversion system can be improved by the use of solar selective surfaces consisting of novel metallic nanoparticles embedded in metal nitride/oxynitride systems. In order to enhance the effectiveness of solar-thermal devices, solar selective surfaces with high thermal stability are a prerequisite. Over the years, substantial efforts have been made in the field of solar selective surfaces to attain higher solar absorptance and lower thermal emittance in high temperature (above 400 °C) applications. In this article, we review the present state-of-the-art transition metal nitride and/or oxynitride based vacuum sputtered nanostructured thin film coatings, with respect to their optical and solar selective surface applications. We have also summarized the solar selectivity data from recently published investigations, including discussion on some potential applications for these materials.
NASA Astrophysics Data System (ADS)
Čuláková, Monika; Vilčeková, Silvia; Katunská, Jana; Krídlová Burdová, Eva
2013-11-01
In world with limited amount of energy sources and with serious environmental pollution, interest in comparing the environmental embodied impacts of buildings using different structure systems and alternative building materials will be increased. This paper shows the significance of life cycle energy and carbon perspective and the material selection in reducing energy consumption and emissions production in the built environment. The study evaluates embodied environmental impacts of nearly zero energy residential structures. The environmental assessment uses framework of LCA within boundary: cradle to gate. Designed alternative scenarios of material compositions are also assessed in terms of energy effectiveness through selected thermal-physical parameters. This study uses multi-criteria decision analysis for making clearer selection between alternative scenarios. The results of MCDA show that alternative E from materials on nature plant base (wood, straw bales, massive wood panel) present possible way to sustainable perspective of nearly zero energy houses in Slovak republic
Renewable energy recovery through selected industrial wastes
NASA Astrophysics Data System (ADS)
Zhang, Pengchong
Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.
Method for nonlinear optimization for gas tagging and other systems
Chen, Ting; Gross, Kenny C.; Wegerich, Stephan
1998-01-01
A method and system for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established.
Method for nonlinear optimization for gas tagging and other systems
Chen, T.; Gross, K.C.; Wegerich, S.
1998-01-06
A method and system are disclosed for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established. 6 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-06-01
This fact sheet presents highlights from the Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications, which provides detailed information about solar resource data and the resulting data products needed for planning each stage of large concentrating solar power systems, from initial site selection to system operations.
Acoustic microscope surface inspection system and method
Khuri-Yakub, Butrus T.; Parent, Philippe; Reinholdtsen, Paul A.
1991-01-01
An acoustic microscope surface inspection system and method in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respected to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations.
USAF solar thermal applications case studies
NASA Technical Reports Server (NTRS)
1981-01-01
The potential of solar energy technologies to meet mission related applications for process heat was investigated. The reduction of the dependence of military installations on fossil fuels by promoting the use of more abundant resources where liquid hydrocarbons and natural gas are now used is examined. The evaluation and utilization of renewable energy systems to provide process heat and space heating are emphasized. The application of thermal energy systems is divided into four steps: (1) investigation of the potential operational cost effectiveness of selected thermal technologies; (2) selection of a site and preliminary design of point focussing solar thermal plant; (3) construction and test of an engineering prototype; and (4) installation and operation of a solar thermal energy plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1977-06-01
The mixed-strategy analysis was a tradeoff analysis between energy-conservation methods and an alternative energy source (solar) considering technical and economic benefits. The objective of the analysis was to develop guidelines for: reducing energy requirements; reducing conventional fuel use; and identifying economic alternatives for building owners. The analysis was done with a solar system in place. This makes the study unique in that it is determining the interaction of energy conservation with a solar system. The study, therefore, established guidelines as to how to minimize capital investment while reducing the conventional fuel consumption through either a larger solar system or anmore » energy-conserving technique. To focus the scope of energy-conservation techniques and alternative energy sources considered, five building types (house, apartment buildings, commercial buildings, schools, and office buildings) were selected. Finally, the lists of energy-conservation techniques and alternative energy sources were reduced to lists of manageable size by using technical attributes to select the best candidates for further study. The resultant energy-conservation techniques were described in detail and installed costs determined. The alternative energy source reduced to solar. Building construction characteristics were defined for each building for each of four geographic regions of the country. A mixed strategy consisting of an energy-conservation technique and solar heating/hot water/cooling system was analyzed, using computer simulation to determine the interaction between energy conservation and the solar system. Finally, using FEA fuel-price scenarios and installed costs for the solar system and energy conservation techniques, an economic analysis was performed to determine the cost effectiveness of the combination. (MCW)« less
Wireless zoned particulate matter filter regeneration control system
Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA
2011-10-04
An assembly includes a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and multiple zones. An absorbing layer absorbs microwave energy in one of N frequency ranges and is arranged with the upstream end. N is an integer. A frequency selective filter has M frequency selective segments and receives microwave energy in the N frequency ranges. M is an integer. One of the M frequency selective segments permits passage of the microwave energy in one of the N frequency ranges and does not permit passage of microwave energy in the other of the N frequency ranges.
2016-09-01
suggested interventions that may reduce inefficient energy practices (Salem & Gallenson, 2014). The E2O selected a commercial-off-the-shelf (COTS) wireless ...IMPACT OF FUEL DATA ACQUISITION TECHNOLOGY ON THE USMC EXPEDITIONARY ENERGY COMMAND AND CONTROL SYSTEM by Jeremy F. Thomas September 2016...ON THE USMC EXPEDITIONARY ENERGY COMMAND AND CONTROL SYSTEM 5. FUNDING NUMBERS 6. AUTHOR(S) Jeremy F. Thomas 7. PERFORMING ORGANIZATION NAME(S
Design, analysis, operation, and advanced control of hybrid renewable energy systems
NASA Astrophysics Data System (ADS)
Whiteman, Zachary S.
Because using non-renewable energy systems (e.g., coal-powered co-generation power plants) to generate electricity is an unsustainable, environmentally hazardous practice, it is important to develop cost-effective and reliable renewable energy systems, such as photovoltaics (PVs), wind turbines (WTs), and fuel cells (FCs). Non-renewable energy systems, however, are currently less expensive than individual renewable energy systems (IRESs). Furthermore, IRESs based on intermittent natural resources (e.g., solar irradiance and wind) are incapable of meeting continuous energy demands. Such shortcomings can be mitigated by judiciously combining two or more complementary IRESs to form a hybrid renewable energy system (HRES). Although previous research efforts focused on the design, operation, and control of HRESs has proven useful, no prior HRES research endeavor has taken a systematic and comprehensive approach towards establishing guidelines by which HRESs should be designed, operated, and controlled. The overall goal of this dissertation, therefore, is to establish the principles governing the design, operation, and control of HRESs resulting in cost-effective and reliable energy solutions for stationary and mobile applications. To achieve this goal, we developed and demonstrated four separate HRES principles. Rational selection of HRES type: HRES components and their sizes should be rationally selected using knowledge of component costs, availability of renewable energy resources, and expected power demands of the application. HRES design: by default, the components of a HRES should be arranged in parallel for increased efficiency and reliability. However, a series HRES design may be preferred depending on the operational considerations of the HRES components. HRES control strategy selection: the choice of HRES control strategy depends on the dynamics of HRES components, their operational considerations, and the practical limitations of the HRES end-use. HRES data-driven control: information-rich data should be used to assist in the intelligent coordination of HRES components in meeting its operating objectives when additional computation can be afforded and significant benefits can be realized.
Development and Characterization of a High-Energy Neutron Time-of-Flight Imaging System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madden, Amanda Christine; Schirato, Richard C.; Swift, Alicia L.
We present that Los Alamos National Laboratory has developed a prototype of a high-energy neutron time-of-flight imaging system for the non-destructive evaluation of dense, massive, and/or high atomic number objects. High-energy neutrons provide the penetrating power, and thus the high dynamic range necessary to image internal features and defects of such objects. The addition of the time gating capability allows for scatter rejection when paired with a pulsed monoenergetic beam, or neutron energy selection when paired with a pulsed broad-spectrum neutron source. The Time Gating to Reject Scatter and Select Energy (TiGReSSE) system was tested at the Los Alamos Neutronmore » Science Center’s (LANSCE) Weapons Nuclear Research (WNR) facility, a spallation neutron source, to provide proof of concept measurements and to characterize the instrument response. This paper will show results of several objects imaged during this run cycle. In addition, results from system performance metrics such as the Modulation Transfer Function and the Detective Quantum Efficiency measured as a function of neutron energy, characterize the current system performance and inform the next generation of neutron imaging instrument.« less
Development and Characterization of a High-Energy Neutron Time-of-Flight Imaging System
Madden, Amanda Christine; Schirato, Richard C.; Swift, Alicia L.; ...
2017-02-09
We present that Los Alamos National Laboratory has developed a prototype of a high-energy neutron time-of-flight imaging system for the non-destructive evaluation of dense, massive, and/or high atomic number objects. High-energy neutrons provide the penetrating power, and thus the high dynamic range necessary to image internal features and defects of such objects. The addition of the time gating capability allows for scatter rejection when paired with a pulsed monoenergetic beam, or neutron energy selection when paired with a pulsed broad-spectrum neutron source. The Time Gating to Reject Scatter and Select Energy (TiGReSSE) system was tested at the Los Alamos Neutronmore » Science Center’s (LANSCE) Weapons Nuclear Research (WNR) facility, a spallation neutron source, to provide proof of concept measurements and to characterize the instrument response. This paper will show results of several objects imaged during this run cycle. In addition, results from system performance metrics such as the Modulation Transfer Function and the Detective Quantum Efficiency measured as a function of neutron energy, characterize the current system performance and inform the next generation of neutron imaging instrument.« less
NASA Astrophysics Data System (ADS)
Zhao, Liang; Xing, Yuming; Liu, Xin; Rui, Zhoufeng
2018-01-01
The use of thermal energy storage systems can effectively reduce energy consumption and improve the system performance. One of the promising ways for thermal energy storage system is application of phase change materials (PCMs). In this study, a two-dimensional numerical model is presented to investigate the heat transfer enhancement during the melting/solidification process in a triplex tube heat exchanger (TTHX) by using fluent software. The thermal conduction and natural convection are all taken into account in the simulation of the melting/solidification process. As the volume fraction of fin is kept to be a constant, the influence of proposed fin arrangement on temporal profile of liquid fraction over the melting process is studied and reported. By rotating the unit with different angle, the simulation shows that the melting time varies a little, which means that the installation error can be reduced by the selected fin arrangement. The proposed fin arrangement also can effectively reduce time of the solidification of the PCM by investigating the solidification process. To summarize, this work presents a shape optimization for the improvement of the thermal energy storage system by considering both thermal energy charging and discharging process.
Laser action by optically depumping lower states
Krupke, William F.
1977-01-01
A method and apparatus for obtaining laser action between an upper energy level and a lower energy level of a gaseous medium, which comprises populating the upper energy level to some degree (short of achieving a conventional inverted population) by any suitable pumping means, and thereafter establishing an inverted population by transiently and selectively depumping the lower energy level such as by exposing the medium to an intense source of radiation which selectively causes the transformation of the lower energy level species to some other energy level. Thus, a thermally pumped/optically depumped gas laser system is produced.
Laser action by optically depumping lower states
Krupke, W.F.
1975-11-26
A method and apparatus are described for obtaining laser action between an upper energy level and a lower energy level of a gaseous medium. The upper energy level is populated to some degree (short of achieving a conventional inverted population) by any suitable pumping means, and an inverted population is established by transiently and selectively depumping the lower energy level. The depumping may be done by exposing the medium to an intense source of radiation which selectively causes the transformation of the lower energy level species to some other energy level. Thus, a thermally pumped/optically depumped gas laser system is produced.
Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion.
Zhang, Zhen; Sui, Xin; Li, Pei; Xie, Ganhua; Kong, Xiang-Yu; Xiao, Kai; Gao, Longcheng; Wen, Liping; Jiang, Lei
2017-07-05
The osmotic energy existing in fluids is recognized as a promising "blue" energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m 2 by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells.
Foldover effect and energy output from a nonlinear pseudo-maglev harvester
NASA Astrophysics Data System (ADS)
Kecik, Krzysztof; Mitura, Andrzej; Warminski, Jerzy; Lenci, Stefano
2018-01-01
Dynamics analysis and energy harvesting of a nonlinear magnetic pseudo-levitation (pseudo-maglev) harvester under harmonic excitation is presented in this paper. The system, for selected parameters, has two stable possible solutions with different corresponding energy outputs. The main goal is to analyse the influence of resistance load on the multi-stability zones and energy recovery which can help to tune the system to improve the energy harvesting efficiency.
Reagan Administration Policies for New Energy Technologies
NASA Astrophysics Data System (ADS)
Rothberg, P. F.; Segal, M. R.; Civiak, R.
Energy policies are summarized. An analysis of selected advantages and disadvantages of these policies are presented. Chapters III-V are discussions by CRS experts. The possible of these policies in three specific types of energy production--synfuels processes, renewable energy systems, and nuclear energy technologies are discussed.
Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting
NASA Astrophysics Data System (ADS)
Abarr, Miles L. Lindsey
This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed <1% error for bottoming mode heat transfer. The system model was used to conduct sensitivity analysis, baseline performance, and levelized cost of energy of a recently proposed Pumped Thermal Energy Storage and Bottoming System (Bot-PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost of energy compared to 262-284/MWh for batteries and $172-254/MWh for Compressed Air Energy Storage.
Bright, Light and Energy Efficient.
ERIC Educational Resources Information Center
American School and University, 1981
1981-01-01
The new Sharon Elementary School in Newburgh (Indiana) has a three-fuel plan that will allow selection of the most economical energy source for each heating season with an energy-efficient lighting system that includes skylights. (Author/MLF)
Superconducting magnetic energy storage for asynchronous electrical systems
Boenig, Heinrich J.
1986-01-01
A superconducting magnetic energy storage coil connected in parallel between converters of two or more ac power systems provides load leveling and stability improvement to any or all of the ac systems. Control is provided to direct the charging and independently the discharging of the superconducting coil to at least a selected one of the ac power systems.
Activity recognition using dynamic multiple sensor fusion in body sensor networks.
Gao, Lei; Bourke, Alan K; Nelson, John
2012-01-01
Multiple sensor fusion is a main research direction for activity recognition. However, there are two challenges in those systems: the energy consumption due to the wireless transmission and the classifier design because of the dynamic feature vector. This paper proposes a multi-sensor fusion framework, which consists of the sensor selection module and the hierarchical classifier. The sensor selection module adopts the convex optimization to select the sensor subset in real time. The hierarchical classifier combines the Decision Tree classifier with the Naïve Bayes classifier. The dataset collected from 8 subjects, who performed 8 scenario activities, was used to evaluate the proposed system. The results show that the proposed system can obviously reduce the energy consumption while guaranteeing the recognition accuracy.
The Energy-Wise Homebuyer: A Guide to Selecting an Energy-Efficient Home.
ERIC Educational Resources Information Center
Hogarth, Peter T.; And Others
Presented is a guide for purchasers of new or used homes who wish to make informed comparisons of energy costs. Included are 12 energy features to look for, detailed energy checklists, and charts for calculating energy expenses. Among the considerations discussed are heating systems, insulation, thermostats, caulking and weatherstripping, and…
Assessment and preliminary design of an energy buffer for regenerative braking in electric vehicles
NASA Technical Reports Server (NTRS)
Buchholz, R.; Mathur, A. K.
1979-01-01
Energy buffer systems, capable of storing the vehicle energy during braking and reusing this stored energy during acceleration, were examined. Some of these buffer systems when incorporated in an electric vehicle would result in an improvement in the performance and range under stop and go driving conditions. Buffer systems considered included flywheels, hydropneumatic, pneumatic, spring, and regenerative braking. Buffer ranking and rating criteria were established. Buffer systems were rated based on predicted range improvements, consumer acceptance, driveability, safety, reliability and durability, and initial and life cycle costs. A hydropneumatic buffer system was selected.
NASA Technical Reports Server (NTRS)
Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.
2012-01-01
Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.
Acoustic microscope surface inspection system and method
Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.
1991-02-26
An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.
Irrigating poplar energy crops with landfill leachate negatively affects soil micro- and meso-fauna
David R. Coyle; Jill A. Zalesny; Ronald S. Zalesny Jr.; Adam H. Wiese
2011-01-01
Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization. Populus selections are ideal for such systems given their fast growth, extensive root systems, and high...
Materials selection guidelines for geothermal energy utilization systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, P.F. II; Conover, M.F.
1981-01-01
This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world aremore » presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)« less
Selective Energy Feasibility Study -- Richmond College, City University of New York
ERIC Educational Resources Information Center
Consulting Engineer, 1974
1974-01-01
A study of the presently available data on magnitude, duration, and coincidence of electrical demands determined that onsite electrical power generation in the form of a selective energy system should be incorporated within the central utilities plant projected for the Richmond College Campus of the City University of New York (CUNY). (Author/MLF)
ERIC Educational Resources Information Center
Wheeler, Arthur E.; Kunz, Walter S., Jr.
Although poor air quality in a school can have multiple causes, the heating, ventilating, and air-conditioning (HVAC) system plays a major role. Suggestions that architects, facilities managers, school board members, and administrators can use in selecting HVAC systems are discussed. Focus is on the performance criteria for classroom systems, and…
Solar power satellite, system definition study. Part 2, volume 3: SPS satellite systems
NASA Technical Reports Server (NTRS)
1977-01-01
The differences in approach to solar energy conversion by solar cells and thermal engine systems are examined. Systems requirements for the solar power satellite (SPS) are given along with a description of the primary subsystems. Trades leading to exact configuration selection, for example, selection of the Rankine cycle operating temperatures are explained, and two satellite configurations are discussed.
Aspects of Apache's Acquisition of Mariner Energy and Selected Devon Energy Assets
2010-01-01
The Energy Information Administration reviews mergers, acquisitions, and alliances by companies that are respondents to Form EIA-28 (Financial Reporting System (FRS)), or that result in a company that meets the FRS reporting criteria.
Solar heating and cooling: Technical data and systems analysis
NASA Technical Reports Server (NTRS)
Christensen, D. L.
1975-01-01
The solar energy research is reported including climatic data, architectural data, heating and cooling equipment, thermal loads, and economic data. Lists of data sources presented include: selected data sources for solar energy heating and cooling; bibliography of solar energy, and other energy sources; sources for manufacturing and sales, solar energy collectors; and solar energy heating and cooling projects.
Mitigating Short-Term Variations of Photovoltaic Generation Using Energy Storage with VOLTTRON
NASA Astrophysics Data System (ADS)
Morrissey, Kevin
A smart-building communications system performs smoothing on photovoltaic (PV) power generation using a battery energy storage system (BESS). The system runs using VOLTTRON(TM), a multi-agent python-based software platform dedicated to power systems. The VOLTTRON(TM) system designed for this project runs synergistically with the larger University of Washington VOLTTRON(TM) environment, which is designed to operate UW device communications and databases as well as to perform real-time operations for research. One such research algorithm that operates simultaneously with this PV Smoothing System is an energy cost optimization system which optimizes net demand and associated cost throughout a day using the BESS. The PV Smoothing System features an active low-pass filter with an adaptable time constant, as well as adjustable limitations on the output power and accumulated battery energy of the BESS contribution. The system was analyzed using 26 days of PV generation at 1-second resolution. PV smoothing was studied with unconstrained BESS contribution as well as under a broad range of BESS constraints analogous to variable-sized storage. It was determined that a large inverter output power was more important for PV smoothing than a large battery energy capacity. Two methods of selecting the time constant in real time, static and adaptive, are studied for their impact on system performance. It was found that both systems provide a high level of PV smoothing performance, within 8% of the ideal case where the best time constant is known ahead of time. The system was run in real time using VOLTTRON(TM) with BESS limitations of 5 kW/6.5 kWh and an adaptive update period of 7 days. The system behaved as expected given the BESS parameters and time constant selection methods, providing smoothing on the PV generation and updating the time constant periodically using the adaptive time constant selection method.
Technologies for Upgrading Light Water Reactor Outlet Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar
Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessmentmore » of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.« less
NASA Technical Reports Server (NTRS)
Bai, S. Don
2000-01-01
Design, propellant selection, and launch assistance for advanced chemical propulsion system is discussed. Topics discussed include: rocket design, advance fuel and high energy density materials, launch assist, and criteria for fuel selection.
Environmental Effects in Niobium Base Alloys and Other Selected Intermetallic Compounds
1991-04-30
formation of this surface layer requires that the oxide be more stable than the lowest oxide of the base metal. Figure 2 indicates the free energies of...such requirements for temperatures beyond 10500C are aluminum and silicon. Both of these elements form oxides with large, negative free energies of...Nb-Si, and Ta-Si systems. In attempting to develop alloys in which aluminum or silicon is selectively oxidized, the standard free energies of oxides
Assurance of energy efficiency and data security for ECG transmission in BASNs.
Ma, Tao; Shrestha, Pradhumna Lal; Hempel, Michael; Peng, Dongming; Sharif, Hamid; Chen, Hsiao-Hwa
2012-04-01
With the technological advancement in body area sensor networks (BASNs), low cost high quality electrocardiographic (ECG) diagnosis systems have become important equipment for healthcare service providers. However, energy consumption and data security with ECG systems in BASNs are still two major challenges to tackle. In this study, we investigate the properties of compressed ECG data for energy saving as an effort to devise a selective encryption mechanism and a two-rate unequal error protection (UEP) scheme. The proposed selective encryption mechanism provides a simple and yet effective security solution for an ECG sensor-based communication platform, where only one percent of data is encrypted without compromising ECG data security. This part of the encrypted data is essential to ECG data quality due to its unequally important contribution to distortion reduction. The two-rate UEP scheme achieves a significant additional energy saving due to its unequal investment of communication energy to the outcomes of the selective encryption, and thus, it maintains a high ECG data transmission quality. Our results show the improvements in communication energy saving of about 40%, and demonstrate a higher transmission quality and security measured in terms of wavelet-based weighted percent root-mean-squared difference.
Energy-discriminating X-ray computed tomography system utilizing a cadmium telluride detector
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahasi, Kiyomi; Sato, Shigehiro; Ogawae, Akira; Onagawa, Jun
2010-07-01
An energy-discriminating K-edge X-ray computed tomography (CT) system is useful for increasing contrast resolution of a target region utilizing contrast media and for reducing the absorbed dose for patients. The CT system is of the first-generation type with a cadmium telluride (CdTe) detector, and a projection curve is obtained by translation scanning using the CdTe detector in conjunction with an x-stage. An object is rotated by the rotation step angle using a turntable between the translation scans. Thus, CT is carried out by repeating the translation scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selecting photons with energies just beyond the iodine K-edge energy of 33.2 keV.
Fuel cell on-site integrated energy system parametric analysis of a residential complex
NASA Technical Reports Server (NTRS)
Simons, S. N.
1977-01-01
A parametric energy-use analysis was performed for a large apartment complex served by a fuel cell on-site integrated energy system (OS/IES). The variables parameterized include operating characteristics for four phosphoric acid fuel cells, eight OS/IES energy recovery systems, and four climatic locations. The annual fuel consumption for selected parametric combinations are presented and a breakeven economic analysis is presented for one parametric combination. The results show fuel cell electrical efficiency and system component choice have the greatest effect on annual fuel consumption; fuel cell thermal efficiency and geographic location have less of an effect.
The salinity gradient power generating system integrated into the seawater desalination system
NASA Astrophysics Data System (ADS)
Zhu, Yongqiang; Wang, Wanjun; Cai, Bingqian; Hao, Jiacheng; Xia, Ruihua
2017-01-01
Seawater desalination is an important way to solve the problem of fresh water shortage. Low energy efficiency and high cost are disadvantages existing in seawater desalination. With huge reserve and the highest energy density among different types of marine energy, salinity gradient energy has a bright application prospect. The promotion of traditional salinity gradient power generating systems is hindered by its low efficiency and specific requirements on site selection. This paper proposes a salinity gradient power generating system integrated into the seawater desalination system which combines the salinity gradient power generating system and the seawater desalination system aiming to remedy the aforementioned deficiency and could serve as references for future seawater desalination and salinity gradient energy exploitation. The paper elaborates on the operating principles of the system, analyzes the detailed working process, and estimates the energy output and consumption of the system. It is proved that with appropriate design, the energy output of the salinity gradient power generating system can satisfy the demand of the seawater desalination system.
High flux solar energy transformation
Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.
1991-04-09
Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.
High flux solar energy transformation
Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.
1991-04-09
Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.
NASA Astrophysics Data System (ADS)
Ghodssi, Reza; Livermore, Carol; Arnold, David
2010-10-01
This special section of the Journal of Micromechanics and Microengineering presents papers selected from the 9th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2009), which was held in Washington DC, USA from 1-4 December 2009. Since it was first held in Sendai, Japan in 2000, the PowerMEMS workshop has focused on small-scale systems that process, convert, or generate macroscopically significant amounts of power, typically with high power density or high energy density. In the workshop's early years, much of the research presented was on small-scale fueled systems, such as micro heat engines and micro fuel cells. The past nine years have seen a dramatic expansion in the range of technologies that are brought to bear on the challenge of high-power, small-scale systems, as well as an increase in the applications for such technologies. At this year's workshop, 158 contributed papers were presented, along with invited and plenary presentations. The papers focused on applications from micro heat engines and fuel cells, to energy harvesting and its enabling electronics, to thermal management and propulsion. Also presented were the technologies that enable these applications, such as the structuring of microscale, nanoscale and biological systems for power applications, as well as combustion and catalysis at small scales. This special section includes a selection of 12 expanded papers representing energy harvesting, chemical and fueled systems, and elastic energy storage at small scales. We would like to express our appreciation to the members of the International Steering Committee, the Technical Program Committee, the Local Organizing Committee, and to the workshop's financial supporters. We are grateful to the referees for their contributions to the review process. Finally, we would like to thank Dr Ian Forbes, the editorial staff of the Journal of Micromechanics and Microengineering, and the staff of IOP Publishing for making this special section possible.
NASA Technical Reports Server (NTRS)
Clark, T. B. (Editor)
1979-01-01
The technical and economic feasibility of a solar electric power plant for a small community is evaluated and specific system designs for development and demonstration are selected. All systems investigated are defined as point focusing, distributed receiver concepts, with energy conversion at the collector. The preferred system is comprised of multiple parabolic dish concentrators employing Stirling cycle engines for power conversion. The engine, AC generator, cavity receiver, and integral sodium pool boiler/heat transport system are combined in a single package and mounted at the focus of each concentrator. The output of each concentrator is collected by a conventional electrical distribution system which permits grid-connected or stand-alone operation, depending on the storage system selected.
Ganandran, G S B; Mahlia, T M I; Ong, Hwai Chyuan; Rismanchi, B; Chong, W T
2014-01-01
This paper reports the result of an investigation on the potential energy saving of the lighting systems at selected buildings of the Universiti Tenaga Nasional. The scope of this project includes evaluation of the lighting system in the Library, Admin Building, College of Engineering, College of Information Technology, Apartments, and COE Food court of the university. The main objectives of this project are to design the proper retrofit scenario and to calculate the potential electricity saving, the payback period, and the potential environmental benefits. In this survey the policy for retrofitting the old lighting system with the new energy saving LEDs starts with 10% for the first year and continues constantly for 10 years until all the lighting systems have been replaced. The result of the life cycle analysis reveals that after four years, the selected buildings will bring profit for the investment.
Ganandran, G. S. B.; Mahlia, T. M. I.; Ong, Hwai Chyuan; Rismanchi, B.; Chong, W. T.
2014-01-01
This paper reports the result of an investigation on the potential energy saving of the lighting systems at selected buildings of the Universiti Tenaga Nasional. The scope of this project includes evaluation of the lighting system in the Library, Admin Building, College of Engineering, College of Information Technology, Apartments, and COE Food court of the university. The main objectives of this project are to design the proper retrofit scenario and to calculate the potential electricity saving, the payback period, and the potential environmental benefits. In this survey the policy for retrofitting the old lighting system with the new energy saving LEDs starts with 10% for the first year and continues constantly for 10 years until all the lighting systems have been replaced. The result of the life cycle analysis reveals that after four years, the selected buildings will bring profit for the investment. PMID:25133258
Shape optimization of disc-type flywheels
NASA Technical Reports Server (NTRS)
Nizza, R. S.
1976-01-01
Techniques were developed for presenting an analytical and graphical means for selecting an optimum flywheel system design, based on system requirements, geometric constraints, and weight limitations. The techniques for creating an analytical solution are formulated from energy and structural principals. The resulting flywheel design relates stress and strain pattern distribution, operating speeds, geometry, and specific energy levels. The design techniques incorporate the lowest stressed flywheel for any particular application and achieve the highest specific energy per unit flywheel weight possible. Stress and strain contour mapping and sectional profile plotting reflect the results of the structural behavior manifested under rotating conditions. This approach toward flywheel design is applicable to any metal flywheel, and permits the selection of the flywheel design to be based solely on the criteria of the system requirements that must be met, those that must be optimized, and those system parameters that may be permitted to vary.
Storage systems for solar thermal power
NASA Technical Reports Server (NTRS)
Calogeras, J. E.; Gordon, L. H.
1978-01-01
The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-21
... www.regulations.gov Web site is an ``anonymous access'' system, which means EPA will not know your... public docket that are available electronically. Once in the system, select ``search,'' then key in the... homes under Home Performance with ENERGY STAR and ENERGY STAR's HVAC Quality Installation program...
Energy: An annotated selected bibliography
NASA Technical Reports Server (NTRS)
Blow, S. J. (Compiler); Peacock, R. W. (Compiler); Sholy, J. J. (Compiler)
1979-01-01
This updated bibliography contains approximately 7,000 selected references on energy and energy related topics from bibliographic and other data sources from June 1977. Under each subject heading the entries are arranged by the data, with the latest works first. Subject headings include: resources supply/demand, and forecasting; policy, legislation, and regulation; environment; consumption, conservation, and economics; analysis, systems, and modeling, and information sources and documentation. Fossil fuels, hydrogen and other fuels, liquid/solid wastes and biomass, waste heat utilization, and nuclear power sources are also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-03-01
This Handbook deals with environmental characterization information for a range of energy-supply systems and provides supplementary information on environmental controls applicable to a select group of environmentally characterized energy systems. Environmental residuals, physical-resource requirements, and discussion of applicable standards are the principal information provided. The quantitative and qualitative data provided are useful for evaluating alternative policy and technical strategies and for assessing the environmental impact of facility siting, energy production, and environmental controls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.
2013-08-01
The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage systemmore » that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.« less
Craven, Galen T; Nitzan, Abraham
2018-01-28
Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.
NASA Astrophysics Data System (ADS)
Craven, Galen T.; Nitzan, Abraham
2018-01-01
Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.
DEVELOPING AN INTEGRATED MANAGEMENT SYSTEM FOR URBAN AND ENERGY PLANNING TOWARDS A LOW-CARBON CITY
NASA Astrophysics Data System (ADS)
Maeda, Hideto; Nakakubo, Toyohiko; Tokai, Akihiro
In this study, we developed an integrated management model that supports local government to make a promising energy saving measure on a block-scale combined with urban planning. We applied the model to Osaka city and estimated CO2 emissions from the residential and commercial buildings to 2050. The urban renewal cases selected in this study included advanced multipole accumulation case, normal multipole accumulation case, and actual trend continuation case. The energy saving options introduced in each case included all-electric HP system, micro grid system, and we also set the option where the greater CO2 reduction one is selected in each block. The results showed that CO2 emission in 2050 would be reduced by 54.8-57.6% relative to the actual condition by introducing the new energy system in all cases. In addition, the amount of CO2 reduction in actual trend continuation case was highest. The major factor was that the effect of CO2 emission reductions by installing the solar power generation panel was higher than the effect by utilizing heated water mutually on the high-density blocks in terms of total urban buildings' energy consumption.
Sensor Buoy System for Monitoring Renewable Marine Energy Resources.
García, Emilio; Quiles, Eduardo; Correcher, Antonio; Morant, Francisco
2018-03-22
In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions.
Sensor Buoy System for Monitoring Renewable Marine Energy Resources
García, Emilio; Morant, Francisco
2018-01-01
In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions. PMID:29565823
Study of fuel cell on-site, integrated energy systems in residential/commercial applications
NASA Technical Reports Server (NTRS)
Wakefield, R. A.; Karamchetty, S.; Rand, R. H.; Ku, W. S.; Tekumalla, V.
1980-01-01
Three building applications were selected for a detailed study: a low rise apartment building; a retail store, and a hospital. Building design data were then specified for each application, based on the design and construction of typical, actual buildings. Finally, a computerized building loads analysis program was used to estimate hourly end use load profiles for each building. Conventional and fuel cell based energy systems were designed and simulated for each building in each location. Based on the results of a computer simulation of each energy system, levelized annual costs and annual energy consumptions were calculated for all systems.
Hybrid fuel cell/diesel generation total energy system, part 2
NASA Astrophysics Data System (ADS)
Blazek, C. F.
1982-11-01
Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.
Hybrid fuel cell/diesel generation total energy system, part 2
NASA Technical Reports Server (NTRS)
Blazek, C. F.
1982-01-01
Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.
NASA Astrophysics Data System (ADS)
Joglekar, Prasad; Lim, L.; Satyal, Suman; Kalaskar, Sushant; Shastry, K.; Weiss, Alex
2011-03-01
Time of Flight Positron Annihilation Induced~Auger Electron Spectroscopy~(TOF PAES) is a surface analytical technique with high surface selectivity. TOF PAES is used to study elemental composition, surface defects, and various energy loss mechanisms. Positrons incident on the sample surface at low energies can be trapped in an image-potential well just above the surface Prior to annihilation. Consequently it is possible to use positron annihilation related signals to selectively probe the top-most atomic layer. This poster presents the results of modeling of the charge particle beam transport system performed in connection with the optimization of the the design of the new TOF-PAES system currently under construction at U T Arlington. The system will incorporate a 2 m long drift tube in order to achieve better energy resolution than our previous TOF-PAES system design which used a 1 m long drift tube NSF DMR 0907679, Welch Foundation Y 1100.
System for controlling a hybrid energy system
Hoff, Brian D.; Akasam, Sivaprasad
2013-01-29
A method includes identifying a first operating sequence of a repeated operation of at least one non-traction load. The method also includes determining first and second parameters respectively indicative of a requested energy and output energy of the at least one non-traction load and comparing the determined first and second parameters at a plurality of time increments of the first operating sequence. The method also includes determining a third parameter of the hybrid energy system indicative of energy regenerated from the at least one non-traction load and monitoring the third parameter at the plurality of time increments of the first operating sequence. The method also includes determining at least one of an energy deficiency or an energy surplus associated with the non-traction load of the hybrid energy system and selectively adjusting energy stored within the storage device during at least a portion of a second operating sequence.
On the enhanced sampling over energy barriers in molecular dynamics simulations.
Gao, Yi Qin; Yang, Lijiang
2006-09-21
We present here calculations of free energies of multidimensional systems using an efficient sampling method. The method uses a transformed potential energy surface, which allows an efficient sampling of both low and high energy spaces and accelerates transitions over barriers. It allows efficient sampling of the configuration space over and only over the desired energy range(s). It does not require predetermined or selected reaction coordinate(s). We apply this method to study the dynamics of slow barrier crossing processes in a disaccharide and a dipeptide system.
Techno-Economic Analysis of Solar Water Heating Systems inTurkey.
Ertekin, Can; Kulcu, Recep; Evrendilek, Fatih
2008-02-25
In this study, solar water heater was investigated using meteorological and geographical data of 129 sites over Turkey. Three different collector types were compared in terms of absorber material (copper, galvanized sheet and selective absorber). Energy requirement for water heating, collector performances, and economical indicators were calculated with formulations using observed data. Results showed that selective absorbers were most appropriate in terms of coverage rate of energy requirement for water-heating all over Turkey. The prices of selective, copper and galvanized absorber type's heating systems in Turkey were 740.49, 615.69 and 490.89 USD, respectively. While payback periods (PBPs) of the galvanized absorber were lower, net present values (NPVs) of the selective absorber were higher than the rest. Copper absorber type collectors did not appear to be appropriate based on economical indicators.
Techno-Economic Analysis of Solar Water Heating Systems in Turkey
Ertekin, Can; Kulcu, Recep; Evrendilek, Fatih
2008-01-01
In this study, solar water heater was investigated using meteorological and geographical data of 129 sites over Turkey. Three different collector types were compared in terms of absorber material (copper, galvanized sheet and selective absorber). Energy requirement for water heating, collector performances, and economical indicators were calculated with formulations using observed data. Results showed that selective absorbers were most appropriate in terms of coverage rate of energy requirement for water-heating all over Turkey. The prices of selective, copper and galvanized absorber type's heating systems in Turkey were 740.49, 615.69 and 490.89 USD, respectively. While payback periods (PBPs) of the galvanized absorber were lower, net present values (NPVs) of the selective absorber were higher than the rest. Copper absorber type collectors did not appear to be appropriate based on economical indicators. PMID:27879764
A design study of the energy selection system for carbon-ion therapy
NASA Astrophysics Data System (ADS)
Hahn, Garam; An, Dong Hyun; Hong, Bong Hwan; Kim, Geun Beom; Yim, Heejoong; Chang, Hong Seok; Jung, In Su; Kang, Kun Uk; Nam, Sang Hoon; Park, Inkyu
2015-02-01
KHIMA, a research project to construct a carbon radio-therapy facility in Korea, has been developing a superconducting cyclotron named KIRAMS-430 as a carbon(12 C 6+) particle accelerator. Due to the fixed beam energy of the cyclotron, an energy selection system (ESS) is required for treatment of tumors located at various depths in the human body. In the present paper, two design stages of the ESS are discussed. First, the beam tracks behind the degrader block and the statistical twiss parameters for the entire energy range were calculated by using the GEANT4 simulation toolkit. Analysis of the beam transmission and the contamination ratios were performed. In the second stage, the beam optics was designed to support the same phase profile at the end regardless of the variations in all of input twiss parameters and the emittance.
MicroCT with energy-resolved photon-counting detectors
Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, BMW; Patt, B E; Frey, E C
2011-01-01
The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with Kabsorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences. PMID:21464527
Energy efficiency of substance and energy recovery of selected waste fractions.
Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian
2011-04-01
In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield. Copyright © 2010 Elsevier Ltd. All rights reserved.
Energy efficiency of substance and energy recovery of selected waste fractions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fricke, Klaus, E-mail: klaus.fricke@tu-bs.de; Bahr, Tobias, E-mail: t.bahr@tu-bs.de; Bidlingmaier, Werner, E-mail: werner.bidlingmaier@uni-weimar.de
In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard tomore » the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.« less
MicroCT with energy-resolved photon-counting detectors.
Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, B M W; Patt, B E; Frey, E C
2011-05-07
The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences.
NASA Technical Reports Server (NTRS)
1976-01-01
Integrated Utility Systems (IUS) have been suggested as a means of reducing the cost and conserving the nonrenewable energy resources required to supply utility services (energy, water, and waste disposal) to developments of limited size. The potential for further improving the performance and reducing the cost of IUS installations through the use of energy storage devices is examined and the results are summarized. Candidate energy storage concepts in the general areas of thermal, inertial, superconducting magnetic, electrochemical, chemical, and compressed air energy storage are assessed and the storage of thermal energy as the sensible heat of water is selected as the primary candidate for near term application to IUS.
Space-planning and structural solutions of low-rise buildings: Optimal selection methods
NASA Astrophysics Data System (ADS)
Gusakova, Natalya; Minaev, Nikolay; Filushina, Kristina; Dobrynina, Olga; Gusakov, Alexander
2017-11-01
The present study is devoted to elaboration of methodology used to select appropriately the space-planning and structural solutions in low-rise buildings. Objective of the study is working out the system of criteria influencing the selection of space-planning and structural solutions which are most suitable for low-rise buildings and structures. Application of the defined criteria in practice aim to enhance the efficiency of capital investments, energy and resource saving, create comfortable conditions for the population considering climatic zoning of the construction site. Developments of the project can be applied while implementing investment-construction projects of low-rise housing at different kinds of territories based on the local building materials. The system of criteria influencing the optimal selection of space-planning and structural solutions of low-rise buildings has been developed. Methodological basis has been also elaborated to assess optimal selection of space-planning and structural solutions of low-rise buildings satisfying the requirements of energy-efficiency, comfort and safety, and economical efficiency. Elaborated methodology enables to intensify the processes of low-rise construction development for different types of territories taking into account climatic zoning of the construction site. Stimulation of low-rise construction processes should be based on the system of approaches which are scientifically justified; thus it allows enhancing energy efficiency, comfort, safety and economical effectiveness of low-rise buildings.
Study on the optimum PCM melting temperature for energy savings in residential buildings worldwide
NASA Astrophysics Data System (ADS)
Saffari, M.; de Gracia, A.; Fernández, C.; Zsembinszki, G.; Cabeza, L. F.
2017-10-01
To maintain comfort conditions in residential buildings along a full year period, the use of active systems is generally required to either supply heating or cooling. The heating and cooling demands strongly depend on the climatic conditions, type of building and occupants’ behaviour. The overall annual energy consumption of the building can be reduced by the use of renewable energy sources and/or passive systems. The use of phase change materials (PCM) as passive systems in buildings enhances the thermal mass of the envelope, and reduces the indoor temperature fluctuations. As a consequence, the overall energy consumption of the building is generally lower as compared to the case when no PCM systems are used. The selection of the PCM melting temperature is a key issue to reduce the energy consumption of the buildings. The main focus of this study is to determine the optimum PCM melting temperature for passive heating and cooling according to different weather conditions. To achieve that, numerical simulations were carried out using EnergyPlus v8.4 coupled with GenOpt® v3.1.1 (a generic optimization software). A multi-family residential apartment was selected from ASHRAE Standard 90.1- 2013 prototype building model, and different climate conditions were considered to determine the optimum melting temperature (in the range from 20ºC to 26ºC) of the PCM contained in gypsum panels. The results confirm that the optimum melting temperature of the PCM strongly depends on the climatic conditions. In general, in cooling dominant climates the optimum PCM temperature is around 26ºC, while in heating dominant climates it is around 20ºC. Furthermore, the results show that an adequate selection of the PCM as passive system in building envelope can provide important energy savings for both heating dominant and cooling dominant regions.
Energy efficient engine high pressure turbine ceramic shroud support technology report
NASA Technical Reports Server (NTRS)
Nelson, W. A.; Carlson, R. G.
1982-01-01
This work represents the development and fabrication of ceramic HPT (high pressure turbine) shrouds for the Energy Efficient Engine (E3). Details are presented covering the work performed on the ceramic shroud development task of the NASA/GE Energy Efficient Engine (E3) component development program. The task consists of four phases which led to the selection of a ZrO2-BY2O3 ceramic shroud material system, the development of an automated plasma spray process to produce acceptable shroud structures, the fabrication of select shroud systems for evaluation in laboratory, component, and CF6-50 engine testing, and finally, the successful fabrication of ZrO2-8Y2O3/superpeg, engine quality shrouds for the E3 engine.
Schoen, Mary E; Xue, Xiaobo; Wood, Alison; Hawkins, Troy R; Garland, Jay; Ashbolt, Nicholas J
2017-02-01
We compared water and sanitation system options for a coastal community across selected sustainability metrics, including environmental impact (i.e., life cycle eutrophication potential, energy consumption, and global warming potential), equivalent annual cost, and local human health impact. We computed normalized metric scores, which we used to discuss the options' strengths and weaknesses, and conducted sensitivity analysis of the scores to changes in variable and uncertain input parameters. The alternative systems, which combined centralized drinking water with sanitation services based on the concepts of energy and nutrient recovery as well as on-site water reuse, had reduced environmental and local human health impacts and costs than the conventional, centralized option. Of the selected sustainability metrics, the greatest advantages of the alternative community water systems (compared to the conventional system) were in terms of local human health impact and eutrophication potential, despite large, outstanding uncertainties. Of the alternative options, the systems with on-site water reuse and energy recovery technologies had the least local human health impact; however, the cost of these options was highly variable and the energy consumption was comparable to on-site alternatives without water reuse or energy recovery, due to on-site reuse treatment. Future work should aim to reduce the uncertainty in the energy recovery process and explore the health risks associated with less costly, on-site water treatment options. Copyright © 2016 Elsevier Ltd. All rights reserved.
Space Environmental Effects on the Optical Properties of Selected Transparent Polymers
NASA Technical Reports Server (NTRS)
Edwards, David L.; Willowby, Douglas J.; Hubbs, Whitney C.; Piszczor, Michael F., Jr.; Bowden, Mary L.
1997-01-01
Transparent polymer films are currently considered for use as solar concentrating lenses for spacecraft power and propulsion systems. These polymer films concentrate solar energy onto energy conversion devices such as solar cells and thermal energy systems. Conversion efficiency is directly related to the polymer transmission. Space environmental effects will decrease the transmission and thus reduce the conversion efficiency. This investigation focuses on the effects of ultraviolet and charged particle radiation on the transmission of selected transparent polymers. Multiple candidate polymer samples were exposed to near ultraviolet (NUV) radiation to screen the materials and select optimum materials for further study. All materials experienced transmission degradation of varying degree. A method was developed to normalize the transmission loss and thus rank the materials according to their tolerance of NUV. Teflon(Tm) FEP and Teflon(Tm) PFA were selected for further study. These materials were subjected to a combined charged particle dose equivalent to 5 years in a typical geosynchronous Earth orbit (GEO). Results from these NUV screening tests and the 5 year GEO equivalent dose are presented.
Establishment of key grid-connected performance index system for integrated PV-ES system
NASA Astrophysics Data System (ADS)
Li, Q.; Yuan, X. D.; Qi, Q.; Liu, H. M.
2016-08-01
In order to further promote integrated optimization operation of distributed new energy/ energy storage/ active load, this paper studies the integrated photovoltaic-energy storage (PV-ES) system which is connected with the distribution network, and analyzes typical structure and configuration selection for integrated PV-ES generation system. By combining practical grid- connected characteristics requirements and technology standard specification of photovoltaic generation system, this paper takes full account of energy storage system, and then proposes several new grid-connected performance indexes such as paralleled current sharing characteristic, parallel response consistency, adjusting characteristic, virtual moment of inertia characteristic, on- grid/off-grid switch characteristic, and so on. A comprehensive and feasible grid-connected performance index system is then established to support grid-connected performance testing on integrated PV-ES system.
Tune-Up Your Fan Systems for Improved Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fans are used extensively in commercial buildings and represent approximately 6% of total energy consumed by commercial buildings. The U.S. Department of Energy (DOE) estimates that fans in commercial buildings consume 158 billion kWh of electricity annually. Maintaining fan systems in proper condition provides energy savings and ensures a comfortable and healthy environment. While many fan systems have significant energy savings opportunities available through improvements in fan selection, system design, and operational practices, it is not always apparent when a fan system needs maintenance or what opportunities are available for improvements. This resource is designed for facility managers and maintenancemore » staff to provide easy-to-implement actionable guidance on fan efficiency measures for existing ducted air systems.« less
NASA Astrophysics Data System (ADS)
Nakabayashi, Takashi
The Ford Motor Company proposed the principle of the sodium-sulfur battery based on a beta-alumina solid electrolyte in 1967. Accordingly, sodium-sulfur battery technology was initially developed primarily for electric vehicle applications. Later, the Tokyo Electric Power Company (TEPCO) selected the sodium-sulfur battery technology as the preferred system for a dispersed utility energy storage system to substitute for the pumped hydro energy storage system. NGK Insulators, Ltd. (NGK) and TEPCO have jointly carried out the development of the sodium-sulfur battery since 1984. In April 2002, TEPCO and NGK made the sodium-sulfur battery for use as an energy storage system commercially available.
Applications of thermal energy storage in the cement industry
NASA Technical Reports Server (NTRS)
Jaeger, F. A.; Beshore, D. G.; Miller, F. M.; Gartner, E. M.
1978-01-01
In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, established use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10 to the 13th power Btu/year, or an equivalent on investment of the proposed systems are an incentive for further development.
Thermal Storage Applications Workshop. Volume 2: Contributed Papers
NASA Technical Reports Server (NTRS)
1979-01-01
The solar thermal and the thermal and thermochemical energy storage programs are described as well as the technology requirements for both external (electrical) and internal (thermal, chemical) modes for energy storage in solar power plants. Specific technical issues addressed include thermal storage criteria for solar power plants interfacing with utility systems; optimal dispatch of storage for solar plants in a conventional electric grid; thermal storage/temperature tradeoffs for solar total energy systems; the value of energy storage for direct-replacement solar thermal power plants; systems analysis of storage in specific solar thermal power applications; the value of seasonal storage of solar energy; criteria for selection of the thermal storage system for a 10 MW(2) solar power plant; and the need for specific requirements by storage system development teams.
IEEE 802.21 Assisted Seamless and Energy Efficient Handovers in Mixed Networks
NASA Astrophysics Data System (ADS)
Liu, Huaiyu; Maciocco, Christian; Kesavan, Vijay; Low, Andy L. Y.
Network selection is the decision process for a mobile terminal to handoff between homogeneous or heterogeneous networks. With multiple available networks, the selection process must evaluate factors like network services/conditions, monetary cost, system conditions, user preferences etc. In this paper, we investigate network selection using a cost function and information provided by IEEE 802.21. The cost function provides flexibility to balance different factors in decision making and our research is focused on improving both seamlessness and energy efficiency of handovers. Our solution is evaluated using real WiFi, WiMax, and 3G signal strength traces. The results show that appropriate networks were selected based on selection policies, handovers were triggered at optimal times to increase overall network connectivity as compared to traditional triggering schemes, while at the same time the energy consumption of multi-radio devices for both on-going operations as well as during handovers is optimized.
Regenerative fuel cell systems for space station
NASA Technical Reports Server (NTRS)
Hoberecht, M. A.; Sheibley, D. W.
1985-01-01
Regenerative fuel cell (RFC) systems are the leading energy storage candidates for Space Station. Key design features are the advanced state of technology readiness and high degree of system level design flexibility. Technology readiness was demonstrated through testing at the single cell, cell stack, mechanical ancillary component, subsystem, and breadboard levels. Design flexibility characteristics include independent sizing of power and energy storage portions of the system, integration of common reactants with other space station systems, and a wide range of various maintenance approaches. The design features led to selection of a RFC system as the sole electrochemical energy storage technology option for the space station advanced development program.
Energy Supply Options for Modernizing Army Heating Systems
1999-01-01
Army Regulation (AR) 420-49, Heating, Energy Selection and Fuel Storage, Distribution, and Dispens- ing Systems and Technical Manual (TM) 5-650...analysis. 26 USACERL TR 99/23 HEATMAP uses the AutoLISP program in AutoCAD to take the graphical input to populate a Microsoft® Access database in...of 1992, Subtitle F, Federal Agency Energy Man- agement. Technical Manual (TM) 5-650, Repairs and Utilities: Central Boiler Plants (HQDA, 13 October
ERIC Educational Resources Information Center
Maharaj-Sharma, Rawatee; Sharma, Amrit
2014-01-01
This case study explored what experiences contribute to the ideas of energy held by 30 purposively selected primary school students from one primary school in Trinidad and Tobago. The 30 students were selected from across all levels of the primary system. The study used the Interview About Events (IAE) approach to explore students' ideas about…
NASA Astrophysics Data System (ADS)
Chiba, Hiraku; Sato, Yuichi; Sato, Eiichi; Maeda, Tomoko; Matsushita, Ryo; Yanbe, Yutaka; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2012-10-01
An energy-dispersive (ED) X-ray computed tomography (CT) system is useful for carrying out monochromatic imaging by selecting optimal energy photons. CT is performed by repeated linear scans and rotations of an object. X-ray photons from the object are detected by the cadmium telluride (CdTe) detector, and event pulses of X-ray photons are produced using charge-sensitive and shaping amplifiers. The lower photon energy is determined by a comparator, and the maximum photon energy of 70 keV corresponds to the tube voltage. Logical pulses from the comparator are counted by a counter card through a differentiator to reduce pulse width and rise time. In the ED-CT system, tube voltage and current were 70 kV and 0.30 mA, respectively, and X-ray intensity was 18.2 µGy/s at 1.0 m from the source at a tube voltage of 70 kV. Demonstration of gadolinium K-edge CT for cancer diagnosis was carried out by selecting photons with energies ranging from 50.4 to 70 keV, and photon-count energy subtraction imaging from 30 to 50.3 keV was also performed.
Strategy Guideline: HVAC Equipment Sizing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdick, A.
The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understandingmore » of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.« less
Sage-grouse habitat selection during winter in Alberta
Carpenter, Jennifer L.; Aldridge, Cameron L.; Boyce, Mark S.
2010-01-01
Greater sage-grouse (Centrocercus urophasianus) are dependent on sagebrush (Artemisia spp.) for food and shelter during winter, yet few studies have assessed winter habitat selection, particularly at scales applicable to conservation planning. Small changes to availability of winter habitats have caused drastic reductions in some sage-grouse populations. We modeled winter habitat selection by sage-grouse in Alberta, Canada, by using a resource selection function. Our purpose was to 1) generate a robust winter habitat-selection model for Alberta sage-grouse; 2) spatially depict habitat suitability in a Geographic Information System to identify areas with a high probability of selection and thus, conservation importance; and 3) assess the relative influence of human development, including oil and gas wells, in landscape models of winter habitat selection. Terrain and vegetation characteristics, sagebrush cover, anthropogenic landscape features, and energy development were important in top Akaike's Information Criterionselected models. During winter, sage-grouse selected dense sagebrush cover and homogenous less rugged areas, and avoided energy development and 2-track truck trails. Sage-grouse avoidance of energy development highlights the need for comprehensive management strategies that maintain suitable habitats across all seasons. ?? 2010 The Wildlife Society.
Threshold-selecting strategy for best possible ground state detection with genetic algorithms
NASA Astrophysics Data System (ADS)
Lässig, Jörg; Hoffmann, Karl Heinz
2009-04-01
Genetic algorithms are a standard heuristic to find states of low energy in complex state spaces as given by physical systems such as spin glasses but also in combinatorial optimization. The paper considers the problem of selecting individuals in the current population in genetic algorithms for crossover. Many schemes have been considered in literature as possible crossover selection strategies. We show for a large class of quality measures that the best possible probability distribution for selecting individuals in each generation of the algorithm execution is a rectangular distribution over the individuals sorted by their energy values. This means uniform probabilities have to be assigned to a group of the individuals with lowest energy in the population but probabilities equal to zero to individuals which are corresponding to energy values higher than a fixed cutoff, which is equal to a certain rank in the vector sorted by the energy of the states in the current population. The considered strategy is dubbed threshold selecting. The proof applies basic arguments of Markov chains and linear optimization and makes only a few assumptions on the underlying principles and hence applies to a large class of algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, Thiagarajan; Kundu, Soumya; Chen, Yan
This paper develops and utilizes an optimization based framework to investigate the maximal energy efficiency potentially attainable by HVAC system operation in a non-predictive context. Performance is evaluated relative to the existing state of the art set point reset strategies. The expected efficiency increase driven by operation constraints relaxations is evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, Thiagarajan; Kundu, Soumya; Chen, Yan
This paper develops and utilizes an optimization based framework to investigate the maximal energy efficiency potentially attainable by HVAC system operation in a non-predictive context. Performance is evaluated relative to the existing state of the art set-point reset strategies. The expected efficiency increase driven by operation constraints relaxations is evaluated.
7 CFR 4280.179 - Selecting feasibility study grant applications for award.
Code of Federal Regulations, 2013 CFR
2013-01-01
... GRANTS Rural Energy for America Program General Renewable Energy System Feasibility Study Grants § 4280... certify that the purposes of the project can be met, and the Agency must determine the project is...
7 CFR 4280.179 - Selecting feasibility study grant applications for award.
Code of Federal Regulations, 2012 CFR
2012-01-01
... GRANTS Rural Energy for America Program General Renewable Energy System Feasibility Study Grants § 4280... certify that the purposes of the project can be met, and the Agency must determine the project is...
Site selection feasibility for a solar energy system on the Fairbanks Federal Building
NASA Technical Reports Server (NTRS)
1978-01-01
A feasibility study was performed for the installation of a solar energy system on the Federal Building in Fairbanks, Alaska, a multifloor office building with an enclosed parking garge. The study consisted of determining the collectable solar energy at the Fairbanks site on a monthly basis and comparing this to the monthly building heating load. Potential conventional fuel savings were calculated on a monthly basis and the overall economics of the solar system applications were considered. Possible solar system design considerations, collector and other system installation details, interface of the solar system with the conventional HVAC systems, and possible control modes were all addressed. Conclusions, recommendations and study details are presented.
Alkali metal/halide thermal energy storage systems performance evaluation
NASA Technical Reports Server (NTRS)
Phillips, W. M.; Stearns, J. W.
1986-01-01
A pseudoheat-pipe heat transfer mechanism has been demonstrated effective in terms of both total heat removal efficiency and rate, on the one hand, and system isothermal characteristics, on the other, for solar thermal energy storage systems of the kind being contemplated for spacecraft. The selection of appropriate salt and alkali metal substances for the system renders it applicable to a wide temperature range. The rapid heat transfer rate obtainable makes possible the placing of the thermal energy storage system around the solar receiver canister, and the immersing of heat transfer fluid tubes in the phase change salt to obtain an isothermal heat source.
Direct hydrogen fuel cell systems for hybrid vehicles
NASA Astrophysics Data System (ADS)
Ahluwalia, Rajesh K.; Wang, X.
Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.
Selected technology for the gas industry
NASA Technical Reports Server (NTRS)
1975-01-01
A number of papers were presented at a conference concerned with the application of technical topics from aerospace activities for the gas industry. The following subjects were covered: general future of fossil fuels in America, exploration for fossil and nuclear fuels from orbital altitudes, technology for liquefied gas, safety considerations relative to fires, explosions, and detonations, gas turbomachinery technology, fluid properties, fluid flow, and heat transfer, NASA information and documentation systems, instrumentation and measurement, materials and life prediction, reliability and quality assurance, and advanced energy systems (including synthetic fuels, energy storage, solar energy, and wind energy).
Hieu, Tran Dinh; Duy, Tran Trung; Dung, Le The; Choi, Seong Gon
2018-06-05
To solve the problem of energy constraints and spectrum scarcity for cognitive radio wireless sensor networks (CR-WSNs), an underlay decode-and-forward relaying scheme is considered, where the energy constrained secondary source and relay nodes are capable of harvesting energy from a multi-antenna power beacon (PB) and using that harvested energy to forward the source information to the destination. Based on the time switching receiver architecture, three relaying protocols, namely, hybrid partial relay selection (H-PRS), conventional opportunistic relay selection (C-ORS), and best opportunistic relay selection (B-ORS) protocols are considered to enhance the end-to-end performance under the joint impact of maximal interference constraint and transceiver hardware impairments. For performance evaluation and comparison, we derive the exact and asymptotic closed-form expressions of outage probability (OP) and throughput (TP) to provide significant insights into the impact of our proposed protocols on the system performance over Rayleigh fading channel. Finally, simulation results validate the theoretical results.
Comprehensive evaluation of global energy interconnection development index
NASA Astrophysics Data System (ADS)
Liu, Lin; Zhang, Yi
2018-04-01
Under the background of building global energy interconnection and realizing green and low-carbon development, this article constructed the global energy interconnection development index system which based on the current situation of global energy interconnection development. Through using the entropy method for the weight analysis of global energy interconnection development index, and then using gray correlation method to analyze the selected countries, this article got the global energy interconnection development index ranking and level classification.
ACHP | Energy Development, Transmission, and Historic Preservation
provided an overview of select Section 106 cases in which the ACHP was involved. The cases below are this link to find 106 cases involving energy. Photovoltaic System on Roof of Ballaja Building, Spring
Experimental aspects of the thermochemical conversion of solar energy - Decarbonation of CaCO3
NASA Astrophysics Data System (ADS)
Flamant, G.; Hernandez, D.; Bonet, C.; Traverse, J.-P.
1980-01-01
The feasibility of thermochemical conversion of concentrated solar energy is investigated. Consideration is given to heterogeneous systems in the range 500-1500 C. A reaction volume is on a laboratory scale about 30 cu cm. An experimental set-up selected is a fluid bed and a rotary kiln. An endothermal reaction, namely, decarbonation of CaCO3, is selected as a possible application for solar power plants.
Work required for selective quantum measurement
NASA Astrophysics Data System (ADS)
Konishi, Eiji
2018-06-01
In quantum mechanics, we define the measuring system M in a selective measurement by two conditions. Firstly, when we define the measured system S as the system in which the non-selective measurement part acts, M is independent from the measured system S as a quantum system in the sense that any time-dependent process in the total system S + M is divisible into parts for S and M. Secondly, when we can separate S and M from each other without changing the unitary equivalence class of the state of S from that obtained by the partial trace of M, the eigenstate selection in the selective measurement cannot be realized. In order for such a system M to exist, we show that in one selective measurement of an observable of a quantum system S 0 of particles in S, there exists a negative entropy transfer from M to S that can be directly transformed into an amount of Helmholtz free energy of where T is the thermodynamic temperature of the system S. Equivalently, an extra amount of work, , is required to be done by the system M.
Leng, Shuai; Yu, Lifeng; Wang, Jia; Fletcher, Joel G; Mistretta, Charles A; McCollough, Cynthia H
2011-09-01
Our purpose was to reduce image noise in spectral CT by exploiting data redundancies in the energy domain to allow flexible selection of the number, width, and location of the energy bins. Using a variety of spectral CT imaging methods, conventional filtered backprojection (FBP) reconstructions were performed and resulting images were compared to those processed using a Local HighlY constrained backPRojection Reconstruction (HYPR-LR) algorithm. The mean and standard deviation of CT numbers were measured within regions of interest (ROIs), and results were compared between FBP and HYPR-LR. For these comparisons, the following spectral CT imaging methods were used:(i) numerical simulations based on a photon-counting, detector-based CT system, (ii) a photon-counting, detector-based micro CT system using rubidium and potassium chloride solutions, (iii) a commercial CT system equipped with integrating detectors utilizing tube potentials of 80, 100, 120, and 140 kV, and (iv) a clinical dual-energy CT examination. The effects of tube energy and energy bin width were evaluated appropriate to each CT system. The mean CT number in each ROI was unchanged between FBP and HYPR-LR images for each of the spectral CT imaging scenarios, irrespective of bin width or tube potential. However, image noise, as represented by the standard deviation of CT numbers in each ROI, was reduced by 36%-76%. In all scenarios, image noise after HYPR-LR algorithm was similar to that of composite images, which used all available photons. No difference in spatial resolution was observed between HYPR-LR processing and FBP. Dual energy patient data processed using HYPR-LR demonstrated reduced noise in the individual, low- and high-energy images, as well as in the material-specific basis images. Noise reduction can be accomplished for spectral CT by exploiting data redundancies in the energy domain. HYPR-LR is a robust method for reducing image noise in a variety of spectral CT imaging systems without losing spatial resolution or CT number accuracy. This method improves the flexibility to select energy bins in the manner that optimizes material identification and separation without paying the penalty of increased image noise or its corollary, increased patient dose.
Portfolio Optimization of Nanomaterial Use in Clean Energy Technologies.
Moore, Elizabeth A; Babbitt, Callie W; Gaustad, Gabrielle; Moore, Sean T
2018-04-03
While engineered nanomaterials (ENMs) are increasingly incorporated in diverse applications, risks of ENM adoption remain difficult to predict and mitigate proactively. Current decision-making tools do not adequately account for ENM uncertainties including varying functional forms, unique environmental behavior, economic costs, unknown supply and demand, and upstream emissions. The complexity of the ENM system necessitates a novel approach: in this study, the adaptation of an investment portfolio optimization model is demonstrated for optimization of ENM use in renewable energy technologies. Where a traditional investment portfolio optimization model maximizes return on investment through optimal selection of stock, ENM portfolio optimization maximizes the performance of energy technology systems by optimizing selective use of ENMs. Cumulative impacts of multiple ENM material portfolios are evaluated in two case studies: organic photovoltaic cells (OPVs) for renewable energy and lithium-ion batteries (LIBs) for electric vehicles. Results indicate ENM adoption is dependent on overall performance and variance of the material, resource use, environmental impact, and economic trade-offs. From a sustainability perspective, improved clean energy applications can help extend product lifespans, reduce fossil energy consumption, and substitute ENMs for scarce incumbent materials.
Design and optimization of zero-energy-consumption based solar energy residential building systems
NASA Astrophysics Data System (ADS)
Zheng, D. L.; Yu, L. J.; Tan, H. W.
2017-11-01
Energy consumption of residential buildings has grown fast in recent years, thus raising a challenge on zero energy residential building (ZERB) systems, which aim at substantially reducing energy consumption of residential buildings. Thus, how to facilitate ZERB has become a hot but difficult topic. In the paper, we put forward the overall design principle of ZERB based on analysis of the systems’ energy demand. In particular, the architecture for both schematic design and passive technology is optimized and both energy simulation analysis and energy balancing analysis are implemented, followed by committing the selection of high-efficiency appliance and renewable energy sources for ZERB residential building. In addition, Chinese classical residential building has been investigated in the proposed case, in which several critical aspects such as building optimization, passive design, PV panel and HVAC system integrated with solar water heater, Phase change materials, natural ventilation, etc., have been taken into consideration.
Study of thermal energy storage using fluidized bed heat exchangers
NASA Technical Reports Server (NTRS)
Weast, T. E.; Shannon, L. J.; Ananth, K. P.
1980-01-01
The technical and economic feasibility of fluid bed heat exchangers (FBHX) for thermal energy storage (TES) in waste heat recovery applications is assessed by analysis of two selected conceptual systems, the rotary cement kiln and the electric arc furnace. It is shown that the inclusion of TES in the energy recovery system requires that the difference in off-peak and on-peak energy rates be large enough so that the value of the recovered energy exceeds the value of the stored energy by a wide enough margin to offset parasitic power and thermal losses. Escalation of on-peak energy rates due to fuel shortages could make the FBHX/TES applications economically attractive in the future.
Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy
Rosewater, David; Ferreira, Summer; Schoenwald, David; ...
2018-01-25
Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less
Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosewater, David; Ferreira, Summer; Schoenwald, David
Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less
Performance Analysis of Cluster Formation in Wireless Sensor Networks.
Montiel, Edgar Romo; Rivero-Angeles, Mario E; Rubino, Gerardo; Molina-Lozano, Heron; Menchaca-Mendez, Rolando; Menchaca-Mendez, Ricardo
2017-12-13
Clustered-based wireless sensor networks have been extensively used in the literature in order to achieve considerable energy consumption reductions. However, two aspects of such systems have been largely overlooked. Namely, the transmission probability used during the cluster formation phase and the way in which cluster heads are selected. Both of these issues have an important impact on the performance of the system. For the former, it is common to consider that sensor nodes in a clustered-based Wireless Sensor Network (WSN) use a fixed transmission probability to send control data in order to build the clusters. However, due to the highly variable conditions experienced by these networks, a fixed transmission probability may lead to extra energy consumption. In view of this, three different transmission probability strategies are studied: optimal, fixed and adaptive. In this context, we also investigate cluster head selection schemes, specifically, we consider two intelligent schemes based on the fuzzy C-means and k-medoids algorithms and a random selection with no intelligence. We show that the use of intelligent schemes greatly improves the performance of the system, but their use entails higher complexity and selection delay. The main performance metrics considered in this work are energy consumption, successful transmission probability and cluster formation latency. As an additional feature of this work, we study the effect of errors in the wireless channel and the impact on the performance of the system under the different transmission probability schemes.
Performance Analysis of Cluster Formation in Wireless Sensor Networks
Montiel, Edgar Romo; Rivero-Angeles, Mario E.; Rubino, Gerardo; Molina-Lozano, Heron; Menchaca-Mendez, Rolando; Menchaca-Mendez, Ricardo
2017-01-01
Clustered-based wireless sensor networks have been extensively used in the literature in order to achieve considerable energy consumption reductions. However, two aspects of such systems have been largely overlooked. Namely, the transmission probability used during the cluster formation phase and the way in which cluster heads are selected. Both of these issues have an important impact on the performance of the system. For the former, it is common to consider that sensor nodes in a clustered-based Wireless Sensor Network (WSN) use a fixed transmission probability to send control data in order to build the clusters. However, due to the highly variable conditions experienced by these networks, a fixed transmission probability may lead to extra energy consumption. In view of this, three different transmission probability strategies are studied: optimal, fixed and adaptive. In this context, we also investigate cluster head selection schemes, specifically, we consider two intelligent schemes based on the fuzzy C-means and k-medoids algorithms and a random selection with no intelligence. We show that the use of intelligent schemes greatly improves the performance of the system, but their use entails higher complexity and selection delay. The main performance metrics considered in this work are energy consumption, successful transmission probability and cluster formation latency. As an additional feature of this work, we study the effect of errors in the wireless channel and the impact on the performance of the system under the different transmission probability schemes. PMID:29236065
Energetic cost of communication.
Stoddard, Philip K; Salazar, Vielka L
2011-01-15
Communication signals may be energetically expensive or inexpensive to produce, depending on the function of the signal and the competitive nature of the communication system. Males of sexually selected species may produce high-energy advertisement signals, both to enhance detectability and to signal their size and body condition. Accordingly, the proportion of the energy budget allocated to signal production ranges from almost nothing for many signals to somewhere in excess of 50% for acoustic signals in short-lived sexually selected species. Recent data from gymnotiform electric fish reveal mechanisms that regulate energy allocated to sexual advertisement signals through dynamical remodeling of the excitable membranes in the electric organ. Further, males of the short-lived sexually selected species, Brachyhypopomus gauderio, trade off among different metabolic compartments, allocating energy to signal production while reducing energy used in other metabolic functions. Female B. gauderio, by contrast, do not trade off energy between signaling and other functions. To fuel energetically expensive signal production, we expect a continuum of strategies to be adopted by animals of different life history strategies. Future studies should explore the relation between life history and energy allocation trade-offs.
Energetic cost of communication
Stoddard, Philip K.; Salazar, Vielka L.
2011-01-01
Communication signals may be energetically expensive or inexpensive to produce, depending on the function of the signal and the competitive nature of the communication system. Males of sexually selected species may produce high-energy advertisement signals, both to enhance detectability and to signal their size and body condition. Accordingly, the proportion of the energy budget allocated to signal production ranges from almost nothing for many signals to somewhere in excess of 50% for acoustic signals in short-lived sexually selected species. Recent data from gymnotiform electric fish reveal mechanisms that regulate energy allocated to sexual advertisement signals through dynamical remodeling of the excitable membranes in the electric organ. Further, males of the short-lived sexually selected species, Brachyhypopomus gauderio, trade off among different metabolic compartments, allocating energy to signal production while reducing energy used in other metabolic functions. Female B. gauderio, by contrast, do not trade off energy between signaling and other functions. To fuel energetically expensive signal production, we expect a continuum of strategies to be adopted by animals of different life history strategies. Future studies should explore the relation between life history and energy allocation trade-offs. PMID:21177941
How can we tackle energy efficiency in IoT based smart buildings?
Moreno, M Victoria; Úbeda, Benito; Skarmeta, Antonio F; Zamora, Miguel A
2014-05-30
Nowadays, buildings are increasingly expected to meet higher and more complex performance requirements. Among these requirements, energy efficiency is recognized as an international goal to promote energy sustainability of the planet. Different approaches have been adopted to address this goal, the most recent relating consumption patterns with human occupancy. In this work, we analyze what are the main parameters that should be considered to be included in any building energy management. The goal of this analysis is to help designers to select the most relevant parameters to control the energy consumption of buildings according to their context, selecting them as input data of the management system. Following this approach, we select three reference smart buildings with different contexts, and where our automation platform for energy monitoring is deployed. We carry out some experiments in these buildings to demonstrate the influence of the parameters identified as relevant in the energy consumption of the buildings. Then, in two of these buildings are applied different control strategies to save electrical energy. We describe the experiments performed and analyze the results. The first stages of this evaluation have already resulted in energy savings of about 23% in a real scenario.
How can We Tackle Energy Efficiency in IoT Based Smart Buildings?
Moreno, M. Victoria; Úbeda, Benito; Skarmeta, Antonio F.; Zamora, Miguel A.
2014-01-01
Nowadays, buildings are increasingly expected to meet higher and more complex performance requirements. Among these requirements, energy efficiency is recognized as an international goal to promote energy sustainability of the planet. Different approaches have been adopted to address this goal, the most recent relating consumption patterns with human occupancy. In this work, we analyze what are the main parameters that should be considered to be included in any building energy management. The goal of this analysis is to help designers to select the most relevant parameters to control the energy consumption of buildings according to their context, selecting them as input data of the management system. Following this approach, we select three reference smart buildings with different contexts, and where our automation platform for energy monitoring is deployed. We carry out some experiments in these buildings to demonstrate the influence of the parameters identified as relevant in the energy consumption of the buildings. Then, in two of these buildings are applied different control strategies to save electrical energy. We describe the experiments performed and analyze the results. The first stages of this evaluation have already resulted in energy savings of about 23% in a real scenario. PMID:24887040
Wu, Desheng; Ning, Shuang
2018-07-01
Economic development, accompanying with environmental damage and energy depletion, becomes essential nowadays. There is a complicated and comprehensive interaction between economics, environment and energy. Understanding the operating mechanism of Energy-Environment-Economy model (3E) and its key factors is the inherent part in dealing with the issue. In this paper, we combine System Dynamics model and Geographic Information System to analyze the energy-environment-economy (3E) system both temporally and spatially, which explicitly explore the interaction of economics, energy, and environment and effects of the key influencing factors. Beijing is selected as a case study to verify our SD-GIS model. Alternative scenarios, e.g., current, technology, energy and environment scenarios are explored and compared. Simulation results shows that, current scenario is not sustainable; technology scenario is applicable to economic growth; environment scenario maintains a balanced path of development for long term stability. Policy-making insights are given based on our results and analysis. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hoff, J. E.; Howe, J. M.; Mitchell, C. A.
1982-01-01
The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.
Optimized design of total energy systems: The RETE project
NASA Astrophysics Data System (ADS)
Alia, P.; Dallavalle, F.; Denard, C.; Sanson, F.; Veneziani, S.; Spagni, G.
1980-05-01
The RETE (Reggio Emilia Total Energy) project is discussed. The total energy system (TES) was developed to achieve the maximum quality matching on the thermal energy side between plant and user and perform an open scheme on the electrical energy side by connection with the Italian electrical network. The most significant qualitative considerations at the basis of the plant economic energy optimization and the selection of the operating criterion most fitting the user consumption characteristics and the external system constraints are reported. The design methodology described results in a TES that: in energy terms achieves a total efficiency evaluated on a yearly basis to be equal to about 78 percent and a fuel saving of about 28 percent and in economic terms allows a recovery of the investment required as to conventional solutions, in about seven years.
Case studies for GSHP demonstration projects in the US
Liu, Xiaobing; Malhotra, Mini; Im, Piljae
2015-07-01
Under the American Recovery and Reinvestment Act , twenty-six ground source heat pump (GSHP) projects were competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This article gives an overview of the case studies for six of the systems. These case studies evaluated efficiencies, energy savings, and costs of the demonstrated systems. In addition, it was found that more energy savings could be achieved if controls of GSHP system are improved.
NASA Astrophysics Data System (ADS)
Welch, K. M.
1981-09-01
The Loyola University site is a student dormitory in New Orleans, Louisiana whose active solar energy system is designed to supply 52% of the hot water demand. The system is equipped with 4590 square feet of flat-plate collectors, a 5000-gallon water tank, auxiliary water supplied at high temperature and pressure from a central heating plant with a gas-fired boiler, and a differential controller that selects from 5 operating modes. System performance data are given, including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and system coefficient of performance. The solar fraction is well below the design goal; this is attributed to great fluctuations in demand. Insolation, temperature, operation and solar energy utilization data are also presented. The performance of the collector, storage, and domestic hot water subsystems, the system operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, sensor technology, and typical monthly data.
Ray A. Souter; Emile S Gardiner; Theodor D. Leininger; Dana Mitchell; Robert B. Rummer
2015-01-01
"Wood is an obvious alternative energy source": Johnson and others (2007) declare the potential of short-rotation intensively-managed woody crop systems to produce biomass for energy. While obvious as an energy source, costs of production need to be measured to assess the economic viability of selected tree species as woody perennial energy crops
NASA Technical Reports Server (NTRS)
Holl, R. J.
1979-01-01
The development of a modular solar thermal power system for application in the 1 to 10 MWe range is presented. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Systems design and systems optimization studies are conducted which consider plant size, annual capacity factors, and startup time as variables. Investigations are performed on the energy storage requirements and type of energy storage, concentrator design and field optimization, energy transport, and power conversion subsystems. The system utilizes a Rankine cycle, an axial flow steam turbine for power conversion, and heat transfer sodium for collector fluid.
An applied methodology for assessment of the sustainability of biomass district heating systems
NASA Astrophysics Data System (ADS)
Vallios, Ioannis; Tsoutsos, Theocharis; Papadakis, George
2016-03-01
In order to maximise the share of biomass in the energy supplying system, the designers should adopt the appropriate changes to the traditional systems and become more familiar with the design details of the biomass heating systems. The aim of this study is to present the development of methodology and its associated implementation in software that is useful for the design of biomass thermal conversion systems linked with district heating (DH) systems, taking into consideration the types of building structures and urban settlement layout around the plant. The methodology is based on a completely parametric logic, providing an impact assessment of variations in one or more technical and/or economic parameters and thus, facilitating a quick conclusion on the viability of this particular energy system. The essential energy parameters are presented and discussed for the design of biomass power and heat production system which are in connection with DH network, as well as for its environmental and economic evaluation (i.e. selectivity and viability of the relevant investment). Emphasis has been placed upon the technical parameters of biomass logistics, energy system's design, the economic details of the selected technology (integrated cogeneration combined cycle or direct combustion boiler), the DH network and peripheral equipment (thermal substations) and the greenhouse gas emissions. The purpose of this implementation is the assessment of the pertinent investment financial viability taking into account the available biomass feedstock, the economical and market conditions, and the capital/operating costs. As long as biomass resources (forest wood and cultivation products) are available and close to the settlement, disposal and transportation costs of biomass, remain low assuring the sustainability of such energy systems.
NASA Technical Reports Server (NTRS)
Bents, David J.; Lu, Cheng Y.
1989-01-01
Solar photovoltaic and thermal dynamic power systems for application to selected low-earth-orbit (LEO) and high-earth-orbit (HEO) missions are characterized in the regime 7 to 35 kWe. Input parameters to the characterization are varied to correspond to anticipated introduction of improved or new technologies. A comparative assessment is made of the two power system types for emerging technologies in cells and arrays, energy storage, optical surfaces, heat engines, thermal energy storage and thermal management. The assessment is made to common ground rules and assumptions. The four missions (Space Station, sun-synchronous, Van Allen belt, and GEO) are representative of the anticipated range of multikilowatt earth-orbit missions. The results give the expected performance, mass and drag of multikilowatt earth-orbiting solar power systems and show how the overall system figure of merit will improve as new component technologies are incorporated.
Solar energy system economic evaluation: Contemporary Newman, Georgia
NASA Technical Reports Server (NTRS)
1980-01-01
An economic evaluation of performance of the solar energy system (based on life cycle costs versus energy savings) for five cities considered to be representative of a broad range of environmental and economic conditions in the United States is discussed. The considered life cycle costs are: hardware, installation, maintenance, and operating costs for the solar unique components of the total system. The total system takes into consideration long term average environmental conditions, loads, fuel costs, and other economic factors applicable in each of five cities. Selection criteria are based on availability of long term weather data, heating degree days, cold water supply temperature, solar insolation, utility rates, market potential, and type of solar system.
Solar-powered irrigation systems. Technical progress report, July 1977--January 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1978-02-28
Dispersed solar thermal power systems applied to farm irrigation energy needs are analyzed. The 17 western states, containing 84% of nationwide irrigated croplands and consuming 93% of nationwide irrigation energy, have been selected to determine were solar irrigation systems can compete most favorably with conventional energy sources. Financial analysis of farms, according to size and ownership, was accomplished to permit realistic comparative analyses of system lifetime costs. Market potential of optimized systems has been estimated for the 17-state region for near-term (1985) and intermediate-term (2000) applications. Technical, economic, and institutional factors bearing on penetration and capture of this market aremore » being identified.« less
Solar energy system economic evaluation: Contemporary Newman, Georgia
NASA Astrophysics Data System (ADS)
1980-09-01
An economic evaluation of performance of the solar energy system (based on life cycle costs versus energy savings) for five cities considered to be representative of a broad range of environmental and economic conditions in the United States is discussed. The considered life cycle costs are: hardware, installation, maintenance, and operating costs for the solar unique components of the total system. The total system takes into consideration long term average environmental conditions, loads, fuel costs, and other economic factors applicable in each of five cities. Selection criteria are based on availability of long term weather data, heating degree days, cold water supply temperature, solar insolation, utility rates, market potential, and type of solar system.
NASA Technical Reports Server (NTRS)
Phen, R. L.; Luckow, W. K.; Mattson, L.; Otth, D.; Tsou, P.
1977-01-01
Development criteria and recommendations for coal feed system selections that include supporting data are presented. Considered are the areas of coal feed coasts, coal feed system reliability, and the interaction of the feed system with the conversion process.
ERIC Educational Resources Information Center
Smith, Michael J.; Vincent, Colin A.
1989-01-01
Uses reversible electrochemical cells near equilibrium to study basic thermodynamic concepts such as maximum work and free energy. Selects sealed, miniature, commercial cells to obtain accurate measurement of enthalpy, entropy, and Gibbs free energy. (MVL)
Understanding the influence of climate change on the embodied energy of water supply.
Mo, Weiwei; Wang, Haiying; Jacobs, Jennifer M
2016-05-15
The current study aims to advance understandings on how and to what degree climate change will affect the life cycle chemical and energy uses of drinking water supply. A dynamic life cycle assessment was performed to quantify historical monthly operational embodied energy of a selected water supply system located in northeast US. Comprehensive multivariate and regression analyses were then performed to understand the statistical correlation among monthly life cycle energy consumptions, three water quality indicators (UV254, pH, and water temperature), and five climate indicators (monthly mean temperature, monthly mean maximum/minimum temperatures, total precipitation, and total snow fall). Thirdly, a calculation was performed to understand how volumetric and total life cycle energy consumptions will change under two selected IPCC emission scenarios (A2 and B1). It was found that volumetric life cycle energy consumptions are highest in winter months mainly due to the higher uses of natural gas in the case study system, but total monthly life cycle energy consumptions peak in both July and January because of the increasing water demand in summer months. Most of the variations in chemical and energy uses can be interpreted by water quality and climate variations except for the use of soda ash. It was also found that climate change might lead to an average decrease of 3-6% in the volumetric energy use of the case study system by the end of the century. This result combined with conclusions reached by previous climate versus water supply studies indicates that effects of climate change on drinking water supply might be highly dependent on the geographical location and treatment process of individual water supply systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1978-01-01
The costs and benefits of existing/planned systems, new propulsion concepts, and adaptations of existing/planned systems (as supported by Orbiter interface requirements and operations requirements) were quantified. Scenarios of these propulsion approaches were established which accommodate the low energy regime as defined by the new low energy payload mission model. These scenarios were screened on a cost and then a benefits basis. A propulsion approach comprising existing/planned systems and a new propulsion concept were selected as the most cost effective approach to accommodate the model payloads and the low energy regime they represent. Key cost drivers and sensitivity trends were identified. All costs were derived in 1977 dollars.
McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.
2016-08-02
Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.
McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.
2014-08-05
Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.
Energy Efficiency and Environmental Impact Analyses of Supermarket Refrigeration Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fricke, Brian A; Bansal, Pradeep; Zha, Shitong
This paper presents energy and life cycle climate performance (LCCP) analyses of a variety of supermarket refrigeration systems to identify designs that exhibit low environmental impact and high energy efficiency. EnergyPlus was used to model refrigeration systems in a variety of climate zones across the United States. The refrigeration systems that were modeled include the traditional multiplex DX system, cascade systems with secondary loops and the transcritical CO2 system. Furthermore, a variety of refrigerants were investigated, including R-32, R-134a, R-404A, R-1234yf, R-717, and R-744. LCCP analysis was used to determine the direct and indirect carbon dioxide emissions resulting from themore » operation of the various refrigeration systems over their lifetimes. Our analysis revealed that high-efficiency supermarket refrigeration systems may result in up to 44% less energy consumption and 78% reduced carbon dioxide emissions compared to the baseline multiplex DX system. This is an encouraging result for legislators, policy makers and supermarket owners to select low emission, high-efficiency commercial refrigeration system designs for future retrofit and new projects.« less
Energy efficient engine: Propulsion system-aircraft integration evaluation
NASA Technical Reports Server (NTRS)
Owens, R. E.
1979-01-01
Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.
Ion distribution and selectivity of ionic liquids in microporous electrodes.
Neal, Justin N; Wesolowski, David J; Henderson, Douglas; Wu, Jianzhong
2017-05-07
The energy density of an electric double layer capacitor, also known as supercapacitor, depends on ion distributions in the micropores of its electrodes. Herein we study ion selectivity and partitioning of symmetric, asymmetric, and mixed ionic liquids among different pores using the classical density functional theory. We find that a charged micropore in contact with mixed ions of the same valence is always selective to the smaller ions, and the ion selectivity, which is strongest when the pore size is comparable to the ion diameters, drastically falls as the pore size increases. The partitioning behavior in ionic liquids is fundamentally different from those corresponding to ion distributions in aqueous systems whereby the ion selectivity is dominated by the surface energy and entropic effects insensitive to the degree of confinement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Tim; Slezak, Lee; Johnson, Chris
2008-12-31
The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selectionsmore » and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.« less
NASA Astrophysics Data System (ADS)
Konishi, Takeshi; Hase, Shin-Ichi; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi
Interest has been shown in the concept of an energy storage system aimed at leveling load and improving energy efficiency by charging during vehicle regeneration and discharging during running. Such a system represents an efficient countermeasure against pantograph point voltage drop, power load fluctuation and regenerative power loss. We selected an EDLC model as an energy storage medium and a step-up/step-down chopper as a power converter to exchange power between the storage medium and overhead lines. Basic verification was conducted using a mini-model for DC 400V, demonstrating characteristics suitable for its use as an energy storage system. Based on these results, an energy storage system was built for DC 600V and a verification test conducted in conjunction with the Enoshima Electric Railway Co. Ltd. This paper gives its experimental analysis of voltage drop compensation in a DC electrified railway and some discussions based on the test.
NASA Technical Reports Server (NTRS)
1981-01-01
The development of a coal gasification system design and mass and energy balance simulation program for the TVA and other similar facilities is described. The materials-process-product model (MPPM) and the advanced system for process engineering (ASPEN) computer program were selected from available steady state and dynamic models. The MPPM was selected to serve as the basis for development of system level design model structure because it provided the capability for process block material and energy balance and high-level systems sizing and costing. The ASPEN simulation serves as the basis for assessing detailed component models for the system design modeling program. The ASPEN components were analyzed to identify particular process blocks and data packages (physical properties) which could be extracted and used in the system design modeling program. While ASPEN physical properties calculation routines are capable of generating physical properties required for process simulation, not all required physical property data are available, and must be user-entered.
NASA Astrophysics Data System (ADS)
Nemethova, Ema; Stutterecker, Werner; Schoberer, Thomas
2017-06-01
The aim of the study is to evaluate the potential of enhancing thermal comfort and energy consumption created by three different radiant systems in the newly-built Energetikum office building. A representative office, Simulation room 1/1, was selected from 6 areas equipped with portable sensor groups for the indoor environment monitoring. The presented data obtained from 3 reference weeks; the heating, transition and cooling periods indicate overheating, particularly during the heating and transition period. The values of the indoor air temperature during the heating and transition period could not meet the normative criteria according to standard EN 15251:2007 (cat. II.) for 15-30% of the time intervals evaluated. Consequently, a simulation model of the selected office was created and points to the possibilities of improving the control system, which can lead to an elimination of the problem with overheating. Three different radiant systems - floor heating/ cooling, a thermally active ceiling, and a near-surface thermally active ceiling were implemented in the model. A comparison of their effects on thermal comfort and energy consumption is presented in the paper.
Energy efficiency system development
NASA Astrophysics Data System (ADS)
Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.
2017-09-01
By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.
Transportation Energy Conservation Data Book: A Selected Bibliography. Edition 3,
1978-11-01
Charlottesville, VA 22901 TITLE: Couputer-Based Resource Accounting Model TT1.1: Methodology for the Design of Urban for Automobile Technology Impact...Evaluation System ACCOUNTING; INDUSTRIAL SECTOR; ENERGY tPIESi Documentation. volume 6. CONSUM PTION: PERFORANCE: DESIGN : NASTE MEAT: Methodology for... Methodology for the Design of Urban Transportation 000172 Energy Flows In the U.S., 1973 and 1974. Volume 1: Methodology * $opdate to the Fational Energy
Photonic microstructures for energy-generating clear glass and net-zero energy buildings
NASA Astrophysics Data System (ADS)
Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal
2016-08-01
Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application.
Photonic microstructures for energy-generating clear glass and net-zero energy buildings.
Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal
2016-08-23
Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application.
Photonic microstructures for energy-generating clear glass and net-zero energy buildings
Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal
2016-01-01
Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application. PMID:27550827
Wind energy developments in the 20th century
NASA Technical Reports Server (NTRS)
Vargo, D. J.
1974-01-01
Wind turbine systems for generating electrical power have been tested in many countries. Representative examples of turbines which have produced from 100 to 1250 kW are described. The advantages of wind energy consist of its being a nondepleting, nonpolluting, and free fuel source. Its disadvantages relate to the variability of wind and the high installation cost per kilowatt of capacity of wind turbines when compared to other methods of electric-power generation. High fuel costs and potential resource scarcity have led to a five-year joint NASA-NSF program to study wind energy. The program will study wind energy conversion and storage systems with respect to cost effectiveness, and will attempt to estimate national wind-energy potential and develop techniques for generator site selection. The studies concern a small-systems (50-250 kW) project, a megawatt-systems (500-3000 kW) project, supporting research and technology, and energy storage. Preliminary economic analyses indicate that wind-energy conversion can be competitive in high-average-wind areas.
Energy reduction for the spot welding process in the automotive industry
NASA Astrophysics Data System (ADS)
Cullen, J. D.; Athi, N.; Al-Jader, M. A.; Shaw, A.; Al-Shamma'a, A. I.
2007-07-01
When performing spot welding on galvanised metals, higher welding force and current are required than on uncoated steels. This has implications for the energy usage when creating each spot weld, of which there are approximately 4300 in each passenger car. The paper presented is an overview of electrode current selection and its variance over the lifetime of the electrode tip. This also describes the proposed analysis system for the selection of welding parameters for the spot welding process, as the electrode tip wears.
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.
1992-01-01
Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.
Energy in the Environment - Initiatives 2004-08
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul Jehn
Under the Energy and Environment Initiative, the GWPC/GWPRF will expand the oil and gas electronic commerce initiatives used to enhance the Risk Based Data Management System (RBDMS) and the Cost Effective Regulatory Approach (CERA). The GWPC/GWPRF has identified the following priorities for work efforts during the time period that will act as the base from which selections for each work period will be proposed. Work tasks will be presented for each reporting period by the GWPC from areas selected from the general list of priorities.
Study of Lyndon B. Johnson Space Center utility systems
NASA Technical Reports Server (NTRS)
Redding, T. E.; Huber, W. C.
1977-01-01
The results of an engineering study of potential energy saving utility system modifications for the NASA Lyndon B. Johnson Space Center are presented. The objective of the study was to define and analyze utility options that would provide facility energy savings in addition to the approximately 25 percent already achieved through an energy loads reduction program. A systems engineering approach was used to determine total system energy and cost savings resulting from each of the ten major options investigated. The results reported include detailed cost analyses and cost comparisons of various options. Cost are projected to the year 2000. Also included are a brief description of a mathematical model used for the analysis and the rationale used for a site survey to select buildings suitable for analysis.
The NASA Langley building solar project and the supporting Lewis solar technology program
NASA Technical Reports Server (NTRS)
Ragsdale, R. G.; Namkoong, D.
1974-01-01
A solar energy technology program is described that includes solar collector testing in an indoor solar simulator facility and in an outdoor test facility, property measurements of solar panel coatings, and operation of a laboratory-scale solar model system test facility. Early results from simulator tests indicate that non-selective coatings behave more nearly in accord with predicted performance than do selective coatings. Initial experiments on the decay rate of thermally stratified hot water in a storage tank have been run. Results suggest that where high temperature water is required, excess solar energy collected by a building solar system should be stored overnight in the form of chilled water rather than hot water.
NASA Astrophysics Data System (ADS)
Harkouss, F.; Biwole, P. H.; Fardoun, F.
2018-05-01
Buildings’ optimization is a smart method to inspect the available design choices starting from passive strategies, to energy efficient systems and finally towards the adequate renewable energy system to be implemented. This paper outlines the methodology and the cost-effectiveness potential for optimizing the design of net-zero energy building in a French city; Embrun. The non-dominated sorting genetic algorithm is chosen in order to minimize thermal, electrical demands and life cycle cost while reaching the net zero energy balance; and thus getting the Pareto-front. Elimination and Choice Expressing the Reality decision making method is applied to the Pareto-front so as to obtain one optimal solution. A wide range of energy efficiency measures are investigated, besides solar energy systems are employed to produce required electricity and hot water for domestic purposes. The results indicate that the appropriate selection of the passive parameters is very important and critical in reducing the building energy consumption. The optimum design parameters yield to a decrease of building’s thermal loads and life cycle cost by 32.96% and 14.47% respectively.
Calculating Free Energies Using Average Force
NASA Technical Reports Server (NTRS)
Darve, Eric; Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
A new, general formula that connects the derivatives of the free energy along the selected, generalized coordinates of the system with the instantaneous force acting on these coordinates is derived. The instantaneous force is defined as the force acting on the coordinate of interest so that when it is subtracted from the equations of motion the acceleration along this coordinate is zero. The formula applies to simulations in which the selected coordinates are either unconstrained or constrained to fixed values. It is shown that in the latter case the formula reduces to the expression previously derived by den Otter and Briels. If simulations are carried out without constraining the coordinates of interest, the formula leads to a new method for calculating the free energy changes along these coordinates. This method is tested in two examples - rotation around the C-C bond of 1,2-dichloroethane immersed in water and transfer of fluoromethane across the water-hexane interface. The calculated free energies are compared with those obtained by two commonly used methods. One of them relies on determining the probability density function of finding the system at different values of the selected coordinate and the other requires calculating the average force at discrete locations along this coordinate in a series of constrained simulations. The free energies calculated by these three methods are in excellent agreement. The relative advantages of each method are discussed.
Multi-kilowatt modularized spacecraft power processing system development
NASA Technical Reports Server (NTRS)
Andrews, R. E.; Hayden, J. H.; Hedges, R. T.; Rehmann, D. W.
1975-01-01
A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations.
Comparison of solar-thermal and fossil total-energy systems for selected industrial applications
NASA Astrophysics Data System (ADS)
Pine, G. D.
1980-06-01
Economic analyses of a conventional system and total energy systems based on phosphoric acid fuel cells, diesel piston engines, and central receiver solar thermal systems were performed for each of four industrial applications; a concrete block plant in Arizona, a fluid milk processing plant in California, a sugar beet processing plant in Colorado, and a meat packing plant in Texas. A series of sensitivity analyses was performed to show the effects of variations in fuel price, system size, cost of capital, and system initial cost. Solar total energy systems (STES) are more capital intensive than the other systems, and significant economies of scale are associated with the STES. If DOE solar system cost goals are met, STES can compete with the other systems for facilities with electrical demands greater than two or three megawatts, but STES are not competitive for smaller facilities. Significant energy resource savings, especially of oil and gas, resulted from STES implementation in the four industries.
Robotic Laser Coating Removal System
2008-08-01
9 3.2 SELECTION OF TEST PLATFORM/FACILITY .................................. 9 3.3 TEST PLATFORM/FACILITY HISTORY...lasers are 4 efficient in converting electrical energy to coherent radiation and, thus, have widespread industrial use. In order to select an...completion of this evaluation a 6 kW CO2 laser from Rofin-Sinar was selected for use in the RLCRS. This laser provided the highest quality laser
NASA Astrophysics Data System (ADS)
Peng, Wanli; Zhang, Yanchao; Yang, Zhimin; Chen, Jincan
2018-02-01
Three-terminal energy selective electron (ESE) devices consisting of three electronic reservoirs connected by two energy filters and an electronic conductor with negligible resistance may work as ESE refrigerators and amplifiers. They have three possible connective ways for the electronic conductor and six electronic transmission forms. The configuration of energy filters may be described by the different transmission functions such as the rectangular and Lorentz transmission functions. The ESE devices with three connective ways can be, respectively, regarded as three equivalent hybrid systems composed of an ESE heat engine and an ESE refrigerator/heat pump. With the help of the theory of the ESE devices operated between two electronic reservoirs, the coefficients of performance and cooling rates (heat-pumping rates) of hybrid systems are directly derived. The general performance characteristics of hybrid systems are revealed. The optimal regions of these devices are determined. The performances of the devices with three connective ways of the electronic conductor and two configurations of energy filters are compared in detail. The advantages and disadvantages of each of three-terminal ESE devices are expounded. The results obtained here may provide some guidance for the optimal design and operation of three-terminal ESE devices.
ERDA-NASA wind energy project ready to involve users
NASA Technical Reports Server (NTRS)
Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.
1976-01-01
The NASA contribution to the Wind Energy Project is discussed. NASA is responsible for the following: (1) identification of cost-effective configurations and sizes of wind-conversion systems, (2) the development of technology needed to produce these systems, (3) the design of wind-conversion systems that are compatible with user requirements, particularly utility networks, and (4) technology transfer obtained from the program to stimulate rapid commercial application of wind systems. Various elements of the NASA program are outlined, including industry-built user operation, the evaluation phase, the proposed plan and schedule for site selection and user involvement, supporting research and technology (e.g., energy storage), and component and subsystem technology development.
Kouchri, Farrokh Mohammadzadeh
2012-11-06
A Voice over Internet Protocol (VoIP) communications system, a method of managing a communications network in such a system and a program product therefore. The system/network includes an ENERGY STAR (E-star) aware softswitch and E-star compliant communications devices at system endpoints. The E-star aware softswitch allows E-star compliant communications devices to enter and remain in power saving mode. The E-star aware softswitch spools messages and forwards only selected messages (e.g., calls) to the devices in power saving mode. When the E-star compliant communications devices exit power saving mode, the E-star aware softswitch forwards spooled messages.
Twelve Principles for Green Energy Storage in Grid Applications.
Arbabzadeh, Maryam; Johnson, Jeremiah X; Keoleian, Gregory A; Rasmussen, Paul G; Thompson, Levi T
2016-01-19
The introduction of energy storage technologies to the grid could enable greater integration of renewables, improve system resilience and reliability, and offer cost effective alternatives to transmission and distribution upgrades. The integration of energy storage systems into the electrical grid can lead to different environmental outcomes based on the grid application, the existing generation mix, and the demand. Given this complexity, a framework is needed to systematically inform design and technology selection about the environmental impacts that emerge when considering energy storage options to improve sustainability performance of the grid. To achieve this, 12 fundamental principles specific to the design and grid application of energy storage systems are developed to inform policy makers, designers, and operators. The principles are grouped into three categories: (1) system integration for grid applications, (2) the maintenance and operation of energy storage, and (3) the design of energy storage systems. We illustrate the application of each principle through examples published in the academic literature, illustrative calculations, and a case study with an off-grid application of vanadium redox flow batteries (VRFBs). In addition, trade-offs that can emerge between principles are highlighted.
NASA Astrophysics Data System (ADS)
Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.
2017-07-01
Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.
Masood, U; Cowan, T E; Enghardt, W; Hofmann, K M; Karsch, L; Kroll, F; Schramm, U; Wilkens, J J; Pawelke, J
2017-07-07
Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.
Space power development impact on technology requirements
NASA Technical Reports Server (NTRS)
Cassidy, J. F.; Fitzgerald, T. J.; Gilje, R. I.; Gordon, J. D.
1986-01-01
The paper is concerned with the selection of a specific spacecraft power technology and the identification of technology development to meet system requirements. Requirements which influence the selection of a given technology include the power level required, whether the load is constant or transient in nature, and in the case of transient loads, the time required to recover the power, and overall system safety. Various power technologies, such as solar voltaic power, solar dynamic power, nuclear power systems, and electrochemical energy storage, are briefly described.
Status of commercial phosphoric acid fuel cell system development
NASA Technical Reports Server (NTRS)
Warshay, M.; Prokopius, P. R.; Simons, S. N.; King, R. B.
1981-01-01
In both the electric utility and onsite integrated energy system applications, reducing cost and increasing reliability are the main technology drivers. The longstanding barrier to the attainment of these goals, which manifests itself in a number of ways, was materials. The differences in approach among the three major participants (United Technologies Corporation, Westinghouse Electric Corporation/Energy Research Corporation, and Engelhard Industries) and their unique technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy are discussed.
Solar energy retrofit for Clarksville Middle School, Clarksville, Indiana
NASA Technical Reports Server (NTRS)
1979-01-01
The solar energy retrofit heating system installed to provide heating for two gymnasiums at the Clarksville Middle School located in Clarksville, Indiana is described in detail. The system type is hot water using existing chilled water piping and chilled water coils in an air handler system. Flat plate, single-glazed selectively coated solar collectors were installed on the roof of each gymnasium. Total collector area covers 6,520 square feet. The liquid is stored in a 10,000 gallon steel tank installed below grade.
NASA Astrophysics Data System (ADS)
1980-03-01
The technical possibilities and economical limitations of solar heating systems for the application in swimming pools, hot water preparation, space heating and air conditioning were investigated. This analysis was performed for dwellings with special consideration of the climatic differences in each community. The computer program, which was used for solar system calculations, and all mathematical models, for technical and economical analysis were elucidated. In the technical and economical analysis, the most suitable solar system sizes for each community was determined. Four types of solar collectors were investigated. The single glass selective collector proved to be the most cost effective collector in all the above applications, provided the the additional cost for the selective coating is not more than 20DM/cu. From the results of the analysis certain recommendations were derived, which can improve the rapid implementation of solar heating systems into the market.
A support vector machine approach for classification of welding defects from ultrasonic signals
NASA Astrophysics Data System (ADS)
Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming
2014-07-01
Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.
Net energy analysis: Powerful tool for selecting electric power options
NASA Astrophysics Data System (ADS)
Baron, S.
A number of net energy analysis studies have been conducted in recent years for electric power production from coal, oil and uranium fuels; synthetic fuels from coal and oil shale; and heat and electric power from solar energy. This technique is an excellent indicator of investment costs, environmental impact and potential economic competitiveness of alternative electric power systems for energy planners from the Eastern European countries considering future options. Energy conservation is also important to energy planners and the net energy analysis technique is an excellent accounting system on the extent of energy resource conservation. The author proposes to discuss the technique and to present the results of his studies and others in the field. The information supplied to the attendees will serve as a powerful tool to the energy planners considering their electric power options in the future.
Design and operation of a solar heating and cooling system for a residential size building
NASA Technical Reports Server (NTRS)
Littles, J. W.; Humphries, W. R.; Cody, J. C.
1978-01-01
The first year of operation of solar house is discussed. Selected design information, together with a brief system description is included. The house was equipped with an integrated solar heating and cooling system which uses fully automated state-of-the art. Evaluation of the data indicate that the solar house heating and cooling system is capable of supplying nearly 100 percent of the thermal energy required for heating and approximately 50 percent of the thermal energy required to operate the absorption cycle air conditioner.
Modernised Portuguese schools - From IAQ and thermal comfort towards energy efficiency plans
NASA Astrophysics Data System (ADS)
Pereira, Luisa Maria Dias
A major rehabilitation and refurbishment programme of secondary school buildings has been carried out in the last few years in Portugal, led by the state-owned company Parque Escolar E.P.E. (PE), known as Secondary School Buildings Modernisation Programme. This programme took into consideration renewable energy systems, mostly solar panels for domestic hot water (DHW) production. Nevertheless, with the introduction of HVAC systems in buildings that were previously naturally ventilated, an increase on energy consumption has been verified. During the first occupancy phase of new and refurbished buildings, energy and indoor climate quality (ICQ) audits are important strategies to improve the buildings’ energy use. In new buildings, the most common errors are due to poor operation and management. Schools energy management programmes often result in a list of energy efficiency measures that do not necessarily reflect occupants’ conditions or satisfaction. They are more directed to management control and comparison with benchmarks of energy use/m2 or cost/student to assess energy efficiency. In all cases, monitoring and consumption patterns are mandatory. In this context, this thesis aims at developing energy efficiency plans (EEP) for modernised Portuguese school buildings. The framework of the thesis starts with the development of an international overview of the recent research and development in the field of energy consumption in schools [searching for statistical benchmarks that could contribute to an accurate school building indicator (SBI)]. Then, based on a database provided by Parque Escolar, an energy consumption assessment of Portuguese school buildings is presented, between the pre and post intervention phases. Drawing on this procedure, eight representative modernised secondary schools were selected, geographically and climatically distributed. After, an energy audit and indoor environment quality (IEQ) monitoring is performed in this schools selection. The continuous monitoring period varied between schools, from a minimum of 48h monitoring up to three weeks, during the mid-season [spring - autumn period (excluding summer vacation) in 2013]. Air exchange rates (AER), more specifically infiltration rates, are quantified aiming at determining the current airtightness condition of the refurbished schools. A subjective IEQ assessment is also performed, focusing on occupants’ feedback, providing insight on the potential linkages between energy use and occupants’ satisfaction and comfort. The thesis builds on the current EEP panorama and practice, which is based only on cost/energy control, extending it to address the equilibrium between IEQ evaluation and occupants’ perceived conditions/preferences. This approach is applied in two schools - selected based on the previous study on energy and IEQ conditions of the eight schools. The EEP methodology starts by deepening the knowledge of each school, mostly focusing on crossing the schools occupancy schedule with systems operation [(mainly those controlled by the building management system (BMS)]. An analysis on recently updated legislation is also performed (in particular fresh air flow rates requirements). It is shown that some potential energy savings can be achieved and that IEQ conditions can be improved at very low or even negligible costs. Other considerations, namely addressing the thermal energy production systems of the schools (e.g., boilers scheduling), the lighting systems (e.g., lighting circuits) and non-controlled plug loads, are also mentioned. Based upon all these findings, a handbook of good practice is drafted for secondary school buildings in Portugal. This EEP is accompanied by a list of Energy Efficiency Measures (EEM). It is proposed that this document is headed by a School - Energy Performance Certificate (S-EPC) based on the billed energy consumption. This document suggests the establishment of the figure of the Energy Manager.
Beam diagnostics in the CIRFEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnaswamy, J.; Lehrman, I.S.; Hartley, R.
1995-12-31
The CIRFEL system has been operating with electron energies in the range of 11 to 12 MeV and RF pulse length of 3 to 4 {mu}secs. The electrons produced by a Magnesium photocathode illuminated by a 261nm mode locked laser are accelerated in the RF gun, and further boosted in energy by a booster section downstream of the RIF gun. The electrons are energy selected in the bending section before insertion into a permanent magnet wiggler. We describe several recent diagnostic measurements carried out on the CIRFEL system: emittance measurements in two different sections of the beam line, energy andmore » energy spread measurements, and jitter characteristics of the photo cathode drive laser as well as the electron beam energy.« less
Biernacka, Joanna; Betlejewska-Kielak, Katarzyna; Kłosińska-Szmurło, Ewa; Pluciński, Franciszek A; Mazurek, Aleksander P
2013-01-01
The physicochemical properties relevant to biological activity of selected bisphosphonates such as clodronate disodium salt, etidronate disodium salt, pamidronate disodium salt, alendronate sodium salt, ibandronate sodium salt, risedronate sodium salt and zoledronate disodium salt were determined using in silico methods. The main aim of our research was to investigate and propose molecular determinants thataffect bioavailability of above mentioned compounds. These determinants are: stabilization energy (deltaE), free energy of solvation (deltaG(solv)), electrostatic potential, dipole moment, as well as partition and distribution coefficients estimated by the log P and log D values. Presented values indicate that selected bisphosphonates a recharacterized by high solubility and low permeability. The calculated parameters describing both solubility and permeability through biological membranes seem to be a good bioavailability indicators of bisphosphonates examined and can be a useful tool to include into Biopharmaceutical Classification System (BCS) development.
A combination of selected mapping and clipping to increase energy efficiency of OFDM systems
Lee, Byung Moo; Rim, You Seung
2017-01-01
We propose an energy efficient combination design for OFDM systems based on selected mapping (SLM) and clipping peak-to-average power ratio (PAPR) reduction techniques, and show the related energy efficiency (EE) performance analysis. The combination of two different PAPR reduction techniques can provide a significant benefit in increasing EE, because it can take advantages of both techniques. For the combination, we choose the clipping and SLM techniques, since the former technique is quite simple and effective, and the latter technique does not cause any signal distortion. We provide the structure and the systematic operating method, and show the various analyzes to derive the EE gain based on the combined technique. Our analysis show that the combined technique increases the EE by 69% compared to no PAPR reduction, and by 19.34% compared to only using SLM technique. PMID:29023591
Cornejo, Pablo K; Zhang, Qiong; Mihelcic, James R
2016-07-05
Energy and resource consumptions required to treat and transport wastewater have led to efforts to improve the environmental sustainability of wastewater treatment plants (WWTPs). Resource recovery can reduce the environmental impact of these systems; however, limited research has considered how the scale of implementation impacts the sustainability of WWTPs integrated with resource recovery. Accordingly, this research uses life cycle assessment (LCA) to evaluate how the scale of implementation impacts the environmental sustainability of wastewater treatment integrated with water reuse, energy recovery, and nutrient recycling. Three systems were selected: a septic tank with aerobic treatment at the household scale, an advanced water reclamation facility at the community scale, and an advanced water reclamation facility at the city scale. Three sustainability indicators were considered: embodied energy, carbon footprint, and eutrophication potential. This study determined that as with economies of scale, there are benefits to centralization of WWTPs with resource recovery in terms of embodied energy and carbon footprint; however, the community scale was shown to have the lowest eutrophication potential. Additionally, technology selection, nutrient control practices, system layout, and topographical conditions may have a larger impact on environmental sustainability than the implementation scale in some cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, K.M.
1981-01-01
The Loyola University site is a student dormitory in New Orleans, Louisiana whose active solar energy system is designed to supply 52% of the hot water demand. The system is equipped with 4590 square feet of flat-plate collectors, a 5000-gallon water tank, auxiliary water supplied at high temperature and pressure from a central heating plant with a gas-fired boiler, and a differential controller that selects from 5 operating modes. System performance data are given, including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and system coefficient of performance. The solar fraction is well below the designmore » goal; this is attributed to great fluctuations in demand. Insolation, temperature, operation and solar energy utilization data are also presented. The performance of the collector, storage, and domestic hot water subsystems, the system operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, sensor technology, and typical monthly data. (LEW)« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... system or tract, or may present a conflict that we will have to resolve in the process of bidding system... bidding systems and bidding system components? 260.130 Section 260.130 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OUTER CONTINENTAL...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimura, Satoru, E-mail: yosimura@ppl.eng.osaka-u.ac.jp; Sugimoto, Satoshi; Kiuchi, Masato
2016-03-14
We have proposed an experimental methodology which makes it possible to deposit silicon carbide (SiC) films on Si substrates with a low-energy mass-selected ion beam system using hexamethyldisilane (HMD) as a gas source. In this study, one of the fragment ions produced from HMD, SiCH{sub 4}{sup +}, was mass-selected. The ion energy was approximately 100 eV. Then, the SiCH{sub 4}{sup +} ions were irradiated to a Si(100) substrate. When the temperature of the Si substrate was set at 800 °C during the ion irradiation, the X-ray diffraction and Raman spectroscopy of the substrate following the completion of ion irradiation experiment demonstrated themore » occurrence of 3C-SiC deposition.« less
NASA Technical Reports Server (NTRS)
1976-01-01
Ten advanced energy conversion systems for central-station, based-load electric power generation using coal and coal-derived fuels which were studied by NASA are presented. Various contractors were selected by competitive bidding to study these systems. A comparative evaluation is provided of the contractor results on both a system-by-system and an overall basis. Ground rules specified by NASA, such as coal specifications, fuel costs, labor costs, method of cost comparison, escalation and interest during construction, fixed charges, emission standards, and environmental conditions, are presented. Each system discussion includes the potential advantages of the system, the scope of each contractor's analysis, typical schematics of systems, comparison of cost of electricity and efficiency for each contractor, identification and reconciliation of differences, identification of future improvements, and discussion of outside comments. Considerations common to all systems, such as materials and furnaces, are also discussed. Results of selected in-house analyses are presented, in addition to contractor data. The results for all systems are then compared.
[Model-based biofuels system analysis: a review].
Chang, Shiyan; Zhang, Xiliang; Zhao, Lili; Ou, Xunmin
2011-03-01
Model-based system analysis is an important tool for evaluating the potential and impacts of biofuels, and for drafting biofuels technology roadmaps and targets. The broad reach of the biofuels supply chain requires that biofuels system analyses span a range of disciplines, including agriculture/forestry, energy, economics, and the environment. Here we reviewed various models developed for or applied to modeling biofuels, and presented a critical analysis of Agriculture/Forestry System Models, Energy System Models, Integrated Assessment Models, Micro-level Cost, Energy and Emission Calculation Models, and Specific Macro-level Biofuel Models. We focused on the models' strengths, weaknesses, and applicability, facilitating the selection of a suitable type of model for specific issues. Such an analysis was a prerequisite for future biofuels system modeling, and represented a valuable resource for researchers and policy makers.
Microclimate landscape design at southern integrated terminal Bandar Tasik Selatan, Kuala Lumpur
NASA Astrophysics Data System (ADS)
Phin, L. H.; Krisantia, I.
2018-01-01
Bandar Tasik Selatan is the integrated transport terminal has high energy consuming, high carbon emission and poor linkage. However, microclimate can be reduced through landscape design. This paper is a study to achieve energy efficiency and improve microclimate in the urban area. The research area is at Southern integrated terminal Bandar Tasik Selatan Kuala Lumpur Malaysia. It is carried out through a case study and microclimate analyzed using System Modeling method. System modelling using in this research is system energy budget of the microclimate at a site is a balance between the radiant energy supplied and the energy removed by all consumers. The finding indicated the microclimatic components that can be modified through landscape design are solar radiation, wind and precipitation can create thermal comfort, energy efficiency and others benefits.Through this research, provide more green space to achieve energy efficiency and improve microclimate of the site, introducing vertical landscape and proper planting selection to improve air quality, introducing green energy as part of the source of power supply and to promote integration of terminal building and rail systems by unify them using softscape
Heating without heat: Thermodynamics of passive energy filters between finite systems
NASA Astrophysics Data System (ADS)
Muñoz-Tapia, R.; Brito, R.; Parrondo, J. M. R.
2017-09-01
Passive filters allowing the exchange of particles in a narrow band of energy are currently used in microrefrigerators and energy transducers. In this Rapid Communication, we analyze their thermal properties using linear irreversible thermodynamics and kinetic theory, and discuss a striking phenomenon: the possibility of simultaneously increasing or decreasing the temperatures of two systems without any supply of energy. This occurs when the filter induces a flow of particles whose energy is between the average energies of the two systems. Here we show that this selective transfer of particles does not need the action of any sort of Maxwell demon and can be carried out by passive filters without compromising the second law of thermodynamics. This phenomenon allows us to design cycles between two reservoirs at temperatures T1
Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs
Ruth, Mark F.; Zinaman, Owen R.; Antkowiak, Mark; ...
2013-12-20
As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Therefore, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. Our paper explores one opportunity – nuclear-renewable hybrid energy systems. These are definedmore » as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. In addition, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.« less
Connected Lighting Systems Efficiency Study$-$ PoE Cable Energy Losses, Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuenge, Jason; Kelly, Karsten; Poplawski, Michael
First report in a study of the efficiency of connected lighting systems. The report summarizes the results of an exploratory study investigating power losses in Ethernet cables used between PoE switches and luminaires in PoE connected lighting systems. Testing was conducted at the Pacific Northwest National Laboratory (PNNL) Connected Lighting Test Bed in September 2017. The results were analyzed to explore the impact of cable selection on PoE lighting system energy efficiency, as well as the effectiveness of guidelines recently introduced by the American National Standards Institute (ANSI) C137 Lighting Systems Committee.
Popa, Radu; Cimpoiasu, Vily M
2013-05-01
Properties of avenues of transformation and their mutualism with forms of organization in dynamic systems are essential for understanding the evolution of prebiotic order. We have analyzed competition between two avenues of transformation in an A↔B system, using the simulation approach called BiADA (Biotic Abstract Dual Automata). We discuss means of avoiding common pitfalls of abstract system modeling and benefits of BiADA-based simulations. We describe the effect of the availability of free energy, energy sink magnitude, and autocatalysis on the evolution of energy flux and order in the system. Results indicate that prebiotic competition between avenues of transformation was more stringent in energy-limited environments. We predict that in such conditions the efficiency of autocatalysis during competition between alternative system states will increase for systems with forms of organization having short half-lives and thus information that is time-sensitive to energy starvation. Our results also offer a potential solution to Manfred Eigen's error catastrophe dilemma. In the conditions discussed above, the exponential growth of quasi species is curbed through the removal of less competitive "genetic" variants via energy starvation. We propose that one of the most important achievements (and selective edges) of a dynamic network during competition in energy-limited or energy-variable environments was the capacity to correlate the internal energy flux and the need for free energy with the availability of free energy in the environment.
Tomczewski, Andrzej
2014-01-01
The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.
2014-01-01
The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level. PMID:25215326
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Nathan H.; Chen, Zhen; Fan, Shanhui
Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we then report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In fieldmore » tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. Furthemore, with straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat« less
Thomas, Nathan H.; Chen, Zhen; Fan, Shanhui; ...
2017-07-13
Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we then report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In fieldmore » tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. Furthemore, with straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat« less
Thomas, Nathan H; Chen, Zhen; Fan, Shanhui; Minnich, Austin J
2017-07-13
Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In field tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. With straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat.
NASA Astrophysics Data System (ADS)
Wang, Bin; Xu, Jun; Cao, Binggang; Zhou, Xuan
2015-05-01
This paper proposes a novel topology of multimode hybrid energy storage system (HESS) and its energy management strategy for electric vehicles (EVs). Compared to the conventional HESS, the proposed multimode HESS has more operating modes and thus it could in further enhance the efficiency of the system. The rule-based control strategy and the power-balancing strategy are developed for the energy management strategy to realize mode selection and power distribution. Generally, the DC-DC converter will operate at peak efficiency to convey the energy from the batteries to the UCs. Otherwise, the pure battery mode or the pure ultracapacitors (UCs) mode will be utilized without the DC-DC converter. To extend the battery life, the UCs have the highest priority to recycle the energy and the batteries are isolated from being recharged directly during regenerative braking. Simulations and experiments are established to validate the proposed multimode HESS and its energy management strategy. The results reveal that the energy losses in the DC-DC converter, the total energy consumption and the overall system efficiency of the proposed multimode HESS are improved compared to the conventional HESS.
The development of a solar residential heating and cooling system
NASA Technical Reports Server (NTRS)
1975-01-01
The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.
Adiabatic diesel engine component development: Reference engine for on-highway applications
NASA Technical Reports Server (NTRS)
Hakim, Nabil S.
1986-01-01
The main objectives were to select an advanced low heat rejection diesel reference engine (ADRE) and to carry out systems analysis and design. The ADRE concept selection consisted of: (1) rated point performance optimization; (2) study of various exhaust energy recovery scenarios; (3) components, systems and engine configuration studies; and (4) life cycle cost estimates of the ADRE economic worth. The resulting ADRE design proposed a reciprocator with many advanced features for the 1995 technology demonstration time frame. These included ceramic air gap insulated hot section structural components, high temperature tribology treatments, nonmechanical (camless) valve actuation systems, and elimination of the cylinder head gasket. ADRE system analysis and design resulted in more definition of the engine systems. These systems include: (1) electro-hydraulic valve actuation, (2) electronic common rail injection system; (3) engine electronic control; (4) power transfer for accessory drives and exhaust energy recovery systems; and (5) truck installation. Tribology and performance assessments were also carried out. Finite element and probability of survival analyses were undertaken for the ceramic low heat rejection component.
Definition study for photovoltaic residential prototype system
NASA Technical Reports Server (NTRS)
Shepard, N. F.; Landes, R.; Kornrumpf, W. P.
1976-01-01
A site evaluation was performed to assess the relative merits of different regions of the country in terms of the suitability for experimental photovoltaic powered residences. Eight sites were selected based on evaluation criteria which included population, photovoltaic systems performance and the cost of electrical energy. A parametric sensitivity analysis was performed for four selected site locations. Analytical models were developed for four different power system implementation approaches. Using the model which represents a direct (or float) charge system implementation the performance sensitivity to the following parameter variations is reported: (1) solar roof slope angle; (2) ratio of the number of series cells in the solar array to the number of series cells in the lead-acid battery; and (3) battery size. For a Cleveland site location, a system with no on site energy storage and with a maximum power tracking inverter which feeds back excess power to the utility was shown to have 19 percent greater net system output than the second place system. The experiment test plan is described. The load control and data acquisition system and the data display panel for the residence are discussed.
On energy harvesting from a vibro-impact oscillator with dielectric membranes
NASA Astrophysics Data System (ADS)
Lai, Z. H.; Thomson, G.; Yurchenko, D.; Val, D. V.; Rodgers, E.
2018-07-01
A vibro-impact mechanical system comprising of a ball moving freely between two dielectric membranes located at a certain distance from each other is studied. The system generates electricity when the ball moving due ambient vibrations impacts one of the membranes. The energy harvesting principle of the proposed system is explained and then used to formulate a numerical model for estimating the system output voltage. The dynamic behavior and output performance of the system are thoroughly studied under a harmonic excitation, as well as different initial conditions and various values of the restitution coefficient of the membranes. The delivered research results are useful for selecting the system parameters to achieve its optimal output performance in a realistic vibrational environment. Potential application of the proposed system for energy harvesting from car engine vibrations is presented.
A non-volatile flip-flop based on diode-selected PCM for ultra-low power systems
NASA Astrophysics Data System (ADS)
Ye, Yong; Du, Yuan; Gao, Dan; Kang, Yong; Song, Zhitang; Chen, Bomy
2016-10-01
As the process technology is continuously shrinking, low power consumption is a major issue in VLSI Systems-on-Chip (SoCs), especially for standby-power-critical applications. Recently, the emerging CMOS-compatible non-volatile memories (NVMs), such as Phase Change Memory (PCM), have been used as on-chip storage elements, which can obtain non-volatile processing, nearly-zero standby power and instant-on capability. PCM has been considered as the best candidate for the next generation of NVMs for its low cost, high density and high resistance transformation ratio. In this paper, for the first time, we present a diode-selected PCM based non-volatile flip-flop (NVFF) which is optimized for better power consumption and process variation tolerance. With dual trench isolation process, the diode-selected PCM realizes ultra small area, which is very suitable for multi-context configuration and large scale flip-flops matrix. Since the MOS-selected PCM is hard to shrink further due to large amount of PCM write current, the proposed NVFF achieves higher power efficiency without loss of current driving capability. Using the 40nm manufacturing process, the area of the cell (1D1R) is as small as 0.016 μm2. Simulation results show that the energy consumption during the recall operation is 62 fJ with 1.1 standard supply voltage, which is reduced by 54.9% compared to the previous 2T2R based NVFF. When the supply voltage reduces to 0.7 V, the recall energy is as low as 17 fJ. With the great advantages in cell size and energy, the proposed diode-selected NVFF is very applicable and cost-effective for ULP systems.
Strategic avionics technology definition studies. Subtask 3-1A: Electrical Actuation (ELA) systems
NASA Technical Reports Server (NTRS)
Pond, Charles L.; Mcdermott, William A.; Lum, Ben T. F.
1993-01-01
Electrical actuator (ELA) power efficiency and requirements are examined for space system application. Requirements for Space Shuttle effector systems are presented, along with preliminary ELA trades and selection to form a preliminary ELA system baseline. Power and energy requirements for this baseline ELA system are applicable to the Space Shuttle and similar space vehicles.
Dimensionality and noise in energy selective x-ray imaging
Alvarez, Robert E.
2013-01-01
Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging. Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator. Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 103. With the soft tissue component, it is 2.7 × 104. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the variance of the bone component markedly with three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to 3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with the contrast agent as the third material for two or three dimensions is also a factor of two for both components. The simulated images show that a maximum likelihood estimator can be used to process energy selective x-ray data to produce images with noise close to the CRLB. Conclusions: The method presented can be used to compute the effects of the object attenuation coefficients and the x-ray system properties on the relationship of dimensionality and noise in energy selective x-ray imaging systems. PMID:24320442
Nonmathematical concepts of selection, evolutionary energy, and levels of evolution.
Darlington, P J
1972-05-01
The place of mathematics in hypotheticodeductive processes and in biological research is discussed. (Natural) Selection is defined and described as differential elimination of performed sets at any level. Sets and acting sets are groups of units (themselves sets of smaller units) at any level that may or do interact. A pseudomathematical equation describes directional change (evolution) in sets at any level. Selection is the ram of evolution; it cannot generate, but can only direct, evolutionary energy. The energy of evolution is derived from molecular or chemical levels, is transmitted upwards through the increasingly complex sets of sets that form living systems, and is turned in directions determined by the sum of selective processes, at different levels, which may either supplement or oppose each other. All evolutionary processes conform to the pseudomathematical equation referred to above, use energy as described above, and have a P/OE (ratio of programming to open-endedness) that cannot be measured, but can be related to other P/OE values. Phylogeny and ontogeny are compared as processes af directional change with set selection. Stages in the evolution of multi-cellular individuals are suggested, and are essentially the same as stages in the evolution of some multi-individual insect societies. Thinking is considered as a part of ontogeny involving an irreversible, nonrepetitive process of set selection in the brain.
NASA Technical Reports Server (NTRS)
Lacy, Dovie E.; Coles-Hamilton, Carolyn; Juhasz, Albert
1987-01-01
Under the direction of NASA's Office of Aeronautics and Technology (OAST), the NASA Lewis Research Center has initiated an in-house thermal energy storage program to identify combinations of phase change thermal energy storage media for use with a Brayton and Stirling Advanced Solar Dynamic (ASD) space power system operating between 1070 and 1400 K. A study has been initiated to determine suitable combinations of thermal energy storage (TES) phase change materials (PCM) that result in the smallest and lightest weight ASD power system possible. To date the heats of fusion of several fluoride salt mixtures with melting points greater than 1025 K have been verified experimentally. The study has indicated that these salt systems produce large ASD systems because of their inherent low thermal conductivity and low density. It is desirable to have PCMs with high densities and high thermal conductivities. Therefore, alternate phase change materials based on metallic alloy systems are also being considered as possible TES candidates for future ASD space power systems.
Thermal Environments. Educational Facilities Review Series Number 17.
ERIC Educational Resources Information Center
Baas, Alan M.
This review surveys documents and journal articles previously announced in RIE and CIJE that deal with climate control, integrated thermal and luminous systems, total energy systems, and current trends in school air conditioning. The literature cited indicates that selection of thermal systems must take into account longterm operating costs in…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-25
... lead times. Architects, engineers and builders often select HVAC systems for such projects up to 9-12... through the Compliance, Certification Management System (``CCMS'') as part of annual certification... System (``CCMS'') as part of annual certification reporting requirements; and (ii) publish the...
Biomass energy inventory and mapping system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasile, J.D.
1993-12-31
A four-stage biomass energy inventory and mapping system was conducted for the entire State of Ohio. The product is a set of maps and an inventory of the State of Ohio. The set of amps and an inventory of the State`s energy biomass resource are to a one kilometer grid square basis on the Universal Transverse Mercator (UTM) system. Each square kilometer is identified and mapped showing total British Thermal Unit (BTU) energy availability. Land cover percentages and BTU values are provided for each of nine biomass strata types for each one kilometer grid square. LANDSAT satellite data was usedmore » as the primary stratifier. The second stage sampling was the photointerpretation of randomly selected one kilometer grid squares that exactly corresponded to the LANDSAT one kilometer grid square classification orientation. Field sampling comprised the third stage of the energy biomass inventory system and was combined with the fourth stage sample of laboratory biomass energy analysis using a Bomb calorimeter and was then used to assign BTU values to the photointerpretation and to adjust the LANDSAT classification. The sampling error for the whole system was 3.91%.« less
Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal
2014-10-16
All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m(2) mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems.
Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal
2014-01-01
All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m2 mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems. PMID:25321890
Beam energy tracking system on Optima XEx high energy ion implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Jonathan; Satoh, Shu; Wu Xiangyang
2012-11-06
The Axcelis Optima XEx high energy implanter is an RF linac-based implanter with 12 RF resonators for beam acceleration. Even though each acceleration field is an alternating, sinusoidal RF field, the well known phase-focusing principle produces a beam with a sharp quasi-monoenergetic energy spectrum. A magnetic energy filter after the linac further attenuates the low energy continuum in the energy spectrum often associated with RF acceleration. The final beam energy is a function of the phase and amplitude of the 12 resonators in the linac. When tuning a beam, the magnetic energy filter is set to the desired energy, andmore » each linac parameter is tuned to maximize the transmission through the filter. Once a beam is set up, all the parameters are stored in a recipe, which can be easily tuned and has proven to be quite repeatable. The magnetic field setting of the energy filter selects the beam energy from the RF Linac accelerator, and in-situ verification of beam energy in addition to the magnetic energy filter setting has long been desired. An independent energy tracking system was developed for this purpose, using the existing electrostatic beam scanner as a deflector to construct an in-situ electrostatic energy analyzer. This paper will describe the system and performance of the beam energy tracking system.« less
Sato, Shunsuke; Arai, Takeo; Morikawa, Takeshi; Uemura, Keiko; Suzuki, Tomiko M; Tanaka, Hiromitsu; Kajino, Tsutomu
2011-10-05
Photoelectrochemical reduction of CO(2) to HCOO(-) (formate) over p-type InP/Ru complex polymer hybrid photocatalyst was highly enhanced by introducing an anchoring complex into the polymer. By functionally combining the hybrid photocatalyst with TiO(2) for water oxidation, selective photoreduction of CO(2) to HCOO(-) was achieved in aqueous media, in which H(2)O was used as both an electron donor and a proton source. The so-called Z-scheme (or two-step photoexcitation) system operated with no external electrical bias. The selectivity for HCOO(-) production was >70%, and the conversion efficiency of solar energy to chemical energy was 0.03-0.04%.
Design and Implementation of RF Energy Harvesting System for Low-Power Electronic Devices
NASA Astrophysics Data System (ADS)
Uzun, Yunus
2016-08-01
Radio frequency (RF) energy harvester systems are a good alternative for energizing of low-power electronics devices. In this work, an RF energy harvester is presented to obtain energy from Global System for Mobile Communications (GSM) 900 MHz signals. The energy harvester, consisting of a two-stage Dickson voltage multiplier circuit and L-type impedance matching circuits, was designed, simulated, fabricated and tested experimentally in terms of its performance. Simulation and experimental works were carried out for various input power levels, load resistances and input frequencies. Both simulation and experimental works have been carried out for this frequency band. An efficiency of 45% is obtained from the system at 0 dBm input power level using the impedance matching circuit. This corresponds to the power of 450 μW and this value is sufficient for many low-power devices. The most important parameters affecting the efficiency of the RF energy harvester are the input power level, frequency band, impedance matching and voltage multiplier circuits, load resistance and the selection of diodes. RF energy harvester designs should be optimized in terms of these parameters.
Case Study for the ARRA-Funded Ground Source Heat Pump Demonstration at Ball State University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Piljae; Liu, Xiaobing; Henderson, Jr., Hugh
With funding provided by the American Recovery and Reinvestment Act (ARRA), 26 ground-source heat pump (GSHP) projects were competitively selected in 2009 to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. One of the selected demonstration projects is a district central GSHP system installed at Ball State University (BSU) in Muncie, IN. Prior to implementing the district GSHP system, 47 major buildings in BSU were served by a central steam plant with four coal-fired and three natural-gas-fired steam boilers. Cooling was provided by five water-cooled centrifugal chillers at the District Energy Station Southmore » (DESS). The new district GSHP system replaced the existing coal-fired steam boilers and conventional water-cooled chillers. It uses ground-coupled heat recovery (HR) chillers to meet the simultaneous heating and cooling demands of the campus. The actual performance of the GSHP system was analyzed based on available measured data from August 2015 through July 2016, construction drawings, maintenance records, personal communications, and construction costs. Since Phase 1 was funded in part by the ARRA grant, it is the focus of this case study. The annual energy consumption of the GSHP system was calculated based on the available measured data and other related information. It was compared with the performance of a baseline scenario— a conventional water-cooled chiller and natural-gas-fired boiler system, both of which meet the minimum energy efficiencies allowed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 90.1-2013). The comparison was made to determine source energy savings, energy cost savings, and CO2 emission reductions achieved by the GSHP system. A cost analysis was performed to evaluate the simple payback of the GSHP system. The following sections summarize the results of the analysis, the lessons learned, and recommendations for improvement in the operation of this district GSHP system.« less
Development of a component design tool for metal hydride heat pumps
NASA Astrophysics Data System (ADS)
Waters, Essene L.
Given current demands for more efficient and environmentally friendly energy sources, hydrogen based energy systems are an increasingly popular field of interest. Within the field, metal hydrides have become a prominent focus of research due to their large hydrogen storage capacity and relative system simplicity and safety. Metal hydride heat pumps constitute one such application, in which heat and hydrogen are transferred to and from metal hydrides. While a significant amount of work has been done to study such systems, the scope of materials selection has been quite limited. Typical studies compare only a few metal hydride materials and provide limited justification for the choice of those few. In this work, a metal hydride component design tool has been developed to enable the targeted down-selection of an extensive database of metal hydrides to identify the most promising materials for use in metal hydride thermal systems. The material database contains over 300 metal hydrides with various physical and thermodynamic properties included for each material. Sub-models for equilibrium pressure, thermophysical data, and default properties are used to predict the behavior of each material within the given system. For a given thermal system, this tool can be used to identify optimal materials out of over 100,000 possible hydride combinations. The selection tool described herein has been applied to a stationary combined heat and power system containing a high-temperature proton exchange membrane (PEM) fuel cell, a hot water tank, and two metal hydride beds used as a heat pump. A variety of factors can be used to select materials including efficiency, maximum and minimum system pressures, pressure difference, coefficient of performance (COP), and COP sensitivity. The targeted down-selection of metal hydrides for this system focuses on the system's COP for each potential pair. The values of COP and COP sensitivity have been used to identify pairs of highest interest for use in this application. The metal hydride component design tool developed in this work selects between metal hydride materials on an unprecedented scale. It can be easily applied to other hydrogen-based thermal systems, making it a powerful and versatile tool.
Electric vehicle system for charging and supplying electrical power
Su, Gui Jia
2010-06-08
A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.
Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C
2015-05-01
Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor.
NASA Astrophysics Data System (ADS)
López-Coto, R.; Mazin, D.; Paoletti, R.; Blanch Bigas, O.; Cortina, J.
2016-04-01
Imaging atmospheric Cherenkov telescopes (IACTs) such as the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes endeavor to reach the lowest possible energy threshold. In doing so the trigger system is a key element. Reducing the trigger threshold is hampered by the rapid increase of accidental triggers generated by ambient light (the so-called Night Sky Background NSB). In this paper we present a topological trigger, dubbed Topo-trigger, which rejects events on the basis of their relative orientation in the telescope cameras. We have simulated and tested the trigger selection algorithm in the MAGIC telescopes. The algorithm was tested using MonteCarlo simulations and shows a rejection of 85% of the accidental stereo triggers while preserving 99% of the gamma rays. A full implementation of this trigger system would achieve an increase in collection area between 10 and 20% at the energy threshold. The analysis energy threshold of the instrument is expected to decrease by ~ 8%. The selection algorithm was tested on real MAGIC data taken with the current trigger configuration and no γ-like events were found to be lost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koponen, Kati; Soimakallio, Sampo; Kline, Keith L.
In order to understand the climate effects of a bioenergy system, a comparison between the bioenergy system and a reference system is required. The reference system describes the situation that occurs in the absence of the bioenergy system with respect to the use of land, energy, and materials. The importance of reference systems is discussed in the literature but guidance on choosing suitable reference systems for assessing climate effects of bioenergy is limited. The reference system should align with the purpose of the study. Transparency of reference system assumptions is essential for proper interpretation of bioenergy assessments. This paper presentsmore » guidance for selecting suitable reference systems. Particular attention is given to choosing the land reference. If the goal is to study the climate effects of bioenergy as a part of total anthropogenic activity the reference system should illustrate what is expected in the absence of human activities. In such a case the suitable land reference is natural regeneration, and energy or material reference systems are not relevant. If the goal is to assess the effect of a change in bioenergy use, the reference system should incorporate human activities. In this case suitable reference systems describe the most likely alternative uses of the land, energy and materials in the absence of the change in bioenergy use. The definition of the reference system is furthermore subject to the temporal scope of the study. In practice, selecting and characterizing reference systems will involve various choices and uncertainties which should be considered carefully. As a result, it can be instructive to consider how alternative reference systems influence the results and conclusions drawn from bioenergy assessments.« less
NASA Astrophysics Data System (ADS)
Priarone, A.; Fossa, M.; Paietta, E.; Rolando, D.
2017-01-01
This research has been devoted to the selection of the most favourable plant solutions for ventilation, heating and cooling, thermo-hygrometric control of a greenhouse, in the framework of the energy saving and the environmental protection. The identified plant solutions include shading of glazing surfaces, natural ventilation by means of controlled opening windows, forced convection of external air and forced convection of air treated by the HVAC system for both heating and cooling. The selected solution combines HVAC system to a Ground Coupled Heat Pump (GCHP), which is an innovative renewable technology applied to greenhouse buildings. The energy demand and thermal loads of the greenhouse to fulfil the requested internal design conditions have been evaluated through an hourly numerical simulation, using the Energy Plus (E-plus) software. The overall heat balance of the greenhouse also includes the latent heat exchange due to crop evapotranspiration, accounted through an original iterative calculation procedure that combines the E-plus dynamic simulations and the FAO Penman-Monteith method. The obtained hourly thermal loads have been used to size the borehole field for the geothermal heat pump by using a dedicated GCHP hourly simulation tool.
NASA Astrophysics Data System (ADS)
Zink, Frank Edward
The detection and classification of pulmonary nodules is of great interest in chest radiography. Nodules are often indicative of primary cancer, and their detection is particularly important in asymptomatic patients. The ability to classify nodules as calcified or non-calcified is important because calcification is a positive indicator that the nodule is benign. Dual-energy methods offer the potential to improve both the detection and classification of nodules by allowing the formation of material-selective images. Tissue-selective images can improve detection by virtue of the elimination of obscuring rib structure. Bone -selective images are essentially calcium images, allowing classification of the nodule. A dual-energy technique is introduced which uses a computed radiography system to acquire dual-energy chest radiographs in a single-exposure. All aspects of the dual-energy technique are described, with particular emphasis on scatter-correction, beam-hardening correction, and noise-reduction algorithms. The adaptive noise-reduction algorithm employed improves material-selective signal-to-noise ratio by up to a factor of seven with minimal sacrifice in selectivity. A clinical comparison study is described, undertaken to compare the dual-energy technique to conventional chest radiography for the tasks of nodule detection and classification. Observer performance data were collected using the Free Response Observer Characteristic (FROC) method and the bi-normal Alternative FROC (AFROC) performance model. Results of the comparison study, analyzed using two common multiple observer statistical models, showed that the dual-energy technique was superior to conventional chest radiography for detection of nodules at a statistically significant level (p < .05). Discussion of the comparison study emphasizes the unique combination of data collection and analysis techniques employed, as well as the limitations of comparison techniques in the larger context of technology assessment.
Economic feasibility of solar thermal industrial applications and selected case studies
NASA Astrophysics Data System (ADS)
Montelione, A.; Boyd, D.; Branz, M.
1981-12-01
The economic feasibility is assessed of utilizing solar energy to augment an existing fossil fuel system to generate industrial process heat. Several case studies in the textile and food processing industries in the southern United States were analyzed. Sensitivity analyses were performed, and comparisons illustrating the effects of the Economic Recovery Tax Act of 1981 were made. The economic desirability of the proposed solar systems varied with the type of system selected, location of the facility, state tax credits, and type of fuel displaced. For those systems presently not economical, the projected time to economic feasibility was ascertained.
The Economics of Solar Heating
NASA Technical Reports Server (NTRS)
Forney, J. A.
1982-01-01
SHCOST program assesses economic feasibility of solar energy for single-family residences and light commercial applications. Program analyzes life-cycle costs as well as sensitivity studies to aid designer in selecting most economically attractive solar system for single-family residence or light commercial application. SHCOST includes fairly comprehensive list of cost elements from which user may select.
Experimental evaluation of exhaust mixers for an Energy Efficient Engine
NASA Technical Reports Server (NTRS)
Kozlowski, H.; Kraft, G.
1980-01-01
Static scale model tests were conducted to evaluate exhaust system mixers for a high bypass ratio engine as part of the NASA sponsored Energy Efficient program. Gross thrust coefficients were measured for a series of mixer configurations which included variations in the number of mixer lobes, tailpipe length, mixer penetration, and length. All of these parameters have a significant impact on exhaust system performance. In addition, flow visualization pictures and pressure/temperature traverses were obtained for selected configurations. Parametric performance trends are discussed and the results considered relative to the Energy Efficient Engine program goals.
NASA Astrophysics Data System (ADS)
Asmar, Joseph Al; Lahoud, Chawki; Brouche, Marwan
2018-05-01
Cogeneration and trigeneration systems can contribute to the reduction of primary energy consumption and greenhouse gas emissions in residential and tertiary sectors, by reducing fossil fuels demand and grid losses with respect to conventional systems. The cogeneration systems are characterized by a very high energy efficiency (80 to 90%) as well as a less polluting aspect compared to the conventional energy production. The integration of these systems into the energy network must simultaneously take into account their economic and environmental challenges. In this paper, a decision-making strategy will be introduced and is divided into two parts. The first one is a strategy based on a multi-objective optimization tool with data analysis and the second part is based on an optimization algorithm. The power dispatching of the Lebanese electricity grid is then simulated and considered as a case study in order to prove the compatibility of the cogeneration power calculated by our decision-making technique. In addition, the thermal energy produced by the cogeneration systems which capacity is selected by our technique shows compatibility with the thermal demand for district heating.
NASA Technical Reports Server (NTRS)
Bents, David J.; Lu, Cheng Y.
1989-01-01
Solar Photo Voltaic (PV) and thermal dynamic power systems for application to selected Low Earth Orbit (LEO) and High Eccentric Orbit (Energy) (HEO) missions are characterized in the regime 7 to 35 kWe. Input parameters to the characterization are varied corresponding to anticipated introduction of improved or new technologies. Comparative assessment is made between the two power system types utilizing newly emerging technologies in cells and arrays, energy storage, optical surfaces, heat engines, thermal energy storage, and thermal management. The assessment is made to common ground rules and assumptions. The four missions (space station, sun-synchronous, Van Allen belt and GEO) are representative of the anticipated range of multi-kWe earth orbit missions. System characterizations include all required subsystems, including power conditioning, cabling, structure, to deliver electrical power to the user. Performance is estimated on the basis of three different levels of component technology: (1) state-of-art, (2) near-term, and (3) advanced technologies. These range from planar array silicon/IPV nickel hydrogen batteries and Brayton systems at 1000 K to thin film GaAs with high energy density secondary batteries or regenerative fuel cells and 1300 K Stirling systems with ultra-lightweight concentrators and radiators. The system estimates include design margin for performance degradations from the known environmental mechanisms (micrometeoroids and space debris, atomic oxygen, electron and proton flux) which are modeled and applied depending on the mission. The results give expected performance, mass and drag of multi-kWe earth orbiting solar power systems and show how overall system figures of merit will improve as new component technologies are incorporated.
1982-06-01
start/stop chiller optimization , and demand limiting were added. The system monitors a 7,000 ton chiller plant and controls 74 air handlers. The EMCS does...Modify analog limits. g. Adjust setpoints of selected controllers. h. Select manual or automatic control modes. i. Enable and disable individual points...or event schedules and controller setpoints ; make nonscheduled starts and stops of equipment or disable field panels when required for routine
d'Entremont, A.; Corgnale, C.; Sulic, M.; ...
2017-08-31
Concentrating solar power plants represent low cost and efficient solutions for renewable electricity production only if adequate thermal energy storage systems are included. Metal hydride thermal energy storage systems have demonstrated the potential to achieve very high volumetric energy densities, high exergetic efficiencies, and low costs. The current work analyzes the technical feasibility and the performance of a storage system based on the high temperature Mg 2FeH 6 hydride coupled with the low temperature Na 3AlH 6 hydride. To accomplish this, a detailed transport model has been set up and the coupled metal hydride system has been simulated based onmore » a laboratory scale experimental configuration. Proper kinetics expressions have been developed and included in the model to replicate the absorption and desorption process in the high temperature and low temperature hydride materials. The system showed adequate hydrogen transfer between the two metal hydrides, with almost complete charging and discharging, during both thermal energy storage and thermal energy release. The system operating temperatures varied from 450°C to 500°C, with hydrogen pressures between 30 bar and 70 bar. This makes the thermal energy storage system a suitable candidate for pairing with a solar driven steam power plant. The model results, obtained for the selected experimental configuration, showed an actual thermal energy storage system volumetric energy density of about 132 kWh/m 3, which is more than 5 times the U.S. Department of Energy SunShot target (25 kWh/m 3).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
d'Entremont, A.; Corgnale, C.; Sulic, M.
Concentrating solar power plants represent low cost and efficient solutions for renewable electricity production only if adequate thermal energy storage systems are included. Metal hydride thermal energy storage systems have demonstrated the potential to achieve very high volumetric energy densities, high exergetic efficiencies, and low costs. The current work analyzes the technical feasibility and the performance of a storage system based on the high temperature Mg 2FeH 6 hydride coupled with the low temperature Na 3AlH 6 hydride. To accomplish this, a detailed transport model has been set up and the coupled metal hydride system has been simulated based onmore » a laboratory scale experimental configuration. Proper kinetics expressions have been developed and included in the model to replicate the absorption and desorption process in the high temperature and low temperature hydride materials. The system showed adequate hydrogen transfer between the two metal hydrides, with almost complete charging and discharging, during both thermal energy storage and thermal energy release. The system operating temperatures varied from 450°C to 500°C, with hydrogen pressures between 30 bar and 70 bar. This makes the thermal energy storage system a suitable candidate for pairing with a solar driven steam power plant. The model results, obtained for the selected experimental configuration, showed an actual thermal energy storage system volumetric energy density of about 132 kWh/m 3, which is more than 5 times the U.S. Department of Energy SunShot target (25 kWh/m 3).« less
Girard, B; Tabareau, N; Pham, Q C; Berthoz, A; Slotine, J-J
2008-05-01
Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.
Projection of distributed-collector solar-thermal electric power plant economics to years 1990-2000
NASA Technical Reports Server (NTRS)
Fujita, T.; Elgabalawi, N.; Herrera, G.; Turner, R. H.
1977-01-01
A preliminary comparative evaluation of distributed-collector solar thermal power plants was undertaken by projecting power plant economics of selected systems to the 1990 to 2000 time frame. The selected systems include: (1) fixed orientation collectors with concentrating reflectors and vacuum tube absorbers, (2) one axis tracking linear concentrator including parabolic trough and variable slat designs, and (3) two axis tracking parabolic dish systems including concepts with small heat engine-electric generator assemblies at each focal point as well as approaches having steam generators at the focal point with pipeline collection to a central power conversion unit. Comparisons are presented primarily in terms of energy cost and capital cost over a wide range of operating load factors. Sensitvity of energy costs for a range of efficiency and cost of major subsystems/components is presented to delineate critical technological development needs.
Hoffmann, Martin W G; Mayrhofer, Leonhard; Casals, Olga; Caccamo, Lorenzo; Hernandez-Ramirez, Francisco; Lilienkamp, Gerhard; Daum, Winfried; Moseler, Michael; Waag, Andreas; Shen, Hao; Prades, J Daniel
2014-12-17
Selectivity and low power consumption are major challenges in the development of sophisticated gas sensor devices. A sensor system is presented that unifies selective sensor-gas interactions and energy-harvesting properties, using defined organic-inorganic hybrid materials. Simulations of chemical-binding interactions and the consequent electronic surface modulation give more insight into the complex sensing mechanism of selective gas detection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design, economic and system considerations of large wind-driven generators
NASA Technical Reports Server (NTRS)
Jorgensen, G. E.; Lotker, M.; Meier, R. C.; Brierley, D.
1976-01-01
The increased search for alternative energy sources has lead to renewed interest and studies of large wind-driven generators. This paper presents the results and considerations of such an investigation. The paper emphasizes the concept selection of wind-driven generators, system optimization, control system design, safety aspects, economic viability on electric utility systems and potential electric system interfacing problems.
High quality proton beams from hybrid integrated laser-driven ion acceleration systems
NASA Astrophysics Data System (ADS)
Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.
2014-03-01
We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15 M €. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.
Variations in laser energy outputs over a series of simulated treatments.
Lister, T S; Brewin, M P
2014-10-01
Test patches are routinely employed to determine the likely efficacy and the risk of adverse effects from cutaneous laser treatments. However, the degree to which these represent a full treatment has not been investigated in detail. This study aimed to determine the variability in pulse-to-pulse output energy from a representative selection of cutaneous laser systems in order to assess the value of laser test patches. The output energies of each pulse from seven cutaneous laser systems were measured using a pyroelectric measurement head over a 2-h period, employing a regime of 10-min simulated treatments followed by a 5-min rest period (between patients). Each laser system appeared to demonstrate a different pattern of variation in output energy per pulse over the period measured. The output energies from a range of cutaneous laser systems have been shown to vary considerably between a representative test patch and a full treatment, and over the course of an entire simulated clinic list. © 2014 British Association of Dermatologists.
Energy and time determine scaling in biological and computer designs.
Moses, Melanie; Bezerra, George; Edwards, Benjamin; Brown, James; Forrest, Stephanie
2016-08-19
Metabolic rate in animals and power consumption in computers are analogous quantities that scale similarly with size. We analyse vascular systems of mammals and on-chip networks of microprocessors, where natural selection and human engineering, respectively, have produced systems that minimize both energy dissipation and delivery times. Using a simple network model that simultaneously minimizes energy and time, our analysis explains empirically observed trends in the scaling of metabolic rate in mammals and power consumption and performance in microprocessors across several orders of magnitude in size. Just as the evolutionary transitions from unicellular to multicellular animals in biology are associated with shifts in metabolic scaling, our model suggests that the scaling of power and performance will change as computer designs transition to decentralized multi-core and distributed cyber-physical systems. More generally, a single energy-time minimization principle may govern the design of many complex systems that process energy, materials and information.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Author(s).
A GIS Based 3D Online Decision Assistance System for Underground Energy Storage in Northern Germany
NASA Astrophysics Data System (ADS)
Nolde, M.; Schwanebeck, M.; Biniyaz, E.; Duttmann, R.
2014-12-01
We would like to present a GIS-based 3D online decision assistance system for underground energy storage. Its aim is to support the local land use planning authorities through pre-selection of possible sites for thermal, electrical and substantial underground energy storages. Since the extension of renewable energies has become legal requirement in Germany, the underground storing of superfluously produced green energy (such as during a heavy wind event) in the form of compressed air, gas or heated water has become increasingly important. However, the selection of suitable sites is a complex task. The assistance system uses data of geological features such as rock layers, salt caverns and faults enriched with attribute data such as rock porosity and permeability. This information is combined with surface data of the existing energy infrastructure, such as locations of wind and biogas stations, power line arrangement and cable capacity, and energy distribution stations. Furthermore, legal obligations such as protected areas on the surface and current underground mining permissions are used for the decision finding process. Not only the current situation but also prospective scenarios, such as expected growth in produced amount of energy are incorporated in the system. The decision process is carried out via the 'Analytic Hierarchy Process' (AHP) methodology of the 'Multi Object Decision Making' (MODM) approach. While the process itself is completely automated, the user has full control of the weighting of the different factors via the web interface. The system is implemented as an online 3D server GIS environment, with no software needed to be installed on the user side. The results are visualized as interactive 3d graphics. The implementation of the assistance system is based exclusively on free and open source software, and utilizes the 'Python' programming language in combination with current web technologies, such as 'HTML5', 'CSS3' and 'JavaScript'. It is developed at Kiel University for the federal state of Schleswig-Holstein in northern Germany. This work is part of project 'ANGUS+', lead by Prof. Dr. Sebastian Bauer and funded by the German Ministry for Education and Research (BMBF).
NASA Technical Reports Server (NTRS)
1980-01-01
The long term economic performance of the solar energy system at its installation site is analyzed and four additional locations selected to demonstrate the viability of the design over a broad range of environmental and economic conditions. The economic analysis of the solar energy systems that were installed at Tempe, Arizona and San Diego, California, is developed for these and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f Chart design procedure with inputs based on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over a projected twenty year life: life cycle savings; year of positive savings; and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainites in constituent system and economic variables is also investigated. The results demonstrate that the solar energy system is economically viable at all of the sites for which the analysis was conducted.
Method Of Signal Amplification In Multi-Chromophore Luminescence Sensors
Levitsky, Igor A.; Krivoshlykov, Sergei G.
2004-02-03
A fluorescence-based method for highly sensitive and selective detection of analyte molecules is proposed. The method employs the energy transfer between two or more fluorescent chromophores in a carefully selected polymer matrix. In one preferred embodiment, signal amplification has been achieved in the fluorescent sensing of dimethyl methylphosphonate (DMMP) using two dyes, 3-aminofluoranthene (AM) and Nile Red (NR), in a hydrogen bond acidic polymer matrix. The selected polymer matrix quenches the fluorescence of both dyes and shifts dye emission and absorption spectra relative to more inert matrices. Upon DMMP sorption, the AM fluorescence shifts to the red at the same time the NR absorption shifts to the blue, resulting in better band overlap and increased energy transfer between chromophores. In another preferred embodiment, the sensitive material is incorporated into an optical fiber system enabling efficient excitation of the dye and collecting the fluorescent signal form the sensitive material on the remote end of the system. The proposed method can be applied to multichromophore luminescence sensor systems incorporating N-chromophores leading to N-fold signal amplification and improved selectivity. The method can be used in all applications where highly sensitive detection of basic gases, such as dimethyl methylphosphonate (DMMP), Sarin, Soman and other chemical warfare agents having basic properties, is required, including environmental monitoring, chemical industry and medicine.
Abudurexiti, Abulajiang; Kameda, Masashi; Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2010-07-01
An energy-discrimination K-edge X-ray computed tomography (CT) system is useful for increasing the contrast resolution of a target region by utilizing contrast media. The CT system has a cadmium telluride (CdTe) detector, and a projection curve is obtained by linear scanning with use of the CdTe detector in conjunction with an X-stage. An object is rotated by a rotation step angle with use of a turntable between the linear scans. Thus, CT is carried out by repetition of the linear scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced with use of charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. For performing energy discrimination, a low-dose-rate X-ray generator for photon counting was developed; the maximum tube voltage and the minimum tube current were 110 kV and 1.0 microA, respectively. In energy-discrimination CT, the tube voltage and the current were 60 kV and 20.0 microA, respectively, and the X-ray intensity was 0.735 microGy/s at 1.0 m from the source and with a tube voltage of 60 kV. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selection of photons with energies just beyond the iodine K-edge energy of 33.2 keV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpkins, Travis; Cutler, Dylan; Hirsch, Brian
There are thousands of isolated, diesel-powered microgrids that deliver energy to remote communities around the world at very high energy costs. The Remote Communities Renewable Energy program aims to help these communities reduce their fuel consumption and lower their energy costs through the use of high penetration renewable energy. As part of this program, the REopt modeling platform for energy system integration and optimization was used to analyze cost-optimal pathways toward achieving a combined 75% reduction in diesel fuel and fuel oil consumption in a select Alaskan village. In addition to the existing diesel generator and fuel oil heating technologies,more » the model was able to select from among wind, battery storage, and dispatchable electric heaters to meet the electrical and thermal loads. The model results indicate that while 75% fuel reduction appears to be technically feasible it may not be economically viable at this time. When the fuel reduction target was relaxed, the results indicate that by installing high-penetration renewable energy, the community could lower their energy costs by 21% while still reducing their fuel consumption by 54%.« less
Electronic energy density in chemical reaction systems
NASA Astrophysics Data System (ADS)
Tachibana, Akitomo
2001-08-01
The energy of chemical reaction is visualized in real space using the electronic energy density nE(r⃗) associated with the electron density n(r⃗). The electronic energy density nE(r⃗) is decomposed into the kinetic energy density nT(r⃗), the external potential energy density nV(r⃗), and the interelectron potential energy density nW(r⃗). Using the electronic energy density nE(r⃗) we can pick up any point in a chemical reaction system and find how the electronic energy E is assigned to the selected point. We can then integrate the electronic energy density nE(r⃗) in any region R surrounding the point and find out the regional electronic energy ER to the global E. The kinetic energy density nT(r⃗) is used to identify the intrinsic shape of the reactants, the electronic transition state, and the reaction products along the course of the chemical reaction coordinate. The intrinsic shape is identified with the electronic interface S that discriminates the region RD of the electronic drop from the region RA of the electronic atmosphere in the density distribution of the electron gas. If the R spans the whole space, then the integral gives the total E. The regional electronic energy ER in thermodynamic ensemble is realized in electrochemistry as the intrinsic Volta electric potential φR and the intrinsic Herring-Nichols work function ΦR. We have picked up first a hydrogen-like atom for which we have analytical exact expressions of the relativistic kinetic energy density nTM(r⃗) and its nonrelativistic version nT(r⃗). These expressions are valid for any excited bound states as well as the ground state. Second, we have selected the following five reaction systems and show the figures of the nT(r⃗) as well as the other energy densities along the intrinsic reaction coordinates: a protonation reaction to He, addition reactions of HF to C2H4 and C2H2, hydrogen abstraction reactions of NH3+ from HF and NH3. Valence electrons possess their unique delocalized drop region remote from those heavily localized drop regions adhered to core electrons. The kinetic energy density nT(r⃗) and the tension density τ⃗S(r⃗) can vividly demonstrate the formation of the chemical bond. Various basic chemical concepts in these chemical reaction systems have been clearly visualized in real three-dimensional space.
Optimizing Cellular Networks Enabled with Renewal Energy via Strategic Learning.
Sohn, Insoo; Liu, Huaping; Ansari, Nirwan
2015-01-01
An important issue in the cellular industry is the rising energy cost and carbon footprint due to the rapid expansion of the cellular infrastructure. Greening cellular networks has thus attracted attention. Among the promising green cellular network techniques, the renewable energy-powered cellular network has drawn increasing attention as a critical element towards reducing carbon emissions due to massive energy consumption in the base stations deployed in cellular networks. Game theory is a branch of mathematics that is used to evaluate and optimize systems with multiple players with conflicting objectives and has been successfully used to solve various problems in cellular networks. In this paper, we model the green energy utilization and power consumption optimization problem of a green cellular network as a pilot power selection strategic game and propose a novel distributed algorithm based on a strategic learning method. The simulation results indicate that the proposed algorithm achieves correlated equilibrium of the pilot power selection game, resulting in optimum green energy utilization and power consumption reduction.
Energy Storage Criteria Handbook.
1982-10-01
Phase Change Material Heating System .......................... 311 14.3.1 Analysis of Storage Purpose ........................... 312 14.3.2 Choosing...329 Worksheet I: Cost Analysis of PCM System ...................... 330 14.4 Water Tank Cold Storage...Selecting Components ........................333 14.5.6 Economic Analysis .......................................334 Worksheet A: Cooling Load and Tank
NASA Astrophysics Data System (ADS)
Shen, Lin; Xie, Liangxu; Yang, Mingjun
2017-04-01
Conformational sampling under rugged energy landscape is always a challenge in computer simulations. The recently developed integrated tempering sampling, together with its selective variant (SITS), emerges to be a powerful tool in exploring the free energy landscape or functional motions of various systems. The estimation of weighting factors constitutes a critical step in these methods and requires accurate calculation of partition function ratio between different thermodynamic states. In this work, we propose a new adaptive update algorithm to compute the weighting factors based on the weighted histogram analysis method (WHAM). The adaptive-WHAM algorithm with SITS is then applied to study the thermodynamic properties of several representative peptide systems solvated in an explicit water box. The performance of the new algorithm is validated in simulations of these solvated peptide systems. We anticipate more applications of this coupled optimisation and production algorithm to other complicated systems such as the biochemical reactions in solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Shuai; Yu, Lifeng; Wang, Jia
Purpose: Our purpose was to reduce image noise in spectral CT by exploiting data redundancies in the energy domain to allow flexible selection of the number, width, and location of the energy bins. Methods: Using a variety of spectral CT imaging methods, conventional filtered backprojection (FBP) reconstructions were performed and resulting images were compared to those processed using a Local HighlY constrained backPRojection Reconstruction (HYPR-LR) algorithm. The mean and standard deviation of CT numbers were measured within regions of interest (ROIs), and results were compared between FBP and HYPR-LR. For these comparisons, the following spectral CT imaging methods were used:(i)more » numerical simulations based on a photon-counting, detector-based CT system, (ii) a photon-counting, detector-based micro CT system using rubidium and potassium chloride solutions, (iii) a commercial CT system equipped with integrating detectors utilizing tube potentials of 80, 100, 120, and 140 kV, and (iv) a clinical dual-energy CT examination. The effects of tube energy and energy bin width were evaluated appropriate to each CT system. Results: The mean CT number in each ROI was unchanged between FBP and HYPR-LR images for each of the spectral CT imaging scenarios, irrespective of bin width or tube potential. However, image noise, as represented by the standard deviation of CT numbers in each ROI, was reduced by 36%-76%. In all scenarios, image noise after HYPR-LR algorithm was similar to that of composite images, which used all available photons. No difference in spatial resolution was observed between HYPR-LR processing and FBP. Dual energy patient data processed using HYPR-LR demonstrated reduced noise in the individual, low- and high-energy images, as well as in the material-specific basis images. Conclusions: Noise reduction can be accomplished for spectral CT by exploiting data redundancies in the energy domain. HYPR-LR is a robust method for reducing image noise in a variety of spectral CT imaging systems without losing spatial resolution or CT number accuracy. This method improves the flexibility to select energy bins in the manner that optimizes material identification and separation without paying the penalty of increased image noise or its corollary, increased patient dose.« less
Contract Service for School Maintenance
ERIC Educational Resources Information Center
Modern Schools, 1976
1976-01-01
Preventive maintenance can extend useful equipment life in a school building and keep systems running more efficiently. Points to consider before selecting a comprehensive energy management package are listed. (Author/MLF)
Regenerative fuel cell systems for mid- to high-orbit satellites
NASA Technical Reports Server (NTRS)
Taenaka, R. K.; Adler, E.; Stofel, E. J.; Clark, K. B.
1987-01-01
An assessment of the present and projected capabilities of selected hydrogen-oxygen and hydrogen-halogen fuel cell and electrolyzer combinations for energy storage systems (ESS) in configurations useful for spacecraft missions operating in the 10- to 50-kW range for many years in midaltitude to geosynchronous orbits has recently been completed. Results of the study indicate that regenerative fuel cell ESS are feasible for the intended application. A computer model was used to provide tradeoff analyses for optimizing the various ESS fuel cell concepts. When appropriately configured to be compatible with the mission needs of the selected model spacecraft, the specific energy for these ESS are intermediate between that presently available for nickel-hydrogen batteries and that expected for the newly emerging sodium-sulfur technology.
Experimental measurement of binding energy, selectivity, and allostery using fluctuation theorems.
Camunas-Soler, Joan; Alemany, Anna; Ritort, Felix
2017-01-27
Thermodynamic bulk measurements of binding reactions rely on the validity of the law of mass action and the assumption of a dilute solution. Yet, important biological systems such as allosteric ligand-receptor binding, macromolecular crowding, or misfolded molecules may not follow these assumptions and may require a particular reaction model. Here we introduce a fluctuation theorem for ligand binding and an experimental approach using single-molecule force spectroscopy to determine binding energies, selectivity, and allostery of nucleic acids and peptides in a model-independent fashion. A similar approach could be used for proteins. This work extends the use of fluctuation theorems beyond unimolecular folding reactions, bridging the thermodynamics of small systems and the basic laws of chemical equilibrium. Copyright © 2017, American Association for the Advancement of Science.
Analysis of Energy Storage System with Distributed Hydrogen Production and Gas Turbine
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Bartela, Łukasz; Dubiel-Jurgaś, Klaudia
2017-12-01
Paper presents the concept of energy storage system based on power-to-gas-to-power (P2G2P) technology. The system consists of a gas turbine co-firing hydrogen, which is supplied from a distributed electrolysis installations, powered by the wind farms located a short distance from the potential construction site of the gas turbine. In the paper the location of this type of investment was selected. As part of the analyses, the area of wind farms covered by the storage system and the share of the electricity production which is subjected storage has been changed. The dependence of the changed quantities on the potential of the hydrogen production and the operating time of the gas turbine was analyzed. Additionally, preliminary economic analyses of the proposed energy storage system were carried out.
Transmission calculation and intensity suppression for a proton therapy system
NASA Astrophysics Data System (ADS)
Chen, Wei; Yang, Jun; Qin, Bin; Liang, ZhiKai; Chen, Qushan; Liu, Kaifeng; Li, Dong; Fan, Mingwu
2018-02-01
A proton therapy project HUST-PTF (HUST Proton Therapy Facility) based on a 250 MeV isochronous superconducting cyclotron is under development in Huazhong University of Science and Technology (HUST). In this paper we report the main design features of the beam line in HUST-PTF project. The energy selection system (ESS) for energy modulation is discussed in detail, including the collimators, momentum slit and transmission calculation. Due to significant difference among the transmissions of ESS for different energies, the intensity suppression scheme by defocusing beam at high energies on collimators in the beam line is proposed and discussed. Finally, the ratios of beam intensities between low and high energies are expected to be controlled within 10 to meet the clinical requirement, and the beam optics of each energy step after intensity suppression is studied respectively.
Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.
1989-01-01
A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.
Gruen, D.M.; Young, C.E.; Pellin, M.J.
1989-08-08
A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.
Li, Xiaofang; Xu, Lizhong; Wang, Huibin; Song, Jie; Yang, Simon X.
2010-01-01
The traditional Low Energy Adaptive Cluster Hierarchy (LEACH) routing protocol is a clustering-based protocol. The uneven selection of cluster heads results in premature death of cluster heads and premature blind nodes inside the clusters, thus reducing the overall lifetime of the network. With a full consideration of information on energy and distance distribution of neighboring nodes inside the clusters, this paper proposes a new routing algorithm based on differential evolution (DE) to improve the LEACH routing protocol. To meet the requirements of monitoring applications in outdoor environments such as the meteorological, hydrological and wetland ecological environments, the proposed algorithm uses the simple and fast search features of DE to optimize the multi-objective selection of cluster heads and prevent blind nodes for improved energy efficiency and system stability. Simulation results show that the proposed new LEACH routing algorithm has better performance, effectively extends the working lifetime of the system, and improves the quality of the wireless sensor networks. PMID:22219670
Thermal control system and method for a passive solar storage wall
Ortega, Joseph K. E.
1984-01-01
The invention provides a system and method for controlling the storing and elease of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation of solar radiation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.
Summary of NASA-Lewis Research Center solar heating and cooling and wind energy programs
NASA Technical Reports Server (NTRS)
Vernon, R. W.
1975-01-01
NASA is planning to construct and operate a solar heating and cooling system in conjunction with a new office building being constructed at Langley Research Center. The technology support for this project will be provided by a solar energy program underway at NASA's Lewis Research Center. The solar program at Lewis includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. NASA-Lewis has been assisting the National Science Foundation and now the Energy Research and Development Administration in planning and executing a national wind energy program. The areas of the wind energy program that are being conducted by Lewis include: design and operation of a 100 kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.
Morphology and Orientation Selection of Non-metallic Inclusions in Electrified Molten Metal
NASA Astrophysics Data System (ADS)
Zhao, Z. C.; Qin, R. S.
2017-10-01
The effect of electric current on morphology and orientation selection of non-metallic inclusions in molten metal has been investigated using theoretical modeling and numerical calculation. Two geometric factors, namely the circularity ( fc ) and alignment ratio ( fe ) were introduced to describe the inclusions shape and configuration. Electric current free energy was calculated and the values were used to determine the thermodynamic preference between different microstructures. Electric current promotes the development of inclusion along the current direction by either expatiating directional growth or enhancing directional agglomeration. Reconfiguration of the inclusions to reduce the system electric resistance drives the phenomena. The morphology and orientation selection follow the routine to reduce electric free energy. The numerical results are in agreement with our experimental observations.
Variable power distribution for zoned regeneration of an electrically heated particulate filter
Bhatia, Garima [Bangalore, IN; Gonze, Eugene V [Pinckney, MI
2012-04-03
A system includes a particulate matter (PM) filter with multiple zones, an electric heater and a control module. The electrical heater includes heater segments, which each correspond with a respective one of the zones. The electrical heater is arranged upstream from and is proximate with the PM filter. The control module selectively applies a first energy level to a first one of the zones via a first one of the heater segments to initiate regeneration in the first zone. The control module also selectively applies a second energy level that is less than the first energy level to a second one of the zones via a second one of the heater segments to initiate regeneration in the second zone.
Dual energy scanning beam laminographic x-radiography
Majewski, Stanislaw; Wojcik, Randolph F.
1998-01-01
A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible.
Dual energy scanning beam laminographic x-radiography
Majewski, S.; Wojcik, R.F.
1998-04-21
A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dafler, J.R.; Sinnott, J.; Novil, M.
The first phase of a study to identify candidate processes and products suitable for future exploitation using high-temperature solar energy is presented. This phase has been principally analytical, consisting of techno-economic studies, thermodynamic assessments of chemical reactions and processes, and the determination of market potentials for major chemical commodities that use significant amounts of fossil resources today. The objective was to identify energy-intensive processes that would be suitable for the production of chemicals and fuels using solar energy process heat. Of particular importance was the comparison of relative costs and energy requirements for the selected solar product versus costs formore » the product derived from conventional processing. The assessment methodology used a systems analytical approach to identify processes and products having the greatest potential for solar energy-thermal processing. This approach was used to establish the basis for work to be carried out in subsequent phases of development. It has been the intent of the program to divide the analysis and process identification into the following three distinct areas: (1) process selection, (2) process evaluation, and (3) ranking of processes. Four conventional processes were selected for assessment namely, methanol synthesis, styrene monomer production, vinyl chloride monomer production, and terephthalic acid production.« less
Harvesting systems for multiple products an update for the United States
Bryce J. Stokes
1998-01-01
As expected, currently and for years to come, the demand for energy will increase, especially for transportation. Other increases will be for natural gas for residential and industriai use, and for renewables as a response to environmental awareness. However, for the short term, economics dictate energy source selection and use; bioenergy has not been competitive....
Solar energy water desalination in the United States and Saudi Arabia
NASA Technical Reports Server (NTRS)
Luft, W.; William, J.
1981-01-01
Five solar energy water desalination systems were designed to deliver 6000 cubic m/day of desalted water from either seawater or brackish water. Two systems will be selected for pilot plant construction. The pilot plants will have capacities in the range of 100 to 400 m/day. Goals of the Project Agreement for Cooperation in the Field of Solar Energy, under the auspices of the United States-Saudi Arabian Joint Commission on Economic Cooperation, are to: (1) cooperate in the field of solar energy technology for the mutual benefit of the two countries, including the development and stimulation of solar industries within the two countries; (2) advance the development of solar energy technology in the two countries; and (3) facilitate the transfer between the two countries of technology developed under this agreement.
Overview of building energy use and report of analyses - 1985: buildings and community systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnader, M.; Lamontagne, J.
1985-10-01
The US Department of Energy (DOE) Office of Buildings and Community Systems (BCS) encourages increased efficiency of energy use in the buildings sector through the conduct of a comprehensive research program, the transfer of research results to industry, and the implementation of DOE's statutory responsibilities in the buildings area. This report summarizes the results of data development and analytical activities undertaken on behalf of BCS during 1985. It provides historical data on energy consumption patterns, prices, and building characteristics used in BCS's planning processes, documents BCS's detailed projections of energy use by end use and building type (the Disaggregate Projection),more » and compares this forecast to other forecasts. Summaries of selected recent BCS analyses are also provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-12-01
The feasibility of utilizing geothermal energy at a selected plant in New York State was studied. Existing oil and gas records suggests that geothermal fluid is available in the target area and based on this potential. Friendship Dairies, Inc., Friendship, NY, was selected as a potential user of geothermal energy. Currently natural gas and electricity are used as its primary energy sources. Six geothermal system configurations were analyzed based on replacement of gas or oil-fired systems for producing process heat. Each system was evaluated in terms of Internal Rate of Return on Investment (IRR), and simple payback. Six system configurationsmore » and two replaced fuels, representative of a range of situations found in the state, are analyzed. Based on the potential geothermal reserves at Friendship, each of the six system configurations are shown to be economically viable, compared to continued gas or oil-firing. The Computed IRR's are all far in excess of projected average interest rates for long term borrowings: approximately 15% for guarantee backed loans or as high as 20% for conventional financing. IRR is computed based on the total investment (equity plus debt) and cash flows before financing costs, i.e., before interest expense, but after the tax benefit of the interest deduction. The base case application for the Friendship analysis is case B/20 yr-gas which produces an IRR of 28.5% and payback of 3.4 years. Even better returns could be realized in the cases of oil-avoidance and where greater use of geothermal energy can be made as shown in the other cases considered.« less
Development of a Residential Ground-Source Integrated Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, C Keith; Baxter, Van D; Hern, Shawn
2013-01-01
A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internalmore » control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leboeuf, C.; Taylor, R.W.; Corbus, D.
A cooperative renewable energy project is underway between the U.S. Department of Energy (through the National Renewable Energy Laboratory, NREL), and the Federal Republic of Brazil (through the Centro de Pesquisas de Energia Eletrica, CEPEL). The objectives of this joint US/Brazilian program are to establish technical, institutional, and economic confidence in using renewable energy systems to meet the needs of the people of rural Brazil, to build ongoing partnerships beneficial to both countries, and to demonstrate the potential for large-scale rural electrification through the use of renewable energy systems. Phase 1 of this program resulted in the deployment of moremore » than 700 photovoltaic (PV) electric lighting systems in the Brazilian states of Pernambuco and Ceara. Phase 2 of the program extends the pilot project into six additional Brazilian states and demonstrates a wider variety of stand-alone end uses, including the use of wind electric power generation for selected sites and applications. Additionally, Phase 2 also includes the development of two hybrid village power systems, including one comprising PV, wind, battery, and diesel power sources. This paper focuses on this hybrid system, which is located in the Amazon River delta.« less
SP-100 flight qualification testing assessment
NASA Technical Reports Server (NTRS)
Jeanmougin, Nanette M.; Moore, Roger M.; Wait, David L.; Jacox, Michael G.
1988-01-01
The SP-100 is a compact space power system driven by a nuclear reactor that provides 100 kWe to the user at 200 VDC. The thermal energy generated by the nuclear reactor is converted into electrical energy by passive thermoelectric devices. Various options for tailoring the MIL-STD-1540B guidelines to the SP-100 nuclear power system are discussed. This study aids in selecting the appropriate qualification test program based on the cost, schedule, and test effectiveness of the various options.
Solar heating and cooling technical data and systems analysis
NASA Technical Reports Server (NTRS)
Christensen, D. L.
1976-01-01
The acquisition and processing of selected parametric data for inclusion in a computerized Data Base using the Marshall Information Retrieval and Data System (MIRADS) developed by NASA-MSFC is discussed. This data base provides extensive technical and socioeconomic information related to solar energy heating and cooling on a national scale. A broadly based research approach was used to assist in the support of program management and the application of a cost-effective program for solar energy development and demonstration.
High energy density propulsion systems and small engine dynamometer
NASA Astrophysics Data System (ADS)
Hays, Thomas
2009-07-01
Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Y; Li, T; Yoo, S
2016-06-15
Purpose: To enable near-real-time (<20sec) and interactive planning without compromising quality for whole breast RT treatment planning using tangential fields. Methods: Whole breast RT plans from 20 patients treated with single energy (SE, 6MV, 10 patients) or mixed energy (ME, 6/15MV, 10 patients) were randomly selected for model training. Additional 20 cases were used as validation cohort. The planning process for a new case consists of three fully automated steps:1. Energy Selection. A classification model automatically selects energy level. To build the energy selection model, principle component analysis (PCA) was applied to the digital reconstructed radiographs (DRRs) of training casesmore » to extract anatomy-energy relationship.2. Fluence Estimation. Once energy is selected, a random forest (RF) model generates the initial fluence. This model summarizes the relationship between patient anatomy’s shape based features and the output fluence. 3. Fluence Fine-tuning. This step balances the overall dose contribution throughout the whole breast tissue by automatically selecting reference points and applying centrality correction. Fine-tuning works at beamlet-level until the dose distribution meets clinical objectives. Prior to finalization, physicians can also make patient-specific trade-offs between target coverage and high-dose volumes.The proposed method was validated by comparing auto-plans with manually generated clinical-plans using Wilcoxon Signed-Rank test. Results: In 19/20 cases the model suggested the same energy combination as clinical-plans. The target volume coverage V100% was 78.1±4.7% for auto-plans, and 79.3±4.8% for clinical-plans (p=0.12). Volumes receiving 105% Rx were 69.2±78.0cc for auto-plans compared to 83.9±87.2cc for clinical-plans (p=0.13). The mean V10Gy, V20Gy of the ipsilateral lung was 24.4±6.7%, 18.6±6.0% for auto plans and 24.6±6.7%, 18.9±6.1% for clinical-plans (p=0.04, <0.001). Total computational time for auto-plans was < 20s. Conclusion: We developed an automated method that generates breast radiotherapy plans with accurate energy selection, similar target volume coverage, reduced hotspot volumes, and significant reduction in planning time, allowing for near-real-time planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragg-Sitton, Shannon; Boardman, Richard; Ruth, Mark
The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner thatmore » produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for integrated system options; 5. Identify experimental needs to develop and demonstrate nuclear-renewable energy systems.« less
Energy: An annotated bibliography
NASA Technical Reports Server (NTRS)
Blow, S. J. (Compiler)
1975-01-01
This bibliography is the first update of a previous energy bibliography dated August 1974. It contains approximately 3,300 selected references on energy and energy related topics from bibliographic sources dated August 1974 through December 1974. The references are arranged by date, with the latest works first, in subject categories. (1) Energy and power - general; resources, supply/demand, and forecasting; policy, legislation, and regulation; research and development, environment; consumption and economics; conservation; and systems analysis. (2) Energy and power sources - general; fossil fuels; hydrogen and other fuels; organic wastes and waste heat; nuclear; geothermal; solar; wind; ocean/water; magnetohydrodynamics and electrohydrodynamics; and gas and steam turbines. (3) Energy and power storage and transmission.
Quantifying the climate effects of bioenergy – Choice of reference system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koponen, Kati; Soimakallio, Sampo; Kline, Keith L.
In order to understand the climate effects of a bioenergy system, a comparison between the bioenergy system and a reference system is required. The reference system describes the situation that occurs in the absence of the bioenergy system with respect to the use of land, energy, and materials. The importance of reference systems is discussed in the literature but guidance on choosing suitable reference systems for assessing climate effects of bioenergy is limited. The reference system should align with the purpose of the study. Transparency of reference system assumptions is essential for proper interpretation of bioenergy assessments. This paper presentsmore » guidance for selecting suitable reference systems. Particular attention is given to choosing the land reference. If the goal is to study the climate effects of bioenergy as a part of total anthropogenic activity the reference system should illustrate what is expected in the absence of human activities. In such a case the suitable land reference is natural regeneration, and energy or material reference systems are not relevant. If the goal is to assess the effect of a change in bioenergy use, the reference system should incorporate human activities. In this case suitable reference systems describe the most likely alternative uses of the land, energy and materials in the absence of the change in bioenergy use. The definition of the reference system is furthermore subject to the temporal scope of the study. In practice, selecting and characterizing reference systems will involve various choices and uncertainties which should be considered carefully. As a result, it can be instructive to consider how alternative reference systems influence the results and conclusions drawn from bioenergy assessments.« less
Quantifying the climate effects of bioenergy – Choice of reference system
Koponen, Kati; Soimakallio, Sampo; Kline, Keith L.; ...
2017-06-27
In order to understand the climate effects of a bioenergy system, a comparison between the bioenergy system and a reference system is required. The reference system describes the situation that occurs in the absence of the bioenergy system with respect to the use of land, energy, and materials. The importance of reference systems is discussed in the literature but guidance on choosing suitable reference systems for assessing climate effects of bioenergy is limited. The reference system should align with the purpose of the study. Transparency of reference system assumptions is essential for proper interpretation of bioenergy assessments. This paper presentsmore » guidance for selecting suitable reference systems. Particular attention is given to choosing the land reference. If the goal is to study the climate effects of bioenergy as a part of total anthropogenic activity the reference system should illustrate what is expected in the absence of human activities. In such a case the suitable land reference is natural regeneration, and energy or material reference systems are not relevant. If the goal is to assess the effect of a change in bioenergy use, the reference system should incorporate human activities. In this case suitable reference systems describe the most likely alternative uses of the land, energy and materials in the absence of the change in bioenergy use. The definition of the reference system is furthermore subject to the temporal scope of the study. In practice, selecting and characterizing reference systems will involve various choices and uncertainties which should be considered carefully. As a result, it can be instructive to consider how alternative reference systems influence the results and conclusions drawn from bioenergy assessments.« less
Assessment of Distributed Generation Potential in JapaneseBuildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Nan; Marnay, Chris; Firestone, Ryan
2005-05-25
To meet growing energy demands, energy efficiency, renewable energy, and on-site generation coupled with effective utilization of exhaust heat will all be required. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems (or microgrids). This research investigates a method of choosing economically optimal DER, expanding on prior studies at the Berkeley Lab using the DER design optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM finds the optimal combination of installed equipment from available DER technologies, given prevailing utility tariffs, site electrical and thermal loads, and a menu of available equipment.more » It provides a global optimization, albeit idealized, that shows how the site energy loads can be served at minimum cost by selection and operation of on-site generation, heat recovery, and cooling. Five prototype Japanese commercial buildings are examined and DER-CAM applied to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Based on the optimization results, energy and emission reductions are evaluated. Furthermore, a Japan-U.S. comparison study of policy, technology, and utility tariffs relevant to DER installation is presented. Significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the DER-CAM results. Savings were most noticeable in the sports facility (a very favourable CHP site), followed by the hospital, hotel, and office building.« less
Purchasing and Selecting School Lighting.
ERIC Educational Resources Information Center
Berman, Tim
2003-01-01
Discusses factors for schools to consider when deciding on a lighting system: purchase price, installation charges, maintenance costs, energy costs, and ensuring optimal educational environment. Presents best practices in these areas. (EV)
Phosphoric Acid Fuel Cell Technology Status
NASA Technical Reports Server (NTRS)
Simons, S. N.; King, R. B.; Prokopius, P. R.
1981-01-01
A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.
NASA Astrophysics Data System (ADS)
Hofmann, Ingo
2013-04-01
Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length approximately equals its diameter. The scaling also shows that this is usually not the case above a few MeV; consequently, a solenoid needs to be pulsed or superconducting, whereas the quadrupoles can remain conventional. It is also important that the transmission of the triplet is found only 25% lower than that of the equivalent solenoid. Both systems are equally suitable for energy selection based on their chromatic effect as is shown using an initial distribution following the RPA simulation model by Yan et al. [Phys. Rev. Lett. 103, 135001 (2009PRLTAO0031-900710.1103/PhysRevLett.103.135001].
48 CFR 903.104-7 - Violations or possible violations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Violations or possible violations. 903.104-7 Section 903.104-7 Federal Acquisition Regulations System DEPARTMENT OF ENERGY GENERAL... disclosure of proprietary or source selection information is the Assistant General Counsel for Procurement...
Dimensionality and noise in energy selective x-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, Robert E.
Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging.Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurementmore » noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator.Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 10{sup 3}. With the soft tissue component, it is 2.7 × 10{sup 4}. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the variance of the bone component markedly with three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to 3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with the contrast agent as the third material for two or three dimensions is also a factor of two for both components. The simulated images show that a maximum likelihood estimator can be used to process energy selective x-ray data to produce images with noise close to the CRLB.Conclusions: The method presented can be used to compute the effects of the object attenuation coefficients and the x-ray system properties on the relationship of dimensionality and noise in energy selective x-ray imaging systems.« less
Summary of NASA Lewis Research Center solar heating and cooling and wind energy programs
NASA Technical Reports Server (NTRS)
Vernon, R. W.
1975-01-01
Plans for the construction and operation of a solar heating and cooling system in conjunction with a office building being constructed at Langley Research Center, are discussed. Supporting research and technology includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. The areas of a wind energy program that are being conducted include: design and operation of a 100-kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.
Selective emission multilayer coatings for a molybdenum thermophotovoltaic radiator
Cockeram, Brian Vern
2004-01-27
Multilayer coating designs have been developed to provide selective emission for a molybdenum thermophotovoltaic (TPV) radiator surface. These coatings increase the surface emissivity of a molybdenum TPV radiator substrate in the wavelength range that matches the bandgap of the TPV cells to increase the power density of the TPV system. Radiator emission at wavelengths greater than the bandgap energy of the TPV cells is greatly reduced through the use of these coatings, which significantly increases the efficiency of the TPV system. The use of this coating greatly improves the performance of a TPV system, and the coating can be tailored to match the bandgap of any practical TPV system.
Protein pharmacophore selection using hydration-site analysis
Hu, Bingjie; Lill, Markus A.
2012-01-01
Virtual screening using pharmacophore models is an efficient method to identify potential lead compounds for target proteins. Pharmacophore models based on protein structures are advantageous because a priori knowledge of active ligands is not required and the models are not biased by the chemical space of previously identified actives. However, in order to capture most potential interactions between all potentially binding ligands and the protein, the size of the pharmacophore model, i.e. number of pharmacophore elements, is typically quite large and therefore reduces the efficiency of pharmacophore based screening. We have developed a new method to select important pharmacophore elements using hydration-site information. The basic premise is that ligand functional groups that replace water molecules in the apo protein contribute strongly to the overall binding affinity of the ligand, due to the additional free energy gained from releasing the water molecule into the bulk solvent. We computed the free energy of water released from the binding site for each hydration site using thermodynamic analysis of molecular dynamics (MD) simulations. Pharmacophores which are co-localized with hydration sites with estimated favorable contributions to the free energy of binding are selected to generate a reduced pharmacophore model. We constructed reduced pharmacophore models for three protein systems and demonstrated good enrichment quality combined with high efficiency. The reduction in pharmacophore model size reduces the required screening time by a factor of 200–500 compared to using all protein pharmacophore elements. We also describe a training process using a small set of known actives to reliably select the optimal set of criteria for pharmacophore selection for each protein system. PMID:22397751
A Super Energy Mitigation Nanostructure at High Impact Speed Based on Buckyball System
Xu, Jun; Li, Yibing; Xiang, Yong; Chen, Xi
2013-01-01
The energy mitigation properties of buckyballs are investigated using molecular dynamics (MD) simulations. A one dimensional buckyball long chain is employed as a unit cell of granular fullerene particles. Two types of buckyballs i.e. C60 and C720 with recoverable and non-recoverable behaviors are chosen respectively. For C60 whose deformation is relatively small, a dissipative contact model is proposed. Over 90% of the total impact energy is proven to be mitigated through interfacial reflection of wave propagation, the van der Waals interaction, covalent potential energy and atomistic kinetic energy evidenced by the decent force attenuation and elongation of transmitted impact. Further, the C720 system is found to outperform its C60 counterpart and is able to mitigate over 99% of the total kinetic energy by using a much shorter chain thanks to its non-recoverable deformation which enhances the four energy dissipation terms. Systematic studies are carried out to elucidate the effects of impactor speed and mass, as well as buckyball size and number on the system energy mitigation performance. This one dimensional buckyball system is especially helpful to deal with the impactor of high impact speed but small mass. The results may shed some lights on the research of high-efficiency energy mitigation material selections and structure designs. PMID:23724082
Green Power Procurement Considerations
Green power products are available from a variety of different vendors, including utilities, renewable energy certificate (REC) marketers, on-site system integrators, and non-profit organizations. This page lists considerations to evaluate during selection
Assessment of flywheel energy storage for spacecraft power systems
NASA Technical Reports Server (NTRS)
Rodriguez, G. E.; Studer, P. A.; Baer, D. A.
1983-01-01
The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction.
Solar power satellite. Concept evaluation. Activities report. Volume 2: Detailed report
NASA Technical Reports Server (NTRS)
1977-01-01
Comparative data are presented among various design approaches to thermal engine and photovoltaic SPS (Solar Power System) concepts, to provide criteria for selecting the most promising systems for more detailed definition. The major areas of the SPS system to be examined include solar cells, microwave power transmission, transportation, structure, rectenna, energy payback, resources, and environmental issues.
Commercial phosphoric acid fuel cell system technology development
NASA Technical Reports Server (NTRS)
Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.
1979-01-01
Reducing cost and increasing reliability were the technology drivers in both the electric utility and on-site integrated energy system applications. The longstanding barrier to the attainment of these goals was materials. Differences in approaches and their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection, and system design philosophy were discussed.
NASA Astrophysics Data System (ADS)
Prasetya, Novrisal; Erwinsyah Umra Lubis, Defry; Raharjo, Dharmawan; Miryani Saptadji, Nenny; Pratama, Heru Berian
2017-12-01
West Sumatera is a province which has a huge geothermal potential - approximately 6% of Indonesia’s total geothermal potential which equals to 1,656 MWe. One of the significant reserves located in Bonjol subdistrict which accounts for more than 50 MWe. The energy from geothermal manifestation in Bonjol can be utilized prior to indirect development. Manifestation at the rate 3 kg/s and 87 °C will flow to cascading system consisting several applications, arranged in order from high to low temperature to efficiently use the excessive energy. The direct use application selected is based on the best potential commodities as well as temperature constraint of heat source. The objective of this paper is to perform a conceptual design for the first cascade direct use of geothermal energy in Indonesia to establish Bonjol Smart Geo-Energy Village which will be transformed as the center of agricultural, stockbreeding, tourism as well as cultural site. A comprehenssive research was performed through remote survey area, evaluation featured product, analysis of heat loss and heat exchange in cascade system. From potential commodities, the three applications selected are cocoa drying and egg hatching incubation machine as well as new tourism site called Terapi Panas Bumi. The optimum temperature for cocoa drying is 62°C with the moisture content 7% which consumes 78 kW for one tones cocoa dried. Whereas, egg incubation system consists of two chamber with the same temperature 40°C for each room and relative humidity 55% and 70%. For the last stage, Terapi Panas Bumi works in temperature 40°C. Based on the result technical and economical aspect, it exhibits cascade direct use of geothermal energy is very recommended to develop.
Nashville Solar-Water-Heater Demonstration Project. Monitoring-data analysis
NASA Astrophysics Data System (ADS)
1982-03-01
Field monitoring data which were collected for the Nashville Solar Water Heater Demonstration Project from September through November of 1981 are presented. Twenty-six solar domestic water heaters were monitored during September, 35 during October, and 37 during November. Homeowners were audited to assure adequate solar access, and each selected a solar water heating system from an approved list. Two tank and one tank systems are included. The monitoring sample technique and monitoring system are described. Data are analyzed by computer to produce daily and monthly total summaries for each site. The performance of each site was assessed to compare total energy saved by the solar system, solar system savings percentage, and the energy multiplier.
Catalog of selected heavy duty transport energy management models
NASA Technical Reports Server (NTRS)
Colello, R. G.; Boghani, A. B.; Gardella, N. C.; Gott, P. G.; Lee, W. D.; Pollak, E. C.; Teagan, W. P.; Thomas, R. G.; Snyder, C. M.; Wilson, R. P., Jr.
1983-01-01
A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle.
NASA Astrophysics Data System (ADS)
Wiryadinata, Steven
Service life modeling was performed to gage the viability of unitary 3.5 kWt, ground-source terminal heat pumps (GTHP) employing horizontal directionally drilled geothermal heat exchangers (GHX) over air-source terminal heat pumps (PTHP) in hotels and motels and residential apartment building sectors in California's coastal and inland climates. Results suggest the GTHP can reduce hourly peak demand for the utility by 7%-25% compared to PTHP, depending on the climate and building type. The annual energy savings, which range from -1% to 5%, are highly dependent on the GTHP pump energy use relative to the energy savings attributed to the difference in ground and air temperatures (DeltaT). In mild climates with small ?T, the pump energy use may overcome any advantage to utilizing a GHX. The majority of total levelized cost savings - ranging from 0.18/ft2 to 0.3/ft 2 - are due to reduced maintenance and lifetime capital cost normally associated with geothermal heat pump systems. Without these reductions (not validated for the GTHP system studied), the GTHP technology does not appear to offer significant advantages over PTHP in the climate zones studied here. The GTHP levelized cost was most sensitive to variations in installed cost and in some cases, energy use (influenced by climate zone choice), which together highlights the importance of climate selection for installation, and the need for larger market penetration of ground-source systems in order to bring down installed costs as the technology matures.
Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-01-01
Case study on Vermont's innovative strategy for helping low-income families save energy through its Sustainable Energy Resources for Consumers (SERC) program. The DOE Weatherization Assistance Program (WAP) granted Vermont to give its weatherization clients access to solar energy systems and one-on-one assistance from energy efficiency coaches to help clients achieve meaningful and long-lasting reductions in their energy bills. Vermont-SERC is administered by the Vermont Office of Economic Opportunity and is carried out by five local weatherization agencies. The purpose of the program is to identify technologies and new approaches-in this case, solar energy and energy efficiency coaches-that can improve weatherizationmore » services to low-income clients. The program selects households that have previously received weatherization services. This has several advantages. First, the clients already understand how weatherization works and are willing to strive for additional energy savings. Second, the weatherization agencies are working with clients who have previously had weatherization and therefore have complete energy usage data from utility bills collected during the first energy upgrade installation. This allows the agencies to select the best potential candidates for solar energy. Agencies have existing knowledge of the homes and can pre-screen them for potential structural problems or lack of south-facing exposure.« less
Thermal Standard for Small Rural Schools.
ERIC Educational Resources Information Center
Strandberg (J.S.) Consulting Engineering, Fairbanks, AK.
The Standard's purpose is to provide design requirements that will improve energy utilization in new State of Alaska owned rural educational facilities ranging in size from 7,000 to 12,000 square feet. The Standard covers exterior envelopes and selection of heating, ventilating and air conditioning systems, service water systems, energy…
Maner, Jonathon A; Mauney, Daniel T; Duncan, Michael A
2015-11-19
Ag(+)(benzene) complexes are generated in the gas phase by laser vaporization and mass selected in a time-of-flight spectrometer. UV laser excitation at either 355 or 266 nm results in dissociative charge transfer (DCT), leading to neutral silver atom and benzene cation products. Kinetic energy release in translationally hot benzene cations is detected using a new instrument designed for photofragment imaging of mass-selected ions. Velocity-map imaging and slice imaging techniques are employed. In addition to the expected translational energy release, DCT of Ag(+)(benzene) produces a distribution of internally hot benzene cations. Compared with experiments at 355 nm, 266 nm excitation produces only slightly higher translational excitation and a much greater fraction of internally hot benzene ions. The maximum kinetic energy release in the photodissociation sets an upper limit on the Ag(+)(benzene) dissociation energy of 32.8 (+1.4/-1.5) kcal/mol.
NASA Astrophysics Data System (ADS)
Guan, Yafu; Yang, Shuo; Zhang, Dong H.
2018-04-01
Gaussian process regression (GPR) is an efficient non-parametric method for constructing multi-dimensional potential energy surfaces (PESs) for polyatomic molecules. Since not only the posterior mean but also the posterior variance can be easily calculated, GPR provides a well-established model for active learning, through which PESs can be constructed more efficiently and accurately. We propose a strategy of active data selection for the construction of PESs with emphasis on low energy regions. Through three-dimensional (3D) example of H3, the validity of this strategy is verified. The PESs for two prototypically reactive systems, namely, H + H2O ↔ H2 + OH reaction and H + CH4 ↔ H2 + CH3 reaction are reconstructed. Only 920 and 4000 points are assembled to reconstruct these two PESs respectively. The accuracy of the GP PESs is not only tested by energy errors but also validated by quantum scattering calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovskiy, A. V.; Galkin, A. L.; Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997
The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.
Advanced technology cogeneration system conceptual design study: Closed cycle gas turbines
NASA Technical Reports Server (NTRS)
Mock, E. A. T.; Daudet, H. C.
1983-01-01
The results of a three task study performed for the Department of Energy under the direction of the NASA Lewis Research Center are documented. The thermal and electrical energy requirements of three specific industrial plants were surveyed and cost records for the energies consumed were compiled. Preliminary coal fired atmospheric fluidized bed heated closed cycle gas turbine and steam turbine cogeneration system designs were developed for each industrial plant. Preliminary cost and return-on-equity values were calculated and the results compared. The best of the three sites was selected for more detailed design and evaluation of both closed cycle gas turbine and steam turbine cogeneration systems during Task II. Task III involved characterizing the industrial sector electrical and thermal loads for the 48 contiguous states, applying a family of closed cycle gas turbine and steam turbine cogeneration systems to these loads, and conducting a market penetration analysis of the closed cycle gas turbine cogeneration system.
Computer code for analyzing the performance of aquifer thermal energy storage systems
NASA Astrophysics Data System (ADS)
Vail, L. W.; Kincaid, C. T.; Kannberg, L. D.
1985-05-01
A code called Aquifer Thermal Energy Storage System Simulator (ATESSS) has been developed to analyze the operational performance of ATES systems. The ATESSS code provides an ability to examine the interrelationships among design specifications, general operational strategies, and unpredictable variations in the demand for energy. The uses of the code can vary the well field layout, heat exchanger size, and pumping/injection schedule. Unpredictable aspects of supply and demand may also be examined through the use of a stochastic model of selected system parameters. While employing a relatively simple model of the aquifer, the ATESSS code plays an important role in the design and operation of ATES facilities by augmenting experience provided by the relatively few field experiments and demonstration projects. ATESSS has been used to characterize the effect of different pumping/injection schedules on a hypothetical ATES system and to estimate the recovery at the St. Paul, Minnesota, field experiment.
Hierarchical fuzzy control of low-energy building systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhen; Dexter, Arthur
2010-04-15
A hierarchical fuzzy supervisory controller is described that is capable of optimizing the operation of a low-energy building, which uses solar energy to heat and cool its interior spaces. The highest level fuzzy rules choose the most appropriate set of lower level rules according to the weather and occupancy information; the second level fuzzy rules determine an optimal energy profile and the overall modes of operation of the heating, ventilating and air-conditioning system (HVAC); the third level fuzzy rules select the mode of operation of specific equipment, and assign schedules to the local controllers so that the optimal energy profilemore » can be achieved in the most efficient way. Computer simulation is used to compare the hierarchical fuzzy control scheme with a supervisory control scheme based on expert rules. The performance is evaluated by comparing the energy consumption and thermal comfort. (author)« less
Robust Stabilization of Uncertain Systems Based on Energy Dissipation Concepts
NASA Technical Reports Server (NTRS)
Gupta, Sandeep
1996-01-01
Robust stability conditions obtained through generalization of the notion of energy dissipation in physical systems are discussed in this report. Linear time-invariant (LTI) systems which dissipate energy corresponding to quadratic power functions are characterized in the time-domain and the frequency-domain, in terms of linear matrix inequalities (LMls) and algebraic Riccati equations (ARE's). A novel characterization of strictly dissipative LTI systems is introduced in this report. Sufficient conditions in terms of dissipativity and strict dissipativity are presented for (1) stability of the feedback interconnection of dissipative LTI systems, (2) stability of dissipative LTI systems with memoryless feedback nonlinearities, and (3) quadratic stability of uncertain linear systems. It is demonstrated that the framework of dissipative LTI systems investigated in this report unifies and extends small gain, passivity, and sector conditions for stability. Techniques for selecting power functions for characterization of uncertain plants and robust controller synthesis based on these stability results are introduced. A spring-mass-damper example is used to illustrate the application of these methods for robust controller synthesis.
Intelligent Energy Management System for PV-Battery-based Microgrids in Future DC Homes
NASA Astrophysics Data System (ADS)
Chauhan, R. K.; Rajpurohit, B. S.; Gonzalez-Longatt, F. M.; Singh, S. N.
2016-06-01
This paper presents a novel intelligent energy management system (IEMS) for a DC microgrid connected to the public utility (PU), photovoltaic (PV) and multi-battery bank (BB). The control objectives of the proposed IEMS system are: (i) to ensure the load sharing (according to the source capacity) among sources, (ii) to reduce the power loss (high efficient) in the system, and (iii) to enhance the system reliability and power quality. The proposed IEMS is novel because it follows the ideal characteristics of the battery (with some assumptions) for the power sharing and the selection of the closest source to minimize the power losses. The IEMS allows continuous and accurate monitoring with intelligent control of distribution system operations such as battery bank energy storage (BBES) system, PV system and customer utilization of electric power. The proposed IEMS gives the better operational performance for operating conditions in terms of load sharing, loss minimization, and reliability enhancement of the DC microgrid.
Predicting energy savings attributed to daylighting
NASA Astrophysics Data System (ADS)
Robbins, C. L.
1982-08-01
A method is described for estimating a building's energy savings attributed to daylighting by predicting the percentage of the year that the electric lighting system is not in use. This depends on the particular control strategy chosen, a standard work year, and the amount of light (as a daylight factor) reaching on daylight and sunlight availability for selected cities in the United States.
A computer program for analysis of fuelwood harvesting costs
George B. Harpole; Giuseppe Rensi
1985-01-01
The fuelwood harvesting computer program (FHP) is written in FORTRAN 60 and designed to select a collection of harvest units and systems from among alternatives to satisfy specified energy requirements at a lowest cost per million Btu's as recovered in a boiler, or thousand pounds of H2O evaporative capacity kiln drying. Computed energy costs are used as a...
Yang, Y Isaac; Zhang, Jun; Che, Xing; Yang, Lijiang; Gao, Yi Qin
2016-03-07
In order to efficiently overcome high free energy barriers embedded in a complex energy landscape and calculate overall thermodynamics properties using molecular dynamics simulations, we developed and implemented a sampling strategy by combining the metadynamics with (selective) integrated tempering sampling (ITS/SITS) method. The dominant local minima on the potential energy surface (PES) are partially exalted by accumulating history-dependent potentials as in metadynamics, and the sampling over the entire PES is further enhanced by ITS/SITS. With this hybrid method, the simulated system can be rapidly driven across the dominant barrier along selected collective coordinates. Then, ITS/SITS ensures a fast convergence of the sampling over the entire PES and an efficient calculation of the overall thermodynamic properties of the simulation system. To test the accuracy and efficiency of this method, we first benchmarked this method in the calculation of ϕ - ψ distribution of alanine dipeptide in explicit solvent. We further applied it to examine the design of template molecules for aromatic meta-C-H activation in solutions and investigate solution conformations of the nonapeptide Bradykinin involving slow cis-trans isomerizations of three proline residues.
NASA Astrophysics Data System (ADS)
Yang, Y. Isaac; Zhang, Jun; Che, Xing; Yang, Lijiang; Gao, Yi Qin
2016-03-01
In order to efficiently overcome high free energy barriers embedded in a complex energy landscape and calculate overall thermodynamics properties using molecular dynamics simulations, we developed and implemented a sampling strategy by combining the metadynamics with (selective) integrated tempering sampling (ITS/SITS) method. The dominant local minima on the potential energy surface (PES) are partially exalted by accumulating history-dependent potentials as in metadynamics, and the sampling over the entire PES is further enhanced by ITS/SITS. With this hybrid method, the simulated system can be rapidly driven across the dominant barrier along selected collective coordinates. Then, ITS/SITS ensures a fast convergence of the sampling over the entire PES and an efficient calculation of the overall thermodynamic properties of the simulation system. To test the accuracy and efficiency of this method, we first benchmarked this method in the calculation of ϕ - ψ distribution of alanine dipeptide in explicit solvent. We further applied it to examine the design of template molecules for aromatic meta-C—H activation in solutions and investigate solution conformations of the nonapeptide Bradykinin involving slow cis-trans isomerizations of three proline residues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y. Isaac; Zhang, Jun; Che, Xing
2016-03-07
In order to efficiently overcome high free energy barriers embedded in a complex energy landscape and calculate overall thermodynamics properties using molecular dynamics simulations, we developed and implemented a sampling strategy by combining the metadynamics with (selective) integrated tempering sampling (ITS/SITS) method. The dominant local minima on the potential energy surface (PES) are partially exalted by accumulating history-dependent potentials as in metadynamics, and the sampling over the entire PES is further enhanced by ITS/SITS. With this hybrid method, the simulated system can be rapidly driven across the dominant barrier along selected collective coordinates. Then, ITS/SITS ensures a fast convergence ofmore » the sampling over the entire PES and an efficient calculation of the overall thermodynamic properties of the simulation system. To test the accuracy and efficiency of this method, we first benchmarked this method in the calculation of ϕ − ψ distribution of alanine dipeptide in explicit solvent. We further applied it to examine the design of template molecules for aromatic meta-C—H activation in solutions and investigate solution conformations of the nonapeptide Bradykinin involving slow cis-trans isomerizations of three proline residues.« less
Routing to preserve energy in wireless networks
NASA Astrophysics Data System (ADS)
Block, Frederick J., IV
Many applications for wireless radio networks require that some or all radios in the network rely on batteries as energy sources. In many cases, battery replacement is infeasible, expensive, or impossible. Communication protocols for such networks should be designed to preserve limited energy supplies. Because the choice of a route to a traffic sink influences how often radios must transmit and receive, poor route selection can quickly deplete the batteries of certain nodes. Previous work has shown that a network's lifetime can be extended by assigning higher routing costs to nodes with little remaining energy and nodes that must use high transmitter power to reach neighbor radios. Although using remaining energy levels in routing metrics can increase network lifetime, in practice, there may be significant error in a node's estimate of its battery level. The effect of battery level uncertainty on routing is examined. Routing metrics are presented that are designed to explicitly account for uncertainty in remaining energy. Simulation results using several statistical models for this uncertainty show that the proposed metrics perform well. In addition to knowledge of current battery levels, estimates of how quickly radios are consuming energy may be helpful in extending network lifetime. We present a family of routing metrics that incorporate a radio's rate of energy consumption. Simulation results show that the proposed family of metrics performs well under a variety of traffic models and network topologies. Route selection can also be complicated by time-varying link conditions. Radios may be subject to interference from other nearby communication systems, hostile jammers, and other, non-communication sources of noise. A route that first appears to have only a small cost may later require much greater energy expenditure when transmitting packets. Frequent route selection can help radios avoid using links with interference, but additional routing control messages increase energy consumption. We investigate the effects of time-varying interference on the lifetime of ad hoc networks. It is shown that there is a tradeoff between packet delay and node lifetime. We show that it is possible to design the system to perform well under a wide variety of channel conditions.
Life cycle cost assessment of future low heat rejection engines
NASA Technical Reports Server (NTRS)
Petersen, D. R.
1986-01-01
The Adiabatic Diesel Engine Component Development (ADECD) represents a project which has the objective to accelerate the development of highway truck engines with advanced technology aimed at reduced fuel consumption. The project comprises three steps, including the synthesis of a number of engine candidate designs, the coupling of each with a number of systems for utilizing exhaust gas energy, and the evaluation of each combination in terms of desirability. Particular attention is given to the employed evaluation method and the development of this method. The objective of Life Cycle Cost (LCC) evaluation in the ADECD program was to select the best from among 42 different low heat rejection engine (LHRE)/exhaust energy recovery system configurations. The LCC model is discussed along with a maintenance cost model, the evaluation strategy, the selection of parameter ranges, and a full factorial analysis.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Selecting energy audit and renewable energy..., DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Energy Audit and Renewable Energy Development Assistance Grants § 4280.193 Selecting energy audit and renewable energy...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Selecting energy audit and renewable energy..., DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Energy Audit and Renewable Energy Development Assistance Grants § 4280.193 Selecting energy audit and renewable energy...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Selecting energy audit and renewable energy..., DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Energy Audit and Renewable Energy Development Assistance Grants § 4280.193 Selecting energy audit and renewable energy...
Satellite power system operations
NASA Technical Reports Server (NTRS)
Pugh, F. L.; Gordon, A. I.
1980-01-01
A projection of the electrical energy demands over the next 30 to 50 years, coupled with reasonable assessments of known or developable energy sources, indicates that a shortage of electrical energy will occur about the turn of the century. Recognizing the criticality of such a shortage, the Department of Energy is currently evaluating alternative power generation concepts. One of these candidate concepts is the Satellite Power System. The power levels considered during the evaluation of the various satellite systems have ranged from 5 to 10 GW. It is apparent that, with this power level, both the satellite and the rectenna must be very large and encompass a large number of complex operational system activities. Major elements of the Satellite Power System (SPS) consist of a power satellite placed in a geosynchronous equatorial orbit, and a dedicated ground receiving station (GRS) located at a selected site within the continental United States. The nominal power output of the SPS is established at 5 gigawatts (5 million kilowatts) although, because of various system constraints or losses, it may actually produce between 4 and 5 gigawatts.
Nonlinear optical selection rule based on valley-exciton locking in monolayer ws 2
Xiao, Jun; Ye, Ziliang; Wang, Ying; ...
2015-12-18
Optical selection rules fundamentally determine the optical transitions between energy states in a variety of physical systems, from hydrogen atoms to bulk crystals such as gallium arsenide. These rules are important for optoelectronic applications such as lasers, energy-dispersive X-ray spectroscopy, and quantum computation. Recently, single-layer transition metal dichalcogenides have been found to exhibit valleys in momentum space with nontrivial Berry curvature and excitons with large binding energy. However, there has been little study of how the unique valley degree of freedom combined with the strong excitonic effect influences the nonlinear optical excitation. Here in this paper, we report the discoverymore » of nonlinear optical selection rules in monolayer WS 2, an important candidate for visible 2D optoelectronics because of its high quantum yield and large direct bandgap. We experimentally demonstrated this principle for second-harmonic generation and two-photon luminescence (TPL). Moreover, the circularly polarized TPL and the study of its dynamics evince a sub-ps interexciton relaxation (2p → 1s). The discovery of this new optical selection rule in a valleytronic 2D system not only considerably enhances knowledge in this area but also establishes a foundation for the control of optical transitions that will be crucial for valley optoelectronic device applications such as 2D valley-polarized THz sources with 2p-1s transitions, optical switches, and coherent control for quantum computing.« less
Energy conversion of animal manures: Feasibility analysis for thirteen western states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whittier, J.; Haase, S.; Milward, R.
1993-12-31
The growth and concentration of the livestock industry has led to environmental disposal problems for large quantities of manure at feedlots, dairies, poultry production plants, animal holding areas and pasturelands. Consequently, waste management systems that facilitate energy recovery are becoming increasingly attractive since they address pollution problems and allow for energy generation from manure resources. This paper presents a manure resource assessment for the 13 US Department of Energy, Western Regional Biomass Energy Program states, describes and evaluates available energy conversion technologies, identifies environmental and regulatory factors associated with manure collection, storage and disposal, and identifies common disposal practices specificmore » to animal types and areas within the WRBEP region. The paper also presents a pro forma economic analysis for selected manure-to-energy conversion technologies. The annual energy potential of various manures within the WRBEP region is equivalent to approximately 111 {times} 10{sup 13} Btu. Anaerobic digestion systems, both lagoon and plug flow, offer positive economic returns in a broad range of utility service territories.« less
Theoretical dissociation energies for ionic molecules
NASA Technical Reports Server (NTRS)
Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.
1986-01-01
Ab initio calculations at the self-consistent-field and singles plus doubles configuration-interaction level are used to determine accurate spectroscopic parameters for most of the alkali and alkaline-earth fluorides, chlorides, oxides, sulfides, hydroxides, and isocyanides. Numerical Hartree-Fock (NHF) calculations are performed on selected systems to ensure that the extended Slater basis sets employed for the diatomic systems are near the Hartree-Fock limit. Extended Gaussian basis sets of at least triple-zeta plus double polarization equality are employed for the triatomic system. With this model, correlation effects are relatively small, but invariably increase the theoretical dissociation energies. The importance of correlating the electrons on both the anion and the metal is discussed. The theoretical dissociation energies are critically compared with the literature to rule out disparate experimental values. Theoretical (sup 2)Pi - (sup 2)Sigma (sup +) energy separations are presented for the alkali oxides and sulfides.
Optimized Heat Pipe Backup Cooling System Tested with a Stirling Convertor
NASA Technical Reports Server (NTRS)
Tarau, Calin; Schwendeman, Carl L.; Schifer, Nicholas A.; Anderson, William G.
2016-01-01
Advanced Stirling Radioisotope Generator (ASRG) is an attractive energy system for select space missions, and with the addition of a VCHP, it becomes even more versatile. The ASRG is powered through thermal energy from decaying radioisotopes acting as General Purpose Heat Sources (GPHS). A Stirling engine converts the thermal energy to electrical energy and cools the GPHS [2]. The Stirling convertor must operate continuously to maintain acceptable temperatures of the GPHS and protect their cladding. The addition of alkali metal VCHP allows the Stirling to cycle on and off during a mission and can be used as a backup cooling system. The benefits of being able to turn the Stirling off are: allowing for a restart of the Stirling and reducing vibrations for sensitive measurements. The VCHP addition should also increase the efficiency of the Stirling by providing a uniform temperature distribution at the heat transfer interface into the heater head.
Integrated energy system for the Asphalt Green Youth Sports and Arts Center and the Fireboat House
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barron, J.; Cole, W.J.
Energy conservation and solar energy measures are described for two old buildings, different in scale and character, that are being recycled by the Neighborhood Committee for the Asphalt Green into a community Sports and Arts Center and an Environmental Studies Center. The approach taken by the Authority in developing the integrated energy system design for the larger, commercial-scale Sports and Arts Center was to incorporate energy conservation and renewable energy measures that minimize life cycle costs. The benefits of this approach are significant. As documented in this report, energy costs will be reduced from about $50,000 per year (in 1979more » dollars) to $15,000 per year. The final design incorporates exterior shell insulation, on-site mechanical equipment, and a wind energy conversion system to generate electricity for the large lighting and cooling requirements, heat recovery from the ventilation exhaust air, generator motors and refrigeration system, and hot and cold thermal storage for load management. The Environmental Studies Center, formerly a fireboat station on the East River, is a smaller residential-scale structure. The approach in developing the renovation plan was to assess retrofit potential for cost-effective energy conservation, solar domestic hot water, and active and passive solar space heating. Energy measures were selected which would maximize educational potential for school children and which could be replicated by the general public.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sondreal, E.A.; Mann, M.D.; Weber, G.W.
1995-12-01
On November 1-5, 1994, the Energy & Environmental Research Center (EERC) and Power Research Institute of Prague cosponsored their second conference since 1991 in the Czech Republic, entitled ``Energy and Environment: Transitions in East Central Europe.`` This conference was a continuation of the EERC`s joint commitment, initiated in 1190, to facilitate solutions to short- and long-term energy and environmental problems in East Central Europe. Production of energy from coal in an environmentally acceptable manner is a critical issue facing East Central Europe, because the region continues to rely on coal as its primary energy source. The goal of the conferencemore » was to develop partnerships between industry, government, and the research community in East Central Europe and the United States to solve energy and environmental issues in a manner that fosters economic development. Among the topics addressed at the conference were: conventional and advanced energy generation systems; economic operation of energy systems; air pollution controls; power system retrofitting and repowering, financing options; regulatory issues; energy resource options; waste utilization and disposal; and long-range environmental issues. Selected papers in the proceedings have been processed separately for inclusion in the Energy Science and Technology database.« less
NASA Astrophysics Data System (ADS)
Yan, Dongpeng; Tang, Yanqun; Lin, Heyang; Wang, Dan
2014-03-01
Co-assembly of chromophore guests with host matrices can afford materials which have photofunctionalities different from those of individual components. Compared with clay and zeolite materials, the use of metal-organic frameworks (MOFs) as a host structure for fabricating luminescent host-guest materials is still at an early stage. Herein, we report the incorporation of a laser dye, 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), into stilbene-based and naphthalene-based MOF systems. The resulting materials exhibit blue/red two-color emission, and the intensity ratio of blue to red fluorescence varies in different planes within the MOF crystal as detected by 3D confocal fluorescence microscopy. The observed changes in ratiometric fluorescence suggest the occurrence of energy transfer from MOF host to DCM molecules, which can be further confirmed by periodic density functional theoretical (DFT) calculations. Moreover, selective changes in luminescence behavior are observed on treating the guest@MOF samples with volatile organic compounds (methanol, acetone and toluene), indicating that these host-guest systems have potential applications as fluorescence sensors. It can be expected that by rational selection of MOF hosts and guest chromophores with suitable emissive colors and energy levels, a wide variety of multi-color luminescent and energy-transfer systems can readily be prepared in a similar manner.
Optoelectronic scanning system upgrade by energy center localization methods
NASA Astrophysics Data System (ADS)
Flores-Fuentes, W.; Sergiyenko, O.; Rodriguez-Quiñonez, J. C.; Rivas-López, M.; Hernández-Balbuena, D.; Básaca-Preciado, L. C.; Lindner, L.; González-Navarro, F. F.
2016-11-01
A problem of upgrading an optoelectronic scanning system with digital post-processing of the signal based on adequate methods of energy center localization is considered. An improved dynamic triangulation analysis technique is proposed by an example of industrial infrastructure damage detection. A modification of our previously published method aimed at searching for the energy center of an optoelectronic signal is described. Application of the artificial intelligence algorithm of compensation for the error of determining the angular coordinate in calculating the spatial coordinate through dynamic triangulation is demonstrated. Five energy center localization methods are developed and tested to select the best method. After implementation of these methods, digital compensation for the measurement error, and statistical data analysis, a non-parametric behavior of the data is identified. The Wilcoxon signed rank test is applied to improve the result further. For optical scanning systems, it is necessary to detect a light emitter mounted on the infrastructure being investigated to calculate its spatial coordinate by the energy center localization method.
Goodarzy, Farhad; Skafidas, Efstratios Stan; Gambini, Simone
2015-01-01
In this review, biomedical-related wireless miniature devices such as implantable medical devices, neural prostheses, embedded neural systems, and body area network systems are investigated and categorized. The two main subsystems of such designs, the RF subsystem and the energy source subsystem, are studied in detail. Different application classes are considered separately, focusing on their specific data rate and size characteristics. Also, the energy consumption of state-of-the-art communication practices is compared to the energy that can be generated by current energy scavenging devices, highlighting gaps and opportunities. The RF subsystem is classified, and the suitable architecture for each category of applications is highlighted. Finally, a new figure of merit suitable for wireless biomedical applications is introduced to measure the performance of these devices and assist the designer in selecting the proper system for the required application. This figure of merit can effectively fill the gap of a much required method for comparing different techniques in simulation stage before a final design is chosen for implementation.
Deployable System for Crash-Load Attenuation
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jackson, Karen E.
2007-01-01
An externally deployable honeycomb structure is investigated with respect to crash energy management for light aircraft. The new concept utilizes an expandable honeycomb-like structure to absorb impact energy by crushing. Distinguished by flexible hinges between cell wall junctions that enable effortless deployment, the new energy absorber offers most of the desirable features of an external airbag system without the limitations of poor shear stability, system complexity, and timing sensitivity. Like conventional honeycomb, once expanded, the energy absorber is transformed into a crush efficient and stable cellular structure. Other advantages, afforded by the flexible hinge feature, include a variety of deployment options such as linear, radial, and/or hybrid deployment methods. Radial deployment is utilized when omnidirectional cushioning is required. Linear deployment offers better efficiency, which is preferred when the impact orientation is known in advance. Several energy absorbers utilizing different deployment modes could also be combined to optimize overall performance and/or improve system reliability as outlined in the paper. Results from a series of component and full scale demonstration tests are presented as well as typical deployment techniques and mechanisms. LS-DYNA analytical simulations of selected tests are also presented.
Cogeneration Technology Alternatives Study (CTAS) Volume 5: Analytical approach and results
NASA Technical Reports Server (NTRS)
1980-01-01
Data and information in the area of advanced energy conversion systems for industrial cogeneration applications in the 1985 to 2000 time period are provided. Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasification systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khachatryan, Vardan
This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, tau lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during datamore » taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.« less
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Damiao, D. De Jesus; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M., Jr.; Assran, Y.; El Sawy, M.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Bacchetta, N.; Bellato, M.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Mohamad Idris, F.; Abdullah, W. A. T. Wan; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Kierzkowski, K.; Konecki, M.; Krolikowski, J.; Misiura, M.; Oklinski, W.; Olszewski, M.; Pozniak, K.; Walczak, M.; Zabolotny, W.; Bargassa, P.; Silva, C. Beirão Da Cruz E.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; De Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova PANEVA, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Saka, H.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2017-01-01
This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, τ lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during data taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.
Khachatryan, Vardan
2017-01-24
This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, tau lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during datamore » taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Mario E.
An area in earthquake risk reduction that needs an urgent examination is the selection of earthquake records for nonlinear dynamic analysis of structures. An often-mentioned shortcoming from results of nonlinear dynamic analyses of structures is that these results are limited to the type of records that these analyses use as input data. This paper proposes a procedure for selecting earthquake records for nonlinear dynamic analysis of structures. This procedure uses a seismic damage index evaluated using the hysteretic energy dissipated by a Single Degree of Freedom System (SDOF) representing a multi-degree-of freedom structure responding to an earthquake record, and themore » plastic work capacity of the system at collapse. The type of structural system is considered using simple parameters. The proposed method is based on the evaluation of the damage index for a suite of earthquake records and a selected type of structural system. A set of 10 strong ground motion records is analyzed to show an application of the proposed procedure for selecting earthquake records for structural design.« less
Energy and time determine scaling in biological and computer designs
Bezerra, George; Edwards, Benjamin; Brown, James; Forrest, Stephanie
2016-01-01
Metabolic rate in animals and power consumption in computers are analogous quantities that scale similarly with size. We analyse vascular systems of mammals and on-chip networks of microprocessors, where natural selection and human engineering, respectively, have produced systems that minimize both energy dissipation and delivery times. Using a simple network model that simultaneously minimizes energy and time, our analysis explains empirically observed trends in the scaling of metabolic rate in mammals and power consumption and performance in microprocessors across several orders of magnitude in size. Just as the evolutionary transitions from unicellular to multicellular animals in biology are associated with shifts in metabolic scaling, our model suggests that the scaling of power and performance will change as computer designs transition to decentralized multi-core and distributed cyber-physical systems. More generally, a single energy–time minimization principle may govern the design of many complex systems that process energy, materials and information. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431524
Optimal Solar PV Arrays Integration for Distributed Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omitaomu, Olufemi A; Li, Xueping
2012-01-01
Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introducemore » quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.« less
NASA Astrophysics Data System (ADS)
Yuan, Yingchun
This dissertation develops an effective and economical system approach to reduce the environmental impact of manufacturing. The system approach is developed by using a process-based holistic method for upstream analysis and source reduction of the environmental impact of manufacturing. The system approach developed consists of three components of a manufacturing system: technology, energy and material, and is useful for sustainable manufacturing as it establishes a clear link between manufacturing system components and its overall sustainability performance, and provides a framework for environmental impact reductions. In this dissertation, the system approach developed is applied for environmental impact reduction of a semiconductor nano-scale manufacturing system, with three case scenarios analyzed in depth on manufacturing process improvement, clean energy supply, and toxic chemical material selection. The analysis on manufacturing process improvement is conducted on Atomic Layer Deposition of Al2O3 dielectric gate on semiconductor microelectronics devices. Sustainability performance and scale-up impact of the ALD technology in terms of environmental emissions, energy consumption, nano-waste generation and manufacturing productivity are systematically investigated and the ways to improve the sustainability of the ALD technology are successfully developed. The clean energy supply is studied using solar photovoltaic, wind, and fuel cells systems for electricity generation. Environmental savings from each clean energy supply over grid power are quantitatively analyzed, and costs for greenhouse gas reductions on each clean energy supply are comparatively studied. For toxic chemical material selection, an innovative schematic method is developed as a visual decision tool for characterizing and benchmarking the human health impact of toxic chemicals, with a case study conducted on six chemicals commonly used as solvents in semiconductor manufacturing. Reliability of the schematic method is validated by comparing its benchmark results on 104 chemicals with that from the conventional Human Toxicity Potential (HTP) method. This dissertation concludes with discussions on environmental impact assessment of nanotechnologies and sustainability management of nano-particles. As nano-manufacturing is emerging for wide industrial applications, improvement and expansion of the system approach would be valuable for use in the environmental management of nano-manufacturing and in the risk control of nano-particles in the interests of public health and the environment.
McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian
2016-11-22
A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.
NASA Astrophysics Data System (ADS)
Sanaye, Sepehr; Katebi, Arash
2014-02-01
Energy, exergy, economic and environmental (4E) analysis and optimization of a hybrid solid oxide fuel cell and micro gas turbine (SOFC-MGT) system for use as combined generation of heat and power (CHP) is investigated in this paper. The hybrid system is modeled and performance related results are validated using available data in literature. Then a multi-objective optimization approach based on genetic algorithm is incorporated. Eight system design parameters are selected for the optimization procedure. System exergy efficiency and total cost rate (including capital or investment cost, operational cost and penalty cost of environmental emissions) are the two objectives. The effects of fuel unit cost, capital investment and system power output on optimum design parameters are also investigated. It is observed that the most sensitive and important design parameter in the hybrid system is fuel cell current density which has a significant effect on the balance between system cost and efficiency. The selected design point from the Pareto distribution of optimization results indicates a total system exergy efficiency of 60.7%, with estimated electrical energy cost 0.057 kW-1 h-1, and payback period of about 6.3 years for the investment.
Appliance energy efficiency in new home construction
NASA Astrophysics Data System (ADS)
1980-11-01
A survey of 224 builders was conducted to which 160 builders responded. Each respondent completed between one and seven separate questionnaires. Each of the seven questionnaires were designed to collect information about one type of equipment or major appliance. These are: heat pump; heating system; air conditioner; domestic water heater; dishwasher; range; and refrigerator. Analyses of the resulting 406 questionnaires indicated that builders were primarily responsible for brand selection. These choices were made primarily without regard for the secondary efficiency of the product. A similar apparent lack of consideration of energy efficiency during brand and model selection was found among home buyers and specialized subcontractors.
Anion exchange membranes for electrochemical oxidation-reduction energy storage system
NASA Technical Reports Server (NTRS)
Odonnell, P. M.; Sheibley, D. W.; Gahn, R. F.
1977-01-01
Oxidation-reduction couples in concentrated solutions separated by appropriate ion selective membranes were considered as an attractive approach to bulk electrical energy storage. A key problem is the development of the membrane. Several promising types of anionic membranes are discussed which were developed and evaluated for redox energy storage systems. The copolymers of ethyleneglycoldimethacrylate with either 2-vinylpyridine or vinylbenzl chloride gave stable resistance values compared to the copolymer of vinylbenzlchloride and divinylbenzene which served as the baseline membrane. A polyvinylchloride film aminated with tetraethylenepentamine had a low resistance but a high ion transfer rate. A slurry coated vinylpyridine had the lowest ion transfer rate. All these membranes functioned well in laboratory cells at ambient temperatures with the acidic chloride oxidant/reductant system, Fe 3, Fe 2/Ti 3, Ti 4.
Signal to noise ratio of energy selective x-ray photon counting systems with pileup.
Alvarez, Robert E
2014-11-01
To derive fundamental limits on the effect of pulse pileup and quantum noise in photon counting detectors on the signal to noise ratio (SNR) and noise variance of energy selective x-ray imaging systems. An idealized model of the response of counting detectors to pulse pileup is used. The model assumes a nonparalyzable response and delta function pulse shape. The model is used to derive analytical formulas for the noise and energy spectrum of the recorded photons with pulse pileup. These formulas are first verified with a Monte Carlo simulation. They are then used with a method introduced in a previous paper [R. E. Alvarez, "Near optimal energy selective x-ray imaging system performance with simple detectors," Med. Phys. 37, 822-841 (2010)] to compare the signal to noise ratio with pileup to the ideal SNR with perfect energy resolution. Detectors studied include photon counting detectors with pulse height analysis (PHA), detectors that simultaneously measure the number of photons and the integrated energy (NQ detector), and conventional energy integrating and photon counting detectors. The increase in the A-vector variance with dead time is also computed and compared to the Monte Carlo results. A formula for the covariance of the NQ detector is developed. The validity of the constant covariance approximation to the Cramèr-Rao lower bound (CRLB) for larger counts is tested. The SNR becomes smaller than the conventional energy integrating detector (Q) SNR for 0.52, 0.65, and 0.78 expected number photons per dead time for counting (N), two, and four bin PHA detectors, respectively. The NQ detector SNR is always larger than the N and Q SNR but only marginally so for larger dead times. Its noise variance increases by a factor of approximately 3 and 5 for the A1 and A2 components as the dead time parameter increases from 0 to 0.8 photons per dead time. With four bin PHA data, the increase in variance is approximately 2 and 4 times. The constant covariance approximation to the CRLB is valid for larger counts such as those used in medical imaging. The SNR decreases rapidly as dead time increases. This decrease places stringent limits on allowable dead times with the high count rates required for medical imaging systems. The probability distribution of the idealized data with pileup is shown to be accurately described as a multivariate normal for expected counts greater than those typically utilized in medical imaging systems. The constant covariance approximation to the CRLB is also shown to be valid in this case. A new formula for the covariance of the NQ detector with pileup is derived and validated.
Signal to noise ratio of energy selective x-ray photon counting systems with pileup
Alvarez, Robert E.
2014-01-01
Purpose: To derive fundamental limits on the effect of pulse pileup and quantum noise in photon counting detectors on the signal to noise ratio (SNR) and noise variance of energy selective x-ray imaging systems. Methods: An idealized model of the response of counting detectors to pulse pileup is used. The model assumes a nonparalyzable response and delta function pulse shape. The model is used to derive analytical formulas for the noise and energy spectrum of the recorded photons with pulse pileup. These formulas are first verified with a Monte Carlo simulation. They are then used with a method introduced in a previous paper [R. E. Alvarez, “Near optimal energy selective x-ray imaging system performance with simple detectors,” Med. Phys. 37, 822–841 (2010)] to compare the signal to noise ratio with pileup to the ideal SNR with perfect energy resolution. Detectors studied include photon counting detectors with pulse height analysis (PHA), detectors that simultaneously measure the number of photons and the integrated energy (NQ detector), and conventional energy integrating and photon counting detectors. The increase in the A-vector variance with dead time is also computed and compared to the Monte Carlo results. A formula for the covariance of the NQ detector is developed. The validity of the constant covariance approximation to the Cramèr–Rao lower bound (CRLB) for larger counts is tested. Results: The SNR becomes smaller than the conventional energy integrating detector (Q) SNR for 0.52, 0.65, and 0.78 expected number photons per dead time for counting (N), two, and four bin PHA detectors, respectively. The NQ detector SNR is always larger than the N and Q SNR but only marginally so for larger dead times. Its noise variance increases by a factor of approximately 3 and 5 for the A1 and A2 components as the dead time parameter increases from 0 to 0.8 photons per dead time. With four bin PHA data, the increase in variance is approximately 2 and 4 times. The constant covariance approximation to the CRLB is valid for larger counts such as those used in medical imaging. Conclusions: The SNR decreases rapidly as dead time increases. This decrease places stringent limits on allowable dead times with the high count rates required for medical imaging systems. The probability distribution of the idealized data with pileup is shown to be accurately described as a multivariate normal for expected counts greater than those typically utilized in medical imaging systems. The constant covariance approximation to the CRLB is also shown to be valid in this case. A new formula for the covariance of the NQ detector with pileup is derived and validated. PMID:25370642
Bifurcations on Potential Energy Surfaces of Organic Reactions
Ess, Daniel H.; Wheeler, Steven E.; Iafe, Robert G.; Xu, Lai; Çelebi-Ölçüm, Nihan; Houk, K. N.
2009-01-01
A single transition state may lead to multiple intermediates or products if there is a post-transition state reaction path bifurcation. These bifurcations arise when there are sequential transition states with no intervening energy minimum. For such systems, the shape of the potential energy surface and dynamic effects control selectivity rather than transition state energetics. This minireview covers recent investigations of organic reactions exhibiting reaction pathway bifurcations. Such phenomena are surprisingly general and affect experimental observables such as kinetic isotope effects and product distributions. PMID:18767086
NASA Astrophysics Data System (ADS)
Sperling, J.; Milota, F.; Tortschanoff, A.; Warmuth, Ch.; Mollay, B.; Bässler, H.; Kauffmann, H. F.
2002-12-01
We present a comprehensive experimental and computational study on fs-relaxational dynamics of optical excitations in the conjugated polymer poly(p-phenylenevinylene) (PPV) under selective excitation tuning conditions into the long-wavelength, low-vibrational S1ν=0-density-of-states (DOS). The dependence of single-wavelength luminescence kinetics and time-windowed spectral transients on distinct, initial excitation boundaries at 1.4 K and at room temperature was measured applying the luminescence up-conversion technique. The typical energy-dispersive intra-DOS energy transfer was simulated by a combination of static Monte Carlo method with a dynamical algorithm for solving the energy-space transport Master-Equation in population-space. For various, selective excitations that give rise to specific S1-population distributions in distinct spatial and energetic subspaces inside the DOS, simulations confirm the experimental results and show that the subsequent, energy-dissipative, multilevel relaxation is hierarchically constrained, and reveals a pronounced site-energy memory effect with a migration-threshold, characteristic of the (dressed) excitation dynamics in the disordered PPV many-body system.
Data in support of energy performance of double-glazed windows.
Shakouri, Mahmoud; Banihashemi, Saeed
2016-06-01
This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy ("Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network" (Shakouri Hassanabadi and Banihashemi Namini, 2012) [1], "Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates" (Banihashemi et al., 2015) [2]). A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Three side-by-side lab houses were built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes.The lab houses in Russellville, Alabama compared the performance of three homes built to varying levels of thermal integrity and HVAC equipment: a baseline HUD-code home equipped with an electric furnace and a split system air conditioner; an ENERGY STAR manufactured home with an enhanced thermal envelope and traditional split system heat pump; and a house designed to qualify for Zero Energy Ready Home designation with a ductlessmore » mini-split heat pump with transfer fan distribution system in place of the traditional duct system for distribution. Experiments were conducted in the lab houses to evaluate impact on energy and comfort of interior door position, window blind position and transfer fan operation. The report describes results of tracer gas and co-heating tests and presents calculation of the heat pump coefficient of performance for both the traditional heat pump and the ductless mini-split. A series of calibrated energy models was developed based on measured data and run in three locations in the Southeast to compare annual energy usage of the three homes.« less
Production of solar chemicals: gaining selectivity with hybrid molecule/semiconductor assemblies.
Hennessey, Seán; Farràs, Pau
2018-05-29
Research on the production of solar fuels and chemicals has rocketed over the past decade, with a wide variety of systems proposed to harvest solar energy and drive chemical reactions. In this Feature Article we have focused on hybrid molecule/semiconductor assemblies in both powder and supported materials, summarising recent systems and highlighting the enormous possibilities offered by such assemblies to carry out highly demanding chemical reactions with industrial impact. Of relevance is the higher selectivity obtained in visible light-driven organic transformations when using molecular catalysts compared to photocatalytic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltenberg, B.; Konz, C.; Mosey, G.
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Former Fort Ord Army Base (FOAB) site in Marina, California, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
NASA Astrophysics Data System (ADS)
Jia, Yan; Shibata, Ryosuke; Yamamura, Naoki; Ishida, Muneaki
To resolve energy shortage and global warming problem, renewable natural resource and its power system has been gradually generalizing. However, the power fluctuation suppressing in short period and the balance control of consumption and supply in long period are two of main problems that need to be resolved urgently in natural energy power system. In Stand-alone Natural Energy Power System (SNEPS) with power energy storage devices, power fluctuation in short period is one of the main reasons that recharge cycle times increase and lead-acid battery early failure. Hence, to prolong the service life of lead-acid battery and improve power quality through suppressing the power fluctuation, we proposed a method of electric power smoothing for lead-acid battery of SNEPS using bi-directional Buck/Boost converter and Electric Double Layer Capacitor (EDLC) in this paper. According to the test data of existing SNEPS, a power fluctuation condition is selected and as an example to analyze the validity of the proposed method. The analysis of frequency characteristics indicates the power fluctuation is suppressed a desired range in the target frequency region. The experimental results of confirmed the feasibility of the proposed system and the results well satisfy the requirement of system design.
Nanoparticles have attracted a great deal of attention is past years due to their enormous potential across a broad range of research disciplines. Harnessing nanoscale activity and selectivity can potentially provide extremely efficient systems for energy storage applications, en...
Kim, Ki Chul; Fairen-Jimenez, David; Snurr, Randall Q
2017-12-06
A thermodynamic analysis using quantum chemical methods was carried out to identify optimal functional group candidates that can be included in metal-organic frameworks and activated carbons for the selective capture of toxic industrial chemicals (TICs) in humid air. We calculated the binding energies of 14 critical TICs plus water with a series of 10 functional groups attached to a naphthalene ring model. Using vibrational calculations, the free energies of adsorption were calculated in addition to the binding energies. Our results show that, in these systems, the binding energies and free energies follow similar trends. We identified copper(i) carboxylate as the optimal functional group (among those studied) for the selective binding of the majority of the TICs in humid air, and this functional group exhibits especially strong binding for sulfuric acid. Further thermodynamic analysis shows that the presence of water weakens the binding strength of sulfuric acid with the copper carboxylate group. Our calculations predict that functionalization of aromatic rings would be detrimental to selective capture of COCl 2 , CO 2 , and Cl 2 under humid conditions. Finally, we found that forming an ionic complex, H 3 O + HSO 4 - , between H 2 SO 4 and H 2 O via proton transfer is not favorable on copper carboxylate.
Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao
2017-09-21
To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.
Smart HVAC Control in IoT: Energy Consumption Minimization with User Comfort Constraints
Verikoukis, Christos
2014-01-01
Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost. PMID:25054163
Smart HVAC control in IoT: energy consumption minimization with user comfort constraints.
Serra, Jordi; Pubill, David; Antonopoulos, Angelos; Verikoukis, Christos
2014-01-01
Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.
Systems and applications analysis for concentrating photovoltaic-thermal systems
NASA Astrophysics Data System (ADS)
Schwinkendorf, W. E.
Numerical simulations were carried out of the performance, costs, and land use requirements of five commercial and six residential applications of combined photovoltaic-thermal (PVT) power plants. Line focus Fresnel concentrators (LFF) systems were selected after a simulated comparison of different PVT systems. Load profiles were configured from industrial data and ASHRAE and building codes. Assumptions included costs of $1/Wp, 0.15 efficiency, and a cost of $275/sq m, as well as a 25 percent solar tax credit. The calculations showed that a significant low temperature thermal load must be available, but no heat recovery system. Industrial situations were identified which favor solar thermal energy alone rather than a combined system. The thermal energy displacement was determined to be the critical factor in assessing the economics of the PVT systems.
Direct solar heating for Space Station application
NASA Technical Reports Server (NTRS)
Simon, W. E.
1985-01-01
Early investigations have shown that a large percentage of the power generated on the Space Station will be needed in the form of high-temperature thermal energy. The most efficient method of satisfying this requirement is through direct utilization of available solar energy. A system concept for the direct use of solar energy on the Space Station, including its benefits to customers, technologists, and designers of the station, is described. After a brief discussion of energy requirements and some possible applications, results of selective tradeoff studies are discussed, showing area reduction benefits and some possible configurations for the practical use of direct solar heating. Following this is a description of system elements and required technologies. Finally, an assessment of available contributive technologies is presented, and a Space Shuttle Orbiter flight experiment is proposed.
Electromagnetic gauge as an integration condition: De Broglie's argument revisited and expanded
NASA Astrophysics Data System (ADS)
Costa de Beauregard, O.
1992-12-01
Einstein's mass-energy equivalence law, argues de Broglie, by fixing the zero of the potential energy of a system, ipso facto selects a gauge in electromagnetism. We examine how this works in electrostatics and in magnetostatics and bring in, as a “trump card,” the familiar, but highly peculiar, system consisting of a toroidal magnet m and a current coil c, where none of the mutual energy W resides in the vacuum. We propose the principle of a crucial test for measuring the fractions of W residing in m and in c; if the latter is nonzero, the (fieldless) vector potential has physicality. Also, using induction for transferring energy from the magnet to a superconducting current, we prove that W is equipartitioned between m and c.
NASA Astrophysics Data System (ADS)
Hagiwara, Osahiko; Watanabe, Manabu; Sato, Eiichi; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-05-01
Demonstration of narrow-energy-width computed tomography (CT) was carried out by means of energy-discrimination. An X-ray CT system is of a first-generation type and consists of an X-ray generator, a turntable, a translation stage, a two-stage controller, a silicon-PIN detector system with amplifiers, a multi-channel analyzer (MCA), a counter card (CC), and a personal computer (PC). CT is accomplished by repeating the translation and the rotation of an object, and projection curves of the object are obtained by the translation of the moving object. Both photon-energy level and energy width are determined by the MCA, and the pulses of the discriminated event signal from the MCA are counted by CC in conjunction with PC. The maximum count rate was approximately 300 cps (counts per second) with energy widths of 2.0 keV, and energy-discrimination CT was carried out with a photon-energy resolution of 0.15 keV. To perform iodine K-edge CT, X-ray photons with an energy range from 33.2 to 35.2 keV were used. Next, to carry out cerium K-edge CT, an energy range from 40.3 to 42.3 keV was selected.
Hwang, Junho; Kataoka, Sho; Endo, Akira; Daiguji, Hirofumi
2016-09-21
Nanofluidic energy harvesting systems have attracted interest in the field of battery application, particularly for miniaturized electrical devices, because they possess excellent energy conversion capability for their size. In this study, a mesoporous silica (MPS)-based nanofluidic energy harvesting system was fabricated and selective ion transport in mesopores as a function of the salt gradient was investigated. Aqueous solutions with three different kinds of monovalent electrolytes-KCl, NaCl, and LiCl-with different diffusion coefficients (D + ) were considered. The highest power density was 3.90 W m -2 for KCl, followed by 2.39 W m -2 for NaCl and 1.29 W m -2 for LiCl. Furthermore, the dependency of power density on the type of cation employed indicates that the harvested energy increases as the cation mobility increases, particularly at high concentrations. This cation-specific dependency suggests that the maximum power density increases by increasing the diffusion coefficient ratio of cations to anions, making this ratio a critical parameter in enhancing the performance of nanofluidic energy harvesting systems with extremely small pores ranging from 2 to 3 nm.
Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE
NASA Astrophysics Data System (ADS)
Swift, Alicia; Schirato, Richard; McKigney, Edward; Hunter, James; Temple, Brian
2015-09-01
The Los Alamos Neutron Science Center (LANSCE) is a linear accelerator in Los Alamos, New Mexico that accelerates a proton beam to 800 MeV, which then produces spallation neutron beams. Flight path FP15R uses a tungsten target to generate neutrons of energy ranging from several hundred keV to ~600 MeV. The beam structure has micropulses of sub-ns width and period of 1.784 ns, and macropulses of 625 μs width and frequency of either 50 Hz or 100 Hz. This corresponds to 347 micropulses per macropulse, or 1.74 x 104 micropulses per second when operating at 50 Hz. Using a very fast, cooled ICCD camera (Princeton Instruments PI-Max 4), gated images of various objects were obtained on FP15R in January 2015. Objects imaged included blocks of lead and borated polyethylene; a tungsten sphere; and a tungsten, polyethylene, and steel cylinder. Images were obtained in 36 min or less, with some in as little as 6 min. This is novel because the gate widths (some as narrow as 10 ns) were selected to reject scatter and other signal not of interest (e.g. the gamma flash that precedes the neutron pulse), which has not been demonstrated at energies above 14 MeV. This proof-of-principle experiment shows that time gating is possible above 14MeV and is useful for selecting neutron energy and reducing scatter, thus forming clearer images. Future work (simulation and experimental) is being undertaken to improve camera shielding and system design and to precisely determine optical properties of the imaging system.
Selective Screening of High Temperature Superconductors by Resonant Eddy Current Analysis
1990-11-01
observable electronic parameters are both stable and well defined. Further, if the circuit possesses a resonance , then it has well characterized parameters and...Engineers Construction Engineering Research Laboratory - AD-A230 194 Selective Screening of High Temperature Superconductors by Resonant Eddy Current...electrical systems or electronic components from the effects of unwanted electromagnetic energy. With the discovery of High Transition Critical Temperature
Cooperation of Horizontal Ground Heat Exchanger with the Ventilation Unit During Summer - Case Study
NASA Astrophysics Data System (ADS)
Romańska-Zapała, Anna; Furtak, Marcin; Dechnik, Mirosław
2017-10-01
Renewable energy sources are used in the modern energy-efficient buildings to improve their energy balance. One of them is used in the mechanical ventilation system ground air heat exchanger (earth-air heat exchanger - EAHX). This solution, right after heat recovery from exhaust air (recuperation), allows the reduction in the energy needed to obtain the desired temperature of supply air. The article presents the results of "in situ" measurements of pipe ground air heat exchanger cooperating with the air handling unit, supporting cooling the building in the summer season, in Polish climatic conditions. The laboratory consists of a ventilation unit intake - exhaust with rotor for which the source of fresh air is the air intake wall and two air intakes field cooperating with the tube with ground air heat exchangers. Selection of the source of fresh air is performed using sprocket with actuators. This system is part of the ventilation system of the Malopolska Laboratory of Energy-Efficient Building (MLBE) building of Cracow University of Technology. The measuring system are, among others, the sensors of parameters of air inlets and outlets of the heat exchanger channels EAHX and weather station that senses the local weather conditions. The measurement data are recorded and archived by the integrated process control system in the building of MLBE. During the study measurements of operating parameters of the ventilation unit cooperating with the selected source of fresh air were performed. Two cases of operation of the system: using EAHX heat exchanger and without it, were analyzed. Potentially the use of ground air heat exchanger in the mechanical ventilation system can reduce the energy demand for heating or cooling rooms by the pre-adjustment of the supply air temperature. Considering the results can be concluded that the continuous use of these exchangers is not optimal. This relationship is appropriate not only on an annual basis for the transitional periods (spring and autumn), but also in individual days in the potentially most favorable periods of work exchanger (summer and winter). Inappropriate operation of the heat exchanger, will lead to a temporary increase in energy consumption for the preparation of the desired air temperature, relative to the fresh air unit which is non-pretreated. For optimal energy system operation: exchanger EAHX - air handling unit, to preserve the most favourable parameters of inlet air to handling unit, there is a need to dynamically adjust the source of fresh air, depending on changing external conditions and the required outlet temperature of central unit (temperature of air forced to the rooms).
Application Potential of Energy Systems at Navy Sites. Volume I. Methodology and Results.
1980-01-01
see Table 5-4). Flue gas desulfurization (FGD), electrostatic precipitators (ESP), and staged combustion (SC) were selected to control SOX...energy sources are required to meet proposed Federal Stationary Source Standards. Flue gas desulfurization (FGD), electrostatic precipitators (ESP...pollution control equipment follows: * FGD -- Flue gas from the furnace is passed counter-currently through a limestone (CaCO3) slurry which reacts with
NASA Astrophysics Data System (ADS)
Zhang, Daohong
2017-05-01
The performance of two commercially available quantum dots, quantum dot 605 (Qd605) and quantum dot 625 (Qd625), was tested and compared in the sensing system developed by our group previously. The sandwich format sensing system employed Renilla luciferase (Rluc) and quantum dots (Qds), could report the presence of targets with increasing bioluminescent resonance energy transfer (BRET) signal. The best spacing between the Rluc and Qds probes were 15 nucleotides. Both of Qd605 and Qd625 sensing system could quantify nucleic acid targets through 1-min hybridization from 0.2 picomoles. However, the Qd625 system showed higher BRET signal and better selectivity. Therefore, Qd625 is a better choice in this system compared to Qd605.
Energy-Efficient Control with Harvesting Predictions for Solar-Powered Wireless Sensor Networks.
Zou, Tengyue; Lin, Shouying; Feng, Qijie; Chen, Yanlian
2016-01-04
Wireless sensor networks equipped with rechargeable batteries are useful for outdoor environmental monitoring. However, the severe energy constraints of the sensor nodes present major challenges for long-term applications. To achieve sustainability, solar cells can be used to acquire energy from the environment. Unfortunately, the energy supplied by the harvesting system is generally intermittent and considerably influenced by the weather. To improve the energy efficiency and extend the lifetime of the networks, we propose algorithms for harvested energy prediction using environmental shadow detection. Thus, the sensor nodes can adjust their scheduling plans accordingly to best suit their energy production and residual battery levels. Furthermore, we introduce clustering and routing selection methods to optimize the data transmission, and a Bayesian network is used for warning notifications of bottlenecks along the path. The entire system is implemented on a real-time Texas Instruments CC2530 embedded platform, and the experimental results indicate that these mechanisms sustain the networks' activities in an uninterrupted and efficient manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials.more » Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
Energy-Efficient Control with Harvesting Predictions for Solar-Powered Wireless Sensor Networks
Zou, Tengyue; Lin, Shouying; Feng, Qijie; Chen, Yanlian
2016-01-01
Wireless sensor networks equipped with rechargeable batteries are useful for outdoor environmental monitoring. However, the severe energy constraints of the sensor nodes present major challenges for long-term applications. To achieve sustainability, solar cells can be used to acquire energy from the environment. Unfortunately, the energy supplied by the harvesting system is generally intermittent and considerably influenced by the weather. To improve the energy efficiency and extend the lifetime of the networks, we propose algorithms for harvested energy prediction using environmental shadow detection. Thus, the sensor nodes can adjust their scheduling plans accordingly to best suit their energy production and residual battery levels. Furthermore, we introduce clustering and routing selection methods to optimize the data transmission, and a Bayesian network is used for warning notifications of bottlenecks along the path. The entire system is implemented on a real-time Texas Instruments CC2530 embedded platform, and the experimental results indicate that these mechanisms sustain the networks’ activities in an uninterrupted and efficient manner. PMID:26742042
Preface: photosynthesis and hydrogen energy research for sustainability.
Tomo, Tatsuya; Allakhverdiev, Suleyman I
2017-09-01
Energy supply, climate change, and global food security are among the main chalenges facing humanity in the twenty-first century. Despite global energy demand is continuing to increase, the availability of low cost energy is decreasing. Together with the urgent problem of climate change due to CO 2 release from the combustion of fossil fuels, there is a strong requirement of developing the clean and renewable energy system for the hydrogen production. Solar fuel, biofuel, and hydrogen energy production gained unlimited possibility and feasibility due to understanding of the detailed photosynthetic system structures. This special issue contains selected papers on photosynthetic and biomimetic hydrogen production presented at the International Conference "Photosynthesis Research for Sustainability-2016", that was held in Pushchino (Russia), during June 19-25, 2016, with the sponsorship of the International Society of Photosynthesis Research (ISPR) and of the International Association for Hydrogen Energy (IAHE). This issue is intended to provide recent information on the photosynthetic and biohydrogen production to our readers.
Thermal management systems and methods
Gering, Kevin L.; Haefner, Daryl R.
2006-12-12
A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.
NASA Technical Reports Server (NTRS)
Holland, T. H.; Borzoni, J. T.
1976-01-01
A low cost flat plate solar energy collector was designed for the heating and cooling of residential buildings. The system meets specified performance requirements, at the desired system operating levels, for a useful life of 15 to 20 years, at minimum cost and uses state-of-the-art materials and technology. The rationale for the design method was based on identifying possible material candidates for various collector components and then selecting the components which best meet the solar collector design requirements. The criteria used to eliminate certain materials were: performance and durability test results, cost analysis, and prior solar collector fabrication experience.
Haglund, Jr., Richard F.; Ermer, David R.; Baltz-Knorr, Michelle Lee
2004-11-30
A system and method for desorption and ionization of analytes in an ablation medium. In one embodiment, the method includes the steps of preparing a sample having analytes in a medium including at least one component, freezing the sample at a sufficiently low temperature so that at least part of the sample has a phase transition, and irradiating the frozen sample with short-pulse radiation to cause medium ablation and desorption and ionization of the analytes. The method further includes the steps of selecting a resonant vibrational mode of at least one component of the medium and selecting an energy source tuned to emit radiation substantially at the wavelength of the selected resonant vibrational mode. The medium is an electrophoresis medium having polyacrylamide. In one embodiment, the energy source is a laser, where the laser can be a free electron laser tunable to generate short-pulse radiation. Alternatively, the laser can be a solid state laser tunable to generate short-pulse radiation. The laser can emit light at various ranges of wavelength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing
2011-01-01
This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OAmore » ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Personick, Michelle L.; Montemore, Matthew M.; Kaxiras, Efthimios
Decreasing energy consumption in the production of platform chemicals is necessary to improve the sustainability of the chemical industry, which is the largest consumer of delivered energy. The majority of industrial chemical transformations rely on catalysts, and therefore designing new materials that catalyse the production of important chemicals via more selective and energy-efficient processes is a promising pathway to reducing energy use by the chemical industry. Efficiently designing new catalysts benefits from an integrated approach involving fundamental experimental studies and theoretical modelling in addition to evaluation of materials under working catalytic conditions. In this paper, we outline this approach inmore » the context of a particular catalyst—nanoporous gold (npAu)—which is an unsupported, dilute AgAu alloy catalyst that is highly active for the selective oxidative transformation of alcohols. Fundamental surface science studies on Au single crystals and AgAu thin-film alloys in combination with theoretical modelling were used to identify the principles which define the reactivity of npAu and subsequently enabled prediction of new reactive pathways on this material. Specifically, weak van der Waals interactions are key to the selectivity of Au materials, including npAu. Finally, we also briefly describe other systems in which this integrated approach was applied.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Nan; Marnay, Chris; Firestone, Ryan
The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating thesemore » distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectively used for both heating and cooling. The same examination was done for the 5,000 m{sup 2} buildings. Although CHP installation capacity is smaller and the payback periods are longer, economic, fuel efficiency, and environmental benefits are still seen. While these benefits remain even when subsidies are removed, the increased installation costs lead to lower levels of installation capacity and thus benefit.« less
NASA Astrophysics Data System (ADS)
Huang, Bo; Hsieh, Chen-Yu; Golnaraghi, Farid; Moallem, Mehrdad
2015-11-01
In this paper a vehicle suspension system with energy harvesting capability is developed, and an analytical methodology for the optimal design of the system is proposed. The optimization technique provides design guidelines for determining the stiffness and damping coefficients aimed at the optimal performance in terms of ride comfort and energy regeneration. The corresponding performance metrics are selected as root-mean-square (RMS) of sprung mass acceleration and expectation of generated power. The actual road roughness is considered as the stochastic excitation defined by ISO 8608:1995 standard road profiles and used in deriving the optimization method. An electronic circuit is proposed to provide variable damping in the real-time based on the optimization rule. A test-bed is utilized and the experiments under different driving conditions are conducted to verify the effectiveness of the proposed method. The test results suggest that the analytical approach is credible in determining the optimality of system performance.
NASA Astrophysics Data System (ADS)
Zhou, Jianxin; Kang, Wen; Li, Shuai; Liu, Yudong; Liu, Yiqin; Xu, Shouyan; Guo, Xiaoling; Wu, Xi; Deng, Changdong; Li, Li; Wu, Yuwen; Wang, Sheng
2018-02-01
The China Spallation Neutron Source (CSNS) has two major accelerator systems, a linear accelerator and a rapid cycling synchrotron (RCS). The RCS accelerator is used to accumulate and accelerate protons from the energy of 80 MeV to the design energy of 1.6 GeV at the repetition rate of 25 Hz, and extract the high energy beam to the target. The main magnets of the RCS accelerator are excited by AC current with DC bias. The magnetic field quality is very important for the RCS accelerator operation, since it should guarantee and focus a circulating beam. In order to characterize the AC magnets, a small flip coil measurement system has been developed and one of each type of AC magnets has been studied. The measurement system and selected measurement results are presented in this paper.
Focal-plane detector system for the KATRIN experiment
NASA Astrophysics Data System (ADS)
Amsbaugh, J. F.; Barrett, J.; Beglarian, A.; Bergmann, T.; Bichsel, H.; Bodine, L. I.; Bonn, J.; Boyd, N. M.; Burritt, T. H.; Chaoui, Z.; Chilingaryan, S.; Corona, T. J.; Doe, P. J.; Dunmore, J. A.; Enomoto, S.; Formaggio, J. A.; Fränkle, F. M.; Furse, D.; Gemmeke, H.; Glück, F.; Harms, F.; Harper, G. C.; Hartmann, J.; Howe, M. A.; Kaboth, A.; Kelsey, J.; Knauer, M.; Kopmann, A.; Leber, M. L.; Martin, E. L.; Middleman, K. J.; Myers, A. W.; Oblath, N. S.; Parno, D. S.; Peterson, D. A.; Petzold, L.; Phillips, D. G.; Renschler, P.; Robertson, R. G. H.; Schwarz, J.; Steidl, M.; Tcherniakhovski, D.; Thümmler, T.; Van Wechel, T. D.; VanDevender, B. A.; Vöcking, S.; Wall, B. L.; Wierman, K. L.; Wilkerson, J. F.; Wüstling, S.
2015-04-01
The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high-vacuum system, a high-vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system. It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.
Economic optimization of the energy transport component of a large distributed solar power plant
NASA Technical Reports Server (NTRS)
Turner, R. H.
1976-01-01
A solar thermal power plant with a field of collectors, each locally heating some transport fluid, requires a pipe network system for eventual delivery of energy power generation equipment. For a given collector distribution and pipe network geometry, a technique is herein developed which manipulates basic cost information and physical data in order to design an energy transport system consistent with minimized cost constrained by a calculated technical performance. For a given transport fluid and collector conditions, the method determines the network pipe diameter and pipe thickness distribution and also insulation thickness distribution associated with minimum system cost; these relative distributions are unique. Transport losses, including pump work and heat leak, are calculated operating expenses and impact the total system cost. The minimum cost system is readily selected. The technique is demonstrated on six candidate transport fluids to emphasize which parameters dominate the system cost and to provide basic decision data. Three different power plant output sizes are evaluated in each case to determine severity of diseconomy of scale.
Energy and traffic light labelling have no impact on parent and child fast food selection.
Dodds, Pennie; Wolfenden, Luke; Chapman, Kathy; Wellard, Lyndal; Hughes, Clare; Wiggers, John
2013-10-25
Labelling of food from fast food restaurants at point-of-purchase has been suggested as one strategy to reduce population energy consumption and contribute to reductions in obesity prevalence. The aim of this study was to examine the effects of energy and single traffic light labelling systems on the energy content of child and adult intended food purchases. The study employed a randomised controlled trial design. English speaking parents of children aged between three and 12 years were recruited from an existing research cohort. Participants were mailed one of three hypothetical fast food menus. Menus differed in their labelling technique- either energy labels, single traffic light labels, or a no-label control. Participants then completed a telephone survey which assessed intended food purchases for both adult and child. The primary trial outcome was total energy of intended food purchase. A total of 329 participants completed the follow-up telephone interview. Eighty-two percent of the energy labelling group and 96% of the single traffic light labelling group reported noticing labelling information on their menu. There were no significant differences in total energy of intended purchases of parents, or intended purchases made by parents for children, between the menu labelling groups, or between menu labelling groups by socio-demographic subgroups. This study provided no evidence to suggest that energy labelling or single traffic light labelling alone were effective in reducing the energy of fast food items selected from hypothetical fast food menus for purchase. Additional complementary public health initiatives promoting the consumption of healthier foods identified by labelling, and which target other key drivers of menu item selection in this setting may be required. Copyright © 2013. Published by Elsevier Ltd.
Dodds, Pennie; Wolfenden, Luke; Chapman, Kathy; Wellard, Lyndal; Hughes, Clare; Wiggers, John
2014-02-01
Labelling of food from fast food restaurants at point-of-purchase has been suggested as one strategy to reduce population energy consumption and contribute to reductions in obesity prevalence. The aim of this study was to examine the effects of energy and single traffic light labelling systems on the energy content of child and adult intended food purchases. The study employed a randomised controlled trial design. English speaking parents of children aged between three and 12 years were recruited from an existing research cohort. Participants were mailed one of three hypothetical fast food menus. Menus differed in their labelling technique – either energy labels, single traffic light labels, or a no-label control. Participants then completed a telephone survey which assessed intended food purchases for both adult and child. The primary trial outcome was total energy of intended food purchase. A total of 329 participants completed the follow-up telephone interview. Eighty-two percent of the energy labelling group and 96% of the single traffic light labelling group reported noticing labelling information on their menu. There were no significant differences in total energy of intended purchases of parents, or intended purchases made by parents for children, between the menu labelling groups, or between menu labelling groups by socio-demographic subgroups. This study provided no evidence to suggest that energy labelling or single traffic light labelling alone were effective in reducing the energy of fast food items selected from hypothetical fast food menus for purchase. Additional complementary public health initiatives promoting the consumption of healthier foods identified by labelling, and which target other key drivers of menu item selection in this setting may be required.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1988-01-01
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
Artificial neural networks for the performance prediction of heat pump hot water heaters
NASA Astrophysics Data System (ADS)
Mathioulakis, E.; Panaras, G.; Belessiotis, V.
2018-02-01
The rapid progression in the use of heat pumps, due to the decrease in the equipment cost, together with the favourable economics of the consumed electrical energy, has been combined with the wide dissemination of air-to-water heat pumps (AWHPs) in the residential sector. The entrance of the respective systems in the commercial sector has made important the modelling of the processes. In this work, the suitability of artificial neural networks (ANN) in the modelling of AWHPs is investigated. The ambient air temperature in the evaporator inlet and the water temperature in the condenser inlet have been selected as the input variables; energy performance indices and quantities characterising the operation of the system have been selected as output variables. The results verify that the, easy-to-implement, trained ANN can represent an effective tool for the prediction of the AWHP performance in various operation conditions and the parametrical investigation of their behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Energy conservation and solar energy measures for two old buildings, different in scale and character, that are being recycled by the Neighborhood Committee for the Asphalt Green into a community Sports and Arts Center and an Environmental Studies Center are described. The approch taken by the Authority in developing the integrated energy system design for the larger, commercial-scale Sports and Arts Center was to incorporate energy conservation and renewable energy measures that minimize life-cycle costs. Energy costs will be reduced from about $50,000 per year (in 1979 dollars) to $15,000 per year. The Environmental Studies Center, formerly a fireboat stationmore » on the East River, is a smaller residential-scale structure. The approach in developing the renovation plan was to assess retrofit potential for cost-effective energy consrvation, solar domestic hot water, and active and passive solar space heating. Energy measures were selected which would maximize educational potential for school children and which could be replicated by the general public.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Yasin; Mathur, Jyotirmay; Bhandari, Mahabir S
2016-01-01
The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans,more » etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.« less
Wheel configurations for combined energy storage and attitude control systems
NASA Technical Reports Server (NTRS)
Oglevie, R. E.
1985-01-01
Integrated power and attitude control system (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. This paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. Emphasis is given to the selection of the wheel configuration to perform the combined functions. A component design concept is developed to establish the system performance capability. A system-level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible but offers substantial savings in mass and life-cycle cost.
Direction selective structural-acoustic coupled radiator
NASA Astrophysics Data System (ADS)
Seo, Hee-Seon; Kim, Yang-Hann
2005-04-01
This paper presents a method of designing a structural-acoustic coupled radiator that can emit sound in the desired direction. The structural-acoustic coupled system is consisted of acoustic spaces and wall. The wall composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. An equation is developed that predicts energy distribution and energy flow in the two spaces separated by the wall, and its computational examples are presented including near field acoustic characteristics. To design the directional coupled radiator, Pareto optimization method is adapted. An objective is selected to maximize radiation power on a main axis and minimize a side lobe level and a subjective is selected direction of the main axis and dimensions of the walls geometry. Pressure and intensity distribution of the designed radiator is also presented.
Fusion and reaction mechanism evolution in 24Mg+12C at intermediate energies
NASA Astrophysics Data System (ADS)
Samri, M.; Grenier, F.; Ball, G. C.; Beaulieu, L.; Gingras, L.; Horn, D.; Larochelle, Y.; Moustabchir, R.; Roy, R.; St-Pierre, C.; Theriault, D.
2002-06-01
The formation and deexcitation of fusionlike events selected in events with a total charge equal or greater than 16 in 24Mg+12C system has been investigated at 25, 35, and 45 MeV/nucleon with a large multidetector array. Central single-source events are selected by use of the statistical discriminant analysis method applied to a set of 26 global variables. The fusion cross section has been extracted for the three bombarding energies and compared to other experimental data and to theoretical predictions. The total multiplicity is found to first increase to a maximum value and then decrease with increasing beam energy. It is shown that this behavior is connected to the opening of multifragmentation channels at 45 MeV/nucleon and the disappearance of channels with only light charged particles.
Performance of the ATLAS Trigger System in 2010
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camard, A.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Cazzato, A.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, L.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chislett, R. T.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Rocha Gesualdi Mello, A.; Da Silva, P. V. M.; Da Via, C.; Dabrowski, W.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P. E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lotto, B.; De Mora, L.; De Nooij, L.; De Oliveira Branco, M.; De Pedis, D.; de Saintignon, P.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dieli, M. V.; Dietl, H.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heine, K.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heldmann, M.; Heller, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lapin, V. V.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, L.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; McGlone, H.; Mchedlidze, G.; McLaren, R. A.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rensch, B.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmidt, M. P.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, HS.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Treis, J.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.
2012-01-01
Proton-proton collisions at sqrt{s}=7 TeV and heavy ion collisions at sqrt{s_{NN}}=2.76 TeV were produced by the LHC and recorded using the ATLAS experiment's trigger system in 2010. The LHC is designed with a maximum bunch crossing rate of 40 MHz and the ATLAS trigger system is designed to record approximately 200 of these per second. The trigger system selects events by rapidly identifying signatures of muon, electron, photon, tau lepton, jet, and B meson candidates, as well as using global event signatures, such as missing transverse energy. An overview of the ATLAS trigger system, the evolution of the system during 2010 and the performance of the trigger system components and selections based on the 2010 collision data are shown. A brief outline of plans for the trigger system in 2011 is presented.
NASA Technical Reports Server (NTRS)
Schredder, J. M.; Fujita, T.
1984-01-01
The use of reversible chemical reactions for energy transport and storage for parabolic dish networks is considered. Performance and cost characteristics are estimated for systems using three reactions (sulfur-trioxide decomposition, steam reforming of methane, and carbon-dioxide reforming of methane). Systems are considered with and without storage, and in several energy-delivery configurations that give different profiles of energy delivered versus temperature. Cost estimates are derived assuming the use of metal components and of advanced ceramics. (The latter reduces the costs by three- to five-fold). The process that led to the selection of the three reactions is described, and the effects of varying temperatures, pressures, and heat exchanger sizes are addressed. A state-of-the-art survey was performed as part of this study. As a result of this survey, it appears that formidable technical risks exist for any attempt to implement the systems analyzed in this study, especially in the area of reactor design and performance. The behavior of all components and complete systems under thermal energy transients is very poorly understood. This study indicates that thermochemical storage systems that store reactants as liquids have efficiencies below 60%, which is in agreement with the findings of earlier investigators.
Strik, David P B T B; Terlouw, Hilde; Hamelers, Hubertus V M; Buisman, Cees J N
2008-12-01
Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m2 projected anode surface area and a maximum power production of 110 mW/m2 surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products.
NASA Astrophysics Data System (ADS)
Geressu, Robel T.; Harou, Julien J.
2015-12-01
Multi-reservoir system planners should consider how new dams impact downstream reservoirs and the potential contribution of each component to coordinated management. We propose an optimized multi-criteria screening approach to identify best performing designs, i.e., the selection, size and operating rules of new reservoirs within multi-reservoir systems. Reservoir release operating rules and storage sizes are optimized concurrently for each separate infrastructure design under consideration. Outputs reveal system trade-offs using multi-dimensional scatter plots where each point represents an approximately Pareto-optimal design. The method is applied to proposed Blue Nile River reservoirs in Ethiopia, where trade-offs between total and firm energy output, aggregate storage and downstream irrigation and energy provision for the best performing designs are evaluated. This proof-of concept study shows that recommended Blue Nile system designs would depend on whether monthly firm energy or annual energy is prioritized. 39 TWh/yr of energy potential is available from the proposed Blue Nile reservoirs. The results show that depending on the amount of energy deemed sufficient, the current maximum capacities of the planned reservoirs could be larger than they need to be. The method can also be used to inform which of the proposed reservoir type and their storage sizes would allow for the highest downstream benefits to Sudan in different objectives of upstream operating objectives (i.e., operated to maximize either average annual energy or firm energy). The proposed approach identifies the most promising system designs, reveals how they imply different trade-offs between metrics of system performance, and helps system planners asses the sensitivity of overall performance to the design parameters of component reservoirs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broders, M.A.; Ruppel, F.R.
1993-05-01
Under the provisions of Interagency Agreement DOE 1938-B090-A1 between the US Department of Energy (DOE) and the US Army Europe (USAREUR), Martin Marietta Energy Systems, Inc., is providing technical assistance to USAREUR in the areas of computer science, information engineering, energy studies, and engineering and systems development. One of the initial projects authorized under this interagency agreement is the evaluation of utility and energy monitoring and control systems (UEMCSs) installed at selected US Army installations in Europe. This report is an evaluation of the overall energy-conservation effectiveness and use of the UEMCS at the 409th Base Support Battalion located inmore » Grafenwoehr, Germany. The 409th Base Support Battalion is a large USAREUR military training facility that comprises a large training area, leased housing, the main post area, and the camp areas that include Camps Aachen, Algier, Normandy, Cheb, and Kasserine. All of these facilities are consumers of electrical and thermal energy. However, only buildings and facilities in the main post area and Camps Aachen, Algier, and Normandy are under the control of the UEMCS. The focus of this evaluation report is on these specific areas. Recommendations to further increase energy and cost savings and to improve operation of the UEMCS are proposed.« less
Heat-activated Plasmonic Chemical Sensors for Harsh Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Michael; Oh, Sang-Hyun
2015-12-01
A passive plasmonics based chemical sensing system to be used in harsh operating environments was investigated and developed within this program. The initial proposed technology was based on combining technologies developed at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering (CNSE) and at the University of Minnesota (UM). Specifically, a passive wireless technique developed at UM was to utilize a heat-activated plasmonic design to passively harvest the thermal energy from within a combustion emission stream and convert this into a narrowly focused light source. This plasmonic device was based on a bullseye design patterned into a gold filmmore » using focused ion beam methods (FIB). Critical to the design was the use of thermal stabilizing under and overlayers surrounding the gold film. These stabilizing layers were based on both atomic layer deposited films as well as metal laminate layers developed by United Technologies Aerospace Systems (UTAS). While the bullseye design was never able to be thermally stabilized for operating temperatures of 500oC or higher, an alternative energy harvesting design was developed by CNSE within this program. With this new development, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The method was further improved by patterning rods which harvested energy in the near infrared, which led to a factor of 10 decrease in data acquisition times as well as demonstrated selectivity with a reduced wavelength data set. The combination of a plasmonic-based energy harvesting sensing paradigm with PCA analysis and wavelength down selection offers a novel path towards simplification and integration of plasmonic-based sensing methods using selected wavelengths rather than a full spectral analysis. Integration efforts were designed and modeled for thermal and mass transport considerations by UTAS which led to the 3D printing of scaled models that would serve as the housing for the alternative energy harvesting plasmonic chemical sensor design developed by CNSE.« less
NASA Astrophysics Data System (ADS)
Kim, Jong-Moo; Park, Keum-Hwan; Kim, Da-Som; Hwang, Bo-yeon; Kim, Sun-Kyung; Chae, Hee-Man; Ju, Byeong-Kwon; Kim, Young-Seok
2018-01-01
Thermophotovoltaic (TPV) systems have attracted attention as promising power generation systems that can directly convert the radiant energy produced by the combustion of fuel into electrical energy. However, there is a fundamental limit of their conversion efficiency due to the broadband distribution of the radiant spectrum. To overcome this problem, several spectrally selective thermal emitter technologies have been investigated, including the fabrication of photonic crystal (PhC) structures. In this paper, we present some design rules based on finite-a difference time-domain (FDTD) simulation results for tungsten (W) PhC emitter. The W 2D PhC was fabricated by a simple nano-imprint lithography (NIL) process, and inductive coupled plasma reactive ion etching (ICP-RIE) with an isotropic etching process, the benefits and parameters of which are presented. The fabricated W PhC emitter showed spectrally selective emission near the infrared wavelength range, and the optical properties varied depending on the size of the nano-patterns. The measured results of the fabricated prototype structure correspond well to the simulated values. Finally, compared with the performance of a flat W emitter, the total thermal emitter efficiency was almost 3.25 times better with the 2D W PhC structure.
NASA Astrophysics Data System (ADS)
Wendel, Christopher H.; Kazempoor, Pejman; Braun, Robert J.
2016-01-01
Reversible solid oxide cell (ReSOC) systems are being increasingly considered for electrical energy storage, although much work remains before they can be realized, including cell materials development and system design optimization. These systems store electricity by generating a synthetic fuel in electrolysis mode and subsequently recover electricity by electrochemically oxidizing the stored fuel in fuel cell mode. System thermal management is improved by promoting methane synthesis internal to the ReSOC stack. Within this strategy, the cell-stack operating conditions are highly impactful on system performance and optimizing these parameters to suit both operating modes is critical to achieving high roundtrip efficiency. Preliminary analysis shows the thermoneutral voltage to be a useful parameter for analyzing ReSOC systems and the focus of this study is to quantitatively examine how it is affected by ReSOC operating conditions. The results reveal that the thermoneutral voltage is generally reduced by increased pressure, and reductions in temperature, fuel utilization, and hydrogen-to-carbon ratio. Based on the thermodynamic analysis, many different combinations of these operating conditions are expected to promote efficient energy storage. Pressurized systems can achieve high efficiency at higher temperature and fuel utilization, while non-pressurized systems may require lower stack temperature and suffer from reduced energy density.
Seismic Characterizations of Fractures: Dynamic Diagnostics
NASA Astrophysics Data System (ADS)
Pyrak-Nolte, L. J.
2017-12-01
Fracture geometry controls fluid flow in a fracture, affects mechanical stability and influences energy partitioning that affects wave scattering. Our ability to detect and monitor fracture evolution is controlled by the frequency of the signal used to probe a fracture system, i.e. frequency selects the scales. No matter the frequency chosen, some set of discontinuities will be optimal for detection because different wavelengths sample different subsets of fractures. The select subset of fractures is based on the stiffness of the fractures which in turn is linked to fluid flow. A goal is obtaining information from scales outside the optimal detection regime. Fracture geometry trajectories are a potential approach to drive a fracture system across observation scales, i.e. moving systems between effective medium and scattering regimes. Dynamic trajectories (such as perturbing stress, fluid pressure, chemical alteration, etc.) can be used to perturb fracture geometry to enhance scattering or give rise to discrete modes that are intimately related to the micro-structural evolution of a fracture. However, identification of these signal features will require methods for identifying these micro-structural signatures in complicated scattered fields. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).
Zdziarski, Laura Ann; Chen, Cong; Horodyski, Marybeth; Vincent, Kevin R.; Vincent, Heather K.
2017-01-01
Objective To determine the differences in kinematic, cardiopulmonary, and metabolic responses between overweight and healthy weight runners at a self-selected and standard running speed. Design Comparative descriptive study. Setting Tertiary care institution, university-affiliated research laboratory. Participants Overweight runners (n = 21) were matched with runners of healthy weight (n = 42). Methods Participants ran at self-selected and standardized speeds (13.6 km/h). Sagittal plane joint kinematics were captured simultaneously with cardiopulmonary and metabolic measures using a motion capture system and portable gas analyzer, respectively. Main Outcome Measurements Spatiotemporal parameters (cadence, step width and length, center of gravity displacement, stance time) joint kinematics, oxygen cost, heart rate, ventilation and energy expenditure. Results At the self-selected speed, overweight individuals ran slower (8.5 ± 1.3 versus 10.0 ± 1.6 km/h) and had slower cadence (163 versus 169 steps/min; P < .05). The sagittal plane range of motion (ROM) for flexion-extension at the ankle, knee, hip, and anterior pelvic tilt were all less in overweight runners compared to healthy weight runners (all P < .05). At self-selected speed and 13.6 km/h, energy expenditure was higher in the overweight runners compared to their healthy weight counterparts (P < .05). At 13.6 km/h, only the frontal hip and pelvis ROM were higher in the overweight versus the healthy weight runners (P < .05), and energy expenditure, net energy cost, and minute ventilation were higher in the overweight runners compared to the healthy weight runners (P < .05). Conclusion At self-selected running speeds, the overweight runners demonstrated gait strategies (less joint ROM, less vertical displacement, and shorter step lengths) that resulted in cardiopulmonary and energetic responses similar to those of healthy weight individuals. PMID:26146194
In-line assay monitor for uranium hexafluoride
Wallace, S.A.
1980-03-21
An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from uranium-235. The uranium-235 content of the specimen is determined from comparison of the accumulated 185 keV energy counts and reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen.
NASA Astrophysics Data System (ADS)
Sundaramoorthy, Kumaravel
2017-02-01
The hybrid energy systems (HESs) based electricity generation system has become a more attractive solution for rural electrification nowadays. Economically feasible and technically reliable HESs are solidly based on an optimisation stage. This article discusses about the optimal unit sizing model with the objective function to minimise the total cost of the HES. Three typical rural sites from southern part of India have been selected for the application of the developed optimisation methodology. Feasibility studies and sensitivity analysis on the optimal HES are discussed elaborately in this article. A comparison has been carried out with the Hybrid Optimization Model for Electric Renewable optimisation model for three sites. The optimal HES is found with less total net present rate and rate of energy compared with the existing method
NASA Astrophysics Data System (ADS)
Hussin, N. H.; Azizan, M. M.; Ali, A.; Albreem, M. A. M.
2017-09-01
This paper reviews the techniques used in Wireless power transfer (WPT). WPT is one of the most useful ways to transfer power. Based on power transfer distances, the WPT system can be divided into three categories, namely, near, medium, and far fields. Inductive coupling and capacitive coupling contactless techniques are used in the near-field WPT. Magnetic resonant coupling technique is used in the medium-field WPT. Electromagnetic radiation is used in the far-field WPT. In addition, energy encryption plays a major role in ensuring that power is transferred to the true receiver. Therefore, this paper reviews the energy encryption techniques in WPT system. A comparison between different technique shows that the distance, efficiency, and number of receivers are the main factors in selecting the suitable energy encryption technique.
Efficient electrochemical CO2 conversion powered by renewable energy.
Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao
2015-07-22
The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.
1980-12-01
type of personnel likely to he using them, (3) the physical environment , (4) health and operational safety considerations. Carefully selected portable...operated apparatus must have the battery and energy-limiting components located outside the hazardous environment , and be so constructed that a direct...designate effect on equipment or personnel), based upon the most severe result of personnel error, procedural deficiencies, environment , design
Defense Acquisitions. Assessments of Selected Weapon Programs
2007-03-01
Selected Weapon Programs March 2007 GAO-07-406SP Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 What GAO Found United States Government Accountability Office Why GAO Did This...Joint Tactical Radio System Ground Mobile Radio (JTRS GMR) 93 JTRS Handheld, Manpack, Small Form Fit (JTRS HMS) 95 Kinetic Energy Interceptors (KEI) 97
Selection and Implementation of Single Building EMCS (Energy Monitoring and Control Systems).
1983-08-01
Setpoint Night Setback 161 Figure 20: Dual Setpoint Night Setback/up 162 Figure 21: Centrifugal Chiller Reset 166 Figure 22: Centrifugal Chiller Capacity...Program outputs. Hot water temperature. Application notes. A dedicated local loop controller may be implemented. Chiller optimization . The chiller ... optimization program can be implemented in chilled water plants with multiple chillers . Based on chiller operating data and the energy input requirements
Evolution of synchrotron-radiation-based Mössbauer absorption spectroscopy for various isotopes
NASA Astrophysics Data System (ADS)
Seto, Makoto; Masuda, Ryo; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina; Hosokawa, Shuuich; Ishibashi, Hiroki; Mitsui, Takaya; Yoda, Yoshitaka; Mibu, Ko
2017-11-01
Synchrotron-radiation-based Mössbauer spectroscopy that yields absorption type Mössbauer spectra has been applied to various isotopes. This method enables the advanced measurement by using the excellent features of synchrotron radiation, such as Mössbauer spectroscopic measurement under high-pressures. Furthermore, energy selectivity of synchrotron radiation allows us to measure 40K Mössbauer spectra, of which observation is impossible by using ordinary radioactive sources because the first excited state of 40K is not populated by any radioactive parent nuclides. Moreover, this method has flexibility of the experimental setup that the measured sample can be used as a transmitter or a scatterer, depending on the sample conditions. To enhance the measurement efficiency of the spectroscopy, we developed a detection system in which a windowless avalanche photodiode (APD) detector is combined with a vacuum cryostat to detect internal conversion electrons adding to X-rays accompanied by nuclear de-excitation. In particular, by selecting the emission from the scatterer sample, depth selective synchrotron-radiation-based Mössbauer spectroscopy is possible. Furthermore, limitation of the time window in the delayed components enables us to obtain narrow linewidth in Mössbauer spectra. Measurement system that records velocity dependent time spectra and energy information simultaneously realizes the depth selective and narrow linewidth measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escobedo, Fernando A., E-mail: fe13@cornell.edu
The phase behavior and the homogeneous nucleation of an equimolar mixture of octahedra and cuboctahedra are studied using thermodynamic integration, Gibbs-Duhem integration, and umbrella sampling simulations. The components of this mixture are modeled as polybead objects of equal edge lengths so that they can assemble into a space-filling compound with the CsCl crystal structure. Taking as reference the hard-core system where the compound crystal does not spontaneously nucleate, we quantified the effect of inter-species selective interactions on facilitating the disorder-to-order transition. Facet selective and facet non-selective inter-species attractions were considered, and while the former was expectedly more favorable toward themore » target tessellating structure, the latter was found to be similarly effective in nucleating the crystal compound. Ranges for the strength of attractions and degree of supersaturation were identified where the nucleation free-energy barrier was small enough to foretell a fast process but large enough to prevent spinodal fluctuations that can trap the system in dense metastable states lacking long-range order. At those favorable conditions, the tendency toward the local orientational order favored by packing entropy is amplified and found to play a key role seeding nuclei with the CsCl structure.« less
A review of recent developments in rechargeable lithium-sulfur batteries.
Kang, Weimin; Deng, Nanping; Ju, Jingge; Li, Quanxiang; Wu, Dayong; Ma, Xiaomin; Li, Lei; Naebe, Minoo; Cheng, Bowen
2016-09-22
The research and development of advanced energy-storage systems must meet a large number of requirements, including high energy density, natural abundance of the raw material, low cost and environmental friendliness, and particularly reasonable safety. As the demands of high-performance batteries are continuously increasing, with large-scale energy storage systems and electric mobility equipment, lithium-sulfur batteries have become an attractive candidate for the new generation of high-performance batteries due to their high theoretical capacity (1675 mA h g -1 ) and energy density (2600 Wh kg -1 ). However, rapid capacity attenuation with poor cycle and rate performances make the batteries far from ideal with respect to real commercial applications. Outstanding breakthroughs and achievements have been made to alleviate these problems in the past ten years. This paper presents an overview of recent advances in lithium-sulfur battery research. We cover the research and development to date on various components of lithium-sulfur batteries, including cathodes, binders, separators, electrolytes, anodes, collectors, and some novel cell configurations. The current trends in materials selection for batteries are reviewed and various choices of cathode, binder, electrolyte, separator, anode, and collector materials are discussed. The current challenges associated with the use of batteries and their materials selection are listed and future perspectives for this class of battery are also discussed.
DOT National Transportation Integrated Search
2011-03-01
Livability is the idea that transportation, land use, housing, energy, and environmental considerations can be integrated to protect the environment, promote equitable development, and help to address the challenges of climate change. Geographi...
NASA Astrophysics Data System (ADS)
Ram Prabhakar, J.; Ragavan, K.
2013-07-01
This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.
NASA Astrophysics Data System (ADS)
Liang, L. H.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Cui, S.
2017-11-01
In order to study the frequency characteristics of the wireless energy transmission system based on the magnetic coupling resonance, a circuit model based on the magnetic coupling resonant wireless energy transmission system is established. The influence of the load on the frequency characteristics of the wireless power transmission system is analysed. The circuit coupling theory is used to derive the minimum load required to suppress frequency splitting. Simulation and experimental results verify that when the load size is lower than a certain value, the system will appear frequency splitting, increasing the load size can effectively suppress the frequency splitting phenomenon. The power regulation scheme of the wireless charging system based on magnetic coupling resonance is given. This study provides a theoretical basis for load selection and power regulation of wireless power transmission systems.
Focal-plane detector system for the KATRIN experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amsbaugh, J. F.; Barrett, J.; Beglarian, A.
Here, the local plane detector system for the KArlsiuhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high vacuum system, a high vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system, It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.
Focal-plane detector system for the KATRIN experiment
Amsbaugh, J. F.; Barrett, J.; Beglarian, A.; ...
2015-01-09
Here, the local plane detector system for the KArlsiuhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high vacuum system, a high vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system, It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.
Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars
2016-04-12
A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.
Wang, Mingming; Sweetapple, Chris; Fu, Guangtao; Farmani, Raziyeh; Butler, David
2017-10-01
This paper presents a new framework for decision making in sustainable drainage system (SuDS) scheme design. It integrates resilience, hydraulic performance, pollution control, rainwater usage, energy analysis, greenhouse gas (GHG) emissions and costs, and has 12 indicators. The multi-criteria analysis methods of entropy weight and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) were selected to support SuDS scheme selection. The effectiveness of the framework is demonstrated with a SuDS case in China. Indicators used include flood volume, flood duration, a hydraulic performance indicator, cost and resilience. Resilience is an important design consideration, and it supports scheme selection in the case study. The proposed framework will help a decision maker to choose an appropriate design scheme for implementation without subjectivity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparison study of noise reduction algorithms in dual energy chest digital tomosynthesis
NASA Astrophysics Data System (ADS)
Lee, D.; Kim, Y.-S.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.
2018-04-01
Dual energy chest digital tomosynthesis (CDT) is a recently developed medical technique that takes advantage of both tomosynthesis and dual energy X-ray images. However, quantum noise, which occurs in dual energy X-ray images, strongly interferes with diagnosis in various clinical situations. Therefore, noise reduction is necessary in dual energy CDT. In this study, noise-compensating algorithms, including a simple smoothing of high-energy images (SSH) and anti-correlated noise reduction (ACNR), were evaluated in a CDT system. We used a newly developed prototype CDT system and anthropomorphic chest phantom for experimental studies. The resulting images demonstrated that dual energy CDT can selectively image anatomical structures, such as bone and soft tissue. Among the resulting images, those acquired with ACNR showed the best image quality. Both coefficient of variation and contrast to noise ratio (CNR) were the highest in ACNR among the three different dual energy techniques, and the CNR of bone was significantly improved compared to the reconstructed images acquired at a single energy. This study demonstrated the clinical value of dual energy CDT and quantitatively showed that ACNR is the most suitable among the three developed dual energy techniques, including standard log subtraction, SSH, and ACNR.
NASA Astrophysics Data System (ADS)
VandeVondele, Joost; Rothlisberger, Ursula
2000-09-01
We present a method for calculating multidimensional free energy surfaces within the limited time scale of a first-principles molecular dynamics scheme. The sampling efficiency is enhanced using selected terms of a classical force field as a bias potential. This simple procedure yields a very substantial increase in sampling accuracy while retaining the high quality of the underlying ab initio potential surface and can thus be used for a parameter free calculation of free energy surfaces. The success of the method is demonstrated by the applications to two gas phase molecules, ethane and peroxynitrous acid, as test case systems. A statistical analysis of the results shows that the entire free energy landscape is well converged within a 40 ps simulation at 500 K, even for a system with barriers as high as 15 kcal/mol.
NASA Technical Reports Server (NTRS)
1980-01-01
Present and future relatively small (30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration can help achieve national energy goals and can be dispersed throughout the distribution portion of an electric utility system. Based on current projections, it appears that dispersed storage and generation (DSG) electrical energy will comprise only a small portion, from 4 to 10 percent, of the national total by the end of this century. In general, the growth potential for DSG seems favorable in the long term because of finite fossil energy resources and increasing fuel prices. Recent trends, especially in the institutional and regulatory fields, favor greater use of the DSGs for the future.
NASA Astrophysics Data System (ADS)
1980-10-01
Present and future relatively small (30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration can help achieve national energy goals and can be dispersed throughout the distribution portion of an electric utility system. Based on current projections, it appears that dispersed storage and generation (DSG) electrical energy will comprise only a small portion, from 4 to 10 percent, of the national total by the end of this century. In general, the growth potential for DSG seems favorable in the long term because of finite fossil energy resources and increasing fuel prices. Recent trends, especially in the institutional and regulatory fields, favor greater use of the DSGs for the future.
NASA Astrophysics Data System (ADS)
Jin, Yang; Ciwei, Gao; Jing, Zhang; Min, Sun; Jie, Yu
2017-05-01
The selection and evaluation of priority domains in Global Energy Internet standard development will help to break through limits of national investment, thus priority will be given to standardizing technical areas with highest urgency and feasibility. Therefore, in this paper, the process of Delphi survey based on technology foresight is put forward, the evaluation index system of priority domains is established, and the index calculation method is determined. Afterwards, statistical method is used to evaluate the alternative domains. Finally the top four priority domains are determined as follows: Interconnected Network Planning and Simulation Analysis, Interconnected Network Safety Control and Protection, Intelligent Power Transmission and Transformation, and Internet of Things.
Energy-aware embedded classifier design for real-time emotion analysis.
Padmanabhan, Manoj; Murali, Srinivasan; Rincon, Francisco; Atienza, David
2015-01-01
Detection and classification of human emotions from multiple bio-signals has a wide variety of applications. Though electronic devices are available in the market today that acquire multiple body signals, the classification of human emotions in real-time, adapted to the tight energy budgets of wearable embedded systems is a big challenge. In this paper we present an embedded classifier for real-time emotion classification. We propose a system that operates at different energy budgeted modes, depending on the available energy, where each mode is constrained by an operating energy bound. The classifier has an offline training phase where feature selection is performed for each operating mode, with an energy-budget aware algorithm that we propose. Across the different operating modes, the classification accuracy ranges from 95% - 75% and 89% - 70% for arousal and valence respectively. The accuracy is traded off for less power consumption, which results in an increased battery life of up to 7.7 times (from 146.1 to 1126.9 hours).
Visible light to electrical energy conversion using photoelectrochemical cells
NASA Technical Reports Server (NTRS)
Wrighton, Mark S. (Inventor); Ellis, Arthur B. (Inventor); Kaiser, Steven W. (Inventor)
1983-01-01
Sustained conversion of low energy visible or near i.r. light (>1.25 eV) to electrical energy has been obtained using wet photoelectrochemical cells where there are no net chemical changes in the system. Stabilization of n-type semi-conductor anodes of CdS, CdSe, CdTe, GaP, GaAs and InP to photoanodic dissolution is achieved by employing selected alkaline solutions of Na.sub.2 S, Na.sub.2 S/S, Na.sub.2 Se, Na.sub.2 Se/Se, Na.sub.2 Te and Na.sub.2 Te/Te as the electrolyte. The oxidation of (poly) sulfide, (poly)selenide or (poly)telluride species occurs at the irradiated anode, and reduction of polysulfide, polyselenide or polytelluride species occurs at the dark Pt cathode of the photoelectrochemical cell. Optical to electrical energy conversion efficiencies approaching 15% at selected frequencies have been observed in some cells. The wavelength for the onset of photocurrent corresponds to the band gap of the particular anode material used in the cell.
Inertial Energy Storage for Spacecraft
NASA Technical Reports Server (NTRS)
Rodriguez, G. E.
1984-01-01
The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions.
Optimization of Gear Ratio in the Tidal Current Generation System based on Generated Energy
NASA Astrophysics Data System (ADS)
Naoi, Kazuhisa; Shiono, Mitsuhiro; Suzuki, Katsuyuki
It is possible to predict generating power of the tidal current generation, because of the tidal current's periodicity. Tidal current generation is more advantageous than other renewable energy sources, when the tidal current generation system is connected to the power system and operated. In this paper, we propose a method used to optimize the gear ratio and generator capacity, that is fundamental design items in the tidal current generation system which is composed of Darrieus type water turbine and squirrel-cage induction generator coupled with gear. The proposed method is applied to the tidal current generation system including the most large-sized turbine that we have developed and studied. This paper shows optimum gear ratio and generator capacity that make generated energy maximum, and verify effectiveness of the proposed method. The paper also proposes a method of selecting maximum generating current velocity in order to reduce the generator capacity, from the viewpoint of economics.
NASA Technical Reports Server (NTRS)
Hanks, Brantley R.; Skelton, Robert E.
1991-01-01
This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.
NASA Astrophysics Data System (ADS)
Pérez-Aparicio, Elena; Lillo-Bravo, Isidoro; Moreno-Tejera, Sara; Silva-Pérez, Manuel
2017-06-01
Thermal energy for industrial processes can be generated using thermal (ST) or photovoltaic (PV) solar energy. ST energy has traditionally been the most favorable option due to its cost and efficiency. Current costs and efficiencies values make the PV solar energy become an alternative to ST energy as supplier of industrial process heat. The aim of this study is to provide a useful tool to decide in each case which option is economically and environmentally the most suitable alternative. The methodology used to compare ST and PV systems is based on the calculation of the levelized cost of energy (LCOE) and greenhouse gas emissions (GHG) avoided by using renewable technologies instead of conventional sources of energy. In both cases, these calculations depend on costs and efficiencies associated with ST or PV systems and the conversion factor from thermal or electrical energy to GHG. To make these calculations, a series of hypotheses are assumed related to consumer and energy prices, operation, maintenance and replacement costs, lifetime of the system or working temperature of the industrial process. This study applies the methodology at five different sites which have been selected taking into account their radiometric and meteorological characteristics. In the case of ST energy three technologies are taken into account, compound parabolic concentrator (CPC), linear Fresnel collector (LFC) and parabolic trough collector (PTC). The PV option includes two ways of use of generated electricity, an electrical resistance or a combination of an electrical resistance and a heat pump (HP). Current values of costs and efficiencies make ST system remains as the most favorable option. These parameters may vary significantly over time. The evolution of these parameters may convert PV systems into the most favorable option for particular applications.
Yadav, Rajesh K; Baeg, Jin-Ook; Oh, Gyu Hwan; Park, No-Joong; Kong, Ki-jeong; Kim, Jinheung; Hwang, Dong Won; Biswas, Soumya K
2012-07-18
The photocatalyst-enzyme coupled system for artificial photosynthesis process is one of the most promising methods of solar energy conversion for the synthesis of organic chemicals or fuel. Here we report the synthesis of a novel graphene-based visible light active photocatalyst which covalently bonded the chromophore, such as multianthraquinone substituted porphyrin with the chemically converted graphene as a photocatalyst of the artificial photosynthesis system for an efficient photosynthetic production of formic acid from CO(2). The results not only show a benchmark example of the graphene-based material used as a photocatalyst in general artificial photosynthesis but also the benchmark example of the selective production system of solar chemicals/solar fuel directly from CO(2).
System and method for generating current by selective electron heating
Fisch, Nathaniel J.; Boozer, Allen H.
1984-01-01
A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of high-frequency waves into the plasma by means of waveguides. The wave frequency and polarization are chosen such that when the waveguides are tilted in a predetermined fashion, the wave energy is absorbed preferentially by electrons traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.
Increasing the energy conservation awareness using the influential power of a lottery system
NASA Astrophysics Data System (ADS)
Nayak, Amruta Vijay
This thesis presents an influence maximization-driven approach to promoting energy conservation awareness, with the objective to generate a competitive environment for energy consumption supervision. As consumers are typically reluctant to invest their time and effort in the activities beyond their business, an incentive-based distribution strategy is proposed to encourage consumers to actively take part in energy conservation. The key idea of the thesis lies in leveraging the consumer instincts as a driving factor for spreading positive social influence, via a smart lottery program. In the proposed framework, saving energy automatically increases the consumers' chances of winning the lottery, thereby motivating them to save more, while the smart winner selection will maximize the word-of-mouth effect of the program. The thesis collects and organizes a large body of literature in support of the claim that the spread of awareness in a social network can play a key role in the emergence of energy conscious behavior. It also reports on the findings of a survey conducted to determine the present day consumer perspective toward energy conservation and the level of influence required to motivate them to conserve more energy. Finally, a mathematical model for smart lottery winner selection is presented, and insightful observations are made concerning the properties of optimal solutions to tractable, small problem instances.
NASA Astrophysics Data System (ADS)
Tumanova, K.; Borodinecs, A.; Geikins, A.
2017-10-01
The article presents the results of hot water supply system analysis. Taking into account that the current consumption of hot water differs from normative values, real measured data of hot water consumption in multi-apartment buildings from year 2013 until year 2015 have been analyzed. Also, the thermal energy consumption for hot water preparation has been analyzed. Based on aggregated data and taking into account the fact that renovated systems of hot water supply in existing multi-apartment buildings have same pipelines’ diameters, it was analyzed how these systems are economically and energy efficient. For the study, residential buildings in Riga, which have different architectural and engineering solutions for hot water supply systems, were selected. The study was based on thermal energy consumption measurements, which were taken at the individual heating system’s manifolds. This study was done in order to develop database on hot water consumption in civil buildings and define difference in key performance criteria in unclassified buildings. Obtained results allows to reach European Regional Development Fund project “NEARLY ZERO ENERGY SOLUTIONS FOR UNCLASSIFIED BUILDINGS” Nr. 1.1.1.116A048 main targets.
Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.
Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel
2017-10-01
Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
System for thermal energy storage, space heating and cooling and power conversion
Gruen, Dieter M.; Fields, Paul R.
1981-04-21
An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.
FEL system with homogeneous average output
Douglas, David R.; Legg, Robert; Whitney, R. Roy; Neil, George; Powers, Thomas Joseph
2018-01-16
A method of varying the output of a free electron laser (FEL) on very short time scales to produce a slightly broader, but smooth, time-averaged wavelength spectrum. The method includes injecting into an accelerator a sequence of bunch trains at phase offsets from crest. Accelerating the particles to full energy to result in distinct and independently controlled, by the choice of phase offset, phase-energy correlations or chirps on each bunch train. The earlier trains will be more strongly chirped, the later trains less chirped. For an energy recovered linac (ERL), the beam may be recirculated using a transport system with linear and nonlinear momentum compactions M.sub.56, which are selected to compress all three bunch trains at the FEL with higher order terms managed.
Energy audit data for a resort island in the South China Sea.
Basir Khan, M Reyasudin; Jidin, Razali; Pasupuleti, Jagadeesh
2016-03-01
The data consists of actual generation-side auditing including the distribution of loads, seasonal load profiles, and types of loads as well as an analysis of local development planning of a resort island in the South China Sea. The data has been used to propose an optimal combination of hybrid renewable energy systems that able to mitigate the diesel fuel dependency on the island. The resort island selected is Tioman, as it represents the typical energy requirements of many resort islands in the South China Sea. The data presented are related to the research article "Optimal Combination of Solar, Wind, Micro-Hydro and Diesel Systems based on Actual Seasonal Load Profiles for a Resort Island in the South China Sea" [1].
Comparison of Stopping Power and Range Databases for Radiation Transport Study
NASA Technical Reports Server (NTRS)
Tai, H.; Bichsel, Hans; Wilson, John W.; Shinn, Judy L.; Cucinotta, Francis A.; Badavi, Francis F.
1997-01-01
The codes used to calculate stopping power and range for the space radiation shielding program at the Langley Research Center are based on the work of Ziegler but with modifications. As more experience is gained from experiments at heavy ion accelerators, prudence dictates a reevaluation of the current databases. Numerical values of stopping power and range calculated from four different codes currently in use are presented for selected ions and materials in the energy domain suitable for space radiation transport. This study of radiation transport has found that for most collision systems and for intermediate particle energies, agreement is less than 1 percent, in general, among all the codes. However, greater discrepancies are seen for heavy systems, especially at low particle energies.
Exergy analysis of helium liquefaction systems based on modified Claude cycle with two-expanders
NASA Astrophysics Data System (ADS)
Thomas, Rijo Jacob; Ghosh, Parthasarathi; Chowdhury, Kanchan
2011-06-01
Large-scale helium liquefaction systems, being energy-intensive, demand judicious selection of process parameters. An effective tool for design and analysis of thermodynamic cycles for these systems is exergy analysis, which is used to study the behavior of a helium liquefaction system based on modified Claude cycle. Parametric evaluation using process simulator Aspen HYSYS® helps to identify the effects of cycle pressure ratio and expander flow fraction on the exergetic efficiency of the liquefaction cycle. The study computes the distribution of losses at different refrigeration stages of the cycle and helps in selecting optimum cycle pressures, operating temperature levels of expanders and mass flow rates through them. Results from the analysis may help evolving guidelines for designing appropriate thermodynamic cycles for practical helium liquefaction systems.
Design approaches to more energy efficient engines
NASA Technical Reports Server (NTRS)
Saunders, N. T.; Colladay, R. S.; Macioce, L. E.
1978-01-01
The status of NASA's Energy Efficient Engine Project, a comparative government-industry effort aimed at advancing the technology base for the next generation of large turbofan engines for civil aircraft transports is summarized. Results of recently completed studies are reviewed. These studies involved selection of engine cycles and configurations that offer potential for at least 12% lower fuel consumption than current engines and also are economically attractive and environmentally acceptable. Emphasis is on the advancements required in component technologies and systems design concepts to permit future development of these more energy efficient engines.
Vozzola, Eric; Overcash, Michael; Griffing, Evan
2018-04-11
Isolation gowns serve a critical role in infection control by protecting healthcare workers, visitors, and patients from the transfer of microorganisms and body fluids. The decision of whether to use a reusable or disposable garment system is a selection process based on factors including sustainability, barrier effectiveness, cost, and comfort. Environmental sustainability is increasingly being used in the decision-making process. Life cycle assessment is the most comprehensive and widely used tool used to evaluate environmental performance. The environmental impacts of market-representative reusable and disposable isolation gown systems were compared using standard life cycle assessment procedures. The basis of comparison was 1,000 isolation gown uses in a healthcare setting. The scope included the manufacture, use, and end-of-life stages of the gown systems. At the healthcare facility, compared to the disposable gown system, the reusable gown system showed a 28% reduction in energy consumption, a 30% reduction in greenhouse gas emissions, a 41% reduction in blue water consumption, and a 93% reduction in solid waste generation. Selecting reusable garment systems may result in significant environmental benefits compared to selecting disposable garment systems. By selecting reusable isolation gowns, healthcare facilities can add these quantitative benefits directly to their sustainability scorecards. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Particle beam generator using a radioactive source
Underwood, D.G.
1993-03-30
The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.
Particle beam generator using a radioactive source
Underwood, David G.
1993-01-01
The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.
Huang, Xiaoqiang; Han, Kehang; Zhu, Yushan
2013-01-01
A systematic optimization model for binding sequence selection in computational enzyme design was developed based on the transition state theory of enzyme catalysis and graph-theoretical modeling. The saddle point on the free energy surface of the reaction system was represented by catalytic geometrical constraints, and the binding energy between the active site and transition state was minimized to reduce the activation energy barrier. The resulting hyperscale combinatorial optimization problem was tackled using a novel heuristic global optimization algorithm, which was inspired and tested by the protein core sequence selection problem. The sequence recapitulation tests on native active sites for two enzyme catalyzed hydrolytic reactions were applied to evaluate the predictive power of the design methodology. The results of the calculation show that most of the native binding sites can be successfully identified if the catalytic geometrical constraints and the structural motifs of the substrate are taken into account. Reliably predicting active site sequences may have significant implications for the creation of novel enzymes that are capable of catalyzing targeted chemical reactions. PMID:23649589
Isotope separation by photoselective dissociative electron capture
Stevens, C.G.
1978-08-29
Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.
Isotope separation by photoselective dissociative electron capture
Stevens, Charles G. [Pleasanton, CA
1978-08-29
A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.
Large horizontal axis wind turbine development
NASA Technical Reports Server (NTRS)
Robbins, W. H.; Thomas, R. L.
1979-01-01
An overview of the NASA activities concerning ongoing wind systems oriented toward utility application is presented. First-generation-technology large wind turbines were designed and are in operation at selected utility sites. In order to make a significant energy impact, costs of 2 to 3 cents per kilowatt hour must be achieved. The federal program continues to fund the development by industry of wind turbines which can meet the cost goals of 2 to 3 cents per kilowatt hour. Lower costs are achieved through the incorporation of new technology and innovative system design to reduce weight and increase energy capture.
Chung, Kwangzoo; Han, Youngyih; Kim, Jinsung; Ahn, Sung Hwan; Ju, Sang Gyu; Jung, Sang Hoon; Chung, Yoonsun; Cho, Sungkoo; Jo, Kwanghyun; Shin, Eun Hyuk; Hong, Chae-Seon; Shin, Jung Suk; Park, Seyjoon; Kim, Dae-Hyun; Kim, Hye Young; Lee, Boram; Shibagaki, Gantaro; Nonaka, Hideki; Sasai, Kenzo; Koyabu, Yukio; Choi, Changhoon; Huh, Seung Jae; Ahn, Yong Chan; Pyo, Hong Ryull; Lim, Do Hoon; Park, Hee Chul; Park, Won; Oh, Dong Ryul; Noh, Jae Myung; Yu, Jeong Il; Song, Sanghyuk; Lee, Ji Eun; Lee, Bomi; Choi, Doo Ho
2015-12-01
The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Piljae; Liu, Xiaobing
High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects, a ground-source variable refrigerant flow (GS-VRF) system installed at the Human Health Building at Oakland University in Rochester, Michigan.more » This case study is based on the analysis of measured performance data, maintenance records, construction costs, and simulations of the energy consumption of conventional central heating, ventilation, and air-conditioning (HVAC) systems providing the same level of space conditioning as the demonstrated GS-VRF system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GS-VRF system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the GS-VRF system compared with conventional HVAC systems. This case study also identified opportunities for reducing uncertainties in the performance evaluation, improving the operational efficiency, and reducing the installed cost of similar GSHP systems in the future.« less
Intramolecular singlet-singlet energy transfer in antenna-substituted azoalkanes.
Pischel, Uwe; Huang, Fang; Nau, Werner M
2004-03-01
Two novel azoalkane bichromophores and related model compounds have been synthesised and photophysically characterised. Dimethylphenylsiloxy (DPSO) or dimethylnaphthylsiloxy (DNSO) serve as aromatic donor groups (antenna) and the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as the acceptor. The UV spectral window of DBO (250-300 nm) allows selective excitation of the donor. Intramolecular singlet-singlet energy transfer to DBO is highly efficient and proceeds with quantum yields of 0.76 with DPSO and 0.99 with DNSO. The photophysical and spectral properties of the bichromophoric systems suggest that energy transfer occurs through diffusional approach of the donor and acceptor within a van der Waals contact at which the exchange mechanism is presumed to dominate. Furthermore, akin to the behaviour of electron-transfer systems in the Marcus inverted region, a rate of energy transfer 2.5 times slower was observed for the system with the more favourable energetics, i.e. singlet-singlet energy transfer from DPSO proceeded slower than from DNSO, although the process is more exergonic for DPSO (-142 kJ mol(-1) for DPSO versus-67 kJ mol(-1) for DNSO).
Renewable Energy Sources in Formation of South Urals Modern Urban Systems
NASA Astrophysics Data System (ADS)
Khudyakov, A. Ju; Shabiev, S. G.
2017-11-01
The article considers the vital problems of renewable energy sources using by the example of the South Urals as a part of a general energy system of the Russian Federation, makes a forecast and gives recommendations on the application of specific technologies: solar energy, wind energy, deep heat energy and geothermal energy. It also considers the influence of the climatology on selection of the development pattern for the alternative energy industry. The article contains an example of wind energy used as a driver of the Karabash company town development in the Chelyabinsk region. The development of the economic energy sector is extremely important for the Russian Federation, both from the point of view of strategic security and from the point of view of integration into a modern development on the principles of Sustainable Development. To provide a full understanding of the role of alternative energy in the energy sector of the country, the article presents the materials illustrating the regional potential in terms of alternative energy sources use. This article is a part of the global research on the settlement system evolution in the South Urals. The authors studied the historical, geographical, demographic, economic characteristics of the region. Finally, a forecast for development at the regional level was made. Some of the aforementioned results were obtained due to the testing research in the learning process of the students from the South Ural State University (national research university).
Cogeneration technology alternatives study. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
1980-01-01
Data and information in the area of advanced energy conversion systems for industrial congeneration applications in the 1985-2000 time period was studied. Six current and thirty-one advanced energy conversion systems were defined and combined with appropriate balance-of-plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on-site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Overall, fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal-derived fuels, or coal with advanced fluid bed combustion or on-site gasification systems.
Rectenna System Design. [energy conversion solar power satellites
NASA Technical Reports Server (NTRS)
Woodcock, G. R.; Andryczyk, R. W.
1980-01-01
The fundamental processes involved in the operation of the rectenna system designed for the solar power satellite system are described. The basic design choices are presented based on the desired microwave rf field concentration prior to rectification and based on the ground clearance requirements for the rectenna structure. A nonconcentrating inclined planar panel with a 2 meter minimum clearance configuration is selected as a representative of the typical rectenna.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edgar, L.
To reduce energy consumption stemming from lighting, some of the fixtures in Army office buildings have been delamped and building energy managers have instituted the policy of turning lights off when not in use. Even with these measures, lighting is still one of the largest consumers of electricity. The current problem is to find ways to reduce the energy consumption of lighting systems when they are in use. The objectives of this research was to provide information on the performance and energy savings potential of constant level lighting (CLL) controls. Based on a review of product information, researchers selected themore » Conservolite Plus 20 for testing and installed it in 10 office spaces. After 4 months of operation, a survey of the office occupants revealed that they were satisfied with the CLL system. Although electrical cost savings were realized, the payback period varied greatly, depending on the cost of replacing old or inoperable lamps and ballasts. Before large scale installation of CLL systems, it is recommended that the power factor and harmonic distortion be monitored at a large facility.« less
Methods of forming thermal management systems and thermal management methods
Gering, Kevin L.; Haefner, Daryl R.
2012-06-05
A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.
Price Based Local Power Distribution Management System (Local Power Distribution Manager) v1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
BROWN, RICHARD E.; CZARNECKI, STEPHEN; SPEARS, MICHAEL
2016-11-28
A trans-active energy micro-grid controller is implemented in the VOLTTRON distributed control platform. The system uses the price of electricity as the mechanism for conducting transactions that are used to manage energy use and to balance supply and demand. In order to allow testing and analysis of the control system, the implementation is designed to run completely as a software simulation, while allowing the inclusion of selected hardware that physically manages power. Equipment to be integrated with the micro-grid controller must have an IP (Internet Protocol)-based network connection and a software "driver" must exist to translate data communications between themore » device and the controller.« less
Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption
Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.
2005-12-13
The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption
Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.
2003-10-07
The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
NASA Astrophysics Data System (ADS)
Sharma, Abhiraj; Suryanarayana, Phanish
2018-05-01
We present an accurate and efficient real-space Density Functional Theory (DFT) framework for the ab initio study of non-orthogonal crystal systems. Specifically, employing a local reformulation of the electrostatics, we develop a novel Kronecker product formulation of the real-space kinetic energy operator that significantly reduces the number of operations associated with the Laplacian-vector multiplication, the dominant cost in practical computations. In particular, we reduce the scaling with respect to finite-difference order from quadratic to linear, thereby significantly bridging the gap in computational cost between non-orthogonal and orthogonal systems. We verify the accuracy and efficiency of the proposed methodology through selected examples.
Simulating Energy Relaxation in Pump-Probe Vibrational Spectroscopy of Hydrogen-Bonded Liquids.
Dettori, Riccardo; Ceriotti, Michele; Hunger, Johannes; Melis, Claudio; Colombo, Luciano; Donadio, Davide
2017-03-14
We introduce a nonequilibrium molecular dynamics simulation approach, based on the generalized Langevin equation, to study vibrational energy relaxation in pump-probe spectroscopy. A colored noise thermostat is used to selectively excite a set of vibrational modes, leaving the other modes nearly unperturbed, to mimic the effect of a monochromatic laser pump. Energy relaxation is probed by analyzing the evolution of the system after excitation in the microcanonical ensemble, thus providing direct information about the energy redistribution paths at the molecular level and their time scale. The method is applied to hydrogen-bonded molecular liquids, specifically deuterated methanol and water, providing a robust picture of energy relaxation at the molecular scale.
NASA Astrophysics Data System (ADS)
Murshid, Ghulam; Garg, Sahil
2018-05-01
Amine scrubbing is the state of the art technology for CO2 capture, and solvent selection can significantly reduce the capital and energy cost of the process. Higher energy requirement for aqueous amine based CO2 removal process is still a most important downside preventive its industrial deployment. Therefore, in this study, novel non-aqueous based amino acid salt system consisting of potassium prolinate, ethanol and ethylene glycol has been studied. This work presents initial CO2 solubility study and important physical properties i.e. density of the studied solvent system. Previous work showed that non-aqueous system of potassium prolinate and ethanol has good absorption rates and requires lower energy for solvent regeneration. However, during regeneration, solvent loss issues were found due to lower boiling point of the ethanol. Therefore, ethylene glycol was added into current studied system for enhancing the overall boiling point of the system. The good initial CO2 solubility and low density of studied solvent system offers several advantages as compared to conventional amine solutions.
Sustaining high-energy orbits of bi-stable energy harvesters by attractor selection
NASA Astrophysics Data System (ADS)
Udani, Janav P.; Arrieta, Andres F.
2017-11-01
Nonlinear energy harvesters have the potential to efficiently convert energy over a wide frequency range; however, difficulties in attaining and sustaining high-energy oscillations restrict their applicability in practical scenarios. In this letter, we propose an actuation methodology to switch the state of bi-stable harvesters from the low-energy intra-well configuration to the coexisting high-energy inter-well configuration by controlled phase shift perturbations. The strategy is designed to introduce a change in the system state without creating distinct metastable attractors by exploiting the basins of attraction of the coexisting stable attractors. Experimental results indicate that the proposed switching strategy yields a significant improvement in energy transduction capabilities, is highly economical, enabling the rapid recovery of energy spent in the disturbance, and can be practically implemented with widely used low-strain piezoelectric transducers.
Performance of the ATLAS Trigger System in 2010
Aad, G.; Abbott, B.; Abdallah, J.; ...
2012-01-03
Proton-proton collisions atmore » $$\\sqrt{s}$$ = 7 TeV and heavy ion collisions at $$\\sqrt{s}$$$_ {NN}$$ = 2.76 TeV were produced by the LHC and recorded using the ATLAS experiment's trigger system in 2010. The LHC is designed with a maximum bunch crossing rate of 40 MHz and the ATLAS trigger system is designed to record approximately 200 of these per second. The trigger system selects events by rapidly identifying signatures of muon, electron, photon, tau lepton, jet, and B meson candidates, as well as using global event signatures, such as missing transverse energy. An overview of the ATLAS trigger system, the evolution of the system during 2010 and the performance of the trigger system components and selections based on the 2010 collision data are shown. In conclusion, a brief outline of plans for the trigger system in 2011 is presented.« less
Adsorption Refrigeration System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kai; Vineyard, Edward Allan
Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacksmore » of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.« less
NASA Technical Reports Server (NTRS)
Forney, J. A.; Walker, D.; Lanier, M.
1979-01-01
Computer program, SHCOST, was used to perform economic analyses of operational test sites. The program allows consideration of the economic parameters which are important to the solar system user. A life cycle cost and cash flow comparison is made between a solar heating system and a conventional system. The program assists in sizing the solar heating system. A sensitivity study and plot capability allow the user to select the most cost effective system configuration.
Winter Simulation Conference, Miami Beach, Fla., December 4-6, 1978, Proceedings. Volumes 1 & 2
NASA Technical Reports Server (NTRS)
Highland, H. J. (Editor); Nielsen, N. R.; Hull, L. G.
1978-01-01
The papers report on the various aspects of simulation such as random variate generation, simulation optimization, ranking and selection of alternatives, model management, documentation, data bases, and instructional methods. Simulation studies in a wide variety of fields are described, including system design and scheduling, government and social systems, agriculture, computer systems, the military, transportation, corporate planning, ecosystems, health care, manufacturing and industrial systems, computer networks, education, energy, production planning and control, financial models, behavioral models, information systems, and inventory control.
Microwave mode shifting antenna system for regenerating particulate filters
Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA
2011-04-26
A regeneration system comprises a particulate matter (PM) filter including a microwave energy absorbing surface, and an antenna system comprising N antennas and an antenna driver module that sequentially drives the antenna system in a plurality of transverse modes of the antenna system to heat selected portions of the microwave absorbing surface to regenerate the PM filter, where N is an integer greater than one. The transverse modes may include transverse electric (TE) and/or transverse magnetic (TM) modes.
Anda, André; De Vico, Luca; Hansen, Thorsten
2017-06-08
Light-harvesting system 2 (LH2) executes the primary processes of photosynthesis in purple bacteria; photon absorption, and energy transportation to the reaction center. A detailed mechanistic insight into these operations is obscured by the complexity of the light-harvesting systems, particularly by the chromophore-environment interaction. In this work, we focus on the effects of the protein residues that are ligated to the bacteriochlorophylls (BChls) and construct potential energy surfaces of the ground and first optically excited state for the various BChl-residue systems where we in each case consider two degrees of freedom in the intermolecular region. We find that the excitation energies are only slightly affected by the considered modes. In addition, we see that axial ligands and hydrogen-bonded residues have opposite effects on both excitation energies and oscillator strengths by comparing to the isolated BChls. Our results indicate that only a small part of the chromophore-environment interaction can be associated with the intermolecular region between a BChl and an adjacent residue, but that it may be possible to selectively raise or lower the excitation energy at the axial and planar residue positions, respectively.
Method of detecting system function by measuring frequency response
Morrison, John L.; Morrison, William H.; Christophersen, Jon P.; Motloch, Chester G.
2013-01-08
Methods of rapidly measuring an impedance spectrum of an energy storage device in-situ over a limited number of logarithmically distributed frequencies are described. An energy storage device is excited with a known input signal, and a response is measured to ascertain the impedance spectrum. An excitation signal is a limited time duration sum-of-sines consisting of a select number of frequencies. In one embodiment, magnitude and phase of each frequency of interest within the sum-of-sines is identified when the selected frequencies and sample rate are logarithmic integer steps greater than two. This technique requires a measurement with a duration of one period of the lowest frequency. In another embodiment, where selected frequencies are distributed in octave steps, the impedance spectrum can be determined using a captured time record that is reduced to a half-period of the lowest frequency.
Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria.
Sakurai, Hidehiro; Masukawa, Hajime
2007-01-01
This review article explores the potential of using mariculture-raised cyanobacteria as solar energy converters of hydrogen (H(2)). The exploitation of the sea surface for large-scale renewable energy production and the reasons for selecting the economical, nitrogenase-based systems of cyanobacteria for H(2) production, are described in terms of societal benefits. Reports of cyanobacterial photobiological H(2) production are summarized with respect to specific activity, efficiency of solar energy conversion, and maximum H(2) concentration attainable. The need for further improvements in biological parameters such as low-light saturation properties, sustainability of H(2) production, and so forth, and the means to overcome these difficulties through the identification of promising wild-type strains followed by optimization of the selected strains using genetic engineering are also discussed. Finally, a possible mechanism for the development of economical large-scale mariculture operations in conjunction with international cooperation and social acceptance is outlined.
NASA Astrophysics Data System (ADS)
Rains, D.; Dunipace, D.; Woo, C. K.
1981-02-01
Consumer motivations for choosing a solar energy equipped home when the nonsolar or conventional model was available were investigated. The approach was to test the relative importance of demographic, dwelling unit, and heating system characteristics in household decisions to purchase a home equipped with solar energy devices. Two statistical models were developed: one to examine the relationship between the types of home buyers (as an identifiable market segment) and the decision to purchase a solar home; and the other to compare the energy use of solar vs. conventional homes selected in the sample.
Theoretical performance of plasma driven railguns
NASA Astrophysics Data System (ADS)
Thio, Y. C.; McNab, I. R.; Condit, W. C.
1983-07-01
The overall efficiency of a railgun launch system is the product of efficiencies of its subsystems: prime mover, energy storage, pulse forming network, and accelerator. In this paper, the efficiency of the accelerator is examined in terms of the processes occurring in the accelerator. The principal loss mechanisms include Joule heating in the plasma, in the rails, kinetic energy of the driving plasma and magnetic energy remaining in the accelerator after projectile exit. The mass of the plasma and the atomic weight of the ionic species are important parameters in determining the energy loss in the plasma. Techniques are developed for selecting these parameters of minimize this loss.
Production of JP-8-Based Hydrogen and Advanced Tactical Fuels for the U.S. Military
2009-09-24
system in pilot plant gasifier. Table 14. Summary of the Gravimetric Analysis of Tar (heavier than benzene) and PM Sampled from Hot and Cold Side...thorough technoeconomic assessment and analysis of available feedstocks prior to a candidate biomass being selected for energy generation or product...application will also require a thorough technoeconomic assessment and analysis of available feedstocks prior to a candidate biomass being selected
Low Energy Consumption Hydraulic Techniques
1988-08-30
usually at welds . 1-15 SECTION II PHASE I - ADVANCED AIRCRAFT HYDRAULIC SYSTEM SELECTION Phase I included Task 1 selection of the aircraft and definition...face was bronze plated. The bearings were 52100 tool steel and the pistons were M50 tool steel. The shoe faces were 4140 with bronze plate and the back...o Magnet assembly o Coil assembly DDV Force Motor - -- ,..._(First Stage) oeMain Control Valve __(Second Sae Main Control Valve LVDT Figure 282 Direct
Efficient live face detection to counter spoof attack in face recognition systems
NASA Astrophysics Data System (ADS)
Biswas, Bikram Kumar; Alam, Mohammad S.
2015-03-01
Face recognition is a critical tool used in almost all major biometrics based security systems. But recognition, authentication and liveness detection of the face of an actual user is a major challenge because an imposter or a non-live face of the actual user can be used to spoof the security system. In this research, a robust technique is proposed which detects liveness of faces in order to counter spoof attacks. The proposed technique uses a three-dimensional (3D) fast Fourier transform to compare spectral energies of a live face and a fake face in a mathematically selective manner. The mathematical model involves evaluation of energies of selective high frequency bands of average power spectra of both live and non-live faces. It also carries out proper recognition and authentication of the face of the actual user using the fringe-adjusted joint transform correlation technique, which has been found to yield the highest correlation output for a match. Experimental tests show that the proposed technique yields excellent results for identifying live faces.
Measure Guideline: Transitioning to a Tankless Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brozyna, K.; Rapport, A.
2012-09-01
This Measure Guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters. The report compares the differences between tankless and tank-type water heaters, highlighting the energy savings that can be realized by adopting tankless water heaters over tank-type water heaters. Selection criteria and risks discussed include unit sizing and location, water distribution system, plumbing line length and diameter, water quality, electrical backup, and code issues. Cost and performance data are provided for various types of tankless and tank-type water heaters, bothmore » natural gas fired and electric. Also considered are interactions between the tankless water heater and other functional elements of a house, such as cold water supply and low-flow devices. Operating costs and energy use of water distribution systems for single- and two-story houses are provided, along with discussion of the various types of distribution systems that can be used with tankless water heaters. Finally, details to prepare for proper installation of a tankless water heater are described.« less
NASA Astrophysics Data System (ADS)
Smith, Trenton John
Pre-service secondary science individuals, future middle or high school instructors training to become teachers, along with both Honors and general first year undergraduate biology students were investigated to determine how they reason about and understand two core topics in Biology: matter and energy flow through biological systems and evolution by natural selection. Diagnostic Question Clusters were used to assess student understanding of the processes by which matter and energy flow through biological systems over spatial scales, from the atomic-molecular to ecosystem levels. Key concepts and identified misconceptions were examined over topics of evolution by natural selection using the multiple-choice Concept Inventory of Natural Selection (CINS) and open-response Assessing COntextual Reasoning about Natural Selection (ACORNS). Pre-service teachers used more scientifically based reasoning than the undergraduate students over the topics of matter and energy flow. The Honors students used more scientific and less improper informal reasoning than the general undergraduates over matter and energy flow. Honors students performed best on both the CINS and ACORNS items over natural selection, while the general undergraduates scored the lowest on the CINS, and the pre-service instructors scored lowest on the ACORNS. Overall, there remain a large proportion of students not consistently using scientific reasoning about these two important concepts, even in future secondary science teachers. My findings are similar to those of other published studies using the same assessments. In general, very few biology students at the college level use scientific reasoning that exhibits deep conceptual understanding. A reason for this could be that instructors fail to recognize deficiencies in student reasoning; they assume their students use principle-based reasoning. Another reason could be that principle-based reasoning is very difficult and our teaching approaches in college promote memorization of content rather than conceptual change. My findings are significant to the work and progression of concept inventories in biology education, as well as to the instructors of students at all levels of biology curriculum, and those of future science teachers.
Grisales Díaz, Víctor Hugo; Olivar Tost, Gerard
2017-01-01
Dual extraction, high-temperature extraction, mixture extraction, and oleyl alcohol extraction have been proposed in the literature for acetone, butanol, and ethanol (ABE) production. However, energy and economic evaluation under similar assumptions of extraction-based separation systems are necessary. Hence, the new process proposed in this work, direct steam distillation (DSD), for regeneration of high-boiling extractants was compared with several extraction-based separation systems. The evaluation was performed under similar assumptions through simulation in Aspen Plus V7.3 ® software. Two end distillation systems (number of non-ideal stages between 70 and 80) were studied. Heat integration and vacuum operation of some units were proposed reducing the energy requirements. Energy requirement of hybrid processes, substrate concentration of 200 g/l, was between 6.4 and 8.3 MJ-fuel/kg-ABE. The minimum energy requirements of extraction-based separation systems, feeding a water concentration in the substrate equivalent to extractant selectivity, and ideal assumptions were between 2.6 and 3.5 MJ-fuel/kg-ABE, respectively. The efficiencies of recovery systems for baseline case and ideal evaluation were 0.53-0.57 and 0.81-0.84, respectively. The main advantages of DSD were the operation of the regeneration column at atmospheric pressure, the utilization of low-pressure steam, and the low energy requirements of preheating. The in situ recovery processes, DSD, and mixture extraction with conventional regeneration were the approaches with the lowest energy requirements and total annualized costs.
UMCS feasibility study for Fort George G. Meade. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-01
Fort George G. Meade selected eighty-three (83) buildings, from the approximately 1,500 buildings on the base to be included in the UMCS Feasibility Study. The purpose of the study is to evaluate the feasibility of replacing the existing analog based Energy Monitoring and Control System (EMCS) with a new distributed process Monitoring and Control System (UMCS).
UMCS feasibility study for Fort George G. Meade volume 1. Feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-01
Fort George G. Meade selected 83 buildings, from the approximately 1,500 buildings on the base to be included in the UMCS Feasibility Study. The purpose of the study is to evaluate the feasibility of replacing the existing analog based Energy Monitoring and Control System (EMCS) with a new distributed process Monitoring and Control System (UMCS).
Ventilation planning at Energy West's Deer Creek mine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonc, L.; Prosser, B.; Gamble, G.
2009-08-15
In 2004 ventilation planning was initiated to exploit a remote area of Deer Creek mine's reserve (near Huntington, Utah), the Mill Fork Area, located under a mountain. A push-pull ventilation system was selected. This article details the design process of the ventilation system upgrade, the procurement process for the new fans, and the new fan startup testing. 5 figs., 1 photo.